1 /* Intel(R) Gigabit Ethernet Linux driver 2 * Copyright(c) 2007-2014 Intel Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, see <http://www.gnu.org/licenses/>. 15 * 16 * The full GNU General Public License is included in this distribution in 17 * the file called "COPYING". 18 * 19 * Contact Information: 20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 22 */ 23 24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 25 26 #include <linux/module.h> 27 #include <linux/types.h> 28 #include <linux/init.h> 29 #include <linux/bitops.h> 30 #include <linux/vmalloc.h> 31 #include <linux/pagemap.h> 32 #include <linux/netdevice.h> 33 #include <linux/ipv6.h> 34 #include <linux/slab.h> 35 #include <net/checksum.h> 36 #include <net/ip6_checksum.h> 37 #include <linux/net_tstamp.h> 38 #include <linux/mii.h> 39 #include <linux/ethtool.h> 40 #include <linux/if.h> 41 #include <linux/if_vlan.h> 42 #include <linux/pci.h> 43 #include <linux/pci-aspm.h> 44 #include <linux/delay.h> 45 #include <linux/interrupt.h> 46 #include <linux/ip.h> 47 #include <linux/tcp.h> 48 #include <linux/sctp.h> 49 #include <linux/if_ether.h> 50 #include <linux/aer.h> 51 #include <linux/prefetch.h> 52 #include <linux/pm_runtime.h> 53 #ifdef CONFIG_IGB_DCA 54 #include <linux/dca.h> 55 #endif 56 #include <linux/i2c.h> 57 #include "igb.h" 58 59 #define MAJ 5 60 #define MIN 0 61 #define BUILD 5 62 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \ 63 __stringify(BUILD) "-k" 64 char igb_driver_name[] = "igb"; 65 char igb_driver_version[] = DRV_VERSION; 66 static const char igb_driver_string[] = 67 "Intel(R) Gigabit Ethernet Network Driver"; 68 static const char igb_copyright[] = 69 "Copyright (c) 2007-2014 Intel Corporation."; 70 71 static const struct e1000_info *igb_info_tbl[] = { 72 [board_82575] = &e1000_82575_info, 73 }; 74 75 static const struct pci_device_id igb_pci_tbl[] = { 76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) }, 77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) }, 78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) }, 79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 }, 80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 }, 81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 }, 82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 }, 83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 }, 84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 }, 85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 }, 86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 }, 87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 }, 88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 }, 89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 }, 90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 }, 91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 }, 92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 }, 93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 }, 94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 }, 95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 }, 96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 }, 97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 }, 98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 }, 99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 }, 100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 }, 101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 }, 102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 }, 103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 }, 104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 }, 105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 }, 106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 }, 107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 }, 108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 }, 109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 }, 110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 }, 111 /* required last entry */ 112 {0, } 113 }; 114 115 MODULE_DEVICE_TABLE(pci, igb_pci_tbl); 116 117 static int igb_setup_all_tx_resources(struct igb_adapter *); 118 static int igb_setup_all_rx_resources(struct igb_adapter *); 119 static void igb_free_all_tx_resources(struct igb_adapter *); 120 static void igb_free_all_rx_resources(struct igb_adapter *); 121 static void igb_setup_mrqc(struct igb_adapter *); 122 static int igb_probe(struct pci_dev *, const struct pci_device_id *); 123 static void igb_remove(struct pci_dev *pdev); 124 static int igb_sw_init(struct igb_adapter *); 125 static int igb_open(struct net_device *); 126 static int igb_close(struct net_device *); 127 static void igb_configure(struct igb_adapter *); 128 static void igb_configure_tx(struct igb_adapter *); 129 static void igb_configure_rx(struct igb_adapter *); 130 static void igb_clean_all_tx_rings(struct igb_adapter *); 131 static void igb_clean_all_rx_rings(struct igb_adapter *); 132 static void igb_clean_tx_ring(struct igb_ring *); 133 static void igb_clean_rx_ring(struct igb_ring *); 134 static void igb_set_rx_mode(struct net_device *); 135 static void igb_update_phy_info(unsigned long); 136 static void igb_watchdog(unsigned long); 137 static void igb_watchdog_task(struct work_struct *); 138 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *); 139 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev, 140 struct rtnl_link_stats64 *stats); 141 static int igb_change_mtu(struct net_device *, int); 142 static int igb_set_mac(struct net_device *, void *); 143 static void igb_set_uta(struct igb_adapter *adapter); 144 static irqreturn_t igb_intr(int irq, void *); 145 static irqreturn_t igb_intr_msi(int irq, void *); 146 static irqreturn_t igb_msix_other(int irq, void *); 147 static irqreturn_t igb_msix_ring(int irq, void *); 148 #ifdef CONFIG_IGB_DCA 149 static void igb_update_dca(struct igb_q_vector *); 150 static void igb_setup_dca(struct igb_adapter *); 151 #endif /* CONFIG_IGB_DCA */ 152 static int igb_poll(struct napi_struct *, int); 153 static bool igb_clean_tx_irq(struct igb_q_vector *); 154 static bool igb_clean_rx_irq(struct igb_q_vector *, int); 155 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd); 156 static void igb_tx_timeout(struct net_device *); 157 static void igb_reset_task(struct work_struct *); 158 static void igb_vlan_mode(struct net_device *netdev, 159 netdev_features_t features); 160 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16); 161 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16); 162 static void igb_restore_vlan(struct igb_adapter *); 163 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8); 164 static void igb_ping_all_vfs(struct igb_adapter *); 165 static void igb_msg_task(struct igb_adapter *); 166 static void igb_vmm_control(struct igb_adapter *); 167 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *); 168 static void igb_restore_vf_multicasts(struct igb_adapter *adapter); 169 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac); 170 static int igb_ndo_set_vf_vlan(struct net_device *netdev, 171 int vf, u16 vlan, u8 qos); 172 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int); 173 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf, 174 bool setting); 175 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf, 176 struct ifla_vf_info *ivi); 177 static void igb_check_vf_rate_limit(struct igb_adapter *); 178 179 #ifdef CONFIG_PCI_IOV 180 static int igb_vf_configure(struct igb_adapter *adapter, int vf); 181 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs); 182 #endif 183 184 #ifdef CONFIG_PM 185 #ifdef CONFIG_PM_SLEEP 186 static int igb_suspend(struct device *); 187 #endif 188 static int igb_resume(struct device *); 189 #ifdef CONFIG_PM_RUNTIME 190 static int igb_runtime_suspend(struct device *dev); 191 static int igb_runtime_resume(struct device *dev); 192 static int igb_runtime_idle(struct device *dev); 193 #endif 194 static const struct dev_pm_ops igb_pm_ops = { 195 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume) 196 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume, 197 igb_runtime_idle) 198 }; 199 #endif 200 static void igb_shutdown(struct pci_dev *); 201 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs); 202 #ifdef CONFIG_IGB_DCA 203 static int igb_notify_dca(struct notifier_block *, unsigned long, void *); 204 static struct notifier_block dca_notifier = { 205 .notifier_call = igb_notify_dca, 206 .next = NULL, 207 .priority = 0 208 }; 209 #endif 210 #ifdef CONFIG_NET_POLL_CONTROLLER 211 /* for netdump / net console */ 212 static void igb_netpoll(struct net_device *); 213 #endif 214 #ifdef CONFIG_PCI_IOV 215 static unsigned int max_vfs; 216 module_param(max_vfs, uint, 0); 217 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function"); 218 #endif /* CONFIG_PCI_IOV */ 219 220 static pci_ers_result_t igb_io_error_detected(struct pci_dev *, 221 pci_channel_state_t); 222 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *); 223 static void igb_io_resume(struct pci_dev *); 224 225 static const struct pci_error_handlers igb_err_handler = { 226 .error_detected = igb_io_error_detected, 227 .slot_reset = igb_io_slot_reset, 228 .resume = igb_io_resume, 229 }; 230 231 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba); 232 233 static struct pci_driver igb_driver = { 234 .name = igb_driver_name, 235 .id_table = igb_pci_tbl, 236 .probe = igb_probe, 237 .remove = igb_remove, 238 #ifdef CONFIG_PM 239 .driver.pm = &igb_pm_ops, 240 #endif 241 .shutdown = igb_shutdown, 242 .sriov_configure = igb_pci_sriov_configure, 243 .err_handler = &igb_err_handler 244 }; 245 246 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); 247 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver"); 248 MODULE_LICENSE("GPL"); 249 MODULE_VERSION(DRV_VERSION); 250 251 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 252 static int debug = -1; 253 module_param(debug, int, 0); 254 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 255 256 struct igb_reg_info { 257 u32 ofs; 258 char *name; 259 }; 260 261 static const struct igb_reg_info igb_reg_info_tbl[] = { 262 263 /* General Registers */ 264 {E1000_CTRL, "CTRL"}, 265 {E1000_STATUS, "STATUS"}, 266 {E1000_CTRL_EXT, "CTRL_EXT"}, 267 268 /* Interrupt Registers */ 269 {E1000_ICR, "ICR"}, 270 271 /* RX Registers */ 272 {E1000_RCTL, "RCTL"}, 273 {E1000_RDLEN(0), "RDLEN"}, 274 {E1000_RDH(0), "RDH"}, 275 {E1000_RDT(0), "RDT"}, 276 {E1000_RXDCTL(0), "RXDCTL"}, 277 {E1000_RDBAL(0), "RDBAL"}, 278 {E1000_RDBAH(0), "RDBAH"}, 279 280 /* TX Registers */ 281 {E1000_TCTL, "TCTL"}, 282 {E1000_TDBAL(0), "TDBAL"}, 283 {E1000_TDBAH(0), "TDBAH"}, 284 {E1000_TDLEN(0), "TDLEN"}, 285 {E1000_TDH(0), "TDH"}, 286 {E1000_TDT(0), "TDT"}, 287 {E1000_TXDCTL(0), "TXDCTL"}, 288 {E1000_TDFH, "TDFH"}, 289 {E1000_TDFT, "TDFT"}, 290 {E1000_TDFHS, "TDFHS"}, 291 {E1000_TDFPC, "TDFPC"}, 292 293 /* List Terminator */ 294 {} 295 }; 296 297 /* igb_regdump - register printout routine */ 298 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo) 299 { 300 int n = 0; 301 char rname[16]; 302 u32 regs[8]; 303 304 switch (reginfo->ofs) { 305 case E1000_RDLEN(0): 306 for (n = 0; n < 4; n++) 307 regs[n] = rd32(E1000_RDLEN(n)); 308 break; 309 case E1000_RDH(0): 310 for (n = 0; n < 4; n++) 311 regs[n] = rd32(E1000_RDH(n)); 312 break; 313 case E1000_RDT(0): 314 for (n = 0; n < 4; n++) 315 regs[n] = rd32(E1000_RDT(n)); 316 break; 317 case E1000_RXDCTL(0): 318 for (n = 0; n < 4; n++) 319 regs[n] = rd32(E1000_RXDCTL(n)); 320 break; 321 case E1000_RDBAL(0): 322 for (n = 0; n < 4; n++) 323 regs[n] = rd32(E1000_RDBAL(n)); 324 break; 325 case E1000_RDBAH(0): 326 for (n = 0; n < 4; n++) 327 regs[n] = rd32(E1000_RDBAH(n)); 328 break; 329 case E1000_TDBAL(0): 330 for (n = 0; n < 4; n++) 331 regs[n] = rd32(E1000_RDBAL(n)); 332 break; 333 case E1000_TDBAH(0): 334 for (n = 0; n < 4; n++) 335 regs[n] = rd32(E1000_TDBAH(n)); 336 break; 337 case E1000_TDLEN(0): 338 for (n = 0; n < 4; n++) 339 regs[n] = rd32(E1000_TDLEN(n)); 340 break; 341 case E1000_TDH(0): 342 for (n = 0; n < 4; n++) 343 regs[n] = rd32(E1000_TDH(n)); 344 break; 345 case E1000_TDT(0): 346 for (n = 0; n < 4; n++) 347 regs[n] = rd32(E1000_TDT(n)); 348 break; 349 case E1000_TXDCTL(0): 350 for (n = 0; n < 4; n++) 351 regs[n] = rd32(E1000_TXDCTL(n)); 352 break; 353 default: 354 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs)); 355 return; 356 } 357 358 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]"); 359 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1], 360 regs[2], regs[3]); 361 } 362 363 /* igb_dump - Print registers, Tx-rings and Rx-rings */ 364 static void igb_dump(struct igb_adapter *adapter) 365 { 366 struct net_device *netdev = adapter->netdev; 367 struct e1000_hw *hw = &adapter->hw; 368 struct igb_reg_info *reginfo; 369 struct igb_ring *tx_ring; 370 union e1000_adv_tx_desc *tx_desc; 371 struct my_u0 { u64 a; u64 b; } *u0; 372 struct igb_ring *rx_ring; 373 union e1000_adv_rx_desc *rx_desc; 374 u32 staterr; 375 u16 i, n; 376 377 if (!netif_msg_hw(adapter)) 378 return; 379 380 /* Print netdevice Info */ 381 if (netdev) { 382 dev_info(&adapter->pdev->dev, "Net device Info\n"); 383 pr_info("Device Name state trans_start last_rx\n"); 384 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name, 385 netdev->state, netdev->trans_start, netdev->last_rx); 386 } 387 388 /* Print Registers */ 389 dev_info(&adapter->pdev->dev, "Register Dump\n"); 390 pr_info(" Register Name Value\n"); 391 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl; 392 reginfo->name; reginfo++) { 393 igb_regdump(hw, reginfo); 394 } 395 396 /* Print TX Ring Summary */ 397 if (!netdev || !netif_running(netdev)) 398 goto exit; 399 400 dev_info(&adapter->pdev->dev, "TX Rings Summary\n"); 401 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n"); 402 for (n = 0; n < adapter->num_tx_queues; n++) { 403 struct igb_tx_buffer *buffer_info; 404 tx_ring = adapter->tx_ring[n]; 405 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean]; 406 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n", 407 n, tx_ring->next_to_use, tx_ring->next_to_clean, 408 (u64)dma_unmap_addr(buffer_info, dma), 409 dma_unmap_len(buffer_info, len), 410 buffer_info->next_to_watch, 411 (u64)buffer_info->time_stamp); 412 } 413 414 /* Print TX Rings */ 415 if (!netif_msg_tx_done(adapter)) 416 goto rx_ring_summary; 417 418 dev_info(&adapter->pdev->dev, "TX Rings Dump\n"); 419 420 /* Transmit Descriptor Formats 421 * 422 * Advanced Transmit Descriptor 423 * +--------------------------------------------------------------+ 424 * 0 | Buffer Address [63:0] | 425 * +--------------------------------------------------------------+ 426 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN | 427 * +--------------------------------------------------------------+ 428 * 63 46 45 40 39 38 36 35 32 31 24 15 0 429 */ 430 431 for (n = 0; n < adapter->num_tx_queues; n++) { 432 tx_ring = adapter->tx_ring[n]; 433 pr_info("------------------------------------\n"); 434 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index); 435 pr_info("------------------------------------\n"); 436 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n"); 437 438 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { 439 const char *next_desc; 440 struct igb_tx_buffer *buffer_info; 441 tx_desc = IGB_TX_DESC(tx_ring, i); 442 buffer_info = &tx_ring->tx_buffer_info[i]; 443 u0 = (struct my_u0 *)tx_desc; 444 if (i == tx_ring->next_to_use && 445 i == tx_ring->next_to_clean) 446 next_desc = " NTC/U"; 447 else if (i == tx_ring->next_to_use) 448 next_desc = " NTU"; 449 else if (i == tx_ring->next_to_clean) 450 next_desc = " NTC"; 451 else 452 next_desc = ""; 453 454 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n", 455 i, le64_to_cpu(u0->a), 456 le64_to_cpu(u0->b), 457 (u64)dma_unmap_addr(buffer_info, dma), 458 dma_unmap_len(buffer_info, len), 459 buffer_info->next_to_watch, 460 (u64)buffer_info->time_stamp, 461 buffer_info->skb, next_desc); 462 463 if (netif_msg_pktdata(adapter) && buffer_info->skb) 464 print_hex_dump(KERN_INFO, "", 465 DUMP_PREFIX_ADDRESS, 466 16, 1, buffer_info->skb->data, 467 dma_unmap_len(buffer_info, len), 468 true); 469 } 470 } 471 472 /* Print RX Rings Summary */ 473 rx_ring_summary: 474 dev_info(&adapter->pdev->dev, "RX Rings Summary\n"); 475 pr_info("Queue [NTU] [NTC]\n"); 476 for (n = 0; n < adapter->num_rx_queues; n++) { 477 rx_ring = adapter->rx_ring[n]; 478 pr_info(" %5d %5X %5X\n", 479 n, rx_ring->next_to_use, rx_ring->next_to_clean); 480 } 481 482 /* Print RX Rings */ 483 if (!netif_msg_rx_status(adapter)) 484 goto exit; 485 486 dev_info(&adapter->pdev->dev, "RX Rings Dump\n"); 487 488 /* Advanced Receive Descriptor (Read) Format 489 * 63 1 0 490 * +-----------------------------------------------------+ 491 * 0 | Packet Buffer Address [63:1] |A0/NSE| 492 * +----------------------------------------------+------+ 493 * 8 | Header Buffer Address [63:1] | DD | 494 * +-----------------------------------------------------+ 495 * 496 * 497 * Advanced Receive Descriptor (Write-Back) Format 498 * 499 * 63 48 47 32 31 30 21 20 17 16 4 3 0 500 * +------------------------------------------------------+ 501 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS | 502 * | Checksum Ident | | | | Type | Type | 503 * +------------------------------------------------------+ 504 * 8 | VLAN Tag | Length | Extended Error | Extended Status | 505 * +------------------------------------------------------+ 506 * 63 48 47 32 31 20 19 0 507 */ 508 509 for (n = 0; n < adapter->num_rx_queues; n++) { 510 rx_ring = adapter->rx_ring[n]; 511 pr_info("------------------------------------\n"); 512 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index); 513 pr_info("------------------------------------\n"); 514 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n"); 515 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n"); 516 517 for (i = 0; i < rx_ring->count; i++) { 518 const char *next_desc; 519 struct igb_rx_buffer *buffer_info; 520 buffer_info = &rx_ring->rx_buffer_info[i]; 521 rx_desc = IGB_RX_DESC(rx_ring, i); 522 u0 = (struct my_u0 *)rx_desc; 523 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 524 525 if (i == rx_ring->next_to_use) 526 next_desc = " NTU"; 527 else if (i == rx_ring->next_to_clean) 528 next_desc = " NTC"; 529 else 530 next_desc = ""; 531 532 if (staterr & E1000_RXD_STAT_DD) { 533 /* Descriptor Done */ 534 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n", 535 "RWB", i, 536 le64_to_cpu(u0->a), 537 le64_to_cpu(u0->b), 538 next_desc); 539 } else { 540 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n", 541 "R ", i, 542 le64_to_cpu(u0->a), 543 le64_to_cpu(u0->b), 544 (u64)buffer_info->dma, 545 next_desc); 546 547 if (netif_msg_pktdata(adapter) && 548 buffer_info->dma && buffer_info->page) { 549 print_hex_dump(KERN_INFO, "", 550 DUMP_PREFIX_ADDRESS, 551 16, 1, 552 page_address(buffer_info->page) + 553 buffer_info->page_offset, 554 IGB_RX_BUFSZ, true); 555 } 556 } 557 } 558 } 559 560 exit: 561 return; 562 } 563 564 /** 565 * igb_get_i2c_data - Reads the I2C SDA data bit 566 * @hw: pointer to hardware structure 567 * @i2cctl: Current value of I2CCTL register 568 * 569 * Returns the I2C data bit value 570 **/ 571 static int igb_get_i2c_data(void *data) 572 { 573 struct igb_adapter *adapter = (struct igb_adapter *)data; 574 struct e1000_hw *hw = &adapter->hw; 575 s32 i2cctl = rd32(E1000_I2CPARAMS); 576 577 return !!(i2cctl & E1000_I2C_DATA_IN); 578 } 579 580 /** 581 * igb_set_i2c_data - Sets the I2C data bit 582 * @data: pointer to hardware structure 583 * @state: I2C data value (0 or 1) to set 584 * 585 * Sets the I2C data bit 586 **/ 587 static void igb_set_i2c_data(void *data, int state) 588 { 589 struct igb_adapter *adapter = (struct igb_adapter *)data; 590 struct e1000_hw *hw = &adapter->hw; 591 s32 i2cctl = rd32(E1000_I2CPARAMS); 592 593 if (state) 594 i2cctl |= E1000_I2C_DATA_OUT; 595 else 596 i2cctl &= ~E1000_I2C_DATA_OUT; 597 598 i2cctl &= ~E1000_I2C_DATA_OE_N; 599 i2cctl |= E1000_I2C_CLK_OE_N; 600 wr32(E1000_I2CPARAMS, i2cctl); 601 wrfl(); 602 603 } 604 605 /** 606 * igb_set_i2c_clk - Sets the I2C SCL clock 607 * @data: pointer to hardware structure 608 * @state: state to set clock 609 * 610 * Sets the I2C clock line to state 611 **/ 612 static void igb_set_i2c_clk(void *data, int state) 613 { 614 struct igb_adapter *adapter = (struct igb_adapter *)data; 615 struct e1000_hw *hw = &adapter->hw; 616 s32 i2cctl = rd32(E1000_I2CPARAMS); 617 618 if (state) { 619 i2cctl |= E1000_I2C_CLK_OUT; 620 i2cctl &= ~E1000_I2C_CLK_OE_N; 621 } else { 622 i2cctl &= ~E1000_I2C_CLK_OUT; 623 i2cctl &= ~E1000_I2C_CLK_OE_N; 624 } 625 wr32(E1000_I2CPARAMS, i2cctl); 626 wrfl(); 627 } 628 629 /** 630 * igb_get_i2c_clk - Gets the I2C SCL clock state 631 * @data: pointer to hardware structure 632 * 633 * Gets the I2C clock state 634 **/ 635 static int igb_get_i2c_clk(void *data) 636 { 637 struct igb_adapter *adapter = (struct igb_adapter *)data; 638 struct e1000_hw *hw = &adapter->hw; 639 s32 i2cctl = rd32(E1000_I2CPARAMS); 640 641 return !!(i2cctl & E1000_I2C_CLK_IN); 642 } 643 644 static const struct i2c_algo_bit_data igb_i2c_algo = { 645 .setsda = igb_set_i2c_data, 646 .setscl = igb_set_i2c_clk, 647 .getsda = igb_get_i2c_data, 648 .getscl = igb_get_i2c_clk, 649 .udelay = 5, 650 .timeout = 20, 651 }; 652 653 /** 654 * igb_get_hw_dev - return device 655 * @hw: pointer to hardware structure 656 * 657 * used by hardware layer to print debugging information 658 **/ 659 struct net_device *igb_get_hw_dev(struct e1000_hw *hw) 660 { 661 struct igb_adapter *adapter = hw->back; 662 return adapter->netdev; 663 } 664 665 /** 666 * igb_init_module - Driver Registration Routine 667 * 668 * igb_init_module is the first routine called when the driver is 669 * loaded. All it does is register with the PCI subsystem. 670 **/ 671 static int __init igb_init_module(void) 672 { 673 int ret; 674 675 pr_info("%s - version %s\n", 676 igb_driver_string, igb_driver_version); 677 pr_info("%s\n", igb_copyright); 678 679 #ifdef CONFIG_IGB_DCA 680 dca_register_notify(&dca_notifier); 681 #endif 682 ret = pci_register_driver(&igb_driver); 683 return ret; 684 } 685 686 module_init(igb_init_module); 687 688 /** 689 * igb_exit_module - Driver Exit Cleanup Routine 690 * 691 * igb_exit_module is called just before the driver is removed 692 * from memory. 693 **/ 694 static void __exit igb_exit_module(void) 695 { 696 #ifdef CONFIG_IGB_DCA 697 dca_unregister_notify(&dca_notifier); 698 #endif 699 pci_unregister_driver(&igb_driver); 700 } 701 702 module_exit(igb_exit_module); 703 704 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1)) 705 /** 706 * igb_cache_ring_register - Descriptor ring to register mapping 707 * @adapter: board private structure to initialize 708 * 709 * Once we know the feature-set enabled for the device, we'll cache 710 * the register offset the descriptor ring is assigned to. 711 **/ 712 static void igb_cache_ring_register(struct igb_adapter *adapter) 713 { 714 int i = 0, j = 0; 715 u32 rbase_offset = adapter->vfs_allocated_count; 716 717 switch (adapter->hw.mac.type) { 718 case e1000_82576: 719 /* The queues are allocated for virtualization such that VF 0 720 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc. 721 * In order to avoid collision we start at the first free queue 722 * and continue consuming queues in the same sequence 723 */ 724 if (adapter->vfs_allocated_count) { 725 for (; i < adapter->rss_queues; i++) 726 adapter->rx_ring[i]->reg_idx = rbase_offset + 727 Q_IDX_82576(i); 728 } 729 /* Fall through */ 730 case e1000_82575: 731 case e1000_82580: 732 case e1000_i350: 733 case e1000_i354: 734 case e1000_i210: 735 case e1000_i211: 736 /* Fall through */ 737 default: 738 for (; i < adapter->num_rx_queues; i++) 739 adapter->rx_ring[i]->reg_idx = rbase_offset + i; 740 for (; j < adapter->num_tx_queues; j++) 741 adapter->tx_ring[j]->reg_idx = rbase_offset + j; 742 break; 743 } 744 } 745 746 u32 igb_rd32(struct e1000_hw *hw, u32 reg) 747 { 748 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw); 749 u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr); 750 u32 value = 0; 751 752 if (E1000_REMOVED(hw_addr)) 753 return ~value; 754 755 value = readl(&hw_addr[reg]); 756 757 /* reads should not return all F's */ 758 if (!(~value) && (!reg || !(~readl(hw_addr)))) { 759 struct net_device *netdev = igb->netdev; 760 hw->hw_addr = NULL; 761 netif_device_detach(netdev); 762 netdev_err(netdev, "PCIe link lost, device now detached\n"); 763 } 764 765 return value; 766 } 767 768 /** 769 * igb_write_ivar - configure ivar for given MSI-X vector 770 * @hw: pointer to the HW structure 771 * @msix_vector: vector number we are allocating to a given ring 772 * @index: row index of IVAR register to write within IVAR table 773 * @offset: column offset of in IVAR, should be multiple of 8 774 * 775 * This function is intended to handle the writing of the IVAR register 776 * for adapters 82576 and newer. The IVAR table consists of 2 columns, 777 * each containing an cause allocation for an Rx and Tx ring, and a 778 * variable number of rows depending on the number of queues supported. 779 **/ 780 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector, 781 int index, int offset) 782 { 783 u32 ivar = array_rd32(E1000_IVAR0, index); 784 785 /* clear any bits that are currently set */ 786 ivar &= ~((u32)0xFF << offset); 787 788 /* write vector and valid bit */ 789 ivar |= (msix_vector | E1000_IVAR_VALID) << offset; 790 791 array_wr32(E1000_IVAR0, index, ivar); 792 } 793 794 #define IGB_N0_QUEUE -1 795 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector) 796 { 797 struct igb_adapter *adapter = q_vector->adapter; 798 struct e1000_hw *hw = &adapter->hw; 799 int rx_queue = IGB_N0_QUEUE; 800 int tx_queue = IGB_N0_QUEUE; 801 u32 msixbm = 0; 802 803 if (q_vector->rx.ring) 804 rx_queue = q_vector->rx.ring->reg_idx; 805 if (q_vector->tx.ring) 806 tx_queue = q_vector->tx.ring->reg_idx; 807 808 switch (hw->mac.type) { 809 case e1000_82575: 810 /* The 82575 assigns vectors using a bitmask, which matches the 811 * bitmask for the EICR/EIMS/EIMC registers. To assign one 812 * or more queues to a vector, we write the appropriate bits 813 * into the MSIXBM register for that vector. 814 */ 815 if (rx_queue > IGB_N0_QUEUE) 816 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue; 817 if (tx_queue > IGB_N0_QUEUE) 818 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue; 819 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0) 820 msixbm |= E1000_EIMS_OTHER; 821 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm); 822 q_vector->eims_value = msixbm; 823 break; 824 case e1000_82576: 825 /* 82576 uses a table that essentially consists of 2 columns 826 * with 8 rows. The ordering is column-major so we use the 827 * lower 3 bits as the row index, and the 4th bit as the 828 * column offset. 829 */ 830 if (rx_queue > IGB_N0_QUEUE) 831 igb_write_ivar(hw, msix_vector, 832 rx_queue & 0x7, 833 (rx_queue & 0x8) << 1); 834 if (tx_queue > IGB_N0_QUEUE) 835 igb_write_ivar(hw, msix_vector, 836 tx_queue & 0x7, 837 ((tx_queue & 0x8) << 1) + 8); 838 q_vector->eims_value = 1 << msix_vector; 839 break; 840 case e1000_82580: 841 case e1000_i350: 842 case e1000_i354: 843 case e1000_i210: 844 case e1000_i211: 845 /* On 82580 and newer adapters the scheme is similar to 82576 846 * however instead of ordering column-major we have things 847 * ordered row-major. So we traverse the table by using 848 * bit 0 as the column offset, and the remaining bits as the 849 * row index. 850 */ 851 if (rx_queue > IGB_N0_QUEUE) 852 igb_write_ivar(hw, msix_vector, 853 rx_queue >> 1, 854 (rx_queue & 0x1) << 4); 855 if (tx_queue > IGB_N0_QUEUE) 856 igb_write_ivar(hw, msix_vector, 857 tx_queue >> 1, 858 ((tx_queue & 0x1) << 4) + 8); 859 q_vector->eims_value = 1 << msix_vector; 860 break; 861 default: 862 BUG(); 863 break; 864 } 865 866 /* add q_vector eims value to global eims_enable_mask */ 867 adapter->eims_enable_mask |= q_vector->eims_value; 868 869 /* configure q_vector to set itr on first interrupt */ 870 q_vector->set_itr = 1; 871 } 872 873 /** 874 * igb_configure_msix - Configure MSI-X hardware 875 * @adapter: board private structure to initialize 876 * 877 * igb_configure_msix sets up the hardware to properly 878 * generate MSI-X interrupts. 879 **/ 880 static void igb_configure_msix(struct igb_adapter *adapter) 881 { 882 u32 tmp; 883 int i, vector = 0; 884 struct e1000_hw *hw = &adapter->hw; 885 886 adapter->eims_enable_mask = 0; 887 888 /* set vector for other causes, i.e. link changes */ 889 switch (hw->mac.type) { 890 case e1000_82575: 891 tmp = rd32(E1000_CTRL_EXT); 892 /* enable MSI-X PBA support*/ 893 tmp |= E1000_CTRL_EXT_PBA_CLR; 894 895 /* Auto-Mask interrupts upon ICR read. */ 896 tmp |= E1000_CTRL_EXT_EIAME; 897 tmp |= E1000_CTRL_EXT_IRCA; 898 899 wr32(E1000_CTRL_EXT, tmp); 900 901 /* enable msix_other interrupt */ 902 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER); 903 adapter->eims_other = E1000_EIMS_OTHER; 904 905 break; 906 907 case e1000_82576: 908 case e1000_82580: 909 case e1000_i350: 910 case e1000_i354: 911 case e1000_i210: 912 case e1000_i211: 913 /* Turn on MSI-X capability first, or our settings 914 * won't stick. And it will take days to debug. 915 */ 916 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE | 917 E1000_GPIE_PBA | E1000_GPIE_EIAME | 918 E1000_GPIE_NSICR); 919 920 /* enable msix_other interrupt */ 921 adapter->eims_other = 1 << vector; 922 tmp = (vector++ | E1000_IVAR_VALID) << 8; 923 924 wr32(E1000_IVAR_MISC, tmp); 925 break; 926 default: 927 /* do nothing, since nothing else supports MSI-X */ 928 break; 929 } /* switch (hw->mac.type) */ 930 931 adapter->eims_enable_mask |= adapter->eims_other; 932 933 for (i = 0; i < adapter->num_q_vectors; i++) 934 igb_assign_vector(adapter->q_vector[i], vector++); 935 936 wrfl(); 937 } 938 939 /** 940 * igb_request_msix - Initialize MSI-X interrupts 941 * @adapter: board private structure to initialize 942 * 943 * igb_request_msix allocates MSI-X vectors and requests interrupts from the 944 * kernel. 945 **/ 946 static int igb_request_msix(struct igb_adapter *adapter) 947 { 948 struct net_device *netdev = adapter->netdev; 949 struct e1000_hw *hw = &adapter->hw; 950 int i, err = 0, vector = 0, free_vector = 0; 951 952 err = request_irq(adapter->msix_entries[vector].vector, 953 igb_msix_other, 0, netdev->name, adapter); 954 if (err) 955 goto err_out; 956 957 for (i = 0; i < adapter->num_q_vectors; i++) { 958 struct igb_q_vector *q_vector = adapter->q_vector[i]; 959 960 vector++; 961 962 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector); 963 964 if (q_vector->rx.ring && q_vector->tx.ring) 965 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name, 966 q_vector->rx.ring->queue_index); 967 else if (q_vector->tx.ring) 968 sprintf(q_vector->name, "%s-tx-%u", netdev->name, 969 q_vector->tx.ring->queue_index); 970 else if (q_vector->rx.ring) 971 sprintf(q_vector->name, "%s-rx-%u", netdev->name, 972 q_vector->rx.ring->queue_index); 973 else 974 sprintf(q_vector->name, "%s-unused", netdev->name); 975 976 err = request_irq(adapter->msix_entries[vector].vector, 977 igb_msix_ring, 0, q_vector->name, 978 q_vector); 979 if (err) 980 goto err_free; 981 } 982 983 igb_configure_msix(adapter); 984 return 0; 985 986 err_free: 987 /* free already assigned IRQs */ 988 free_irq(adapter->msix_entries[free_vector++].vector, adapter); 989 990 vector--; 991 for (i = 0; i < vector; i++) { 992 free_irq(adapter->msix_entries[free_vector++].vector, 993 adapter->q_vector[i]); 994 } 995 err_out: 996 return err; 997 } 998 999 /** 1000 * igb_free_q_vector - Free memory allocated for specific interrupt vector 1001 * @adapter: board private structure to initialize 1002 * @v_idx: Index of vector to be freed 1003 * 1004 * This function frees the memory allocated to the q_vector. 1005 **/ 1006 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx) 1007 { 1008 struct igb_q_vector *q_vector = adapter->q_vector[v_idx]; 1009 1010 adapter->q_vector[v_idx] = NULL; 1011 1012 /* igb_get_stats64() might access the rings on this vector, 1013 * we must wait a grace period before freeing it. 1014 */ 1015 kfree_rcu(q_vector, rcu); 1016 } 1017 1018 /** 1019 * igb_reset_q_vector - Reset config for interrupt vector 1020 * @adapter: board private structure to initialize 1021 * @v_idx: Index of vector to be reset 1022 * 1023 * If NAPI is enabled it will delete any references to the 1024 * NAPI struct. This is preparation for igb_free_q_vector. 1025 **/ 1026 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx) 1027 { 1028 struct igb_q_vector *q_vector = adapter->q_vector[v_idx]; 1029 1030 /* Coming from igb_set_interrupt_capability, the vectors are not yet 1031 * allocated. So, q_vector is NULL so we should stop here. 1032 */ 1033 if (!q_vector) 1034 return; 1035 1036 if (q_vector->tx.ring) 1037 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL; 1038 1039 if (q_vector->rx.ring) 1040 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL; 1041 1042 netif_napi_del(&q_vector->napi); 1043 1044 } 1045 1046 static void igb_reset_interrupt_capability(struct igb_adapter *adapter) 1047 { 1048 int v_idx = adapter->num_q_vectors; 1049 1050 if (adapter->flags & IGB_FLAG_HAS_MSIX) 1051 pci_disable_msix(adapter->pdev); 1052 else if (adapter->flags & IGB_FLAG_HAS_MSI) 1053 pci_disable_msi(adapter->pdev); 1054 1055 while (v_idx--) 1056 igb_reset_q_vector(adapter, v_idx); 1057 } 1058 1059 /** 1060 * igb_free_q_vectors - Free memory allocated for interrupt vectors 1061 * @adapter: board private structure to initialize 1062 * 1063 * This function frees the memory allocated to the q_vectors. In addition if 1064 * NAPI is enabled it will delete any references to the NAPI struct prior 1065 * to freeing the q_vector. 1066 **/ 1067 static void igb_free_q_vectors(struct igb_adapter *adapter) 1068 { 1069 int v_idx = adapter->num_q_vectors; 1070 1071 adapter->num_tx_queues = 0; 1072 adapter->num_rx_queues = 0; 1073 adapter->num_q_vectors = 0; 1074 1075 while (v_idx--) { 1076 igb_reset_q_vector(adapter, v_idx); 1077 igb_free_q_vector(adapter, v_idx); 1078 } 1079 } 1080 1081 /** 1082 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts 1083 * @adapter: board private structure to initialize 1084 * 1085 * This function resets the device so that it has 0 Rx queues, Tx queues, and 1086 * MSI-X interrupts allocated. 1087 */ 1088 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter) 1089 { 1090 igb_free_q_vectors(adapter); 1091 igb_reset_interrupt_capability(adapter); 1092 } 1093 1094 /** 1095 * igb_set_interrupt_capability - set MSI or MSI-X if supported 1096 * @adapter: board private structure to initialize 1097 * @msix: boolean value of MSIX capability 1098 * 1099 * Attempt to configure interrupts using the best available 1100 * capabilities of the hardware and kernel. 1101 **/ 1102 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix) 1103 { 1104 int err; 1105 int numvecs, i; 1106 1107 if (!msix) 1108 goto msi_only; 1109 adapter->flags |= IGB_FLAG_HAS_MSIX; 1110 1111 /* Number of supported queues. */ 1112 adapter->num_rx_queues = adapter->rss_queues; 1113 if (adapter->vfs_allocated_count) 1114 adapter->num_tx_queues = 1; 1115 else 1116 adapter->num_tx_queues = adapter->rss_queues; 1117 1118 /* start with one vector for every Rx queue */ 1119 numvecs = adapter->num_rx_queues; 1120 1121 /* if Tx handler is separate add 1 for every Tx queue */ 1122 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) 1123 numvecs += adapter->num_tx_queues; 1124 1125 /* store the number of vectors reserved for queues */ 1126 adapter->num_q_vectors = numvecs; 1127 1128 /* add 1 vector for link status interrupts */ 1129 numvecs++; 1130 for (i = 0; i < numvecs; i++) 1131 adapter->msix_entries[i].entry = i; 1132 1133 err = pci_enable_msix_range(adapter->pdev, 1134 adapter->msix_entries, 1135 numvecs, 1136 numvecs); 1137 if (err > 0) 1138 return; 1139 1140 igb_reset_interrupt_capability(adapter); 1141 1142 /* If we can't do MSI-X, try MSI */ 1143 msi_only: 1144 adapter->flags &= ~IGB_FLAG_HAS_MSIX; 1145 #ifdef CONFIG_PCI_IOV 1146 /* disable SR-IOV for non MSI-X configurations */ 1147 if (adapter->vf_data) { 1148 struct e1000_hw *hw = &adapter->hw; 1149 /* disable iov and allow time for transactions to clear */ 1150 pci_disable_sriov(adapter->pdev); 1151 msleep(500); 1152 1153 kfree(adapter->vf_data); 1154 adapter->vf_data = NULL; 1155 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ); 1156 wrfl(); 1157 msleep(100); 1158 dev_info(&adapter->pdev->dev, "IOV Disabled\n"); 1159 } 1160 #endif 1161 adapter->vfs_allocated_count = 0; 1162 adapter->rss_queues = 1; 1163 adapter->flags |= IGB_FLAG_QUEUE_PAIRS; 1164 adapter->num_rx_queues = 1; 1165 adapter->num_tx_queues = 1; 1166 adapter->num_q_vectors = 1; 1167 if (!pci_enable_msi(adapter->pdev)) 1168 adapter->flags |= IGB_FLAG_HAS_MSI; 1169 } 1170 1171 static void igb_add_ring(struct igb_ring *ring, 1172 struct igb_ring_container *head) 1173 { 1174 head->ring = ring; 1175 head->count++; 1176 } 1177 1178 /** 1179 * igb_alloc_q_vector - Allocate memory for a single interrupt vector 1180 * @adapter: board private structure to initialize 1181 * @v_count: q_vectors allocated on adapter, used for ring interleaving 1182 * @v_idx: index of vector in adapter struct 1183 * @txr_count: total number of Tx rings to allocate 1184 * @txr_idx: index of first Tx ring to allocate 1185 * @rxr_count: total number of Rx rings to allocate 1186 * @rxr_idx: index of first Rx ring to allocate 1187 * 1188 * We allocate one q_vector. If allocation fails we return -ENOMEM. 1189 **/ 1190 static int igb_alloc_q_vector(struct igb_adapter *adapter, 1191 int v_count, int v_idx, 1192 int txr_count, int txr_idx, 1193 int rxr_count, int rxr_idx) 1194 { 1195 struct igb_q_vector *q_vector; 1196 struct igb_ring *ring; 1197 int ring_count, size; 1198 1199 /* igb only supports 1 Tx and/or 1 Rx queue per vector */ 1200 if (txr_count > 1 || rxr_count > 1) 1201 return -ENOMEM; 1202 1203 ring_count = txr_count + rxr_count; 1204 size = sizeof(struct igb_q_vector) + 1205 (sizeof(struct igb_ring) * ring_count); 1206 1207 /* allocate q_vector and rings */ 1208 q_vector = adapter->q_vector[v_idx]; 1209 if (!q_vector) 1210 q_vector = kzalloc(size, GFP_KERNEL); 1211 if (!q_vector) 1212 return -ENOMEM; 1213 1214 /* initialize NAPI */ 1215 netif_napi_add(adapter->netdev, &q_vector->napi, 1216 igb_poll, 64); 1217 1218 /* tie q_vector and adapter together */ 1219 adapter->q_vector[v_idx] = q_vector; 1220 q_vector->adapter = adapter; 1221 1222 /* initialize work limits */ 1223 q_vector->tx.work_limit = adapter->tx_work_limit; 1224 1225 /* initialize ITR configuration */ 1226 q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0); 1227 q_vector->itr_val = IGB_START_ITR; 1228 1229 /* initialize pointer to rings */ 1230 ring = q_vector->ring; 1231 1232 /* intialize ITR */ 1233 if (rxr_count) { 1234 /* rx or rx/tx vector */ 1235 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3) 1236 q_vector->itr_val = adapter->rx_itr_setting; 1237 } else { 1238 /* tx only vector */ 1239 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3) 1240 q_vector->itr_val = adapter->tx_itr_setting; 1241 } 1242 1243 if (txr_count) { 1244 /* assign generic ring traits */ 1245 ring->dev = &adapter->pdev->dev; 1246 ring->netdev = adapter->netdev; 1247 1248 /* configure backlink on ring */ 1249 ring->q_vector = q_vector; 1250 1251 /* update q_vector Tx values */ 1252 igb_add_ring(ring, &q_vector->tx); 1253 1254 /* For 82575, context index must be unique per ring. */ 1255 if (adapter->hw.mac.type == e1000_82575) 1256 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags); 1257 1258 /* apply Tx specific ring traits */ 1259 ring->count = adapter->tx_ring_count; 1260 ring->queue_index = txr_idx; 1261 1262 u64_stats_init(&ring->tx_syncp); 1263 u64_stats_init(&ring->tx_syncp2); 1264 1265 /* assign ring to adapter */ 1266 adapter->tx_ring[txr_idx] = ring; 1267 1268 /* push pointer to next ring */ 1269 ring++; 1270 } 1271 1272 if (rxr_count) { 1273 /* assign generic ring traits */ 1274 ring->dev = &adapter->pdev->dev; 1275 ring->netdev = adapter->netdev; 1276 1277 /* configure backlink on ring */ 1278 ring->q_vector = q_vector; 1279 1280 /* update q_vector Rx values */ 1281 igb_add_ring(ring, &q_vector->rx); 1282 1283 /* set flag indicating ring supports SCTP checksum offload */ 1284 if (adapter->hw.mac.type >= e1000_82576) 1285 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags); 1286 1287 /* On i350, i354, i210, and i211, loopback VLAN packets 1288 * have the tag byte-swapped. 1289 */ 1290 if (adapter->hw.mac.type >= e1000_i350) 1291 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags); 1292 1293 /* apply Rx specific ring traits */ 1294 ring->count = adapter->rx_ring_count; 1295 ring->queue_index = rxr_idx; 1296 1297 u64_stats_init(&ring->rx_syncp); 1298 1299 /* assign ring to adapter */ 1300 adapter->rx_ring[rxr_idx] = ring; 1301 } 1302 1303 return 0; 1304 } 1305 1306 1307 /** 1308 * igb_alloc_q_vectors - Allocate memory for interrupt vectors 1309 * @adapter: board private structure to initialize 1310 * 1311 * We allocate one q_vector per queue interrupt. If allocation fails we 1312 * return -ENOMEM. 1313 **/ 1314 static int igb_alloc_q_vectors(struct igb_adapter *adapter) 1315 { 1316 int q_vectors = adapter->num_q_vectors; 1317 int rxr_remaining = adapter->num_rx_queues; 1318 int txr_remaining = adapter->num_tx_queues; 1319 int rxr_idx = 0, txr_idx = 0, v_idx = 0; 1320 int err; 1321 1322 if (q_vectors >= (rxr_remaining + txr_remaining)) { 1323 for (; rxr_remaining; v_idx++) { 1324 err = igb_alloc_q_vector(adapter, q_vectors, v_idx, 1325 0, 0, 1, rxr_idx); 1326 1327 if (err) 1328 goto err_out; 1329 1330 /* update counts and index */ 1331 rxr_remaining--; 1332 rxr_idx++; 1333 } 1334 } 1335 1336 for (; v_idx < q_vectors; v_idx++) { 1337 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 1338 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 1339 1340 err = igb_alloc_q_vector(adapter, q_vectors, v_idx, 1341 tqpv, txr_idx, rqpv, rxr_idx); 1342 1343 if (err) 1344 goto err_out; 1345 1346 /* update counts and index */ 1347 rxr_remaining -= rqpv; 1348 txr_remaining -= tqpv; 1349 rxr_idx++; 1350 txr_idx++; 1351 } 1352 1353 return 0; 1354 1355 err_out: 1356 adapter->num_tx_queues = 0; 1357 adapter->num_rx_queues = 0; 1358 adapter->num_q_vectors = 0; 1359 1360 while (v_idx--) 1361 igb_free_q_vector(adapter, v_idx); 1362 1363 return -ENOMEM; 1364 } 1365 1366 /** 1367 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors 1368 * @adapter: board private structure to initialize 1369 * @msix: boolean value of MSIX capability 1370 * 1371 * This function initializes the interrupts and allocates all of the queues. 1372 **/ 1373 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix) 1374 { 1375 struct pci_dev *pdev = adapter->pdev; 1376 int err; 1377 1378 igb_set_interrupt_capability(adapter, msix); 1379 1380 err = igb_alloc_q_vectors(adapter); 1381 if (err) { 1382 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n"); 1383 goto err_alloc_q_vectors; 1384 } 1385 1386 igb_cache_ring_register(adapter); 1387 1388 return 0; 1389 1390 err_alloc_q_vectors: 1391 igb_reset_interrupt_capability(adapter); 1392 return err; 1393 } 1394 1395 /** 1396 * igb_request_irq - initialize interrupts 1397 * @adapter: board private structure to initialize 1398 * 1399 * Attempts to configure interrupts using the best available 1400 * capabilities of the hardware and kernel. 1401 **/ 1402 static int igb_request_irq(struct igb_adapter *adapter) 1403 { 1404 struct net_device *netdev = adapter->netdev; 1405 struct pci_dev *pdev = adapter->pdev; 1406 int err = 0; 1407 1408 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1409 err = igb_request_msix(adapter); 1410 if (!err) 1411 goto request_done; 1412 /* fall back to MSI */ 1413 igb_free_all_tx_resources(adapter); 1414 igb_free_all_rx_resources(adapter); 1415 1416 igb_clear_interrupt_scheme(adapter); 1417 err = igb_init_interrupt_scheme(adapter, false); 1418 if (err) 1419 goto request_done; 1420 1421 igb_setup_all_tx_resources(adapter); 1422 igb_setup_all_rx_resources(adapter); 1423 igb_configure(adapter); 1424 } 1425 1426 igb_assign_vector(adapter->q_vector[0], 0); 1427 1428 if (adapter->flags & IGB_FLAG_HAS_MSI) { 1429 err = request_irq(pdev->irq, igb_intr_msi, 0, 1430 netdev->name, adapter); 1431 if (!err) 1432 goto request_done; 1433 1434 /* fall back to legacy interrupts */ 1435 igb_reset_interrupt_capability(adapter); 1436 adapter->flags &= ~IGB_FLAG_HAS_MSI; 1437 } 1438 1439 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED, 1440 netdev->name, adapter); 1441 1442 if (err) 1443 dev_err(&pdev->dev, "Error %d getting interrupt\n", 1444 err); 1445 1446 request_done: 1447 return err; 1448 } 1449 1450 static void igb_free_irq(struct igb_adapter *adapter) 1451 { 1452 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1453 int vector = 0, i; 1454 1455 free_irq(adapter->msix_entries[vector++].vector, adapter); 1456 1457 for (i = 0; i < adapter->num_q_vectors; i++) 1458 free_irq(adapter->msix_entries[vector++].vector, 1459 adapter->q_vector[i]); 1460 } else { 1461 free_irq(adapter->pdev->irq, adapter); 1462 } 1463 } 1464 1465 /** 1466 * igb_irq_disable - Mask off interrupt generation on the NIC 1467 * @adapter: board private structure 1468 **/ 1469 static void igb_irq_disable(struct igb_adapter *adapter) 1470 { 1471 struct e1000_hw *hw = &adapter->hw; 1472 1473 /* we need to be careful when disabling interrupts. The VFs are also 1474 * mapped into these registers and so clearing the bits can cause 1475 * issues on the VF drivers so we only need to clear what we set 1476 */ 1477 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1478 u32 regval = rd32(E1000_EIAM); 1479 1480 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask); 1481 wr32(E1000_EIMC, adapter->eims_enable_mask); 1482 regval = rd32(E1000_EIAC); 1483 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask); 1484 } 1485 1486 wr32(E1000_IAM, 0); 1487 wr32(E1000_IMC, ~0); 1488 wrfl(); 1489 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1490 int i; 1491 1492 for (i = 0; i < adapter->num_q_vectors; i++) 1493 synchronize_irq(adapter->msix_entries[i].vector); 1494 } else { 1495 synchronize_irq(adapter->pdev->irq); 1496 } 1497 } 1498 1499 /** 1500 * igb_irq_enable - Enable default interrupt generation settings 1501 * @adapter: board private structure 1502 **/ 1503 static void igb_irq_enable(struct igb_adapter *adapter) 1504 { 1505 struct e1000_hw *hw = &adapter->hw; 1506 1507 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1508 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA; 1509 u32 regval = rd32(E1000_EIAC); 1510 1511 wr32(E1000_EIAC, regval | adapter->eims_enable_mask); 1512 regval = rd32(E1000_EIAM); 1513 wr32(E1000_EIAM, regval | adapter->eims_enable_mask); 1514 wr32(E1000_EIMS, adapter->eims_enable_mask); 1515 if (adapter->vfs_allocated_count) { 1516 wr32(E1000_MBVFIMR, 0xFF); 1517 ims |= E1000_IMS_VMMB; 1518 } 1519 wr32(E1000_IMS, ims); 1520 } else { 1521 wr32(E1000_IMS, IMS_ENABLE_MASK | 1522 E1000_IMS_DRSTA); 1523 wr32(E1000_IAM, IMS_ENABLE_MASK | 1524 E1000_IMS_DRSTA); 1525 } 1526 } 1527 1528 static void igb_update_mng_vlan(struct igb_adapter *adapter) 1529 { 1530 struct e1000_hw *hw = &adapter->hw; 1531 u16 vid = adapter->hw.mng_cookie.vlan_id; 1532 u16 old_vid = adapter->mng_vlan_id; 1533 1534 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { 1535 /* add VID to filter table */ 1536 igb_vfta_set(hw, vid, true); 1537 adapter->mng_vlan_id = vid; 1538 } else { 1539 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE; 1540 } 1541 1542 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) && 1543 (vid != old_vid) && 1544 !test_bit(old_vid, adapter->active_vlans)) { 1545 /* remove VID from filter table */ 1546 igb_vfta_set(hw, old_vid, false); 1547 } 1548 } 1549 1550 /** 1551 * igb_release_hw_control - release control of the h/w to f/w 1552 * @adapter: address of board private structure 1553 * 1554 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit. 1555 * For ASF and Pass Through versions of f/w this means that the 1556 * driver is no longer loaded. 1557 **/ 1558 static void igb_release_hw_control(struct igb_adapter *adapter) 1559 { 1560 struct e1000_hw *hw = &adapter->hw; 1561 u32 ctrl_ext; 1562 1563 /* Let firmware take over control of h/w */ 1564 ctrl_ext = rd32(E1000_CTRL_EXT); 1565 wr32(E1000_CTRL_EXT, 1566 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); 1567 } 1568 1569 /** 1570 * igb_get_hw_control - get control of the h/w from f/w 1571 * @adapter: address of board private structure 1572 * 1573 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit. 1574 * For ASF and Pass Through versions of f/w this means that 1575 * the driver is loaded. 1576 **/ 1577 static void igb_get_hw_control(struct igb_adapter *adapter) 1578 { 1579 struct e1000_hw *hw = &adapter->hw; 1580 u32 ctrl_ext; 1581 1582 /* Let firmware know the driver has taken over */ 1583 ctrl_ext = rd32(E1000_CTRL_EXT); 1584 wr32(E1000_CTRL_EXT, 1585 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); 1586 } 1587 1588 /** 1589 * igb_configure - configure the hardware for RX and TX 1590 * @adapter: private board structure 1591 **/ 1592 static void igb_configure(struct igb_adapter *adapter) 1593 { 1594 struct net_device *netdev = adapter->netdev; 1595 int i; 1596 1597 igb_get_hw_control(adapter); 1598 igb_set_rx_mode(netdev); 1599 1600 igb_restore_vlan(adapter); 1601 1602 igb_setup_tctl(adapter); 1603 igb_setup_mrqc(adapter); 1604 igb_setup_rctl(adapter); 1605 1606 igb_configure_tx(adapter); 1607 igb_configure_rx(adapter); 1608 1609 igb_rx_fifo_flush_82575(&adapter->hw); 1610 1611 /* call igb_desc_unused which always leaves 1612 * at least 1 descriptor unused to make sure 1613 * next_to_use != next_to_clean 1614 */ 1615 for (i = 0; i < adapter->num_rx_queues; i++) { 1616 struct igb_ring *ring = adapter->rx_ring[i]; 1617 igb_alloc_rx_buffers(ring, igb_desc_unused(ring)); 1618 } 1619 } 1620 1621 /** 1622 * igb_power_up_link - Power up the phy/serdes link 1623 * @adapter: address of board private structure 1624 **/ 1625 void igb_power_up_link(struct igb_adapter *adapter) 1626 { 1627 igb_reset_phy(&adapter->hw); 1628 1629 if (adapter->hw.phy.media_type == e1000_media_type_copper) 1630 igb_power_up_phy_copper(&adapter->hw); 1631 else 1632 igb_power_up_serdes_link_82575(&adapter->hw); 1633 } 1634 1635 /** 1636 * igb_power_down_link - Power down the phy/serdes link 1637 * @adapter: address of board private structure 1638 */ 1639 static void igb_power_down_link(struct igb_adapter *adapter) 1640 { 1641 if (adapter->hw.phy.media_type == e1000_media_type_copper) 1642 igb_power_down_phy_copper_82575(&adapter->hw); 1643 else 1644 igb_shutdown_serdes_link_82575(&adapter->hw); 1645 } 1646 1647 /** 1648 * Detect and switch function for Media Auto Sense 1649 * @adapter: address of the board private structure 1650 **/ 1651 static void igb_check_swap_media(struct igb_adapter *adapter) 1652 { 1653 struct e1000_hw *hw = &adapter->hw; 1654 u32 ctrl_ext, connsw; 1655 bool swap_now = false; 1656 1657 ctrl_ext = rd32(E1000_CTRL_EXT); 1658 connsw = rd32(E1000_CONNSW); 1659 1660 /* need to live swap if current media is copper and we have fiber/serdes 1661 * to go to. 1662 */ 1663 1664 if ((hw->phy.media_type == e1000_media_type_copper) && 1665 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) { 1666 swap_now = true; 1667 } else if (!(connsw & E1000_CONNSW_SERDESD)) { 1668 /* copper signal takes time to appear */ 1669 if (adapter->copper_tries < 4) { 1670 adapter->copper_tries++; 1671 connsw |= E1000_CONNSW_AUTOSENSE_CONF; 1672 wr32(E1000_CONNSW, connsw); 1673 return; 1674 } else { 1675 adapter->copper_tries = 0; 1676 if ((connsw & E1000_CONNSW_PHYSD) && 1677 (!(connsw & E1000_CONNSW_PHY_PDN))) { 1678 swap_now = true; 1679 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF; 1680 wr32(E1000_CONNSW, connsw); 1681 } 1682 } 1683 } 1684 1685 if (!swap_now) 1686 return; 1687 1688 switch (hw->phy.media_type) { 1689 case e1000_media_type_copper: 1690 netdev_info(adapter->netdev, 1691 "MAS: changing media to fiber/serdes\n"); 1692 ctrl_ext |= 1693 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 1694 adapter->flags |= IGB_FLAG_MEDIA_RESET; 1695 adapter->copper_tries = 0; 1696 break; 1697 case e1000_media_type_internal_serdes: 1698 case e1000_media_type_fiber: 1699 netdev_info(adapter->netdev, 1700 "MAS: changing media to copper\n"); 1701 ctrl_ext &= 1702 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 1703 adapter->flags |= IGB_FLAG_MEDIA_RESET; 1704 break; 1705 default: 1706 /* shouldn't get here during regular operation */ 1707 netdev_err(adapter->netdev, 1708 "AMS: Invalid media type found, returning\n"); 1709 break; 1710 } 1711 wr32(E1000_CTRL_EXT, ctrl_ext); 1712 } 1713 1714 /** 1715 * igb_up - Open the interface and prepare it to handle traffic 1716 * @adapter: board private structure 1717 **/ 1718 int igb_up(struct igb_adapter *adapter) 1719 { 1720 struct e1000_hw *hw = &adapter->hw; 1721 int i; 1722 1723 /* hardware has been reset, we need to reload some things */ 1724 igb_configure(adapter); 1725 1726 clear_bit(__IGB_DOWN, &adapter->state); 1727 1728 for (i = 0; i < adapter->num_q_vectors; i++) 1729 napi_enable(&(adapter->q_vector[i]->napi)); 1730 1731 if (adapter->flags & IGB_FLAG_HAS_MSIX) 1732 igb_configure_msix(adapter); 1733 else 1734 igb_assign_vector(adapter->q_vector[0], 0); 1735 1736 /* Clear any pending interrupts. */ 1737 rd32(E1000_ICR); 1738 igb_irq_enable(adapter); 1739 1740 /* notify VFs that reset has been completed */ 1741 if (adapter->vfs_allocated_count) { 1742 u32 reg_data = rd32(E1000_CTRL_EXT); 1743 1744 reg_data |= E1000_CTRL_EXT_PFRSTD; 1745 wr32(E1000_CTRL_EXT, reg_data); 1746 } 1747 1748 netif_tx_start_all_queues(adapter->netdev); 1749 1750 /* start the watchdog. */ 1751 hw->mac.get_link_status = 1; 1752 schedule_work(&adapter->watchdog_task); 1753 1754 if ((adapter->flags & IGB_FLAG_EEE) && 1755 (!hw->dev_spec._82575.eee_disable)) 1756 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T; 1757 1758 return 0; 1759 } 1760 1761 void igb_down(struct igb_adapter *adapter) 1762 { 1763 struct net_device *netdev = adapter->netdev; 1764 struct e1000_hw *hw = &adapter->hw; 1765 u32 tctl, rctl; 1766 int i; 1767 1768 /* signal that we're down so the interrupt handler does not 1769 * reschedule our watchdog timer 1770 */ 1771 set_bit(__IGB_DOWN, &adapter->state); 1772 1773 /* disable receives in the hardware */ 1774 rctl = rd32(E1000_RCTL); 1775 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN); 1776 /* flush and sleep below */ 1777 1778 netif_tx_stop_all_queues(netdev); 1779 1780 /* disable transmits in the hardware */ 1781 tctl = rd32(E1000_TCTL); 1782 tctl &= ~E1000_TCTL_EN; 1783 wr32(E1000_TCTL, tctl); 1784 /* flush both disables and wait for them to finish */ 1785 wrfl(); 1786 usleep_range(10000, 11000); 1787 1788 igb_irq_disable(adapter); 1789 1790 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE; 1791 1792 for (i = 0; i < adapter->num_q_vectors; i++) { 1793 napi_synchronize(&(adapter->q_vector[i]->napi)); 1794 napi_disable(&(adapter->q_vector[i]->napi)); 1795 } 1796 1797 1798 del_timer_sync(&adapter->watchdog_timer); 1799 del_timer_sync(&adapter->phy_info_timer); 1800 1801 netif_carrier_off(netdev); 1802 1803 /* record the stats before reset*/ 1804 spin_lock(&adapter->stats64_lock); 1805 igb_update_stats(adapter, &adapter->stats64); 1806 spin_unlock(&adapter->stats64_lock); 1807 1808 adapter->link_speed = 0; 1809 adapter->link_duplex = 0; 1810 1811 if (!pci_channel_offline(adapter->pdev)) 1812 igb_reset(adapter); 1813 igb_clean_all_tx_rings(adapter); 1814 igb_clean_all_rx_rings(adapter); 1815 #ifdef CONFIG_IGB_DCA 1816 1817 /* since we reset the hardware DCA settings were cleared */ 1818 igb_setup_dca(adapter); 1819 #endif 1820 } 1821 1822 void igb_reinit_locked(struct igb_adapter *adapter) 1823 { 1824 WARN_ON(in_interrupt()); 1825 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 1826 usleep_range(1000, 2000); 1827 igb_down(adapter); 1828 igb_up(adapter); 1829 clear_bit(__IGB_RESETTING, &adapter->state); 1830 } 1831 1832 /** igb_enable_mas - Media Autosense re-enable after swap 1833 * 1834 * @adapter: adapter struct 1835 **/ 1836 static s32 igb_enable_mas(struct igb_adapter *adapter) 1837 { 1838 struct e1000_hw *hw = &adapter->hw; 1839 u32 connsw; 1840 s32 ret_val = 0; 1841 1842 connsw = rd32(E1000_CONNSW); 1843 if (!(hw->phy.media_type == e1000_media_type_copper)) 1844 return ret_val; 1845 1846 /* configure for SerDes media detect */ 1847 if (!(connsw & E1000_CONNSW_SERDESD)) { 1848 connsw |= E1000_CONNSW_ENRGSRC; 1849 connsw |= E1000_CONNSW_AUTOSENSE_EN; 1850 wr32(E1000_CONNSW, connsw); 1851 wrfl(); 1852 } else if (connsw & E1000_CONNSW_SERDESD) { 1853 /* already SerDes, no need to enable anything */ 1854 return ret_val; 1855 } else { 1856 netdev_info(adapter->netdev, 1857 "MAS: Unable to configure feature, disabling..\n"); 1858 adapter->flags &= ~IGB_FLAG_MAS_ENABLE; 1859 } 1860 return ret_val; 1861 } 1862 1863 void igb_reset(struct igb_adapter *adapter) 1864 { 1865 struct pci_dev *pdev = adapter->pdev; 1866 struct e1000_hw *hw = &adapter->hw; 1867 struct e1000_mac_info *mac = &hw->mac; 1868 struct e1000_fc_info *fc = &hw->fc; 1869 u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm; 1870 1871 /* Repartition Pba for greater than 9k mtu 1872 * To take effect CTRL.RST is required. 1873 */ 1874 switch (mac->type) { 1875 case e1000_i350: 1876 case e1000_i354: 1877 case e1000_82580: 1878 pba = rd32(E1000_RXPBS); 1879 pba = igb_rxpbs_adjust_82580(pba); 1880 break; 1881 case e1000_82576: 1882 pba = rd32(E1000_RXPBS); 1883 pba &= E1000_RXPBS_SIZE_MASK_82576; 1884 break; 1885 case e1000_82575: 1886 case e1000_i210: 1887 case e1000_i211: 1888 default: 1889 pba = E1000_PBA_34K; 1890 break; 1891 } 1892 1893 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) && 1894 (mac->type < e1000_82576)) { 1895 /* adjust PBA for jumbo frames */ 1896 wr32(E1000_PBA, pba); 1897 1898 /* To maintain wire speed transmits, the Tx FIFO should be 1899 * large enough to accommodate two full transmit packets, 1900 * rounded up to the next 1KB and expressed in KB. Likewise, 1901 * the Rx FIFO should be large enough to accommodate at least 1902 * one full receive packet and is similarly rounded up and 1903 * expressed in KB. 1904 */ 1905 pba = rd32(E1000_PBA); 1906 /* upper 16 bits has Tx packet buffer allocation size in KB */ 1907 tx_space = pba >> 16; 1908 /* lower 16 bits has Rx packet buffer allocation size in KB */ 1909 pba &= 0xffff; 1910 /* the Tx fifo also stores 16 bytes of information about the Tx 1911 * but don't include ethernet FCS because hardware appends it 1912 */ 1913 min_tx_space = (adapter->max_frame_size + 1914 sizeof(union e1000_adv_tx_desc) - 1915 ETH_FCS_LEN) * 2; 1916 min_tx_space = ALIGN(min_tx_space, 1024); 1917 min_tx_space >>= 10; 1918 /* software strips receive CRC, so leave room for it */ 1919 min_rx_space = adapter->max_frame_size; 1920 min_rx_space = ALIGN(min_rx_space, 1024); 1921 min_rx_space >>= 10; 1922 1923 /* If current Tx allocation is less than the min Tx FIFO size, 1924 * and the min Tx FIFO size is less than the current Rx FIFO 1925 * allocation, take space away from current Rx allocation 1926 */ 1927 if (tx_space < min_tx_space && 1928 ((min_tx_space - tx_space) < pba)) { 1929 pba = pba - (min_tx_space - tx_space); 1930 1931 /* if short on Rx space, Rx wins and must trump Tx 1932 * adjustment 1933 */ 1934 if (pba < min_rx_space) 1935 pba = min_rx_space; 1936 } 1937 wr32(E1000_PBA, pba); 1938 } 1939 1940 /* flow control settings */ 1941 /* The high water mark must be low enough to fit one full frame 1942 * (or the size used for early receive) above it in the Rx FIFO. 1943 * Set it to the lower of: 1944 * - 90% of the Rx FIFO size, or 1945 * - the full Rx FIFO size minus one full frame 1946 */ 1947 hwm = min(((pba << 10) * 9 / 10), 1948 ((pba << 10) - 2 * adapter->max_frame_size)); 1949 1950 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */ 1951 fc->low_water = fc->high_water - 16; 1952 fc->pause_time = 0xFFFF; 1953 fc->send_xon = 1; 1954 fc->current_mode = fc->requested_mode; 1955 1956 /* disable receive for all VFs and wait one second */ 1957 if (adapter->vfs_allocated_count) { 1958 int i; 1959 1960 for (i = 0 ; i < adapter->vfs_allocated_count; i++) 1961 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC; 1962 1963 /* ping all the active vfs to let them know we are going down */ 1964 igb_ping_all_vfs(adapter); 1965 1966 /* disable transmits and receives */ 1967 wr32(E1000_VFRE, 0); 1968 wr32(E1000_VFTE, 0); 1969 } 1970 1971 /* Allow time for pending master requests to run */ 1972 hw->mac.ops.reset_hw(hw); 1973 wr32(E1000_WUC, 0); 1974 1975 if (adapter->flags & IGB_FLAG_MEDIA_RESET) { 1976 /* need to resetup here after media swap */ 1977 adapter->ei.get_invariants(hw); 1978 adapter->flags &= ~IGB_FLAG_MEDIA_RESET; 1979 } 1980 if (adapter->flags & IGB_FLAG_MAS_ENABLE) { 1981 if (igb_enable_mas(adapter)) 1982 dev_err(&pdev->dev, 1983 "Error enabling Media Auto Sense\n"); 1984 } 1985 if (hw->mac.ops.init_hw(hw)) 1986 dev_err(&pdev->dev, "Hardware Error\n"); 1987 1988 /* Flow control settings reset on hardware reset, so guarantee flow 1989 * control is off when forcing speed. 1990 */ 1991 if (!hw->mac.autoneg) 1992 igb_force_mac_fc(hw); 1993 1994 igb_init_dmac(adapter, pba); 1995 #ifdef CONFIG_IGB_HWMON 1996 /* Re-initialize the thermal sensor on i350 devices. */ 1997 if (!test_bit(__IGB_DOWN, &adapter->state)) { 1998 if (mac->type == e1000_i350 && hw->bus.func == 0) { 1999 /* If present, re-initialize the external thermal sensor 2000 * interface. 2001 */ 2002 if (adapter->ets) 2003 mac->ops.init_thermal_sensor_thresh(hw); 2004 } 2005 } 2006 #endif 2007 /* Re-establish EEE setting */ 2008 if (hw->phy.media_type == e1000_media_type_copper) { 2009 switch (mac->type) { 2010 case e1000_i350: 2011 case e1000_i210: 2012 case e1000_i211: 2013 igb_set_eee_i350(hw); 2014 break; 2015 case e1000_i354: 2016 igb_set_eee_i354(hw); 2017 break; 2018 default: 2019 break; 2020 } 2021 } 2022 if (!netif_running(adapter->netdev)) 2023 igb_power_down_link(adapter); 2024 2025 igb_update_mng_vlan(adapter); 2026 2027 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ 2028 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE); 2029 2030 /* Re-enable PTP, where applicable. */ 2031 igb_ptp_reset(adapter); 2032 2033 igb_get_phy_info(hw); 2034 } 2035 2036 static netdev_features_t igb_fix_features(struct net_device *netdev, 2037 netdev_features_t features) 2038 { 2039 /* Since there is no support for separate Rx/Tx vlan accel 2040 * enable/disable make sure Tx flag is always in same state as Rx. 2041 */ 2042 if (features & NETIF_F_HW_VLAN_CTAG_RX) 2043 features |= NETIF_F_HW_VLAN_CTAG_TX; 2044 else 2045 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 2046 2047 return features; 2048 } 2049 2050 static int igb_set_features(struct net_device *netdev, 2051 netdev_features_t features) 2052 { 2053 netdev_features_t changed = netdev->features ^ features; 2054 struct igb_adapter *adapter = netdev_priv(netdev); 2055 2056 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 2057 igb_vlan_mode(netdev, features); 2058 2059 if (!(changed & NETIF_F_RXALL)) 2060 return 0; 2061 2062 netdev->features = features; 2063 2064 if (netif_running(netdev)) 2065 igb_reinit_locked(adapter); 2066 else 2067 igb_reset(adapter); 2068 2069 return 0; 2070 } 2071 2072 static const struct net_device_ops igb_netdev_ops = { 2073 .ndo_open = igb_open, 2074 .ndo_stop = igb_close, 2075 .ndo_start_xmit = igb_xmit_frame, 2076 .ndo_get_stats64 = igb_get_stats64, 2077 .ndo_set_rx_mode = igb_set_rx_mode, 2078 .ndo_set_mac_address = igb_set_mac, 2079 .ndo_change_mtu = igb_change_mtu, 2080 .ndo_do_ioctl = igb_ioctl, 2081 .ndo_tx_timeout = igb_tx_timeout, 2082 .ndo_validate_addr = eth_validate_addr, 2083 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid, 2084 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid, 2085 .ndo_set_vf_mac = igb_ndo_set_vf_mac, 2086 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan, 2087 .ndo_set_vf_rate = igb_ndo_set_vf_bw, 2088 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk, 2089 .ndo_get_vf_config = igb_ndo_get_vf_config, 2090 #ifdef CONFIG_NET_POLL_CONTROLLER 2091 .ndo_poll_controller = igb_netpoll, 2092 #endif 2093 .ndo_fix_features = igb_fix_features, 2094 .ndo_set_features = igb_set_features, 2095 }; 2096 2097 /** 2098 * igb_set_fw_version - Configure version string for ethtool 2099 * @adapter: adapter struct 2100 **/ 2101 void igb_set_fw_version(struct igb_adapter *adapter) 2102 { 2103 struct e1000_hw *hw = &adapter->hw; 2104 struct e1000_fw_version fw; 2105 2106 igb_get_fw_version(hw, &fw); 2107 2108 switch (hw->mac.type) { 2109 case e1000_i210: 2110 case e1000_i211: 2111 if (!(igb_get_flash_presence_i210(hw))) { 2112 snprintf(adapter->fw_version, 2113 sizeof(adapter->fw_version), 2114 "%2d.%2d-%d", 2115 fw.invm_major, fw.invm_minor, 2116 fw.invm_img_type); 2117 break; 2118 } 2119 /* fall through */ 2120 default: 2121 /* if option is rom valid, display its version too */ 2122 if (fw.or_valid) { 2123 snprintf(adapter->fw_version, 2124 sizeof(adapter->fw_version), 2125 "%d.%d, 0x%08x, %d.%d.%d", 2126 fw.eep_major, fw.eep_minor, fw.etrack_id, 2127 fw.or_major, fw.or_build, fw.or_patch); 2128 /* no option rom */ 2129 } else if (fw.etrack_id != 0X0000) { 2130 snprintf(adapter->fw_version, 2131 sizeof(adapter->fw_version), 2132 "%d.%d, 0x%08x", 2133 fw.eep_major, fw.eep_minor, fw.etrack_id); 2134 } else { 2135 snprintf(adapter->fw_version, 2136 sizeof(adapter->fw_version), 2137 "%d.%d.%d", 2138 fw.eep_major, fw.eep_minor, fw.eep_build); 2139 } 2140 break; 2141 } 2142 } 2143 2144 /** 2145 * igb_init_mas - init Media Autosense feature if enabled in the NVM 2146 * 2147 * @adapter: adapter struct 2148 **/ 2149 static void igb_init_mas(struct igb_adapter *adapter) 2150 { 2151 struct e1000_hw *hw = &adapter->hw; 2152 u16 eeprom_data; 2153 2154 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data); 2155 switch (hw->bus.func) { 2156 case E1000_FUNC_0: 2157 if (eeprom_data & IGB_MAS_ENABLE_0) { 2158 adapter->flags |= IGB_FLAG_MAS_ENABLE; 2159 netdev_info(adapter->netdev, 2160 "MAS: Enabling Media Autosense for port %d\n", 2161 hw->bus.func); 2162 } 2163 break; 2164 case E1000_FUNC_1: 2165 if (eeprom_data & IGB_MAS_ENABLE_1) { 2166 adapter->flags |= IGB_FLAG_MAS_ENABLE; 2167 netdev_info(adapter->netdev, 2168 "MAS: Enabling Media Autosense for port %d\n", 2169 hw->bus.func); 2170 } 2171 break; 2172 case E1000_FUNC_2: 2173 if (eeprom_data & IGB_MAS_ENABLE_2) { 2174 adapter->flags |= IGB_FLAG_MAS_ENABLE; 2175 netdev_info(adapter->netdev, 2176 "MAS: Enabling Media Autosense for port %d\n", 2177 hw->bus.func); 2178 } 2179 break; 2180 case E1000_FUNC_3: 2181 if (eeprom_data & IGB_MAS_ENABLE_3) { 2182 adapter->flags |= IGB_FLAG_MAS_ENABLE; 2183 netdev_info(adapter->netdev, 2184 "MAS: Enabling Media Autosense for port %d\n", 2185 hw->bus.func); 2186 } 2187 break; 2188 default: 2189 /* Shouldn't get here */ 2190 netdev_err(adapter->netdev, 2191 "MAS: Invalid port configuration, returning\n"); 2192 break; 2193 } 2194 } 2195 2196 /** 2197 * igb_init_i2c - Init I2C interface 2198 * @adapter: pointer to adapter structure 2199 **/ 2200 static s32 igb_init_i2c(struct igb_adapter *adapter) 2201 { 2202 s32 status = 0; 2203 2204 /* I2C interface supported on i350 devices */ 2205 if (adapter->hw.mac.type != e1000_i350) 2206 return 0; 2207 2208 /* Initialize the i2c bus which is controlled by the registers. 2209 * This bus will use the i2c_algo_bit structue that implements 2210 * the protocol through toggling of the 4 bits in the register. 2211 */ 2212 adapter->i2c_adap.owner = THIS_MODULE; 2213 adapter->i2c_algo = igb_i2c_algo; 2214 adapter->i2c_algo.data = adapter; 2215 adapter->i2c_adap.algo_data = &adapter->i2c_algo; 2216 adapter->i2c_adap.dev.parent = &adapter->pdev->dev; 2217 strlcpy(adapter->i2c_adap.name, "igb BB", 2218 sizeof(adapter->i2c_adap.name)); 2219 status = i2c_bit_add_bus(&adapter->i2c_adap); 2220 return status; 2221 } 2222 2223 /** 2224 * igb_probe - Device Initialization Routine 2225 * @pdev: PCI device information struct 2226 * @ent: entry in igb_pci_tbl 2227 * 2228 * Returns 0 on success, negative on failure 2229 * 2230 * igb_probe initializes an adapter identified by a pci_dev structure. 2231 * The OS initialization, configuring of the adapter private structure, 2232 * and a hardware reset occur. 2233 **/ 2234 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 2235 { 2236 struct net_device *netdev; 2237 struct igb_adapter *adapter; 2238 struct e1000_hw *hw; 2239 u16 eeprom_data = 0; 2240 s32 ret_val; 2241 static int global_quad_port_a; /* global quad port a indication */ 2242 const struct e1000_info *ei = igb_info_tbl[ent->driver_data]; 2243 int err, pci_using_dac; 2244 u8 part_str[E1000_PBANUM_LENGTH]; 2245 2246 /* Catch broken hardware that put the wrong VF device ID in 2247 * the PCIe SR-IOV capability. 2248 */ 2249 if (pdev->is_virtfn) { 2250 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n", 2251 pci_name(pdev), pdev->vendor, pdev->device); 2252 return -EINVAL; 2253 } 2254 2255 err = pci_enable_device_mem(pdev); 2256 if (err) 2257 return err; 2258 2259 pci_using_dac = 0; 2260 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 2261 if (!err) { 2262 pci_using_dac = 1; 2263 } else { 2264 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 2265 if (err) { 2266 dev_err(&pdev->dev, 2267 "No usable DMA configuration, aborting\n"); 2268 goto err_dma; 2269 } 2270 } 2271 2272 err = pci_request_selected_regions(pdev, pci_select_bars(pdev, 2273 IORESOURCE_MEM), 2274 igb_driver_name); 2275 if (err) 2276 goto err_pci_reg; 2277 2278 pci_enable_pcie_error_reporting(pdev); 2279 2280 pci_set_master(pdev); 2281 pci_save_state(pdev); 2282 2283 err = -ENOMEM; 2284 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), 2285 IGB_MAX_TX_QUEUES); 2286 if (!netdev) 2287 goto err_alloc_etherdev; 2288 2289 SET_NETDEV_DEV(netdev, &pdev->dev); 2290 2291 pci_set_drvdata(pdev, netdev); 2292 adapter = netdev_priv(netdev); 2293 adapter->netdev = netdev; 2294 adapter->pdev = pdev; 2295 hw = &adapter->hw; 2296 hw->back = adapter; 2297 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 2298 2299 err = -EIO; 2300 hw->hw_addr = pci_iomap(pdev, 0, 0); 2301 if (!hw->hw_addr) 2302 goto err_ioremap; 2303 2304 netdev->netdev_ops = &igb_netdev_ops; 2305 igb_set_ethtool_ops(netdev); 2306 netdev->watchdog_timeo = 5 * HZ; 2307 2308 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 2309 2310 netdev->mem_start = pci_resource_start(pdev, 0); 2311 netdev->mem_end = pci_resource_end(pdev, 0); 2312 2313 /* PCI config space info */ 2314 hw->vendor_id = pdev->vendor; 2315 hw->device_id = pdev->device; 2316 hw->revision_id = pdev->revision; 2317 hw->subsystem_vendor_id = pdev->subsystem_vendor; 2318 hw->subsystem_device_id = pdev->subsystem_device; 2319 2320 /* Copy the default MAC, PHY and NVM function pointers */ 2321 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); 2322 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); 2323 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); 2324 /* Initialize skew-specific constants */ 2325 err = ei->get_invariants(hw); 2326 if (err) 2327 goto err_sw_init; 2328 2329 /* setup the private structure */ 2330 err = igb_sw_init(adapter); 2331 if (err) 2332 goto err_sw_init; 2333 2334 igb_get_bus_info_pcie(hw); 2335 2336 hw->phy.autoneg_wait_to_complete = false; 2337 2338 /* Copper options */ 2339 if (hw->phy.media_type == e1000_media_type_copper) { 2340 hw->phy.mdix = AUTO_ALL_MODES; 2341 hw->phy.disable_polarity_correction = false; 2342 hw->phy.ms_type = e1000_ms_hw_default; 2343 } 2344 2345 if (igb_check_reset_block(hw)) 2346 dev_info(&pdev->dev, 2347 "PHY reset is blocked due to SOL/IDER session.\n"); 2348 2349 /* features is initialized to 0 in allocation, it might have bits 2350 * set by igb_sw_init so we should use an or instead of an 2351 * assignment. 2352 */ 2353 netdev->features |= NETIF_F_SG | 2354 NETIF_F_IP_CSUM | 2355 NETIF_F_IPV6_CSUM | 2356 NETIF_F_TSO | 2357 NETIF_F_TSO6 | 2358 NETIF_F_RXHASH | 2359 NETIF_F_RXCSUM | 2360 NETIF_F_HW_VLAN_CTAG_RX | 2361 NETIF_F_HW_VLAN_CTAG_TX; 2362 2363 /* copy netdev features into list of user selectable features */ 2364 netdev->hw_features |= netdev->features; 2365 netdev->hw_features |= NETIF_F_RXALL; 2366 2367 /* set this bit last since it cannot be part of hw_features */ 2368 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 2369 2370 netdev->vlan_features |= NETIF_F_TSO | 2371 NETIF_F_TSO6 | 2372 NETIF_F_IP_CSUM | 2373 NETIF_F_IPV6_CSUM | 2374 NETIF_F_SG; 2375 2376 netdev->priv_flags |= IFF_SUPP_NOFCS; 2377 2378 if (pci_using_dac) { 2379 netdev->features |= NETIF_F_HIGHDMA; 2380 netdev->vlan_features |= NETIF_F_HIGHDMA; 2381 } 2382 2383 if (hw->mac.type >= e1000_82576) { 2384 netdev->hw_features |= NETIF_F_SCTP_CSUM; 2385 netdev->features |= NETIF_F_SCTP_CSUM; 2386 } 2387 2388 netdev->priv_flags |= IFF_UNICAST_FLT; 2389 2390 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw); 2391 2392 /* before reading the NVM, reset the controller to put the device in a 2393 * known good starting state 2394 */ 2395 hw->mac.ops.reset_hw(hw); 2396 2397 /* make sure the NVM is good , i211/i210 parts can have special NVM 2398 * that doesn't contain a checksum 2399 */ 2400 switch (hw->mac.type) { 2401 case e1000_i210: 2402 case e1000_i211: 2403 if (igb_get_flash_presence_i210(hw)) { 2404 if (hw->nvm.ops.validate(hw) < 0) { 2405 dev_err(&pdev->dev, 2406 "The NVM Checksum Is Not Valid\n"); 2407 err = -EIO; 2408 goto err_eeprom; 2409 } 2410 } 2411 break; 2412 default: 2413 if (hw->nvm.ops.validate(hw) < 0) { 2414 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); 2415 err = -EIO; 2416 goto err_eeprom; 2417 } 2418 break; 2419 } 2420 2421 /* copy the MAC address out of the NVM */ 2422 if (hw->mac.ops.read_mac_addr(hw)) 2423 dev_err(&pdev->dev, "NVM Read Error\n"); 2424 2425 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len); 2426 2427 if (!is_valid_ether_addr(netdev->dev_addr)) { 2428 dev_err(&pdev->dev, "Invalid MAC Address\n"); 2429 err = -EIO; 2430 goto err_eeprom; 2431 } 2432 2433 /* get firmware version for ethtool -i */ 2434 igb_set_fw_version(adapter); 2435 2436 /* configure RXPBSIZE and TXPBSIZE */ 2437 if (hw->mac.type == e1000_i210) { 2438 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT); 2439 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT); 2440 } 2441 2442 setup_timer(&adapter->watchdog_timer, igb_watchdog, 2443 (unsigned long) adapter); 2444 setup_timer(&adapter->phy_info_timer, igb_update_phy_info, 2445 (unsigned long) adapter); 2446 2447 INIT_WORK(&adapter->reset_task, igb_reset_task); 2448 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task); 2449 2450 /* Initialize link properties that are user-changeable */ 2451 adapter->fc_autoneg = true; 2452 hw->mac.autoneg = true; 2453 hw->phy.autoneg_advertised = 0x2f; 2454 2455 hw->fc.requested_mode = e1000_fc_default; 2456 hw->fc.current_mode = e1000_fc_default; 2457 2458 igb_validate_mdi_setting(hw); 2459 2460 /* By default, support wake on port A */ 2461 if (hw->bus.func == 0) 2462 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 2463 2464 /* Check the NVM for wake support on non-port A ports */ 2465 if (hw->mac.type >= e1000_82580) 2466 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A + 2467 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1, 2468 &eeprom_data); 2469 else if (hw->bus.func == 1) 2470 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 2471 2472 if (eeprom_data & IGB_EEPROM_APME) 2473 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 2474 2475 /* now that we have the eeprom settings, apply the special cases where 2476 * the eeprom may be wrong or the board simply won't support wake on 2477 * lan on a particular port 2478 */ 2479 switch (pdev->device) { 2480 case E1000_DEV_ID_82575GB_QUAD_COPPER: 2481 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 2482 break; 2483 case E1000_DEV_ID_82575EB_FIBER_SERDES: 2484 case E1000_DEV_ID_82576_FIBER: 2485 case E1000_DEV_ID_82576_SERDES: 2486 /* Wake events only supported on port A for dual fiber 2487 * regardless of eeprom setting 2488 */ 2489 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) 2490 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 2491 break; 2492 case E1000_DEV_ID_82576_QUAD_COPPER: 2493 case E1000_DEV_ID_82576_QUAD_COPPER_ET2: 2494 /* if quad port adapter, disable WoL on all but port A */ 2495 if (global_quad_port_a != 0) 2496 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 2497 else 2498 adapter->flags |= IGB_FLAG_QUAD_PORT_A; 2499 /* Reset for multiple quad port adapters */ 2500 if (++global_quad_port_a == 4) 2501 global_quad_port_a = 0; 2502 break; 2503 default: 2504 /* If the device can't wake, don't set software support */ 2505 if (!device_can_wakeup(&adapter->pdev->dev)) 2506 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 2507 } 2508 2509 /* initialize the wol settings based on the eeprom settings */ 2510 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED) 2511 adapter->wol |= E1000_WUFC_MAG; 2512 2513 /* Some vendors want WoL disabled by default, but still supported */ 2514 if ((hw->mac.type == e1000_i350) && 2515 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) { 2516 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 2517 adapter->wol = 0; 2518 } 2519 2520 device_set_wakeup_enable(&adapter->pdev->dev, 2521 adapter->flags & IGB_FLAG_WOL_SUPPORTED); 2522 2523 /* reset the hardware with the new settings */ 2524 igb_reset(adapter); 2525 2526 /* Init the I2C interface */ 2527 err = igb_init_i2c(adapter); 2528 if (err) { 2529 dev_err(&pdev->dev, "failed to init i2c interface\n"); 2530 goto err_eeprom; 2531 } 2532 2533 /* let the f/w know that the h/w is now under the control of the 2534 * driver. 2535 */ 2536 igb_get_hw_control(adapter); 2537 2538 strcpy(netdev->name, "eth%d"); 2539 err = register_netdev(netdev); 2540 if (err) 2541 goto err_register; 2542 2543 /* carrier off reporting is important to ethtool even BEFORE open */ 2544 netif_carrier_off(netdev); 2545 2546 #ifdef CONFIG_IGB_DCA 2547 if (dca_add_requester(&pdev->dev) == 0) { 2548 adapter->flags |= IGB_FLAG_DCA_ENABLED; 2549 dev_info(&pdev->dev, "DCA enabled\n"); 2550 igb_setup_dca(adapter); 2551 } 2552 2553 #endif 2554 #ifdef CONFIG_IGB_HWMON 2555 /* Initialize the thermal sensor on i350 devices. */ 2556 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) { 2557 u16 ets_word; 2558 2559 /* Read the NVM to determine if this i350 device supports an 2560 * external thermal sensor. 2561 */ 2562 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word); 2563 if (ets_word != 0x0000 && ets_word != 0xFFFF) 2564 adapter->ets = true; 2565 else 2566 adapter->ets = false; 2567 if (igb_sysfs_init(adapter)) 2568 dev_err(&pdev->dev, 2569 "failed to allocate sysfs resources\n"); 2570 } else { 2571 adapter->ets = false; 2572 } 2573 #endif 2574 /* Check if Media Autosense is enabled */ 2575 adapter->ei = *ei; 2576 if (hw->dev_spec._82575.mas_capable) 2577 igb_init_mas(adapter); 2578 2579 /* do hw tstamp init after resetting */ 2580 igb_ptp_init(adapter); 2581 2582 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n"); 2583 /* print bus type/speed/width info, not applicable to i354 */ 2584 if (hw->mac.type != e1000_i354) { 2585 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n", 2586 netdev->name, 2587 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" : 2588 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" : 2589 "unknown"), 2590 ((hw->bus.width == e1000_bus_width_pcie_x4) ? 2591 "Width x4" : 2592 (hw->bus.width == e1000_bus_width_pcie_x2) ? 2593 "Width x2" : 2594 (hw->bus.width == e1000_bus_width_pcie_x1) ? 2595 "Width x1" : "unknown"), netdev->dev_addr); 2596 } 2597 2598 if ((hw->mac.type >= e1000_i210 || 2599 igb_get_flash_presence_i210(hw))) { 2600 ret_val = igb_read_part_string(hw, part_str, 2601 E1000_PBANUM_LENGTH); 2602 } else { 2603 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND; 2604 } 2605 2606 if (ret_val) 2607 strcpy(part_str, "Unknown"); 2608 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str); 2609 dev_info(&pdev->dev, 2610 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n", 2611 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" : 2612 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy", 2613 adapter->num_rx_queues, adapter->num_tx_queues); 2614 if (hw->phy.media_type == e1000_media_type_copper) { 2615 switch (hw->mac.type) { 2616 case e1000_i350: 2617 case e1000_i210: 2618 case e1000_i211: 2619 /* Enable EEE for internal copper PHY devices */ 2620 err = igb_set_eee_i350(hw); 2621 if ((!err) && 2622 (!hw->dev_spec._82575.eee_disable)) { 2623 adapter->eee_advert = 2624 MDIO_EEE_100TX | MDIO_EEE_1000T; 2625 adapter->flags |= IGB_FLAG_EEE; 2626 } 2627 break; 2628 case e1000_i354: 2629 if ((rd32(E1000_CTRL_EXT) & 2630 E1000_CTRL_EXT_LINK_MODE_SGMII)) { 2631 err = igb_set_eee_i354(hw); 2632 if ((!err) && 2633 (!hw->dev_spec._82575.eee_disable)) { 2634 adapter->eee_advert = 2635 MDIO_EEE_100TX | MDIO_EEE_1000T; 2636 adapter->flags |= IGB_FLAG_EEE; 2637 } 2638 } 2639 break; 2640 default: 2641 break; 2642 } 2643 } 2644 pm_runtime_put_noidle(&pdev->dev); 2645 return 0; 2646 2647 err_register: 2648 igb_release_hw_control(adapter); 2649 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap)); 2650 err_eeprom: 2651 if (!igb_check_reset_block(hw)) 2652 igb_reset_phy(hw); 2653 2654 if (hw->flash_address) 2655 iounmap(hw->flash_address); 2656 err_sw_init: 2657 igb_clear_interrupt_scheme(adapter); 2658 pci_iounmap(pdev, hw->hw_addr); 2659 err_ioremap: 2660 free_netdev(netdev); 2661 err_alloc_etherdev: 2662 pci_release_selected_regions(pdev, 2663 pci_select_bars(pdev, IORESOURCE_MEM)); 2664 err_pci_reg: 2665 err_dma: 2666 pci_disable_device(pdev); 2667 return err; 2668 } 2669 2670 #ifdef CONFIG_PCI_IOV 2671 static int igb_disable_sriov(struct pci_dev *pdev) 2672 { 2673 struct net_device *netdev = pci_get_drvdata(pdev); 2674 struct igb_adapter *adapter = netdev_priv(netdev); 2675 struct e1000_hw *hw = &adapter->hw; 2676 2677 /* reclaim resources allocated to VFs */ 2678 if (adapter->vf_data) { 2679 /* disable iov and allow time for transactions to clear */ 2680 if (pci_vfs_assigned(pdev)) { 2681 dev_warn(&pdev->dev, 2682 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n"); 2683 return -EPERM; 2684 } else { 2685 pci_disable_sriov(pdev); 2686 msleep(500); 2687 } 2688 2689 kfree(adapter->vf_data); 2690 adapter->vf_data = NULL; 2691 adapter->vfs_allocated_count = 0; 2692 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ); 2693 wrfl(); 2694 msleep(100); 2695 dev_info(&pdev->dev, "IOV Disabled\n"); 2696 2697 /* Re-enable DMA Coalescing flag since IOV is turned off */ 2698 adapter->flags |= IGB_FLAG_DMAC; 2699 } 2700 2701 return 0; 2702 } 2703 2704 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs) 2705 { 2706 struct net_device *netdev = pci_get_drvdata(pdev); 2707 struct igb_adapter *adapter = netdev_priv(netdev); 2708 int old_vfs = pci_num_vf(pdev); 2709 int err = 0; 2710 int i; 2711 2712 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) { 2713 err = -EPERM; 2714 goto out; 2715 } 2716 if (!num_vfs) 2717 goto out; 2718 2719 if (old_vfs) { 2720 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n", 2721 old_vfs, max_vfs); 2722 adapter->vfs_allocated_count = old_vfs; 2723 } else 2724 adapter->vfs_allocated_count = num_vfs; 2725 2726 adapter->vf_data = kcalloc(adapter->vfs_allocated_count, 2727 sizeof(struct vf_data_storage), GFP_KERNEL); 2728 2729 /* if allocation failed then we do not support SR-IOV */ 2730 if (!adapter->vf_data) { 2731 adapter->vfs_allocated_count = 0; 2732 dev_err(&pdev->dev, 2733 "Unable to allocate memory for VF Data Storage\n"); 2734 err = -ENOMEM; 2735 goto out; 2736 } 2737 2738 /* only call pci_enable_sriov() if no VFs are allocated already */ 2739 if (!old_vfs) { 2740 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count); 2741 if (err) 2742 goto err_out; 2743 } 2744 dev_info(&pdev->dev, "%d VFs allocated\n", 2745 adapter->vfs_allocated_count); 2746 for (i = 0; i < adapter->vfs_allocated_count; i++) 2747 igb_vf_configure(adapter, i); 2748 2749 /* DMA Coalescing is not supported in IOV mode. */ 2750 adapter->flags &= ~IGB_FLAG_DMAC; 2751 goto out; 2752 2753 err_out: 2754 kfree(adapter->vf_data); 2755 adapter->vf_data = NULL; 2756 adapter->vfs_allocated_count = 0; 2757 out: 2758 return err; 2759 } 2760 2761 #endif 2762 /** 2763 * igb_remove_i2c - Cleanup I2C interface 2764 * @adapter: pointer to adapter structure 2765 **/ 2766 static void igb_remove_i2c(struct igb_adapter *adapter) 2767 { 2768 /* free the adapter bus structure */ 2769 i2c_del_adapter(&adapter->i2c_adap); 2770 } 2771 2772 /** 2773 * igb_remove - Device Removal Routine 2774 * @pdev: PCI device information struct 2775 * 2776 * igb_remove is called by the PCI subsystem to alert the driver 2777 * that it should release a PCI device. The could be caused by a 2778 * Hot-Plug event, or because the driver is going to be removed from 2779 * memory. 2780 **/ 2781 static void igb_remove(struct pci_dev *pdev) 2782 { 2783 struct net_device *netdev = pci_get_drvdata(pdev); 2784 struct igb_adapter *adapter = netdev_priv(netdev); 2785 struct e1000_hw *hw = &adapter->hw; 2786 2787 pm_runtime_get_noresume(&pdev->dev); 2788 #ifdef CONFIG_IGB_HWMON 2789 igb_sysfs_exit(adapter); 2790 #endif 2791 igb_remove_i2c(adapter); 2792 igb_ptp_stop(adapter); 2793 /* The watchdog timer may be rescheduled, so explicitly 2794 * disable watchdog from being rescheduled. 2795 */ 2796 set_bit(__IGB_DOWN, &adapter->state); 2797 del_timer_sync(&adapter->watchdog_timer); 2798 del_timer_sync(&adapter->phy_info_timer); 2799 2800 cancel_work_sync(&adapter->reset_task); 2801 cancel_work_sync(&adapter->watchdog_task); 2802 2803 #ifdef CONFIG_IGB_DCA 2804 if (adapter->flags & IGB_FLAG_DCA_ENABLED) { 2805 dev_info(&pdev->dev, "DCA disabled\n"); 2806 dca_remove_requester(&pdev->dev); 2807 adapter->flags &= ~IGB_FLAG_DCA_ENABLED; 2808 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE); 2809 } 2810 #endif 2811 2812 /* Release control of h/w to f/w. If f/w is AMT enabled, this 2813 * would have already happened in close and is redundant. 2814 */ 2815 igb_release_hw_control(adapter); 2816 2817 unregister_netdev(netdev); 2818 2819 igb_clear_interrupt_scheme(adapter); 2820 2821 #ifdef CONFIG_PCI_IOV 2822 igb_disable_sriov(pdev); 2823 #endif 2824 2825 pci_iounmap(pdev, hw->hw_addr); 2826 if (hw->flash_address) 2827 iounmap(hw->flash_address); 2828 pci_release_selected_regions(pdev, 2829 pci_select_bars(pdev, IORESOURCE_MEM)); 2830 2831 kfree(adapter->shadow_vfta); 2832 free_netdev(netdev); 2833 2834 pci_disable_pcie_error_reporting(pdev); 2835 2836 pci_disable_device(pdev); 2837 } 2838 2839 /** 2840 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space 2841 * @adapter: board private structure to initialize 2842 * 2843 * This function initializes the vf specific data storage and then attempts to 2844 * allocate the VFs. The reason for ordering it this way is because it is much 2845 * mor expensive time wise to disable SR-IOV than it is to allocate and free 2846 * the memory for the VFs. 2847 **/ 2848 static void igb_probe_vfs(struct igb_adapter *adapter) 2849 { 2850 #ifdef CONFIG_PCI_IOV 2851 struct pci_dev *pdev = adapter->pdev; 2852 struct e1000_hw *hw = &adapter->hw; 2853 2854 /* Virtualization features not supported on i210 family. */ 2855 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) 2856 return; 2857 2858 pci_sriov_set_totalvfs(pdev, 7); 2859 igb_pci_enable_sriov(pdev, max_vfs); 2860 2861 #endif /* CONFIG_PCI_IOV */ 2862 } 2863 2864 static void igb_init_queue_configuration(struct igb_adapter *adapter) 2865 { 2866 struct e1000_hw *hw = &adapter->hw; 2867 u32 max_rss_queues; 2868 2869 /* Determine the maximum number of RSS queues supported. */ 2870 switch (hw->mac.type) { 2871 case e1000_i211: 2872 max_rss_queues = IGB_MAX_RX_QUEUES_I211; 2873 break; 2874 case e1000_82575: 2875 case e1000_i210: 2876 max_rss_queues = IGB_MAX_RX_QUEUES_82575; 2877 break; 2878 case e1000_i350: 2879 /* I350 cannot do RSS and SR-IOV at the same time */ 2880 if (!!adapter->vfs_allocated_count) { 2881 max_rss_queues = 1; 2882 break; 2883 } 2884 /* fall through */ 2885 case e1000_82576: 2886 if (!!adapter->vfs_allocated_count) { 2887 max_rss_queues = 2; 2888 break; 2889 } 2890 /* fall through */ 2891 case e1000_82580: 2892 case e1000_i354: 2893 default: 2894 max_rss_queues = IGB_MAX_RX_QUEUES; 2895 break; 2896 } 2897 2898 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus()); 2899 2900 /* Determine if we need to pair queues. */ 2901 switch (hw->mac.type) { 2902 case e1000_82575: 2903 case e1000_i211: 2904 /* Device supports enough interrupts without queue pairing. */ 2905 break; 2906 case e1000_82576: 2907 /* If VFs are going to be allocated with RSS queues then we 2908 * should pair the queues in order to conserve interrupts due 2909 * to limited supply. 2910 */ 2911 if ((adapter->rss_queues > 1) && 2912 (adapter->vfs_allocated_count > 6)) 2913 adapter->flags |= IGB_FLAG_QUEUE_PAIRS; 2914 /* fall through */ 2915 case e1000_82580: 2916 case e1000_i350: 2917 case e1000_i354: 2918 case e1000_i210: 2919 default: 2920 /* If rss_queues > half of max_rss_queues, pair the queues in 2921 * order to conserve interrupts due to limited supply. 2922 */ 2923 if (adapter->rss_queues > (max_rss_queues / 2)) 2924 adapter->flags |= IGB_FLAG_QUEUE_PAIRS; 2925 break; 2926 } 2927 } 2928 2929 /** 2930 * igb_sw_init - Initialize general software structures (struct igb_adapter) 2931 * @adapter: board private structure to initialize 2932 * 2933 * igb_sw_init initializes the Adapter private data structure. 2934 * Fields are initialized based on PCI device information and 2935 * OS network device settings (MTU size). 2936 **/ 2937 static int igb_sw_init(struct igb_adapter *adapter) 2938 { 2939 struct e1000_hw *hw = &adapter->hw; 2940 struct net_device *netdev = adapter->netdev; 2941 struct pci_dev *pdev = adapter->pdev; 2942 2943 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word); 2944 2945 /* set default ring sizes */ 2946 adapter->tx_ring_count = IGB_DEFAULT_TXD; 2947 adapter->rx_ring_count = IGB_DEFAULT_RXD; 2948 2949 /* set default ITR values */ 2950 adapter->rx_itr_setting = IGB_DEFAULT_ITR; 2951 adapter->tx_itr_setting = IGB_DEFAULT_ITR; 2952 2953 /* set default work limits */ 2954 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK; 2955 2956 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + 2957 VLAN_HLEN; 2958 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 2959 2960 spin_lock_init(&adapter->stats64_lock); 2961 #ifdef CONFIG_PCI_IOV 2962 switch (hw->mac.type) { 2963 case e1000_82576: 2964 case e1000_i350: 2965 if (max_vfs > 7) { 2966 dev_warn(&pdev->dev, 2967 "Maximum of 7 VFs per PF, using max\n"); 2968 max_vfs = adapter->vfs_allocated_count = 7; 2969 } else 2970 adapter->vfs_allocated_count = max_vfs; 2971 if (adapter->vfs_allocated_count) 2972 dev_warn(&pdev->dev, 2973 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n"); 2974 break; 2975 default: 2976 break; 2977 } 2978 #endif /* CONFIG_PCI_IOV */ 2979 2980 igb_init_queue_configuration(adapter); 2981 2982 /* Setup and initialize a copy of the hw vlan table array */ 2983 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32), 2984 GFP_ATOMIC); 2985 2986 /* This call may decrease the number of queues */ 2987 if (igb_init_interrupt_scheme(adapter, true)) { 2988 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 2989 return -ENOMEM; 2990 } 2991 2992 igb_probe_vfs(adapter); 2993 2994 /* Explicitly disable IRQ since the NIC can be in any state. */ 2995 igb_irq_disable(adapter); 2996 2997 if (hw->mac.type >= e1000_i350) 2998 adapter->flags &= ~IGB_FLAG_DMAC; 2999 3000 set_bit(__IGB_DOWN, &adapter->state); 3001 return 0; 3002 } 3003 3004 /** 3005 * igb_open - Called when a network interface is made active 3006 * @netdev: network interface device structure 3007 * 3008 * Returns 0 on success, negative value on failure 3009 * 3010 * The open entry point is called when a network interface is made 3011 * active by the system (IFF_UP). At this point all resources needed 3012 * for transmit and receive operations are allocated, the interrupt 3013 * handler is registered with the OS, the watchdog timer is started, 3014 * and the stack is notified that the interface is ready. 3015 **/ 3016 static int __igb_open(struct net_device *netdev, bool resuming) 3017 { 3018 struct igb_adapter *adapter = netdev_priv(netdev); 3019 struct e1000_hw *hw = &adapter->hw; 3020 struct pci_dev *pdev = adapter->pdev; 3021 int err; 3022 int i; 3023 3024 /* disallow open during test */ 3025 if (test_bit(__IGB_TESTING, &adapter->state)) { 3026 WARN_ON(resuming); 3027 return -EBUSY; 3028 } 3029 3030 if (!resuming) 3031 pm_runtime_get_sync(&pdev->dev); 3032 3033 netif_carrier_off(netdev); 3034 3035 /* allocate transmit descriptors */ 3036 err = igb_setup_all_tx_resources(adapter); 3037 if (err) 3038 goto err_setup_tx; 3039 3040 /* allocate receive descriptors */ 3041 err = igb_setup_all_rx_resources(adapter); 3042 if (err) 3043 goto err_setup_rx; 3044 3045 igb_power_up_link(adapter); 3046 3047 /* before we allocate an interrupt, we must be ready to handle it. 3048 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 3049 * as soon as we call pci_request_irq, so we have to setup our 3050 * clean_rx handler before we do so. 3051 */ 3052 igb_configure(adapter); 3053 3054 err = igb_request_irq(adapter); 3055 if (err) 3056 goto err_req_irq; 3057 3058 /* Notify the stack of the actual queue counts. */ 3059 err = netif_set_real_num_tx_queues(adapter->netdev, 3060 adapter->num_tx_queues); 3061 if (err) 3062 goto err_set_queues; 3063 3064 err = netif_set_real_num_rx_queues(adapter->netdev, 3065 adapter->num_rx_queues); 3066 if (err) 3067 goto err_set_queues; 3068 3069 /* From here on the code is the same as igb_up() */ 3070 clear_bit(__IGB_DOWN, &adapter->state); 3071 3072 for (i = 0; i < adapter->num_q_vectors; i++) 3073 napi_enable(&(adapter->q_vector[i]->napi)); 3074 3075 /* Clear any pending interrupts. */ 3076 rd32(E1000_ICR); 3077 3078 igb_irq_enable(adapter); 3079 3080 /* notify VFs that reset has been completed */ 3081 if (adapter->vfs_allocated_count) { 3082 u32 reg_data = rd32(E1000_CTRL_EXT); 3083 3084 reg_data |= E1000_CTRL_EXT_PFRSTD; 3085 wr32(E1000_CTRL_EXT, reg_data); 3086 } 3087 3088 netif_tx_start_all_queues(netdev); 3089 3090 if (!resuming) 3091 pm_runtime_put(&pdev->dev); 3092 3093 /* start the watchdog. */ 3094 hw->mac.get_link_status = 1; 3095 schedule_work(&adapter->watchdog_task); 3096 3097 return 0; 3098 3099 err_set_queues: 3100 igb_free_irq(adapter); 3101 err_req_irq: 3102 igb_release_hw_control(adapter); 3103 igb_power_down_link(adapter); 3104 igb_free_all_rx_resources(adapter); 3105 err_setup_rx: 3106 igb_free_all_tx_resources(adapter); 3107 err_setup_tx: 3108 igb_reset(adapter); 3109 if (!resuming) 3110 pm_runtime_put(&pdev->dev); 3111 3112 return err; 3113 } 3114 3115 static int igb_open(struct net_device *netdev) 3116 { 3117 return __igb_open(netdev, false); 3118 } 3119 3120 /** 3121 * igb_close - Disables a network interface 3122 * @netdev: network interface device structure 3123 * 3124 * Returns 0, this is not allowed to fail 3125 * 3126 * The close entry point is called when an interface is de-activated 3127 * by the OS. The hardware is still under the driver's control, but 3128 * needs to be disabled. A global MAC reset is issued to stop the 3129 * hardware, and all transmit and receive resources are freed. 3130 **/ 3131 static int __igb_close(struct net_device *netdev, bool suspending) 3132 { 3133 struct igb_adapter *adapter = netdev_priv(netdev); 3134 struct pci_dev *pdev = adapter->pdev; 3135 3136 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state)); 3137 3138 if (!suspending) 3139 pm_runtime_get_sync(&pdev->dev); 3140 3141 igb_down(adapter); 3142 igb_free_irq(adapter); 3143 3144 igb_free_all_tx_resources(adapter); 3145 igb_free_all_rx_resources(adapter); 3146 3147 if (!suspending) 3148 pm_runtime_put_sync(&pdev->dev); 3149 return 0; 3150 } 3151 3152 static int igb_close(struct net_device *netdev) 3153 { 3154 return __igb_close(netdev, false); 3155 } 3156 3157 /** 3158 * igb_setup_tx_resources - allocate Tx resources (Descriptors) 3159 * @tx_ring: tx descriptor ring (for a specific queue) to setup 3160 * 3161 * Return 0 on success, negative on failure 3162 **/ 3163 int igb_setup_tx_resources(struct igb_ring *tx_ring) 3164 { 3165 struct device *dev = tx_ring->dev; 3166 int size; 3167 3168 size = sizeof(struct igb_tx_buffer) * tx_ring->count; 3169 3170 tx_ring->tx_buffer_info = vzalloc(size); 3171 if (!tx_ring->tx_buffer_info) 3172 goto err; 3173 3174 /* round up to nearest 4K */ 3175 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc); 3176 tx_ring->size = ALIGN(tx_ring->size, 4096); 3177 3178 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 3179 &tx_ring->dma, GFP_KERNEL); 3180 if (!tx_ring->desc) 3181 goto err; 3182 3183 tx_ring->next_to_use = 0; 3184 tx_ring->next_to_clean = 0; 3185 3186 return 0; 3187 3188 err: 3189 vfree(tx_ring->tx_buffer_info); 3190 tx_ring->tx_buffer_info = NULL; 3191 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n"); 3192 return -ENOMEM; 3193 } 3194 3195 /** 3196 * igb_setup_all_tx_resources - wrapper to allocate Tx resources 3197 * (Descriptors) for all queues 3198 * @adapter: board private structure 3199 * 3200 * Return 0 on success, negative on failure 3201 **/ 3202 static int igb_setup_all_tx_resources(struct igb_adapter *adapter) 3203 { 3204 struct pci_dev *pdev = adapter->pdev; 3205 int i, err = 0; 3206 3207 for (i = 0; i < adapter->num_tx_queues; i++) { 3208 err = igb_setup_tx_resources(adapter->tx_ring[i]); 3209 if (err) { 3210 dev_err(&pdev->dev, 3211 "Allocation for Tx Queue %u failed\n", i); 3212 for (i--; i >= 0; i--) 3213 igb_free_tx_resources(adapter->tx_ring[i]); 3214 break; 3215 } 3216 } 3217 3218 return err; 3219 } 3220 3221 /** 3222 * igb_setup_tctl - configure the transmit control registers 3223 * @adapter: Board private structure 3224 **/ 3225 void igb_setup_tctl(struct igb_adapter *adapter) 3226 { 3227 struct e1000_hw *hw = &adapter->hw; 3228 u32 tctl; 3229 3230 /* disable queue 0 which is enabled by default on 82575 and 82576 */ 3231 wr32(E1000_TXDCTL(0), 0); 3232 3233 /* Program the Transmit Control Register */ 3234 tctl = rd32(E1000_TCTL); 3235 tctl &= ~E1000_TCTL_CT; 3236 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | 3237 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); 3238 3239 igb_config_collision_dist(hw); 3240 3241 /* Enable transmits */ 3242 tctl |= E1000_TCTL_EN; 3243 3244 wr32(E1000_TCTL, tctl); 3245 } 3246 3247 /** 3248 * igb_configure_tx_ring - Configure transmit ring after Reset 3249 * @adapter: board private structure 3250 * @ring: tx ring to configure 3251 * 3252 * Configure a transmit ring after a reset. 3253 **/ 3254 void igb_configure_tx_ring(struct igb_adapter *adapter, 3255 struct igb_ring *ring) 3256 { 3257 struct e1000_hw *hw = &adapter->hw; 3258 u32 txdctl = 0; 3259 u64 tdba = ring->dma; 3260 int reg_idx = ring->reg_idx; 3261 3262 /* disable the queue */ 3263 wr32(E1000_TXDCTL(reg_idx), 0); 3264 wrfl(); 3265 mdelay(10); 3266 3267 wr32(E1000_TDLEN(reg_idx), 3268 ring->count * sizeof(union e1000_adv_tx_desc)); 3269 wr32(E1000_TDBAL(reg_idx), 3270 tdba & 0x00000000ffffffffULL); 3271 wr32(E1000_TDBAH(reg_idx), tdba >> 32); 3272 3273 ring->tail = hw->hw_addr + E1000_TDT(reg_idx); 3274 wr32(E1000_TDH(reg_idx), 0); 3275 writel(0, ring->tail); 3276 3277 txdctl |= IGB_TX_PTHRESH; 3278 txdctl |= IGB_TX_HTHRESH << 8; 3279 txdctl |= IGB_TX_WTHRESH << 16; 3280 3281 txdctl |= E1000_TXDCTL_QUEUE_ENABLE; 3282 wr32(E1000_TXDCTL(reg_idx), txdctl); 3283 } 3284 3285 /** 3286 * igb_configure_tx - Configure transmit Unit after Reset 3287 * @adapter: board private structure 3288 * 3289 * Configure the Tx unit of the MAC after a reset. 3290 **/ 3291 static void igb_configure_tx(struct igb_adapter *adapter) 3292 { 3293 int i; 3294 3295 for (i = 0; i < adapter->num_tx_queues; i++) 3296 igb_configure_tx_ring(adapter, adapter->tx_ring[i]); 3297 } 3298 3299 /** 3300 * igb_setup_rx_resources - allocate Rx resources (Descriptors) 3301 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 3302 * 3303 * Returns 0 on success, negative on failure 3304 **/ 3305 int igb_setup_rx_resources(struct igb_ring *rx_ring) 3306 { 3307 struct device *dev = rx_ring->dev; 3308 int size; 3309 3310 size = sizeof(struct igb_rx_buffer) * rx_ring->count; 3311 3312 rx_ring->rx_buffer_info = vzalloc(size); 3313 if (!rx_ring->rx_buffer_info) 3314 goto err; 3315 3316 /* Round up to nearest 4K */ 3317 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc); 3318 rx_ring->size = ALIGN(rx_ring->size, 4096); 3319 3320 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 3321 &rx_ring->dma, GFP_KERNEL); 3322 if (!rx_ring->desc) 3323 goto err; 3324 3325 rx_ring->next_to_alloc = 0; 3326 rx_ring->next_to_clean = 0; 3327 rx_ring->next_to_use = 0; 3328 3329 return 0; 3330 3331 err: 3332 vfree(rx_ring->rx_buffer_info); 3333 rx_ring->rx_buffer_info = NULL; 3334 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n"); 3335 return -ENOMEM; 3336 } 3337 3338 /** 3339 * igb_setup_all_rx_resources - wrapper to allocate Rx resources 3340 * (Descriptors) for all queues 3341 * @adapter: board private structure 3342 * 3343 * Return 0 on success, negative on failure 3344 **/ 3345 static int igb_setup_all_rx_resources(struct igb_adapter *adapter) 3346 { 3347 struct pci_dev *pdev = adapter->pdev; 3348 int i, err = 0; 3349 3350 for (i = 0; i < adapter->num_rx_queues; i++) { 3351 err = igb_setup_rx_resources(adapter->rx_ring[i]); 3352 if (err) { 3353 dev_err(&pdev->dev, 3354 "Allocation for Rx Queue %u failed\n", i); 3355 for (i--; i >= 0; i--) 3356 igb_free_rx_resources(adapter->rx_ring[i]); 3357 break; 3358 } 3359 } 3360 3361 return err; 3362 } 3363 3364 /** 3365 * igb_setup_mrqc - configure the multiple receive queue control registers 3366 * @adapter: Board private structure 3367 **/ 3368 static void igb_setup_mrqc(struct igb_adapter *adapter) 3369 { 3370 struct e1000_hw *hw = &adapter->hw; 3371 u32 mrqc, rxcsum; 3372 u32 j, num_rx_queues; 3373 static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741, 3374 0xB08FA343, 0xCB2BCAD0, 0xB4307BAE, 3375 0xA32DCB77, 0x0CF23080, 0x3BB7426A, 3376 0xFA01ACBE }; 3377 3378 /* Fill out hash function seeds */ 3379 for (j = 0; j < 10; j++) 3380 wr32(E1000_RSSRK(j), rsskey[j]); 3381 3382 num_rx_queues = adapter->rss_queues; 3383 3384 switch (hw->mac.type) { 3385 case e1000_82576: 3386 /* 82576 supports 2 RSS queues for SR-IOV */ 3387 if (adapter->vfs_allocated_count) 3388 num_rx_queues = 2; 3389 break; 3390 default: 3391 break; 3392 } 3393 3394 if (adapter->rss_indir_tbl_init != num_rx_queues) { 3395 for (j = 0; j < IGB_RETA_SIZE; j++) 3396 adapter->rss_indir_tbl[j] = 3397 (j * num_rx_queues) / IGB_RETA_SIZE; 3398 adapter->rss_indir_tbl_init = num_rx_queues; 3399 } 3400 igb_write_rss_indir_tbl(adapter); 3401 3402 /* Disable raw packet checksumming so that RSS hash is placed in 3403 * descriptor on writeback. No need to enable TCP/UDP/IP checksum 3404 * offloads as they are enabled by default 3405 */ 3406 rxcsum = rd32(E1000_RXCSUM); 3407 rxcsum |= E1000_RXCSUM_PCSD; 3408 3409 if (adapter->hw.mac.type >= e1000_82576) 3410 /* Enable Receive Checksum Offload for SCTP */ 3411 rxcsum |= E1000_RXCSUM_CRCOFL; 3412 3413 /* Don't need to set TUOFL or IPOFL, they default to 1 */ 3414 wr32(E1000_RXCSUM, rxcsum); 3415 3416 /* Generate RSS hash based on packet types, TCP/UDP 3417 * port numbers and/or IPv4/v6 src and dst addresses 3418 */ 3419 mrqc = E1000_MRQC_RSS_FIELD_IPV4 | 3420 E1000_MRQC_RSS_FIELD_IPV4_TCP | 3421 E1000_MRQC_RSS_FIELD_IPV6 | 3422 E1000_MRQC_RSS_FIELD_IPV6_TCP | 3423 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX; 3424 3425 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP) 3426 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP; 3427 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP) 3428 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP; 3429 3430 /* If VMDq is enabled then we set the appropriate mode for that, else 3431 * we default to RSS so that an RSS hash is calculated per packet even 3432 * if we are only using one queue 3433 */ 3434 if (adapter->vfs_allocated_count) { 3435 if (hw->mac.type > e1000_82575) { 3436 /* Set the default pool for the PF's first queue */ 3437 u32 vtctl = rd32(E1000_VT_CTL); 3438 3439 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK | 3440 E1000_VT_CTL_DISABLE_DEF_POOL); 3441 vtctl |= adapter->vfs_allocated_count << 3442 E1000_VT_CTL_DEFAULT_POOL_SHIFT; 3443 wr32(E1000_VT_CTL, vtctl); 3444 } 3445 if (adapter->rss_queues > 1) 3446 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q; 3447 else 3448 mrqc |= E1000_MRQC_ENABLE_VMDQ; 3449 } else { 3450 if (hw->mac.type != e1000_i211) 3451 mrqc |= E1000_MRQC_ENABLE_RSS_4Q; 3452 } 3453 igb_vmm_control(adapter); 3454 3455 wr32(E1000_MRQC, mrqc); 3456 } 3457 3458 /** 3459 * igb_setup_rctl - configure the receive control registers 3460 * @adapter: Board private structure 3461 **/ 3462 void igb_setup_rctl(struct igb_adapter *adapter) 3463 { 3464 struct e1000_hw *hw = &adapter->hw; 3465 u32 rctl; 3466 3467 rctl = rd32(E1000_RCTL); 3468 3469 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 3470 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 3471 3472 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF | 3473 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 3474 3475 /* enable stripping of CRC. It's unlikely this will break BMC 3476 * redirection as it did with e1000. Newer features require 3477 * that the HW strips the CRC. 3478 */ 3479 rctl |= E1000_RCTL_SECRC; 3480 3481 /* disable store bad packets and clear size bits. */ 3482 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256); 3483 3484 /* enable LPE to prevent packets larger than max_frame_size */ 3485 rctl |= E1000_RCTL_LPE; 3486 3487 /* disable queue 0 to prevent tail write w/o re-config */ 3488 wr32(E1000_RXDCTL(0), 0); 3489 3490 /* Attention!!! For SR-IOV PF driver operations you must enable 3491 * queue drop for all VF and PF queues to prevent head of line blocking 3492 * if an un-trusted VF does not provide descriptors to hardware. 3493 */ 3494 if (adapter->vfs_allocated_count) { 3495 /* set all queue drop enable bits */ 3496 wr32(E1000_QDE, ALL_QUEUES); 3497 } 3498 3499 /* This is useful for sniffing bad packets. */ 3500 if (adapter->netdev->features & NETIF_F_RXALL) { 3501 /* UPE and MPE will be handled by normal PROMISC logic 3502 * in e1000e_set_rx_mode 3503 */ 3504 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ 3505 E1000_RCTL_BAM | /* RX All Bcast Pkts */ 3506 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 3507 3508 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */ 3509 E1000_RCTL_DPF | /* Allow filtered pause */ 3510 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ 3511 /* Do not mess with E1000_CTRL_VME, it affects transmit as well, 3512 * and that breaks VLANs. 3513 */ 3514 } 3515 3516 wr32(E1000_RCTL, rctl); 3517 } 3518 3519 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size, 3520 int vfn) 3521 { 3522 struct e1000_hw *hw = &adapter->hw; 3523 u32 vmolr; 3524 3525 /* if it isn't the PF check to see if VFs are enabled and 3526 * increase the size to support vlan tags 3527 */ 3528 if (vfn < adapter->vfs_allocated_count && 3529 adapter->vf_data[vfn].vlans_enabled) 3530 size += VLAN_TAG_SIZE; 3531 3532 vmolr = rd32(E1000_VMOLR(vfn)); 3533 vmolr &= ~E1000_VMOLR_RLPML_MASK; 3534 vmolr |= size | E1000_VMOLR_LPE; 3535 wr32(E1000_VMOLR(vfn), vmolr); 3536 3537 return 0; 3538 } 3539 3540 /** 3541 * igb_rlpml_set - set maximum receive packet size 3542 * @adapter: board private structure 3543 * 3544 * Configure maximum receivable packet size. 3545 **/ 3546 static void igb_rlpml_set(struct igb_adapter *adapter) 3547 { 3548 u32 max_frame_size = adapter->max_frame_size; 3549 struct e1000_hw *hw = &adapter->hw; 3550 u16 pf_id = adapter->vfs_allocated_count; 3551 3552 if (pf_id) { 3553 igb_set_vf_rlpml(adapter, max_frame_size, pf_id); 3554 /* If we're in VMDQ or SR-IOV mode, then set global RLPML 3555 * to our max jumbo frame size, in case we need to enable 3556 * jumbo frames on one of the rings later. 3557 * This will not pass over-length frames into the default 3558 * queue because it's gated by the VMOLR.RLPML. 3559 */ 3560 max_frame_size = MAX_JUMBO_FRAME_SIZE; 3561 } 3562 3563 wr32(E1000_RLPML, max_frame_size); 3564 } 3565 3566 static inline void igb_set_vmolr(struct igb_adapter *adapter, 3567 int vfn, bool aupe) 3568 { 3569 struct e1000_hw *hw = &adapter->hw; 3570 u32 vmolr; 3571 3572 /* This register exists only on 82576 and newer so if we are older then 3573 * we should exit and do nothing 3574 */ 3575 if (hw->mac.type < e1000_82576) 3576 return; 3577 3578 vmolr = rd32(E1000_VMOLR(vfn)); 3579 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */ 3580 if (hw->mac.type == e1000_i350) { 3581 u32 dvmolr; 3582 3583 dvmolr = rd32(E1000_DVMOLR(vfn)); 3584 dvmolr |= E1000_DVMOLR_STRVLAN; 3585 wr32(E1000_DVMOLR(vfn), dvmolr); 3586 } 3587 if (aupe) 3588 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */ 3589 else 3590 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */ 3591 3592 /* clear all bits that might not be set */ 3593 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE); 3594 3595 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count) 3596 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */ 3597 /* for VMDq only allow the VFs and pool 0 to accept broadcast and 3598 * multicast packets 3599 */ 3600 if (vfn <= adapter->vfs_allocated_count) 3601 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */ 3602 3603 wr32(E1000_VMOLR(vfn), vmolr); 3604 } 3605 3606 /** 3607 * igb_configure_rx_ring - Configure a receive ring after Reset 3608 * @adapter: board private structure 3609 * @ring: receive ring to be configured 3610 * 3611 * Configure the Rx unit of the MAC after a reset. 3612 **/ 3613 void igb_configure_rx_ring(struct igb_adapter *adapter, 3614 struct igb_ring *ring) 3615 { 3616 struct e1000_hw *hw = &adapter->hw; 3617 u64 rdba = ring->dma; 3618 int reg_idx = ring->reg_idx; 3619 u32 srrctl = 0, rxdctl = 0; 3620 3621 /* disable the queue */ 3622 wr32(E1000_RXDCTL(reg_idx), 0); 3623 3624 /* Set DMA base address registers */ 3625 wr32(E1000_RDBAL(reg_idx), 3626 rdba & 0x00000000ffffffffULL); 3627 wr32(E1000_RDBAH(reg_idx), rdba >> 32); 3628 wr32(E1000_RDLEN(reg_idx), 3629 ring->count * sizeof(union e1000_adv_rx_desc)); 3630 3631 /* initialize head and tail */ 3632 ring->tail = hw->hw_addr + E1000_RDT(reg_idx); 3633 wr32(E1000_RDH(reg_idx), 0); 3634 writel(0, ring->tail); 3635 3636 /* set descriptor configuration */ 3637 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT; 3638 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT; 3639 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; 3640 if (hw->mac.type >= e1000_82580) 3641 srrctl |= E1000_SRRCTL_TIMESTAMP; 3642 /* Only set Drop Enable if we are supporting multiple queues */ 3643 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1) 3644 srrctl |= E1000_SRRCTL_DROP_EN; 3645 3646 wr32(E1000_SRRCTL(reg_idx), srrctl); 3647 3648 /* set filtering for VMDQ pools */ 3649 igb_set_vmolr(adapter, reg_idx & 0x7, true); 3650 3651 rxdctl |= IGB_RX_PTHRESH; 3652 rxdctl |= IGB_RX_HTHRESH << 8; 3653 rxdctl |= IGB_RX_WTHRESH << 16; 3654 3655 /* enable receive descriptor fetching */ 3656 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; 3657 wr32(E1000_RXDCTL(reg_idx), rxdctl); 3658 } 3659 3660 /** 3661 * igb_configure_rx - Configure receive Unit after Reset 3662 * @adapter: board private structure 3663 * 3664 * Configure the Rx unit of the MAC after a reset. 3665 **/ 3666 static void igb_configure_rx(struct igb_adapter *adapter) 3667 { 3668 int i; 3669 3670 /* set UTA to appropriate mode */ 3671 igb_set_uta(adapter); 3672 3673 /* set the correct pool for the PF default MAC address in entry 0 */ 3674 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0, 3675 adapter->vfs_allocated_count); 3676 3677 /* Setup the HW Rx Head and Tail Descriptor Pointers and 3678 * the Base and Length of the Rx Descriptor Ring 3679 */ 3680 for (i = 0; i < adapter->num_rx_queues; i++) 3681 igb_configure_rx_ring(adapter, adapter->rx_ring[i]); 3682 } 3683 3684 /** 3685 * igb_free_tx_resources - Free Tx Resources per Queue 3686 * @tx_ring: Tx descriptor ring for a specific queue 3687 * 3688 * Free all transmit software resources 3689 **/ 3690 void igb_free_tx_resources(struct igb_ring *tx_ring) 3691 { 3692 igb_clean_tx_ring(tx_ring); 3693 3694 vfree(tx_ring->tx_buffer_info); 3695 tx_ring->tx_buffer_info = NULL; 3696 3697 /* if not set, then don't free */ 3698 if (!tx_ring->desc) 3699 return; 3700 3701 dma_free_coherent(tx_ring->dev, tx_ring->size, 3702 tx_ring->desc, tx_ring->dma); 3703 3704 tx_ring->desc = NULL; 3705 } 3706 3707 /** 3708 * igb_free_all_tx_resources - Free Tx Resources for All Queues 3709 * @adapter: board private structure 3710 * 3711 * Free all transmit software resources 3712 **/ 3713 static void igb_free_all_tx_resources(struct igb_adapter *adapter) 3714 { 3715 int i; 3716 3717 for (i = 0; i < adapter->num_tx_queues; i++) 3718 igb_free_tx_resources(adapter->tx_ring[i]); 3719 } 3720 3721 void igb_unmap_and_free_tx_resource(struct igb_ring *ring, 3722 struct igb_tx_buffer *tx_buffer) 3723 { 3724 if (tx_buffer->skb) { 3725 dev_kfree_skb_any(tx_buffer->skb); 3726 if (dma_unmap_len(tx_buffer, len)) 3727 dma_unmap_single(ring->dev, 3728 dma_unmap_addr(tx_buffer, dma), 3729 dma_unmap_len(tx_buffer, len), 3730 DMA_TO_DEVICE); 3731 } else if (dma_unmap_len(tx_buffer, len)) { 3732 dma_unmap_page(ring->dev, 3733 dma_unmap_addr(tx_buffer, dma), 3734 dma_unmap_len(tx_buffer, len), 3735 DMA_TO_DEVICE); 3736 } 3737 tx_buffer->next_to_watch = NULL; 3738 tx_buffer->skb = NULL; 3739 dma_unmap_len_set(tx_buffer, len, 0); 3740 /* buffer_info must be completely set up in the transmit path */ 3741 } 3742 3743 /** 3744 * igb_clean_tx_ring - Free Tx Buffers 3745 * @tx_ring: ring to be cleaned 3746 **/ 3747 static void igb_clean_tx_ring(struct igb_ring *tx_ring) 3748 { 3749 struct igb_tx_buffer *buffer_info; 3750 unsigned long size; 3751 u16 i; 3752 3753 if (!tx_ring->tx_buffer_info) 3754 return; 3755 /* Free all the Tx ring sk_buffs */ 3756 3757 for (i = 0; i < tx_ring->count; i++) { 3758 buffer_info = &tx_ring->tx_buffer_info[i]; 3759 igb_unmap_and_free_tx_resource(tx_ring, buffer_info); 3760 } 3761 3762 netdev_tx_reset_queue(txring_txq(tx_ring)); 3763 3764 size = sizeof(struct igb_tx_buffer) * tx_ring->count; 3765 memset(tx_ring->tx_buffer_info, 0, size); 3766 3767 /* Zero out the descriptor ring */ 3768 memset(tx_ring->desc, 0, tx_ring->size); 3769 3770 tx_ring->next_to_use = 0; 3771 tx_ring->next_to_clean = 0; 3772 } 3773 3774 /** 3775 * igb_clean_all_tx_rings - Free Tx Buffers for all queues 3776 * @adapter: board private structure 3777 **/ 3778 static void igb_clean_all_tx_rings(struct igb_adapter *adapter) 3779 { 3780 int i; 3781 3782 for (i = 0; i < adapter->num_tx_queues; i++) 3783 igb_clean_tx_ring(adapter->tx_ring[i]); 3784 } 3785 3786 /** 3787 * igb_free_rx_resources - Free Rx Resources 3788 * @rx_ring: ring to clean the resources from 3789 * 3790 * Free all receive software resources 3791 **/ 3792 void igb_free_rx_resources(struct igb_ring *rx_ring) 3793 { 3794 igb_clean_rx_ring(rx_ring); 3795 3796 vfree(rx_ring->rx_buffer_info); 3797 rx_ring->rx_buffer_info = NULL; 3798 3799 /* if not set, then don't free */ 3800 if (!rx_ring->desc) 3801 return; 3802 3803 dma_free_coherent(rx_ring->dev, rx_ring->size, 3804 rx_ring->desc, rx_ring->dma); 3805 3806 rx_ring->desc = NULL; 3807 } 3808 3809 /** 3810 * igb_free_all_rx_resources - Free Rx Resources for All Queues 3811 * @adapter: board private structure 3812 * 3813 * Free all receive software resources 3814 **/ 3815 static void igb_free_all_rx_resources(struct igb_adapter *adapter) 3816 { 3817 int i; 3818 3819 for (i = 0; i < adapter->num_rx_queues; i++) 3820 igb_free_rx_resources(adapter->rx_ring[i]); 3821 } 3822 3823 /** 3824 * igb_clean_rx_ring - Free Rx Buffers per Queue 3825 * @rx_ring: ring to free buffers from 3826 **/ 3827 static void igb_clean_rx_ring(struct igb_ring *rx_ring) 3828 { 3829 unsigned long size; 3830 u16 i; 3831 3832 if (rx_ring->skb) 3833 dev_kfree_skb(rx_ring->skb); 3834 rx_ring->skb = NULL; 3835 3836 if (!rx_ring->rx_buffer_info) 3837 return; 3838 3839 /* Free all the Rx ring sk_buffs */ 3840 for (i = 0; i < rx_ring->count; i++) { 3841 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i]; 3842 3843 if (!buffer_info->page) 3844 continue; 3845 3846 dma_unmap_page(rx_ring->dev, 3847 buffer_info->dma, 3848 PAGE_SIZE, 3849 DMA_FROM_DEVICE); 3850 __free_page(buffer_info->page); 3851 3852 buffer_info->page = NULL; 3853 } 3854 3855 size = sizeof(struct igb_rx_buffer) * rx_ring->count; 3856 memset(rx_ring->rx_buffer_info, 0, size); 3857 3858 /* Zero out the descriptor ring */ 3859 memset(rx_ring->desc, 0, rx_ring->size); 3860 3861 rx_ring->next_to_alloc = 0; 3862 rx_ring->next_to_clean = 0; 3863 rx_ring->next_to_use = 0; 3864 } 3865 3866 /** 3867 * igb_clean_all_rx_rings - Free Rx Buffers for all queues 3868 * @adapter: board private structure 3869 **/ 3870 static void igb_clean_all_rx_rings(struct igb_adapter *adapter) 3871 { 3872 int i; 3873 3874 for (i = 0; i < adapter->num_rx_queues; i++) 3875 igb_clean_rx_ring(adapter->rx_ring[i]); 3876 } 3877 3878 /** 3879 * igb_set_mac - Change the Ethernet Address of the NIC 3880 * @netdev: network interface device structure 3881 * @p: pointer to an address structure 3882 * 3883 * Returns 0 on success, negative on failure 3884 **/ 3885 static int igb_set_mac(struct net_device *netdev, void *p) 3886 { 3887 struct igb_adapter *adapter = netdev_priv(netdev); 3888 struct e1000_hw *hw = &adapter->hw; 3889 struct sockaddr *addr = p; 3890 3891 if (!is_valid_ether_addr(addr->sa_data)) 3892 return -EADDRNOTAVAIL; 3893 3894 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 3895 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); 3896 3897 /* set the correct pool for the new PF MAC address in entry 0 */ 3898 igb_rar_set_qsel(adapter, hw->mac.addr, 0, 3899 adapter->vfs_allocated_count); 3900 3901 return 0; 3902 } 3903 3904 /** 3905 * igb_write_mc_addr_list - write multicast addresses to MTA 3906 * @netdev: network interface device structure 3907 * 3908 * Writes multicast address list to the MTA hash table. 3909 * Returns: -ENOMEM on failure 3910 * 0 on no addresses written 3911 * X on writing X addresses to MTA 3912 **/ 3913 static int igb_write_mc_addr_list(struct net_device *netdev) 3914 { 3915 struct igb_adapter *adapter = netdev_priv(netdev); 3916 struct e1000_hw *hw = &adapter->hw; 3917 struct netdev_hw_addr *ha; 3918 u8 *mta_list; 3919 int i; 3920 3921 if (netdev_mc_empty(netdev)) { 3922 /* nothing to program, so clear mc list */ 3923 igb_update_mc_addr_list(hw, NULL, 0); 3924 igb_restore_vf_multicasts(adapter); 3925 return 0; 3926 } 3927 3928 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC); 3929 if (!mta_list) 3930 return -ENOMEM; 3931 3932 /* The shared function expects a packed array of only addresses. */ 3933 i = 0; 3934 netdev_for_each_mc_addr(ha, netdev) 3935 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); 3936 3937 igb_update_mc_addr_list(hw, mta_list, i); 3938 kfree(mta_list); 3939 3940 return netdev_mc_count(netdev); 3941 } 3942 3943 /** 3944 * igb_write_uc_addr_list - write unicast addresses to RAR table 3945 * @netdev: network interface device structure 3946 * 3947 * Writes unicast address list to the RAR table. 3948 * Returns: -ENOMEM on failure/insufficient address space 3949 * 0 on no addresses written 3950 * X on writing X addresses to the RAR table 3951 **/ 3952 static int igb_write_uc_addr_list(struct net_device *netdev) 3953 { 3954 struct igb_adapter *adapter = netdev_priv(netdev); 3955 struct e1000_hw *hw = &adapter->hw; 3956 unsigned int vfn = adapter->vfs_allocated_count; 3957 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1); 3958 int count = 0; 3959 3960 /* return ENOMEM indicating insufficient memory for addresses */ 3961 if (netdev_uc_count(netdev) > rar_entries) 3962 return -ENOMEM; 3963 3964 if (!netdev_uc_empty(netdev) && rar_entries) { 3965 struct netdev_hw_addr *ha; 3966 3967 netdev_for_each_uc_addr(ha, netdev) { 3968 if (!rar_entries) 3969 break; 3970 igb_rar_set_qsel(adapter, ha->addr, 3971 rar_entries--, 3972 vfn); 3973 count++; 3974 } 3975 } 3976 /* write the addresses in reverse order to avoid write combining */ 3977 for (; rar_entries > 0 ; rar_entries--) { 3978 wr32(E1000_RAH(rar_entries), 0); 3979 wr32(E1000_RAL(rar_entries), 0); 3980 } 3981 wrfl(); 3982 3983 return count; 3984 } 3985 3986 /** 3987 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set 3988 * @netdev: network interface device structure 3989 * 3990 * The set_rx_mode entry point is called whenever the unicast or multicast 3991 * address lists or the network interface flags are updated. This routine is 3992 * responsible for configuring the hardware for proper unicast, multicast, 3993 * promiscuous mode, and all-multi behavior. 3994 **/ 3995 static void igb_set_rx_mode(struct net_device *netdev) 3996 { 3997 struct igb_adapter *adapter = netdev_priv(netdev); 3998 struct e1000_hw *hw = &adapter->hw; 3999 unsigned int vfn = adapter->vfs_allocated_count; 4000 u32 rctl, vmolr = 0; 4001 int count; 4002 4003 /* Check for Promiscuous and All Multicast modes */ 4004 rctl = rd32(E1000_RCTL); 4005 4006 /* clear the effected bits */ 4007 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE); 4008 4009 if (netdev->flags & IFF_PROMISC) { 4010 /* retain VLAN HW filtering if in VT mode */ 4011 if (adapter->vfs_allocated_count) 4012 rctl |= E1000_RCTL_VFE; 4013 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 4014 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME); 4015 } else { 4016 if (netdev->flags & IFF_ALLMULTI) { 4017 rctl |= E1000_RCTL_MPE; 4018 vmolr |= E1000_VMOLR_MPME; 4019 } else { 4020 /* Write addresses to the MTA, if the attempt fails 4021 * then we should just turn on promiscuous mode so 4022 * that we can at least receive multicast traffic 4023 */ 4024 count = igb_write_mc_addr_list(netdev); 4025 if (count < 0) { 4026 rctl |= E1000_RCTL_MPE; 4027 vmolr |= E1000_VMOLR_MPME; 4028 } else if (count) { 4029 vmolr |= E1000_VMOLR_ROMPE; 4030 } 4031 } 4032 /* Write addresses to available RAR registers, if there is not 4033 * sufficient space to store all the addresses then enable 4034 * unicast promiscuous mode 4035 */ 4036 count = igb_write_uc_addr_list(netdev); 4037 if (count < 0) { 4038 rctl |= E1000_RCTL_UPE; 4039 vmolr |= E1000_VMOLR_ROPE; 4040 } 4041 rctl |= E1000_RCTL_VFE; 4042 } 4043 wr32(E1000_RCTL, rctl); 4044 4045 /* In order to support SR-IOV and eventually VMDq it is necessary to set 4046 * the VMOLR to enable the appropriate modes. Without this workaround 4047 * we will have issues with VLAN tag stripping not being done for frames 4048 * that are only arriving because we are the default pool 4049 */ 4050 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350)) 4051 return; 4052 4053 vmolr |= rd32(E1000_VMOLR(vfn)) & 4054 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE); 4055 wr32(E1000_VMOLR(vfn), vmolr); 4056 igb_restore_vf_multicasts(adapter); 4057 } 4058 4059 static void igb_check_wvbr(struct igb_adapter *adapter) 4060 { 4061 struct e1000_hw *hw = &adapter->hw; 4062 u32 wvbr = 0; 4063 4064 switch (hw->mac.type) { 4065 case e1000_82576: 4066 case e1000_i350: 4067 wvbr = rd32(E1000_WVBR); 4068 if (!wvbr) 4069 return; 4070 break; 4071 default: 4072 break; 4073 } 4074 4075 adapter->wvbr |= wvbr; 4076 } 4077 4078 #define IGB_STAGGERED_QUEUE_OFFSET 8 4079 4080 static void igb_spoof_check(struct igb_adapter *adapter) 4081 { 4082 int j; 4083 4084 if (!adapter->wvbr) 4085 return; 4086 4087 for (j = 0; j < adapter->vfs_allocated_count; j++) { 4088 if (adapter->wvbr & (1 << j) || 4089 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) { 4090 dev_warn(&adapter->pdev->dev, 4091 "Spoof event(s) detected on VF %d\n", j); 4092 adapter->wvbr &= 4093 ~((1 << j) | 4094 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))); 4095 } 4096 } 4097 } 4098 4099 /* Need to wait a few seconds after link up to get diagnostic information from 4100 * the phy 4101 */ 4102 static void igb_update_phy_info(unsigned long data) 4103 { 4104 struct igb_adapter *adapter = (struct igb_adapter *) data; 4105 igb_get_phy_info(&adapter->hw); 4106 } 4107 4108 /** 4109 * igb_has_link - check shared code for link and determine up/down 4110 * @adapter: pointer to driver private info 4111 **/ 4112 bool igb_has_link(struct igb_adapter *adapter) 4113 { 4114 struct e1000_hw *hw = &adapter->hw; 4115 bool link_active = false; 4116 4117 /* get_link_status is set on LSC (link status) interrupt or 4118 * rx sequence error interrupt. get_link_status will stay 4119 * false until the e1000_check_for_link establishes link 4120 * for copper adapters ONLY 4121 */ 4122 switch (hw->phy.media_type) { 4123 case e1000_media_type_copper: 4124 if (!hw->mac.get_link_status) 4125 return true; 4126 case e1000_media_type_internal_serdes: 4127 hw->mac.ops.check_for_link(hw); 4128 link_active = !hw->mac.get_link_status; 4129 break; 4130 default: 4131 case e1000_media_type_unknown: 4132 break; 4133 } 4134 4135 if (((hw->mac.type == e1000_i210) || 4136 (hw->mac.type == e1000_i211)) && 4137 (hw->phy.id == I210_I_PHY_ID)) { 4138 if (!netif_carrier_ok(adapter->netdev)) { 4139 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE; 4140 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) { 4141 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE; 4142 adapter->link_check_timeout = jiffies; 4143 } 4144 } 4145 4146 return link_active; 4147 } 4148 4149 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event) 4150 { 4151 bool ret = false; 4152 u32 ctrl_ext, thstat; 4153 4154 /* check for thermal sensor event on i350 copper only */ 4155 if (hw->mac.type == e1000_i350) { 4156 thstat = rd32(E1000_THSTAT); 4157 ctrl_ext = rd32(E1000_CTRL_EXT); 4158 4159 if ((hw->phy.media_type == e1000_media_type_copper) && 4160 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) 4161 ret = !!(thstat & event); 4162 } 4163 4164 return ret; 4165 } 4166 4167 /** 4168 * igb_watchdog - Timer Call-back 4169 * @data: pointer to adapter cast into an unsigned long 4170 **/ 4171 static void igb_watchdog(unsigned long data) 4172 { 4173 struct igb_adapter *adapter = (struct igb_adapter *)data; 4174 /* Do the rest outside of interrupt context */ 4175 schedule_work(&adapter->watchdog_task); 4176 } 4177 4178 static void igb_watchdog_task(struct work_struct *work) 4179 { 4180 struct igb_adapter *adapter = container_of(work, 4181 struct igb_adapter, 4182 watchdog_task); 4183 struct e1000_hw *hw = &adapter->hw; 4184 struct e1000_phy_info *phy = &hw->phy; 4185 struct net_device *netdev = adapter->netdev; 4186 u32 link; 4187 int i; 4188 u32 connsw; 4189 4190 link = igb_has_link(adapter); 4191 4192 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) { 4193 if (time_after(jiffies, (adapter->link_check_timeout + HZ))) 4194 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE; 4195 else 4196 link = false; 4197 } 4198 4199 /* Force link down if we have fiber to swap to */ 4200 if (adapter->flags & IGB_FLAG_MAS_ENABLE) { 4201 if (hw->phy.media_type == e1000_media_type_copper) { 4202 connsw = rd32(E1000_CONNSW); 4203 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN)) 4204 link = 0; 4205 } 4206 } 4207 if (link) { 4208 /* Perform a reset if the media type changed. */ 4209 if (hw->dev_spec._82575.media_changed) { 4210 hw->dev_spec._82575.media_changed = false; 4211 adapter->flags |= IGB_FLAG_MEDIA_RESET; 4212 igb_reset(adapter); 4213 } 4214 /* Cancel scheduled suspend requests. */ 4215 pm_runtime_resume(netdev->dev.parent); 4216 4217 if (!netif_carrier_ok(netdev)) { 4218 u32 ctrl; 4219 4220 hw->mac.ops.get_speed_and_duplex(hw, 4221 &adapter->link_speed, 4222 &adapter->link_duplex); 4223 4224 ctrl = rd32(E1000_CTRL); 4225 /* Links status message must follow this format */ 4226 netdev_info(netdev, 4227 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n", 4228 netdev->name, 4229 adapter->link_speed, 4230 adapter->link_duplex == FULL_DUPLEX ? 4231 "Full" : "Half", 4232 (ctrl & E1000_CTRL_TFCE) && 4233 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" : 4234 (ctrl & E1000_CTRL_RFCE) ? "RX" : 4235 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None"); 4236 4237 /* disable EEE if enabled */ 4238 if ((adapter->flags & IGB_FLAG_EEE) && 4239 (adapter->link_duplex == HALF_DUPLEX)) { 4240 dev_info(&adapter->pdev->dev, 4241 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n"); 4242 adapter->hw.dev_spec._82575.eee_disable = true; 4243 adapter->flags &= ~IGB_FLAG_EEE; 4244 } 4245 4246 /* check if SmartSpeed worked */ 4247 igb_check_downshift(hw); 4248 if (phy->speed_downgraded) 4249 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n"); 4250 4251 /* check for thermal sensor event */ 4252 if (igb_thermal_sensor_event(hw, 4253 E1000_THSTAT_LINK_THROTTLE)) 4254 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n"); 4255 4256 /* adjust timeout factor according to speed/duplex */ 4257 adapter->tx_timeout_factor = 1; 4258 switch (adapter->link_speed) { 4259 case SPEED_10: 4260 adapter->tx_timeout_factor = 14; 4261 break; 4262 case SPEED_100: 4263 /* maybe add some timeout factor ? */ 4264 break; 4265 } 4266 4267 netif_carrier_on(netdev); 4268 4269 igb_ping_all_vfs(adapter); 4270 igb_check_vf_rate_limit(adapter); 4271 4272 /* link state has changed, schedule phy info update */ 4273 if (!test_bit(__IGB_DOWN, &adapter->state)) 4274 mod_timer(&adapter->phy_info_timer, 4275 round_jiffies(jiffies + 2 * HZ)); 4276 } 4277 } else { 4278 if (netif_carrier_ok(netdev)) { 4279 adapter->link_speed = 0; 4280 adapter->link_duplex = 0; 4281 4282 /* check for thermal sensor event */ 4283 if (igb_thermal_sensor_event(hw, 4284 E1000_THSTAT_PWR_DOWN)) { 4285 netdev_err(netdev, "The network adapter was stopped because it overheated\n"); 4286 } 4287 4288 /* Links status message must follow this format */ 4289 netdev_info(netdev, "igb: %s NIC Link is Down\n", 4290 netdev->name); 4291 netif_carrier_off(netdev); 4292 4293 igb_ping_all_vfs(adapter); 4294 4295 /* link state has changed, schedule phy info update */ 4296 if (!test_bit(__IGB_DOWN, &adapter->state)) 4297 mod_timer(&adapter->phy_info_timer, 4298 round_jiffies(jiffies + 2 * HZ)); 4299 4300 /* link is down, time to check for alternate media */ 4301 if (adapter->flags & IGB_FLAG_MAS_ENABLE) { 4302 igb_check_swap_media(adapter); 4303 if (adapter->flags & IGB_FLAG_MEDIA_RESET) { 4304 schedule_work(&adapter->reset_task); 4305 /* return immediately */ 4306 return; 4307 } 4308 } 4309 pm_schedule_suspend(netdev->dev.parent, 4310 MSEC_PER_SEC * 5); 4311 4312 /* also check for alternate media here */ 4313 } else if (!netif_carrier_ok(netdev) && 4314 (adapter->flags & IGB_FLAG_MAS_ENABLE)) { 4315 igb_check_swap_media(adapter); 4316 if (adapter->flags & IGB_FLAG_MEDIA_RESET) { 4317 schedule_work(&adapter->reset_task); 4318 /* return immediately */ 4319 return; 4320 } 4321 } 4322 } 4323 4324 spin_lock(&adapter->stats64_lock); 4325 igb_update_stats(adapter, &adapter->stats64); 4326 spin_unlock(&adapter->stats64_lock); 4327 4328 for (i = 0; i < adapter->num_tx_queues; i++) { 4329 struct igb_ring *tx_ring = adapter->tx_ring[i]; 4330 if (!netif_carrier_ok(netdev)) { 4331 /* We've lost link, so the controller stops DMA, 4332 * but we've got queued Tx work that's never going 4333 * to get done, so reset controller to flush Tx. 4334 * (Do the reset outside of interrupt context). 4335 */ 4336 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) { 4337 adapter->tx_timeout_count++; 4338 schedule_work(&adapter->reset_task); 4339 /* return immediately since reset is imminent */ 4340 return; 4341 } 4342 } 4343 4344 /* Force detection of hung controller every watchdog period */ 4345 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 4346 } 4347 4348 /* Cause software interrupt to ensure Rx ring is cleaned */ 4349 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 4350 u32 eics = 0; 4351 4352 for (i = 0; i < adapter->num_q_vectors; i++) 4353 eics |= adapter->q_vector[i]->eims_value; 4354 wr32(E1000_EICS, eics); 4355 } else { 4356 wr32(E1000_ICS, E1000_ICS_RXDMT0); 4357 } 4358 4359 igb_spoof_check(adapter); 4360 igb_ptp_rx_hang(adapter); 4361 4362 /* Reset the timer */ 4363 if (!test_bit(__IGB_DOWN, &adapter->state)) { 4364 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) 4365 mod_timer(&adapter->watchdog_timer, 4366 round_jiffies(jiffies + HZ)); 4367 else 4368 mod_timer(&adapter->watchdog_timer, 4369 round_jiffies(jiffies + 2 * HZ)); 4370 } 4371 } 4372 4373 enum latency_range { 4374 lowest_latency = 0, 4375 low_latency = 1, 4376 bulk_latency = 2, 4377 latency_invalid = 255 4378 }; 4379 4380 /** 4381 * igb_update_ring_itr - update the dynamic ITR value based on packet size 4382 * @q_vector: pointer to q_vector 4383 * 4384 * Stores a new ITR value based on strictly on packet size. This 4385 * algorithm is less sophisticated than that used in igb_update_itr, 4386 * due to the difficulty of synchronizing statistics across multiple 4387 * receive rings. The divisors and thresholds used by this function 4388 * were determined based on theoretical maximum wire speed and testing 4389 * data, in order to minimize response time while increasing bulk 4390 * throughput. 4391 * This functionality is controlled by ethtool's coalescing settings. 4392 * NOTE: This function is called only when operating in a multiqueue 4393 * receive environment. 4394 **/ 4395 static void igb_update_ring_itr(struct igb_q_vector *q_vector) 4396 { 4397 int new_val = q_vector->itr_val; 4398 int avg_wire_size = 0; 4399 struct igb_adapter *adapter = q_vector->adapter; 4400 unsigned int packets; 4401 4402 /* For non-gigabit speeds, just fix the interrupt rate at 4000 4403 * ints/sec - ITR timer value of 120 ticks. 4404 */ 4405 if (adapter->link_speed != SPEED_1000) { 4406 new_val = IGB_4K_ITR; 4407 goto set_itr_val; 4408 } 4409 4410 packets = q_vector->rx.total_packets; 4411 if (packets) 4412 avg_wire_size = q_vector->rx.total_bytes / packets; 4413 4414 packets = q_vector->tx.total_packets; 4415 if (packets) 4416 avg_wire_size = max_t(u32, avg_wire_size, 4417 q_vector->tx.total_bytes / packets); 4418 4419 /* if avg_wire_size isn't set no work was done */ 4420 if (!avg_wire_size) 4421 goto clear_counts; 4422 4423 /* Add 24 bytes to size to account for CRC, preamble, and gap */ 4424 avg_wire_size += 24; 4425 4426 /* Don't starve jumbo frames */ 4427 avg_wire_size = min(avg_wire_size, 3000); 4428 4429 /* Give a little boost to mid-size frames */ 4430 if ((avg_wire_size > 300) && (avg_wire_size < 1200)) 4431 new_val = avg_wire_size / 3; 4432 else 4433 new_val = avg_wire_size / 2; 4434 4435 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 4436 if (new_val < IGB_20K_ITR && 4437 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 4438 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 4439 new_val = IGB_20K_ITR; 4440 4441 set_itr_val: 4442 if (new_val != q_vector->itr_val) { 4443 q_vector->itr_val = new_val; 4444 q_vector->set_itr = 1; 4445 } 4446 clear_counts: 4447 q_vector->rx.total_bytes = 0; 4448 q_vector->rx.total_packets = 0; 4449 q_vector->tx.total_bytes = 0; 4450 q_vector->tx.total_packets = 0; 4451 } 4452 4453 /** 4454 * igb_update_itr - update the dynamic ITR value based on statistics 4455 * @q_vector: pointer to q_vector 4456 * @ring_container: ring info to update the itr for 4457 * 4458 * Stores a new ITR value based on packets and byte 4459 * counts during the last interrupt. The advantage of per interrupt 4460 * computation is faster updates and more accurate ITR for the current 4461 * traffic pattern. Constants in this function were computed 4462 * based on theoretical maximum wire speed and thresholds were set based 4463 * on testing data as well as attempting to minimize response time 4464 * while increasing bulk throughput. 4465 * This functionality is controlled by ethtool's coalescing settings. 4466 * NOTE: These calculations are only valid when operating in a single- 4467 * queue environment. 4468 **/ 4469 static void igb_update_itr(struct igb_q_vector *q_vector, 4470 struct igb_ring_container *ring_container) 4471 { 4472 unsigned int packets = ring_container->total_packets; 4473 unsigned int bytes = ring_container->total_bytes; 4474 u8 itrval = ring_container->itr; 4475 4476 /* no packets, exit with status unchanged */ 4477 if (packets == 0) 4478 return; 4479 4480 switch (itrval) { 4481 case lowest_latency: 4482 /* handle TSO and jumbo frames */ 4483 if (bytes/packets > 8000) 4484 itrval = bulk_latency; 4485 else if ((packets < 5) && (bytes > 512)) 4486 itrval = low_latency; 4487 break; 4488 case low_latency: /* 50 usec aka 20000 ints/s */ 4489 if (bytes > 10000) { 4490 /* this if handles the TSO accounting */ 4491 if (bytes/packets > 8000) 4492 itrval = bulk_latency; 4493 else if ((packets < 10) || ((bytes/packets) > 1200)) 4494 itrval = bulk_latency; 4495 else if ((packets > 35)) 4496 itrval = lowest_latency; 4497 } else if (bytes/packets > 2000) { 4498 itrval = bulk_latency; 4499 } else if (packets <= 2 && bytes < 512) { 4500 itrval = lowest_latency; 4501 } 4502 break; 4503 case bulk_latency: /* 250 usec aka 4000 ints/s */ 4504 if (bytes > 25000) { 4505 if (packets > 35) 4506 itrval = low_latency; 4507 } else if (bytes < 1500) { 4508 itrval = low_latency; 4509 } 4510 break; 4511 } 4512 4513 /* clear work counters since we have the values we need */ 4514 ring_container->total_bytes = 0; 4515 ring_container->total_packets = 0; 4516 4517 /* write updated itr to ring container */ 4518 ring_container->itr = itrval; 4519 } 4520 4521 static void igb_set_itr(struct igb_q_vector *q_vector) 4522 { 4523 struct igb_adapter *adapter = q_vector->adapter; 4524 u32 new_itr = q_vector->itr_val; 4525 u8 current_itr = 0; 4526 4527 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 4528 if (adapter->link_speed != SPEED_1000) { 4529 current_itr = 0; 4530 new_itr = IGB_4K_ITR; 4531 goto set_itr_now; 4532 } 4533 4534 igb_update_itr(q_vector, &q_vector->tx); 4535 igb_update_itr(q_vector, &q_vector->rx); 4536 4537 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 4538 4539 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 4540 if (current_itr == lowest_latency && 4541 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 4542 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 4543 current_itr = low_latency; 4544 4545 switch (current_itr) { 4546 /* counts and packets in update_itr are dependent on these numbers */ 4547 case lowest_latency: 4548 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */ 4549 break; 4550 case low_latency: 4551 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */ 4552 break; 4553 case bulk_latency: 4554 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */ 4555 break; 4556 default: 4557 break; 4558 } 4559 4560 set_itr_now: 4561 if (new_itr != q_vector->itr_val) { 4562 /* this attempts to bias the interrupt rate towards Bulk 4563 * by adding intermediate steps when interrupt rate is 4564 * increasing 4565 */ 4566 new_itr = new_itr > q_vector->itr_val ? 4567 max((new_itr * q_vector->itr_val) / 4568 (new_itr + (q_vector->itr_val >> 2)), 4569 new_itr) : new_itr; 4570 /* Don't write the value here; it resets the adapter's 4571 * internal timer, and causes us to delay far longer than 4572 * we should between interrupts. Instead, we write the ITR 4573 * value at the beginning of the next interrupt so the timing 4574 * ends up being correct. 4575 */ 4576 q_vector->itr_val = new_itr; 4577 q_vector->set_itr = 1; 4578 } 4579 } 4580 4581 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens, 4582 u32 type_tucmd, u32 mss_l4len_idx) 4583 { 4584 struct e1000_adv_tx_context_desc *context_desc; 4585 u16 i = tx_ring->next_to_use; 4586 4587 context_desc = IGB_TX_CTXTDESC(tx_ring, i); 4588 4589 i++; 4590 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 4591 4592 /* set bits to identify this as an advanced context descriptor */ 4593 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT; 4594 4595 /* For 82575, context index must be unique per ring. */ 4596 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) 4597 mss_l4len_idx |= tx_ring->reg_idx << 4; 4598 4599 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 4600 context_desc->seqnum_seed = 0; 4601 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 4602 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 4603 } 4604 4605 static int igb_tso(struct igb_ring *tx_ring, 4606 struct igb_tx_buffer *first, 4607 u8 *hdr_len) 4608 { 4609 struct sk_buff *skb = first->skb; 4610 u32 vlan_macip_lens, type_tucmd; 4611 u32 mss_l4len_idx, l4len; 4612 int err; 4613 4614 if (skb->ip_summed != CHECKSUM_PARTIAL) 4615 return 0; 4616 4617 if (!skb_is_gso(skb)) 4618 return 0; 4619 4620 err = skb_cow_head(skb, 0); 4621 if (err < 0) 4622 return err; 4623 4624 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 4625 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP; 4626 4627 if (first->protocol == htons(ETH_P_IP)) { 4628 struct iphdr *iph = ip_hdr(skb); 4629 iph->tot_len = 0; 4630 iph->check = 0; 4631 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, 4632 iph->daddr, 0, 4633 IPPROTO_TCP, 4634 0); 4635 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4; 4636 first->tx_flags |= IGB_TX_FLAGS_TSO | 4637 IGB_TX_FLAGS_CSUM | 4638 IGB_TX_FLAGS_IPV4; 4639 } else if (skb_is_gso_v6(skb)) { 4640 ipv6_hdr(skb)->payload_len = 0; 4641 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 4642 &ipv6_hdr(skb)->daddr, 4643 0, IPPROTO_TCP, 0); 4644 first->tx_flags |= IGB_TX_FLAGS_TSO | 4645 IGB_TX_FLAGS_CSUM; 4646 } 4647 4648 /* compute header lengths */ 4649 l4len = tcp_hdrlen(skb); 4650 *hdr_len = skb_transport_offset(skb) + l4len; 4651 4652 /* update gso size and bytecount with header size */ 4653 first->gso_segs = skb_shinfo(skb)->gso_segs; 4654 first->bytecount += (first->gso_segs - 1) * *hdr_len; 4655 4656 /* MSS L4LEN IDX */ 4657 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT; 4658 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT; 4659 4660 /* VLAN MACLEN IPLEN */ 4661 vlan_macip_lens = skb_network_header_len(skb); 4662 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT; 4663 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK; 4664 4665 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx); 4666 4667 return 1; 4668 } 4669 4670 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first) 4671 { 4672 struct sk_buff *skb = first->skb; 4673 u32 vlan_macip_lens = 0; 4674 u32 mss_l4len_idx = 0; 4675 u32 type_tucmd = 0; 4676 4677 if (skb->ip_summed != CHECKSUM_PARTIAL) { 4678 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN)) 4679 return; 4680 } else { 4681 u8 l4_hdr = 0; 4682 4683 switch (first->protocol) { 4684 case htons(ETH_P_IP): 4685 vlan_macip_lens |= skb_network_header_len(skb); 4686 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4; 4687 l4_hdr = ip_hdr(skb)->protocol; 4688 break; 4689 case htons(ETH_P_IPV6): 4690 vlan_macip_lens |= skb_network_header_len(skb); 4691 l4_hdr = ipv6_hdr(skb)->nexthdr; 4692 break; 4693 default: 4694 if (unlikely(net_ratelimit())) { 4695 dev_warn(tx_ring->dev, 4696 "partial checksum but proto=%x!\n", 4697 first->protocol); 4698 } 4699 break; 4700 } 4701 4702 switch (l4_hdr) { 4703 case IPPROTO_TCP: 4704 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP; 4705 mss_l4len_idx = tcp_hdrlen(skb) << 4706 E1000_ADVTXD_L4LEN_SHIFT; 4707 break; 4708 case IPPROTO_SCTP: 4709 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP; 4710 mss_l4len_idx = sizeof(struct sctphdr) << 4711 E1000_ADVTXD_L4LEN_SHIFT; 4712 break; 4713 case IPPROTO_UDP: 4714 mss_l4len_idx = sizeof(struct udphdr) << 4715 E1000_ADVTXD_L4LEN_SHIFT; 4716 break; 4717 default: 4718 if (unlikely(net_ratelimit())) { 4719 dev_warn(tx_ring->dev, 4720 "partial checksum but l4 proto=%x!\n", 4721 l4_hdr); 4722 } 4723 break; 4724 } 4725 4726 /* update TX checksum flag */ 4727 first->tx_flags |= IGB_TX_FLAGS_CSUM; 4728 } 4729 4730 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT; 4731 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK; 4732 4733 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx); 4734 } 4735 4736 #define IGB_SET_FLAG(_input, _flag, _result) \ 4737 ((_flag <= _result) ? \ 4738 ((u32)(_input & _flag) * (_result / _flag)) : \ 4739 ((u32)(_input & _flag) / (_flag / _result))) 4740 4741 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags) 4742 { 4743 /* set type for advanced descriptor with frame checksum insertion */ 4744 u32 cmd_type = E1000_ADVTXD_DTYP_DATA | 4745 E1000_ADVTXD_DCMD_DEXT | 4746 E1000_ADVTXD_DCMD_IFCS; 4747 4748 /* set HW vlan bit if vlan is present */ 4749 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN, 4750 (E1000_ADVTXD_DCMD_VLE)); 4751 4752 /* set segmentation bits for TSO */ 4753 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO, 4754 (E1000_ADVTXD_DCMD_TSE)); 4755 4756 /* set timestamp bit if present */ 4757 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP, 4758 (E1000_ADVTXD_MAC_TSTAMP)); 4759 4760 /* insert frame checksum */ 4761 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS); 4762 4763 return cmd_type; 4764 } 4765 4766 static void igb_tx_olinfo_status(struct igb_ring *tx_ring, 4767 union e1000_adv_tx_desc *tx_desc, 4768 u32 tx_flags, unsigned int paylen) 4769 { 4770 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT; 4771 4772 /* 82575 requires a unique index per ring */ 4773 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) 4774 olinfo_status |= tx_ring->reg_idx << 4; 4775 4776 /* insert L4 checksum */ 4777 olinfo_status |= IGB_SET_FLAG(tx_flags, 4778 IGB_TX_FLAGS_CSUM, 4779 (E1000_TXD_POPTS_TXSM << 8)); 4780 4781 /* insert IPv4 checksum */ 4782 olinfo_status |= IGB_SET_FLAG(tx_flags, 4783 IGB_TX_FLAGS_IPV4, 4784 (E1000_TXD_POPTS_IXSM << 8)); 4785 4786 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 4787 } 4788 4789 static void igb_tx_map(struct igb_ring *tx_ring, 4790 struct igb_tx_buffer *first, 4791 const u8 hdr_len) 4792 { 4793 struct sk_buff *skb = first->skb; 4794 struct igb_tx_buffer *tx_buffer; 4795 union e1000_adv_tx_desc *tx_desc; 4796 struct skb_frag_struct *frag; 4797 dma_addr_t dma; 4798 unsigned int data_len, size; 4799 u32 tx_flags = first->tx_flags; 4800 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags); 4801 u16 i = tx_ring->next_to_use; 4802 4803 tx_desc = IGB_TX_DESC(tx_ring, i); 4804 4805 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len); 4806 4807 size = skb_headlen(skb); 4808 data_len = skb->data_len; 4809 4810 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 4811 4812 tx_buffer = first; 4813 4814 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 4815 if (dma_mapping_error(tx_ring->dev, dma)) 4816 goto dma_error; 4817 4818 /* record length, and DMA address */ 4819 dma_unmap_len_set(tx_buffer, len, size); 4820 dma_unmap_addr_set(tx_buffer, dma, dma); 4821 4822 tx_desc->read.buffer_addr = cpu_to_le64(dma); 4823 4824 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) { 4825 tx_desc->read.cmd_type_len = 4826 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD); 4827 4828 i++; 4829 tx_desc++; 4830 if (i == tx_ring->count) { 4831 tx_desc = IGB_TX_DESC(tx_ring, 0); 4832 i = 0; 4833 } 4834 tx_desc->read.olinfo_status = 0; 4835 4836 dma += IGB_MAX_DATA_PER_TXD; 4837 size -= IGB_MAX_DATA_PER_TXD; 4838 4839 tx_desc->read.buffer_addr = cpu_to_le64(dma); 4840 } 4841 4842 if (likely(!data_len)) 4843 break; 4844 4845 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size); 4846 4847 i++; 4848 tx_desc++; 4849 if (i == tx_ring->count) { 4850 tx_desc = IGB_TX_DESC(tx_ring, 0); 4851 i = 0; 4852 } 4853 tx_desc->read.olinfo_status = 0; 4854 4855 size = skb_frag_size(frag); 4856 data_len -= size; 4857 4858 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, 4859 size, DMA_TO_DEVICE); 4860 4861 tx_buffer = &tx_ring->tx_buffer_info[i]; 4862 } 4863 4864 /* write last descriptor with RS and EOP bits */ 4865 cmd_type |= size | IGB_TXD_DCMD; 4866 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 4867 4868 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 4869 4870 /* set the timestamp */ 4871 first->time_stamp = jiffies; 4872 4873 /* Force memory writes to complete before letting h/w know there 4874 * are new descriptors to fetch. (Only applicable for weak-ordered 4875 * memory model archs, such as IA-64). 4876 * 4877 * We also need this memory barrier to make certain all of the 4878 * status bits have been updated before next_to_watch is written. 4879 */ 4880 wmb(); 4881 4882 /* set next_to_watch value indicating a packet is present */ 4883 first->next_to_watch = tx_desc; 4884 4885 i++; 4886 if (i == tx_ring->count) 4887 i = 0; 4888 4889 tx_ring->next_to_use = i; 4890 4891 writel(i, tx_ring->tail); 4892 4893 /* we need this if more than one processor can write to our tail 4894 * at a time, it synchronizes IO on IA64/Altix systems 4895 */ 4896 mmiowb(); 4897 4898 return; 4899 4900 dma_error: 4901 dev_err(tx_ring->dev, "TX DMA map failed\n"); 4902 4903 /* clear dma mappings for failed tx_buffer_info map */ 4904 for (;;) { 4905 tx_buffer = &tx_ring->tx_buffer_info[i]; 4906 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer); 4907 if (tx_buffer == first) 4908 break; 4909 if (i == 0) 4910 i = tx_ring->count; 4911 i--; 4912 } 4913 4914 tx_ring->next_to_use = i; 4915 } 4916 4917 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size) 4918 { 4919 struct net_device *netdev = tx_ring->netdev; 4920 4921 netif_stop_subqueue(netdev, tx_ring->queue_index); 4922 4923 /* Herbert's original patch had: 4924 * smp_mb__after_netif_stop_queue(); 4925 * but since that doesn't exist yet, just open code it. 4926 */ 4927 smp_mb(); 4928 4929 /* We need to check again in a case another CPU has just 4930 * made room available. 4931 */ 4932 if (igb_desc_unused(tx_ring) < size) 4933 return -EBUSY; 4934 4935 /* A reprieve! */ 4936 netif_wake_subqueue(netdev, tx_ring->queue_index); 4937 4938 u64_stats_update_begin(&tx_ring->tx_syncp2); 4939 tx_ring->tx_stats.restart_queue2++; 4940 u64_stats_update_end(&tx_ring->tx_syncp2); 4941 4942 return 0; 4943 } 4944 4945 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size) 4946 { 4947 if (igb_desc_unused(tx_ring) >= size) 4948 return 0; 4949 return __igb_maybe_stop_tx(tx_ring, size); 4950 } 4951 4952 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb, 4953 struct igb_ring *tx_ring) 4954 { 4955 struct igb_tx_buffer *first; 4956 int tso; 4957 u32 tx_flags = 0; 4958 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 4959 __be16 protocol = vlan_get_protocol(skb); 4960 u8 hdr_len = 0; 4961 4962 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD, 4963 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD, 4964 * + 2 desc gap to keep tail from touching head, 4965 * + 1 desc for context descriptor, 4966 * otherwise try next time 4967 */ 4968 if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) { 4969 unsigned short f; 4970 4971 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 4972 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size); 4973 } else { 4974 count += skb_shinfo(skb)->nr_frags; 4975 } 4976 4977 if (igb_maybe_stop_tx(tx_ring, count + 3)) { 4978 /* this is a hard error */ 4979 return NETDEV_TX_BUSY; 4980 } 4981 4982 /* record the location of the first descriptor for this packet */ 4983 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 4984 first->skb = skb; 4985 first->bytecount = skb->len; 4986 first->gso_segs = 1; 4987 4988 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 4989 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev); 4990 4991 if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS, 4992 &adapter->state)) { 4993 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 4994 tx_flags |= IGB_TX_FLAGS_TSTAMP; 4995 4996 adapter->ptp_tx_skb = skb_get(skb); 4997 adapter->ptp_tx_start = jiffies; 4998 if (adapter->hw.mac.type == e1000_82576) 4999 schedule_work(&adapter->ptp_tx_work); 5000 } 5001 } 5002 5003 skb_tx_timestamp(skb); 5004 5005 if (vlan_tx_tag_present(skb)) { 5006 tx_flags |= IGB_TX_FLAGS_VLAN; 5007 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT); 5008 } 5009 5010 /* record initial flags and protocol */ 5011 first->tx_flags = tx_flags; 5012 first->protocol = protocol; 5013 5014 tso = igb_tso(tx_ring, first, &hdr_len); 5015 if (tso < 0) 5016 goto out_drop; 5017 else if (!tso) 5018 igb_tx_csum(tx_ring, first); 5019 5020 igb_tx_map(tx_ring, first, hdr_len); 5021 5022 /* Make sure there is space in the ring for the next send. */ 5023 igb_maybe_stop_tx(tx_ring, DESC_NEEDED); 5024 5025 return NETDEV_TX_OK; 5026 5027 out_drop: 5028 igb_unmap_and_free_tx_resource(tx_ring, first); 5029 5030 return NETDEV_TX_OK; 5031 } 5032 5033 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter, 5034 struct sk_buff *skb) 5035 { 5036 unsigned int r_idx = skb->queue_mapping; 5037 5038 if (r_idx >= adapter->num_tx_queues) 5039 r_idx = r_idx % adapter->num_tx_queues; 5040 5041 return adapter->tx_ring[r_idx]; 5042 } 5043 5044 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, 5045 struct net_device *netdev) 5046 { 5047 struct igb_adapter *adapter = netdev_priv(netdev); 5048 5049 if (test_bit(__IGB_DOWN, &adapter->state)) { 5050 dev_kfree_skb_any(skb); 5051 return NETDEV_TX_OK; 5052 } 5053 5054 if (skb->len <= 0) { 5055 dev_kfree_skb_any(skb); 5056 return NETDEV_TX_OK; 5057 } 5058 5059 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb 5060 * in order to meet this minimum size requirement. 5061 */ 5062 if (unlikely(skb->len < 17)) { 5063 if (skb_pad(skb, 17 - skb->len)) 5064 return NETDEV_TX_OK; 5065 skb->len = 17; 5066 skb_set_tail_pointer(skb, 17); 5067 } 5068 5069 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb)); 5070 } 5071 5072 /** 5073 * igb_tx_timeout - Respond to a Tx Hang 5074 * @netdev: network interface device structure 5075 **/ 5076 static void igb_tx_timeout(struct net_device *netdev) 5077 { 5078 struct igb_adapter *adapter = netdev_priv(netdev); 5079 struct e1000_hw *hw = &adapter->hw; 5080 5081 /* Do the reset outside of interrupt context */ 5082 adapter->tx_timeout_count++; 5083 5084 if (hw->mac.type >= e1000_82580) 5085 hw->dev_spec._82575.global_device_reset = true; 5086 5087 schedule_work(&adapter->reset_task); 5088 wr32(E1000_EICS, 5089 (adapter->eims_enable_mask & ~adapter->eims_other)); 5090 } 5091 5092 static void igb_reset_task(struct work_struct *work) 5093 { 5094 struct igb_adapter *adapter; 5095 adapter = container_of(work, struct igb_adapter, reset_task); 5096 5097 igb_dump(adapter); 5098 netdev_err(adapter->netdev, "Reset adapter\n"); 5099 igb_reinit_locked(adapter); 5100 } 5101 5102 /** 5103 * igb_get_stats64 - Get System Network Statistics 5104 * @netdev: network interface device structure 5105 * @stats: rtnl_link_stats64 pointer 5106 **/ 5107 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev, 5108 struct rtnl_link_stats64 *stats) 5109 { 5110 struct igb_adapter *adapter = netdev_priv(netdev); 5111 5112 spin_lock(&adapter->stats64_lock); 5113 igb_update_stats(adapter, &adapter->stats64); 5114 memcpy(stats, &adapter->stats64, sizeof(*stats)); 5115 spin_unlock(&adapter->stats64_lock); 5116 5117 return stats; 5118 } 5119 5120 /** 5121 * igb_change_mtu - Change the Maximum Transfer Unit 5122 * @netdev: network interface device structure 5123 * @new_mtu: new value for maximum frame size 5124 * 5125 * Returns 0 on success, negative on failure 5126 **/ 5127 static int igb_change_mtu(struct net_device *netdev, int new_mtu) 5128 { 5129 struct igb_adapter *adapter = netdev_priv(netdev); 5130 struct pci_dev *pdev = adapter->pdev; 5131 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 5132 5133 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) { 5134 dev_err(&pdev->dev, "Invalid MTU setting\n"); 5135 return -EINVAL; 5136 } 5137 5138 #define MAX_STD_JUMBO_FRAME_SIZE 9238 5139 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { 5140 dev_err(&pdev->dev, "MTU > 9216 not supported.\n"); 5141 return -EINVAL; 5142 } 5143 5144 /* adjust max frame to be at least the size of a standard frame */ 5145 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN)) 5146 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN; 5147 5148 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 5149 usleep_range(1000, 2000); 5150 5151 /* igb_down has a dependency on max_frame_size */ 5152 adapter->max_frame_size = max_frame; 5153 5154 if (netif_running(netdev)) 5155 igb_down(adapter); 5156 5157 dev_info(&pdev->dev, "changing MTU from %d to %d\n", 5158 netdev->mtu, new_mtu); 5159 netdev->mtu = new_mtu; 5160 5161 if (netif_running(netdev)) 5162 igb_up(adapter); 5163 else 5164 igb_reset(adapter); 5165 5166 clear_bit(__IGB_RESETTING, &adapter->state); 5167 5168 return 0; 5169 } 5170 5171 /** 5172 * igb_update_stats - Update the board statistics counters 5173 * @adapter: board private structure 5174 **/ 5175 void igb_update_stats(struct igb_adapter *adapter, 5176 struct rtnl_link_stats64 *net_stats) 5177 { 5178 struct e1000_hw *hw = &adapter->hw; 5179 struct pci_dev *pdev = adapter->pdev; 5180 u32 reg, mpc; 5181 u16 phy_tmp; 5182 int i; 5183 u64 bytes, packets; 5184 unsigned int start; 5185 u64 _bytes, _packets; 5186 5187 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF 5188 5189 /* Prevent stats update while adapter is being reset, or if the pci 5190 * connection is down. 5191 */ 5192 if (adapter->link_speed == 0) 5193 return; 5194 if (pci_channel_offline(pdev)) 5195 return; 5196 5197 bytes = 0; 5198 packets = 0; 5199 5200 rcu_read_lock(); 5201 for (i = 0; i < adapter->num_rx_queues; i++) { 5202 struct igb_ring *ring = adapter->rx_ring[i]; 5203 u32 rqdpc = rd32(E1000_RQDPC(i)); 5204 if (hw->mac.type >= e1000_i210) 5205 wr32(E1000_RQDPC(i), 0); 5206 5207 if (rqdpc) { 5208 ring->rx_stats.drops += rqdpc; 5209 net_stats->rx_fifo_errors += rqdpc; 5210 } 5211 5212 do { 5213 start = u64_stats_fetch_begin_irq(&ring->rx_syncp); 5214 _bytes = ring->rx_stats.bytes; 5215 _packets = ring->rx_stats.packets; 5216 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start)); 5217 bytes += _bytes; 5218 packets += _packets; 5219 } 5220 5221 net_stats->rx_bytes = bytes; 5222 net_stats->rx_packets = packets; 5223 5224 bytes = 0; 5225 packets = 0; 5226 for (i = 0; i < adapter->num_tx_queues; i++) { 5227 struct igb_ring *ring = adapter->tx_ring[i]; 5228 do { 5229 start = u64_stats_fetch_begin_irq(&ring->tx_syncp); 5230 _bytes = ring->tx_stats.bytes; 5231 _packets = ring->tx_stats.packets; 5232 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start)); 5233 bytes += _bytes; 5234 packets += _packets; 5235 } 5236 net_stats->tx_bytes = bytes; 5237 net_stats->tx_packets = packets; 5238 rcu_read_unlock(); 5239 5240 /* read stats registers */ 5241 adapter->stats.crcerrs += rd32(E1000_CRCERRS); 5242 adapter->stats.gprc += rd32(E1000_GPRC); 5243 adapter->stats.gorc += rd32(E1000_GORCL); 5244 rd32(E1000_GORCH); /* clear GORCL */ 5245 adapter->stats.bprc += rd32(E1000_BPRC); 5246 adapter->stats.mprc += rd32(E1000_MPRC); 5247 adapter->stats.roc += rd32(E1000_ROC); 5248 5249 adapter->stats.prc64 += rd32(E1000_PRC64); 5250 adapter->stats.prc127 += rd32(E1000_PRC127); 5251 adapter->stats.prc255 += rd32(E1000_PRC255); 5252 adapter->stats.prc511 += rd32(E1000_PRC511); 5253 adapter->stats.prc1023 += rd32(E1000_PRC1023); 5254 adapter->stats.prc1522 += rd32(E1000_PRC1522); 5255 adapter->stats.symerrs += rd32(E1000_SYMERRS); 5256 adapter->stats.sec += rd32(E1000_SEC); 5257 5258 mpc = rd32(E1000_MPC); 5259 adapter->stats.mpc += mpc; 5260 net_stats->rx_fifo_errors += mpc; 5261 adapter->stats.scc += rd32(E1000_SCC); 5262 adapter->stats.ecol += rd32(E1000_ECOL); 5263 adapter->stats.mcc += rd32(E1000_MCC); 5264 adapter->stats.latecol += rd32(E1000_LATECOL); 5265 adapter->stats.dc += rd32(E1000_DC); 5266 adapter->stats.rlec += rd32(E1000_RLEC); 5267 adapter->stats.xonrxc += rd32(E1000_XONRXC); 5268 adapter->stats.xontxc += rd32(E1000_XONTXC); 5269 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC); 5270 adapter->stats.xofftxc += rd32(E1000_XOFFTXC); 5271 adapter->stats.fcruc += rd32(E1000_FCRUC); 5272 adapter->stats.gptc += rd32(E1000_GPTC); 5273 adapter->stats.gotc += rd32(E1000_GOTCL); 5274 rd32(E1000_GOTCH); /* clear GOTCL */ 5275 adapter->stats.rnbc += rd32(E1000_RNBC); 5276 adapter->stats.ruc += rd32(E1000_RUC); 5277 adapter->stats.rfc += rd32(E1000_RFC); 5278 adapter->stats.rjc += rd32(E1000_RJC); 5279 adapter->stats.tor += rd32(E1000_TORH); 5280 adapter->stats.tot += rd32(E1000_TOTH); 5281 adapter->stats.tpr += rd32(E1000_TPR); 5282 5283 adapter->stats.ptc64 += rd32(E1000_PTC64); 5284 adapter->stats.ptc127 += rd32(E1000_PTC127); 5285 adapter->stats.ptc255 += rd32(E1000_PTC255); 5286 adapter->stats.ptc511 += rd32(E1000_PTC511); 5287 adapter->stats.ptc1023 += rd32(E1000_PTC1023); 5288 adapter->stats.ptc1522 += rd32(E1000_PTC1522); 5289 5290 adapter->stats.mptc += rd32(E1000_MPTC); 5291 adapter->stats.bptc += rd32(E1000_BPTC); 5292 5293 adapter->stats.tpt += rd32(E1000_TPT); 5294 adapter->stats.colc += rd32(E1000_COLC); 5295 5296 adapter->stats.algnerrc += rd32(E1000_ALGNERRC); 5297 /* read internal phy specific stats */ 5298 reg = rd32(E1000_CTRL_EXT); 5299 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) { 5300 adapter->stats.rxerrc += rd32(E1000_RXERRC); 5301 5302 /* this stat has invalid values on i210/i211 */ 5303 if ((hw->mac.type != e1000_i210) && 5304 (hw->mac.type != e1000_i211)) 5305 adapter->stats.tncrs += rd32(E1000_TNCRS); 5306 } 5307 5308 adapter->stats.tsctc += rd32(E1000_TSCTC); 5309 adapter->stats.tsctfc += rd32(E1000_TSCTFC); 5310 5311 adapter->stats.iac += rd32(E1000_IAC); 5312 adapter->stats.icrxoc += rd32(E1000_ICRXOC); 5313 adapter->stats.icrxptc += rd32(E1000_ICRXPTC); 5314 adapter->stats.icrxatc += rd32(E1000_ICRXATC); 5315 adapter->stats.ictxptc += rd32(E1000_ICTXPTC); 5316 adapter->stats.ictxatc += rd32(E1000_ICTXATC); 5317 adapter->stats.ictxqec += rd32(E1000_ICTXQEC); 5318 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC); 5319 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC); 5320 5321 /* Fill out the OS statistics structure */ 5322 net_stats->multicast = adapter->stats.mprc; 5323 net_stats->collisions = adapter->stats.colc; 5324 5325 /* Rx Errors */ 5326 5327 /* RLEC on some newer hardware can be incorrect so build 5328 * our own version based on RUC and ROC 5329 */ 5330 net_stats->rx_errors = adapter->stats.rxerrc + 5331 adapter->stats.crcerrs + adapter->stats.algnerrc + 5332 adapter->stats.ruc + adapter->stats.roc + 5333 adapter->stats.cexterr; 5334 net_stats->rx_length_errors = adapter->stats.ruc + 5335 adapter->stats.roc; 5336 net_stats->rx_crc_errors = adapter->stats.crcerrs; 5337 net_stats->rx_frame_errors = adapter->stats.algnerrc; 5338 net_stats->rx_missed_errors = adapter->stats.mpc; 5339 5340 /* Tx Errors */ 5341 net_stats->tx_errors = adapter->stats.ecol + 5342 adapter->stats.latecol; 5343 net_stats->tx_aborted_errors = adapter->stats.ecol; 5344 net_stats->tx_window_errors = adapter->stats.latecol; 5345 net_stats->tx_carrier_errors = adapter->stats.tncrs; 5346 5347 /* Tx Dropped needs to be maintained elsewhere */ 5348 5349 /* Phy Stats */ 5350 if (hw->phy.media_type == e1000_media_type_copper) { 5351 if ((adapter->link_speed == SPEED_1000) && 5352 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { 5353 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; 5354 adapter->phy_stats.idle_errors += phy_tmp; 5355 } 5356 } 5357 5358 /* Management Stats */ 5359 adapter->stats.mgptc += rd32(E1000_MGTPTC); 5360 adapter->stats.mgprc += rd32(E1000_MGTPRC); 5361 adapter->stats.mgpdc += rd32(E1000_MGTPDC); 5362 5363 /* OS2BMC Stats */ 5364 reg = rd32(E1000_MANC); 5365 if (reg & E1000_MANC_EN_BMC2OS) { 5366 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC); 5367 adapter->stats.o2bspc += rd32(E1000_O2BSPC); 5368 adapter->stats.b2ospc += rd32(E1000_B2OSPC); 5369 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC); 5370 } 5371 } 5372 5373 static irqreturn_t igb_msix_other(int irq, void *data) 5374 { 5375 struct igb_adapter *adapter = data; 5376 struct e1000_hw *hw = &adapter->hw; 5377 u32 icr = rd32(E1000_ICR); 5378 /* reading ICR causes bit 31 of EICR to be cleared */ 5379 5380 if (icr & E1000_ICR_DRSTA) 5381 schedule_work(&adapter->reset_task); 5382 5383 if (icr & E1000_ICR_DOUTSYNC) { 5384 /* HW is reporting DMA is out of sync */ 5385 adapter->stats.doosync++; 5386 /* The DMA Out of Sync is also indication of a spoof event 5387 * in IOV mode. Check the Wrong VM Behavior register to 5388 * see if it is really a spoof event. 5389 */ 5390 igb_check_wvbr(adapter); 5391 } 5392 5393 /* Check for a mailbox event */ 5394 if (icr & E1000_ICR_VMMB) 5395 igb_msg_task(adapter); 5396 5397 if (icr & E1000_ICR_LSC) { 5398 hw->mac.get_link_status = 1; 5399 /* guard against interrupt when we're going down */ 5400 if (!test_bit(__IGB_DOWN, &adapter->state)) 5401 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5402 } 5403 5404 if (icr & E1000_ICR_TS) { 5405 u32 tsicr = rd32(E1000_TSICR); 5406 5407 if (tsicr & E1000_TSICR_TXTS) { 5408 /* acknowledge the interrupt */ 5409 wr32(E1000_TSICR, E1000_TSICR_TXTS); 5410 /* retrieve hardware timestamp */ 5411 schedule_work(&adapter->ptp_tx_work); 5412 } 5413 } 5414 5415 wr32(E1000_EIMS, adapter->eims_other); 5416 5417 return IRQ_HANDLED; 5418 } 5419 5420 static void igb_write_itr(struct igb_q_vector *q_vector) 5421 { 5422 struct igb_adapter *adapter = q_vector->adapter; 5423 u32 itr_val = q_vector->itr_val & 0x7FFC; 5424 5425 if (!q_vector->set_itr) 5426 return; 5427 5428 if (!itr_val) 5429 itr_val = 0x4; 5430 5431 if (adapter->hw.mac.type == e1000_82575) 5432 itr_val |= itr_val << 16; 5433 else 5434 itr_val |= E1000_EITR_CNT_IGNR; 5435 5436 writel(itr_val, q_vector->itr_register); 5437 q_vector->set_itr = 0; 5438 } 5439 5440 static irqreturn_t igb_msix_ring(int irq, void *data) 5441 { 5442 struct igb_q_vector *q_vector = data; 5443 5444 /* Write the ITR value calculated from the previous interrupt. */ 5445 igb_write_itr(q_vector); 5446 5447 napi_schedule(&q_vector->napi); 5448 5449 return IRQ_HANDLED; 5450 } 5451 5452 #ifdef CONFIG_IGB_DCA 5453 static void igb_update_tx_dca(struct igb_adapter *adapter, 5454 struct igb_ring *tx_ring, 5455 int cpu) 5456 { 5457 struct e1000_hw *hw = &adapter->hw; 5458 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu); 5459 5460 if (hw->mac.type != e1000_82575) 5461 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT; 5462 5463 /* We can enable relaxed ordering for reads, but not writes when 5464 * DCA is enabled. This is due to a known issue in some chipsets 5465 * which will cause the DCA tag to be cleared. 5466 */ 5467 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN | 5468 E1000_DCA_TXCTRL_DATA_RRO_EN | 5469 E1000_DCA_TXCTRL_DESC_DCA_EN; 5470 5471 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl); 5472 } 5473 5474 static void igb_update_rx_dca(struct igb_adapter *adapter, 5475 struct igb_ring *rx_ring, 5476 int cpu) 5477 { 5478 struct e1000_hw *hw = &adapter->hw; 5479 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu); 5480 5481 if (hw->mac.type != e1000_82575) 5482 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT; 5483 5484 /* We can enable relaxed ordering for reads, but not writes when 5485 * DCA is enabled. This is due to a known issue in some chipsets 5486 * which will cause the DCA tag to be cleared. 5487 */ 5488 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN | 5489 E1000_DCA_RXCTRL_DESC_DCA_EN; 5490 5491 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl); 5492 } 5493 5494 static void igb_update_dca(struct igb_q_vector *q_vector) 5495 { 5496 struct igb_adapter *adapter = q_vector->adapter; 5497 int cpu = get_cpu(); 5498 5499 if (q_vector->cpu == cpu) 5500 goto out_no_update; 5501 5502 if (q_vector->tx.ring) 5503 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu); 5504 5505 if (q_vector->rx.ring) 5506 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu); 5507 5508 q_vector->cpu = cpu; 5509 out_no_update: 5510 put_cpu(); 5511 } 5512 5513 static void igb_setup_dca(struct igb_adapter *adapter) 5514 { 5515 struct e1000_hw *hw = &adapter->hw; 5516 int i; 5517 5518 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED)) 5519 return; 5520 5521 /* Always use CB2 mode, difference is masked in the CB driver. */ 5522 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2); 5523 5524 for (i = 0; i < adapter->num_q_vectors; i++) { 5525 adapter->q_vector[i]->cpu = -1; 5526 igb_update_dca(adapter->q_vector[i]); 5527 } 5528 } 5529 5530 static int __igb_notify_dca(struct device *dev, void *data) 5531 { 5532 struct net_device *netdev = dev_get_drvdata(dev); 5533 struct igb_adapter *adapter = netdev_priv(netdev); 5534 struct pci_dev *pdev = adapter->pdev; 5535 struct e1000_hw *hw = &adapter->hw; 5536 unsigned long event = *(unsigned long *)data; 5537 5538 switch (event) { 5539 case DCA_PROVIDER_ADD: 5540 /* if already enabled, don't do it again */ 5541 if (adapter->flags & IGB_FLAG_DCA_ENABLED) 5542 break; 5543 if (dca_add_requester(dev) == 0) { 5544 adapter->flags |= IGB_FLAG_DCA_ENABLED; 5545 dev_info(&pdev->dev, "DCA enabled\n"); 5546 igb_setup_dca(adapter); 5547 break; 5548 } 5549 /* Fall Through since DCA is disabled. */ 5550 case DCA_PROVIDER_REMOVE: 5551 if (adapter->flags & IGB_FLAG_DCA_ENABLED) { 5552 /* without this a class_device is left 5553 * hanging around in the sysfs model 5554 */ 5555 dca_remove_requester(dev); 5556 dev_info(&pdev->dev, "DCA disabled\n"); 5557 adapter->flags &= ~IGB_FLAG_DCA_ENABLED; 5558 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE); 5559 } 5560 break; 5561 } 5562 5563 return 0; 5564 } 5565 5566 static int igb_notify_dca(struct notifier_block *nb, unsigned long event, 5567 void *p) 5568 { 5569 int ret_val; 5570 5571 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event, 5572 __igb_notify_dca); 5573 5574 return ret_val ? NOTIFY_BAD : NOTIFY_DONE; 5575 } 5576 #endif /* CONFIG_IGB_DCA */ 5577 5578 #ifdef CONFIG_PCI_IOV 5579 static int igb_vf_configure(struct igb_adapter *adapter, int vf) 5580 { 5581 unsigned char mac_addr[ETH_ALEN]; 5582 5583 eth_zero_addr(mac_addr); 5584 igb_set_vf_mac(adapter, vf, mac_addr); 5585 5586 /* By default spoof check is enabled for all VFs */ 5587 adapter->vf_data[vf].spoofchk_enabled = true; 5588 5589 return 0; 5590 } 5591 5592 #endif 5593 static void igb_ping_all_vfs(struct igb_adapter *adapter) 5594 { 5595 struct e1000_hw *hw = &adapter->hw; 5596 u32 ping; 5597 int i; 5598 5599 for (i = 0 ; i < adapter->vfs_allocated_count; i++) { 5600 ping = E1000_PF_CONTROL_MSG; 5601 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS) 5602 ping |= E1000_VT_MSGTYPE_CTS; 5603 igb_write_mbx(hw, &ping, 1, i); 5604 } 5605 } 5606 5607 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) 5608 { 5609 struct e1000_hw *hw = &adapter->hw; 5610 u32 vmolr = rd32(E1000_VMOLR(vf)); 5611 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 5612 5613 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC | 5614 IGB_VF_FLAG_MULTI_PROMISC); 5615 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); 5616 5617 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) { 5618 vmolr |= E1000_VMOLR_MPME; 5619 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC; 5620 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST; 5621 } else { 5622 /* if we have hashes and we are clearing a multicast promisc 5623 * flag we need to write the hashes to the MTA as this step 5624 * was previously skipped 5625 */ 5626 if (vf_data->num_vf_mc_hashes > 30) { 5627 vmolr |= E1000_VMOLR_MPME; 5628 } else if (vf_data->num_vf_mc_hashes) { 5629 int j; 5630 5631 vmolr |= E1000_VMOLR_ROMPE; 5632 for (j = 0; j < vf_data->num_vf_mc_hashes; j++) 5633 igb_mta_set(hw, vf_data->vf_mc_hashes[j]); 5634 } 5635 } 5636 5637 wr32(E1000_VMOLR(vf), vmolr); 5638 5639 /* there are flags left unprocessed, likely not supported */ 5640 if (*msgbuf & E1000_VT_MSGINFO_MASK) 5641 return -EINVAL; 5642 5643 return 0; 5644 } 5645 5646 static int igb_set_vf_multicasts(struct igb_adapter *adapter, 5647 u32 *msgbuf, u32 vf) 5648 { 5649 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; 5650 u16 *hash_list = (u16 *)&msgbuf[1]; 5651 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 5652 int i; 5653 5654 /* salt away the number of multicast addresses assigned 5655 * to this VF for later use to restore when the PF multi cast 5656 * list changes 5657 */ 5658 vf_data->num_vf_mc_hashes = n; 5659 5660 /* only up to 30 hash values supported */ 5661 if (n > 30) 5662 n = 30; 5663 5664 /* store the hashes for later use */ 5665 for (i = 0; i < n; i++) 5666 vf_data->vf_mc_hashes[i] = hash_list[i]; 5667 5668 /* Flush and reset the mta with the new values */ 5669 igb_set_rx_mode(adapter->netdev); 5670 5671 return 0; 5672 } 5673 5674 static void igb_restore_vf_multicasts(struct igb_adapter *adapter) 5675 { 5676 struct e1000_hw *hw = &adapter->hw; 5677 struct vf_data_storage *vf_data; 5678 int i, j; 5679 5680 for (i = 0; i < adapter->vfs_allocated_count; i++) { 5681 u32 vmolr = rd32(E1000_VMOLR(i)); 5682 5683 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); 5684 5685 vf_data = &adapter->vf_data[i]; 5686 5687 if ((vf_data->num_vf_mc_hashes > 30) || 5688 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) { 5689 vmolr |= E1000_VMOLR_MPME; 5690 } else if (vf_data->num_vf_mc_hashes) { 5691 vmolr |= E1000_VMOLR_ROMPE; 5692 for (j = 0; j < vf_data->num_vf_mc_hashes; j++) 5693 igb_mta_set(hw, vf_data->vf_mc_hashes[j]); 5694 } 5695 wr32(E1000_VMOLR(i), vmolr); 5696 } 5697 } 5698 5699 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf) 5700 { 5701 struct e1000_hw *hw = &adapter->hw; 5702 u32 pool_mask, reg, vid; 5703 int i; 5704 5705 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf); 5706 5707 /* Find the vlan filter for this id */ 5708 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { 5709 reg = rd32(E1000_VLVF(i)); 5710 5711 /* remove the vf from the pool */ 5712 reg &= ~pool_mask; 5713 5714 /* if pool is empty then remove entry from vfta */ 5715 if (!(reg & E1000_VLVF_POOLSEL_MASK) && 5716 (reg & E1000_VLVF_VLANID_ENABLE)) { 5717 reg = 0; 5718 vid = reg & E1000_VLVF_VLANID_MASK; 5719 igb_vfta_set(hw, vid, false); 5720 } 5721 5722 wr32(E1000_VLVF(i), reg); 5723 } 5724 5725 adapter->vf_data[vf].vlans_enabled = 0; 5726 } 5727 5728 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf) 5729 { 5730 struct e1000_hw *hw = &adapter->hw; 5731 u32 reg, i; 5732 5733 /* The vlvf table only exists on 82576 hardware and newer */ 5734 if (hw->mac.type < e1000_82576) 5735 return -1; 5736 5737 /* we only need to do this if VMDq is enabled */ 5738 if (!adapter->vfs_allocated_count) 5739 return -1; 5740 5741 /* Find the vlan filter for this id */ 5742 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { 5743 reg = rd32(E1000_VLVF(i)); 5744 if ((reg & E1000_VLVF_VLANID_ENABLE) && 5745 vid == (reg & E1000_VLVF_VLANID_MASK)) 5746 break; 5747 } 5748 5749 if (add) { 5750 if (i == E1000_VLVF_ARRAY_SIZE) { 5751 /* Did not find a matching VLAN ID entry that was 5752 * enabled. Search for a free filter entry, i.e. 5753 * one without the enable bit set 5754 */ 5755 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { 5756 reg = rd32(E1000_VLVF(i)); 5757 if (!(reg & E1000_VLVF_VLANID_ENABLE)) 5758 break; 5759 } 5760 } 5761 if (i < E1000_VLVF_ARRAY_SIZE) { 5762 /* Found an enabled/available entry */ 5763 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf); 5764 5765 /* if !enabled we need to set this up in vfta */ 5766 if (!(reg & E1000_VLVF_VLANID_ENABLE)) { 5767 /* add VID to filter table */ 5768 igb_vfta_set(hw, vid, true); 5769 reg |= E1000_VLVF_VLANID_ENABLE; 5770 } 5771 reg &= ~E1000_VLVF_VLANID_MASK; 5772 reg |= vid; 5773 wr32(E1000_VLVF(i), reg); 5774 5775 /* do not modify RLPML for PF devices */ 5776 if (vf >= adapter->vfs_allocated_count) 5777 return 0; 5778 5779 if (!adapter->vf_data[vf].vlans_enabled) { 5780 u32 size; 5781 5782 reg = rd32(E1000_VMOLR(vf)); 5783 size = reg & E1000_VMOLR_RLPML_MASK; 5784 size += 4; 5785 reg &= ~E1000_VMOLR_RLPML_MASK; 5786 reg |= size; 5787 wr32(E1000_VMOLR(vf), reg); 5788 } 5789 5790 adapter->vf_data[vf].vlans_enabled++; 5791 } 5792 } else { 5793 if (i < E1000_VLVF_ARRAY_SIZE) { 5794 /* remove vf from the pool */ 5795 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf)); 5796 /* if pool is empty then remove entry from vfta */ 5797 if (!(reg & E1000_VLVF_POOLSEL_MASK)) { 5798 reg = 0; 5799 igb_vfta_set(hw, vid, false); 5800 } 5801 wr32(E1000_VLVF(i), reg); 5802 5803 /* do not modify RLPML for PF devices */ 5804 if (vf >= adapter->vfs_allocated_count) 5805 return 0; 5806 5807 adapter->vf_data[vf].vlans_enabled--; 5808 if (!adapter->vf_data[vf].vlans_enabled) { 5809 u32 size; 5810 5811 reg = rd32(E1000_VMOLR(vf)); 5812 size = reg & E1000_VMOLR_RLPML_MASK; 5813 size -= 4; 5814 reg &= ~E1000_VMOLR_RLPML_MASK; 5815 reg |= size; 5816 wr32(E1000_VMOLR(vf), reg); 5817 } 5818 } 5819 } 5820 return 0; 5821 } 5822 5823 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf) 5824 { 5825 struct e1000_hw *hw = &adapter->hw; 5826 5827 if (vid) 5828 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT)); 5829 else 5830 wr32(E1000_VMVIR(vf), 0); 5831 } 5832 5833 static int igb_ndo_set_vf_vlan(struct net_device *netdev, 5834 int vf, u16 vlan, u8 qos) 5835 { 5836 int err = 0; 5837 struct igb_adapter *adapter = netdev_priv(netdev); 5838 5839 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7)) 5840 return -EINVAL; 5841 if (vlan || qos) { 5842 err = igb_vlvf_set(adapter, vlan, !!vlan, vf); 5843 if (err) 5844 goto out; 5845 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf); 5846 igb_set_vmolr(adapter, vf, !vlan); 5847 adapter->vf_data[vf].pf_vlan = vlan; 5848 adapter->vf_data[vf].pf_qos = qos; 5849 dev_info(&adapter->pdev->dev, 5850 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf); 5851 if (test_bit(__IGB_DOWN, &adapter->state)) { 5852 dev_warn(&adapter->pdev->dev, 5853 "The VF VLAN has been set, but the PF device is not up.\n"); 5854 dev_warn(&adapter->pdev->dev, 5855 "Bring the PF device up before attempting to use the VF device.\n"); 5856 } 5857 } else { 5858 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan, 5859 false, vf); 5860 igb_set_vmvir(adapter, vlan, vf); 5861 igb_set_vmolr(adapter, vf, true); 5862 adapter->vf_data[vf].pf_vlan = 0; 5863 adapter->vf_data[vf].pf_qos = 0; 5864 } 5865 out: 5866 return err; 5867 } 5868 5869 static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid) 5870 { 5871 struct e1000_hw *hw = &adapter->hw; 5872 int i; 5873 u32 reg; 5874 5875 /* Find the vlan filter for this id */ 5876 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { 5877 reg = rd32(E1000_VLVF(i)); 5878 if ((reg & E1000_VLVF_VLANID_ENABLE) && 5879 vid == (reg & E1000_VLVF_VLANID_MASK)) 5880 break; 5881 } 5882 5883 if (i >= E1000_VLVF_ARRAY_SIZE) 5884 i = -1; 5885 5886 return i; 5887 } 5888 5889 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) 5890 { 5891 struct e1000_hw *hw = &adapter->hw; 5892 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; 5893 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK); 5894 int err = 0; 5895 5896 /* If in promiscuous mode we need to make sure the PF also has 5897 * the VLAN filter set. 5898 */ 5899 if (add && (adapter->netdev->flags & IFF_PROMISC)) 5900 err = igb_vlvf_set(adapter, vid, add, 5901 adapter->vfs_allocated_count); 5902 if (err) 5903 goto out; 5904 5905 err = igb_vlvf_set(adapter, vid, add, vf); 5906 5907 if (err) 5908 goto out; 5909 5910 /* Go through all the checks to see if the VLAN filter should 5911 * be wiped completely. 5912 */ 5913 if (!add && (adapter->netdev->flags & IFF_PROMISC)) { 5914 u32 vlvf, bits; 5915 int regndx = igb_find_vlvf_entry(adapter, vid); 5916 5917 if (regndx < 0) 5918 goto out; 5919 /* See if any other pools are set for this VLAN filter 5920 * entry other than the PF. 5921 */ 5922 vlvf = bits = rd32(E1000_VLVF(regndx)); 5923 bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT + 5924 adapter->vfs_allocated_count); 5925 /* If the filter was removed then ensure PF pool bit 5926 * is cleared if the PF only added itself to the pool 5927 * because the PF is in promiscuous mode. 5928 */ 5929 if ((vlvf & VLAN_VID_MASK) == vid && 5930 !test_bit(vid, adapter->active_vlans) && 5931 !bits) 5932 igb_vlvf_set(adapter, vid, add, 5933 adapter->vfs_allocated_count); 5934 } 5935 5936 out: 5937 return err; 5938 } 5939 5940 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf) 5941 { 5942 /* clear flags - except flag that indicates PF has set the MAC */ 5943 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC; 5944 adapter->vf_data[vf].last_nack = jiffies; 5945 5946 /* reset offloads to defaults */ 5947 igb_set_vmolr(adapter, vf, true); 5948 5949 /* reset vlans for device */ 5950 igb_clear_vf_vfta(adapter, vf); 5951 if (adapter->vf_data[vf].pf_vlan) 5952 igb_ndo_set_vf_vlan(adapter->netdev, vf, 5953 adapter->vf_data[vf].pf_vlan, 5954 adapter->vf_data[vf].pf_qos); 5955 else 5956 igb_clear_vf_vfta(adapter, vf); 5957 5958 /* reset multicast table array for vf */ 5959 adapter->vf_data[vf].num_vf_mc_hashes = 0; 5960 5961 /* Flush and reset the mta with the new values */ 5962 igb_set_rx_mode(adapter->netdev); 5963 } 5964 5965 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf) 5966 { 5967 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; 5968 5969 /* clear mac address as we were hotplug removed/added */ 5970 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC)) 5971 eth_zero_addr(vf_mac); 5972 5973 /* process remaining reset events */ 5974 igb_vf_reset(adapter, vf); 5975 } 5976 5977 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf) 5978 { 5979 struct e1000_hw *hw = &adapter->hw; 5980 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; 5981 int rar_entry = hw->mac.rar_entry_count - (vf + 1); 5982 u32 reg, msgbuf[3]; 5983 u8 *addr = (u8 *)(&msgbuf[1]); 5984 5985 /* process all the same items cleared in a function level reset */ 5986 igb_vf_reset(adapter, vf); 5987 5988 /* set vf mac address */ 5989 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf); 5990 5991 /* enable transmit and receive for vf */ 5992 reg = rd32(E1000_VFTE); 5993 wr32(E1000_VFTE, reg | (1 << vf)); 5994 reg = rd32(E1000_VFRE); 5995 wr32(E1000_VFRE, reg | (1 << vf)); 5996 5997 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS; 5998 5999 /* reply to reset with ack and vf mac address */ 6000 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK; 6001 memcpy(addr, vf_mac, ETH_ALEN); 6002 igb_write_mbx(hw, msgbuf, 3, vf); 6003 } 6004 6005 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf) 6006 { 6007 /* The VF MAC Address is stored in a packed array of bytes 6008 * starting at the second 32 bit word of the msg array 6009 */ 6010 unsigned char *addr = (char *)&msg[1]; 6011 int err = -1; 6012 6013 if (is_valid_ether_addr(addr)) 6014 err = igb_set_vf_mac(adapter, vf, addr); 6015 6016 return err; 6017 } 6018 6019 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf) 6020 { 6021 struct e1000_hw *hw = &adapter->hw; 6022 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 6023 u32 msg = E1000_VT_MSGTYPE_NACK; 6024 6025 /* if device isn't clear to send it shouldn't be reading either */ 6026 if (!(vf_data->flags & IGB_VF_FLAG_CTS) && 6027 time_after(jiffies, vf_data->last_nack + (2 * HZ))) { 6028 igb_write_mbx(hw, &msg, 1, vf); 6029 vf_data->last_nack = jiffies; 6030 } 6031 } 6032 6033 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf) 6034 { 6035 struct pci_dev *pdev = adapter->pdev; 6036 u32 msgbuf[E1000_VFMAILBOX_SIZE]; 6037 struct e1000_hw *hw = &adapter->hw; 6038 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 6039 s32 retval; 6040 6041 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf); 6042 6043 if (retval) { 6044 /* if receive failed revoke VF CTS stats and restart init */ 6045 dev_err(&pdev->dev, "Error receiving message from VF\n"); 6046 vf_data->flags &= ~IGB_VF_FLAG_CTS; 6047 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ))) 6048 return; 6049 goto out; 6050 } 6051 6052 /* this is a message we already processed, do nothing */ 6053 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK)) 6054 return; 6055 6056 /* until the vf completes a reset it should not be 6057 * allowed to start any configuration. 6058 */ 6059 if (msgbuf[0] == E1000_VF_RESET) { 6060 igb_vf_reset_msg(adapter, vf); 6061 return; 6062 } 6063 6064 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) { 6065 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ))) 6066 return; 6067 retval = -1; 6068 goto out; 6069 } 6070 6071 switch ((msgbuf[0] & 0xFFFF)) { 6072 case E1000_VF_SET_MAC_ADDR: 6073 retval = -EINVAL; 6074 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC)) 6075 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf); 6076 else 6077 dev_warn(&pdev->dev, 6078 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n", 6079 vf); 6080 break; 6081 case E1000_VF_SET_PROMISC: 6082 retval = igb_set_vf_promisc(adapter, msgbuf, vf); 6083 break; 6084 case E1000_VF_SET_MULTICAST: 6085 retval = igb_set_vf_multicasts(adapter, msgbuf, vf); 6086 break; 6087 case E1000_VF_SET_LPE: 6088 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf); 6089 break; 6090 case E1000_VF_SET_VLAN: 6091 retval = -1; 6092 if (vf_data->pf_vlan) 6093 dev_warn(&pdev->dev, 6094 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n", 6095 vf); 6096 else 6097 retval = igb_set_vf_vlan(adapter, msgbuf, vf); 6098 break; 6099 default: 6100 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]); 6101 retval = -1; 6102 break; 6103 } 6104 6105 msgbuf[0] |= E1000_VT_MSGTYPE_CTS; 6106 out: 6107 /* notify the VF of the results of what it sent us */ 6108 if (retval) 6109 msgbuf[0] |= E1000_VT_MSGTYPE_NACK; 6110 else 6111 msgbuf[0] |= E1000_VT_MSGTYPE_ACK; 6112 6113 igb_write_mbx(hw, msgbuf, 1, vf); 6114 } 6115 6116 static void igb_msg_task(struct igb_adapter *adapter) 6117 { 6118 struct e1000_hw *hw = &adapter->hw; 6119 u32 vf; 6120 6121 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) { 6122 /* process any reset requests */ 6123 if (!igb_check_for_rst(hw, vf)) 6124 igb_vf_reset_event(adapter, vf); 6125 6126 /* process any messages pending */ 6127 if (!igb_check_for_msg(hw, vf)) 6128 igb_rcv_msg_from_vf(adapter, vf); 6129 6130 /* process any acks */ 6131 if (!igb_check_for_ack(hw, vf)) 6132 igb_rcv_ack_from_vf(adapter, vf); 6133 } 6134 } 6135 6136 /** 6137 * igb_set_uta - Set unicast filter table address 6138 * @adapter: board private structure 6139 * 6140 * The unicast table address is a register array of 32-bit registers. 6141 * The table is meant to be used in a way similar to how the MTA is used 6142 * however due to certain limitations in the hardware it is necessary to 6143 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous 6144 * enable bit to allow vlan tag stripping when promiscuous mode is enabled 6145 **/ 6146 static void igb_set_uta(struct igb_adapter *adapter) 6147 { 6148 struct e1000_hw *hw = &adapter->hw; 6149 int i; 6150 6151 /* The UTA table only exists on 82576 hardware and newer */ 6152 if (hw->mac.type < e1000_82576) 6153 return; 6154 6155 /* we only need to do this if VMDq is enabled */ 6156 if (!adapter->vfs_allocated_count) 6157 return; 6158 6159 for (i = 0; i < hw->mac.uta_reg_count; i++) 6160 array_wr32(E1000_UTA, i, ~0); 6161 } 6162 6163 /** 6164 * igb_intr_msi - Interrupt Handler 6165 * @irq: interrupt number 6166 * @data: pointer to a network interface device structure 6167 **/ 6168 static irqreturn_t igb_intr_msi(int irq, void *data) 6169 { 6170 struct igb_adapter *adapter = data; 6171 struct igb_q_vector *q_vector = adapter->q_vector[0]; 6172 struct e1000_hw *hw = &adapter->hw; 6173 /* read ICR disables interrupts using IAM */ 6174 u32 icr = rd32(E1000_ICR); 6175 6176 igb_write_itr(q_vector); 6177 6178 if (icr & E1000_ICR_DRSTA) 6179 schedule_work(&adapter->reset_task); 6180 6181 if (icr & E1000_ICR_DOUTSYNC) { 6182 /* HW is reporting DMA is out of sync */ 6183 adapter->stats.doosync++; 6184 } 6185 6186 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { 6187 hw->mac.get_link_status = 1; 6188 if (!test_bit(__IGB_DOWN, &adapter->state)) 6189 mod_timer(&adapter->watchdog_timer, jiffies + 1); 6190 } 6191 6192 if (icr & E1000_ICR_TS) { 6193 u32 tsicr = rd32(E1000_TSICR); 6194 6195 if (tsicr & E1000_TSICR_TXTS) { 6196 /* acknowledge the interrupt */ 6197 wr32(E1000_TSICR, E1000_TSICR_TXTS); 6198 /* retrieve hardware timestamp */ 6199 schedule_work(&adapter->ptp_tx_work); 6200 } 6201 } 6202 6203 napi_schedule(&q_vector->napi); 6204 6205 return IRQ_HANDLED; 6206 } 6207 6208 /** 6209 * igb_intr - Legacy Interrupt Handler 6210 * @irq: interrupt number 6211 * @data: pointer to a network interface device structure 6212 **/ 6213 static irqreturn_t igb_intr(int irq, void *data) 6214 { 6215 struct igb_adapter *adapter = data; 6216 struct igb_q_vector *q_vector = adapter->q_vector[0]; 6217 struct e1000_hw *hw = &adapter->hw; 6218 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No 6219 * need for the IMC write 6220 */ 6221 u32 icr = rd32(E1000_ICR); 6222 6223 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is 6224 * not set, then the adapter didn't send an interrupt 6225 */ 6226 if (!(icr & E1000_ICR_INT_ASSERTED)) 6227 return IRQ_NONE; 6228 6229 igb_write_itr(q_vector); 6230 6231 if (icr & E1000_ICR_DRSTA) 6232 schedule_work(&adapter->reset_task); 6233 6234 if (icr & E1000_ICR_DOUTSYNC) { 6235 /* HW is reporting DMA is out of sync */ 6236 adapter->stats.doosync++; 6237 } 6238 6239 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { 6240 hw->mac.get_link_status = 1; 6241 /* guard against interrupt when we're going down */ 6242 if (!test_bit(__IGB_DOWN, &adapter->state)) 6243 mod_timer(&adapter->watchdog_timer, jiffies + 1); 6244 } 6245 6246 if (icr & E1000_ICR_TS) { 6247 u32 tsicr = rd32(E1000_TSICR); 6248 6249 if (tsicr & E1000_TSICR_TXTS) { 6250 /* acknowledge the interrupt */ 6251 wr32(E1000_TSICR, E1000_TSICR_TXTS); 6252 /* retrieve hardware timestamp */ 6253 schedule_work(&adapter->ptp_tx_work); 6254 } 6255 } 6256 6257 napi_schedule(&q_vector->napi); 6258 6259 return IRQ_HANDLED; 6260 } 6261 6262 static void igb_ring_irq_enable(struct igb_q_vector *q_vector) 6263 { 6264 struct igb_adapter *adapter = q_vector->adapter; 6265 struct e1000_hw *hw = &adapter->hw; 6266 6267 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) || 6268 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) { 6269 if ((adapter->num_q_vectors == 1) && !adapter->vf_data) 6270 igb_set_itr(q_vector); 6271 else 6272 igb_update_ring_itr(q_vector); 6273 } 6274 6275 if (!test_bit(__IGB_DOWN, &adapter->state)) { 6276 if (adapter->flags & IGB_FLAG_HAS_MSIX) 6277 wr32(E1000_EIMS, q_vector->eims_value); 6278 else 6279 igb_irq_enable(adapter); 6280 } 6281 } 6282 6283 /** 6284 * igb_poll - NAPI Rx polling callback 6285 * @napi: napi polling structure 6286 * @budget: count of how many packets we should handle 6287 **/ 6288 static int igb_poll(struct napi_struct *napi, int budget) 6289 { 6290 struct igb_q_vector *q_vector = container_of(napi, 6291 struct igb_q_vector, 6292 napi); 6293 bool clean_complete = true; 6294 6295 #ifdef CONFIG_IGB_DCA 6296 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED) 6297 igb_update_dca(q_vector); 6298 #endif 6299 if (q_vector->tx.ring) 6300 clean_complete = igb_clean_tx_irq(q_vector); 6301 6302 if (q_vector->rx.ring) 6303 clean_complete &= igb_clean_rx_irq(q_vector, budget); 6304 6305 /* If all work not completed, return budget and keep polling */ 6306 if (!clean_complete) 6307 return budget; 6308 6309 /* If not enough Rx work done, exit the polling mode */ 6310 napi_complete(napi); 6311 igb_ring_irq_enable(q_vector); 6312 6313 return 0; 6314 } 6315 6316 /** 6317 * igb_clean_tx_irq - Reclaim resources after transmit completes 6318 * @q_vector: pointer to q_vector containing needed info 6319 * 6320 * returns true if ring is completely cleaned 6321 **/ 6322 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector) 6323 { 6324 struct igb_adapter *adapter = q_vector->adapter; 6325 struct igb_ring *tx_ring = q_vector->tx.ring; 6326 struct igb_tx_buffer *tx_buffer; 6327 union e1000_adv_tx_desc *tx_desc; 6328 unsigned int total_bytes = 0, total_packets = 0; 6329 unsigned int budget = q_vector->tx.work_limit; 6330 unsigned int i = tx_ring->next_to_clean; 6331 6332 if (test_bit(__IGB_DOWN, &adapter->state)) 6333 return true; 6334 6335 tx_buffer = &tx_ring->tx_buffer_info[i]; 6336 tx_desc = IGB_TX_DESC(tx_ring, i); 6337 i -= tx_ring->count; 6338 6339 do { 6340 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 6341 6342 /* if next_to_watch is not set then there is no work pending */ 6343 if (!eop_desc) 6344 break; 6345 6346 /* prevent any other reads prior to eop_desc */ 6347 read_barrier_depends(); 6348 6349 /* if DD is not set pending work has not been completed */ 6350 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD))) 6351 break; 6352 6353 /* clear next_to_watch to prevent false hangs */ 6354 tx_buffer->next_to_watch = NULL; 6355 6356 /* update the statistics for this packet */ 6357 total_bytes += tx_buffer->bytecount; 6358 total_packets += tx_buffer->gso_segs; 6359 6360 /* free the skb */ 6361 dev_kfree_skb_any(tx_buffer->skb); 6362 6363 /* unmap skb header data */ 6364 dma_unmap_single(tx_ring->dev, 6365 dma_unmap_addr(tx_buffer, dma), 6366 dma_unmap_len(tx_buffer, len), 6367 DMA_TO_DEVICE); 6368 6369 /* clear tx_buffer data */ 6370 tx_buffer->skb = NULL; 6371 dma_unmap_len_set(tx_buffer, len, 0); 6372 6373 /* clear last DMA location and unmap remaining buffers */ 6374 while (tx_desc != eop_desc) { 6375 tx_buffer++; 6376 tx_desc++; 6377 i++; 6378 if (unlikely(!i)) { 6379 i -= tx_ring->count; 6380 tx_buffer = tx_ring->tx_buffer_info; 6381 tx_desc = IGB_TX_DESC(tx_ring, 0); 6382 } 6383 6384 /* unmap any remaining paged data */ 6385 if (dma_unmap_len(tx_buffer, len)) { 6386 dma_unmap_page(tx_ring->dev, 6387 dma_unmap_addr(tx_buffer, dma), 6388 dma_unmap_len(tx_buffer, len), 6389 DMA_TO_DEVICE); 6390 dma_unmap_len_set(tx_buffer, len, 0); 6391 } 6392 } 6393 6394 /* move us one more past the eop_desc for start of next pkt */ 6395 tx_buffer++; 6396 tx_desc++; 6397 i++; 6398 if (unlikely(!i)) { 6399 i -= tx_ring->count; 6400 tx_buffer = tx_ring->tx_buffer_info; 6401 tx_desc = IGB_TX_DESC(tx_ring, 0); 6402 } 6403 6404 /* issue prefetch for next Tx descriptor */ 6405 prefetch(tx_desc); 6406 6407 /* update budget accounting */ 6408 budget--; 6409 } while (likely(budget)); 6410 6411 netdev_tx_completed_queue(txring_txq(tx_ring), 6412 total_packets, total_bytes); 6413 i += tx_ring->count; 6414 tx_ring->next_to_clean = i; 6415 u64_stats_update_begin(&tx_ring->tx_syncp); 6416 tx_ring->tx_stats.bytes += total_bytes; 6417 tx_ring->tx_stats.packets += total_packets; 6418 u64_stats_update_end(&tx_ring->tx_syncp); 6419 q_vector->tx.total_bytes += total_bytes; 6420 q_vector->tx.total_packets += total_packets; 6421 6422 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) { 6423 struct e1000_hw *hw = &adapter->hw; 6424 6425 /* Detect a transmit hang in hardware, this serializes the 6426 * check with the clearing of time_stamp and movement of i 6427 */ 6428 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 6429 if (tx_buffer->next_to_watch && 6430 time_after(jiffies, tx_buffer->time_stamp + 6431 (adapter->tx_timeout_factor * HZ)) && 6432 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) { 6433 6434 /* detected Tx unit hang */ 6435 dev_err(tx_ring->dev, 6436 "Detected Tx Unit Hang\n" 6437 " Tx Queue <%d>\n" 6438 " TDH <%x>\n" 6439 " TDT <%x>\n" 6440 " next_to_use <%x>\n" 6441 " next_to_clean <%x>\n" 6442 "buffer_info[next_to_clean]\n" 6443 " time_stamp <%lx>\n" 6444 " next_to_watch <%p>\n" 6445 " jiffies <%lx>\n" 6446 " desc.status <%x>\n", 6447 tx_ring->queue_index, 6448 rd32(E1000_TDH(tx_ring->reg_idx)), 6449 readl(tx_ring->tail), 6450 tx_ring->next_to_use, 6451 tx_ring->next_to_clean, 6452 tx_buffer->time_stamp, 6453 tx_buffer->next_to_watch, 6454 jiffies, 6455 tx_buffer->next_to_watch->wb.status); 6456 netif_stop_subqueue(tx_ring->netdev, 6457 tx_ring->queue_index); 6458 6459 /* we are about to reset, no point in enabling stuff */ 6460 return true; 6461 } 6462 } 6463 6464 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 6465 if (unlikely(total_packets && 6466 netif_carrier_ok(tx_ring->netdev) && 6467 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) { 6468 /* Make sure that anybody stopping the queue after this 6469 * sees the new next_to_clean. 6470 */ 6471 smp_mb(); 6472 if (__netif_subqueue_stopped(tx_ring->netdev, 6473 tx_ring->queue_index) && 6474 !(test_bit(__IGB_DOWN, &adapter->state))) { 6475 netif_wake_subqueue(tx_ring->netdev, 6476 tx_ring->queue_index); 6477 6478 u64_stats_update_begin(&tx_ring->tx_syncp); 6479 tx_ring->tx_stats.restart_queue++; 6480 u64_stats_update_end(&tx_ring->tx_syncp); 6481 } 6482 } 6483 6484 return !!budget; 6485 } 6486 6487 /** 6488 * igb_reuse_rx_page - page flip buffer and store it back on the ring 6489 * @rx_ring: rx descriptor ring to store buffers on 6490 * @old_buff: donor buffer to have page reused 6491 * 6492 * Synchronizes page for reuse by the adapter 6493 **/ 6494 static void igb_reuse_rx_page(struct igb_ring *rx_ring, 6495 struct igb_rx_buffer *old_buff) 6496 { 6497 struct igb_rx_buffer *new_buff; 6498 u16 nta = rx_ring->next_to_alloc; 6499 6500 new_buff = &rx_ring->rx_buffer_info[nta]; 6501 6502 /* update, and store next to alloc */ 6503 nta++; 6504 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 6505 6506 /* transfer page from old buffer to new buffer */ 6507 *new_buff = *old_buff; 6508 6509 /* sync the buffer for use by the device */ 6510 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma, 6511 old_buff->page_offset, 6512 IGB_RX_BUFSZ, 6513 DMA_FROM_DEVICE); 6514 } 6515 6516 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer, 6517 struct page *page, 6518 unsigned int truesize) 6519 { 6520 /* avoid re-using remote pages */ 6521 if (unlikely(page_to_nid(page) != numa_node_id())) 6522 return false; 6523 6524 #if (PAGE_SIZE < 8192) 6525 /* if we are only owner of page we can reuse it */ 6526 if (unlikely(page_count(page) != 1)) 6527 return false; 6528 6529 /* flip page offset to other buffer */ 6530 rx_buffer->page_offset ^= IGB_RX_BUFSZ; 6531 6532 /* since we are the only owner of the page and we need to 6533 * increment it, just set the value to 2 in order to avoid 6534 * an unnecessary locked operation 6535 */ 6536 atomic_set(&page->_count, 2); 6537 #else 6538 /* move offset up to the next cache line */ 6539 rx_buffer->page_offset += truesize; 6540 6541 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ)) 6542 return false; 6543 6544 /* bump ref count on page before it is given to the stack */ 6545 get_page(page); 6546 #endif 6547 6548 return true; 6549 } 6550 6551 /** 6552 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff 6553 * @rx_ring: rx descriptor ring to transact packets on 6554 * @rx_buffer: buffer containing page to add 6555 * @rx_desc: descriptor containing length of buffer written by hardware 6556 * @skb: sk_buff to place the data into 6557 * 6558 * This function will add the data contained in rx_buffer->page to the skb. 6559 * This is done either through a direct copy if the data in the buffer is 6560 * less than the skb header size, otherwise it will just attach the page as 6561 * a frag to the skb. 6562 * 6563 * The function will then update the page offset if necessary and return 6564 * true if the buffer can be reused by the adapter. 6565 **/ 6566 static bool igb_add_rx_frag(struct igb_ring *rx_ring, 6567 struct igb_rx_buffer *rx_buffer, 6568 union e1000_adv_rx_desc *rx_desc, 6569 struct sk_buff *skb) 6570 { 6571 struct page *page = rx_buffer->page; 6572 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length); 6573 #if (PAGE_SIZE < 8192) 6574 unsigned int truesize = IGB_RX_BUFSZ; 6575 #else 6576 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES); 6577 #endif 6578 6579 if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) { 6580 unsigned char *va = page_address(page) + rx_buffer->page_offset; 6581 6582 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) { 6583 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb); 6584 va += IGB_TS_HDR_LEN; 6585 size -= IGB_TS_HDR_LEN; 6586 } 6587 6588 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long))); 6589 6590 /* we can reuse buffer as-is, just make sure it is local */ 6591 if (likely(page_to_nid(page) == numa_node_id())) 6592 return true; 6593 6594 /* this page cannot be reused so discard it */ 6595 put_page(page); 6596 return false; 6597 } 6598 6599 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 6600 rx_buffer->page_offset, size, truesize); 6601 6602 return igb_can_reuse_rx_page(rx_buffer, page, truesize); 6603 } 6604 6605 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring, 6606 union e1000_adv_rx_desc *rx_desc, 6607 struct sk_buff *skb) 6608 { 6609 struct igb_rx_buffer *rx_buffer; 6610 struct page *page; 6611 6612 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 6613 6614 page = rx_buffer->page; 6615 prefetchw(page); 6616 6617 if (likely(!skb)) { 6618 void *page_addr = page_address(page) + 6619 rx_buffer->page_offset; 6620 6621 /* prefetch first cache line of first page */ 6622 prefetch(page_addr); 6623 #if L1_CACHE_BYTES < 128 6624 prefetch(page_addr + L1_CACHE_BYTES); 6625 #endif 6626 6627 /* allocate a skb to store the frags */ 6628 skb = netdev_alloc_skb_ip_align(rx_ring->netdev, 6629 IGB_RX_HDR_LEN); 6630 if (unlikely(!skb)) { 6631 rx_ring->rx_stats.alloc_failed++; 6632 return NULL; 6633 } 6634 6635 /* we will be copying header into skb->data in 6636 * pskb_may_pull so it is in our interest to prefetch 6637 * it now to avoid a possible cache miss 6638 */ 6639 prefetchw(skb->data); 6640 } 6641 6642 /* we are reusing so sync this buffer for CPU use */ 6643 dma_sync_single_range_for_cpu(rx_ring->dev, 6644 rx_buffer->dma, 6645 rx_buffer->page_offset, 6646 IGB_RX_BUFSZ, 6647 DMA_FROM_DEVICE); 6648 6649 /* pull page into skb */ 6650 if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) { 6651 /* hand second half of page back to the ring */ 6652 igb_reuse_rx_page(rx_ring, rx_buffer); 6653 } else { 6654 /* we are not reusing the buffer so unmap it */ 6655 dma_unmap_page(rx_ring->dev, rx_buffer->dma, 6656 PAGE_SIZE, DMA_FROM_DEVICE); 6657 } 6658 6659 /* clear contents of rx_buffer */ 6660 rx_buffer->page = NULL; 6661 6662 return skb; 6663 } 6664 6665 static inline void igb_rx_checksum(struct igb_ring *ring, 6666 union e1000_adv_rx_desc *rx_desc, 6667 struct sk_buff *skb) 6668 { 6669 skb_checksum_none_assert(skb); 6670 6671 /* Ignore Checksum bit is set */ 6672 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM)) 6673 return; 6674 6675 /* Rx checksum disabled via ethtool */ 6676 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 6677 return; 6678 6679 /* TCP/UDP checksum error bit is set */ 6680 if (igb_test_staterr(rx_desc, 6681 E1000_RXDEXT_STATERR_TCPE | 6682 E1000_RXDEXT_STATERR_IPE)) { 6683 /* work around errata with sctp packets where the TCPE aka 6684 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc) 6685 * packets, (aka let the stack check the crc32c) 6686 */ 6687 if (!((skb->len == 60) && 6688 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) { 6689 u64_stats_update_begin(&ring->rx_syncp); 6690 ring->rx_stats.csum_err++; 6691 u64_stats_update_end(&ring->rx_syncp); 6692 } 6693 /* let the stack verify checksum errors */ 6694 return; 6695 } 6696 /* It must be a TCP or UDP packet with a valid checksum */ 6697 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS | 6698 E1000_RXD_STAT_UDPCS)) 6699 skb->ip_summed = CHECKSUM_UNNECESSARY; 6700 6701 dev_dbg(ring->dev, "cksum success: bits %08X\n", 6702 le32_to_cpu(rx_desc->wb.upper.status_error)); 6703 } 6704 6705 static inline void igb_rx_hash(struct igb_ring *ring, 6706 union e1000_adv_rx_desc *rx_desc, 6707 struct sk_buff *skb) 6708 { 6709 if (ring->netdev->features & NETIF_F_RXHASH) 6710 skb_set_hash(skb, 6711 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 6712 PKT_HASH_TYPE_L3); 6713 } 6714 6715 /** 6716 * igb_is_non_eop - process handling of non-EOP buffers 6717 * @rx_ring: Rx ring being processed 6718 * @rx_desc: Rx descriptor for current buffer 6719 * @skb: current socket buffer containing buffer in progress 6720 * 6721 * This function updates next to clean. If the buffer is an EOP buffer 6722 * this function exits returning false, otherwise it will place the 6723 * sk_buff in the next buffer to be chained and return true indicating 6724 * that this is in fact a non-EOP buffer. 6725 **/ 6726 static bool igb_is_non_eop(struct igb_ring *rx_ring, 6727 union e1000_adv_rx_desc *rx_desc) 6728 { 6729 u32 ntc = rx_ring->next_to_clean + 1; 6730 6731 /* fetch, update, and store next to clean */ 6732 ntc = (ntc < rx_ring->count) ? ntc : 0; 6733 rx_ring->next_to_clean = ntc; 6734 6735 prefetch(IGB_RX_DESC(rx_ring, ntc)); 6736 6737 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP))) 6738 return false; 6739 6740 return true; 6741 } 6742 6743 /** 6744 * igb_get_headlen - determine size of header for LRO/GRO 6745 * @data: pointer to the start of the headers 6746 * @max_len: total length of section to find headers in 6747 * 6748 * This function is meant to determine the length of headers that will 6749 * be recognized by hardware for LRO, and GRO offloads. The main 6750 * motivation of doing this is to only perform one pull for IPv4 TCP 6751 * packets so that we can do basic things like calculating the gso_size 6752 * based on the average data per packet. 6753 **/ 6754 static unsigned int igb_get_headlen(unsigned char *data, 6755 unsigned int max_len) 6756 { 6757 union { 6758 unsigned char *network; 6759 /* l2 headers */ 6760 struct ethhdr *eth; 6761 struct vlan_hdr *vlan; 6762 /* l3 headers */ 6763 struct iphdr *ipv4; 6764 struct ipv6hdr *ipv6; 6765 } hdr; 6766 __be16 protocol; 6767 u8 nexthdr = 0; /* default to not TCP */ 6768 u8 hlen; 6769 6770 /* this should never happen, but better safe than sorry */ 6771 if (max_len < ETH_HLEN) 6772 return max_len; 6773 6774 /* initialize network frame pointer */ 6775 hdr.network = data; 6776 6777 /* set first protocol and move network header forward */ 6778 protocol = hdr.eth->h_proto; 6779 hdr.network += ETH_HLEN; 6780 6781 /* handle any vlan tag if present */ 6782 if (protocol == htons(ETH_P_8021Q)) { 6783 if ((hdr.network - data) > (max_len - VLAN_HLEN)) 6784 return max_len; 6785 6786 protocol = hdr.vlan->h_vlan_encapsulated_proto; 6787 hdr.network += VLAN_HLEN; 6788 } 6789 6790 /* handle L3 protocols */ 6791 if (protocol == htons(ETH_P_IP)) { 6792 if ((hdr.network - data) > (max_len - sizeof(struct iphdr))) 6793 return max_len; 6794 6795 /* access ihl as a u8 to avoid unaligned access on ia64 */ 6796 hlen = (hdr.network[0] & 0x0F) << 2; 6797 6798 /* verify hlen meets minimum size requirements */ 6799 if (hlen < sizeof(struct iphdr)) 6800 return hdr.network - data; 6801 6802 /* record next protocol if header is present */ 6803 if (!(hdr.ipv4->frag_off & htons(IP_OFFSET))) 6804 nexthdr = hdr.ipv4->protocol; 6805 } else if (protocol == htons(ETH_P_IPV6)) { 6806 if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr))) 6807 return max_len; 6808 6809 /* record next protocol */ 6810 nexthdr = hdr.ipv6->nexthdr; 6811 hlen = sizeof(struct ipv6hdr); 6812 } else { 6813 return hdr.network - data; 6814 } 6815 6816 /* relocate pointer to start of L4 header */ 6817 hdr.network += hlen; 6818 6819 /* finally sort out TCP */ 6820 if (nexthdr == IPPROTO_TCP) { 6821 if ((hdr.network - data) > (max_len - sizeof(struct tcphdr))) 6822 return max_len; 6823 6824 /* access doff as a u8 to avoid unaligned access on ia64 */ 6825 hlen = (hdr.network[12] & 0xF0) >> 2; 6826 6827 /* verify hlen meets minimum size requirements */ 6828 if (hlen < sizeof(struct tcphdr)) 6829 return hdr.network - data; 6830 6831 hdr.network += hlen; 6832 } else if (nexthdr == IPPROTO_UDP) { 6833 if ((hdr.network - data) > (max_len - sizeof(struct udphdr))) 6834 return max_len; 6835 6836 hdr.network += sizeof(struct udphdr); 6837 } 6838 6839 /* If everything has gone correctly hdr.network should be the 6840 * data section of the packet and will be the end of the header. 6841 * If not then it probably represents the end of the last recognized 6842 * header. 6843 */ 6844 if ((hdr.network - data) < max_len) 6845 return hdr.network - data; 6846 else 6847 return max_len; 6848 } 6849 6850 /** 6851 * igb_pull_tail - igb specific version of skb_pull_tail 6852 * @rx_ring: rx descriptor ring packet is being transacted on 6853 * @rx_desc: pointer to the EOP Rx descriptor 6854 * @skb: pointer to current skb being adjusted 6855 * 6856 * This function is an igb specific version of __pskb_pull_tail. The 6857 * main difference between this version and the original function is that 6858 * this function can make several assumptions about the state of things 6859 * that allow for significant optimizations versus the standard function. 6860 * As a result we can do things like drop a frag and maintain an accurate 6861 * truesize for the skb. 6862 */ 6863 static void igb_pull_tail(struct igb_ring *rx_ring, 6864 union e1000_adv_rx_desc *rx_desc, 6865 struct sk_buff *skb) 6866 { 6867 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0]; 6868 unsigned char *va; 6869 unsigned int pull_len; 6870 6871 /* it is valid to use page_address instead of kmap since we are 6872 * working with pages allocated out of the lomem pool per 6873 * alloc_page(GFP_ATOMIC) 6874 */ 6875 va = skb_frag_address(frag); 6876 6877 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) { 6878 /* retrieve timestamp from buffer */ 6879 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb); 6880 6881 /* update pointers to remove timestamp header */ 6882 skb_frag_size_sub(frag, IGB_TS_HDR_LEN); 6883 frag->page_offset += IGB_TS_HDR_LEN; 6884 skb->data_len -= IGB_TS_HDR_LEN; 6885 skb->len -= IGB_TS_HDR_LEN; 6886 6887 /* move va to start of packet data */ 6888 va += IGB_TS_HDR_LEN; 6889 } 6890 6891 /* we need the header to contain the greater of either ETH_HLEN or 6892 * 60 bytes if the skb->len is less than 60 for skb_pad. 6893 */ 6894 pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN); 6895 6896 /* align pull length to size of long to optimize memcpy performance */ 6897 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long))); 6898 6899 /* update all of the pointers */ 6900 skb_frag_size_sub(frag, pull_len); 6901 frag->page_offset += pull_len; 6902 skb->data_len -= pull_len; 6903 skb->tail += pull_len; 6904 } 6905 6906 /** 6907 * igb_cleanup_headers - Correct corrupted or empty headers 6908 * @rx_ring: rx descriptor ring packet is being transacted on 6909 * @rx_desc: pointer to the EOP Rx descriptor 6910 * @skb: pointer to current skb being fixed 6911 * 6912 * Address the case where we are pulling data in on pages only 6913 * and as such no data is present in the skb header. 6914 * 6915 * In addition if skb is not at least 60 bytes we need to pad it so that 6916 * it is large enough to qualify as a valid Ethernet frame. 6917 * 6918 * Returns true if an error was encountered and skb was freed. 6919 **/ 6920 static bool igb_cleanup_headers(struct igb_ring *rx_ring, 6921 union e1000_adv_rx_desc *rx_desc, 6922 struct sk_buff *skb) 6923 { 6924 if (unlikely((igb_test_staterr(rx_desc, 6925 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) { 6926 struct net_device *netdev = rx_ring->netdev; 6927 if (!(netdev->features & NETIF_F_RXALL)) { 6928 dev_kfree_skb_any(skb); 6929 return true; 6930 } 6931 } 6932 6933 /* place header in linear portion of buffer */ 6934 if (skb_is_nonlinear(skb)) 6935 igb_pull_tail(rx_ring, rx_desc, skb); 6936 6937 /* if skb_pad returns an error the skb was freed */ 6938 if (unlikely(skb->len < 60)) { 6939 int pad_len = 60 - skb->len; 6940 6941 if (skb_pad(skb, pad_len)) 6942 return true; 6943 __skb_put(skb, pad_len); 6944 } 6945 6946 return false; 6947 } 6948 6949 /** 6950 * igb_process_skb_fields - Populate skb header fields from Rx descriptor 6951 * @rx_ring: rx descriptor ring packet is being transacted on 6952 * @rx_desc: pointer to the EOP Rx descriptor 6953 * @skb: pointer to current skb being populated 6954 * 6955 * This function checks the ring, descriptor, and packet information in 6956 * order to populate the hash, checksum, VLAN, timestamp, protocol, and 6957 * other fields within the skb. 6958 **/ 6959 static void igb_process_skb_fields(struct igb_ring *rx_ring, 6960 union e1000_adv_rx_desc *rx_desc, 6961 struct sk_buff *skb) 6962 { 6963 struct net_device *dev = rx_ring->netdev; 6964 6965 igb_rx_hash(rx_ring, rx_desc, skb); 6966 6967 igb_rx_checksum(rx_ring, rx_desc, skb); 6968 6969 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) && 6970 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) 6971 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb); 6972 6973 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) && 6974 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) { 6975 u16 vid; 6976 6977 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) && 6978 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags)) 6979 vid = be16_to_cpu(rx_desc->wb.upper.vlan); 6980 else 6981 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 6982 6983 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 6984 } 6985 6986 skb_record_rx_queue(skb, rx_ring->queue_index); 6987 6988 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 6989 } 6990 6991 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget) 6992 { 6993 struct igb_ring *rx_ring = q_vector->rx.ring; 6994 struct sk_buff *skb = rx_ring->skb; 6995 unsigned int total_bytes = 0, total_packets = 0; 6996 u16 cleaned_count = igb_desc_unused(rx_ring); 6997 6998 while (likely(total_packets < budget)) { 6999 union e1000_adv_rx_desc *rx_desc; 7000 7001 /* return some buffers to hardware, one at a time is too slow */ 7002 if (cleaned_count >= IGB_RX_BUFFER_WRITE) { 7003 igb_alloc_rx_buffers(rx_ring, cleaned_count); 7004 cleaned_count = 0; 7005 } 7006 7007 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean); 7008 7009 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) 7010 break; 7011 7012 /* This memory barrier is needed to keep us from reading 7013 * any other fields out of the rx_desc until we know the 7014 * RXD_STAT_DD bit is set 7015 */ 7016 rmb(); 7017 7018 /* retrieve a buffer from the ring */ 7019 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb); 7020 7021 /* exit if we failed to retrieve a buffer */ 7022 if (!skb) 7023 break; 7024 7025 cleaned_count++; 7026 7027 /* fetch next buffer in frame if non-eop */ 7028 if (igb_is_non_eop(rx_ring, rx_desc)) 7029 continue; 7030 7031 /* verify the packet layout is correct */ 7032 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) { 7033 skb = NULL; 7034 continue; 7035 } 7036 7037 /* probably a little skewed due to removing CRC */ 7038 total_bytes += skb->len; 7039 7040 /* populate checksum, timestamp, VLAN, and protocol */ 7041 igb_process_skb_fields(rx_ring, rx_desc, skb); 7042 7043 napi_gro_receive(&q_vector->napi, skb); 7044 7045 /* reset skb pointer */ 7046 skb = NULL; 7047 7048 /* update budget accounting */ 7049 total_packets++; 7050 } 7051 7052 /* place incomplete frames back on ring for completion */ 7053 rx_ring->skb = skb; 7054 7055 u64_stats_update_begin(&rx_ring->rx_syncp); 7056 rx_ring->rx_stats.packets += total_packets; 7057 rx_ring->rx_stats.bytes += total_bytes; 7058 u64_stats_update_end(&rx_ring->rx_syncp); 7059 q_vector->rx.total_packets += total_packets; 7060 q_vector->rx.total_bytes += total_bytes; 7061 7062 if (cleaned_count) 7063 igb_alloc_rx_buffers(rx_ring, cleaned_count); 7064 7065 return total_packets < budget; 7066 } 7067 7068 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring, 7069 struct igb_rx_buffer *bi) 7070 { 7071 struct page *page = bi->page; 7072 dma_addr_t dma; 7073 7074 /* since we are recycling buffers we should seldom need to alloc */ 7075 if (likely(page)) 7076 return true; 7077 7078 /* alloc new page for storage */ 7079 page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL); 7080 if (unlikely(!page)) { 7081 rx_ring->rx_stats.alloc_failed++; 7082 return false; 7083 } 7084 7085 /* map page for use */ 7086 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); 7087 7088 /* if mapping failed free memory back to system since 7089 * there isn't much point in holding memory we can't use 7090 */ 7091 if (dma_mapping_error(rx_ring->dev, dma)) { 7092 __free_page(page); 7093 7094 rx_ring->rx_stats.alloc_failed++; 7095 return false; 7096 } 7097 7098 bi->dma = dma; 7099 bi->page = page; 7100 bi->page_offset = 0; 7101 7102 return true; 7103 } 7104 7105 /** 7106 * igb_alloc_rx_buffers - Replace used receive buffers; packet split 7107 * @adapter: address of board private structure 7108 **/ 7109 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count) 7110 { 7111 union e1000_adv_rx_desc *rx_desc; 7112 struct igb_rx_buffer *bi; 7113 u16 i = rx_ring->next_to_use; 7114 7115 /* nothing to do */ 7116 if (!cleaned_count) 7117 return; 7118 7119 rx_desc = IGB_RX_DESC(rx_ring, i); 7120 bi = &rx_ring->rx_buffer_info[i]; 7121 i -= rx_ring->count; 7122 7123 do { 7124 if (!igb_alloc_mapped_page(rx_ring, bi)) 7125 break; 7126 7127 /* Refresh the desc even if buffer_addrs didn't change 7128 * because each write-back erases this info. 7129 */ 7130 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 7131 7132 rx_desc++; 7133 bi++; 7134 i++; 7135 if (unlikely(!i)) { 7136 rx_desc = IGB_RX_DESC(rx_ring, 0); 7137 bi = rx_ring->rx_buffer_info; 7138 i -= rx_ring->count; 7139 } 7140 7141 /* clear the hdr_addr for the next_to_use descriptor */ 7142 rx_desc->read.hdr_addr = 0; 7143 7144 cleaned_count--; 7145 } while (cleaned_count); 7146 7147 i += rx_ring->count; 7148 7149 if (rx_ring->next_to_use != i) { 7150 /* record the next descriptor to use */ 7151 rx_ring->next_to_use = i; 7152 7153 /* update next to alloc since we have filled the ring */ 7154 rx_ring->next_to_alloc = i; 7155 7156 /* Force memory writes to complete before letting h/w 7157 * know there are new descriptors to fetch. (Only 7158 * applicable for weak-ordered memory model archs, 7159 * such as IA-64). 7160 */ 7161 wmb(); 7162 writel(i, rx_ring->tail); 7163 } 7164 } 7165 7166 /** 7167 * igb_mii_ioctl - 7168 * @netdev: 7169 * @ifreq: 7170 * @cmd: 7171 **/ 7172 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7173 { 7174 struct igb_adapter *adapter = netdev_priv(netdev); 7175 struct mii_ioctl_data *data = if_mii(ifr); 7176 7177 if (adapter->hw.phy.media_type != e1000_media_type_copper) 7178 return -EOPNOTSUPP; 7179 7180 switch (cmd) { 7181 case SIOCGMIIPHY: 7182 data->phy_id = adapter->hw.phy.addr; 7183 break; 7184 case SIOCGMIIREG: 7185 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F, 7186 &data->val_out)) 7187 return -EIO; 7188 break; 7189 case SIOCSMIIREG: 7190 default: 7191 return -EOPNOTSUPP; 7192 } 7193 return 0; 7194 } 7195 7196 /** 7197 * igb_ioctl - 7198 * @netdev: 7199 * @ifreq: 7200 * @cmd: 7201 **/ 7202 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7203 { 7204 switch (cmd) { 7205 case SIOCGMIIPHY: 7206 case SIOCGMIIREG: 7207 case SIOCSMIIREG: 7208 return igb_mii_ioctl(netdev, ifr, cmd); 7209 case SIOCGHWTSTAMP: 7210 return igb_ptp_get_ts_config(netdev, ifr); 7211 case SIOCSHWTSTAMP: 7212 return igb_ptp_set_ts_config(netdev, ifr); 7213 default: 7214 return -EOPNOTSUPP; 7215 } 7216 } 7217 7218 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) 7219 { 7220 struct igb_adapter *adapter = hw->back; 7221 7222 if (pcie_capability_read_word(adapter->pdev, reg, value)) 7223 return -E1000_ERR_CONFIG; 7224 7225 return 0; 7226 } 7227 7228 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) 7229 { 7230 struct igb_adapter *adapter = hw->back; 7231 7232 if (pcie_capability_write_word(adapter->pdev, reg, *value)) 7233 return -E1000_ERR_CONFIG; 7234 7235 return 0; 7236 } 7237 7238 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features) 7239 { 7240 struct igb_adapter *adapter = netdev_priv(netdev); 7241 struct e1000_hw *hw = &adapter->hw; 7242 u32 ctrl, rctl; 7243 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX); 7244 7245 if (enable) { 7246 /* enable VLAN tag insert/strip */ 7247 ctrl = rd32(E1000_CTRL); 7248 ctrl |= E1000_CTRL_VME; 7249 wr32(E1000_CTRL, ctrl); 7250 7251 /* Disable CFI check */ 7252 rctl = rd32(E1000_RCTL); 7253 rctl &= ~E1000_RCTL_CFIEN; 7254 wr32(E1000_RCTL, rctl); 7255 } else { 7256 /* disable VLAN tag insert/strip */ 7257 ctrl = rd32(E1000_CTRL); 7258 ctrl &= ~E1000_CTRL_VME; 7259 wr32(E1000_CTRL, ctrl); 7260 } 7261 7262 igb_rlpml_set(adapter); 7263 } 7264 7265 static int igb_vlan_rx_add_vid(struct net_device *netdev, 7266 __be16 proto, u16 vid) 7267 { 7268 struct igb_adapter *adapter = netdev_priv(netdev); 7269 struct e1000_hw *hw = &adapter->hw; 7270 int pf_id = adapter->vfs_allocated_count; 7271 7272 /* attempt to add filter to vlvf array */ 7273 igb_vlvf_set(adapter, vid, true, pf_id); 7274 7275 /* add the filter since PF can receive vlans w/o entry in vlvf */ 7276 igb_vfta_set(hw, vid, true); 7277 7278 set_bit(vid, adapter->active_vlans); 7279 7280 return 0; 7281 } 7282 7283 static int igb_vlan_rx_kill_vid(struct net_device *netdev, 7284 __be16 proto, u16 vid) 7285 { 7286 struct igb_adapter *adapter = netdev_priv(netdev); 7287 struct e1000_hw *hw = &adapter->hw; 7288 int pf_id = adapter->vfs_allocated_count; 7289 s32 err; 7290 7291 /* remove vlan from VLVF table array */ 7292 err = igb_vlvf_set(adapter, vid, false, pf_id); 7293 7294 /* if vid was not present in VLVF just remove it from table */ 7295 if (err) 7296 igb_vfta_set(hw, vid, false); 7297 7298 clear_bit(vid, adapter->active_vlans); 7299 7300 return 0; 7301 } 7302 7303 static void igb_restore_vlan(struct igb_adapter *adapter) 7304 { 7305 u16 vid; 7306 7307 igb_vlan_mode(adapter->netdev, adapter->netdev->features); 7308 7309 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 7310 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); 7311 } 7312 7313 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx) 7314 { 7315 struct pci_dev *pdev = adapter->pdev; 7316 struct e1000_mac_info *mac = &adapter->hw.mac; 7317 7318 mac->autoneg = 0; 7319 7320 /* Make sure dplx is at most 1 bit and lsb of speed is not set 7321 * for the switch() below to work 7322 */ 7323 if ((spd & 1) || (dplx & ~1)) 7324 goto err_inval; 7325 7326 /* Fiber NIC's only allow 1000 gbps Full duplex 7327 * and 100Mbps Full duplex for 100baseFx sfp 7328 */ 7329 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) { 7330 switch (spd + dplx) { 7331 case SPEED_10 + DUPLEX_HALF: 7332 case SPEED_10 + DUPLEX_FULL: 7333 case SPEED_100 + DUPLEX_HALF: 7334 goto err_inval; 7335 default: 7336 break; 7337 } 7338 } 7339 7340 switch (spd + dplx) { 7341 case SPEED_10 + DUPLEX_HALF: 7342 mac->forced_speed_duplex = ADVERTISE_10_HALF; 7343 break; 7344 case SPEED_10 + DUPLEX_FULL: 7345 mac->forced_speed_duplex = ADVERTISE_10_FULL; 7346 break; 7347 case SPEED_100 + DUPLEX_HALF: 7348 mac->forced_speed_duplex = ADVERTISE_100_HALF; 7349 break; 7350 case SPEED_100 + DUPLEX_FULL: 7351 mac->forced_speed_duplex = ADVERTISE_100_FULL; 7352 break; 7353 case SPEED_1000 + DUPLEX_FULL: 7354 mac->autoneg = 1; 7355 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; 7356 break; 7357 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 7358 default: 7359 goto err_inval; 7360 } 7361 7362 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 7363 adapter->hw.phy.mdix = AUTO_ALL_MODES; 7364 7365 return 0; 7366 7367 err_inval: 7368 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n"); 7369 return -EINVAL; 7370 } 7371 7372 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake, 7373 bool runtime) 7374 { 7375 struct net_device *netdev = pci_get_drvdata(pdev); 7376 struct igb_adapter *adapter = netdev_priv(netdev); 7377 struct e1000_hw *hw = &adapter->hw; 7378 u32 ctrl, rctl, status; 7379 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol; 7380 #ifdef CONFIG_PM 7381 int retval = 0; 7382 #endif 7383 7384 netif_device_detach(netdev); 7385 7386 if (netif_running(netdev)) 7387 __igb_close(netdev, true); 7388 7389 igb_clear_interrupt_scheme(adapter); 7390 7391 #ifdef CONFIG_PM 7392 retval = pci_save_state(pdev); 7393 if (retval) 7394 return retval; 7395 #endif 7396 7397 status = rd32(E1000_STATUS); 7398 if (status & E1000_STATUS_LU) 7399 wufc &= ~E1000_WUFC_LNKC; 7400 7401 if (wufc) { 7402 igb_setup_rctl(adapter); 7403 igb_set_rx_mode(netdev); 7404 7405 /* turn on all-multi mode if wake on multicast is enabled */ 7406 if (wufc & E1000_WUFC_MC) { 7407 rctl = rd32(E1000_RCTL); 7408 rctl |= E1000_RCTL_MPE; 7409 wr32(E1000_RCTL, rctl); 7410 } 7411 7412 ctrl = rd32(E1000_CTRL); 7413 /* advertise wake from D3Cold */ 7414 #define E1000_CTRL_ADVD3WUC 0x00100000 7415 /* phy power management enable */ 7416 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 7417 ctrl |= E1000_CTRL_ADVD3WUC; 7418 wr32(E1000_CTRL, ctrl); 7419 7420 /* Allow time for pending master requests to run */ 7421 igb_disable_pcie_master(hw); 7422 7423 wr32(E1000_WUC, E1000_WUC_PME_EN); 7424 wr32(E1000_WUFC, wufc); 7425 } else { 7426 wr32(E1000_WUC, 0); 7427 wr32(E1000_WUFC, 0); 7428 } 7429 7430 *enable_wake = wufc || adapter->en_mng_pt; 7431 if (!*enable_wake) 7432 igb_power_down_link(adapter); 7433 else 7434 igb_power_up_link(adapter); 7435 7436 /* Release control of h/w to f/w. If f/w is AMT enabled, this 7437 * would have already happened in close and is redundant. 7438 */ 7439 igb_release_hw_control(adapter); 7440 7441 pci_disable_device(pdev); 7442 7443 return 0; 7444 } 7445 7446 #ifdef CONFIG_PM 7447 #ifdef CONFIG_PM_SLEEP 7448 static int igb_suspend(struct device *dev) 7449 { 7450 int retval; 7451 bool wake; 7452 struct pci_dev *pdev = to_pci_dev(dev); 7453 7454 retval = __igb_shutdown(pdev, &wake, 0); 7455 if (retval) 7456 return retval; 7457 7458 if (wake) { 7459 pci_prepare_to_sleep(pdev); 7460 } else { 7461 pci_wake_from_d3(pdev, false); 7462 pci_set_power_state(pdev, PCI_D3hot); 7463 } 7464 7465 return 0; 7466 } 7467 #endif /* CONFIG_PM_SLEEP */ 7468 7469 static int igb_resume(struct device *dev) 7470 { 7471 struct pci_dev *pdev = to_pci_dev(dev); 7472 struct net_device *netdev = pci_get_drvdata(pdev); 7473 struct igb_adapter *adapter = netdev_priv(netdev); 7474 struct e1000_hw *hw = &adapter->hw; 7475 u32 err; 7476 7477 pci_set_power_state(pdev, PCI_D0); 7478 pci_restore_state(pdev); 7479 pci_save_state(pdev); 7480 7481 err = pci_enable_device_mem(pdev); 7482 if (err) { 7483 dev_err(&pdev->dev, 7484 "igb: Cannot enable PCI device from suspend\n"); 7485 return err; 7486 } 7487 pci_set_master(pdev); 7488 7489 pci_enable_wake(pdev, PCI_D3hot, 0); 7490 pci_enable_wake(pdev, PCI_D3cold, 0); 7491 7492 if (igb_init_interrupt_scheme(adapter, true)) { 7493 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 7494 return -ENOMEM; 7495 } 7496 7497 igb_reset(adapter); 7498 7499 /* let the f/w know that the h/w is now under the control of the 7500 * driver. 7501 */ 7502 igb_get_hw_control(adapter); 7503 7504 wr32(E1000_WUS, ~0); 7505 7506 if (netdev->flags & IFF_UP) { 7507 rtnl_lock(); 7508 err = __igb_open(netdev, true); 7509 rtnl_unlock(); 7510 if (err) 7511 return err; 7512 } 7513 7514 netif_device_attach(netdev); 7515 return 0; 7516 } 7517 7518 #ifdef CONFIG_PM_RUNTIME 7519 static int igb_runtime_idle(struct device *dev) 7520 { 7521 struct pci_dev *pdev = to_pci_dev(dev); 7522 struct net_device *netdev = pci_get_drvdata(pdev); 7523 struct igb_adapter *adapter = netdev_priv(netdev); 7524 7525 if (!igb_has_link(adapter)) 7526 pm_schedule_suspend(dev, MSEC_PER_SEC * 5); 7527 7528 return -EBUSY; 7529 } 7530 7531 static int igb_runtime_suspend(struct device *dev) 7532 { 7533 struct pci_dev *pdev = to_pci_dev(dev); 7534 int retval; 7535 bool wake; 7536 7537 retval = __igb_shutdown(pdev, &wake, 1); 7538 if (retval) 7539 return retval; 7540 7541 if (wake) { 7542 pci_prepare_to_sleep(pdev); 7543 } else { 7544 pci_wake_from_d3(pdev, false); 7545 pci_set_power_state(pdev, PCI_D3hot); 7546 } 7547 7548 return 0; 7549 } 7550 7551 static int igb_runtime_resume(struct device *dev) 7552 { 7553 return igb_resume(dev); 7554 } 7555 #endif /* CONFIG_PM_RUNTIME */ 7556 #endif 7557 7558 static void igb_shutdown(struct pci_dev *pdev) 7559 { 7560 bool wake; 7561 7562 __igb_shutdown(pdev, &wake, 0); 7563 7564 if (system_state == SYSTEM_POWER_OFF) { 7565 pci_wake_from_d3(pdev, wake); 7566 pci_set_power_state(pdev, PCI_D3hot); 7567 } 7568 } 7569 7570 #ifdef CONFIG_PCI_IOV 7571 static int igb_sriov_reinit(struct pci_dev *dev) 7572 { 7573 struct net_device *netdev = pci_get_drvdata(dev); 7574 struct igb_adapter *adapter = netdev_priv(netdev); 7575 struct pci_dev *pdev = adapter->pdev; 7576 7577 rtnl_lock(); 7578 7579 if (netif_running(netdev)) 7580 igb_close(netdev); 7581 7582 igb_clear_interrupt_scheme(adapter); 7583 7584 igb_init_queue_configuration(adapter); 7585 7586 if (igb_init_interrupt_scheme(adapter, true)) { 7587 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 7588 return -ENOMEM; 7589 } 7590 7591 if (netif_running(netdev)) 7592 igb_open(netdev); 7593 7594 rtnl_unlock(); 7595 7596 return 0; 7597 } 7598 7599 static int igb_pci_disable_sriov(struct pci_dev *dev) 7600 { 7601 int err = igb_disable_sriov(dev); 7602 7603 if (!err) 7604 err = igb_sriov_reinit(dev); 7605 7606 return err; 7607 } 7608 7609 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs) 7610 { 7611 int err = igb_enable_sriov(dev, num_vfs); 7612 7613 if (err) 7614 goto out; 7615 7616 err = igb_sriov_reinit(dev); 7617 if (!err) 7618 return num_vfs; 7619 7620 out: 7621 return err; 7622 } 7623 7624 #endif 7625 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs) 7626 { 7627 #ifdef CONFIG_PCI_IOV 7628 if (num_vfs == 0) 7629 return igb_pci_disable_sriov(dev); 7630 else 7631 return igb_pci_enable_sriov(dev, num_vfs); 7632 #endif 7633 return 0; 7634 } 7635 7636 #ifdef CONFIG_NET_POLL_CONTROLLER 7637 /* Polling 'interrupt' - used by things like netconsole to send skbs 7638 * without having to re-enable interrupts. It's not called while 7639 * the interrupt routine is executing. 7640 */ 7641 static void igb_netpoll(struct net_device *netdev) 7642 { 7643 struct igb_adapter *adapter = netdev_priv(netdev); 7644 struct e1000_hw *hw = &adapter->hw; 7645 struct igb_q_vector *q_vector; 7646 int i; 7647 7648 for (i = 0; i < adapter->num_q_vectors; i++) { 7649 q_vector = adapter->q_vector[i]; 7650 if (adapter->flags & IGB_FLAG_HAS_MSIX) 7651 wr32(E1000_EIMC, q_vector->eims_value); 7652 else 7653 igb_irq_disable(adapter); 7654 napi_schedule(&q_vector->napi); 7655 } 7656 } 7657 #endif /* CONFIG_NET_POLL_CONTROLLER */ 7658 7659 /** 7660 * igb_io_error_detected - called when PCI error is detected 7661 * @pdev: Pointer to PCI device 7662 * @state: The current pci connection state 7663 * 7664 * This function is called after a PCI bus error affecting 7665 * this device has been detected. 7666 **/ 7667 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev, 7668 pci_channel_state_t state) 7669 { 7670 struct net_device *netdev = pci_get_drvdata(pdev); 7671 struct igb_adapter *adapter = netdev_priv(netdev); 7672 7673 netif_device_detach(netdev); 7674 7675 if (state == pci_channel_io_perm_failure) 7676 return PCI_ERS_RESULT_DISCONNECT; 7677 7678 if (netif_running(netdev)) 7679 igb_down(adapter); 7680 pci_disable_device(pdev); 7681 7682 /* Request a slot slot reset. */ 7683 return PCI_ERS_RESULT_NEED_RESET; 7684 } 7685 7686 /** 7687 * igb_io_slot_reset - called after the pci bus has been reset. 7688 * @pdev: Pointer to PCI device 7689 * 7690 * Restart the card from scratch, as if from a cold-boot. Implementation 7691 * resembles the first-half of the igb_resume routine. 7692 **/ 7693 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev) 7694 { 7695 struct net_device *netdev = pci_get_drvdata(pdev); 7696 struct igb_adapter *adapter = netdev_priv(netdev); 7697 struct e1000_hw *hw = &adapter->hw; 7698 pci_ers_result_t result; 7699 int err; 7700 7701 if (pci_enable_device_mem(pdev)) { 7702 dev_err(&pdev->dev, 7703 "Cannot re-enable PCI device after reset.\n"); 7704 result = PCI_ERS_RESULT_DISCONNECT; 7705 } else { 7706 pci_set_master(pdev); 7707 pci_restore_state(pdev); 7708 pci_save_state(pdev); 7709 7710 pci_enable_wake(pdev, PCI_D3hot, 0); 7711 pci_enable_wake(pdev, PCI_D3cold, 0); 7712 7713 igb_reset(adapter); 7714 wr32(E1000_WUS, ~0); 7715 result = PCI_ERS_RESULT_RECOVERED; 7716 } 7717 7718 err = pci_cleanup_aer_uncorrect_error_status(pdev); 7719 if (err) { 7720 dev_err(&pdev->dev, 7721 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n", 7722 err); 7723 /* non-fatal, continue */ 7724 } 7725 7726 return result; 7727 } 7728 7729 /** 7730 * igb_io_resume - called when traffic can start flowing again. 7731 * @pdev: Pointer to PCI device 7732 * 7733 * This callback is called when the error recovery driver tells us that 7734 * its OK to resume normal operation. Implementation resembles the 7735 * second-half of the igb_resume routine. 7736 */ 7737 static void igb_io_resume(struct pci_dev *pdev) 7738 { 7739 struct net_device *netdev = pci_get_drvdata(pdev); 7740 struct igb_adapter *adapter = netdev_priv(netdev); 7741 7742 if (netif_running(netdev)) { 7743 if (igb_up(adapter)) { 7744 dev_err(&pdev->dev, "igb_up failed after reset\n"); 7745 return; 7746 } 7747 } 7748 7749 netif_device_attach(netdev); 7750 7751 /* let the f/w know that the h/w is now under the control of the 7752 * driver. 7753 */ 7754 igb_get_hw_control(adapter); 7755 } 7756 7757 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index, 7758 u8 qsel) 7759 { 7760 u32 rar_low, rar_high; 7761 struct e1000_hw *hw = &adapter->hw; 7762 7763 /* HW expects these in little endian so we reverse the byte order 7764 * from network order (big endian) to little endian 7765 */ 7766 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | 7767 ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); 7768 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); 7769 7770 /* Indicate to hardware the Address is Valid. */ 7771 rar_high |= E1000_RAH_AV; 7772 7773 if (hw->mac.type == e1000_82575) 7774 rar_high |= E1000_RAH_POOL_1 * qsel; 7775 else 7776 rar_high |= E1000_RAH_POOL_1 << qsel; 7777 7778 wr32(E1000_RAL(index), rar_low); 7779 wrfl(); 7780 wr32(E1000_RAH(index), rar_high); 7781 wrfl(); 7782 } 7783 7784 static int igb_set_vf_mac(struct igb_adapter *adapter, 7785 int vf, unsigned char *mac_addr) 7786 { 7787 struct e1000_hw *hw = &adapter->hw; 7788 /* VF MAC addresses start at end of receive addresses and moves 7789 * towards the first, as a result a collision should not be possible 7790 */ 7791 int rar_entry = hw->mac.rar_entry_count - (vf + 1); 7792 7793 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN); 7794 7795 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf); 7796 7797 return 0; 7798 } 7799 7800 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac) 7801 { 7802 struct igb_adapter *adapter = netdev_priv(netdev); 7803 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count)) 7804 return -EINVAL; 7805 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC; 7806 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf); 7807 dev_info(&adapter->pdev->dev, 7808 "Reload the VF driver to make this change effective."); 7809 if (test_bit(__IGB_DOWN, &adapter->state)) { 7810 dev_warn(&adapter->pdev->dev, 7811 "The VF MAC address has been set, but the PF device is not up.\n"); 7812 dev_warn(&adapter->pdev->dev, 7813 "Bring the PF device up before attempting to use the VF device.\n"); 7814 } 7815 return igb_set_vf_mac(adapter, vf, mac); 7816 } 7817 7818 static int igb_link_mbps(int internal_link_speed) 7819 { 7820 switch (internal_link_speed) { 7821 case SPEED_100: 7822 return 100; 7823 case SPEED_1000: 7824 return 1000; 7825 default: 7826 return 0; 7827 } 7828 } 7829 7830 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate, 7831 int link_speed) 7832 { 7833 int rf_dec, rf_int; 7834 u32 bcnrc_val; 7835 7836 if (tx_rate != 0) { 7837 /* Calculate the rate factor values to set */ 7838 rf_int = link_speed / tx_rate; 7839 rf_dec = (link_speed - (rf_int * tx_rate)); 7840 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) / 7841 tx_rate; 7842 7843 bcnrc_val = E1000_RTTBCNRC_RS_ENA; 7844 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) & 7845 E1000_RTTBCNRC_RF_INT_MASK); 7846 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK); 7847 } else { 7848 bcnrc_val = 0; 7849 } 7850 7851 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */ 7852 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM 7853 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported. 7854 */ 7855 wr32(E1000_RTTBCNRM, 0x14); 7856 wr32(E1000_RTTBCNRC, bcnrc_val); 7857 } 7858 7859 static void igb_check_vf_rate_limit(struct igb_adapter *adapter) 7860 { 7861 int actual_link_speed, i; 7862 bool reset_rate = false; 7863 7864 /* VF TX rate limit was not set or not supported */ 7865 if ((adapter->vf_rate_link_speed == 0) || 7866 (adapter->hw.mac.type != e1000_82576)) 7867 return; 7868 7869 actual_link_speed = igb_link_mbps(adapter->link_speed); 7870 if (actual_link_speed != adapter->vf_rate_link_speed) { 7871 reset_rate = true; 7872 adapter->vf_rate_link_speed = 0; 7873 dev_info(&adapter->pdev->dev, 7874 "Link speed has been changed. VF Transmit rate is disabled\n"); 7875 } 7876 7877 for (i = 0; i < adapter->vfs_allocated_count; i++) { 7878 if (reset_rate) 7879 adapter->vf_data[i].tx_rate = 0; 7880 7881 igb_set_vf_rate_limit(&adapter->hw, i, 7882 adapter->vf_data[i].tx_rate, 7883 actual_link_speed); 7884 } 7885 } 7886 7887 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, 7888 int min_tx_rate, int max_tx_rate) 7889 { 7890 struct igb_adapter *adapter = netdev_priv(netdev); 7891 struct e1000_hw *hw = &adapter->hw; 7892 int actual_link_speed; 7893 7894 if (hw->mac.type != e1000_82576) 7895 return -EOPNOTSUPP; 7896 7897 if (min_tx_rate) 7898 return -EINVAL; 7899 7900 actual_link_speed = igb_link_mbps(adapter->link_speed); 7901 if ((vf >= adapter->vfs_allocated_count) || 7902 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) || 7903 (max_tx_rate < 0) || 7904 (max_tx_rate > actual_link_speed)) 7905 return -EINVAL; 7906 7907 adapter->vf_rate_link_speed = actual_link_speed; 7908 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate; 7909 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed); 7910 7911 return 0; 7912 } 7913 7914 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf, 7915 bool setting) 7916 { 7917 struct igb_adapter *adapter = netdev_priv(netdev); 7918 struct e1000_hw *hw = &adapter->hw; 7919 u32 reg_val, reg_offset; 7920 7921 if (!adapter->vfs_allocated_count) 7922 return -EOPNOTSUPP; 7923 7924 if (vf >= adapter->vfs_allocated_count) 7925 return -EINVAL; 7926 7927 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC; 7928 reg_val = rd32(reg_offset); 7929 if (setting) 7930 reg_val |= ((1 << vf) | 7931 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT))); 7932 else 7933 reg_val &= ~((1 << vf) | 7934 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT))); 7935 wr32(reg_offset, reg_val); 7936 7937 adapter->vf_data[vf].spoofchk_enabled = setting; 7938 return 0; 7939 } 7940 7941 static int igb_ndo_get_vf_config(struct net_device *netdev, 7942 int vf, struct ifla_vf_info *ivi) 7943 { 7944 struct igb_adapter *adapter = netdev_priv(netdev); 7945 if (vf >= adapter->vfs_allocated_count) 7946 return -EINVAL; 7947 ivi->vf = vf; 7948 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN); 7949 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate; 7950 ivi->min_tx_rate = 0; 7951 ivi->vlan = adapter->vf_data[vf].pf_vlan; 7952 ivi->qos = adapter->vf_data[vf].pf_qos; 7953 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled; 7954 return 0; 7955 } 7956 7957 static void igb_vmm_control(struct igb_adapter *adapter) 7958 { 7959 struct e1000_hw *hw = &adapter->hw; 7960 u32 reg; 7961 7962 switch (hw->mac.type) { 7963 case e1000_82575: 7964 case e1000_i210: 7965 case e1000_i211: 7966 case e1000_i354: 7967 default: 7968 /* replication is not supported for 82575 */ 7969 return; 7970 case e1000_82576: 7971 /* notify HW that the MAC is adding vlan tags */ 7972 reg = rd32(E1000_DTXCTL); 7973 reg |= E1000_DTXCTL_VLAN_ADDED; 7974 wr32(E1000_DTXCTL, reg); 7975 /* Fall through */ 7976 case e1000_82580: 7977 /* enable replication vlan tag stripping */ 7978 reg = rd32(E1000_RPLOLR); 7979 reg |= E1000_RPLOLR_STRVLAN; 7980 wr32(E1000_RPLOLR, reg); 7981 /* Fall through */ 7982 case e1000_i350: 7983 /* none of the above registers are supported by i350 */ 7984 break; 7985 } 7986 7987 if (adapter->vfs_allocated_count) { 7988 igb_vmdq_set_loopback_pf(hw, true); 7989 igb_vmdq_set_replication_pf(hw, true); 7990 igb_vmdq_set_anti_spoofing_pf(hw, true, 7991 adapter->vfs_allocated_count); 7992 } else { 7993 igb_vmdq_set_loopback_pf(hw, false); 7994 igb_vmdq_set_replication_pf(hw, false); 7995 } 7996 } 7997 7998 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba) 7999 { 8000 struct e1000_hw *hw = &adapter->hw; 8001 u32 dmac_thr; 8002 u16 hwm; 8003 8004 if (hw->mac.type > e1000_82580) { 8005 if (adapter->flags & IGB_FLAG_DMAC) { 8006 u32 reg; 8007 8008 /* force threshold to 0. */ 8009 wr32(E1000_DMCTXTH, 0); 8010 8011 /* DMA Coalescing high water mark needs to be greater 8012 * than the Rx threshold. Set hwm to PBA - max frame 8013 * size in 16B units, capping it at PBA - 6KB. 8014 */ 8015 hwm = 64 * pba - adapter->max_frame_size / 16; 8016 if (hwm < 64 * (pba - 6)) 8017 hwm = 64 * (pba - 6); 8018 reg = rd32(E1000_FCRTC); 8019 reg &= ~E1000_FCRTC_RTH_COAL_MASK; 8020 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT) 8021 & E1000_FCRTC_RTH_COAL_MASK); 8022 wr32(E1000_FCRTC, reg); 8023 8024 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max 8025 * frame size, capping it at PBA - 10KB. 8026 */ 8027 dmac_thr = pba - adapter->max_frame_size / 512; 8028 if (dmac_thr < pba - 10) 8029 dmac_thr = pba - 10; 8030 reg = rd32(E1000_DMACR); 8031 reg &= ~E1000_DMACR_DMACTHR_MASK; 8032 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT) 8033 & E1000_DMACR_DMACTHR_MASK); 8034 8035 /* transition to L0x or L1 if available..*/ 8036 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK); 8037 8038 /* watchdog timer= +-1000 usec in 32usec intervals */ 8039 reg |= (1000 >> 5); 8040 8041 /* Disable BMC-to-OS Watchdog Enable */ 8042 if (hw->mac.type != e1000_i354) 8043 reg &= ~E1000_DMACR_DC_BMC2OSW_EN; 8044 8045 wr32(E1000_DMACR, reg); 8046 8047 /* no lower threshold to disable 8048 * coalescing(smart fifb)-UTRESH=0 8049 */ 8050 wr32(E1000_DMCRTRH, 0); 8051 8052 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4); 8053 8054 wr32(E1000_DMCTLX, reg); 8055 8056 /* free space in tx packet buffer to wake from 8057 * DMA coal 8058 */ 8059 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE - 8060 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6); 8061 8062 /* make low power state decision controlled 8063 * by DMA coal 8064 */ 8065 reg = rd32(E1000_PCIEMISC); 8066 reg &= ~E1000_PCIEMISC_LX_DECISION; 8067 wr32(E1000_PCIEMISC, reg); 8068 } /* endif adapter->dmac is not disabled */ 8069 } else if (hw->mac.type == e1000_82580) { 8070 u32 reg = rd32(E1000_PCIEMISC); 8071 8072 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION); 8073 wr32(E1000_DMACR, 0); 8074 } 8075 } 8076 8077 /** 8078 * igb_read_i2c_byte - Reads 8 bit word over I2C 8079 * @hw: pointer to hardware structure 8080 * @byte_offset: byte offset to read 8081 * @dev_addr: device address 8082 * @data: value read 8083 * 8084 * Performs byte read operation over I2C interface at 8085 * a specified device address. 8086 **/ 8087 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset, 8088 u8 dev_addr, u8 *data) 8089 { 8090 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw); 8091 struct i2c_client *this_client = adapter->i2c_client; 8092 s32 status; 8093 u16 swfw_mask = 0; 8094 8095 if (!this_client) 8096 return E1000_ERR_I2C; 8097 8098 swfw_mask = E1000_SWFW_PHY0_SM; 8099 8100 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)) 8101 return E1000_ERR_SWFW_SYNC; 8102 8103 status = i2c_smbus_read_byte_data(this_client, byte_offset); 8104 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 8105 8106 if (status < 0) 8107 return E1000_ERR_I2C; 8108 else { 8109 *data = status; 8110 return 0; 8111 } 8112 } 8113 8114 /** 8115 * igb_write_i2c_byte - Writes 8 bit word over I2C 8116 * @hw: pointer to hardware structure 8117 * @byte_offset: byte offset to write 8118 * @dev_addr: device address 8119 * @data: value to write 8120 * 8121 * Performs byte write operation over I2C interface at 8122 * a specified device address. 8123 **/ 8124 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset, 8125 u8 dev_addr, u8 data) 8126 { 8127 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw); 8128 struct i2c_client *this_client = adapter->i2c_client; 8129 s32 status; 8130 u16 swfw_mask = E1000_SWFW_PHY0_SM; 8131 8132 if (!this_client) 8133 return E1000_ERR_I2C; 8134 8135 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)) 8136 return E1000_ERR_SWFW_SYNC; 8137 status = i2c_smbus_write_byte_data(this_client, byte_offset, data); 8138 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 8139 8140 if (status) 8141 return E1000_ERR_I2C; 8142 else 8143 return 0; 8144 8145 } 8146 8147 int igb_reinit_queues(struct igb_adapter *adapter) 8148 { 8149 struct net_device *netdev = adapter->netdev; 8150 struct pci_dev *pdev = adapter->pdev; 8151 int err = 0; 8152 8153 if (netif_running(netdev)) 8154 igb_close(netdev); 8155 8156 igb_reset_interrupt_capability(adapter); 8157 8158 if (igb_init_interrupt_scheme(adapter, true)) { 8159 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 8160 return -ENOMEM; 8161 } 8162 8163 if (netif_running(netdev)) 8164 err = igb_open(netdev); 8165 8166 return err; 8167 } 8168 /* igb_main.c */ 8169