1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23 
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/init.h>
29 #include <linux/bitops.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pagemap.h>
32 #include <linux/netdevice.h>
33 #include <linux/ipv6.h>
34 #include <linux/slab.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if.h>
41 #include <linux/if_vlan.h>
42 #include <linux/pci.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/ip.h>
47 #include <linux/tcp.h>
48 #include <linux/sctp.h>
49 #include <linux/if_ether.h>
50 #include <linux/aer.h>
51 #include <linux/prefetch.h>
52 #include <linux/pm_runtime.h>
53 #ifdef CONFIG_IGB_DCA
54 #include <linux/dca.h>
55 #endif
56 #include <linux/i2c.h>
57 #include "igb.h"
58 
59 #define MAJ 5
60 #define MIN 0
61 #define BUILD 5
62 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
63 __stringify(BUILD) "-k"
64 char igb_driver_name[] = "igb";
65 char igb_driver_version[] = DRV_VERSION;
66 static const char igb_driver_string[] =
67 				"Intel(R) Gigabit Ethernet Network Driver";
68 static const char igb_copyright[] =
69 				"Copyright (c) 2007-2014 Intel Corporation.";
70 
71 static const struct e1000_info *igb_info_tbl[] = {
72 	[board_82575] = &e1000_82575_info,
73 };
74 
75 static const struct pci_device_id igb_pci_tbl[] = {
76 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
77 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
78 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
79 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
80 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
81 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
82 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
83 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
84 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
85 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
86 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
87 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
88 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
89 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
90 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
91 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
92 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
93 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
94 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
95 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
96 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
97 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
98 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
99 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
100 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
101 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
102 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
103 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
104 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
105 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
106 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
107 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
108 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
109 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
110 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
111 	/* required last entry */
112 	{0, }
113 };
114 
115 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
116 
117 static int igb_setup_all_tx_resources(struct igb_adapter *);
118 static int igb_setup_all_rx_resources(struct igb_adapter *);
119 static void igb_free_all_tx_resources(struct igb_adapter *);
120 static void igb_free_all_rx_resources(struct igb_adapter *);
121 static void igb_setup_mrqc(struct igb_adapter *);
122 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
123 static void igb_remove(struct pci_dev *pdev);
124 static int igb_sw_init(struct igb_adapter *);
125 static int igb_open(struct net_device *);
126 static int igb_close(struct net_device *);
127 static void igb_configure(struct igb_adapter *);
128 static void igb_configure_tx(struct igb_adapter *);
129 static void igb_configure_rx(struct igb_adapter *);
130 static void igb_clean_all_tx_rings(struct igb_adapter *);
131 static void igb_clean_all_rx_rings(struct igb_adapter *);
132 static void igb_clean_tx_ring(struct igb_ring *);
133 static void igb_clean_rx_ring(struct igb_ring *);
134 static void igb_set_rx_mode(struct net_device *);
135 static void igb_update_phy_info(unsigned long);
136 static void igb_watchdog(unsigned long);
137 static void igb_watchdog_task(struct work_struct *);
138 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
139 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
140 					  struct rtnl_link_stats64 *stats);
141 static int igb_change_mtu(struct net_device *, int);
142 static int igb_set_mac(struct net_device *, void *);
143 static void igb_set_uta(struct igb_adapter *adapter);
144 static irqreturn_t igb_intr(int irq, void *);
145 static irqreturn_t igb_intr_msi(int irq, void *);
146 static irqreturn_t igb_msix_other(int irq, void *);
147 static irqreturn_t igb_msix_ring(int irq, void *);
148 #ifdef CONFIG_IGB_DCA
149 static void igb_update_dca(struct igb_q_vector *);
150 static void igb_setup_dca(struct igb_adapter *);
151 #endif /* CONFIG_IGB_DCA */
152 static int igb_poll(struct napi_struct *, int);
153 static bool igb_clean_tx_irq(struct igb_q_vector *);
154 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
155 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
156 static void igb_tx_timeout(struct net_device *);
157 static void igb_reset_task(struct work_struct *);
158 static void igb_vlan_mode(struct net_device *netdev,
159 			  netdev_features_t features);
160 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
161 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
162 static void igb_restore_vlan(struct igb_adapter *);
163 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
164 static void igb_ping_all_vfs(struct igb_adapter *);
165 static void igb_msg_task(struct igb_adapter *);
166 static void igb_vmm_control(struct igb_adapter *);
167 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
168 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
169 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
170 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
171 			       int vf, u16 vlan, u8 qos);
172 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
173 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
174 				   bool setting);
175 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
176 				 struct ifla_vf_info *ivi);
177 static void igb_check_vf_rate_limit(struct igb_adapter *);
178 
179 #ifdef CONFIG_PCI_IOV
180 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
181 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
182 #endif
183 
184 #ifdef CONFIG_PM
185 #ifdef CONFIG_PM_SLEEP
186 static int igb_suspend(struct device *);
187 #endif
188 static int igb_resume(struct device *);
189 #ifdef CONFIG_PM_RUNTIME
190 static int igb_runtime_suspend(struct device *dev);
191 static int igb_runtime_resume(struct device *dev);
192 static int igb_runtime_idle(struct device *dev);
193 #endif
194 static const struct dev_pm_ops igb_pm_ops = {
195 	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
196 	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
197 			igb_runtime_idle)
198 };
199 #endif
200 static void igb_shutdown(struct pci_dev *);
201 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
202 #ifdef CONFIG_IGB_DCA
203 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
204 static struct notifier_block dca_notifier = {
205 	.notifier_call	= igb_notify_dca,
206 	.next		= NULL,
207 	.priority	= 0
208 };
209 #endif
210 #ifdef CONFIG_NET_POLL_CONTROLLER
211 /* for netdump / net console */
212 static void igb_netpoll(struct net_device *);
213 #endif
214 #ifdef CONFIG_PCI_IOV
215 static unsigned int max_vfs;
216 module_param(max_vfs, uint, 0);
217 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
218 #endif /* CONFIG_PCI_IOV */
219 
220 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
221 		     pci_channel_state_t);
222 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
223 static void igb_io_resume(struct pci_dev *);
224 
225 static const struct pci_error_handlers igb_err_handler = {
226 	.error_detected = igb_io_error_detected,
227 	.slot_reset = igb_io_slot_reset,
228 	.resume = igb_io_resume,
229 };
230 
231 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
232 
233 static struct pci_driver igb_driver = {
234 	.name     = igb_driver_name,
235 	.id_table = igb_pci_tbl,
236 	.probe    = igb_probe,
237 	.remove   = igb_remove,
238 #ifdef CONFIG_PM
239 	.driver.pm = &igb_pm_ops,
240 #endif
241 	.shutdown = igb_shutdown,
242 	.sriov_configure = igb_pci_sriov_configure,
243 	.err_handler = &igb_err_handler
244 };
245 
246 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
247 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
248 MODULE_LICENSE("GPL");
249 MODULE_VERSION(DRV_VERSION);
250 
251 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
252 static int debug = -1;
253 module_param(debug, int, 0);
254 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
255 
256 struct igb_reg_info {
257 	u32 ofs;
258 	char *name;
259 };
260 
261 static const struct igb_reg_info igb_reg_info_tbl[] = {
262 
263 	/* General Registers */
264 	{E1000_CTRL, "CTRL"},
265 	{E1000_STATUS, "STATUS"},
266 	{E1000_CTRL_EXT, "CTRL_EXT"},
267 
268 	/* Interrupt Registers */
269 	{E1000_ICR, "ICR"},
270 
271 	/* RX Registers */
272 	{E1000_RCTL, "RCTL"},
273 	{E1000_RDLEN(0), "RDLEN"},
274 	{E1000_RDH(0), "RDH"},
275 	{E1000_RDT(0), "RDT"},
276 	{E1000_RXDCTL(0), "RXDCTL"},
277 	{E1000_RDBAL(0), "RDBAL"},
278 	{E1000_RDBAH(0), "RDBAH"},
279 
280 	/* TX Registers */
281 	{E1000_TCTL, "TCTL"},
282 	{E1000_TDBAL(0), "TDBAL"},
283 	{E1000_TDBAH(0), "TDBAH"},
284 	{E1000_TDLEN(0), "TDLEN"},
285 	{E1000_TDH(0), "TDH"},
286 	{E1000_TDT(0), "TDT"},
287 	{E1000_TXDCTL(0), "TXDCTL"},
288 	{E1000_TDFH, "TDFH"},
289 	{E1000_TDFT, "TDFT"},
290 	{E1000_TDFHS, "TDFHS"},
291 	{E1000_TDFPC, "TDFPC"},
292 
293 	/* List Terminator */
294 	{}
295 };
296 
297 /* igb_regdump - register printout routine */
298 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
299 {
300 	int n = 0;
301 	char rname[16];
302 	u32 regs[8];
303 
304 	switch (reginfo->ofs) {
305 	case E1000_RDLEN(0):
306 		for (n = 0; n < 4; n++)
307 			regs[n] = rd32(E1000_RDLEN(n));
308 		break;
309 	case E1000_RDH(0):
310 		for (n = 0; n < 4; n++)
311 			regs[n] = rd32(E1000_RDH(n));
312 		break;
313 	case E1000_RDT(0):
314 		for (n = 0; n < 4; n++)
315 			regs[n] = rd32(E1000_RDT(n));
316 		break;
317 	case E1000_RXDCTL(0):
318 		for (n = 0; n < 4; n++)
319 			regs[n] = rd32(E1000_RXDCTL(n));
320 		break;
321 	case E1000_RDBAL(0):
322 		for (n = 0; n < 4; n++)
323 			regs[n] = rd32(E1000_RDBAL(n));
324 		break;
325 	case E1000_RDBAH(0):
326 		for (n = 0; n < 4; n++)
327 			regs[n] = rd32(E1000_RDBAH(n));
328 		break;
329 	case E1000_TDBAL(0):
330 		for (n = 0; n < 4; n++)
331 			regs[n] = rd32(E1000_RDBAL(n));
332 		break;
333 	case E1000_TDBAH(0):
334 		for (n = 0; n < 4; n++)
335 			regs[n] = rd32(E1000_TDBAH(n));
336 		break;
337 	case E1000_TDLEN(0):
338 		for (n = 0; n < 4; n++)
339 			regs[n] = rd32(E1000_TDLEN(n));
340 		break;
341 	case E1000_TDH(0):
342 		for (n = 0; n < 4; n++)
343 			regs[n] = rd32(E1000_TDH(n));
344 		break;
345 	case E1000_TDT(0):
346 		for (n = 0; n < 4; n++)
347 			regs[n] = rd32(E1000_TDT(n));
348 		break;
349 	case E1000_TXDCTL(0):
350 		for (n = 0; n < 4; n++)
351 			regs[n] = rd32(E1000_TXDCTL(n));
352 		break;
353 	default:
354 		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
355 		return;
356 	}
357 
358 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
359 	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
360 		regs[2], regs[3]);
361 }
362 
363 /* igb_dump - Print registers, Tx-rings and Rx-rings */
364 static void igb_dump(struct igb_adapter *adapter)
365 {
366 	struct net_device *netdev = adapter->netdev;
367 	struct e1000_hw *hw = &adapter->hw;
368 	struct igb_reg_info *reginfo;
369 	struct igb_ring *tx_ring;
370 	union e1000_adv_tx_desc *tx_desc;
371 	struct my_u0 { u64 a; u64 b; } *u0;
372 	struct igb_ring *rx_ring;
373 	union e1000_adv_rx_desc *rx_desc;
374 	u32 staterr;
375 	u16 i, n;
376 
377 	if (!netif_msg_hw(adapter))
378 		return;
379 
380 	/* Print netdevice Info */
381 	if (netdev) {
382 		dev_info(&adapter->pdev->dev, "Net device Info\n");
383 		pr_info("Device Name     state            trans_start      last_rx\n");
384 		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
385 			netdev->state, netdev->trans_start, netdev->last_rx);
386 	}
387 
388 	/* Print Registers */
389 	dev_info(&adapter->pdev->dev, "Register Dump\n");
390 	pr_info(" Register Name   Value\n");
391 	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
392 	     reginfo->name; reginfo++) {
393 		igb_regdump(hw, reginfo);
394 	}
395 
396 	/* Print TX Ring Summary */
397 	if (!netdev || !netif_running(netdev))
398 		goto exit;
399 
400 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
401 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
402 	for (n = 0; n < adapter->num_tx_queues; n++) {
403 		struct igb_tx_buffer *buffer_info;
404 		tx_ring = adapter->tx_ring[n];
405 		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
406 		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
407 			n, tx_ring->next_to_use, tx_ring->next_to_clean,
408 			(u64)dma_unmap_addr(buffer_info, dma),
409 			dma_unmap_len(buffer_info, len),
410 			buffer_info->next_to_watch,
411 			(u64)buffer_info->time_stamp);
412 	}
413 
414 	/* Print TX Rings */
415 	if (!netif_msg_tx_done(adapter))
416 		goto rx_ring_summary;
417 
418 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
419 
420 	/* Transmit Descriptor Formats
421 	 *
422 	 * Advanced Transmit Descriptor
423 	 *   +--------------------------------------------------------------+
424 	 * 0 |         Buffer Address [63:0]                                |
425 	 *   +--------------------------------------------------------------+
426 	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
427 	 *   +--------------------------------------------------------------+
428 	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
429 	 */
430 
431 	for (n = 0; n < adapter->num_tx_queues; n++) {
432 		tx_ring = adapter->tx_ring[n];
433 		pr_info("------------------------------------\n");
434 		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
435 		pr_info("------------------------------------\n");
436 		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
437 
438 		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
439 			const char *next_desc;
440 			struct igb_tx_buffer *buffer_info;
441 			tx_desc = IGB_TX_DESC(tx_ring, i);
442 			buffer_info = &tx_ring->tx_buffer_info[i];
443 			u0 = (struct my_u0 *)tx_desc;
444 			if (i == tx_ring->next_to_use &&
445 			    i == tx_ring->next_to_clean)
446 				next_desc = " NTC/U";
447 			else if (i == tx_ring->next_to_use)
448 				next_desc = " NTU";
449 			else if (i == tx_ring->next_to_clean)
450 				next_desc = " NTC";
451 			else
452 				next_desc = "";
453 
454 			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
455 				i, le64_to_cpu(u0->a),
456 				le64_to_cpu(u0->b),
457 				(u64)dma_unmap_addr(buffer_info, dma),
458 				dma_unmap_len(buffer_info, len),
459 				buffer_info->next_to_watch,
460 				(u64)buffer_info->time_stamp,
461 				buffer_info->skb, next_desc);
462 
463 			if (netif_msg_pktdata(adapter) && buffer_info->skb)
464 				print_hex_dump(KERN_INFO, "",
465 					DUMP_PREFIX_ADDRESS,
466 					16, 1, buffer_info->skb->data,
467 					dma_unmap_len(buffer_info, len),
468 					true);
469 		}
470 	}
471 
472 	/* Print RX Rings Summary */
473 rx_ring_summary:
474 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
475 	pr_info("Queue [NTU] [NTC]\n");
476 	for (n = 0; n < adapter->num_rx_queues; n++) {
477 		rx_ring = adapter->rx_ring[n];
478 		pr_info(" %5d %5X %5X\n",
479 			n, rx_ring->next_to_use, rx_ring->next_to_clean);
480 	}
481 
482 	/* Print RX Rings */
483 	if (!netif_msg_rx_status(adapter))
484 		goto exit;
485 
486 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
487 
488 	/* Advanced Receive Descriptor (Read) Format
489 	 *    63                                           1        0
490 	 *    +-----------------------------------------------------+
491 	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
492 	 *    +----------------------------------------------+------+
493 	 *  8 |       Header Buffer Address [63:1]           |  DD  |
494 	 *    +-----------------------------------------------------+
495 	 *
496 	 *
497 	 * Advanced Receive Descriptor (Write-Back) Format
498 	 *
499 	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
500 	 *   +------------------------------------------------------+
501 	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
502 	 *   | Checksum   Ident  |   |           |    | Type | Type |
503 	 *   +------------------------------------------------------+
504 	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
505 	 *   +------------------------------------------------------+
506 	 *   63       48 47    32 31            20 19               0
507 	 */
508 
509 	for (n = 0; n < adapter->num_rx_queues; n++) {
510 		rx_ring = adapter->rx_ring[n];
511 		pr_info("------------------------------------\n");
512 		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
513 		pr_info("------------------------------------\n");
514 		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
515 		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
516 
517 		for (i = 0; i < rx_ring->count; i++) {
518 			const char *next_desc;
519 			struct igb_rx_buffer *buffer_info;
520 			buffer_info = &rx_ring->rx_buffer_info[i];
521 			rx_desc = IGB_RX_DESC(rx_ring, i);
522 			u0 = (struct my_u0 *)rx_desc;
523 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
524 
525 			if (i == rx_ring->next_to_use)
526 				next_desc = " NTU";
527 			else if (i == rx_ring->next_to_clean)
528 				next_desc = " NTC";
529 			else
530 				next_desc = "";
531 
532 			if (staterr & E1000_RXD_STAT_DD) {
533 				/* Descriptor Done */
534 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
535 					"RWB", i,
536 					le64_to_cpu(u0->a),
537 					le64_to_cpu(u0->b),
538 					next_desc);
539 			} else {
540 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
541 					"R  ", i,
542 					le64_to_cpu(u0->a),
543 					le64_to_cpu(u0->b),
544 					(u64)buffer_info->dma,
545 					next_desc);
546 
547 				if (netif_msg_pktdata(adapter) &&
548 				    buffer_info->dma && buffer_info->page) {
549 					print_hex_dump(KERN_INFO, "",
550 					  DUMP_PREFIX_ADDRESS,
551 					  16, 1,
552 					  page_address(buffer_info->page) +
553 						      buffer_info->page_offset,
554 					  IGB_RX_BUFSZ, true);
555 				}
556 			}
557 		}
558 	}
559 
560 exit:
561 	return;
562 }
563 
564 /**
565  *  igb_get_i2c_data - Reads the I2C SDA data bit
566  *  @hw: pointer to hardware structure
567  *  @i2cctl: Current value of I2CCTL register
568  *
569  *  Returns the I2C data bit value
570  **/
571 static int igb_get_i2c_data(void *data)
572 {
573 	struct igb_adapter *adapter = (struct igb_adapter *)data;
574 	struct e1000_hw *hw = &adapter->hw;
575 	s32 i2cctl = rd32(E1000_I2CPARAMS);
576 
577 	return !!(i2cctl & E1000_I2C_DATA_IN);
578 }
579 
580 /**
581  *  igb_set_i2c_data - Sets the I2C data bit
582  *  @data: pointer to hardware structure
583  *  @state: I2C data value (0 or 1) to set
584  *
585  *  Sets the I2C data bit
586  **/
587 static void igb_set_i2c_data(void *data, int state)
588 {
589 	struct igb_adapter *adapter = (struct igb_adapter *)data;
590 	struct e1000_hw *hw = &adapter->hw;
591 	s32 i2cctl = rd32(E1000_I2CPARAMS);
592 
593 	if (state)
594 		i2cctl |= E1000_I2C_DATA_OUT;
595 	else
596 		i2cctl &= ~E1000_I2C_DATA_OUT;
597 
598 	i2cctl &= ~E1000_I2C_DATA_OE_N;
599 	i2cctl |= E1000_I2C_CLK_OE_N;
600 	wr32(E1000_I2CPARAMS, i2cctl);
601 	wrfl();
602 
603 }
604 
605 /**
606  *  igb_set_i2c_clk - Sets the I2C SCL clock
607  *  @data: pointer to hardware structure
608  *  @state: state to set clock
609  *
610  *  Sets the I2C clock line to state
611  **/
612 static void igb_set_i2c_clk(void *data, int state)
613 {
614 	struct igb_adapter *adapter = (struct igb_adapter *)data;
615 	struct e1000_hw *hw = &adapter->hw;
616 	s32 i2cctl = rd32(E1000_I2CPARAMS);
617 
618 	if (state) {
619 		i2cctl |= E1000_I2C_CLK_OUT;
620 		i2cctl &= ~E1000_I2C_CLK_OE_N;
621 	} else {
622 		i2cctl &= ~E1000_I2C_CLK_OUT;
623 		i2cctl &= ~E1000_I2C_CLK_OE_N;
624 	}
625 	wr32(E1000_I2CPARAMS, i2cctl);
626 	wrfl();
627 }
628 
629 /**
630  *  igb_get_i2c_clk - Gets the I2C SCL clock state
631  *  @data: pointer to hardware structure
632  *
633  *  Gets the I2C clock state
634  **/
635 static int igb_get_i2c_clk(void *data)
636 {
637 	struct igb_adapter *adapter = (struct igb_adapter *)data;
638 	struct e1000_hw *hw = &adapter->hw;
639 	s32 i2cctl = rd32(E1000_I2CPARAMS);
640 
641 	return !!(i2cctl & E1000_I2C_CLK_IN);
642 }
643 
644 static const struct i2c_algo_bit_data igb_i2c_algo = {
645 	.setsda		= igb_set_i2c_data,
646 	.setscl		= igb_set_i2c_clk,
647 	.getsda		= igb_get_i2c_data,
648 	.getscl		= igb_get_i2c_clk,
649 	.udelay		= 5,
650 	.timeout	= 20,
651 };
652 
653 /**
654  *  igb_get_hw_dev - return device
655  *  @hw: pointer to hardware structure
656  *
657  *  used by hardware layer to print debugging information
658  **/
659 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
660 {
661 	struct igb_adapter *adapter = hw->back;
662 	return adapter->netdev;
663 }
664 
665 /**
666  *  igb_init_module - Driver Registration Routine
667  *
668  *  igb_init_module is the first routine called when the driver is
669  *  loaded. All it does is register with the PCI subsystem.
670  **/
671 static int __init igb_init_module(void)
672 {
673 	int ret;
674 
675 	pr_info("%s - version %s\n",
676 	       igb_driver_string, igb_driver_version);
677 	pr_info("%s\n", igb_copyright);
678 
679 #ifdef CONFIG_IGB_DCA
680 	dca_register_notify(&dca_notifier);
681 #endif
682 	ret = pci_register_driver(&igb_driver);
683 	return ret;
684 }
685 
686 module_init(igb_init_module);
687 
688 /**
689  *  igb_exit_module - Driver Exit Cleanup Routine
690  *
691  *  igb_exit_module is called just before the driver is removed
692  *  from memory.
693  **/
694 static void __exit igb_exit_module(void)
695 {
696 #ifdef CONFIG_IGB_DCA
697 	dca_unregister_notify(&dca_notifier);
698 #endif
699 	pci_unregister_driver(&igb_driver);
700 }
701 
702 module_exit(igb_exit_module);
703 
704 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
705 /**
706  *  igb_cache_ring_register - Descriptor ring to register mapping
707  *  @adapter: board private structure to initialize
708  *
709  *  Once we know the feature-set enabled for the device, we'll cache
710  *  the register offset the descriptor ring is assigned to.
711  **/
712 static void igb_cache_ring_register(struct igb_adapter *adapter)
713 {
714 	int i = 0, j = 0;
715 	u32 rbase_offset = adapter->vfs_allocated_count;
716 
717 	switch (adapter->hw.mac.type) {
718 	case e1000_82576:
719 		/* The queues are allocated for virtualization such that VF 0
720 		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
721 		 * In order to avoid collision we start at the first free queue
722 		 * and continue consuming queues in the same sequence
723 		 */
724 		if (adapter->vfs_allocated_count) {
725 			for (; i < adapter->rss_queues; i++)
726 				adapter->rx_ring[i]->reg_idx = rbase_offset +
727 							       Q_IDX_82576(i);
728 		}
729 		/* Fall through */
730 	case e1000_82575:
731 	case e1000_82580:
732 	case e1000_i350:
733 	case e1000_i354:
734 	case e1000_i210:
735 	case e1000_i211:
736 		/* Fall through */
737 	default:
738 		for (; i < adapter->num_rx_queues; i++)
739 			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
740 		for (; j < adapter->num_tx_queues; j++)
741 			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
742 		break;
743 	}
744 }
745 
746 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
747 {
748 	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
749 	u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
750 	u32 value = 0;
751 
752 	if (E1000_REMOVED(hw_addr))
753 		return ~value;
754 
755 	value = readl(&hw_addr[reg]);
756 
757 	/* reads should not return all F's */
758 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
759 		struct net_device *netdev = igb->netdev;
760 		hw->hw_addr = NULL;
761 		netif_device_detach(netdev);
762 		netdev_err(netdev, "PCIe link lost, device now detached\n");
763 	}
764 
765 	return value;
766 }
767 
768 /**
769  *  igb_write_ivar - configure ivar for given MSI-X vector
770  *  @hw: pointer to the HW structure
771  *  @msix_vector: vector number we are allocating to a given ring
772  *  @index: row index of IVAR register to write within IVAR table
773  *  @offset: column offset of in IVAR, should be multiple of 8
774  *
775  *  This function is intended to handle the writing of the IVAR register
776  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
777  *  each containing an cause allocation for an Rx and Tx ring, and a
778  *  variable number of rows depending on the number of queues supported.
779  **/
780 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
781 			   int index, int offset)
782 {
783 	u32 ivar = array_rd32(E1000_IVAR0, index);
784 
785 	/* clear any bits that are currently set */
786 	ivar &= ~((u32)0xFF << offset);
787 
788 	/* write vector and valid bit */
789 	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
790 
791 	array_wr32(E1000_IVAR0, index, ivar);
792 }
793 
794 #define IGB_N0_QUEUE -1
795 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
796 {
797 	struct igb_adapter *adapter = q_vector->adapter;
798 	struct e1000_hw *hw = &adapter->hw;
799 	int rx_queue = IGB_N0_QUEUE;
800 	int tx_queue = IGB_N0_QUEUE;
801 	u32 msixbm = 0;
802 
803 	if (q_vector->rx.ring)
804 		rx_queue = q_vector->rx.ring->reg_idx;
805 	if (q_vector->tx.ring)
806 		tx_queue = q_vector->tx.ring->reg_idx;
807 
808 	switch (hw->mac.type) {
809 	case e1000_82575:
810 		/* The 82575 assigns vectors using a bitmask, which matches the
811 		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
812 		 * or more queues to a vector, we write the appropriate bits
813 		 * into the MSIXBM register for that vector.
814 		 */
815 		if (rx_queue > IGB_N0_QUEUE)
816 			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
817 		if (tx_queue > IGB_N0_QUEUE)
818 			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
819 		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
820 			msixbm |= E1000_EIMS_OTHER;
821 		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
822 		q_vector->eims_value = msixbm;
823 		break;
824 	case e1000_82576:
825 		/* 82576 uses a table that essentially consists of 2 columns
826 		 * with 8 rows.  The ordering is column-major so we use the
827 		 * lower 3 bits as the row index, and the 4th bit as the
828 		 * column offset.
829 		 */
830 		if (rx_queue > IGB_N0_QUEUE)
831 			igb_write_ivar(hw, msix_vector,
832 				       rx_queue & 0x7,
833 				       (rx_queue & 0x8) << 1);
834 		if (tx_queue > IGB_N0_QUEUE)
835 			igb_write_ivar(hw, msix_vector,
836 				       tx_queue & 0x7,
837 				       ((tx_queue & 0x8) << 1) + 8);
838 		q_vector->eims_value = 1 << msix_vector;
839 		break;
840 	case e1000_82580:
841 	case e1000_i350:
842 	case e1000_i354:
843 	case e1000_i210:
844 	case e1000_i211:
845 		/* On 82580 and newer adapters the scheme is similar to 82576
846 		 * however instead of ordering column-major we have things
847 		 * ordered row-major.  So we traverse the table by using
848 		 * bit 0 as the column offset, and the remaining bits as the
849 		 * row index.
850 		 */
851 		if (rx_queue > IGB_N0_QUEUE)
852 			igb_write_ivar(hw, msix_vector,
853 				       rx_queue >> 1,
854 				       (rx_queue & 0x1) << 4);
855 		if (tx_queue > IGB_N0_QUEUE)
856 			igb_write_ivar(hw, msix_vector,
857 				       tx_queue >> 1,
858 				       ((tx_queue & 0x1) << 4) + 8);
859 		q_vector->eims_value = 1 << msix_vector;
860 		break;
861 	default:
862 		BUG();
863 		break;
864 	}
865 
866 	/* add q_vector eims value to global eims_enable_mask */
867 	adapter->eims_enable_mask |= q_vector->eims_value;
868 
869 	/* configure q_vector to set itr on first interrupt */
870 	q_vector->set_itr = 1;
871 }
872 
873 /**
874  *  igb_configure_msix - Configure MSI-X hardware
875  *  @adapter: board private structure to initialize
876  *
877  *  igb_configure_msix sets up the hardware to properly
878  *  generate MSI-X interrupts.
879  **/
880 static void igb_configure_msix(struct igb_adapter *adapter)
881 {
882 	u32 tmp;
883 	int i, vector = 0;
884 	struct e1000_hw *hw = &adapter->hw;
885 
886 	adapter->eims_enable_mask = 0;
887 
888 	/* set vector for other causes, i.e. link changes */
889 	switch (hw->mac.type) {
890 	case e1000_82575:
891 		tmp = rd32(E1000_CTRL_EXT);
892 		/* enable MSI-X PBA support*/
893 		tmp |= E1000_CTRL_EXT_PBA_CLR;
894 
895 		/* Auto-Mask interrupts upon ICR read. */
896 		tmp |= E1000_CTRL_EXT_EIAME;
897 		tmp |= E1000_CTRL_EXT_IRCA;
898 
899 		wr32(E1000_CTRL_EXT, tmp);
900 
901 		/* enable msix_other interrupt */
902 		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
903 		adapter->eims_other = E1000_EIMS_OTHER;
904 
905 		break;
906 
907 	case e1000_82576:
908 	case e1000_82580:
909 	case e1000_i350:
910 	case e1000_i354:
911 	case e1000_i210:
912 	case e1000_i211:
913 		/* Turn on MSI-X capability first, or our settings
914 		 * won't stick.  And it will take days to debug.
915 		 */
916 		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
917 		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
918 		     E1000_GPIE_NSICR);
919 
920 		/* enable msix_other interrupt */
921 		adapter->eims_other = 1 << vector;
922 		tmp = (vector++ | E1000_IVAR_VALID) << 8;
923 
924 		wr32(E1000_IVAR_MISC, tmp);
925 		break;
926 	default:
927 		/* do nothing, since nothing else supports MSI-X */
928 		break;
929 	} /* switch (hw->mac.type) */
930 
931 	adapter->eims_enable_mask |= adapter->eims_other;
932 
933 	for (i = 0; i < adapter->num_q_vectors; i++)
934 		igb_assign_vector(adapter->q_vector[i], vector++);
935 
936 	wrfl();
937 }
938 
939 /**
940  *  igb_request_msix - Initialize MSI-X interrupts
941  *  @adapter: board private structure to initialize
942  *
943  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
944  *  kernel.
945  **/
946 static int igb_request_msix(struct igb_adapter *adapter)
947 {
948 	struct net_device *netdev = adapter->netdev;
949 	struct e1000_hw *hw = &adapter->hw;
950 	int i, err = 0, vector = 0, free_vector = 0;
951 
952 	err = request_irq(adapter->msix_entries[vector].vector,
953 			  igb_msix_other, 0, netdev->name, adapter);
954 	if (err)
955 		goto err_out;
956 
957 	for (i = 0; i < adapter->num_q_vectors; i++) {
958 		struct igb_q_vector *q_vector = adapter->q_vector[i];
959 
960 		vector++;
961 
962 		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
963 
964 		if (q_vector->rx.ring && q_vector->tx.ring)
965 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
966 				q_vector->rx.ring->queue_index);
967 		else if (q_vector->tx.ring)
968 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
969 				q_vector->tx.ring->queue_index);
970 		else if (q_vector->rx.ring)
971 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
972 				q_vector->rx.ring->queue_index);
973 		else
974 			sprintf(q_vector->name, "%s-unused", netdev->name);
975 
976 		err = request_irq(adapter->msix_entries[vector].vector,
977 				  igb_msix_ring, 0, q_vector->name,
978 				  q_vector);
979 		if (err)
980 			goto err_free;
981 	}
982 
983 	igb_configure_msix(adapter);
984 	return 0;
985 
986 err_free:
987 	/* free already assigned IRQs */
988 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
989 
990 	vector--;
991 	for (i = 0; i < vector; i++) {
992 		free_irq(adapter->msix_entries[free_vector++].vector,
993 			 adapter->q_vector[i]);
994 	}
995 err_out:
996 	return err;
997 }
998 
999 /**
1000  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
1001  *  @adapter: board private structure to initialize
1002  *  @v_idx: Index of vector to be freed
1003  *
1004  *  This function frees the memory allocated to the q_vector.
1005  **/
1006 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1007 {
1008 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1009 
1010 	adapter->q_vector[v_idx] = NULL;
1011 
1012 	/* igb_get_stats64() might access the rings on this vector,
1013 	 * we must wait a grace period before freeing it.
1014 	 */
1015 	kfree_rcu(q_vector, rcu);
1016 }
1017 
1018 /**
1019  *  igb_reset_q_vector - Reset config for interrupt vector
1020  *  @adapter: board private structure to initialize
1021  *  @v_idx: Index of vector to be reset
1022  *
1023  *  If NAPI is enabled it will delete any references to the
1024  *  NAPI struct. This is preparation for igb_free_q_vector.
1025  **/
1026 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1027 {
1028 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1029 
1030 	/* Coming from igb_set_interrupt_capability, the vectors are not yet
1031 	 * allocated. So, q_vector is NULL so we should stop here.
1032 	 */
1033 	if (!q_vector)
1034 		return;
1035 
1036 	if (q_vector->tx.ring)
1037 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1038 
1039 	if (q_vector->rx.ring)
1040 		adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1041 
1042 	netif_napi_del(&q_vector->napi);
1043 
1044 }
1045 
1046 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1047 {
1048 	int v_idx = adapter->num_q_vectors;
1049 
1050 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1051 		pci_disable_msix(adapter->pdev);
1052 	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1053 		pci_disable_msi(adapter->pdev);
1054 
1055 	while (v_idx--)
1056 		igb_reset_q_vector(adapter, v_idx);
1057 }
1058 
1059 /**
1060  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1061  *  @adapter: board private structure to initialize
1062  *
1063  *  This function frees the memory allocated to the q_vectors.  In addition if
1064  *  NAPI is enabled it will delete any references to the NAPI struct prior
1065  *  to freeing the q_vector.
1066  **/
1067 static void igb_free_q_vectors(struct igb_adapter *adapter)
1068 {
1069 	int v_idx = adapter->num_q_vectors;
1070 
1071 	adapter->num_tx_queues = 0;
1072 	adapter->num_rx_queues = 0;
1073 	adapter->num_q_vectors = 0;
1074 
1075 	while (v_idx--) {
1076 		igb_reset_q_vector(adapter, v_idx);
1077 		igb_free_q_vector(adapter, v_idx);
1078 	}
1079 }
1080 
1081 /**
1082  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1083  *  @adapter: board private structure to initialize
1084  *
1085  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1086  *  MSI-X interrupts allocated.
1087  */
1088 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1089 {
1090 	igb_free_q_vectors(adapter);
1091 	igb_reset_interrupt_capability(adapter);
1092 }
1093 
1094 /**
1095  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1096  *  @adapter: board private structure to initialize
1097  *  @msix: boolean value of MSIX capability
1098  *
1099  *  Attempt to configure interrupts using the best available
1100  *  capabilities of the hardware and kernel.
1101  **/
1102 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1103 {
1104 	int err;
1105 	int numvecs, i;
1106 
1107 	if (!msix)
1108 		goto msi_only;
1109 	adapter->flags |= IGB_FLAG_HAS_MSIX;
1110 
1111 	/* Number of supported queues. */
1112 	adapter->num_rx_queues = adapter->rss_queues;
1113 	if (adapter->vfs_allocated_count)
1114 		adapter->num_tx_queues = 1;
1115 	else
1116 		adapter->num_tx_queues = adapter->rss_queues;
1117 
1118 	/* start with one vector for every Rx queue */
1119 	numvecs = adapter->num_rx_queues;
1120 
1121 	/* if Tx handler is separate add 1 for every Tx queue */
1122 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1123 		numvecs += adapter->num_tx_queues;
1124 
1125 	/* store the number of vectors reserved for queues */
1126 	adapter->num_q_vectors = numvecs;
1127 
1128 	/* add 1 vector for link status interrupts */
1129 	numvecs++;
1130 	for (i = 0; i < numvecs; i++)
1131 		adapter->msix_entries[i].entry = i;
1132 
1133 	err = pci_enable_msix_range(adapter->pdev,
1134 				    adapter->msix_entries,
1135 				    numvecs,
1136 				    numvecs);
1137 	if (err > 0)
1138 		return;
1139 
1140 	igb_reset_interrupt_capability(adapter);
1141 
1142 	/* If we can't do MSI-X, try MSI */
1143 msi_only:
1144 	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1145 #ifdef CONFIG_PCI_IOV
1146 	/* disable SR-IOV for non MSI-X configurations */
1147 	if (adapter->vf_data) {
1148 		struct e1000_hw *hw = &adapter->hw;
1149 		/* disable iov and allow time for transactions to clear */
1150 		pci_disable_sriov(adapter->pdev);
1151 		msleep(500);
1152 
1153 		kfree(adapter->vf_data);
1154 		adapter->vf_data = NULL;
1155 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1156 		wrfl();
1157 		msleep(100);
1158 		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1159 	}
1160 #endif
1161 	adapter->vfs_allocated_count = 0;
1162 	adapter->rss_queues = 1;
1163 	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1164 	adapter->num_rx_queues = 1;
1165 	adapter->num_tx_queues = 1;
1166 	adapter->num_q_vectors = 1;
1167 	if (!pci_enable_msi(adapter->pdev))
1168 		adapter->flags |= IGB_FLAG_HAS_MSI;
1169 }
1170 
1171 static void igb_add_ring(struct igb_ring *ring,
1172 			 struct igb_ring_container *head)
1173 {
1174 	head->ring = ring;
1175 	head->count++;
1176 }
1177 
1178 /**
1179  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1180  *  @adapter: board private structure to initialize
1181  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1182  *  @v_idx: index of vector in adapter struct
1183  *  @txr_count: total number of Tx rings to allocate
1184  *  @txr_idx: index of first Tx ring to allocate
1185  *  @rxr_count: total number of Rx rings to allocate
1186  *  @rxr_idx: index of first Rx ring to allocate
1187  *
1188  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1189  **/
1190 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1191 			      int v_count, int v_idx,
1192 			      int txr_count, int txr_idx,
1193 			      int rxr_count, int rxr_idx)
1194 {
1195 	struct igb_q_vector *q_vector;
1196 	struct igb_ring *ring;
1197 	int ring_count, size;
1198 
1199 	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1200 	if (txr_count > 1 || rxr_count > 1)
1201 		return -ENOMEM;
1202 
1203 	ring_count = txr_count + rxr_count;
1204 	size = sizeof(struct igb_q_vector) +
1205 	       (sizeof(struct igb_ring) * ring_count);
1206 
1207 	/* allocate q_vector and rings */
1208 	q_vector = adapter->q_vector[v_idx];
1209 	if (!q_vector)
1210 		q_vector = kzalloc(size, GFP_KERNEL);
1211 	if (!q_vector)
1212 		return -ENOMEM;
1213 
1214 	/* initialize NAPI */
1215 	netif_napi_add(adapter->netdev, &q_vector->napi,
1216 		       igb_poll, 64);
1217 
1218 	/* tie q_vector and adapter together */
1219 	adapter->q_vector[v_idx] = q_vector;
1220 	q_vector->adapter = adapter;
1221 
1222 	/* initialize work limits */
1223 	q_vector->tx.work_limit = adapter->tx_work_limit;
1224 
1225 	/* initialize ITR configuration */
1226 	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1227 	q_vector->itr_val = IGB_START_ITR;
1228 
1229 	/* initialize pointer to rings */
1230 	ring = q_vector->ring;
1231 
1232 	/* intialize ITR */
1233 	if (rxr_count) {
1234 		/* rx or rx/tx vector */
1235 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1236 			q_vector->itr_val = adapter->rx_itr_setting;
1237 	} else {
1238 		/* tx only vector */
1239 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1240 			q_vector->itr_val = adapter->tx_itr_setting;
1241 	}
1242 
1243 	if (txr_count) {
1244 		/* assign generic ring traits */
1245 		ring->dev = &adapter->pdev->dev;
1246 		ring->netdev = adapter->netdev;
1247 
1248 		/* configure backlink on ring */
1249 		ring->q_vector = q_vector;
1250 
1251 		/* update q_vector Tx values */
1252 		igb_add_ring(ring, &q_vector->tx);
1253 
1254 		/* For 82575, context index must be unique per ring. */
1255 		if (adapter->hw.mac.type == e1000_82575)
1256 			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1257 
1258 		/* apply Tx specific ring traits */
1259 		ring->count = adapter->tx_ring_count;
1260 		ring->queue_index = txr_idx;
1261 
1262 		u64_stats_init(&ring->tx_syncp);
1263 		u64_stats_init(&ring->tx_syncp2);
1264 
1265 		/* assign ring to adapter */
1266 		adapter->tx_ring[txr_idx] = ring;
1267 
1268 		/* push pointer to next ring */
1269 		ring++;
1270 	}
1271 
1272 	if (rxr_count) {
1273 		/* assign generic ring traits */
1274 		ring->dev = &adapter->pdev->dev;
1275 		ring->netdev = adapter->netdev;
1276 
1277 		/* configure backlink on ring */
1278 		ring->q_vector = q_vector;
1279 
1280 		/* update q_vector Rx values */
1281 		igb_add_ring(ring, &q_vector->rx);
1282 
1283 		/* set flag indicating ring supports SCTP checksum offload */
1284 		if (adapter->hw.mac.type >= e1000_82576)
1285 			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1286 
1287 		/* On i350, i354, i210, and i211, loopback VLAN packets
1288 		 * have the tag byte-swapped.
1289 		 */
1290 		if (adapter->hw.mac.type >= e1000_i350)
1291 			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1292 
1293 		/* apply Rx specific ring traits */
1294 		ring->count = adapter->rx_ring_count;
1295 		ring->queue_index = rxr_idx;
1296 
1297 		u64_stats_init(&ring->rx_syncp);
1298 
1299 		/* assign ring to adapter */
1300 		adapter->rx_ring[rxr_idx] = ring;
1301 	}
1302 
1303 	return 0;
1304 }
1305 
1306 
1307 /**
1308  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1309  *  @adapter: board private structure to initialize
1310  *
1311  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1312  *  return -ENOMEM.
1313  **/
1314 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1315 {
1316 	int q_vectors = adapter->num_q_vectors;
1317 	int rxr_remaining = adapter->num_rx_queues;
1318 	int txr_remaining = adapter->num_tx_queues;
1319 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1320 	int err;
1321 
1322 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1323 		for (; rxr_remaining; v_idx++) {
1324 			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1325 						 0, 0, 1, rxr_idx);
1326 
1327 			if (err)
1328 				goto err_out;
1329 
1330 			/* update counts and index */
1331 			rxr_remaining--;
1332 			rxr_idx++;
1333 		}
1334 	}
1335 
1336 	for (; v_idx < q_vectors; v_idx++) {
1337 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1338 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1339 
1340 		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1341 					 tqpv, txr_idx, rqpv, rxr_idx);
1342 
1343 		if (err)
1344 			goto err_out;
1345 
1346 		/* update counts and index */
1347 		rxr_remaining -= rqpv;
1348 		txr_remaining -= tqpv;
1349 		rxr_idx++;
1350 		txr_idx++;
1351 	}
1352 
1353 	return 0;
1354 
1355 err_out:
1356 	adapter->num_tx_queues = 0;
1357 	adapter->num_rx_queues = 0;
1358 	adapter->num_q_vectors = 0;
1359 
1360 	while (v_idx--)
1361 		igb_free_q_vector(adapter, v_idx);
1362 
1363 	return -ENOMEM;
1364 }
1365 
1366 /**
1367  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1368  *  @adapter: board private structure to initialize
1369  *  @msix: boolean value of MSIX capability
1370  *
1371  *  This function initializes the interrupts and allocates all of the queues.
1372  **/
1373 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1374 {
1375 	struct pci_dev *pdev = adapter->pdev;
1376 	int err;
1377 
1378 	igb_set_interrupt_capability(adapter, msix);
1379 
1380 	err = igb_alloc_q_vectors(adapter);
1381 	if (err) {
1382 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1383 		goto err_alloc_q_vectors;
1384 	}
1385 
1386 	igb_cache_ring_register(adapter);
1387 
1388 	return 0;
1389 
1390 err_alloc_q_vectors:
1391 	igb_reset_interrupt_capability(adapter);
1392 	return err;
1393 }
1394 
1395 /**
1396  *  igb_request_irq - initialize interrupts
1397  *  @adapter: board private structure to initialize
1398  *
1399  *  Attempts to configure interrupts using the best available
1400  *  capabilities of the hardware and kernel.
1401  **/
1402 static int igb_request_irq(struct igb_adapter *adapter)
1403 {
1404 	struct net_device *netdev = adapter->netdev;
1405 	struct pci_dev *pdev = adapter->pdev;
1406 	int err = 0;
1407 
1408 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1409 		err = igb_request_msix(adapter);
1410 		if (!err)
1411 			goto request_done;
1412 		/* fall back to MSI */
1413 		igb_free_all_tx_resources(adapter);
1414 		igb_free_all_rx_resources(adapter);
1415 
1416 		igb_clear_interrupt_scheme(adapter);
1417 		err = igb_init_interrupt_scheme(adapter, false);
1418 		if (err)
1419 			goto request_done;
1420 
1421 		igb_setup_all_tx_resources(adapter);
1422 		igb_setup_all_rx_resources(adapter);
1423 		igb_configure(adapter);
1424 	}
1425 
1426 	igb_assign_vector(adapter->q_vector[0], 0);
1427 
1428 	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1429 		err = request_irq(pdev->irq, igb_intr_msi, 0,
1430 				  netdev->name, adapter);
1431 		if (!err)
1432 			goto request_done;
1433 
1434 		/* fall back to legacy interrupts */
1435 		igb_reset_interrupt_capability(adapter);
1436 		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1437 	}
1438 
1439 	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1440 			  netdev->name, adapter);
1441 
1442 	if (err)
1443 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1444 			err);
1445 
1446 request_done:
1447 	return err;
1448 }
1449 
1450 static void igb_free_irq(struct igb_adapter *adapter)
1451 {
1452 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1453 		int vector = 0, i;
1454 
1455 		free_irq(adapter->msix_entries[vector++].vector, adapter);
1456 
1457 		for (i = 0; i < adapter->num_q_vectors; i++)
1458 			free_irq(adapter->msix_entries[vector++].vector,
1459 				 adapter->q_vector[i]);
1460 	} else {
1461 		free_irq(adapter->pdev->irq, adapter);
1462 	}
1463 }
1464 
1465 /**
1466  *  igb_irq_disable - Mask off interrupt generation on the NIC
1467  *  @adapter: board private structure
1468  **/
1469 static void igb_irq_disable(struct igb_adapter *adapter)
1470 {
1471 	struct e1000_hw *hw = &adapter->hw;
1472 
1473 	/* we need to be careful when disabling interrupts.  The VFs are also
1474 	 * mapped into these registers and so clearing the bits can cause
1475 	 * issues on the VF drivers so we only need to clear what we set
1476 	 */
1477 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1478 		u32 regval = rd32(E1000_EIAM);
1479 
1480 		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1481 		wr32(E1000_EIMC, adapter->eims_enable_mask);
1482 		regval = rd32(E1000_EIAC);
1483 		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1484 	}
1485 
1486 	wr32(E1000_IAM, 0);
1487 	wr32(E1000_IMC, ~0);
1488 	wrfl();
1489 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1490 		int i;
1491 
1492 		for (i = 0; i < adapter->num_q_vectors; i++)
1493 			synchronize_irq(adapter->msix_entries[i].vector);
1494 	} else {
1495 		synchronize_irq(adapter->pdev->irq);
1496 	}
1497 }
1498 
1499 /**
1500  *  igb_irq_enable - Enable default interrupt generation settings
1501  *  @adapter: board private structure
1502  **/
1503 static void igb_irq_enable(struct igb_adapter *adapter)
1504 {
1505 	struct e1000_hw *hw = &adapter->hw;
1506 
1507 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1508 		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1509 		u32 regval = rd32(E1000_EIAC);
1510 
1511 		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1512 		regval = rd32(E1000_EIAM);
1513 		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1514 		wr32(E1000_EIMS, adapter->eims_enable_mask);
1515 		if (adapter->vfs_allocated_count) {
1516 			wr32(E1000_MBVFIMR, 0xFF);
1517 			ims |= E1000_IMS_VMMB;
1518 		}
1519 		wr32(E1000_IMS, ims);
1520 	} else {
1521 		wr32(E1000_IMS, IMS_ENABLE_MASK |
1522 				E1000_IMS_DRSTA);
1523 		wr32(E1000_IAM, IMS_ENABLE_MASK |
1524 				E1000_IMS_DRSTA);
1525 	}
1526 }
1527 
1528 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1529 {
1530 	struct e1000_hw *hw = &adapter->hw;
1531 	u16 vid = adapter->hw.mng_cookie.vlan_id;
1532 	u16 old_vid = adapter->mng_vlan_id;
1533 
1534 	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1535 		/* add VID to filter table */
1536 		igb_vfta_set(hw, vid, true);
1537 		adapter->mng_vlan_id = vid;
1538 	} else {
1539 		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1540 	}
1541 
1542 	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1543 	    (vid != old_vid) &&
1544 	    !test_bit(old_vid, adapter->active_vlans)) {
1545 		/* remove VID from filter table */
1546 		igb_vfta_set(hw, old_vid, false);
1547 	}
1548 }
1549 
1550 /**
1551  *  igb_release_hw_control - release control of the h/w to f/w
1552  *  @adapter: address of board private structure
1553  *
1554  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1555  *  For ASF and Pass Through versions of f/w this means that the
1556  *  driver is no longer loaded.
1557  **/
1558 static void igb_release_hw_control(struct igb_adapter *adapter)
1559 {
1560 	struct e1000_hw *hw = &adapter->hw;
1561 	u32 ctrl_ext;
1562 
1563 	/* Let firmware take over control of h/w */
1564 	ctrl_ext = rd32(E1000_CTRL_EXT);
1565 	wr32(E1000_CTRL_EXT,
1566 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1567 }
1568 
1569 /**
1570  *  igb_get_hw_control - get control of the h/w from f/w
1571  *  @adapter: address of board private structure
1572  *
1573  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1574  *  For ASF and Pass Through versions of f/w this means that
1575  *  the driver is loaded.
1576  **/
1577 static void igb_get_hw_control(struct igb_adapter *adapter)
1578 {
1579 	struct e1000_hw *hw = &adapter->hw;
1580 	u32 ctrl_ext;
1581 
1582 	/* Let firmware know the driver has taken over */
1583 	ctrl_ext = rd32(E1000_CTRL_EXT);
1584 	wr32(E1000_CTRL_EXT,
1585 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1586 }
1587 
1588 /**
1589  *  igb_configure - configure the hardware for RX and TX
1590  *  @adapter: private board structure
1591  **/
1592 static void igb_configure(struct igb_adapter *adapter)
1593 {
1594 	struct net_device *netdev = adapter->netdev;
1595 	int i;
1596 
1597 	igb_get_hw_control(adapter);
1598 	igb_set_rx_mode(netdev);
1599 
1600 	igb_restore_vlan(adapter);
1601 
1602 	igb_setup_tctl(adapter);
1603 	igb_setup_mrqc(adapter);
1604 	igb_setup_rctl(adapter);
1605 
1606 	igb_configure_tx(adapter);
1607 	igb_configure_rx(adapter);
1608 
1609 	igb_rx_fifo_flush_82575(&adapter->hw);
1610 
1611 	/* call igb_desc_unused which always leaves
1612 	 * at least 1 descriptor unused to make sure
1613 	 * next_to_use != next_to_clean
1614 	 */
1615 	for (i = 0; i < adapter->num_rx_queues; i++) {
1616 		struct igb_ring *ring = adapter->rx_ring[i];
1617 		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1618 	}
1619 }
1620 
1621 /**
1622  *  igb_power_up_link - Power up the phy/serdes link
1623  *  @adapter: address of board private structure
1624  **/
1625 void igb_power_up_link(struct igb_adapter *adapter)
1626 {
1627 	igb_reset_phy(&adapter->hw);
1628 
1629 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1630 		igb_power_up_phy_copper(&adapter->hw);
1631 	else
1632 		igb_power_up_serdes_link_82575(&adapter->hw);
1633 }
1634 
1635 /**
1636  *  igb_power_down_link - Power down the phy/serdes link
1637  *  @adapter: address of board private structure
1638  */
1639 static void igb_power_down_link(struct igb_adapter *adapter)
1640 {
1641 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1642 		igb_power_down_phy_copper_82575(&adapter->hw);
1643 	else
1644 		igb_shutdown_serdes_link_82575(&adapter->hw);
1645 }
1646 
1647 /**
1648  * Detect and switch function for Media Auto Sense
1649  * @adapter: address of the board private structure
1650  **/
1651 static void igb_check_swap_media(struct igb_adapter *adapter)
1652 {
1653 	struct e1000_hw *hw = &adapter->hw;
1654 	u32 ctrl_ext, connsw;
1655 	bool swap_now = false;
1656 
1657 	ctrl_ext = rd32(E1000_CTRL_EXT);
1658 	connsw = rd32(E1000_CONNSW);
1659 
1660 	/* need to live swap if current media is copper and we have fiber/serdes
1661 	 * to go to.
1662 	 */
1663 
1664 	if ((hw->phy.media_type == e1000_media_type_copper) &&
1665 	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1666 		swap_now = true;
1667 	} else if (!(connsw & E1000_CONNSW_SERDESD)) {
1668 		/* copper signal takes time to appear */
1669 		if (adapter->copper_tries < 4) {
1670 			adapter->copper_tries++;
1671 			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1672 			wr32(E1000_CONNSW, connsw);
1673 			return;
1674 		} else {
1675 			adapter->copper_tries = 0;
1676 			if ((connsw & E1000_CONNSW_PHYSD) &&
1677 			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
1678 				swap_now = true;
1679 				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1680 				wr32(E1000_CONNSW, connsw);
1681 			}
1682 		}
1683 	}
1684 
1685 	if (!swap_now)
1686 		return;
1687 
1688 	switch (hw->phy.media_type) {
1689 	case e1000_media_type_copper:
1690 		netdev_info(adapter->netdev,
1691 			"MAS: changing media to fiber/serdes\n");
1692 		ctrl_ext |=
1693 			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1694 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1695 		adapter->copper_tries = 0;
1696 		break;
1697 	case e1000_media_type_internal_serdes:
1698 	case e1000_media_type_fiber:
1699 		netdev_info(adapter->netdev,
1700 			"MAS: changing media to copper\n");
1701 		ctrl_ext &=
1702 			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1703 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1704 		break;
1705 	default:
1706 		/* shouldn't get here during regular operation */
1707 		netdev_err(adapter->netdev,
1708 			"AMS: Invalid media type found, returning\n");
1709 		break;
1710 	}
1711 	wr32(E1000_CTRL_EXT, ctrl_ext);
1712 }
1713 
1714 /**
1715  *  igb_up - Open the interface and prepare it to handle traffic
1716  *  @adapter: board private structure
1717  **/
1718 int igb_up(struct igb_adapter *adapter)
1719 {
1720 	struct e1000_hw *hw = &adapter->hw;
1721 	int i;
1722 
1723 	/* hardware has been reset, we need to reload some things */
1724 	igb_configure(adapter);
1725 
1726 	clear_bit(__IGB_DOWN, &adapter->state);
1727 
1728 	for (i = 0; i < adapter->num_q_vectors; i++)
1729 		napi_enable(&(adapter->q_vector[i]->napi));
1730 
1731 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1732 		igb_configure_msix(adapter);
1733 	else
1734 		igb_assign_vector(adapter->q_vector[0], 0);
1735 
1736 	/* Clear any pending interrupts. */
1737 	rd32(E1000_ICR);
1738 	igb_irq_enable(adapter);
1739 
1740 	/* notify VFs that reset has been completed */
1741 	if (adapter->vfs_allocated_count) {
1742 		u32 reg_data = rd32(E1000_CTRL_EXT);
1743 
1744 		reg_data |= E1000_CTRL_EXT_PFRSTD;
1745 		wr32(E1000_CTRL_EXT, reg_data);
1746 	}
1747 
1748 	netif_tx_start_all_queues(adapter->netdev);
1749 
1750 	/* start the watchdog. */
1751 	hw->mac.get_link_status = 1;
1752 	schedule_work(&adapter->watchdog_task);
1753 
1754 	if ((adapter->flags & IGB_FLAG_EEE) &&
1755 	    (!hw->dev_spec._82575.eee_disable))
1756 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1757 
1758 	return 0;
1759 }
1760 
1761 void igb_down(struct igb_adapter *adapter)
1762 {
1763 	struct net_device *netdev = adapter->netdev;
1764 	struct e1000_hw *hw = &adapter->hw;
1765 	u32 tctl, rctl;
1766 	int i;
1767 
1768 	/* signal that we're down so the interrupt handler does not
1769 	 * reschedule our watchdog timer
1770 	 */
1771 	set_bit(__IGB_DOWN, &adapter->state);
1772 
1773 	/* disable receives in the hardware */
1774 	rctl = rd32(E1000_RCTL);
1775 	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1776 	/* flush and sleep below */
1777 
1778 	netif_tx_stop_all_queues(netdev);
1779 
1780 	/* disable transmits in the hardware */
1781 	tctl = rd32(E1000_TCTL);
1782 	tctl &= ~E1000_TCTL_EN;
1783 	wr32(E1000_TCTL, tctl);
1784 	/* flush both disables and wait for them to finish */
1785 	wrfl();
1786 	usleep_range(10000, 11000);
1787 
1788 	igb_irq_disable(adapter);
1789 
1790 	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1791 
1792 	for (i = 0; i < adapter->num_q_vectors; i++) {
1793 		napi_synchronize(&(adapter->q_vector[i]->napi));
1794 		napi_disable(&(adapter->q_vector[i]->napi));
1795 	}
1796 
1797 
1798 	del_timer_sync(&adapter->watchdog_timer);
1799 	del_timer_sync(&adapter->phy_info_timer);
1800 
1801 	netif_carrier_off(netdev);
1802 
1803 	/* record the stats before reset*/
1804 	spin_lock(&adapter->stats64_lock);
1805 	igb_update_stats(adapter, &adapter->stats64);
1806 	spin_unlock(&adapter->stats64_lock);
1807 
1808 	adapter->link_speed = 0;
1809 	adapter->link_duplex = 0;
1810 
1811 	if (!pci_channel_offline(adapter->pdev))
1812 		igb_reset(adapter);
1813 	igb_clean_all_tx_rings(adapter);
1814 	igb_clean_all_rx_rings(adapter);
1815 #ifdef CONFIG_IGB_DCA
1816 
1817 	/* since we reset the hardware DCA settings were cleared */
1818 	igb_setup_dca(adapter);
1819 #endif
1820 }
1821 
1822 void igb_reinit_locked(struct igb_adapter *adapter)
1823 {
1824 	WARN_ON(in_interrupt());
1825 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1826 		usleep_range(1000, 2000);
1827 	igb_down(adapter);
1828 	igb_up(adapter);
1829 	clear_bit(__IGB_RESETTING, &adapter->state);
1830 }
1831 
1832 /** igb_enable_mas - Media Autosense re-enable after swap
1833  *
1834  * @adapter: adapter struct
1835  **/
1836 static s32 igb_enable_mas(struct igb_adapter *adapter)
1837 {
1838 	struct e1000_hw *hw = &adapter->hw;
1839 	u32 connsw;
1840 	s32 ret_val = 0;
1841 
1842 	connsw = rd32(E1000_CONNSW);
1843 	if (!(hw->phy.media_type == e1000_media_type_copper))
1844 		return ret_val;
1845 
1846 	/* configure for SerDes media detect */
1847 	if (!(connsw & E1000_CONNSW_SERDESD)) {
1848 		connsw |= E1000_CONNSW_ENRGSRC;
1849 		connsw |= E1000_CONNSW_AUTOSENSE_EN;
1850 		wr32(E1000_CONNSW, connsw);
1851 		wrfl();
1852 	} else if (connsw & E1000_CONNSW_SERDESD) {
1853 		/* already SerDes, no need to enable anything */
1854 		return ret_val;
1855 	} else {
1856 		netdev_info(adapter->netdev,
1857 			"MAS: Unable to configure feature, disabling..\n");
1858 		adapter->flags &= ~IGB_FLAG_MAS_ENABLE;
1859 	}
1860 	return ret_val;
1861 }
1862 
1863 void igb_reset(struct igb_adapter *adapter)
1864 {
1865 	struct pci_dev *pdev = adapter->pdev;
1866 	struct e1000_hw *hw = &adapter->hw;
1867 	struct e1000_mac_info *mac = &hw->mac;
1868 	struct e1000_fc_info *fc = &hw->fc;
1869 	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1870 
1871 	/* Repartition Pba for greater than 9k mtu
1872 	 * To take effect CTRL.RST is required.
1873 	 */
1874 	switch (mac->type) {
1875 	case e1000_i350:
1876 	case e1000_i354:
1877 	case e1000_82580:
1878 		pba = rd32(E1000_RXPBS);
1879 		pba = igb_rxpbs_adjust_82580(pba);
1880 		break;
1881 	case e1000_82576:
1882 		pba = rd32(E1000_RXPBS);
1883 		pba &= E1000_RXPBS_SIZE_MASK_82576;
1884 		break;
1885 	case e1000_82575:
1886 	case e1000_i210:
1887 	case e1000_i211:
1888 	default:
1889 		pba = E1000_PBA_34K;
1890 		break;
1891 	}
1892 
1893 	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1894 	    (mac->type < e1000_82576)) {
1895 		/* adjust PBA for jumbo frames */
1896 		wr32(E1000_PBA, pba);
1897 
1898 		/* To maintain wire speed transmits, the Tx FIFO should be
1899 		 * large enough to accommodate two full transmit packets,
1900 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
1901 		 * the Rx FIFO should be large enough to accommodate at least
1902 		 * one full receive packet and is similarly rounded up and
1903 		 * expressed in KB.
1904 		 */
1905 		pba = rd32(E1000_PBA);
1906 		/* upper 16 bits has Tx packet buffer allocation size in KB */
1907 		tx_space = pba >> 16;
1908 		/* lower 16 bits has Rx packet buffer allocation size in KB */
1909 		pba &= 0xffff;
1910 		/* the Tx fifo also stores 16 bytes of information about the Tx
1911 		 * but don't include ethernet FCS because hardware appends it
1912 		 */
1913 		min_tx_space = (adapter->max_frame_size +
1914 				sizeof(union e1000_adv_tx_desc) -
1915 				ETH_FCS_LEN) * 2;
1916 		min_tx_space = ALIGN(min_tx_space, 1024);
1917 		min_tx_space >>= 10;
1918 		/* software strips receive CRC, so leave room for it */
1919 		min_rx_space = adapter->max_frame_size;
1920 		min_rx_space = ALIGN(min_rx_space, 1024);
1921 		min_rx_space >>= 10;
1922 
1923 		/* If current Tx allocation is less than the min Tx FIFO size,
1924 		 * and the min Tx FIFO size is less than the current Rx FIFO
1925 		 * allocation, take space away from current Rx allocation
1926 		 */
1927 		if (tx_space < min_tx_space &&
1928 		    ((min_tx_space - tx_space) < pba)) {
1929 			pba = pba - (min_tx_space - tx_space);
1930 
1931 			/* if short on Rx space, Rx wins and must trump Tx
1932 			 * adjustment
1933 			 */
1934 			if (pba < min_rx_space)
1935 				pba = min_rx_space;
1936 		}
1937 		wr32(E1000_PBA, pba);
1938 	}
1939 
1940 	/* flow control settings */
1941 	/* The high water mark must be low enough to fit one full frame
1942 	 * (or the size used for early receive) above it in the Rx FIFO.
1943 	 * Set it to the lower of:
1944 	 * - 90% of the Rx FIFO size, or
1945 	 * - the full Rx FIFO size minus one full frame
1946 	 */
1947 	hwm = min(((pba << 10) * 9 / 10),
1948 			((pba << 10) - 2 * adapter->max_frame_size));
1949 
1950 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1951 	fc->low_water = fc->high_water - 16;
1952 	fc->pause_time = 0xFFFF;
1953 	fc->send_xon = 1;
1954 	fc->current_mode = fc->requested_mode;
1955 
1956 	/* disable receive for all VFs and wait one second */
1957 	if (adapter->vfs_allocated_count) {
1958 		int i;
1959 
1960 		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1961 			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1962 
1963 		/* ping all the active vfs to let them know we are going down */
1964 		igb_ping_all_vfs(adapter);
1965 
1966 		/* disable transmits and receives */
1967 		wr32(E1000_VFRE, 0);
1968 		wr32(E1000_VFTE, 0);
1969 	}
1970 
1971 	/* Allow time for pending master requests to run */
1972 	hw->mac.ops.reset_hw(hw);
1973 	wr32(E1000_WUC, 0);
1974 
1975 	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1976 		/* need to resetup here after media swap */
1977 		adapter->ei.get_invariants(hw);
1978 		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1979 	}
1980 	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
1981 		if (igb_enable_mas(adapter))
1982 			dev_err(&pdev->dev,
1983 				"Error enabling Media Auto Sense\n");
1984 	}
1985 	if (hw->mac.ops.init_hw(hw))
1986 		dev_err(&pdev->dev, "Hardware Error\n");
1987 
1988 	/* Flow control settings reset on hardware reset, so guarantee flow
1989 	 * control is off when forcing speed.
1990 	 */
1991 	if (!hw->mac.autoneg)
1992 		igb_force_mac_fc(hw);
1993 
1994 	igb_init_dmac(adapter, pba);
1995 #ifdef CONFIG_IGB_HWMON
1996 	/* Re-initialize the thermal sensor on i350 devices. */
1997 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
1998 		if (mac->type == e1000_i350 && hw->bus.func == 0) {
1999 			/* If present, re-initialize the external thermal sensor
2000 			 * interface.
2001 			 */
2002 			if (adapter->ets)
2003 				mac->ops.init_thermal_sensor_thresh(hw);
2004 		}
2005 	}
2006 #endif
2007 	/* Re-establish EEE setting */
2008 	if (hw->phy.media_type == e1000_media_type_copper) {
2009 		switch (mac->type) {
2010 		case e1000_i350:
2011 		case e1000_i210:
2012 		case e1000_i211:
2013 			igb_set_eee_i350(hw);
2014 			break;
2015 		case e1000_i354:
2016 			igb_set_eee_i354(hw);
2017 			break;
2018 		default:
2019 			break;
2020 		}
2021 	}
2022 	if (!netif_running(adapter->netdev))
2023 		igb_power_down_link(adapter);
2024 
2025 	igb_update_mng_vlan(adapter);
2026 
2027 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2028 	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2029 
2030 	/* Re-enable PTP, where applicable. */
2031 	igb_ptp_reset(adapter);
2032 
2033 	igb_get_phy_info(hw);
2034 }
2035 
2036 static netdev_features_t igb_fix_features(struct net_device *netdev,
2037 	netdev_features_t features)
2038 {
2039 	/* Since there is no support for separate Rx/Tx vlan accel
2040 	 * enable/disable make sure Tx flag is always in same state as Rx.
2041 	 */
2042 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2043 		features |= NETIF_F_HW_VLAN_CTAG_TX;
2044 	else
2045 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2046 
2047 	return features;
2048 }
2049 
2050 static int igb_set_features(struct net_device *netdev,
2051 	netdev_features_t features)
2052 {
2053 	netdev_features_t changed = netdev->features ^ features;
2054 	struct igb_adapter *adapter = netdev_priv(netdev);
2055 
2056 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2057 		igb_vlan_mode(netdev, features);
2058 
2059 	if (!(changed & NETIF_F_RXALL))
2060 		return 0;
2061 
2062 	netdev->features = features;
2063 
2064 	if (netif_running(netdev))
2065 		igb_reinit_locked(adapter);
2066 	else
2067 		igb_reset(adapter);
2068 
2069 	return 0;
2070 }
2071 
2072 static const struct net_device_ops igb_netdev_ops = {
2073 	.ndo_open		= igb_open,
2074 	.ndo_stop		= igb_close,
2075 	.ndo_start_xmit		= igb_xmit_frame,
2076 	.ndo_get_stats64	= igb_get_stats64,
2077 	.ndo_set_rx_mode	= igb_set_rx_mode,
2078 	.ndo_set_mac_address	= igb_set_mac,
2079 	.ndo_change_mtu		= igb_change_mtu,
2080 	.ndo_do_ioctl		= igb_ioctl,
2081 	.ndo_tx_timeout		= igb_tx_timeout,
2082 	.ndo_validate_addr	= eth_validate_addr,
2083 	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
2084 	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
2085 	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
2086 	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
2087 	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
2088 	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
2089 	.ndo_get_vf_config	= igb_ndo_get_vf_config,
2090 #ifdef CONFIG_NET_POLL_CONTROLLER
2091 	.ndo_poll_controller	= igb_netpoll,
2092 #endif
2093 	.ndo_fix_features	= igb_fix_features,
2094 	.ndo_set_features	= igb_set_features,
2095 };
2096 
2097 /**
2098  * igb_set_fw_version - Configure version string for ethtool
2099  * @adapter: adapter struct
2100  **/
2101 void igb_set_fw_version(struct igb_adapter *adapter)
2102 {
2103 	struct e1000_hw *hw = &adapter->hw;
2104 	struct e1000_fw_version fw;
2105 
2106 	igb_get_fw_version(hw, &fw);
2107 
2108 	switch (hw->mac.type) {
2109 	case e1000_i210:
2110 	case e1000_i211:
2111 		if (!(igb_get_flash_presence_i210(hw))) {
2112 			snprintf(adapter->fw_version,
2113 				 sizeof(adapter->fw_version),
2114 				 "%2d.%2d-%d",
2115 				 fw.invm_major, fw.invm_minor,
2116 				 fw.invm_img_type);
2117 			break;
2118 		}
2119 		/* fall through */
2120 	default:
2121 		/* if option is rom valid, display its version too */
2122 		if (fw.or_valid) {
2123 			snprintf(adapter->fw_version,
2124 				 sizeof(adapter->fw_version),
2125 				 "%d.%d, 0x%08x, %d.%d.%d",
2126 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
2127 				 fw.or_major, fw.or_build, fw.or_patch);
2128 		/* no option rom */
2129 		} else if (fw.etrack_id != 0X0000) {
2130 			snprintf(adapter->fw_version,
2131 			    sizeof(adapter->fw_version),
2132 			    "%d.%d, 0x%08x",
2133 			    fw.eep_major, fw.eep_minor, fw.etrack_id);
2134 		} else {
2135 		snprintf(adapter->fw_version,
2136 		    sizeof(adapter->fw_version),
2137 		    "%d.%d.%d",
2138 		    fw.eep_major, fw.eep_minor, fw.eep_build);
2139 		}
2140 		break;
2141 	}
2142 }
2143 
2144 /**
2145  * igb_init_mas - init Media Autosense feature if enabled in the NVM
2146  *
2147  * @adapter: adapter struct
2148  **/
2149 static void igb_init_mas(struct igb_adapter *adapter)
2150 {
2151 	struct e1000_hw *hw = &adapter->hw;
2152 	u16 eeprom_data;
2153 
2154 	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2155 	switch (hw->bus.func) {
2156 	case E1000_FUNC_0:
2157 		if (eeprom_data & IGB_MAS_ENABLE_0) {
2158 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2159 			netdev_info(adapter->netdev,
2160 				"MAS: Enabling Media Autosense for port %d\n",
2161 				hw->bus.func);
2162 		}
2163 		break;
2164 	case E1000_FUNC_1:
2165 		if (eeprom_data & IGB_MAS_ENABLE_1) {
2166 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2167 			netdev_info(adapter->netdev,
2168 				"MAS: Enabling Media Autosense for port %d\n",
2169 				hw->bus.func);
2170 		}
2171 		break;
2172 	case E1000_FUNC_2:
2173 		if (eeprom_data & IGB_MAS_ENABLE_2) {
2174 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2175 			netdev_info(adapter->netdev,
2176 				"MAS: Enabling Media Autosense for port %d\n",
2177 				hw->bus.func);
2178 		}
2179 		break;
2180 	case E1000_FUNC_3:
2181 		if (eeprom_data & IGB_MAS_ENABLE_3) {
2182 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2183 			netdev_info(adapter->netdev,
2184 				"MAS: Enabling Media Autosense for port %d\n",
2185 				hw->bus.func);
2186 		}
2187 		break;
2188 	default:
2189 		/* Shouldn't get here */
2190 		netdev_err(adapter->netdev,
2191 			"MAS: Invalid port configuration, returning\n");
2192 		break;
2193 	}
2194 }
2195 
2196 /**
2197  *  igb_init_i2c - Init I2C interface
2198  *  @adapter: pointer to adapter structure
2199  **/
2200 static s32 igb_init_i2c(struct igb_adapter *adapter)
2201 {
2202 	s32 status = 0;
2203 
2204 	/* I2C interface supported on i350 devices */
2205 	if (adapter->hw.mac.type != e1000_i350)
2206 		return 0;
2207 
2208 	/* Initialize the i2c bus which is controlled by the registers.
2209 	 * This bus will use the i2c_algo_bit structue that implements
2210 	 * the protocol through toggling of the 4 bits in the register.
2211 	 */
2212 	adapter->i2c_adap.owner = THIS_MODULE;
2213 	adapter->i2c_algo = igb_i2c_algo;
2214 	adapter->i2c_algo.data = adapter;
2215 	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2216 	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2217 	strlcpy(adapter->i2c_adap.name, "igb BB",
2218 		sizeof(adapter->i2c_adap.name));
2219 	status = i2c_bit_add_bus(&adapter->i2c_adap);
2220 	return status;
2221 }
2222 
2223 /**
2224  *  igb_probe - Device Initialization Routine
2225  *  @pdev: PCI device information struct
2226  *  @ent: entry in igb_pci_tbl
2227  *
2228  *  Returns 0 on success, negative on failure
2229  *
2230  *  igb_probe initializes an adapter identified by a pci_dev structure.
2231  *  The OS initialization, configuring of the adapter private structure,
2232  *  and a hardware reset occur.
2233  **/
2234 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2235 {
2236 	struct net_device *netdev;
2237 	struct igb_adapter *adapter;
2238 	struct e1000_hw *hw;
2239 	u16 eeprom_data = 0;
2240 	s32 ret_val;
2241 	static int global_quad_port_a; /* global quad port a indication */
2242 	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2243 	int err, pci_using_dac;
2244 	u8 part_str[E1000_PBANUM_LENGTH];
2245 
2246 	/* Catch broken hardware that put the wrong VF device ID in
2247 	 * the PCIe SR-IOV capability.
2248 	 */
2249 	if (pdev->is_virtfn) {
2250 		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2251 			pci_name(pdev), pdev->vendor, pdev->device);
2252 		return -EINVAL;
2253 	}
2254 
2255 	err = pci_enable_device_mem(pdev);
2256 	if (err)
2257 		return err;
2258 
2259 	pci_using_dac = 0;
2260 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2261 	if (!err) {
2262 		pci_using_dac = 1;
2263 	} else {
2264 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2265 		if (err) {
2266 			dev_err(&pdev->dev,
2267 				"No usable DMA configuration, aborting\n");
2268 			goto err_dma;
2269 		}
2270 	}
2271 
2272 	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2273 					   IORESOURCE_MEM),
2274 					   igb_driver_name);
2275 	if (err)
2276 		goto err_pci_reg;
2277 
2278 	pci_enable_pcie_error_reporting(pdev);
2279 
2280 	pci_set_master(pdev);
2281 	pci_save_state(pdev);
2282 
2283 	err = -ENOMEM;
2284 	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2285 				   IGB_MAX_TX_QUEUES);
2286 	if (!netdev)
2287 		goto err_alloc_etherdev;
2288 
2289 	SET_NETDEV_DEV(netdev, &pdev->dev);
2290 
2291 	pci_set_drvdata(pdev, netdev);
2292 	adapter = netdev_priv(netdev);
2293 	adapter->netdev = netdev;
2294 	adapter->pdev = pdev;
2295 	hw = &adapter->hw;
2296 	hw->back = adapter;
2297 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2298 
2299 	err = -EIO;
2300 	hw->hw_addr = pci_iomap(pdev, 0, 0);
2301 	if (!hw->hw_addr)
2302 		goto err_ioremap;
2303 
2304 	netdev->netdev_ops = &igb_netdev_ops;
2305 	igb_set_ethtool_ops(netdev);
2306 	netdev->watchdog_timeo = 5 * HZ;
2307 
2308 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2309 
2310 	netdev->mem_start = pci_resource_start(pdev, 0);
2311 	netdev->mem_end = pci_resource_end(pdev, 0);
2312 
2313 	/* PCI config space info */
2314 	hw->vendor_id = pdev->vendor;
2315 	hw->device_id = pdev->device;
2316 	hw->revision_id = pdev->revision;
2317 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2318 	hw->subsystem_device_id = pdev->subsystem_device;
2319 
2320 	/* Copy the default MAC, PHY and NVM function pointers */
2321 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2322 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2323 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2324 	/* Initialize skew-specific constants */
2325 	err = ei->get_invariants(hw);
2326 	if (err)
2327 		goto err_sw_init;
2328 
2329 	/* setup the private structure */
2330 	err = igb_sw_init(adapter);
2331 	if (err)
2332 		goto err_sw_init;
2333 
2334 	igb_get_bus_info_pcie(hw);
2335 
2336 	hw->phy.autoneg_wait_to_complete = false;
2337 
2338 	/* Copper options */
2339 	if (hw->phy.media_type == e1000_media_type_copper) {
2340 		hw->phy.mdix = AUTO_ALL_MODES;
2341 		hw->phy.disable_polarity_correction = false;
2342 		hw->phy.ms_type = e1000_ms_hw_default;
2343 	}
2344 
2345 	if (igb_check_reset_block(hw))
2346 		dev_info(&pdev->dev,
2347 			"PHY reset is blocked due to SOL/IDER session.\n");
2348 
2349 	/* features is initialized to 0 in allocation, it might have bits
2350 	 * set by igb_sw_init so we should use an or instead of an
2351 	 * assignment.
2352 	 */
2353 	netdev->features |= NETIF_F_SG |
2354 			    NETIF_F_IP_CSUM |
2355 			    NETIF_F_IPV6_CSUM |
2356 			    NETIF_F_TSO |
2357 			    NETIF_F_TSO6 |
2358 			    NETIF_F_RXHASH |
2359 			    NETIF_F_RXCSUM |
2360 			    NETIF_F_HW_VLAN_CTAG_RX |
2361 			    NETIF_F_HW_VLAN_CTAG_TX;
2362 
2363 	/* copy netdev features into list of user selectable features */
2364 	netdev->hw_features |= netdev->features;
2365 	netdev->hw_features |= NETIF_F_RXALL;
2366 
2367 	/* set this bit last since it cannot be part of hw_features */
2368 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2369 
2370 	netdev->vlan_features |= NETIF_F_TSO |
2371 				 NETIF_F_TSO6 |
2372 				 NETIF_F_IP_CSUM |
2373 				 NETIF_F_IPV6_CSUM |
2374 				 NETIF_F_SG;
2375 
2376 	netdev->priv_flags |= IFF_SUPP_NOFCS;
2377 
2378 	if (pci_using_dac) {
2379 		netdev->features |= NETIF_F_HIGHDMA;
2380 		netdev->vlan_features |= NETIF_F_HIGHDMA;
2381 	}
2382 
2383 	if (hw->mac.type >= e1000_82576) {
2384 		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2385 		netdev->features |= NETIF_F_SCTP_CSUM;
2386 	}
2387 
2388 	netdev->priv_flags |= IFF_UNICAST_FLT;
2389 
2390 	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2391 
2392 	/* before reading the NVM, reset the controller to put the device in a
2393 	 * known good starting state
2394 	 */
2395 	hw->mac.ops.reset_hw(hw);
2396 
2397 	/* make sure the NVM is good , i211/i210 parts can have special NVM
2398 	 * that doesn't contain a checksum
2399 	 */
2400 	switch (hw->mac.type) {
2401 	case e1000_i210:
2402 	case e1000_i211:
2403 		if (igb_get_flash_presence_i210(hw)) {
2404 			if (hw->nvm.ops.validate(hw) < 0) {
2405 				dev_err(&pdev->dev,
2406 					"The NVM Checksum Is Not Valid\n");
2407 				err = -EIO;
2408 				goto err_eeprom;
2409 			}
2410 		}
2411 		break;
2412 	default:
2413 		if (hw->nvm.ops.validate(hw) < 0) {
2414 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2415 			err = -EIO;
2416 			goto err_eeprom;
2417 		}
2418 		break;
2419 	}
2420 
2421 	/* copy the MAC address out of the NVM */
2422 	if (hw->mac.ops.read_mac_addr(hw))
2423 		dev_err(&pdev->dev, "NVM Read Error\n");
2424 
2425 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2426 
2427 	if (!is_valid_ether_addr(netdev->dev_addr)) {
2428 		dev_err(&pdev->dev, "Invalid MAC Address\n");
2429 		err = -EIO;
2430 		goto err_eeprom;
2431 	}
2432 
2433 	/* get firmware version for ethtool -i */
2434 	igb_set_fw_version(adapter);
2435 
2436 	/* configure RXPBSIZE and TXPBSIZE */
2437 	if (hw->mac.type == e1000_i210) {
2438 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2439 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2440 	}
2441 
2442 	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2443 		    (unsigned long) adapter);
2444 	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2445 		    (unsigned long) adapter);
2446 
2447 	INIT_WORK(&adapter->reset_task, igb_reset_task);
2448 	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2449 
2450 	/* Initialize link properties that are user-changeable */
2451 	adapter->fc_autoneg = true;
2452 	hw->mac.autoneg = true;
2453 	hw->phy.autoneg_advertised = 0x2f;
2454 
2455 	hw->fc.requested_mode = e1000_fc_default;
2456 	hw->fc.current_mode = e1000_fc_default;
2457 
2458 	igb_validate_mdi_setting(hw);
2459 
2460 	/* By default, support wake on port A */
2461 	if (hw->bus.func == 0)
2462 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2463 
2464 	/* Check the NVM for wake support on non-port A ports */
2465 	if (hw->mac.type >= e1000_82580)
2466 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2467 				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2468 				 &eeprom_data);
2469 	else if (hw->bus.func == 1)
2470 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2471 
2472 	if (eeprom_data & IGB_EEPROM_APME)
2473 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2474 
2475 	/* now that we have the eeprom settings, apply the special cases where
2476 	 * the eeprom may be wrong or the board simply won't support wake on
2477 	 * lan on a particular port
2478 	 */
2479 	switch (pdev->device) {
2480 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2481 		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2482 		break;
2483 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
2484 	case E1000_DEV_ID_82576_FIBER:
2485 	case E1000_DEV_ID_82576_SERDES:
2486 		/* Wake events only supported on port A for dual fiber
2487 		 * regardless of eeprom setting
2488 		 */
2489 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2490 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2491 		break;
2492 	case E1000_DEV_ID_82576_QUAD_COPPER:
2493 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2494 		/* if quad port adapter, disable WoL on all but port A */
2495 		if (global_quad_port_a != 0)
2496 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2497 		else
2498 			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2499 		/* Reset for multiple quad port adapters */
2500 		if (++global_quad_port_a == 4)
2501 			global_quad_port_a = 0;
2502 		break;
2503 	default:
2504 		/* If the device can't wake, don't set software support */
2505 		if (!device_can_wakeup(&adapter->pdev->dev))
2506 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2507 	}
2508 
2509 	/* initialize the wol settings based on the eeprom settings */
2510 	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2511 		adapter->wol |= E1000_WUFC_MAG;
2512 
2513 	/* Some vendors want WoL disabled by default, but still supported */
2514 	if ((hw->mac.type == e1000_i350) &&
2515 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2516 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2517 		adapter->wol = 0;
2518 	}
2519 
2520 	device_set_wakeup_enable(&adapter->pdev->dev,
2521 				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2522 
2523 	/* reset the hardware with the new settings */
2524 	igb_reset(adapter);
2525 
2526 	/* Init the I2C interface */
2527 	err = igb_init_i2c(adapter);
2528 	if (err) {
2529 		dev_err(&pdev->dev, "failed to init i2c interface\n");
2530 		goto err_eeprom;
2531 	}
2532 
2533 	/* let the f/w know that the h/w is now under the control of the
2534 	 * driver.
2535 	 */
2536 	igb_get_hw_control(adapter);
2537 
2538 	strcpy(netdev->name, "eth%d");
2539 	err = register_netdev(netdev);
2540 	if (err)
2541 		goto err_register;
2542 
2543 	/* carrier off reporting is important to ethtool even BEFORE open */
2544 	netif_carrier_off(netdev);
2545 
2546 #ifdef CONFIG_IGB_DCA
2547 	if (dca_add_requester(&pdev->dev) == 0) {
2548 		adapter->flags |= IGB_FLAG_DCA_ENABLED;
2549 		dev_info(&pdev->dev, "DCA enabled\n");
2550 		igb_setup_dca(adapter);
2551 	}
2552 
2553 #endif
2554 #ifdef CONFIG_IGB_HWMON
2555 	/* Initialize the thermal sensor on i350 devices. */
2556 	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2557 		u16 ets_word;
2558 
2559 		/* Read the NVM to determine if this i350 device supports an
2560 		 * external thermal sensor.
2561 		 */
2562 		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2563 		if (ets_word != 0x0000 && ets_word != 0xFFFF)
2564 			adapter->ets = true;
2565 		else
2566 			adapter->ets = false;
2567 		if (igb_sysfs_init(adapter))
2568 			dev_err(&pdev->dev,
2569 				"failed to allocate sysfs resources\n");
2570 	} else {
2571 		adapter->ets = false;
2572 	}
2573 #endif
2574 	/* Check if Media Autosense is enabled */
2575 	adapter->ei = *ei;
2576 	if (hw->dev_spec._82575.mas_capable)
2577 		igb_init_mas(adapter);
2578 
2579 	/* do hw tstamp init after resetting */
2580 	igb_ptp_init(adapter);
2581 
2582 	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2583 	/* print bus type/speed/width info, not applicable to i354 */
2584 	if (hw->mac.type != e1000_i354) {
2585 		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2586 			 netdev->name,
2587 			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2588 			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2589 			   "unknown"),
2590 			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2591 			  "Width x4" :
2592 			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
2593 			  "Width x2" :
2594 			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
2595 			  "Width x1" : "unknown"), netdev->dev_addr);
2596 	}
2597 
2598 	if ((hw->mac.type >= e1000_i210 ||
2599 	     igb_get_flash_presence_i210(hw))) {
2600 		ret_val = igb_read_part_string(hw, part_str,
2601 					       E1000_PBANUM_LENGTH);
2602 	} else {
2603 		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2604 	}
2605 
2606 	if (ret_val)
2607 		strcpy(part_str, "Unknown");
2608 	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2609 	dev_info(&pdev->dev,
2610 		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2611 		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2612 		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2613 		adapter->num_rx_queues, adapter->num_tx_queues);
2614 	if (hw->phy.media_type == e1000_media_type_copper) {
2615 		switch (hw->mac.type) {
2616 		case e1000_i350:
2617 		case e1000_i210:
2618 		case e1000_i211:
2619 			/* Enable EEE for internal copper PHY devices */
2620 			err = igb_set_eee_i350(hw);
2621 			if ((!err) &&
2622 			    (!hw->dev_spec._82575.eee_disable)) {
2623 				adapter->eee_advert =
2624 					MDIO_EEE_100TX | MDIO_EEE_1000T;
2625 				adapter->flags |= IGB_FLAG_EEE;
2626 			}
2627 			break;
2628 		case e1000_i354:
2629 			if ((rd32(E1000_CTRL_EXT) &
2630 			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2631 				err = igb_set_eee_i354(hw);
2632 				if ((!err) &&
2633 					(!hw->dev_spec._82575.eee_disable)) {
2634 					adapter->eee_advert =
2635 					   MDIO_EEE_100TX | MDIO_EEE_1000T;
2636 					adapter->flags |= IGB_FLAG_EEE;
2637 				}
2638 			}
2639 			break;
2640 		default:
2641 			break;
2642 		}
2643 	}
2644 	pm_runtime_put_noidle(&pdev->dev);
2645 	return 0;
2646 
2647 err_register:
2648 	igb_release_hw_control(adapter);
2649 	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2650 err_eeprom:
2651 	if (!igb_check_reset_block(hw))
2652 		igb_reset_phy(hw);
2653 
2654 	if (hw->flash_address)
2655 		iounmap(hw->flash_address);
2656 err_sw_init:
2657 	igb_clear_interrupt_scheme(adapter);
2658 	pci_iounmap(pdev, hw->hw_addr);
2659 err_ioremap:
2660 	free_netdev(netdev);
2661 err_alloc_etherdev:
2662 	pci_release_selected_regions(pdev,
2663 				     pci_select_bars(pdev, IORESOURCE_MEM));
2664 err_pci_reg:
2665 err_dma:
2666 	pci_disable_device(pdev);
2667 	return err;
2668 }
2669 
2670 #ifdef CONFIG_PCI_IOV
2671 static int igb_disable_sriov(struct pci_dev *pdev)
2672 {
2673 	struct net_device *netdev = pci_get_drvdata(pdev);
2674 	struct igb_adapter *adapter = netdev_priv(netdev);
2675 	struct e1000_hw *hw = &adapter->hw;
2676 
2677 	/* reclaim resources allocated to VFs */
2678 	if (adapter->vf_data) {
2679 		/* disable iov and allow time for transactions to clear */
2680 		if (pci_vfs_assigned(pdev)) {
2681 			dev_warn(&pdev->dev,
2682 				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2683 			return -EPERM;
2684 		} else {
2685 			pci_disable_sriov(pdev);
2686 			msleep(500);
2687 		}
2688 
2689 		kfree(adapter->vf_data);
2690 		adapter->vf_data = NULL;
2691 		adapter->vfs_allocated_count = 0;
2692 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2693 		wrfl();
2694 		msleep(100);
2695 		dev_info(&pdev->dev, "IOV Disabled\n");
2696 
2697 		/* Re-enable DMA Coalescing flag since IOV is turned off */
2698 		adapter->flags |= IGB_FLAG_DMAC;
2699 	}
2700 
2701 	return 0;
2702 }
2703 
2704 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2705 {
2706 	struct net_device *netdev = pci_get_drvdata(pdev);
2707 	struct igb_adapter *adapter = netdev_priv(netdev);
2708 	int old_vfs = pci_num_vf(pdev);
2709 	int err = 0;
2710 	int i;
2711 
2712 	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2713 		err = -EPERM;
2714 		goto out;
2715 	}
2716 	if (!num_vfs)
2717 		goto out;
2718 
2719 	if (old_vfs) {
2720 		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2721 			 old_vfs, max_vfs);
2722 		adapter->vfs_allocated_count = old_vfs;
2723 	} else
2724 		adapter->vfs_allocated_count = num_vfs;
2725 
2726 	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2727 				sizeof(struct vf_data_storage), GFP_KERNEL);
2728 
2729 	/* if allocation failed then we do not support SR-IOV */
2730 	if (!adapter->vf_data) {
2731 		adapter->vfs_allocated_count = 0;
2732 		dev_err(&pdev->dev,
2733 			"Unable to allocate memory for VF Data Storage\n");
2734 		err = -ENOMEM;
2735 		goto out;
2736 	}
2737 
2738 	/* only call pci_enable_sriov() if no VFs are allocated already */
2739 	if (!old_vfs) {
2740 		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2741 		if (err)
2742 			goto err_out;
2743 	}
2744 	dev_info(&pdev->dev, "%d VFs allocated\n",
2745 		 adapter->vfs_allocated_count);
2746 	for (i = 0; i < adapter->vfs_allocated_count; i++)
2747 		igb_vf_configure(adapter, i);
2748 
2749 	/* DMA Coalescing is not supported in IOV mode. */
2750 	adapter->flags &= ~IGB_FLAG_DMAC;
2751 	goto out;
2752 
2753 err_out:
2754 	kfree(adapter->vf_data);
2755 	adapter->vf_data = NULL;
2756 	adapter->vfs_allocated_count = 0;
2757 out:
2758 	return err;
2759 }
2760 
2761 #endif
2762 /**
2763  *  igb_remove_i2c - Cleanup  I2C interface
2764  *  @adapter: pointer to adapter structure
2765  **/
2766 static void igb_remove_i2c(struct igb_adapter *adapter)
2767 {
2768 	/* free the adapter bus structure */
2769 	i2c_del_adapter(&adapter->i2c_adap);
2770 }
2771 
2772 /**
2773  *  igb_remove - Device Removal Routine
2774  *  @pdev: PCI device information struct
2775  *
2776  *  igb_remove is called by the PCI subsystem to alert the driver
2777  *  that it should release a PCI device.  The could be caused by a
2778  *  Hot-Plug event, or because the driver is going to be removed from
2779  *  memory.
2780  **/
2781 static void igb_remove(struct pci_dev *pdev)
2782 {
2783 	struct net_device *netdev = pci_get_drvdata(pdev);
2784 	struct igb_adapter *adapter = netdev_priv(netdev);
2785 	struct e1000_hw *hw = &adapter->hw;
2786 
2787 	pm_runtime_get_noresume(&pdev->dev);
2788 #ifdef CONFIG_IGB_HWMON
2789 	igb_sysfs_exit(adapter);
2790 #endif
2791 	igb_remove_i2c(adapter);
2792 	igb_ptp_stop(adapter);
2793 	/* The watchdog timer may be rescheduled, so explicitly
2794 	 * disable watchdog from being rescheduled.
2795 	 */
2796 	set_bit(__IGB_DOWN, &adapter->state);
2797 	del_timer_sync(&adapter->watchdog_timer);
2798 	del_timer_sync(&adapter->phy_info_timer);
2799 
2800 	cancel_work_sync(&adapter->reset_task);
2801 	cancel_work_sync(&adapter->watchdog_task);
2802 
2803 #ifdef CONFIG_IGB_DCA
2804 	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2805 		dev_info(&pdev->dev, "DCA disabled\n");
2806 		dca_remove_requester(&pdev->dev);
2807 		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2808 		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2809 	}
2810 #endif
2811 
2812 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2813 	 * would have already happened in close and is redundant.
2814 	 */
2815 	igb_release_hw_control(adapter);
2816 
2817 	unregister_netdev(netdev);
2818 
2819 	igb_clear_interrupt_scheme(adapter);
2820 
2821 #ifdef CONFIG_PCI_IOV
2822 	igb_disable_sriov(pdev);
2823 #endif
2824 
2825 	pci_iounmap(pdev, hw->hw_addr);
2826 	if (hw->flash_address)
2827 		iounmap(hw->flash_address);
2828 	pci_release_selected_regions(pdev,
2829 				     pci_select_bars(pdev, IORESOURCE_MEM));
2830 
2831 	kfree(adapter->shadow_vfta);
2832 	free_netdev(netdev);
2833 
2834 	pci_disable_pcie_error_reporting(pdev);
2835 
2836 	pci_disable_device(pdev);
2837 }
2838 
2839 /**
2840  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2841  *  @adapter: board private structure to initialize
2842  *
2843  *  This function initializes the vf specific data storage and then attempts to
2844  *  allocate the VFs.  The reason for ordering it this way is because it is much
2845  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2846  *  the memory for the VFs.
2847  **/
2848 static void igb_probe_vfs(struct igb_adapter *adapter)
2849 {
2850 #ifdef CONFIG_PCI_IOV
2851 	struct pci_dev *pdev = adapter->pdev;
2852 	struct e1000_hw *hw = &adapter->hw;
2853 
2854 	/* Virtualization features not supported on i210 family. */
2855 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2856 		return;
2857 
2858 	pci_sriov_set_totalvfs(pdev, 7);
2859 	igb_pci_enable_sriov(pdev, max_vfs);
2860 
2861 #endif /* CONFIG_PCI_IOV */
2862 }
2863 
2864 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2865 {
2866 	struct e1000_hw *hw = &adapter->hw;
2867 	u32 max_rss_queues;
2868 
2869 	/* Determine the maximum number of RSS queues supported. */
2870 	switch (hw->mac.type) {
2871 	case e1000_i211:
2872 		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2873 		break;
2874 	case e1000_82575:
2875 	case e1000_i210:
2876 		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2877 		break;
2878 	case e1000_i350:
2879 		/* I350 cannot do RSS and SR-IOV at the same time */
2880 		if (!!adapter->vfs_allocated_count) {
2881 			max_rss_queues = 1;
2882 			break;
2883 		}
2884 		/* fall through */
2885 	case e1000_82576:
2886 		if (!!adapter->vfs_allocated_count) {
2887 			max_rss_queues = 2;
2888 			break;
2889 		}
2890 		/* fall through */
2891 	case e1000_82580:
2892 	case e1000_i354:
2893 	default:
2894 		max_rss_queues = IGB_MAX_RX_QUEUES;
2895 		break;
2896 	}
2897 
2898 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2899 
2900 	/* Determine if we need to pair queues. */
2901 	switch (hw->mac.type) {
2902 	case e1000_82575:
2903 	case e1000_i211:
2904 		/* Device supports enough interrupts without queue pairing. */
2905 		break;
2906 	case e1000_82576:
2907 		/* If VFs are going to be allocated with RSS queues then we
2908 		 * should pair the queues in order to conserve interrupts due
2909 		 * to limited supply.
2910 		 */
2911 		if ((adapter->rss_queues > 1) &&
2912 		    (adapter->vfs_allocated_count > 6))
2913 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2914 		/* fall through */
2915 	case e1000_82580:
2916 	case e1000_i350:
2917 	case e1000_i354:
2918 	case e1000_i210:
2919 	default:
2920 		/* If rss_queues > half of max_rss_queues, pair the queues in
2921 		 * order to conserve interrupts due to limited supply.
2922 		 */
2923 		if (adapter->rss_queues > (max_rss_queues / 2))
2924 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2925 		break;
2926 	}
2927 }
2928 
2929 /**
2930  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
2931  *  @adapter: board private structure to initialize
2932  *
2933  *  igb_sw_init initializes the Adapter private data structure.
2934  *  Fields are initialized based on PCI device information and
2935  *  OS network device settings (MTU size).
2936  **/
2937 static int igb_sw_init(struct igb_adapter *adapter)
2938 {
2939 	struct e1000_hw *hw = &adapter->hw;
2940 	struct net_device *netdev = adapter->netdev;
2941 	struct pci_dev *pdev = adapter->pdev;
2942 
2943 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2944 
2945 	/* set default ring sizes */
2946 	adapter->tx_ring_count = IGB_DEFAULT_TXD;
2947 	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2948 
2949 	/* set default ITR values */
2950 	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2951 	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2952 
2953 	/* set default work limits */
2954 	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2955 
2956 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2957 				  VLAN_HLEN;
2958 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2959 
2960 	spin_lock_init(&adapter->stats64_lock);
2961 #ifdef CONFIG_PCI_IOV
2962 	switch (hw->mac.type) {
2963 	case e1000_82576:
2964 	case e1000_i350:
2965 		if (max_vfs > 7) {
2966 			dev_warn(&pdev->dev,
2967 				 "Maximum of 7 VFs per PF, using max\n");
2968 			max_vfs = adapter->vfs_allocated_count = 7;
2969 		} else
2970 			adapter->vfs_allocated_count = max_vfs;
2971 		if (adapter->vfs_allocated_count)
2972 			dev_warn(&pdev->dev,
2973 				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2974 		break;
2975 	default:
2976 		break;
2977 	}
2978 #endif /* CONFIG_PCI_IOV */
2979 
2980 	igb_init_queue_configuration(adapter);
2981 
2982 	/* Setup and initialize a copy of the hw vlan table array */
2983 	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2984 				       GFP_ATOMIC);
2985 
2986 	/* This call may decrease the number of queues */
2987 	if (igb_init_interrupt_scheme(adapter, true)) {
2988 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2989 		return -ENOMEM;
2990 	}
2991 
2992 	igb_probe_vfs(adapter);
2993 
2994 	/* Explicitly disable IRQ since the NIC can be in any state. */
2995 	igb_irq_disable(adapter);
2996 
2997 	if (hw->mac.type >= e1000_i350)
2998 		adapter->flags &= ~IGB_FLAG_DMAC;
2999 
3000 	set_bit(__IGB_DOWN, &adapter->state);
3001 	return 0;
3002 }
3003 
3004 /**
3005  *  igb_open - Called when a network interface is made active
3006  *  @netdev: network interface device structure
3007  *
3008  *  Returns 0 on success, negative value on failure
3009  *
3010  *  The open entry point is called when a network interface is made
3011  *  active by the system (IFF_UP).  At this point all resources needed
3012  *  for transmit and receive operations are allocated, the interrupt
3013  *  handler is registered with the OS, the watchdog timer is started,
3014  *  and the stack is notified that the interface is ready.
3015  **/
3016 static int __igb_open(struct net_device *netdev, bool resuming)
3017 {
3018 	struct igb_adapter *adapter = netdev_priv(netdev);
3019 	struct e1000_hw *hw = &adapter->hw;
3020 	struct pci_dev *pdev = adapter->pdev;
3021 	int err;
3022 	int i;
3023 
3024 	/* disallow open during test */
3025 	if (test_bit(__IGB_TESTING, &adapter->state)) {
3026 		WARN_ON(resuming);
3027 		return -EBUSY;
3028 	}
3029 
3030 	if (!resuming)
3031 		pm_runtime_get_sync(&pdev->dev);
3032 
3033 	netif_carrier_off(netdev);
3034 
3035 	/* allocate transmit descriptors */
3036 	err = igb_setup_all_tx_resources(adapter);
3037 	if (err)
3038 		goto err_setup_tx;
3039 
3040 	/* allocate receive descriptors */
3041 	err = igb_setup_all_rx_resources(adapter);
3042 	if (err)
3043 		goto err_setup_rx;
3044 
3045 	igb_power_up_link(adapter);
3046 
3047 	/* before we allocate an interrupt, we must be ready to handle it.
3048 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3049 	 * as soon as we call pci_request_irq, so we have to setup our
3050 	 * clean_rx handler before we do so.
3051 	 */
3052 	igb_configure(adapter);
3053 
3054 	err = igb_request_irq(adapter);
3055 	if (err)
3056 		goto err_req_irq;
3057 
3058 	/* Notify the stack of the actual queue counts. */
3059 	err = netif_set_real_num_tx_queues(adapter->netdev,
3060 					   adapter->num_tx_queues);
3061 	if (err)
3062 		goto err_set_queues;
3063 
3064 	err = netif_set_real_num_rx_queues(adapter->netdev,
3065 					   adapter->num_rx_queues);
3066 	if (err)
3067 		goto err_set_queues;
3068 
3069 	/* From here on the code is the same as igb_up() */
3070 	clear_bit(__IGB_DOWN, &adapter->state);
3071 
3072 	for (i = 0; i < adapter->num_q_vectors; i++)
3073 		napi_enable(&(adapter->q_vector[i]->napi));
3074 
3075 	/* Clear any pending interrupts. */
3076 	rd32(E1000_ICR);
3077 
3078 	igb_irq_enable(adapter);
3079 
3080 	/* notify VFs that reset has been completed */
3081 	if (adapter->vfs_allocated_count) {
3082 		u32 reg_data = rd32(E1000_CTRL_EXT);
3083 
3084 		reg_data |= E1000_CTRL_EXT_PFRSTD;
3085 		wr32(E1000_CTRL_EXT, reg_data);
3086 	}
3087 
3088 	netif_tx_start_all_queues(netdev);
3089 
3090 	if (!resuming)
3091 		pm_runtime_put(&pdev->dev);
3092 
3093 	/* start the watchdog. */
3094 	hw->mac.get_link_status = 1;
3095 	schedule_work(&adapter->watchdog_task);
3096 
3097 	return 0;
3098 
3099 err_set_queues:
3100 	igb_free_irq(adapter);
3101 err_req_irq:
3102 	igb_release_hw_control(adapter);
3103 	igb_power_down_link(adapter);
3104 	igb_free_all_rx_resources(adapter);
3105 err_setup_rx:
3106 	igb_free_all_tx_resources(adapter);
3107 err_setup_tx:
3108 	igb_reset(adapter);
3109 	if (!resuming)
3110 		pm_runtime_put(&pdev->dev);
3111 
3112 	return err;
3113 }
3114 
3115 static int igb_open(struct net_device *netdev)
3116 {
3117 	return __igb_open(netdev, false);
3118 }
3119 
3120 /**
3121  *  igb_close - Disables a network interface
3122  *  @netdev: network interface device structure
3123  *
3124  *  Returns 0, this is not allowed to fail
3125  *
3126  *  The close entry point is called when an interface is de-activated
3127  *  by the OS.  The hardware is still under the driver's control, but
3128  *  needs to be disabled.  A global MAC reset is issued to stop the
3129  *  hardware, and all transmit and receive resources are freed.
3130  **/
3131 static int __igb_close(struct net_device *netdev, bool suspending)
3132 {
3133 	struct igb_adapter *adapter = netdev_priv(netdev);
3134 	struct pci_dev *pdev = adapter->pdev;
3135 
3136 	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3137 
3138 	if (!suspending)
3139 		pm_runtime_get_sync(&pdev->dev);
3140 
3141 	igb_down(adapter);
3142 	igb_free_irq(adapter);
3143 
3144 	igb_free_all_tx_resources(adapter);
3145 	igb_free_all_rx_resources(adapter);
3146 
3147 	if (!suspending)
3148 		pm_runtime_put_sync(&pdev->dev);
3149 	return 0;
3150 }
3151 
3152 static int igb_close(struct net_device *netdev)
3153 {
3154 	return __igb_close(netdev, false);
3155 }
3156 
3157 /**
3158  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
3159  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3160  *
3161  *  Return 0 on success, negative on failure
3162  **/
3163 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3164 {
3165 	struct device *dev = tx_ring->dev;
3166 	int size;
3167 
3168 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3169 
3170 	tx_ring->tx_buffer_info = vzalloc(size);
3171 	if (!tx_ring->tx_buffer_info)
3172 		goto err;
3173 
3174 	/* round up to nearest 4K */
3175 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3176 	tx_ring->size = ALIGN(tx_ring->size, 4096);
3177 
3178 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3179 					   &tx_ring->dma, GFP_KERNEL);
3180 	if (!tx_ring->desc)
3181 		goto err;
3182 
3183 	tx_ring->next_to_use = 0;
3184 	tx_ring->next_to_clean = 0;
3185 
3186 	return 0;
3187 
3188 err:
3189 	vfree(tx_ring->tx_buffer_info);
3190 	tx_ring->tx_buffer_info = NULL;
3191 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3192 	return -ENOMEM;
3193 }
3194 
3195 /**
3196  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
3197  *				 (Descriptors) for all queues
3198  *  @adapter: board private structure
3199  *
3200  *  Return 0 on success, negative on failure
3201  **/
3202 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3203 {
3204 	struct pci_dev *pdev = adapter->pdev;
3205 	int i, err = 0;
3206 
3207 	for (i = 0; i < adapter->num_tx_queues; i++) {
3208 		err = igb_setup_tx_resources(adapter->tx_ring[i]);
3209 		if (err) {
3210 			dev_err(&pdev->dev,
3211 				"Allocation for Tx Queue %u failed\n", i);
3212 			for (i--; i >= 0; i--)
3213 				igb_free_tx_resources(adapter->tx_ring[i]);
3214 			break;
3215 		}
3216 	}
3217 
3218 	return err;
3219 }
3220 
3221 /**
3222  *  igb_setup_tctl - configure the transmit control registers
3223  *  @adapter: Board private structure
3224  **/
3225 void igb_setup_tctl(struct igb_adapter *adapter)
3226 {
3227 	struct e1000_hw *hw = &adapter->hw;
3228 	u32 tctl;
3229 
3230 	/* disable queue 0 which is enabled by default on 82575 and 82576 */
3231 	wr32(E1000_TXDCTL(0), 0);
3232 
3233 	/* Program the Transmit Control Register */
3234 	tctl = rd32(E1000_TCTL);
3235 	tctl &= ~E1000_TCTL_CT;
3236 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3237 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3238 
3239 	igb_config_collision_dist(hw);
3240 
3241 	/* Enable transmits */
3242 	tctl |= E1000_TCTL_EN;
3243 
3244 	wr32(E1000_TCTL, tctl);
3245 }
3246 
3247 /**
3248  *  igb_configure_tx_ring - Configure transmit ring after Reset
3249  *  @adapter: board private structure
3250  *  @ring: tx ring to configure
3251  *
3252  *  Configure a transmit ring after a reset.
3253  **/
3254 void igb_configure_tx_ring(struct igb_adapter *adapter,
3255 			   struct igb_ring *ring)
3256 {
3257 	struct e1000_hw *hw = &adapter->hw;
3258 	u32 txdctl = 0;
3259 	u64 tdba = ring->dma;
3260 	int reg_idx = ring->reg_idx;
3261 
3262 	/* disable the queue */
3263 	wr32(E1000_TXDCTL(reg_idx), 0);
3264 	wrfl();
3265 	mdelay(10);
3266 
3267 	wr32(E1000_TDLEN(reg_idx),
3268 	     ring->count * sizeof(union e1000_adv_tx_desc));
3269 	wr32(E1000_TDBAL(reg_idx),
3270 	     tdba & 0x00000000ffffffffULL);
3271 	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3272 
3273 	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3274 	wr32(E1000_TDH(reg_idx), 0);
3275 	writel(0, ring->tail);
3276 
3277 	txdctl |= IGB_TX_PTHRESH;
3278 	txdctl |= IGB_TX_HTHRESH << 8;
3279 	txdctl |= IGB_TX_WTHRESH << 16;
3280 
3281 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3282 	wr32(E1000_TXDCTL(reg_idx), txdctl);
3283 }
3284 
3285 /**
3286  *  igb_configure_tx - Configure transmit Unit after Reset
3287  *  @adapter: board private structure
3288  *
3289  *  Configure the Tx unit of the MAC after a reset.
3290  **/
3291 static void igb_configure_tx(struct igb_adapter *adapter)
3292 {
3293 	int i;
3294 
3295 	for (i = 0; i < adapter->num_tx_queues; i++)
3296 		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3297 }
3298 
3299 /**
3300  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3301  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3302  *
3303  *  Returns 0 on success, negative on failure
3304  **/
3305 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3306 {
3307 	struct device *dev = rx_ring->dev;
3308 	int size;
3309 
3310 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3311 
3312 	rx_ring->rx_buffer_info = vzalloc(size);
3313 	if (!rx_ring->rx_buffer_info)
3314 		goto err;
3315 
3316 	/* Round up to nearest 4K */
3317 	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3318 	rx_ring->size = ALIGN(rx_ring->size, 4096);
3319 
3320 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3321 					   &rx_ring->dma, GFP_KERNEL);
3322 	if (!rx_ring->desc)
3323 		goto err;
3324 
3325 	rx_ring->next_to_alloc = 0;
3326 	rx_ring->next_to_clean = 0;
3327 	rx_ring->next_to_use = 0;
3328 
3329 	return 0;
3330 
3331 err:
3332 	vfree(rx_ring->rx_buffer_info);
3333 	rx_ring->rx_buffer_info = NULL;
3334 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3335 	return -ENOMEM;
3336 }
3337 
3338 /**
3339  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3340  *				 (Descriptors) for all queues
3341  *  @adapter: board private structure
3342  *
3343  *  Return 0 on success, negative on failure
3344  **/
3345 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3346 {
3347 	struct pci_dev *pdev = adapter->pdev;
3348 	int i, err = 0;
3349 
3350 	for (i = 0; i < adapter->num_rx_queues; i++) {
3351 		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3352 		if (err) {
3353 			dev_err(&pdev->dev,
3354 				"Allocation for Rx Queue %u failed\n", i);
3355 			for (i--; i >= 0; i--)
3356 				igb_free_rx_resources(adapter->rx_ring[i]);
3357 			break;
3358 		}
3359 	}
3360 
3361 	return err;
3362 }
3363 
3364 /**
3365  *  igb_setup_mrqc - configure the multiple receive queue control registers
3366  *  @adapter: Board private structure
3367  **/
3368 static void igb_setup_mrqc(struct igb_adapter *adapter)
3369 {
3370 	struct e1000_hw *hw = &adapter->hw;
3371 	u32 mrqc, rxcsum;
3372 	u32 j, num_rx_queues;
3373 	static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3374 					0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3375 					0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3376 					0xFA01ACBE };
3377 
3378 	/* Fill out hash function seeds */
3379 	for (j = 0; j < 10; j++)
3380 		wr32(E1000_RSSRK(j), rsskey[j]);
3381 
3382 	num_rx_queues = adapter->rss_queues;
3383 
3384 	switch (hw->mac.type) {
3385 	case e1000_82576:
3386 		/* 82576 supports 2 RSS queues for SR-IOV */
3387 		if (adapter->vfs_allocated_count)
3388 			num_rx_queues = 2;
3389 		break;
3390 	default:
3391 		break;
3392 	}
3393 
3394 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
3395 		for (j = 0; j < IGB_RETA_SIZE; j++)
3396 			adapter->rss_indir_tbl[j] =
3397 			(j * num_rx_queues) / IGB_RETA_SIZE;
3398 		adapter->rss_indir_tbl_init = num_rx_queues;
3399 	}
3400 	igb_write_rss_indir_tbl(adapter);
3401 
3402 	/* Disable raw packet checksumming so that RSS hash is placed in
3403 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3404 	 * offloads as they are enabled by default
3405 	 */
3406 	rxcsum = rd32(E1000_RXCSUM);
3407 	rxcsum |= E1000_RXCSUM_PCSD;
3408 
3409 	if (adapter->hw.mac.type >= e1000_82576)
3410 		/* Enable Receive Checksum Offload for SCTP */
3411 		rxcsum |= E1000_RXCSUM_CRCOFL;
3412 
3413 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
3414 	wr32(E1000_RXCSUM, rxcsum);
3415 
3416 	/* Generate RSS hash based on packet types, TCP/UDP
3417 	 * port numbers and/or IPv4/v6 src and dst addresses
3418 	 */
3419 	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3420 	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
3421 	       E1000_MRQC_RSS_FIELD_IPV6 |
3422 	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
3423 	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3424 
3425 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3426 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3427 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3428 		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3429 
3430 	/* If VMDq is enabled then we set the appropriate mode for that, else
3431 	 * we default to RSS so that an RSS hash is calculated per packet even
3432 	 * if we are only using one queue
3433 	 */
3434 	if (adapter->vfs_allocated_count) {
3435 		if (hw->mac.type > e1000_82575) {
3436 			/* Set the default pool for the PF's first queue */
3437 			u32 vtctl = rd32(E1000_VT_CTL);
3438 
3439 			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3440 				   E1000_VT_CTL_DISABLE_DEF_POOL);
3441 			vtctl |= adapter->vfs_allocated_count <<
3442 				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3443 			wr32(E1000_VT_CTL, vtctl);
3444 		}
3445 		if (adapter->rss_queues > 1)
3446 			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3447 		else
3448 			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3449 	} else {
3450 		if (hw->mac.type != e1000_i211)
3451 			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3452 	}
3453 	igb_vmm_control(adapter);
3454 
3455 	wr32(E1000_MRQC, mrqc);
3456 }
3457 
3458 /**
3459  *  igb_setup_rctl - configure the receive control registers
3460  *  @adapter: Board private structure
3461  **/
3462 void igb_setup_rctl(struct igb_adapter *adapter)
3463 {
3464 	struct e1000_hw *hw = &adapter->hw;
3465 	u32 rctl;
3466 
3467 	rctl = rd32(E1000_RCTL);
3468 
3469 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3470 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3471 
3472 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3473 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3474 
3475 	/* enable stripping of CRC. It's unlikely this will break BMC
3476 	 * redirection as it did with e1000. Newer features require
3477 	 * that the HW strips the CRC.
3478 	 */
3479 	rctl |= E1000_RCTL_SECRC;
3480 
3481 	/* disable store bad packets and clear size bits. */
3482 	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3483 
3484 	/* enable LPE to prevent packets larger than max_frame_size */
3485 	rctl |= E1000_RCTL_LPE;
3486 
3487 	/* disable queue 0 to prevent tail write w/o re-config */
3488 	wr32(E1000_RXDCTL(0), 0);
3489 
3490 	/* Attention!!!  For SR-IOV PF driver operations you must enable
3491 	 * queue drop for all VF and PF queues to prevent head of line blocking
3492 	 * if an un-trusted VF does not provide descriptors to hardware.
3493 	 */
3494 	if (adapter->vfs_allocated_count) {
3495 		/* set all queue drop enable bits */
3496 		wr32(E1000_QDE, ALL_QUEUES);
3497 	}
3498 
3499 	/* This is useful for sniffing bad packets. */
3500 	if (adapter->netdev->features & NETIF_F_RXALL) {
3501 		/* UPE and MPE will be handled by normal PROMISC logic
3502 		 * in e1000e_set_rx_mode
3503 		 */
3504 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3505 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3506 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3507 
3508 		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3509 			  E1000_RCTL_DPF | /* Allow filtered pause */
3510 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3511 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3512 		 * and that breaks VLANs.
3513 		 */
3514 	}
3515 
3516 	wr32(E1000_RCTL, rctl);
3517 }
3518 
3519 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3520 				   int vfn)
3521 {
3522 	struct e1000_hw *hw = &adapter->hw;
3523 	u32 vmolr;
3524 
3525 	/* if it isn't the PF check to see if VFs are enabled and
3526 	 * increase the size to support vlan tags
3527 	 */
3528 	if (vfn < adapter->vfs_allocated_count &&
3529 	    adapter->vf_data[vfn].vlans_enabled)
3530 		size += VLAN_TAG_SIZE;
3531 
3532 	vmolr = rd32(E1000_VMOLR(vfn));
3533 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
3534 	vmolr |= size | E1000_VMOLR_LPE;
3535 	wr32(E1000_VMOLR(vfn), vmolr);
3536 
3537 	return 0;
3538 }
3539 
3540 /**
3541  *  igb_rlpml_set - set maximum receive packet size
3542  *  @adapter: board private structure
3543  *
3544  *  Configure maximum receivable packet size.
3545  **/
3546 static void igb_rlpml_set(struct igb_adapter *adapter)
3547 {
3548 	u32 max_frame_size = adapter->max_frame_size;
3549 	struct e1000_hw *hw = &adapter->hw;
3550 	u16 pf_id = adapter->vfs_allocated_count;
3551 
3552 	if (pf_id) {
3553 		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3554 		/* If we're in VMDQ or SR-IOV mode, then set global RLPML
3555 		 * to our max jumbo frame size, in case we need to enable
3556 		 * jumbo frames on one of the rings later.
3557 		 * This will not pass over-length frames into the default
3558 		 * queue because it's gated by the VMOLR.RLPML.
3559 		 */
3560 		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3561 	}
3562 
3563 	wr32(E1000_RLPML, max_frame_size);
3564 }
3565 
3566 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3567 				 int vfn, bool aupe)
3568 {
3569 	struct e1000_hw *hw = &adapter->hw;
3570 	u32 vmolr;
3571 
3572 	/* This register exists only on 82576 and newer so if we are older then
3573 	 * we should exit and do nothing
3574 	 */
3575 	if (hw->mac.type < e1000_82576)
3576 		return;
3577 
3578 	vmolr = rd32(E1000_VMOLR(vfn));
3579 	vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3580 	if (hw->mac.type == e1000_i350) {
3581 		u32 dvmolr;
3582 
3583 		dvmolr = rd32(E1000_DVMOLR(vfn));
3584 		dvmolr |= E1000_DVMOLR_STRVLAN;
3585 		wr32(E1000_DVMOLR(vfn), dvmolr);
3586 	}
3587 	if (aupe)
3588 		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3589 	else
3590 		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3591 
3592 	/* clear all bits that might not be set */
3593 	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3594 
3595 	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3596 		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3597 	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
3598 	 * multicast packets
3599 	 */
3600 	if (vfn <= adapter->vfs_allocated_count)
3601 		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3602 
3603 	wr32(E1000_VMOLR(vfn), vmolr);
3604 }
3605 
3606 /**
3607  *  igb_configure_rx_ring - Configure a receive ring after Reset
3608  *  @adapter: board private structure
3609  *  @ring: receive ring to be configured
3610  *
3611  *  Configure the Rx unit of the MAC after a reset.
3612  **/
3613 void igb_configure_rx_ring(struct igb_adapter *adapter,
3614 			   struct igb_ring *ring)
3615 {
3616 	struct e1000_hw *hw = &adapter->hw;
3617 	u64 rdba = ring->dma;
3618 	int reg_idx = ring->reg_idx;
3619 	u32 srrctl = 0, rxdctl = 0;
3620 
3621 	/* disable the queue */
3622 	wr32(E1000_RXDCTL(reg_idx), 0);
3623 
3624 	/* Set DMA base address registers */
3625 	wr32(E1000_RDBAL(reg_idx),
3626 	     rdba & 0x00000000ffffffffULL);
3627 	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3628 	wr32(E1000_RDLEN(reg_idx),
3629 	     ring->count * sizeof(union e1000_adv_rx_desc));
3630 
3631 	/* initialize head and tail */
3632 	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3633 	wr32(E1000_RDH(reg_idx), 0);
3634 	writel(0, ring->tail);
3635 
3636 	/* set descriptor configuration */
3637 	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3638 	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3639 	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3640 	if (hw->mac.type >= e1000_82580)
3641 		srrctl |= E1000_SRRCTL_TIMESTAMP;
3642 	/* Only set Drop Enable if we are supporting multiple queues */
3643 	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3644 		srrctl |= E1000_SRRCTL_DROP_EN;
3645 
3646 	wr32(E1000_SRRCTL(reg_idx), srrctl);
3647 
3648 	/* set filtering for VMDQ pools */
3649 	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3650 
3651 	rxdctl |= IGB_RX_PTHRESH;
3652 	rxdctl |= IGB_RX_HTHRESH << 8;
3653 	rxdctl |= IGB_RX_WTHRESH << 16;
3654 
3655 	/* enable receive descriptor fetching */
3656 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3657 	wr32(E1000_RXDCTL(reg_idx), rxdctl);
3658 }
3659 
3660 /**
3661  *  igb_configure_rx - Configure receive Unit after Reset
3662  *  @adapter: board private structure
3663  *
3664  *  Configure the Rx unit of the MAC after a reset.
3665  **/
3666 static void igb_configure_rx(struct igb_adapter *adapter)
3667 {
3668 	int i;
3669 
3670 	/* set UTA to appropriate mode */
3671 	igb_set_uta(adapter);
3672 
3673 	/* set the correct pool for the PF default MAC address in entry 0 */
3674 	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3675 			 adapter->vfs_allocated_count);
3676 
3677 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3678 	 * the Base and Length of the Rx Descriptor Ring
3679 	 */
3680 	for (i = 0; i < adapter->num_rx_queues; i++)
3681 		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3682 }
3683 
3684 /**
3685  *  igb_free_tx_resources - Free Tx Resources per Queue
3686  *  @tx_ring: Tx descriptor ring for a specific queue
3687  *
3688  *  Free all transmit software resources
3689  **/
3690 void igb_free_tx_resources(struct igb_ring *tx_ring)
3691 {
3692 	igb_clean_tx_ring(tx_ring);
3693 
3694 	vfree(tx_ring->tx_buffer_info);
3695 	tx_ring->tx_buffer_info = NULL;
3696 
3697 	/* if not set, then don't free */
3698 	if (!tx_ring->desc)
3699 		return;
3700 
3701 	dma_free_coherent(tx_ring->dev, tx_ring->size,
3702 			  tx_ring->desc, tx_ring->dma);
3703 
3704 	tx_ring->desc = NULL;
3705 }
3706 
3707 /**
3708  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3709  *  @adapter: board private structure
3710  *
3711  *  Free all transmit software resources
3712  **/
3713 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3714 {
3715 	int i;
3716 
3717 	for (i = 0; i < adapter->num_tx_queues; i++)
3718 		igb_free_tx_resources(adapter->tx_ring[i]);
3719 }
3720 
3721 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3722 				    struct igb_tx_buffer *tx_buffer)
3723 {
3724 	if (tx_buffer->skb) {
3725 		dev_kfree_skb_any(tx_buffer->skb);
3726 		if (dma_unmap_len(tx_buffer, len))
3727 			dma_unmap_single(ring->dev,
3728 					 dma_unmap_addr(tx_buffer, dma),
3729 					 dma_unmap_len(tx_buffer, len),
3730 					 DMA_TO_DEVICE);
3731 	} else if (dma_unmap_len(tx_buffer, len)) {
3732 		dma_unmap_page(ring->dev,
3733 			       dma_unmap_addr(tx_buffer, dma),
3734 			       dma_unmap_len(tx_buffer, len),
3735 			       DMA_TO_DEVICE);
3736 	}
3737 	tx_buffer->next_to_watch = NULL;
3738 	tx_buffer->skb = NULL;
3739 	dma_unmap_len_set(tx_buffer, len, 0);
3740 	/* buffer_info must be completely set up in the transmit path */
3741 }
3742 
3743 /**
3744  *  igb_clean_tx_ring - Free Tx Buffers
3745  *  @tx_ring: ring to be cleaned
3746  **/
3747 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3748 {
3749 	struct igb_tx_buffer *buffer_info;
3750 	unsigned long size;
3751 	u16 i;
3752 
3753 	if (!tx_ring->tx_buffer_info)
3754 		return;
3755 	/* Free all the Tx ring sk_buffs */
3756 
3757 	for (i = 0; i < tx_ring->count; i++) {
3758 		buffer_info = &tx_ring->tx_buffer_info[i];
3759 		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3760 	}
3761 
3762 	netdev_tx_reset_queue(txring_txq(tx_ring));
3763 
3764 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3765 	memset(tx_ring->tx_buffer_info, 0, size);
3766 
3767 	/* Zero out the descriptor ring */
3768 	memset(tx_ring->desc, 0, tx_ring->size);
3769 
3770 	tx_ring->next_to_use = 0;
3771 	tx_ring->next_to_clean = 0;
3772 }
3773 
3774 /**
3775  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3776  *  @adapter: board private structure
3777  **/
3778 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3779 {
3780 	int i;
3781 
3782 	for (i = 0; i < adapter->num_tx_queues; i++)
3783 		igb_clean_tx_ring(adapter->tx_ring[i]);
3784 }
3785 
3786 /**
3787  *  igb_free_rx_resources - Free Rx Resources
3788  *  @rx_ring: ring to clean the resources from
3789  *
3790  *  Free all receive software resources
3791  **/
3792 void igb_free_rx_resources(struct igb_ring *rx_ring)
3793 {
3794 	igb_clean_rx_ring(rx_ring);
3795 
3796 	vfree(rx_ring->rx_buffer_info);
3797 	rx_ring->rx_buffer_info = NULL;
3798 
3799 	/* if not set, then don't free */
3800 	if (!rx_ring->desc)
3801 		return;
3802 
3803 	dma_free_coherent(rx_ring->dev, rx_ring->size,
3804 			  rx_ring->desc, rx_ring->dma);
3805 
3806 	rx_ring->desc = NULL;
3807 }
3808 
3809 /**
3810  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3811  *  @adapter: board private structure
3812  *
3813  *  Free all receive software resources
3814  **/
3815 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3816 {
3817 	int i;
3818 
3819 	for (i = 0; i < adapter->num_rx_queues; i++)
3820 		igb_free_rx_resources(adapter->rx_ring[i]);
3821 }
3822 
3823 /**
3824  *  igb_clean_rx_ring - Free Rx Buffers per Queue
3825  *  @rx_ring: ring to free buffers from
3826  **/
3827 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3828 {
3829 	unsigned long size;
3830 	u16 i;
3831 
3832 	if (rx_ring->skb)
3833 		dev_kfree_skb(rx_ring->skb);
3834 	rx_ring->skb = NULL;
3835 
3836 	if (!rx_ring->rx_buffer_info)
3837 		return;
3838 
3839 	/* Free all the Rx ring sk_buffs */
3840 	for (i = 0; i < rx_ring->count; i++) {
3841 		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3842 
3843 		if (!buffer_info->page)
3844 			continue;
3845 
3846 		dma_unmap_page(rx_ring->dev,
3847 			       buffer_info->dma,
3848 			       PAGE_SIZE,
3849 			       DMA_FROM_DEVICE);
3850 		__free_page(buffer_info->page);
3851 
3852 		buffer_info->page = NULL;
3853 	}
3854 
3855 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3856 	memset(rx_ring->rx_buffer_info, 0, size);
3857 
3858 	/* Zero out the descriptor ring */
3859 	memset(rx_ring->desc, 0, rx_ring->size);
3860 
3861 	rx_ring->next_to_alloc = 0;
3862 	rx_ring->next_to_clean = 0;
3863 	rx_ring->next_to_use = 0;
3864 }
3865 
3866 /**
3867  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3868  *  @adapter: board private structure
3869  **/
3870 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3871 {
3872 	int i;
3873 
3874 	for (i = 0; i < adapter->num_rx_queues; i++)
3875 		igb_clean_rx_ring(adapter->rx_ring[i]);
3876 }
3877 
3878 /**
3879  *  igb_set_mac - Change the Ethernet Address of the NIC
3880  *  @netdev: network interface device structure
3881  *  @p: pointer to an address structure
3882  *
3883  *  Returns 0 on success, negative on failure
3884  **/
3885 static int igb_set_mac(struct net_device *netdev, void *p)
3886 {
3887 	struct igb_adapter *adapter = netdev_priv(netdev);
3888 	struct e1000_hw *hw = &adapter->hw;
3889 	struct sockaddr *addr = p;
3890 
3891 	if (!is_valid_ether_addr(addr->sa_data))
3892 		return -EADDRNOTAVAIL;
3893 
3894 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3895 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3896 
3897 	/* set the correct pool for the new PF MAC address in entry 0 */
3898 	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3899 			 adapter->vfs_allocated_count);
3900 
3901 	return 0;
3902 }
3903 
3904 /**
3905  *  igb_write_mc_addr_list - write multicast addresses to MTA
3906  *  @netdev: network interface device structure
3907  *
3908  *  Writes multicast address list to the MTA hash table.
3909  *  Returns: -ENOMEM on failure
3910  *           0 on no addresses written
3911  *           X on writing X addresses to MTA
3912  **/
3913 static int igb_write_mc_addr_list(struct net_device *netdev)
3914 {
3915 	struct igb_adapter *adapter = netdev_priv(netdev);
3916 	struct e1000_hw *hw = &adapter->hw;
3917 	struct netdev_hw_addr *ha;
3918 	u8  *mta_list;
3919 	int i;
3920 
3921 	if (netdev_mc_empty(netdev)) {
3922 		/* nothing to program, so clear mc list */
3923 		igb_update_mc_addr_list(hw, NULL, 0);
3924 		igb_restore_vf_multicasts(adapter);
3925 		return 0;
3926 	}
3927 
3928 	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3929 	if (!mta_list)
3930 		return -ENOMEM;
3931 
3932 	/* The shared function expects a packed array of only addresses. */
3933 	i = 0;
3934 	netdev_for_each_mc_addr(ha, netdev)
3935 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3936 
3937 	igb_update_mc_addr_list(hw, mta_list, i);
3938 	kfree(mta_list);
3939 
3940 	return netdev_mc_count(netdev);
3941 }
3942 
3943 /**
3944  *  igb_write_uc_addr_list - write unicast addresses to RAR table
3945  *  @netdev: network interface device structure
3946  *
3947  *  Writes unicast address list to the RAR table.
3948  *  Returns: -ENOMEM on failure/insufficient address space
3949  *           0 on no addresses written
3950  *           X on writing X addresses to the RAR table
3951  **/
3952 static int igb_write_uc_addr_list(struct net_device *netdev)
3953 {
3954 	struct igb_adapter *adapter = netdev_priv(netdev);
3955 	struct e1000_hw *hw = &adapter->hw;
3956 	unsigned int vfn = adapter->vfs_allocated_count;
3957 	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3958 	int count = 0;
3959 
3960 	/* return ENOMEM indicating insufficient memory for addresses */
3961 	if (netdev_uc_count(netdev) > rar_entries)
3962 		return -ENOMEM;
3963 
3964 	if (!netdev_uc_empty(netdev) && rar_entries) {
3965 		struct netdev_hw_addr *ha;
3966 
3967 		netdev_for_each_uc_addr(ha, netdev) {
3968 			if (!rar_entries)
3969 				break;
3970 			igb_rar_set_qsel(adapter, ha->addr,
3971 					 rar_entries--,
3972 					 vfn);
3973 			count++;
3974 		}
3975 	}
3976 	/* write the addresses in reverse order to avoid write combining */
3977 	for (; rar_entries > 0 ; rar_entries--) {
3978 		wr32(E1000_RAH(rar_entries), 0);
3979 		wr32(E1000_RAL(rar_entries), 0);
3980 	}
3981 	wrfl();
3982 
3983 	return count;
3984 }
3985 
3986 /**
3987  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3988  *  @netdev: network interface device structure
3989  *
3990  *  The set_rx_mode entry point is called whenever the unicast or multicast
3991  *  address lists or the network interface flags are updated.  This routine is
3992  *  responsible for configuring the hardware for proper unicast, multicast,
3993  *  promiscuous mode, and all-multi behavior.
3994  **/
3995 static void igb_set_rx_mode(struct net_device *netdev)
3996 {
3997 	struct igb_adapter *adapter = netdev_priv(netdev);
3998 	struct e1000_hw *hw = &adapter->hw;
3999 	unsigned int vfn = adapter->vfs_allocated_count;
4000 	u32 rctl, vmolr = 0;
4001 	int count;
4002 
4003 	/* Check for Promiscuous and All Multicast modes */
4004 	rctl = rd32(E1000_RCTL);
4005 
4006 	/* clear the effected bits */
4007 	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
4008 
4009 	if (netdev->flags & IFF_PROMISC) {
4010 		/* retain VLAN HW filtering if in VT mode */
4011 		if (adapter->vfs_allocated_count)
4012 			rctl |= E1000_RCTL_VFE;
4013 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
4014 		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
4015 	} else {
4016 		if (netdev->flags & IFF_ALLMULTI) {
4017 			rctl |= E1000_RCTL_MPE;
4018 			vmolr |= E1000_VMOLR_MPME;
4019 		} else {
4020 			/* Write addresses to the MTA, if the attempt fails
4021 			 * then we should just turn on promiscuous mode so
4022 			 * that we can at least receive multicast traffic
4023 			 */
4024 			count = igb_write_mc_addr_list(netdev);
4025 			if (count < 0) {
4026 				rctl |= E1000_RCTL_MPE;
4027 				vmolr |= E1000_VMOLR_MPME;
4028 			} else if (count) {
4029 				vmolr |= E1000_VMOLR_ROMPE;
4030 			}
4031 		}
4032 		/* Write addresses to available RAR registers, if there is not
4033 		 * sufficient space to store all the addresses then enable
4034 		 * unicast promiscuous mode
4035 		 */
4036 		count = igb_write_uc_addr_list(netdev);
4037 		if (count < 0) {
4038 			rctl |= E1000_RCTL_UPE;
4039 			vmolr |= E1000_VMOLR_ROPE;
4040 		}
4041 		rctl |= E1000_RCTL_VFE;
4042 	}
4043 	wr32(E1000_RCTL, rctl);
4044 
4045 	/* In order to support SR-IOV and eventually VMDq it is necessary to set
4046 	 * the VMOLR to enable the appropriate modes.  Without this workaround
4047 	 * we will have issues with VLAN tag stripping not being done for frames
4048 	 * that are only arriving because we are the default pool
4049 	 */
4050 	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4051 		return;
4052 
4053 	vmolr |= rd32(E1000_VMOLR(vfn)) &
4054 		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4055 	wr32(E1000_VMOLR(vfn), vmolr);
4056 	igb_restore_vf_multicasts(adapter);
4057 }
4058 
4059 static void igb_check_wvbr(struct igb_adapter *adapter)
4060 {
4061 	struct e1000_hw *hw = &adapter->hw;
4062 	u32 wvbr = 0;
4063 
4064 	switch (hw->mac.type) {
4065 	case e1000_82576:
4066 	case e1000_i350:
4067 		wvbr = rd32(E1000_WVBR);
4068 		if (!wvbr)
4069 			return;
4070 		break;
4071 	default:
4072 		break;
4073 	}
4074 
4075 	adapter->wvbr |= wvbr;
4076 }
4077 
4078 #define IGB_STAGGERED_QUEUE_OFFSET 8
4079 
4080 static void igb_spoof_check(struct igb_adapter *adapter)
4081 {
4082 	int j;
4083 
4084 	if (!adapter->wvbr)
4085 		return;
4086 
4087 	for (j = 0; j < adapter->vfs_allocated_count; j++) {
4088 		if (adapter->wvbr & (1 << j) ||
4089 		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4090 			dev_warn(&adapter->pdev->dev,
4091 				"Spoof event(s) detected on VF %d\n", j);
4092 			adapter->wvbr &=
4093 				~((1 << j) |
4094 				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4095 		}
4096 	}
4097 }
4098 
4099 /* Need to wait a few seconds after link up to get diagnostic information from
4100  * the phy
4101  */
4102 static void igb_update_phy_info(unsigned long data)
4103 {
4104 	struct igb_adapter *adapter = (struct igb_adapter *) data;
4105 	igb_get_phy_info(&adapter->hw);
4106 }
4107 
4108 /**
4109  *  igb_has_link - check shared code for link and determine up/down
4110  *  @adapter: pointer to driver private info
4111  **/
4112 bool igb_has_link(struct igb_adapter *adapter)
4113 {
4114 	struct e1000_hw *hw = &adapter->hw;
4115 	bool link_active = false;
4116 
4117 	/* get_link_status is set on LSC (link status) interrupt or
4118 	 * rx sequence error interrupt.  get_link_status will stay
4119 	 * false until the e1000_check_for_link establishes link
4120 	 * for copper adapters ONLY
4121 	 */
4122 	switch (hw->phy.media_type) {
4123 	case e1000_media_type_copper:
4124 		if (!hw->mac.get_link_status)
4125 			return true;
4126 	case e1000_media_type_internal_serdes:
4127 		hw->mac.ops.check_for_link(hw);
4128 		link_active = !hw->mac.get_link_status;
4129 		break;
4130 	default:
4131 	case e1000_media_type_unknown:
4132 		break;
4133 	}
4134 
4135 	if (((hw->mac.type == e1000_i210) ||
4136 	     (hw->mac.type == e1000_i211)) &&
4137 	     (hw->phy.id == I210_I_PHY_ID)) {
4138 		if (!netif_carrier_ok(adapter->netdev)) {
4139 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4140 		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4141 			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4142 			adapter->link_check_timeout = jiffies;
4143 		}
4144 	}
4145 
4146 	return link_active;
4147 }
4148 
4149 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4150 {
4151 	bool ret = false;
4152 	u32 ctrl_ext, thstat;
4153 
4154 	/* check for thermal sensor event on i350 copper only */
4155 	if (hw->mac.type == e1000_i350) {
4156 		thstat = rd32(E1000_THSTAT);
4157 		ctrl_ext = rd32(E1000_CTRL_EXT);
4158 
4159 		if ((hw->phy.media_type == e1000_media_type_copper) &&
4160 		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4161 			ret = !!(thstat & event);
4162 	}
4163 
4164 	return ret;
4165 }
4166 
4167 /**
4168  *  igb_watchdog - Timer Call-back
4169  *  @data: pointer to adapter cast into an unsigned long
4170  **/
4171 static void igb_watchdog(unsigned long data)
4172 {
4173 	struct igb_adapter *adapter = (struct igb_adapter *)data;
4174 	/* Do the rest outside of interrupt context */
4175 	schedule_work(&adapter->watchdog_task);
4176 }
4177 
4178 static void igb_watchdog_task(struct work_struct *work)
4179 {
4180 	struct igb_adapter *adapter = container_of(work,
4181 						   struct igb_adapter,
4182 						   watchdog_task);
4183 	struct e1000_hw *hw = &adapter->hw;
4184 	struct e1000_phy_info *phy = &hw->phy;
4185 	struct net_device *netdev = adapter->netdev;
4186 	u32 link;
4187 	int i;
4188 	u32 connsw;
4189 
4190 	link = igb_has_link(adapter);
4191 
4192 	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4193 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4194 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4195 		else
4196 			link = false;
4197 	}
4198 
4199 	/* Force link down if we have fiber to swap to */
4200 	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4201 		if (hw->phy.media_type == e1000_media_type_copper) {
4202 			connsw = rd32(E1000_CONNSW);
4203 			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4204 				link = 0;
4205 		}
4206 	}
4207 	if (link) {
4208 		/* Perform a reset if the media type changed. */
4209 		if (hw->dev_spec._82575.media_changed) {
4210 			hw->dev_spec._82575.media_changed = false;
4211 			adapter->flags |= IGB_FLAG_MEDIA_RESET;
4212 			igb_reset(adapter);
4213 		}
4214 		/* Cancel scheduled suspend requests. */
4215 		pm_runtime_resume(netdev->dev.parent);
4216 
4217 		if (!netif_carrier_ok(netdev)) {
4218 			u32 ctrl;
4219 
4220 			hw->mac.ops.get_speed_and_duplex(hw,
4221 							 &adapter->link_speed,
4222 							 &adapter->link_duplex);
4223 
4224 			ctrl = rd32(E1000_CTRL);
4225 			/* Links status message must follow this format */
4226 			netdev_info(netdev,
4227 			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4228 			       netdev->name,
4229 			       adapter->link_speed,
4230 			       adapter->link_duplex == FULL_DUPLEX ?
4231 			       "Full" : "Half",
4232 			       (ctrl & E1000_CTRL_TFCE) &&
4233 			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4234 			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
4235 			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4236 
4237 			/* disable EEE if enabled */
4238 			if ((adapter->flags & IGB_FLAG_EEE) &&
4239 				(adapter->link_duplex == HALF_DUPLEX)) {
4240 				dev_info(&adapter->pdev->dev,
4241 				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4242 				adapter->hw.dev_spec._82575.eee_disable = true;
4243 				adapter->flags &= ~IGB_FLAG_EEE;
4244 			}
4245 
4246 			/* check if SmartSpeed worked */
4247 			igb_check_downshift(hw);
4248 			if (phy->speed_downgraded)
4249 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4250 
4251 			/* check for thermal sensor event */
4252 			if (igb_thermal_sensor_event(hw,
4253 			    E1000_THSTAT_LINK_THROTTLE))
4254 				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4255 
4256 			/* adjust timeout factor according to speed/duplex */
4257 			adapter->tx_timeout_factor = 1;
4258 			switch (adapter->link_speed) {
4259 			case SPEED_10:
4260 				adapter->tx_timeout_factor = 14;
4261 				break;
4262 			case SPEED_100:
4263 				/* maybe add some timeout factor ? */
4264 				break;
4265 			}
4266 
4267 			netif_carrier_on(netdev);
4268 
4269 			igb_ping_all_vfs(adapter);
4270 			igb_check_vf_rate_limit(adapter);
4271 
4272 			/* link state has changed, schedule phy info update */
4273 			if (!test_bit(__IGB_DOWN, &adapter->state))
4274 				mod_timer(&adapter->phy_info_timer,
4275 					  round_jiffies(jiffies + 2 * HZ));
4276 		}
4277 	} else {
4278 		if (netif_carrier_ok(netdev)) {
4279 			adapter->link_speed = 0;
4280 			adapter->link_duplex = 0;
4281 
4282 			/* check for thermal sensor event */
4283 			if (igb_thermal_sensor_event(hw,
4284 			    E1000_THSTAT_PWR_DOWN)) {
4285 				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4286 			}
4287 
4288 			/* Links status message must follow this format */
4289 			netdev_info(netdev, "igb: %s NIC Link is Down\n",
4290 			       netdev->name);
4291 			netif_carrier_off(netdev);
4292 
4293 			igb_ping_all_vfs(adapter);
4294 
4295 			/* link state has changed, schedule phy info update */
4296 			if (!test_bit(__IGB_DOWN, &adapter->state))
4297 				mod_timer(&adapter->phy_info_timer,
4298 					  round_jiffies(jiffies + 2 * HZ));
4299 
4300 			/* link is down, time to check for alternate media */
4301 			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4302 				igb_check_swap_media(adapter);
4303 				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4304 					schedule_work(&adapter->reset_task);
4305 					/* return immediately */
4306 					return;
4307 				}
4308 			}
4309 			pm_schedule_suspend(netdev->dev.parent,
4310 					    MSEC_PER_SEC * 5);
4311 
4312 		/* also check for alternate media here */
4313 		} else if (!netif_carrier_ok(netdev) &&
4314 			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4315 			igb_check_swap_media(adapter);
4316 			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4317 				schedule_work(&adapter->reset_task);
4318 				/* return immediately */
4319 				return;
4320 			}
4321 		}
4322 	}
4323 
4324 	spin_lock(&adapter->stats64_lock);
4325 	igb_update_stats(adapter, &adapter->stats64);
4326 	spin_unlock(&adapter->stats64_lock);
4327 
4328 	for (i = 0; i < adapter->num_tx_queues; i++) {
4329 		struct igb_ring *tx_ring = adapter->tx_ring[i];
4330 		if (!netif_carrier_ok(netdev)) {
4331 			/* We've lost link, so the controller stops DMA,
4332 			 * but we've got queued Tx work that's never going
4333 			 * to get done, so reset controller to flush Tx.
4334 			 * (Do the reset outside of interrupt context).
4335 			 */
4336 			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4337 				adapter->tx_timeout_count++;
4338 				schedule_work(&adapter->reset_task);
4339 				/* return immediately since reset is imminent */
4340 				return;
4341 			}
4342 		}
4343 
4344 		/* Force detection of hung controller every watchdog period */
4345 		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4346 	}
4347 
4348 	/* Cause software interrupt to ensure Rx ring is cleaned */
4349 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4350 		u32 eics = 0;
4351 
4352 		for (i = 0; i < adapter->num_q_vectors; i++)
4353 			eics |= adapter->q_vector[i]->eims_value;
4354 		wr32(E1000_EICS, eics);
4355 	} else {
4356 		wr32(E1000_ICS, E1000_ICS_RXDMT0);
4357 	}
4358 
4359 	igb_spoof_check(adapter);
4360 	igb_ptp_rx_hang(adapter);
4361 
4362 	/* Reset the timer */
4363 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
4364 		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4365 			mod_timer(&adapter->watchdog_timer,
4366 				  round_jiffies(jiffies +  HZ));
4367 		else
4368 			mod_timer(&adapter->watchdog_timer,
4369 				  round_jiffies(jiffies + 2 * HZ));
4370 	}
4371 }
4372 
4373 enum latency_range {
4374 	lowest_latency = 0,
4375 	low_latency = 1,
4376 	bulk_latency = 2,
4377 	latency_invalid = 255
4378 };
4379 
4380 /**
4381  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4382  *  @q_vector: pointer to q_vector
4383  *
4384  *  Stores a new ITR value based on strictly on packet size.  This
4385  *  algorithm is less sophisticated than that used in igb_update_itr,
4386  *  due to the difficulty of synchronizing statistics across multiple
4387  *  receive rings.  The divisors and thresholds used by this function
4388  *  were determined based on theoretical maximum wire speed and testing
4389  *  data, in order to minimize response time while increasing bulk
4390  *  throughput.
4391  *  This functionality is controlled by ethtool's coalescing settings.
4392  *  NOTE:  This function is called only when operating in a multiqueue
4393  *         receive environment.
4394  **/
4395 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4396 {
4397 	int new_val = q_vector->itr_val;
4398 	int avg_wire_size = 0;
4399 	struct igb_adapter *adapter = q_vector->adapter;
4400 	unsigned int packets;
4401 
4402 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4403 	 * ints/sec - ITR timer value of 120 ticks.
4404 	 */
4405 	if (adapter->link_speed != SPEED_1000) {
4406 		new_val = IGB_4K_ITR;
4407 		goto set_itr_val;
4408 	}
4409 
4410 	packets = q_vector->rx.total_packets;
4411 	if (packets)
4412 		avg_wire_size = q_vector->rx.total_bytes / packets;
4413 
4414 	packets = q_vector->tx.total_packets;
4415 	if (packets)
4416 		avg_wire_size = max_t(u32, avg_wire_size,
4417 				      q_vector->tx.total_bytes / packets);
4418 
4419 	/* if avg_wire_size isn't set no work was done */
4420 	if (!avg_wire_size)
4421 		goto clear_counts;
4422 
4423 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4424 	avg_wire_size += 24;
4425 
4426 	/* Don't starve jumbo frames */
4427 	avg_wire_size = min(avg_wire_size, 3000);
4428 
4429 	/* Give a little boost to mid-size frames */
4430 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4431 		new_val = avg_wire_size / 3;
4432 	else
4433 		new_val = avg_wire_size / 2;
4434 
4435 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4436 	if (new_val < IGB_20K_ITR &&
4437 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4438 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4439 		new_val = IGB_20K_ITR;
4440 
4441 set_itr_val:
4442 	if (new_val != q_vector->itr_val) {
4443 		q_vector->itr_val = new_val;
4444 		q_vector->set_itr = 1;
4445 	}
4446 clear_counts:
4447 	q_vector->rx.total_bytes = 0;
4448 	q_vector->rx.total_packets = 0;
4449 	q_vector->tx.total_bytes = 0;
4450 	q_vector->tx.total_packets = 0;
4451 }
4452 
4453 /**
4454  *  igb_update_itr - update the dynamic ITR value based on statistics
4455  *  @q_vector: pointer to q_vector
4456  *  @ring_container: ring info to update the itr for
4457  *
4458  *  Stores a new ITR value based on packets and byte
4459  *  counts during the last interrupt.  The advantage of per interrupt
4460  *  computation is faster updates and more accurate ITR for the current
4461  *  traffic pattern.  Constants in this function were computed
4462  *  based on theoretical maximum wire speed and thresholds were set based
4463  *  on testing data as well as attempting to minimize response time
4464  *  while increasing bulk throughput.
4465  *  This functionality is controlled by ethtool's coalescing settings.
4466  *  NOTE:  These calculations are only valid when operating in a single-
4467  *         queue environment.
4468  **/
4469 static void igb_update_itr(struct igb_q_vector *q_vector,
4470 			   struct igb_ring_container *ring_container)
4471 {
4472 	unsigned int packets = ring_container->total_packets;
4473 	unsigned int bytes = ring_container->total_bytes;
4474 	u8 itrval = ring_container->itr;
4475 
4476 	/* no packets, exit with status unchanged */
4477 	if (packets == 0)
4478 		return;
4479 
4480 	switch (itrval) {
4481 	case lowest_latency:
4482 		/* handle TSO and jumbo frames */
4483 		if (bytes/packets > 8000)
4484 			itrval = bulk_latency;
4485 		else if ((packets < 5) && (bytes > 512))
4486 			itrval = low_latency;
4487 		break;
4488 	case low_latency:  /* 50 usec aka 20000 ints/s */
4489 		if (bytes > 10000) {
4490 			/* this if handles the TSO accounting */
4491 			if (bytes/packets > 8000)
4492 				itrval = bulk_latency;
4493 			else if ((packets < 10) || ((bytes/packets) > 1200))
4494 				itrval = bulk_latency;
4495 			else if ((packets > 35))
4496 				itrval = lowest_latency;
4497 		} else if (bytes/packets > 2000) {
4498 			itrval = bulk_latency;
4499 		} else if (packets <= 2 && bytes < 512) {
4500 			itrval = lowest_latency;
4501 		}
4502 		break;
4503 	case bulk_latency: /* 250 usec aka 4000 ints/s */
4504 		if (bytes > 25000) {
4505 			if (packets > 35)
4506 				itrval = low_latency;
4507 		} else if (bytes < 1500) {
4508 			itrval = low_latency;
4509 		}
4510 		break;
4511 	}
4512 
4513 	/* clear work counters since we have the values we need */
4514 	ring_container->total_bytes = 0;
4515 	ring_container->total_packets = 0;
4516 
4517 	/* write updated itr to ring container */
4518 	ring_container->itr = itrval;
4519 }
4520 
4521 static void igb_set_itr(struct igb_q_vector *q_vector)
4522 {
4523 	struct igb_adapter *adapter = q_vector->adapter;
4524 	u32 new_itr = q_vector->itr_val;
4525 	u8 current_itr = 0;
4526 
4527 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4528 	if (adapter->link_speed != SPEED_1000) {
4529 		current_itr = 0;
4530 		new_itr = IGB_4K_ITR;
4531 		goto set_itr_now;
4532 	}
4533 
4534 	igb_update_itr(q_vector, &q_vector->tx);
4535 	igb_update_itr(q_vector, &q_vector->rx);
4536 
4537 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4538 
4539 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4540 	if (current_itr == lowest_latency &&
4541 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4542 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4543 		current_itr = low_latency;
4544 
4545 	switch (current_itr) {
4546 	/* counts and packets in update_itr are dependent on these numbers */
4547 	case lowest_latency:
4548 		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4549 		break;
4550 	case low_latency:
4551 		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4552 		break;
4553 	case bulk_latency:
4554 		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4555 		break;
4556 	default:
4557 		break;
4558 	}
4559 
4560 set_itr_now:
4561 	if (new_itr != q_vector->itr_val) {
4562 		/* this attempts to bias the interrupt rate towards Bulk
4563 		 * by adding intermediate steps when interrupt rate is
4564 		 * increasing
4565 		 */
4566 		new_itr = new_itr > q_vector->itr_val ?
4567 			  max((new_itr * q_vector->itr_val) /
4568 			  (new_itr + (q_vector->itr_val >> 2)),
4569 			  new_itr) : new_itr;
4570 		/* Don't write the value here; it resets the adapter's
4571 		 * internal timer, and causes us to delay far longer than
4572 		 * we should between interrupts.  Instead, we write the ITR
4573 		 * value at the beginning of the next interrupt so the timing
4574 		 * ends up being correct.
4575 		 */
4576 		q_vector->itr_val = new_itr;
4577 		q_vector->set_itr = 1;
4578 	}
4579 }
4580 
4581 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4582 			    u32 type_tucmd, u32 mss_l4len_idx)
4583 {
4584 	struct e1000_adv_tx_context_desc *context_desc;
4585 	u16 i = tx_ring->next_to_use;
4586 
4587 	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4588 
4589 	i++;
4590 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4591 
4592 	/* set bits to identify this as an advanced context descriptor */
4593 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4594 
4595 	/* For 82575, context index must be unique per ring. */
4596 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4597 		mss_l4len_idx |= tx_ring->reg_idx << 4;
4598 
4599 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
4600 	context_desc->seqnum_seed	= 0;
4601 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
4602 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
4603 }
4604 
4605 static int igb_tso(struct igb_ring *tx_ring,
4606 		   struct igb_tx_buffer *first,
4607 		   u8 *hdr_len)
4608 {
4609 	struct sk_buff *skb = first->skb;
4610 	u32 vlan_macip_lens, type_tucmd;
4611 	u32 mss_l4len_idx, l4len;
4612 	int err;
4613 
4614 	if (skb->ip_summed != CHECKSUM_PARTIAL)
4615 		return 0;
4616 
4617 	if (!skb_is_gso(skb))
4618 		return 0;
4619 
4620 	err = skb_cow_head(skb, 0);
4621 	if (err < 0)
4622 		return err;
4623 
4624 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4625 	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4626 
4627 	if (first->protocol == htons(ETH_P_IP)) {
4628 		struct iphdr *iph = ip_hdr(skb);
4629 		iph->tot_len = 0;
4630 		iph->check = 0;
4631 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4632 							 iph->daddr, 0,
4633 							 IPPROTO_TCP,
4634 							 0);
4635 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4636 		first->tx_flags |= IGB_TX_FLAGS_TSO |
4637 				   IGB_TX_FLAGS_CSUM |
4638 				   IGB_TX_FLAGS_IPV4;
4639 	} else if (skb_is_gso_v6(skb)) {
4640 		ipv6_hdr(skb)->payload_len = 0;
4641 		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4642 						       &ipv6_hdr(skb)->daddr,
4643 						       0, IPPROTO_TCP, 0);
4644 		first->tx_flags |= IGB_TX_FLAGS_TSO |
4645 				   IGB_TX_FLAGS_CSUM;
4646 	}
4647 
4648 	/* compute header lengths */
4649 	l4len = tcp_hdrlen(skb);
4650 	*hdr_len = skb_transport_offset(skb) + l4len;
4651 
4652 	/* update gso size and bytecount with header size */
4653 	first->gso_segs = skb_shinfo(skb)->gso_segs;
4654 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
4655 
4656 	/* MSS L4LEN IDX */
4657 	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4658 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4659 
4660 	/* VLAN MACLEN IPLEN */
4661 	vlan_macip_lens = skb_network_header_len(skb);
4662 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4663 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4664 
4665 	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4666 
4667 	return 1;
4668 }
4669 
4670 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4671 {
4672 	struct sk_buff *skb = first->skb;
4673 	u32 vlan_macip_lens = 0;
4674 	u32 mss_l4len_idx = 0;
4675 	u32 type_tucmd = 0;
4676 
4677 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4678 		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4679 			return;
4680 	} else {
4681 		u8 l4_hdr = 0;
4682 
4683 		switch (first->protocol) {
4684 		case htons(ETH_P_IP):
4685 			vlan_macip_lens |= skb_network_header_len(skb);
4686 			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4687 			l4_hdr = ip_hdr(skb)->protocol;
4688 			break;
4689 		case htons(ETH_P_IPV6):
4690 			vlan_macip_lens |= skb_network_header_len(skb);
4691 			l4_hdr = ipv6_hdr(skb)->nexthdr;
4692 			break;
4693 		default:
4694 			if (unlikely(net_ratelimit())) {
4695 				dev_warn(tx_ring->dev,
4696 					 "partial checksum but proto=%x!\n",
4697 					 first->protocol);
4698 			}
4699 			break;
4700 		}
4701 
4702 		switch (l4_hdr) {
4703 		case IPPROTO_TCP:
4704 			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4705 			mss_l4len_idx = tcp_hdrlen(skb) <<
4706 					E1000_ADVTXD_L4LEN_SHIFT;
4707 			break;
4708 		case IPPROTO_SCTP:
4709 			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4710 			mss_l4len_idx = sizeof(struct sctphdr) <<
4711 					E1000_ADVTXD_L4LEN_SHIFT;
4712 			break;
4713 		case IPPROTO_UDP:
4714 			mss_l4len_idx = sizeof(struct udphdr) <<
4715 					E1000_ADVTXD_L4LEN_SHIFT;
4716 			break;
4717 		default:
4718 			if (unlikely(net_ratelimit())) {
4719 				dev_warn(tx_ring->dev,
4720 					 "partial checksum but l4 proto=%x!\n",
4721 					 l4_hdr);
4722 			}
4723 			break;
4724 		}
4725 
4726 		/* update TX checksum flag */
4727 		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4728 	}
4729 
4730 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4731 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4732 
4733 	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4734 }
4735 
4736 #define IGB_SET_FLAG(_input, _flag, _result) \
4737 	((_flag <= _result) ? \
4738 	 ((u32)(_input & _flag) * (_result / _flag)) : \
4739 	 ((u32)(_input & _flag) / (_flag / _result)))
4740 
4741 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4742 {
4743 	/* set type for advanced descriptor with frame checksum insertion */
4744 	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4745 		       E1000_ADVTXD_DCMD_DEXT |
4746 		       E1000_ADVTXD_DCMD_IFCS;
4747 
4748 	/* set HW vlan bit if vlan is present */
4749 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4750 				 (E1000_ADVTXD_DCMD_VLE));
4751 
4752 	/* set segmentation bits for TSO */
4753 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4754 				 (E1000_ADVTXD_DCMD_TSE));
4755 
4756 	/* set timestamp bit if present */
4757 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4758 				 (E1000_ADVTXD_MAC_TSTAMP));
4759 
4760 	/* insert frame checksum */
4761 	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4762 
4763 	return cmd_type;
4764 }
4765 
4766 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4767 				 union e1000_adv_tx_desc *tx_desc,
4768 				 u32 tx_flags, unsigned int paylen)
4769 {
4770 	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4771 
4772 	/* 82575 requires a unique index per ring */
4773 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4774 		olinfo_status |= tx_ring->reg_idx << 4;
4775 
4776 	/* insert L4 checksum */
4777 	olinfo_status |= IGB_SET_FLAG(tx_flags,
4778 				      IGB_TX_FLAGS_CSUM,
4779 				      (E1000_TXD_POPTS_TXSM << 8));
4780 
4781 	/* insert IPv4 checksum */
4782 	olinfo_status |= IGB_SET_FLAG(tx_flags,
4783 				      IGB_TX_FLAGS_IPV4,
4784 				      (E1000_TXD_POPTS_IXSM << 8));
4785 
4786 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4787 }
4788 
4789 static void igb_tx_map(struct igb_ring *tx_ring,
4790 		       struct igb_tx_buffer *first,
4791 		       const u8 hdr_len)
4792 {
4793 	struct sk_buff *skb = first->skb;
4794 	struct igb_tx_buffer *tx_buffer;
4795 	union e1000_adv_tx_desc *tx_desc;
4796 	struct skb_frag_struct *frag;
4797 	dma_addr_t dma;
4798 	unsigned int data_len, size;
4799 	u32 tx_flags = first->tx_flags;
4800 	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4801 	u16 i = tx_ring->next_to_use;
4802 
4803 	tx_desc = IGB_TX_DESC(tx_ring, i);
4804 
4805 	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4806 
4807 	size = skb_headlen(skb);
4808 	data_len = skb->data_len;
4809 
4810 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4811 
4812 	tx_buffer = first;
4813 
4814 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4815 		if (dma_mapping_error(tx_ring->dev, dma))
4816 			goto dma_error;
4817 
4818 		/* record length, and DMA address */
4819 		dma_unmap_len_set(tx_buffer, len, size);
4820 		dma_unmap_addr_set(tx_buffer, dma, dma);
4821 
4822 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4823 
4824 		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4825 			tx_desc->read.cmd_type_len =
4826 				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4827 
4828 			i++;
4829 			tx_desc++;
4830 			if (i == tx_ring->count) {
4831 				tx_desc = IGB_TX_DESC(tx_ring, 0);
4832 				i = 0;
4833 			}
4834 			tx_desc->read.olinfo_status = 0;
4835 
4836 			dma += IGB_MAX_DATA_PER_TXD;
4837 			size -= IGB_MAX_DATA_PER_TXD;
4838 
4839 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
4840 		}
4841 
4842 		if (likely(!data_len))
4843 			break;
4844 
4845 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4846 
4847 		i++;
4848 		tx_desc++;
4849 		if (i == tx_ring->count) {
4850 			tx_desc = IGB_TX_DESC(tx_ring, 0);
4851 			i = 0;
4852 		}
4853 		tx_desc->read.olinfo_status = 0;
4854 
4855 		size = skb_frag_size(frag);
4856 		data_len -= size;
4857 
4858 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4859 				       size, DMA_TO_DEVICE);
4860 
4861 		tx_buffer = &tx_ring->tx_buffer_info[i];
4862 	}
4863 
4864 	/* write last descriptor with RS and EOP bits */
4865 	cmd_type |= size | IGB_TXD_DCMD;
4866 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4867 
4868 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4869 
4870 	/* set the timestamp */
4871 	first->time_stamp = jiffies;
4872 
4873 	/* Force memory writes to complete before letting h/w know there
4874 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
4875 	 * memory model archs, such as IA-64).
4876 	 *
4877 	 * We also need this memory barrier to make certain all of the
4878 	 * status bits have been updated before next_to_watch is written.
4879 	 */
4880 	wmb();
4881 
4882 	/* set next_to_watch value indicating a packet is present */
4883 	first->next_to_watch = tx_desc;
4884 
4885 	i++;
4886 	if (i == tx_ring->count)
4887 		i = 0;
4888 
4889 	tx_ring->next_to_use = i;
4890 
4891 	writel(i, tx_ring->tail);
4892 
4893 	/* we need this if more than one processor can write to our tail
4894 	 * at a time, it synchronizes IO on IA64/Altix systems
4895 	 */
4896 	mmiowb();
4897 
4898 	return;
4899 
4900 dma_error:
4901 	dev_err(tx_ring->dev, "TX DMA map failed\n");
4902 
4903 	/* clear dma mappings for failed tx_buffer_info map */
4904 	for (;;) {
4905 		tx_buffer = &tx_ring->tx_buffer_info[i];
4906 		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4907 		if (tx_buffer == first)
4908 			break;
4909 		if (i == 0)
4910 			i = tx_ring->count;
4911 		i--;
4912 	}
4913 
4914 	tx_ring->next_to_use = i;
4915 }
4916 
4917 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4918 {
4919 	struct net_device *netdev = tx_ring->netdev;
4920 
4921 	netif_stop_subqueue(netdev, tx_ring->queue_index);
4922 
4923 	/* Herbert's original patch had:
4924 	 *  smp_mb__after_netif_stop_queue();
4925 	 * but since that doesn't exist yet, just open code it.
4926 	 */
4927 	smp_mb();
4928 
4929 	/* We need to check again in a case another CPU has just
4930 	 * made room available.
4931 	 */
4932 	if (igb_desc_unused(tx_ring) < size)
4933 		return -EBUSY;
4934 
4935 	/* A reprieve! */
4936 	netif_wake_subqueue(netdev, tx_ring->queue_index);
4937 
4938 	u64_stats_update_begin(&tx_ring->tx_syncp2);
4939 	tx_ring->tx_stats.restart_queue2++;
4940 	u64_stats_update_end(&tx_ring->tx_syncp2);
4941 
4942 	return 0;
4943 }
4944 
4945 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4946 {
4947 	if (igb_desc_unused(tx_ring) >= size)
4948 		return 0;
4949 	return __igb_maybe_stop_tx(tx_ring, size);
4950 }
4951 
4952 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4953 				struct igb_ring *tx_ring)
4954 {
4955 	struct igb_tx_buffer *first;
4956 	int tso;
4957 	u32 tx_flags = 0;
4958 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
4959 	__be16 protocol = vlan_get_protocol(skb);
4960 	u8 hdr_len = 0;
4961 
4962 	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4963 	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4964 	 *       + 2 desc gap to keep tail from touching head,
4965 	 *       + 1 desc for context descriptor,
4966 	 * otherwise try next time
4967 	 */
4968 	if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4969 		unsigned short f;
4970 
4971 		for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4972 			count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4973 	} else {
4974 		count += skb_shinfo(skb)->nr_frags;
4975 	}
4976 
4977 	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4978 		/* this is a hard error */
4979 		return NETDEV_TX_BUSY;
4980 	}
4981 
4982 	/* record the location of the first descriptor for this packet */
4983 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4984 	first->skb = skb;
4985 	first->bytecount = skb->len;
4986 	first->gso_segs = 1;
4987 
4988 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4989 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4990 
4991 		if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
4992 					   &adapter->state)) {
4993 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4994 			tx_flags |= IGB_TX_FLAGS_TSTAMP;
4995 
4996 			adapter->ptp_tx_skb = skb_get(skb);
4997 			adapter->ptp_tx_start = jiffies;
4998 			if (adapter->hw.mac.type == e1000_82576)
4999 				schedule_work(&adapter->ptp_tx_work);
5000 		}
5001 	}
5002 
5003 	skb_tx_timestamp(skb);
5004 
5005 	if (vlan_tx_tag_present(skb)) {
5006 		tx_flags |= IGB_TX_FLAGS_VLAN;
5007 		tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5008 	}
5009 
5010 	/* record initial flags and protocol */
5011 	first->tx_flags = tx_flags;
5012 	first->protocol = protocol;
5013 
5014 	tso = igb_tso(tx_ring, first, &hdr_len);
5015 	if (tso < 0)
5016 		goto out_drop;
5017 	else if (!tso)
5018 		igb_tx_csum(tx_ring, first);
5019 
5020 	igb_tx_map(tx_ring, first, hdr_len);
5021 
5022 	/* Make sure there is space in the ring for the next send. */
5023 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5024 
5025 	return NETDEV_TX_OK;
5026 
5027 out_drop:
5028 	igb_unmap_and_free_tx_resource(tx_ring, first);
5029 
5030 	return NETDEV_TX_OK;
5031 }
5032 
5033 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5034 						    struct sk_buff *skb)
5035 {
5036 	unsigned int r_idx = skb->queue_mapping;
5037 
5038 	if (r_idx >= adapter->num_tx_queues)
5039 		r_idx = r_idx % adapter->num_tx_queues;
5040 
5041 	return adapter->tx_ring[r_idx];
5042 }
5043 
5044 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5045 				  struct net_device *netdev)
5046 {
5047 	struct igb_adapter *adapter = netdev_priv(netdev);
5048 
5049 	if (test_bit(__IGB_DOWN, &adapter->state)) {
5050 		dev_kfree_skb_any(skb);
5051 		return NETDEV_TX_OK;
5052 	}
5053 
5054 	if (skb->len <= 0) {
5055 		dev_kfree_skb_any(skb);
5056 		return NETDEV_TX_OK;
5057 	}
5058 
5059 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5060 	 * in order to meet this minimum size requirement.
5061 	 */
5062 	if (unlikely(skb->len < 17)) {
5063 		if (skb_pad(skb, 17 - skb->len))
5064 			return NETDEV_TX_OK;
5065 		skb->len = 17;
5066 		skb_set_tail_pointer(skb, 17);
5067 	}
5068 
5069 	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5070 }
5071 
5072 /**
5073  *  igb_tx_timeout - Respond to a Tx Hang
5074  *  @netdev: network interface device structure
5075  **/
5076 static void igb_tx_timeout(struct net_device *netdev)
5077 {
5078 	struct igb_adapter *adapter = netdev_priv(netdev);
5079 	struct e1000_hw *hw = &adapter->hw;
5080 
5081 	/* Do the reset outside of interrupt context */
5082 	adapter->tx_timeout_count++;
5083 
5084 	if (hw->mac.type >= e1000_82580)
5085 		hw->dev_spec._82575.global_device_reset = true;
5086 
5087 	schedule_work(&adapter->reset_task);
5088 	wr32(E1000_EICS,
5089 	     (adapter->eims_enable_mask & ~adapter->eims_other));
5090 }
5091 
5092 static void igb_reset_task(struct work_struct *work)
5093 {
5094 	struct igb_adapter *adapter;
5095 	adapter = container_of(work, struct igb_adapter, reset_task);
5096 
5097 	igb_dump(adapter);
5098 	netdev_err(adapter->netdev, "Reset adapter\n");
5099 	igb_reinit_locked(adapter);
5100 }
5101 
5102 /**
5103  *  igb_get_stats64 - Get System Network Statistics
5104  *  @netdev: network interface device structure
5105  *  @stats: rtnl_link_stats64 pointer
5106  **/
5107 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5108 						struct rtnl_link_stats64 *stats)
5109 {
5110 	struct igb_adapter *adapter = netdev_priv(netdev);
5111 
5112 	spin_lock(&adapter->stats64_lock);
5113 	igb_update_stats(adapter, &adapter->stats64);
5114 	memcpy(stats, &adapter->stats64, sizeof(*stats));
5115 	spin_unlock(&adapter->stats64_lock);
5116 
5117 	return stats;
5118 }
5119 
5120 /**
5121  *  igb_change_mtu - Change the Maximum Transfer Unit
5122  *  @netdev: network interface device structure
5123  *  @new_mtu: new value for maximum frame size
5124  *
5125  *  Returns 0 on success, negative on failure
5126  **/
5127 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5128 {
5129 	struct igb_adapter *adapter = netdev_priv(netdev);
5130 	struct pci_dev *pdev = adapter->pdev;
5131 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5132 
5133 	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5134 		dev_err(&pdev->dev, "Invalid MTU setting\n");
5135 		return -EINVAL;
5136 	}
5137 
5138 #define MAX_STD_JUMBO_FRAME_SIZE 9238
5139 	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5140 		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5141 		return -EINVAL;
5142 	}
5143 
5144 	/* adjust max frame to be at least the size of a standard frame */
5145 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5146 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5147 
5148 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5149 		usleep_range(1000, 2000);
5150 
5151 	/* igb_down has a dependency on max_frame_size */
5152 	adapter->max_frame_size = max_frame;
5153 
5154 	if (netif_running(netdev))
5155 		igb_down(adapter);
5156 
5157 	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5158 		 netdev->mtu, new_mtu);
5159 	netdev->mtu = new_mtu;
5160 
5161 	if (netif_running(netdev))
5162 		igb_up(adapter);
5163 	else
5164 		igb_reset(adapter);
5165 
5166 	clear_bit(__IGB_RESETTING, &adapter->state);
5167 
5168 	return 0;
5169 }
5170 
5171 /**
5172  *  igb_update_stats - Update the board statistics counters
5173  *  @adapter: board private structure
5174  **/
5175 void igb_update_stats(struct igb_adapter *adapter,
5176 		      struct rtnl_link_stats64 *net_stats)
5177 {
5178 	struct e1000_hw *hw = &adapter->hw;
5179 	struct pci_dev *pdev = adapter->pdev;
5180 	u32 reg, mpc;
5181 	u16 phy_tmp;
5182 	int i;
5183 	u64 bytes, packets;
5184 	unsigned int start;
5185 	u64 _bytes, _packets;
5186 
5187 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
5188 
5189 	/* Prevent stats update while adapter is being reset, or if the pci
5190 	 * connection is down.
5191 	 */
5192 	if (adapter->link_speed == 0)
5193 		return;
5194 	if (pci_channel_offline(pdev))
5195 		return;
5196 
5197 	bytes = 0;
5198 	packets = 0;
5199 
5200 	rcu_read_lock();
5201 	for (i = 0; i < adapter->num_rx_queues; i++) {
5202 		struct igb_ring *ring = adapter->rx_ring[i];
5203 		u32 rqdpc = rd32(E1000_RQDPC(i));
5204 		if (hw->mac.type >= e1000_i210)
5205 			wr32(E1000_RQDPC(i), 0);
5206 
5207 		if (rqdpc) {
5208 			ring->rx_stats.drops += rqdpc;
5209 			net_stats->rx_fifo_errors += rqdpc;
5210 		}
5211 
5212 		do {
5213 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5214 			_bytes = ring->rx_stats.bytes;
5215 			_packets = ring->rx_stats.packets;
5216 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5217 		bytes += _bytes;
5218 		packets += _packets;
5219 	}
5220 
5221 	net_stats->rx_bytes = bytes;
5222 	net_stats->rx_packets = packets;
5223 
5224 	bytes = 0;
5225 	packets = 0;
5226 	for (i = 0; i < adapter->num_tx_queues; i++) {
5227 		struct igb_ring *ring = adapter->tx_ring[i];
5228 		do {
5229 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5230 			_bytes = ring->tx_stats.bytes;
5231 			_packets = ring->tx_stats.packets;
5232 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5233 		bytes += _bytes;
5234 		packets += _packets;
5235 	}
5236 	net_stats->tx_bytes = bytes;
5237 	net_stats->tx_packets = packets;
5238 	rcu_read_unlock();
5239 
5240 	/* read stats registers */
5241 	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5242 	adapter->stats.gprc += rd32(E1000_GPRC);
5243 	adapter->stats.gorc += rd32(E1000_GORCL);
5244 	rd32(E1000_GORCH); /* clear GORCL */
5245 	adapter->stats.bprc += rd32(E1000_BPRC);
5246 	adapter->stats.mprc += rd32(E1000_MPRC);
5247 	adapter->stats.roc += rd32(E1000_ROC);
5248 
5249 	adapter->stats.prc64 += rd32(E1000_PRC64);
5250 	adapter->stats.prc127 += rd32(E1000_PRC127);
5251 	adapter->stats.prc255 += rd32(E1000_PRC255);
5252 	adapter->stats.prc511 += rd32(E1000_PRC511);
5253 	adapter->stats.prc1023 += rd32(E1000_PRC1023);
5254 	adapter->stats.prc1522 += rd32(E1000_PRC1522);
5255 	adapter->stats.symerrs += rd32(E1000_SYMERRS);
5256 	adapter->stats.sec += rd32(E1000_SEC);
5257 
5258 	mpc = rd32(E1000_MPC);
5259 	adapter->stats.mpc += mpc;
5260 	net_stats->rx_fifo_errors += mpc;
5261 	adapter->stats.scc += rd32(E1000_SCC);
5262 	adapter->stats.ecol += rd32(E1000_ECOL);
5263 	adapter->stats.mcc += rd32(E1000_MCC);
5264 	adapter->stats.latecol += rd32(E1000_LATECOL);
5265 	adapter->stats.dc += rd32(E1000_DC);
5266 	adapter->stats.rlec += rd32(E1000_RLEC);
5267 	adapter->stats.xonrxc += rd32(E1000_XONRXC);
5268 	adapter->stats.xontxc += rd32(E1000_XONTXC);
5269 	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5270 	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5271 	adapter->stats.fcruc += rd32(E1000_FCRUC);
5272 	adapter->stats.gptc += rd32(E1000_GPTC);
5273 	adapter->stats.gotc += rd32(E1000_GOTCL);
5274 	rd32(E1000_GOTCH); /* clear GOTCL */
5275 	adapter->stats.rnbc += rd32(E1000_RNBC);
5276 	adapter->stats.ruc += rd32(E1000_RUC);
5277 	adapter->stats.rfc += rd32(E1000_RFC);
5278 	adapter->stats.rjc += rd32(E1000_RJC);
5279 	adapter->stats.tor += rd32(E1000_TORH);
5280 	adapter->stats.tot += rd32(E1000_TOTH);
5281 	adapter->stats.tpr += rd32(E1000_TPR);
5282 
5283 	adapter->stats.ptc64 += rd32(E1000_PTC64);
5284 	adapter->stats.ptc127 += rd32(E1000_PTC127);
5285 	adapter->stats.ptc255 += rd32(E1000_PTC255);
5286 	adapter->stats.ptc511 += rd32(E1000_PTC511);
5287 	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5288 	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5289 
5290 	adapter->stats.mptc += rd32(E1000_MPTC);
5291 	adapter->stats.bptc += rd32(E1000_BPTC);
5292 
5293 	adapter->stats.tpt += rd32(E1000_TPT);
5294 	adapter->stats.colc += rd32(E1000_COLC);
5295 
5296 	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5297 	/* read internal phy specific stats */
5298 	reg = rd32(E1000_CTRL_EXT);
5299 	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5300 		adapter->stats.rxerrc += rd32(E1000_RXERRC);
5301 
5302 		/* this stat has invalid values on i210/i211 */
5303 		if ((hw->mac.type != e1000_i210) &&
5304 		    (hw->mac.type != e1000_i211))
5305 			adapter->stats.tncrs += rd32(E1000_TNCRS);
5306 	}
5307 
5308 	adapter->stats.tsctc += rd32(E1000_TSCTC);
5309 	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5310 
5311 	adapter->stats.iac += rd32(E1000_IAC);
5312 	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5313 	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5314 	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5315 	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5316 	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5317 	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5318 	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5319 	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5320 
5321 	/* Fill out the OS statistics structure */
5322 	net_stats->multicast = adapter->stats.mprc;
5323 	net_stats->collisions = adapter->stats.colc;
5324 
5325 	/* Rx Errors */
5326 
5327 	/* RLEC on some newer hardware can be incorrect so build
5328 	 * our own version based on RUC and ROC
5329 	 */
5330 	net_stats->rx_errors = adapter->stats.rxerrc +
5331 		adapter->stats.crcerrs + adapter->stats.algnerrc +
5332 		adapter->stats.ruc + adapter->stats.roc +
5333 		adapter->stats.cexterr;
5334 	net_stats->rx_length_errors = adapter->stats.ruc +
5335 				      adapter->stats.roc;
5336 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
5337 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
5338 	net_stats->rx_missed_errors = adapter->stats.mpc;
5339 
5340 	/* Tx Errors */
5341 	net_stats->tx_errors = adapter->stats.ecol +
5342 			       adapter->stats.latecol;
5343 	net_stats->tx_aborted_errors = adapter->stats.ecol;
5344 	net_stats->tx_window_errors = adapter->stats.latecol;
5345 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5346 
5347 	/* Tx Dropped needs to be maintained elsewhere */
5348 
5349 	/* Phy Stats */
5350 	if (hw->phy.media_type == e1000_media_type_copper) {
5351 		if ((adapter->link_speed == SPEED_1000) &&
5352 		   (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5353 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5354 			adapter->phy_stats.idle_errors += phy_tmp;
5355 		}
5356 	}
5357 
5358 	/* Management Stats */
5359 	adapter->stats.mgptc += rd32(E1000_MGTPTC);
5360 	adapter->stats.mgprc += rd32(E1000_MGTPRC);
5361 	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5362 
5363 	/* OS2BMC Stats */
5364 	reg = rd32(E1000_MANC);
5365 	if (reg & E1000_MANC_EN_BMC2OS) {
5366 		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5367 		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5368 		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5369 		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5370 	}
5371 }
5372 
5373 static irqreturn_t igb_msix_other(int irq, void *data)
5374 {
5375 	struct igb_adapter *adapter = data;
5376 	struct e1000_hw *hw = &adapter->hw;
5377 	u32 icr = rd32(E1000_ICR);
5378 	/* reading ICR causes bit 31 of EICR to be cleared */
5379 
5380 	if (icr & E1000_ICR_DRSTA)
5381 		schedule_work(&adapter->reset_task);
5382 
5383 	if (icr & E1000_ICR_DOUTSYNC) {
5384 		/* HW is reporting DMA is out of sync */
5385 		adapter->stats.doosync++;
5386 		/* The DMA Out of Sync is also indication of a spoof event
5387 		 * in IOV mode. Check the Wrong VM Behavior register to
5388 		 * see if it is really a spoof event.
5389 		 */
5390 		igb_check_wvbr(adapter);
5391 	}
5392 
5393 	/* Check for a mailbox event */
5394 	if (icr & E1000_ICR_VMMB)
5395 		igb_msg_task(adapter);
5396 
5397 	if (icr & E1000_ICR_LSC) {
5398 		hw->mac.get_link_status = 1;
5399 		/* guard against interrupt when we're going down */
5400 		if (!test_bit(__IGB_DOWN, &adapter->state))
5401 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5402 	}
5403 
5404 	if (icr & E1000_ICR_TS) {
5405 		u32 tsicr = rd32(E1000_TSICR);
5406 
5407 		if (tsicr & E1000_TSICR_TXTS) {
5408 			/* acknowledge the interrupt */
5409 			wr32(E1000_TSICR, E1000_TSICR_TXTS);
5410 			/* retrieve hardware timestamp */
5411 			schedule_work(&adapter->ptp_tx_work);
5412 		}
5413 	}
5414 
5415 	wr32(E1000_EIMS, adapter->eims_other);
5416 
5417 	return IRQ_HANDLED;
5418 }
5419 
5420 static void igb_write_itr(struct igb_q_vector *q_vector)
5421 {
5422 	struct igb_adapter *adapter = q_vector->adapter;
5423 	u32 itr_val = q_vector->itr_val & 0x7FFC;
5424 
5425 	if (!q_vector->set_itr)
5426 		return;
5427 
5428 	if (!itr_val)
5429 		itr_val = 0x4;
5430 
5431 	if (adapter->hw.mac.type == e1000_82575)
5432 		itr_val |= itr_val << 16;
5433 	else
5434 		itr_val |= E1000_EITR_CNT_IGNR;
5435 
5436 	writel(itr_val, q_vector->itr_register);
5437 	q_vector->set_itr = 0;
5438 }
5439 
5440 static irqreturn_t igb_msix_ring(int irq, void *data)
5441 {
5442 	struct igb_q_vector *q_vector = data;
5443 
5444 	/* Write the ITR value calculated from the previous interrupt. */
5445 	igb_write_itr(q_vector);
5446 
5447 	napi_schedule(&q_vector->napi);
5448 
5449 	return IRQ_HANDLED;
5450 }
5451 
5452 #ifdef CONFIG_IGB_DCA
5453 static void igb_update_tx_dca(struct igb_adapter *adapter,
5454 			      struct igb_ring *tx_ring,
5455 			      int cpu)
5456 {
5457 	struct e1000_hw *hw = &adapter->hw;
5458 	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5459 
5460 	if (hw->mac.type != e1000_82575)
5461 		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5462 
5463 	/* We can enable relaxed ordering for reads, but not writes when
5464 	 * DCA is enabled.  This is due to a known issue in some chipsets
5465 	 * which will cause the DCA tag to be cleared.
5466 	 */
5467 	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5468 		  E1000_DCA_TXCTRL_DATA_RRO_EN |
5469 		  E1000_DCA_TXCTRL_DESC_DCA_EN;
5470 
5471 	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5472 }
5473 
5474 static void igb_update_rx_dca(struct igb_adapter *adapter,
5475 			      struct igb_ring *rx_ring,
5476 			      int cpu)
5477 {
5478 	struct e1000_hw *hw = &adapter->hw;
5479 	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5480 
5481 	if (hw->mac.type != e1000_82575)
5482 		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5483 
5484 	/* We can enable relaxed ordering for reads, but not writes when
5485 	 * DCA is enabled.  This is due to a known issue in some chipsets
5486 	 * which will cause the DCA tag to be cleared.
5487 	 */
5488 	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5489 		  E1000_DCA_RXCTRL_DESC_DCA_EN;
5490 
5491 	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5492 }
5493 
5494 static void igb_update_dca(struct igb_q_vector *q_vector)
5495 {
5496 	struct igb_adapter *adapter = q_vector->adapter;
5497 	int cpu = get_cpu();
5498 
5499 	if (q_vector->cpu == cpu)
5500 		goto out_no_update;
5501 
5502 	if (q_vector->tx.ring)
5503 		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5504 
5505 	if (q_vector->rx.ring)
5506 		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5507 
5508 	q_vector->cpu = cpu;
5509 out_no_update:
5510 	put_cpu();
5511 }
5512 
5513 static void igb_setup_dca(struct igb_adapter *adapter)
5514 {
5515 	struct e1000_hw *hw = &adapter->hw;
5516 	int i;
5517 
5518 	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5519 		return;
5520 
5521 	/* Always use CB2 mode, difference is masked in the CB driver. */
5522 	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5523 
5524 	for (i = 0; i < adapter->num_q_vectors; i++) {
5525 		adapter->q_vector[i]->cpu = -1;
5526 		igb_update_dca(adapter->q_vector[i]);
5527 	}
5528 }
5529 
5530 static int __igb_notify_dca(struct device *dev, void *data)
5531 {
5532 	struct net_device *netdev = dev_get_drvdata(dev);
5533 	struct igb_adapter *adapter = netdev_priv(netdev);
5534 	struct pci_dev *pdev = adapter->pdev;
5535 	struct e1000_hw *hw = &adapter->hw;
5536 	unsigned long event = *(unsigned long *)data;
5537 
5538 	switch (event) {
5539 	case DCA_PROVIDER_ADD:
5540 		/* if already enabled, don't do it again */
5541 		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5542 			break;
5543 		if (dca_add_requester(dev) == 0) {
5544 			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5545 			dev_info(&pdev->dev, "DCA enabled\n");
5546 			igb_setup_dca(adapter);
5547 			break;
5548 		}
5549 		/* Fall Through since DCA is disabled. */
5550 	case DCA_PROVIDER_REMOVE:
5551 		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5552 			/* without this a class_device is left
5553 			 * hanging around in the sysfs model
5554 			 */
5555 			dca_remove_requester(dev);
5556 			dev_info(&pdev->dev, "DCA disabled\n");
5557 			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5558 			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5559 		}
5560 		break;
5561 	}
5562 
5563 	return 0;
5564 }
5565 
5566 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5567 			  void *p)
5568 {
5569 	int ret_val;
5570 
5571 	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5572 					 __igb_notify_dca);
5573 
5574 	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5575 }
5576 #endif /* CONFIG_IGB_DCA */
5577 
5578 #ifdef CONFIG_PCI_IOV
5579 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5580 {
5581 	unsigned char mac_addr[ETH_ALEN];
5582 
5583 	eth_zero_addr(mac_addr);
5584 	igb_set_vf_mac(adapter, vf, mac_addr);
5585 
5586 	/* By default spoof check is enabled for all VFs */
5587 	adapter->vf_data[vf].spoofchk_enabled = true;
5588 
5589 	return 0;
5590 }
5591 
5592 #endif
5593 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5594 {
5595 	struct e1000_hw *hw = &adapter->hw;
5596 	u32 ping;
5597 	int i;
5598 
5599 	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5600 		ping = E1000_PF_CONTROL_MSG;
5601 		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5602 			ping |= E1000_VT_MSGTYPE_CTS;
5603 		igb_write_mbx(hw, &ping, 1, i);
5604 	}
5605 }
5606 
5607 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5608 {
5609 	struct e1000_hw *hw = &adapter->hw;
5610 	u32 vmolr = rd32(E1000_VMOLR(vf));
5611 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5612 
5613 	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5614 			    IGB_VF_FLAG_MULTI_PROMISC);
5615 	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5616 
5617 	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5618 		vmolr |= E1000_VMOLR_MPME;
5619 		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5620 		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5621 	} else {
5622 		/* if we have hashes and we are clearing a multicast promisc
5623 		 * flag we need to write the hashes to the MTA as this step
5624 		 * was previously skipped
5625 		 */
5626 		if (vf_data->num_vf_mc_hashes > 30) {
5627 			vmolr |= E1000_VMOLR_MPME;
5628 		} else if (vf_data->num_vf_mc_hashes) {
5629 			int j;
5630 
5631 			vmolr |= E1000_VMOLR_ROMPE;
5632 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5633 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5634 		}
5635 	}
5636 
5637 	wr32(E1000_VMOLR(vf), vmolr);
5638 
5639 	/* there are flags left unprocessed, likely not supported */
5640 	if (*msgbuf & E1000_VT_MSGINFO_MASK)
5641 		return -EINVAL;
5642 
5643 	return 0;
5644 }
5645 
5646 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5647 				  u32 *msgbuf, u32 vf)
5648 {
5649 	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5650 	u16 *hash_list = (u16 *)&msgbuf[1];
5651 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5652 	int i;
5653 
5654 	/* salt away the number of multicast addresses assigned
5655 	 * to this VF for later use to restore when the PF multi cast
5656 	 * list changes
5657 	 */
5658 	vf_data->num_vf_mc_hashes = n;
5659 
5660 	/* only up to 30 hash values supported */
5661 	if (n > 30)
5662 		n = 30;
5663 
5664 	/* store the hashes for later use */
5665 	for (i = 0; i < n; i++)
5666 		vf_data->vf_mc_hashes[i] = hash_list[i];
5667 
5668 	/* Flush and reset the mta with the new values */
5669 	igb_set_rx_mode(adapter->netdev);
5670 
5671 	return 0;
5672 }
5673 
5674 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5675 {
5676 	struct e1000_hw *hw = &adapter->hw;
5677 	struct vf_data_storage *vf_data;
5678 	int i, j;
5679 
5680 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5681 		u32 vmolr = rd32(E1000_VMOLR(i));
5682 
5683 		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5684 
5685 		vf_data = &adapter->vf_data[i];
5686 
5687 		if ((vf_data->num_vf_mc_hashes > 30) ||
5688 		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5689 			vmolr |= E1000_VMOLR_MPME;
5690 		} else if (vf_data->num_vf_mc_hashes) {
5691 			vmolr |= E1000_VMOLR_ROMPE;
5692 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5693 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5694 		}
5695 		wr32(E1000_VMOLR(i), vmolr);
5696 	}
5697 }
5698 
5699 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5700 {
5701 	struct e1000_hw *hw = &adapter->hw;
5702 	u32 pool_mask, reg, vid;
5703 	int i;
5704 
5705 	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5706 
5707 	/* Find the vlan filter for this id */
5708 	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5709 		reg = rd32(E1000_VLVF(i));
5710 
5711 		/* remove the vf from the pool */
5712 		reg &= ~pool_mask;
5713 
5714 		/* if pool is empty then remove entry from vfta */
5715 		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5716 		    (reg & E1000_VLVF_VLANID_ENABLE)) {
5717 			reg = 0;
5718 			vid = reg & E1000_VLVF_VLANID_MASK;
5719 			igb_vfta_set(hw, vid, false);
5720 		}
5721 
5722 		wr32(E1000_VLVF(i), reg);
5723 	}
5724 
5725 	adapter->vf_data[vf].vlans_enabled = 0;
5726 }
5727 
5728 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5729 {
5730 	struct e1000_hw *hw = &adapter->hw;
5731 	u32 reg, i;
5732 
5733 	/* The vlvf table only exists on 82576 hardware and newer */
5734 	if (hw->mac.type < e1000_82576)
5735 		return -1;
5736 
5737 	/* we only need to do this if VMDq is enabled */
5738 	if (!adapter->vfs_allocated_count)
5739 		return -1;
5740 
5741 	/* Find the vlan filter for this id */
5742 	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5743 		reg = rd32(E1000_VLVF(i));
5744 		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5745 		    vid == (reg & E1000_VLVF_VLANID_MASK))
5746 			break;
5747 	}
5748 
5749 	if (add) {
5750 		if (i == E1000_VLVF_ARRAY_SIZE) {
5751 			/* Did not find a matching VLAN ID entry that was
5752 			 * enabled.  Search for a free filter entry, i.e.
5753 			 * one without the enable bit set
5754 			 */
5755 			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5756 				reg = rd32(E1000_VLVF(i));
5757 				if (!(reg & E1000_VLVF_VLANID_ENABLE))
5758 					break;
5759 			}
5760 		}
5761 		if (i < E1000_VLVF_ARRAY_SIZE) {
5762 			/* Found an enabled/available entry */
5763 			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5764 
5765 			/* if !enabled we need to set this up in vfta */
5766 			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5767 				/* add VID to filter table */
5768 				igb_vfta_set(hw, vid, true);
5769 				reg |= E1000_VLVF_VLANID_ENABLE;
5770 			}
5771 			reg &= ~E1000_VLVF_VLANID_MASK;
5772 			reg |= vid;
5773 			wr32(E1000_VLVF(i), reg);
5774 
5775 			/* do not modify RLPML for PF devices */
5776 			if (vf >= adapter->vfs_allocated_count)
5777 				return 0;
5778 
5779 			if (!adapter->vf_data[vf].vlans_enabled) {
5780 				u32 size;
5781 
5782 				reg = rd32(E1000_VMOLR(vf));
5783 				size = reg & E1000_VMOLR_RLPML_MASK;
5784 				size += 4;
5785 				reg &= ~E1000_VMOLR_RLPML_MASK;
5786 				reg |= size;
5787 				wr32(E1000_VMOLR(vf), reg);
5788 			}
5789 
5790 			adapter->vf_data[vf].vlans_enabled++;
5791 		}
5792 	} else {
5793 		if (i < E1000_VLVF_ARRAY_SIZE) {
5794 			/* remove vf from the pool */
5795 			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5796 			/* if pool is empty then remove entry from vfta */
5797 			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5798 				reg = 0;
5799 				igb_vfta_set(hw, vid, false);
5800 			}
5801 			wr32(E1000_VLVF(i), reg);
5802 
5803 			/* do not modify RLPML for PF devices */
5804 			if (vf >= adapter->vfs_allocated_count)
5805 				return 0;
5806 
5807 			adapter->vf_data[vf].vlans_enabled--;
5808 			if (!adapter->vf_data[vf].vlans_enabled) {
5809 				u32 size;
5810 
5811 				reg = rd32(E1000_VMOLR(vf));
5812 				size = reg & E1000_VMOLR_RLPML_MASK;
5813 				size -= 4;
5814 				reg &= ~E1000_VMOLR_RLPML_MASK;
5815 				reg |= size;
5816 				wr32(E1000_VMOLR(vf), reg);
5817 			}
5818 		}
5819 	}
5820 	return 0;
5821 }
5822 
5823 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5824 {
5825 	struct e1000_hw *hw = &adapter->hw;
5826 
5827 	if (vid)
5828 		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5829 	else
5830 		wr32(E1000_VMVIR(vf), 0);
5831 }
5832 
5833 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5834 			       int vf, u16 vlan, u8 qos)
5835 {
5836 	int err = 0;
5837 	struct igb_adapter *adapter = netdev_priv(netdev);
5838 
5839 	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5840 		return -EINVAL;
5841 	if (vlan || qos) {
5842 		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5843 		if (err)
5844 			goto out;
5845 		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5846 		igb_set_vmolr(adapter, vf, !vlan);
5847 		adapter->vf_data[vf].pf_vlan = vlan;
5848 		adapter->vf_data[vf].pf_qos = qos;
5849 		dev_info(&adapter->pdev->dev,
5850 			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5851 		if (test_bit(__IGB_DOWN, &adapter->state)) {
5852 			dev_warn(&adapter->pdev->dev,
5853 				 "The VF VLAN has been set, but the PF device is not up.\n");
5854 			dev_warn(&adapter->pdev->dev,
5855 				 "Bring the PF device up before attempting to use the VF device.\n");
5856 		}
5857 	} else {
5858 		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5859 			     false, vf);
5860 		igb_set_vmvir(adapter, vlan, vf);
5861 		igb_set_vmolr(adapter, vf, true);
5862 		adapter->vf_data[vf].pf_vlan = 0;
5863 		adapter->vf_data[vf].pf_qos = 0;
5864 	}
5865 out:
5866 	return err;
5867 }
5868 
5869 static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5870 {
5871 	struct e1000_hw *hw = &adapter->hw;
5872 	int i;
5873 	u32 reg;
5874 
5875 	/* Find the vlan filter for this id */
5876 	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5877 		reg = rd32(E1000_VLVF(i));
5878 		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5879 		    vid == (reg & E1000_VLVF_VLANID_MASK))
5880 			break;
5881 	}
5882 
5883 	if (i >= E1000_VLVF_ARRAY_SIZE)
5884 		i = -1;
5885 
5886 	return i;
5887 }
5888 
5889 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5890 {
5891 	struct e1000_hw *hw = &adapter->hw;
5892 	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5893 	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5894 	int err = 0;
5895 
5896 	/* If in promiscuous mode we need to make sure the PF also has
5897 	 * the VLAN filter set.
5898 	 */
5899 	if (add && (adapter->netdev->flags & IFF_PROMISC))
5900 		err = igb_vlvf_set(adapter, vid, add,
5901 				   adapter->vfs_allocated_count);
5902 	if (err)
5903 		goto out;
5904 
5905 	err = igb_vlvf_set(adapter, vid, add, vf);
5906 
5907 	if (err)
5908 		goto out;
5909 
5910 	/* Go through all the checks to see if the VLAN filter should
5911 	 * be wiped completely.
5912 	 */
5913 	if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5914 		u32 vlvf, bits;
5915 		int regndx = igb_find_vlvf_entry(adapter, vid);
5916 
5917 		if (regndx < 0)
5918 			goto out;
5919 		/* See if any other pools are set for this VLAN filter
5920 		 * entry other than the PF.
5921 		 */
5922 		vlvf = bits = rd32(E1000_VLVF(regndx));
5923 		bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5924 			      adapter->vfs_allocated_count);
5925 		/* If the filter was removed then ensure PF pool bit
5926 		 * is cleared if the PF only added itself to the pool
5927 		 * because the PF is in promiscuous mode.
5928 		 */
5929 		if ((vlvf & VLAN_VID_MASK) == vid &&
5930 		    !test_bit(vid, adapter->active_vlans) &&
5931 		    !bits)
5932 			igb_vlvf_set(adapter, vid, add,
5933 				     adapter->vfs_allocated_count);
5934 	}
5935 
5936 out:
5937 	return err;
5938 }
5939 
5940 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5941 {
5942 	/* clear flags - except flag that indicates PF has set the MAC */
5943 	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5944 	adapter->vf_data[vf].last_nack = jiffies;
5945 
5946 	/* reset offloads to defaults */
5947 	igb_set_vmolr(adapter, vf, true);
5948 
5949 	/* reset vlans for device */
5950 	igb_clear_vf_vfta(adapter, vf);
5951 	if (adapter->vf_data[vf].pf_vlan)
5952 		igb_ndo_set_vf_vlan(adapter->netdev, vf,
5953 				    adapter->vf_data[vf].pf_vlan,
5954 				    adapter->vf_data[vf].pf_qos);
5955 	else
5956 		igb_clear_vf_vfta(adapter, vf);
5957 
5958 	/* reset multicast table array for vf */
5959 	adapter->vf_data[vf].num_vf_mc_hashes = 0;
5960 
5961 	/* Flush and reset the mta with the new values */
5962 	igb_set_rx_mode(adapter->netdev);
5963 }
5964 
5965 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5966 {
5967 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5968 
5969 	/* clear mac address as we were hotplug removed/added */
5970 	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5971 		eth_zero_addr(vf_mac);
5972 
5973 	/* process remaining reset events */
5974 	igb_vf_reset(adapter, vf);
5975 }
5976 
5977 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5978 {
5979 	struct e1000_hw *hw = &adapter->hw;
5980 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5981 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5982 	u32 reg, msgbuf[3];
5983 	u8 *addr = (u8 *)(&msgbuf[1]);
5984 
5985 	/* process all the same items cleared in a function level reset */
5986 	igb_vf_reset(adapter, vf);
5987 
5988 	/* set vf mac address */
5989 	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5990 
5991 	/* enable transmit and receive for vf */
5992 	reg = rd32(E1000_VFTE);
5993 	wr32(E1000_VFTE, reg | (1 << vf));
5994 	reg = rd32(E1000_VFRE);
5995 	wr32(E1000_VFRE, reg | (1 << vf));
5996 
5997 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5998 
5999 	/* reply to reset with ack and vf mac address */
6000 	msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6001 	memcpy(addr, vf_mac, ETH_ALEN);
6002 	igb_write_mbx(hw, msgbuf, 3, vf);
6003 }
6004 
6005 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6006 {
6007 	/* The VF MAC Address is stored in a packed array of bytes
6008 	 * starting at the second 32 bit word of the msg array
6009 	 */
6010 	unsigned char *addr = (char *)&msg[1];
6011 	int err = -1;
6012 
6013 	if (is_valid_ether_addr(addr))
6014 		err = igb_set_vf_mac(adapter, vf, addr);
6015 
6016 	return err;
6017 }
6018 
6019 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6020 {
6021 	struct e1000_hw *hw = &adapter->hw;
6022 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6023 	u32 msg = E1000_VT_MSGTYPE_NACK;
6024 
6025 	/* if device isn't clear to send it shouldn't be reading either */
6026 	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6027 	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6028 		igb_write_mbx(hw, &msg, 1, vf);
6029 		vf_data->last_nack = jiffies;
6030 	}
6031 }
6032 
6033 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6034 {
6035 	struct pci_dev *pdev = adapter->pdev;
6036 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
6037 	struct e1000_hw *hw = &adapter->hw;
6038 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6039 	s32 retval;
6040 
6041 	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6042 
6043 	if (retval) {
6044 		/* if receive failed revoke VF CTS stats and restart init */
6045 		dev_err(&pdev->dev, "Error receiving message from VF\n");
6046 		vf_data->flags &= ~IGB_VF_FLAG_CTS;
6047 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6048 			return;
6049 		goto out;
6050 	}
6051 
6052 	/* this is a message we already processed, do nothing */
6053 	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6054 		return;
6055 
6056 	/* until the vf completes a reset it should not be
6057 	 * allowed to start any configuration.
6058 	 */
6059 	if (msgbuf[0] == E1000_VF_RESET) {
6060 		igb_vf_reset_msg(adapter, vf);
6061 		return;
6062 	}
6063 
6064 	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6065 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6066 			return;
6067 		retval = -1;
6068 		goto out;
6069 	}
6070 
6071 	switch ((msgbuf[0] & 0xFFFF)) {
6072 	case E1000_VF_SET_MAC_ADDR:
6073 		retval = -EINVAL;
6074 		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6075 			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6076 		else
6077 			dev_warn(&pdev->dev,
6078 				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6079 				 vf);
6080 		break;
6081 	case E1000_VF_SET_PROMISC:
6082 		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6083 		break;
6084 	case E1000_VF_SET_MULTICAST:
6085 		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6086 		break;
6087 	case E1000_VF_SET_LPE:
6088 		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6089 		break;
6090 	case E1000_VF_SET_VLAN:
6091 		retval = -1;
6092 		if (vf_data->pf_vlan)
6093 			dev_warn(&pdev->dev,
6094 				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6095 				 vf);
6096 		else
6097 			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
6098 		break;
6099 	default:
6100 		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6101 		retval = -1;
6102 		break;
6103 	}
6104 
6105 	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6106 out:
6107 	/* notify the VF of the results of what it sent us */
6108 	if (retval)
6109 		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6110 	else
6111 		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6112 
6113 	igb_write_mbx(hw, msgbuf, 1, vf);
6114 }
6115 
6116 static void igb_msg_task(struct igb_adapter *adapter)
6117 {
6118 	struct e1000_hw *hw = &adapter->hw;
6119 	u32 vf;
6120 
6121 	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6122 		/* process any reset requests */
6123 		if (!igb_check_for_rst(hw, vf))
6124 			igb_vf_reset_event(adapter, vf);
6125 
6126 		/* process any messages pending */
6127 		if (!igb_check_for_msg(hw, vf))
6128 			igb_rcv_msg_from_vf(adapter, vf);
6129 
6130 		/* process any acks */
6131 		if (!igb_check_for_ack(hw, vf))
6132 			igb_rcv_ack_from_vf(adapter, vf);
6133 	}
6134 }
6135 
6136 /**
6137  *  igb_set_uta - Set unicast filter table address
6138  *  @adapter: board private structure
6139  *
6140  *  The unicast table address is a register array of 32-bit registers.
6141  *  The table is meant to be used in a way similar to how the MTA is used
6142  *  however due to certain limitations in the hardware it is necessary to
6143  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6144  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
6145  **/
6146 static void igb_set_uta(struct igb_adapter *adapter)
6147 {
6148 	struct e1000_hw *hw = &adapter->hw;
6149 	int i;
6150 
6151 	/* The UTA table only exists on 82576 hardware and newer */
6152 	if (hw->mac.type < e1000_82576)
6153 		return;
6154 
6155 	/* we only need to do this if VMDq is enabled */
6156 	if (!adapter->vfs_allocated_count)
6157 		return;
6158 
6159 	for (i = 0; i < hw->mac.uta_reg_count; i++)
6160 		array_wr32(E1000_UTA, i, ~0);
6161 }
6162 
6163 /**
6164  *  igb_intr_msi - Interrupt Handler
6165  *  @irq: interrupt number
6166  *  @data: pointer to a network interface device structure
6167  **/
6168 static irqreturn_t igb_intr_msi(int irq, void *data)
6169 {
6170 	struct igb_adapter *adapter = data;
6171 	struct igb_q_vector *q_vector = adapter->q_vector[0];
6172 	struct e1000_hw *hw = &adapter->hw;
6173 	/* read ICR disables interrupts using IAM */
6174 	u32 icr = rd32(E1000_ICR);
6175 
6176 	igb_write_itr(q_vector);
6177 
6178 	if (icr & E1000_ICR_DRSTA)
6179 		schedule_work(&adapter->reset_task);
6180 
6181 	if (icr & E1000_ICR_DOUTSYNC) {
6182 		/* HW is reporting DMA is out of sync */
6183 		adapter->stats.doosync++;
6184 	}
6185 
6186 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6187 		hw->mac.get_link_status = 1;
6188 		if (!test_bit(__IGB_DOWN, &adapter->state))
6189 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6190 	}
6191 
6192 	if (icr & E1000_ICR_TS) {
6193 		u32 tsicr = rd32(E1000_TSICR);
6194 
6195 		if (tsicr & E1000_TSICR_TXTS) {
6196 			/* acknowledge the interrupt */
6197 			wr32(E1000_TSICR, E1000_TSICR_TXTS);
6198 			/* retrieve hardware timestamp */
6199 			schedule_work(&adapter->ptp_tx_work);
6200 		}
6201 	}
6202 
6203 	napi_schedule(&q_vector->napi);
6204 
6205 	return IRQ_HANDLED;
6206 }
6207 
6208 /**
6209  *  igb_intr - Legacy Interrupt Handler
6210  *  @irq: interrupt number
6211  *  @data: pointer to a network interface device structure
6212  **/
6213 static irqreturn_t igb_intr(int irq, void *data)
6214 {
6215 	struct igb_adapter *adapter = data;
6216 	struct igb_q_vector *q_vector = adapter->q_vector[0];
6217 	struct e1000_hw *hw = &adapter->hw;
6218 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6219 	 * need for the IMC write
6220 	 */
6221 	u32 icr = rd32(E1000_ICR);
6222 
6223 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6224 	 * not set, then the adapter didn't send an interrupt
6225 	 */
6226 	if (!(icr & E1000_ICR_INT_ASSERTED))
6227 		return IRQ_NONE;
6228 
6229 	igb_write_itr(q_vector);
6230 
6231 	if (icr & E1000_ICR_DRSTA)
6232 		schedule_work(&adapter->reset_task);
6233 
6234 	if (icr & E1000_ICR_DOUTSYNC) {
6235 		/* HW is reporting DMA is out of sync */
6236 		adapter->stats.doosync++;
6237 	}
6238 
6239 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6240 		hw->mac.get_link_status = 1;
6241 		/* guard against interrupt when we're going down */
6242 		if (!test_bit(__IGB_DOWN, &adapter->state))
6243 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6244 	}
6245 
6246 	if (icr & E1000_ICR_TS) {
6247 		u32 tsicr = rd32(E1000_TSICR);
6248 
6249 		if (tsicr & E1000_TSICR_TXTS) {
6250 			/* acknowledge the interrupt */
6251 			wr32(E1000_TSICR, E1000_TSICR_TXTS);
6252 			/* retrieve hardware timestamp */
6253 			schedule_work(&adapter->ptp_tx_work);
6254 		}
6255 	}
6256 
6257 	napi_schedule(&q_vector->napi);
6258 
6259 	return IRQ_HANDLED;
6260 }
6261 
6262 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6263 {
6264 	struct igb_adapter *adapter = q_vector->adapter;
6265 	struct e1000_hw *hw = &adapter->hw;
6266 
6267 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6268 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6269 		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6270 			igb_set_itr(q_vector);
6271 		else
6272 			igb_update_ring_itr(q_vector);
6273 	}
6274 
6275 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
6276 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
6277 			wr32(E1000_EIMS, q_vector->eims_value);
6278 		else
6279 			igb_irq_enable(adapter);
6280 	}
6281 }
6282 
6283 /**
6284  *  igb_poll - NAPI Rx polling callback
6285  *  @napi: napi polling structure
6286  *  @budget: count of how many packets we should handle
6287  **/
6288 static int igb_poll(struct napi_struct *napi, int budget)
6289 {
6290 	struct igb_q_vector *q_vector = container_of(napi,
6291 						     struct igb_q_vector,
6292 						     napi);
6293 	bool clean_complete = true;
6294 
6295 #ifdef CONFIG_IGB_DCA
6296 	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6297 		igb_update_dca(q_vector);
6298 #endif
6299 	if (q_vector->tx.ring)
6300 		clean_complete = igb_clean_tx_irq(q_vector);
6301 
6302 	if (q_vector->rx.ring)
6303 		clean_complete &= igb_clean_rx_irq(q_vector, budget);
6304 
6305 	/* If all work not completed, return budget and keep polling */
6306 	if (!clean_complete)
6307 		return budget;
6308 
6309 	/* If not enough Rx work done, exit the polling mode */
6310 	napi_complete(napi);
6311 	igb_ring_irq_enable(q_vector);
6312 
6313 	return 0;
6314 }
6315 
6316 /**
6317  *  igb_clean_tx_irq - Reclaim resources after transmit completes
6318  *  @q_vector: pointer to q_vector containing needed info
6319  *
6320  *  returns true if ring is completely cleaned
6321  **/
6322 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6323 {
6324 	struct igb_adapter *adapter = q_vector->adapter;
6325 	struct igb_ring *tx_ring = q_vector->tx.ring;
6326 	struct igb_tx_buffer *tx_buffer;
6327 	union e1000_adv_tx_desc *tx_desc;
6328 	unsigned int total_bytes = 0, total_packets = 0;
6329 	unsigned int budget = q_vector->tx.work_limit;
6330 	unsigned int i = tx_ring->next_to_clean;
6331 
6332 	if (test_bit(__IGB_DOWN, &adapter->state))
6333 		return true;
6334 
6335 	tx_buffer = &tx_ring->tx_buffer_info[i];
6336 	tx_desc = IGB_TX_DESC(tx_ring, i);
6337 	i -= tx_ring->count;
6338 
6339 	do {
6340 		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6341 
6342 		/* if next_to_watch is not set then there is no work pending */
6343 		if (!eop_desc)
6344 			break;
6345 
6346 		/* prevent any other reads prior to eop_desc */
6347 		read_barrier_depends();
6348 
6349 		/* if DD is not set pending work has not been completed */
6350 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6351 			break;
6352 
6353 		/* clear next_to_watch to prevent false hangs */
6354 		tx_buffer->next_to_watch = NULL;
6355 
6356 		/* update the statistics for this packet */
6357 		total_bytes += tx_buffer->bytecount;
6358 		total_packets += tx_buffer->gso_segs;
6359 
6360 		/* free the skb */
6361 		dev_kfree_skb_any(tx_buffer->skb);
6362 
6363 		/* unmap skb header data */
6364 		dma_unmap_single(tx_ring->dev,
6365 				 dma_unmap_addr(tx_buffer, dma),
6366 				 dma_unmap_len(tx_buffer, len),
6367 				 DMA_TO_DEVICE);
6368 
6369 		/* clear tx_buffer data */
6370 		tx_buffer->skb = NULL;
6371 		dma_unmap_len_set(tx_buffer, len, 0);
6372 
6373 		/* clear last DMA location and unmap remaining buffers */
6374 		while (tx_desc != eop_desc) {
6375 			tx_buffer++;
6376 			tx_desc++;
6377 			i++;
6378 			if (unlikely(!i)) {
6379 				i -= tx_ring->count;
6380 				tx_buffer = tx_ring->tx_buffer_info;
6381 				tx_desc = IGB_TX_DESC(tx_ring, 0);
6382 			}
6383 
6384 			/* unmap any remaining paged data */
6385 			if (dma_unmap_len(tx_buffer, len)) {
6386 				dma_unmap_page(tx_ring->dev,
6387 					       dma_unmap_addr(tx_buffer, dma),
6388 					       dma_unmap_len(tx_buffer, len),
6389 					       DMA_TO_DEVICE);
6390 				dma_unmap_len_set(tx_buffer, len, 0);
6391 			}
6392 		}
6393 
6394 		/* move us one more past the eop_desc for start of next pkt */
6395 		tx_buffer++;
6396 		tx_desc++;
6397 		i++;
6398 		if (unlikely(!i)) {
6399 			i -= tx_ring->count;
6400 			tx_buffer = tx_ring->tx_buffer_info;
6401 			tx_desc = IGB_TX_DESC(tx_ring, 0);
6402 		}
6403 
6404 		/* issue prefetch for next Tx descriptor */
6405 		prefetch(tx_desc);
6406 
6407 		/* update budget accounting */
6408 		budget--;
6409 	} while (likely(budget));
6410 
6411 	netdev_tx_completed_queue(txring_txq(tx_ring),
6412 				  total_packets, total_bytes);
6413 	i += tx_ring->count;
6414 	tx_ring->next_to_clean = i;
6415 	u64_stats_update_begin(&tx_ring->tx_syncp);
6416 	tx_ring->tx_stats.bytes += total_bytes;
6417 	tx_ring->tx_stats.packets += total_packets;
6418 	u64_stats_update_end(&tx_ring->tx_syncp);
6419 	q_vector->tx.total_bytes += total_bytes;
6420 	q_vector->tx.total_packets += total_packets;
6421 
6422 	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6423 		struct e1000_hw *hw = &adapter->hw;
6424 
6425 		/* Detect a transmit hang in hardware, this serializes the
6426 		 * check with the clearing of time_stamp and movement of i
6427 		 */
6428 		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6429 		if (tx_buffer->next_to_watch &&
6430 		    time_after(jiffies, tx_buffer->time_stamp +
6431 			       (adapter->tx_timeout_factor * HZ)) &&
6432 		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6433 
6434 			/* detected Tx unit hang */
6435 			dev_err(tx_ring->dev,
6436 				"Detected Tx Unit Hang\n"
6437 				"  Tx Queue             <%d>\n"
6438 				"  TDH                  <%x>\n"
6439 				"  TDT                  <%x>\n"
6440 				"  next_to_use          <%x>\n"
6441 				"  next_to_clean        <%x>\n"
6442 				"buffer_info[next_to_clean]\n"
6443 				"  time_stamp           <%lx>\n"
6444 				"  next_to_watch        <%p>\n"
6445 				"  jiffies              <%lx>\n"
6446 				"  desc.status          <%x>\n",
6447 				tx_ring->queue_index,
6448 				rd32(E1000_TDH(tx_ring->reg_idx)),
6449 				readl(tx_ring->tail),
6450 				tx_ring->next_to_use,
6451 				tx_ring->next_to_clean,
6452 				tx_buffer->time_stamp,
6453 				tx_buffer->next_to_watch,
6454 				jiffies,
6455 				tx_buffer->next_to_watch->wb.status);
6456 			netif_stop_subqueue(tx_ring->netdev,
6457 					    tx_ring->queue_index);
6458 
6459 			/* we are about to reset, no point in enabling stuff */
6460 			return true;
6461 		}
6462 	}
6463 
6464 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6465 	if (unlikely(total_packets &&
6466 	    netif_carrier_ok(tx_ring->netdev) &&
6467 	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6468 		/* Make sure that anybody stopping the queue after this
6469 		 * sees the new next_to_clean.
6470 		 */
6471 		smp_mb();
6472 		if (__netif_subqueue_stopped(tx_ring->netdev,
6473 					     tx_ring->queue_index) &&
6474 		    !(test_bit(__IGB_DOWN, &adapter->state))) {
6475 			netif_wake_subqueue(tx_ring->netdev,
6476 					    tx_ring->queue_index);
6477 
6478 			u64_stats_update_begin(&tx_ring->tx_syncp);
6479 			tx_ring->tx_stats.restart_queue++;
6480 			u64_stats_update_end(&tx_ring->tx_syncp);
6481 		}
6482 	}
6483 
6484 	return !!budget;
6485 }
6486 
6487 /**
6488  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6489  *  @rx_ring: rx descriptor ring to store buffers on
6490  *  @old_buff: donor buffer to have page reused
6491  *
6492  *  Synchronizes page for reuse by the adapter
6493  **/
6494 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6495 			      struct igb_rx_buffer *old_buff)
6496 {
6497 	struct igb_rx_buffer *new_buff;
6498 	u16 nta = rx_ring->next_to_alloc;
6499 
6500 	new_buff = &rx_ring->rx_buffer_info[nta];
6501 
6502 	/* update, and store next to alloc */
6503 	nta++;
6504 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6505 
6506 	/* transfer page from old buffer to new buffer */
6507 	*new_buff = *old_buff;
6508 
6509 	/* sync the buffer for use by the device */
6510 	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6511 					 old_buff->page_offset,
6512 					 IGB_RX_BUFSZ,
6513 					 DMA_FROM_DEVICE);
6514 }
6515 
6516 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6517 				  struct page *page,
6518 				  unsigned int truesize)
6519 {
6520 	/* avoid re-using remote pages */
6521 	if (unlikely(page_to_nid(page) != numa_node_id()))
6522 		return false;
6523 
6524 #if (PAGE_SIZE < 8192)
6525 	/* if we are only owner of page we can reuse it */
6526 	if (unlikely(page_count(page) != 1))
6527 		return false;
6528 
6529 	/* flip page offset to other buffer */
6530 	rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6531 
6532 	/* since we are the only owner of the page and we need to
6533 	 * increment it, just set the value to 2 in order to avoid
6534 	 * an unnecessary locked operation
6535 	 */
6536 	atomic_set(&page->_count, 2);
6537 #else
6538 	/* move offset up to the next cache line */
6539 	rx_buffer->page_offset += truesize;
6540 
6541 	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6542 		return false;
6543 
6544 	/* bump ref count on page before it is given to the stack */
6545 	get_page(page);
6546 #endif
6547 
6548 	return true;
6549 }
6550 
6551 /**
6552  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6553  *  @rx_ring: rx descriptor ring to transact packets on
6554  *  @rx_buffer: buffer containing page to add
6555  *  @rx_desc: descriptor containing length of buffer written by hardware
6556  *  @skb: sk_buff to place the data into
6557  *
6558  *  This function will add the data contained in rx_buffer->page to the skb.
6559  *  This is done either through a direct copy if the data in the buffer is
6560  *  less than the skb header size, otherwise it will just attach the page as
6561  *  a frag to the skb.
6562  *
6563  *  The function will then update the page offset if necessary and return
6564  *  true if the buffer can be reused by the adapter.
6565  **/
6566 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6567 			    struct igb_rx_buffer *rx_buffer,
6568 			    union e1000_adv_rx_desc *rx_desc,
6569 			    struct sk_buff *skb)
6570 {
6571 	struct page *page = rx_buffer->page;
6572 	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6573 #if (PAGE_SIZE < 8192)
6574 	unsigned int truesize = IGB_RX_BUFSZ;
6575 #else
6576 	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6577 #endif
6578 
6579 	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6580 		unsigned char *va = page_address(page) + rx_buffer->page_offset;
6581 
6582 		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6583 			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6584 			va += IGB_TS_HDR_LEN;
6585 			size -= IGB_TS_HDR_LEN;
6586 		}
6587 
6588 		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6589 
6590 		/* we can reuse buffer as-is, just make sure it is local */
6591 		if (likely(page_to_nid(page) == numa_node_id()))
6592 			return true;
6593 
6594 		/* this page cannot be reused so discard it */
6595 		put_page(page);
6596 		return false;
6597 	}
6598 
6599 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6600 			rx_buffer->page_offset, size, truesize);
6601 
6602 	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6603 }
6604 
6605 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6606 					   union e1000_adv_rx_desc *rx_desc,
6607 					   struct sk_buff *skb)
6608 {
6609 	struct igb_rx_buffer *rx_buffer;
6610 	struct page *page;
6611 
6612 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6613 
6614 	page = rx_buffer->page;
6615 	prefetchw(page);
6616 
6617 	if (likely(!skb)) {
6618 		void *page_addr = page_address(page) +
6619 				  rx_buffer->page_offset;
6620 
6621 		/* prefetch first cache line of first page */
6622 		prefetch(page_addr);
6623 #if L1_CACHE_BYTES < 128
6624 		prefetch(page_addr + L1_CACHE_BYTES);
6625 #endif
6626 
6627 		/* allocate a skb to store the frags */
6628 		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6629 						IGB_RX_HDR_LEN);
6630 		if (unlikely(!skb)) {
6631 			rx_ring->rx_stats.alloc_failed++;
6632 			return NULL;
6633 		}
6634 
6635 		/* we will be copying header into skb->data in
6636 		 * pskb_may_pull so it is in our interest to prefetch
6637 		 * it now to avoid a possible cache miss
6638 		 */
6639 		prefetchw(skb->data);
6640 	}
6641 
6642 	/* we are reusing so sync this buffer for CPU use */
6643 	dma_sync_single_range_for_cpu(rx_ring->dev,
6644 				      rx_buffer->dma,
6645 				      rx_buffer->page_offset,
6646 				      IGB_RX_BUFSZ,
6647 				      DMA_FROM_DEVICE);
6648 
6649 	/* pull page into skb */
6650 	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6651 		/* hand second half of page back to the ring */
6652 		igb_reuse_rx_page(rx_ring, rx_buffer);
6653 	} else {
6654 		/* we are not reusing the buffer so unmap it */
6655 		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6656 			       PAGE_SIZE, DMA_FROM_DEVICE);
6657 	}
6658 
6659 	/* clear contents of rx_buffer */
6660 	rx_buffer->page = NULL;
6661 
6662 	return skb;
6663 }
6664 
6665 static inline void igb_rx_checksum(struct igb_ring *ring,
6666 				   union e1000_adv_rx_desc *rx_desc,
6667 				   struct sk_buff *skb)
6668 {
6669 	skb_checksum_none_assert(skb);
6670 
6671 	/* Ignore Checksum bit is set */
6672 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6673 		return;
6674 
6675 	/* Rx checksum disabled via ethtool */
6676 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6677 		return;
6678 
6679 	/* TCP/UDP checksum error bit is set */
6680 	if (igb_test_staterr(rx_desc,
6681 			     E1000_RXDEXT_STATERR_TCPE |
6682 			     E1000_RXDEXT_STATERR_IPE)) {
6683 		/* work around errata with sctp packets where the TCPE aka
6684 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6685 		 * packets, (aka let the stack check the crc32c)
6686 		 */
6687 		if (!((skb->len == 60) &&
6688 		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6689 			u64_stats_update_begin(&ring->rx_syncp);
6690 			ring->rx_stats.csum_err++;
6691 			u64_stats_update_end(&ring->rx_syncp);
6692 		}
6693 		/* let the stack verify checksum errors */
6694 		return;
6695 	}
6696 	/* It must be a TCP or UDP packet with a valid checksum */
6697 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6698 				      E1000_RXD_STAT_UDPCS))
6699 		skb->ip_summed = CHECKSUM_UNNECESSARY;
6700 
6701 	dev_dbg(ring->dev, "cksum success: bits %08X\n",
6702 		le32_to_cpu(rx_desc->wb.upper.status_error));
6703 }
6704 
6705 static inline void igb_rx_hash(struct igb_ring *ring,
6706 			       union e1000_adv_rx_desc *rx_desc,
6707 			       struct sk_buff *skb)
6708 {
6709 	if (ring->netdev->features & NETIF_F_RXHASH)
6710 		skb_set_hash(skb,
6711 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6712 			     PKT_HASH_TYPE_L3);
6713 }
6714 
6715 /**
6716  *  igb_is_non_eop - process handling of non-EOP buffers
6717  *  @rx_ring: Rx ring being processed
6718  *  @rx_desc: Rx descriptor for current buffer
6719  *  @skb: current socket buffer containing buffer in progress
6720  *
6721  *  This function updates next to clean.  If the buffer is an EOP buffer
6722  *  this function exits returning false, otherwise it will place the
6723  *  sk_buff in the next buffer to be chained and return true indicating
6724  *  that this is in fact a non-EOP buffer.
6725  **/
6726 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6727 			   union e1000_adv_rx_desc *rx_desc)
6728 {
6729 	u32 ntc = rx_ring->next_to_clean + 1;
6730 
6731 	/* fetch, update, and store next to clean */
6732 	ntc = (ntc < rx_ring->count) ? ntc : 0;
6733 	rx_ring->next_to_clean = ntc;
6734 
6735 	prefetch(IGB_RX_DESC(rx_ring, ntc));
6736 
6737 	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6738 		return false;
6739 
6740 	return true;
6741 }
6742 
6743 /**
6744  *  igb_get_headlen - determine size of header for LRO/GRO
6745  *  @data: pointer to the start of the headers
6746  *  @max_len: total length of section to find headers in
6747  *
6748  *  This function is meant to determine the length of headers that will
6749  *  be recognized by hardware for LRO, and GRO offloads.  The main
6750  *  motivation of doing this is to only perform one pull for IPv4 TCP
6751  *  packets so that we can do basic things like calculating the gso_size
6752  *  based on the average data per packet.
6753  **/
6754 static unsigned int igb_get_headlen(unsigned char *data,
6755 				    unsigned int max_len)
6756 {
6757 	union {
6758 		unsigned char *network;
6759 		/* l2 headers */
6760 		struct ethhdr *eth;
6761 		struct vlan_hdr *vlan;
6762 		/* l3 headers */
6763 		struct iphdr *ipv4;
6764 		struct ipv6hdr *ipv6;
6765 	} hdr;
6766 	__be16 protocol;
6767 	u8 nexthdr = 0;	/* default to not TCP */
6768 	u8 hlen;
6769 
6770 	/* this should never happen, but better safe than sorry */
6771 	if (max_len < ETH_HLEN)
6772 		return max_len;
6773 
6774 	/* initialize network frame pointer */
6775 	hdr.network = data;
6776 
6777 	/* set first protocol and move network header forward */
6778 	protocol = hdr.eth->h_proto;
6779 	hdr.network += ETH_HLEN;
6780 
6781 	/* handle any vlan tag if present */
6782 	if (protocol == htons(ETH_P_8021Q)) {
6783 		if ((hdr.network - data) > (max_len - VLAN_HLEN))
6784 			return max_len;
6785 
6786 		protocol = hdr.vlan->h_vlan_encapsulated_proto;
6787 		hdr.network += VLAN_HLEN;
6788 	}
6789 
6790 	/* handle L3 protocols */
6791 	if (protocol == htons(ETH_P_IP)) {
6792 		if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6793 			return max_len;
6794 
6795 		/* access ihl as a u8 to avoid unaligned access on ia64 */
6796 		hlen = (hdr.network[0] & 0x0F) << 2;
6797 
6798 		/* verify hlen meets minimum size requirements */
6799 		if (hlen < sizeof(struct iphdr))
6800 			return hdr.network - data;
6801 
6802 		/* record next protocol if header is present */
6803 		if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6804 			nexthdr = hdr.ipv4->protocol;
6805 	} else if (protocol == htons(ETH_P_IPV6)) {
6806 		if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6807 			return max_len;
6808 
6809 		/* record next protocol */
6810 		nexthdr = hdr.ipv6->nexthdr;
6811 		hlen = sizeof(struct ipv6hdr);
6812 	} else {
6813 		return hdr.network - data;
6814 	}
6815 
6816 	/* relocate pointer to start of L4 header */
6817 	hdr.network += hlen;
6818 
6819 	/* finally sort out TCP */
6820 	if (nexthdr == IPPROTO_TCP) {
6821 		if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6822 			return max_len;
6823 
6824 		/* access doff as a u8 to avoid unaligned access on ia64 */
6825 		hlen = (hdr.network[12] & 0xF0) >> 2;
6826 
6827 		/* verify hlen meets minimum size requirements */
6828 		if (hlen < sizeof(struct tcphdr))
6829 			return hdr.network - data;
6830 
6831 		hdr.network += hlen;
6832 	} else if (nexthdr == IPPROTO_UDP) {
6833 		if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6834 			return max_len;
6835 
6836 		hdr.network += sizeof(struct udphdr);
6837 	}
6838 
6839 	/* If everything has gone correctly hdr.network should be the
6840 	 * data section of the packet and will be the end of the header.
6841 	 * If not then it probably represents the end of the last recognized
6842 	 * header.
6843 	 */
6844 	if ((hdr.network - data) < max_len)
6845 		return hdr.network - data;
6846 	else
6847 		return max_len;
6848 }
6849 
6850 /**
6851  *  igb_pull_tail - igb specific version of skb_pull_tail
6852  *  @rx_ring: rx descriptor ring packet is being transacted on
6853  *  @rx_desc: pointer to the EOP Rx descriptor
6854  *  @skb: pointer to current skb being adjusted
6855  *
6856  *  This function is an igb specific version of __pskb_pull_tail.  The
6857  *  main difference between this version and the original function is that
6858  *  this function can make several assumptions about the state of things
6859  *  that allow for significant optimizations versus the standard function.
6860  *  As a result we can do things like drop a frag and maintain an accurate
6861  *  truesize for the skb.
6862  */
6863 static void igb_pull_tail(struct igb_ring *rx_ring,
6864 			  union e1000_adv_rx_desc *rx_desc,
6865 			  struct sk_buff *skb)
6866 {
6867 	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6868 	unsigned char *va;
6869 	unsigned int pull_len;
6870 
6871 	/* it is valid to use page_address instead of kmap since we are
6872 	 * working with pages allocated out of the lomem pool per
6873 	 * alloc_page(GFP_ATOMIC)
6874 	 */
6875 	va = skb_frag_address(frag);
6876 
6877 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6878 		/* retrieve timestamp from buffer */
6879 		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6880 
6881 		/* update pointers to remove timestamp header */
6882 		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6883 		frag->page_offset += IGB_TS_HDR_LEN;
6884 		skb->data_len -= IGB_TS_HDR_LEN;
6885 		skb->len -= IGB_TS_HDR_LEN;
6886 
6887 		/* move va to start of packet data */
6888 		va += IGB_TS_HDR_LEN;
6889 	}
6890 
6891 	/* we need the header to contain the greater of either ETH_HLEN or
6892 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
6893 	 */
6894 	pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6895 
6896 	/* align pull length to size of long to optimize memcpy performance */
6897 	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6898 
6899 	/* update all of the pointers */
6900 	skb_frag_size_sub(frag, pull_len);
6901 	frag->page_offset += pull_len;
6902 	skb->data_len -= pull_len;
6903 	skb->tail += pull_len;
6904 }
6905 
6906 /**
6907  *  igb_cleanup_headers - Correct corrupted or empty headers
6908  *  @rx_ring: rx descriptor ring packet is being transacted on
6909  *  @rx_desc: pointer to the EOP Rx descriptor
6910  *  @skb: pointer to current skb being fixed
6911  *
6912  *  Address the case where we are pulling data in on pages only
6913  *  and as such no data is present in the skb header.
6914  *
6915  *  In addition if skb is not at least 60 bytes we need to pad it so that
6916  *  it is large enough to qualify as a valid Ethernet frame.
6917  *
6918  *  Returns true if an error was encountered and skb was freed.
6919  **/
6920 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6921 				union e1000_adv_rx_desc *rx_desc,
6922 				struct sk_buff *skb)
6923 {
6924 	if (unlikely((igb_test_staterr(rx_desc,
6925 				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6926 		struct net_device *netdev = rx_ring->netdev;
6927 		if (!(netdev->features & NETIF_F_RXALL)) {
6928 			dev_kfree_skb_any(skb);
6929 			return true;
6930 		}
6931 	}
6932 
6933 	/* place header in linear portion of buffer */
6934 	if (skb_is_nonlinear(skb))
6935 		igb_pull_tail(rx_ring, rx_desc, skb);
6936 
6937 	/* if skb_pad returns an error the skb was freed */
6938 	if (unlikely(skb->len < 60)) {
6939 		int pad_len = 60 - skb->len;
6940 
6941 		if (skb_pad(skb, pad_len))
6942 			return true;
6943 		__skb_put(skb, pad_len);
6944 	}
6945 
6946 	return false;
6947 }
6948 
6949 /**
6950  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
6951  *  @rx_ring: rx descriptor ring packet is being transacted on
6952  *  @rx_desc: pointer to the EOP Rx descriptor
6953  *  @skb: pointer to current skb being populated
6954  *
6955  *  This function checks the ring, descriptor, and packet information in
6956  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
6957  *  other fields within the skb.
6958  **/
6959 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6960 				   union e1000_adv_rx_desc *rx_desc,
6961 				   struct sk_buff *skb)
6962 {
6963 	struct net_device *dev = rx_ring->netdev;
6964 
6965 	igb_rx_hash(rx_ring, rx_desc, skb);
6966 
6967 	igb_rx_checksum(rx_ring, rx_desc, skb);
6968 
6969 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
6970 	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
6971 		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
6972 
6973 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6974 	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6975 		u16 vid;
6976 
6977 		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6978 		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6979 			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6980 		else
6981 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6982 
6983 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6984 	}
6985 
6986 	skb_record_rx_queue(skb, rx_ring->queue_index);
6987 
6988 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6989 }
6990 
6991 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6992 {
6993 	struct igb_ring *rx_ring = q_vector->rx.ring;
6994 	struct sk_buff *skb = rx_ring->skb;
6995 	unsigned int total_bytes = 0, total_packets = 0;
6996 	u16 cleaned_count = igb_desc_unused(rx_ring);
6997 
6998 	while (likely(total_packets < budget)) {
6999 		union e1000_adv_rx_desc *rx_desc;
7000 
7001 		/* return some buffers to hardware, one at a time is too slow */
7002 		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
7003 			igb_alloc_rx_buffers(rx_ring, cleaned_count);
7004 			cleaned_count = 0;
7005 		}
7006 
7007 		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
7008 
7009 		if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
7010 			break;
7011 
7012 		/* This memory barrier is needed to keep us from reading
7013 		 * any other fields out of the rx_desc until we know the
7014 		 * RXD_STAT_DD bit is set
7015 		 */
7016 		rmb();
7017 
7018 		/* retrieve a buffer from the ring */
7019 		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
7020 
7021 		/* exit if we failed to retrieve a buffer */
7022 		if (!skb)
7023 			break;
7024 
7025 		cleaned_count++;
7026 
7027 		/* fetch next buffer in frame if non-eop */
7028 		if (igb_is_non_eop(rx_ring, rx_desc))
7029 			continue;
7030 
7031 		/* verify the packet layout is correct */
7032 		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7033 			skb = NULL;
7034 			continue;
7035 		}
7036 
7037 		/* probably a little skewed due to removing CRC */
7038 		total_bytes += skb->len;
7039 
7040 		/* populate checksum, timestamp, VLAN, and protocol */
7041 		igb_process_skb_fields(rx_ring, rx_desc, skb);
7042 
7043 		napi_gro_receive(&q_vector->napi, skb);
7044 
7045 		/* reset skb pointer */
7046 		skb = NULL;
7047 
7048 		/* update budget accounting */
7049 		total_packets++;
7050 	}
7051 
7052 	/* place incomplete frames back on ring for completion */
7053 	rx_ring->skb = skb;
7054 
7055 	u64_stats_update_begin(&rx_ring->rx_syncp);
7056 	rx_ring->rx_stats.packets += total_packets;
7057 	rx_ring->rx_stats.bytes += total_bytes;
7058 	u64_stats_update_end(&rx_ring->rx_syncp);
7059 	q_vector->rx.total_packets += total_packets;
7060 	q_vector->rx.total_bytes += total_bytes;
7061 
7062 	if (cleaned_count)
7063 		igb_alloc_rx_buffers(rx_ring, cleaned_count);
7064 
7065 	return total_packets < budget;
7066 }
7067 
7068 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7069 				  struct igb_rx_buffer *bi)
7070 {
7071 	struct page *page = bi->page;
7072 	dma_addr_t dma;
7073 
7074 	/* since we are recycling buffers we should seldom need to alloc */
7075 	if (likely(page))
7076 		return true;
7077 
7078 	/* alloc new page for storage */
7079 	page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
7080 	if (unlikely(!page)) {
7081 		rx_ring->rx_stats.alloc_failed++;
7082 		return false;
7083 	}
7084 
7085 	/* map page for use */
7086 	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7087 
7088 	/* if mapping failed free memory back to system since
7089 	 * there isn't much point in holding memory we can't use
7090 	 */
7091 	if (dma_mapping_error(rx_ring->dev, dma)) {
7092 		__free_page(page);
7093 
7094 		rx_ring->rx_stats.alloc_failed++;
7095 		return false;
7096 	}
7097 
7098 	bi->dma = dma;
7099 	bi->page = page;
7100 	bi->page_offset = 0;
7101 
7102 	return true;
7103 }
7104 
7105 /**
7106  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
7107  *  @adapter: address of board private structure
7108  **/
7109 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7110 {
7111 	union e1000_adv_rx_desc *rx_desc;
7112 	struct igb_rx_buffer *bi;
7113 	u16 i = rx_ring->next_to_use;
7114 
7115 	/* nothing to do */
7116 	if (!cleaned_count)
7117 		return;
7118 
7119 	rx_desc = IGB_RX_DESC(rx_ring, i);
7120 	bi = &rx_ring->rx_buffer_info[i];
7121 	i -= rx_ring->count;
7122 
7123 	do {
7124 		if (!igb_alloc_mapped_page(rx_ring, bi))
7125 			break;
7126 
7127 		/* Refresh the desc even if buffer_addrs didn't change
7128 		 * because each write-back erases this info.
7129 		 */
7130 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7131 
7132 		rx_desc++;
7133 		bi++;
7134 		i++;
7135 		if (unlikely(!i)) {
7136 			rx_desc = IGB_RX_DESC(rx_ring, 0);
7137 			bi = rx_ring->rx_buffer_info;
7138 			i -= rx_ring->count;
7139 		}
7140 
7141 		/* clear the hdr_addr for the next_to_use descriptor */
7142 		rx_desc->read.hdr_addr = 0;
7143 
7144 		cleaned_count--;
7145 	} while (cleaned_count);
7146 
7147 	i += rx_ring->count;
7148 
7149 	if (rx_ring->next_to_use != i) {
7150 		/* record the next descriptor to use */
7151 		rx_ring->next_to_use = i;
7152 
7153 		/* update next to alloc since we have filled the ring */
7154 		rx_ring->next_to_alloc = i;
7155 
7156 		/* Force memory writes to complete before letting h/w
7157 		 * know there are new descriptors to fetch.  (Only
7158 		 * applicable for weak-ordered memory model archs,
7159 		 * such as IA-64).
7160 		 */
7161 		wmb();
7162 		writel(i, rx_ring->tail);
7163 	}
7164 }
7165 
7166 /**
7167  * igb_mii_ioctl -
7168  * @netdev:
7169  * @ifreq:
7170  * @cmd:
7171  **/
7172 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7173 {
7174 	struct igb_adapter *adapter = netdev_priv(netdev);
7175 	struct mii_ioctl_data *data = if_mii(ifr);
7176 
7177 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
7178 		return -EOPNOTSUPP;
7179 
7180 	switch (cmd) {
7181 	case SIOCGMIIPHY:
7182 		data->phy_id = adapter->hw.phy.addr;
7183 		break;
7184 	case SIOCGMIIREG:
7185 		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7186 				     &data->val_out))
7187 			return -EIO;
7188 		break;
7189 	case SIOCSMIIREG:
7190 	default:
7191 		return -EOPNOTSUPP;
7192 	}
7193 	return 0;
7194 }
7195 
7196 /**
7197  * igb_ioctl -
7198  * @netdev:
7199  * @ifreq:
7200  * @cmd:
7201  **/
7202 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7203 {
7204 	switch (cmd) {
7205 	case SIOCGMIIPHY:
7206 	case SIOCGMIIREG:
7207 	case SIOCSMIIREG:
7208 		return igb_mii_ioctl(netdev, ifr, cmd);
7209 	case SIOCGHWTSTAMP:
7210 		return igb_ptp_get_ts_config(netdev, ifr);
7211 	case SIOCSHWTSTAMP:
7212 		return igb_ptp_set_ts_config(netdev, ifr);
7213 	default:
7214 		return -EOPNOTSUPP;
7215 	}
7216 }
7217 
7218 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7219 {
7220 	struct igb_adapter *adapter = hw->back;
7221 
7222 	if (pcie_capability_read_word(adapter->pdev, reg, value))
7223 		return -E1000_ERR_CONFIG;
7224 
7225 	return 0;
7226 }
7227 
7228 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7229 {
7230 	struct igb_adapter *adapter = hw->back;
7231 
7232 	if (pcie_capability_write_word(adapter->pdev, reg, *value))
7233 		return -E1000_ERR_CONFIG;
7234 
7235 	return 0;
7236 }
7237 
7238 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7239 {
7240 	struct igb_adapter *adapter = netdev_priv(netdev);
7241 	struct e1000_hw *hw = &adapter->hw;
7242 	u32 ctrl, rctl;
7243 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7244 
7245 	if (enable) {
7246 		/* enable VLAN tag insert/strip */
7247 		ctrl = rd32(E1000_CTRL);
7248 		ctrl |= E1000_CTRL_VME;
7249 		wr32(E1000_CTRL, ctrl);
7250 
7251 		/* Disable CFI check */
7252 		rctl = rd32(E1000_RCTL);
7253 		rctl &= ~E1000_RCTL_CFIEN;
7254 		wr32(E1000_RCTL, rctl);
7255 	} else {
7256 		/* disable VLAN tag insert/strip */
7257 		ctrl = rd32(E1000_CTRL);
7258 		ctrl &= ~E1000_CTRL_VME;
7259 		wr32(E1000_CTRL, ctrl);
7260 	}
7261 
7262 	igb_rlpml_set(adapter);
7263 }
7264 
7265 static int igb_vlan_rx_add_vid(struct net_device *netdev,
7266 			       __be16 proto, u16 vid)
7267 {
7268 	struct igb_adapter *adapter = netdev_priv(netdev);
7269 	struct e1000_hw *hw = &adapter->hw;
7270 	int pf_id = adapter->vfs_allocated_count;
7271 
7272 	/* attempt to add filter to vlvf array */
7273 	igb_vlvf_set(adapter, vid, true, pf_id);
7274 
7275 	/* add the filter since PF can receive vlans w/o entry in vlvf */
7276 	igb_vfta_set(hw, vid, true);
7277 
7278 	set_bit(vid, adapter->active_vlans);
7279 
7280 	return 0;
7281 }
7282 
7283 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7284 				__be16 proto, u16 vid)
7285 {
7286 	struct igb_adapter *adapter = netdev_priv(netdev);
7287 	struct e1000_hw *hw = &adapter->hw;
7288 	int pf_id = adapter->vfs_allocated_count;
7289 	s32 err;
7290 
7291 	/* remove vlan from VLVF table array */
7292 	err = igb_vlvf_set(adapter, vid, false, pf_id);
7293 
7294 	/* if vid was not present in VLVF just remove it from table */
7295 	if (err)
7296 		igb_vfta_set(hw, vid, false);
7297 
7298 	clear_bit(vid, adapter->active_vlans);
7299 
7300 	return 0;
7301 }
7302 
7303 static void igb_restore_vlan(struct igb_adapter *adapter)
7304 {
7305 	u16 vid;
7306 
7307 	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7308 
7309 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7310 		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7311 }
7312 
7313 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7314 {
7315 	struct pci_dev *pdev = adapter->pdev;
7316 	struct e1000_mac_info *mac = &adapter->hw.mac;
7317 
7318 	mac->autoneg = 0;
7319 
7320 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
7321 	 * for the switch() below to work
7322 	 */
7323 	if ((spd & 1) || (dplx & ~1))
7324 		goto err_inval;
7325 
7326 	/* Fiber NIC's only allow 1000 gbps Full duplex
7327 	 * and 100Mbps Full duplex for 100baseFx sfp
7328 	 */
7329 	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7330 		switch (spd + dplx) {
7331 		case SPEED_10 + DUPLEX_HALF:
7332 		case SPEED_10 + DUPLEX_FULL:
7333 		case SPEED_100 + DUPLEX_HALF:
7334 			goto err_inval;
7335 		default:
7336 			break;
7337 		}
7338 	}
7339 
7340 	switch (spd + dplx) {
7341 	case SPEED_10 + DUPLEX_HALF:
7342 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
7343 		break;
7344 	case SPEED_10 + DUPLEX_FULL:
7345 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
7346 		break;
7347 	case SPEED_100 + DUPLEX_HALF:
7348 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
7349 		break;
7350 	case SPEED_100 + DUPLEX_FULL:
7351 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
7352 		break;
7353 	case SPEED_1000 + DUPLEX_FULL:
7354 		mac->autoneg = 1;
7355 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7356 		break;
7357 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
7358 	default:
7359 		goto err_inval;
7360 	}
7361 
7362 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7363 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
7364 
7365 	return 0;
7366 
7367 err_inval:
7368 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7369 	return -EINVAL;
7370 }
7371 
7372 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7373 			  bool runtime)
7374 {
7375 	struct net_device *netdev = pci_get_drvdata(pdev);
7376 	struct igb_adapter *adapter = netdev_priv(netdev);
7377 	struct e1000_hw *hw = &adapter->hw;
7378 	u32 ctrl, rctl, status;
7379 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7380 #ifdef CONFIG_PM
7381 	int retval = 0;
7382 #endif
7383 
7384 	netif_device_detach(netdev);
7385 
7386 	if (netif_running(netdev))
7387 		__igb_close(netdev, true);
7388 
7389 	igb_clear_interrupt_scheme(adapter);
7390 
7391 #ifdef CONFIG_PM
7392 	retval = pci_save_state(pdev);
7393 	if (retval)
7394 		return retval;
7395 #endif
7396 
7397 	status = rd32(E1000_STATUS);
7398 	if (status & E1000_STATUS_LU)
7399 		wufc &= ~E1000_WUFC_LNKC;
7400 
7401 	if (wufc) {
7402 		igb_setup_rctl(adapter);
7403 		igb_set_rx_mode(netdev);
7404 
7405 		/* turn on all-multi mode if wake on multicast is enabled */
7406 		if (wufc & E1000_WUFC_MC) {
7407 			rctl = rd32(E1000_RCTL);
7408 			rctl |= E1000_RCTL_MPE;
7409 			wr32(E1000_RCTL, rctl);
7410 		}
7411 
7412 		ctrl = rd32(E1000_CTRL);
7413 		/* advertise wake from D3Cold */
7414 		#define E1000_CTRL_ADVD3WUC 0x00100000
7415 		/* phy power management enable */
7416 		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7417 		ctrl |= E1000_CTRL_ADVD3WUC;
7418 		wr32(E1000_CTRL, ctrl);
7419 
7420 		/* Allow time for pending master requests to run */
7421 		igb_disable_pcie_master(hw);
7422 
7423 		wr32(E1000_WUC, E1000_WUC_PME_EN);
7424 		wr32(E1000_WUFC, wufc);
7425 	} else {
7426 		wr32(E1000_WUC, 0);
7427 		wr32(E1000_WUFC, 0);
7428 	}
7429 
7430 	*enable_wake = wufc || adapter->en_mng_pt;
7431 	if (!*enable_wake)
7432 		igb_power_down_link(adapter);
7433 	else
7434 		igb_power_up_link(adapter);
7435 
7436 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7437 	 * would have already happened in close and is redundant.
7438 	 */
7439 	igb_release_hw_control(adapter);
7440 
7441 	pci_disable_device(pdev);
7442 
7443 	return 0;
7444 }
7445 
7446 #ifdef CONFIG_PM
7447 #ifdef CONFIG_PM_SLEEP
7448 static int igb_suspend(struct device *dev)
7449 {
7450 	int retval;
7451 	bool wake;
7452 	struct pci_dev *pdev = to_pci_dev(dev);
7453 
7454 	retval = __igb_shutdown(pdev, &wake, 0);
7455 	if (retval)
7456 		return retval;
7457 
7458 	if (wake) {
7459 		pci_prepare_to_sleep(pdev);
7460 	} else {
7461 		pci_wake_from_d3(pdev, false);
7462 		pci_set_power_state(pdev, PCI_D3hot);
7463 	}
7464 
7465 	return 0;
7466 }
7467 #endif /* CONFIG_PM_SLEEP */
7468 
7469 static int igb_resume(struct device *dev)
7470 {
7471 	struct pci_dev *pdev = to_pci_dev(dev);
7472 	struct net_device *netdev = pci_get_drvdata(pdev);
7473 	struct igb_adapter *adapter = netdev_priv(netdev);
7474 	struct e1000_hw *hw = &adapter->hw;
7475 	u32 err;
7476 
7477 	pci_set_power_state(pdev, PCI_D0);
7478 	pci_restore_state(pdev);
7479 	pci_save_state(pdev);
7480 
7481 	err = pci_enable_device_mem(pdev);
7482 	if (err) {
7483 		dev_err(&pdev->dev,
7484 			"igb: Cannot enable PCI device from suspend\n");
7485 		return err;
7486 	}
7487 	pci_set_master(pdev);
7488 
7489 	pci_enable_wake(pdev, PCI_D3hot, 0);
7490 	pci_enable_wake(pdev, PCI_D3cold, 0);
7491 
7492 	if (igb_init_interrupt_scheme(adapter, true)) {
7493 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7494 		return -ENOMEM;
7495 	}
7496 
7497 	igb_reset(adapter);
7498 
7499 	/* let the f/w know that the h/w is now under the control of the
7500 	 * driver.
7501 	 */
7502 	igb_get_hw_control(adapter);
7503 
7504 	wr32(E1000_WUS, ~0);
7505 
7506 	if (netdev->flags & IFF_UP) {
7507 		rtnl_lock();
7508 		err = __igb_open(netdev, true);
7509 		rtnl_unlock();
7510 		if (err)
7511 			return err;
7512 	}
7513 
7514 	netif_device_attach(netdev);
7515 	return 0;
7516 }
7517 
7518 #ifdef CONFIG_PM_RUNTIME
7519 static int igb_runtime_idle(struct device *dev)
7520 {
7521 	struct pci_dev *pdev = to_pci_dev(dev);
7522 	struct net_device *netdev = pci_get_drvdata(pdev);
7523 	struct igb_adapter *adapter = netdev_priv(netdev);
7524 
7525 	if (!igb_has_link(adapter))
7526 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7527 
7528 	return -EBUSY;
7529 }
7530 
7531 static int igb_runtime_suspend(struct device *dev)
7532 {
7533 	struct pci_dev *pdev = to_pci_dev(dev);
7534 	int retval;
7535 	bool wake;
7536 
7537 	retval = __igb_shutdown(pdev, &wake, 1);
7538 	if (retval)
7539 		return retval;
7540 
7541 	if (wake) {
7542 		pci_prepare_to_sleep(pdev);
7543 	} else {
7544 		pci_wake_from_d3(pdev, false);
7545 		pci_set_power_state(pdev, PCI_D3hot);
7546 	}
7547 
7548 	return 0;
7549 }
7550 
7551 static int igb_runtime_resume(struct device *dev)
7552 {
7553 	return igb_resume(dev);
7554 }
7555 #endif /* CONFIG_PM_RUNTIME */
7556 #endif
7557 
7558 static void igb_shutdown(struct pci_dev *pdev)
7559 {
7560 	bool wake;
7561 
7562 	__igb_shutdown(pdev, &wake, 0);
7563 
7564 	if (system_state == SYSTEM_POWER_OFF) {
7565 		pci_wake_from_d3(pdev, wake);
7566 		pci_set_power_state(pdev, PCI_D3hot);
7567 	}
7568 }
7569 
7570 #ifdef CONFIG_PCI_IOV
7571 static int igb_sriov_reinit(struct pci_dev *dev)
7572 {
7573 	struct net_device *netdev = pci_get_drvdata(dev);
7574 	struct igb_adapter *adapter = netdev_priv(netdev);
7575 	struct pci_dev *pdev = adapter->pdev;
7576 
7577 	rtnl_lock();
7578 
7579 	if (netif_running(netdev))
7580 		igb_close(netdev);
7581 
7582 	igb_clear_interrupt_scheme(adapter);
7583 
7584 	igb_init_queue_configuration(adapter);
7585 
7586 	if (igb_init_interrupt_scheme(adapter, true)) {
7587 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7588 		return -ENOMEM;
7589 	}
7590 
7591 	if (netif_running(netdev))
7592 		igb_open(netdev);
7593 
7594 	rtnl_unlock();
7595 
7596 	return 0;
7597 }
7598 
7599 static int igb_pci_disable_sriov(struct pci_dev *dev)
7600 {
7601 	int err = igb_disable_sriov(dev);
7602 
7603 	if (!err)
7604 		err = igb_sriov_reinit(dev);
7605 
7606 	return err;
7607 }
7608 
7609 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7610 {
7611 	int err = igb_enable_sriov(dev, num_vfs);
7612 
7613 	if (err)
7614 		goto out;
7615 
7616 	err = igb_sriov_reinit(dev);
7617 	if (!err)
7618 		return num_vfs;
7619 
7620 out:
7621 	return err;
7622 }
7623 
7624 #endif
7625 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7626 {
7627 #ifdef CONFIG_PCI_IOV
7628 	if (num_vfs == 0)
7629 		return igb_pci_disable_sriov(dev);
7630 	else
7631 		return igb_pci_enable_sriov(dev, num_vfs);
7632 #endif
7633 	return 0;
7634 }
7635 
7636 #ifdef CONFIG_NET_POLL_CONTROLLER
7637 /* Polling 'interrupt' - used by things like netconsole to send skbs
7638  * without having to re-enable interrupts. It's not called while
7639  * the interrupt routine is executing.
7640  */
7641 static void igb_netpoll(struct net_device *netdev)
7642 {
7643 	struct igb_adapter *adapter = netdev_priv(netdev);
7644 	struct e1000_hw *hw = &adapter->hw;
7645 	struct igb_q_vector *q_vector;
7646 	int i;
7647 
7648 	for (i = 0; i < adapter->num_q_vectors; i++) {
7649 		q_vector = adapter->q_vector[i];
7650 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
7651 			wr32(E1000_EIMC, q_vector->eims_value);
7652 		else
7653 			igb_irq_disable(adapter);
7654 		napi_schedule(&q_vector->napi);
7655 	}
7656 }
7657 #endif /* CONFIG_NET_POLL_CONTROLLER */
7658 
7659 /**
7660  *  igb_io_error_detected - called when PCI error is detected
7661  *  @pdev: Pointer to PCI device
7662  *  @state: The current pci connection state
7663  *
7664  *  This function is called after a PCI bus error affecting
7665  *  this device has been detected.
7666  **/
7667 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7668 					      pci_channel_state_t state)
7669 {
7670 	struct net_device *netdev = pci_get_drvdata(pdev);
7671 	struct igb_adapter *adapter = netdev_priv(netdev);
7672 
7673 	netif_device_detach(netdev);
7674 
7675 	if (state == pci_channel_io_perm_failure)
7676 		return PCI_ERS_RESULT_DISCONNECT;
7677 
7678 	if (netif_running(netdev))
7679 		igb_down(adapter);
7680 	pci_disable_device(pdev);
7681 
7682 	/* Request a slot slot reset. */
7683 	return PCI_ERS_RESULT_NEED_RESET;
7684 }
7685 
7686 /**
7687  *  igb_io_slot_reset - called after the pci bus has been reset.
7688  *  @pdev: Pointer to PCI device
7689  *
7690  *  Restart the card from scratch, as if from a cold-boot. Implementation
7691  *  resembles the first-half of the igb_resume routine.
7692  **/
7693 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7694 {
7695 	struct net_device *netdev = pci_get_drvdata(pdev);
7696 	struct igb_adapter *adapter = netdev_priv(netdev);
7697 	struct e1000_hw *hw = &adapter->hw;
7698 	pci_ers_result_t result;
7699 	int err;
7700 
7701 	if (pci_enable_device_mem(pdev)) {
7702 		dev_err(&pdev->dev,
7703 			"Cannot re-enable PCI device after reset.\n");
7704 		result = PCI_ERS_RESULT_DISCONNECT;
7705 	} else {
7706 		pci_set_master(pdev);
7707 		pci_restore_state(pdev);
7708 		pci_save_state(pdev);
7709 
7710 		pci_enable_wake(pdev, PCI_D3hot, 0);
7711 		pci_enable_wake(pdev, PCI_D3cold, 0);
7712 
7713 		igb_reset(adapter);
7714 		wr32(E1000_WUS, ~0);
7715 		result = PCI_ERS_RESULT_RECOVERED;
7716 	}
7717 
7718 	err = pci_cleanup_aer_uncorrect_error_status(pdev);
7719 	if (err) {
7720 		dev_err(&pdev->dev,
7721 			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7722 			err);
7723 		/* non-fatal, continue */
7724 	}
7725 
7726 	return result;
7727 }
7728 
7729 /**
7730  *  igb_io_resume - called when traffic can start flowing again.
7731  *  @pdev: Pointer to PCI device
7732  *
7733  *  This callback is called when the error recovery driver tells us that
7734  *  its OK to resume normal operation. Implementation resembles the
7735  *  second-half of the igb_resume routine.
7736  */
7737 static void igb_io_resume(struct pci_dev *pdev)
7738 {
7739 	struct net_device *netdev = pci_get_drvdata(pdev);
7740 	struct igb_adapter *adapter = netdev_priv(netdev);
7741 
7742 	if (netif_running(netdev)) {
7743 		if (igb_up(adapter)) {
7744 			dev_err(&pdev->dev, "igb_up failed after reset\n");
7745 			return;
7746 		}
7747 	}
7748 
7749 	netif_device_attach(netdev);
7750 
7751 	/* let the f/w know that the h/w is now under the control of the
7752 	 * driver.
7753 	 */
7754 	igb_get_hw_control(adapter);
7755 }
7756 
7757 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7758 			     u8 qsel)
7759 {
7760 	u32 rar_low, rar_high;
7761 	struct e1000_hw *hw = &adapter->hw;
7762 
7763 	/* HW expects these in little endian so we reverse the byte order
7764 	 * from network order (big endian) to little endian
7765 	 */
7766 	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7767 		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7768 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7769 
7770 	/* Indicate to hardware the Address is Valid. */
7771 	rar_high |= E1000_RAH_AV;
7772 
7773 	if (hw->mac.type == e1000_82575)
7774 		rar_high |= E1000_RAH_POOL_1 * qsel;
7775 	else
7776 		rar_high |= E1000_RAH_POOL_1 << qsel;
7777 
7778 	wr32(E1000_RAL(index), rar_low);
7779 	wrfl();
7780 	wr32(E1000_RAH(index), rar_high);
7781 	wrfl();
7782 }
7783 
7784 static int igb_set_vf_mac(struct igb_adapter *adapter,
7785 			  int vf, unsigned char *mac_addr)
7786 {
7787 	struct e1000_hw *hw = &adapter->hw;
7788 	/* VF MAC addresses start at end of receive addresses and moves
7789 	 * towards the first, as a result a collision should not be possible
7790 	 */
7791 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7792 
7793 	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7794 
7795 	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7796 
7797 	return 0;
7798 }
7799 
7800 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7801 {
7802 	struct igb_adapter *adapter = netdev_priv(netdev);
7803 	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7804 		return -EINVAL;
7805 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7806 	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7807 	dev_info(&adapter->pdev->dev,
7808 		 "Reload the VF driver to make this change effective.");
7809 	if (test_bit(__IGB_DOWN, &adapter->state)) {
7810 		dev_warn(&adapter->pdev->dev,
7811 			 "The VF MAC address has been set, but the PF device is not up.\n");
7812 		dev_warn(&adapter->pdev->dev,
7813 			 "Bring the PF device up before attempting to use the VF device.\n");
7814 	}
7815 	return igb_set_vf_mac(adapter, vf, mac);
7816 }
7817 
7818 static int igb_link_mbps(int internal_link_speed)
7819 {
7820 	switch (internal_link_speed) {
7821 	case SPEED_100:
7822 		return 100;
7823 	case SPEED_1000:
7824 		return 1000;
7825 	default:
7826 		return 0;
7827 	}
7828 }
7829 
7830 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7831 				  int link_speed)
7832 {
7833 	int rf_dec, rf_int;
7834 	u32 bcnrc_val;
7835 
7836 	if (tx_rate != 0) {
7837 		/* Calculate the rate factor values to set */
7838 		rf_int = link_speed / tx_rate;
7839 		rf_dec = (link_speed - (rf_int * tx_rate));
7840 		rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7841 			 tx_rate;
7842 
7843 		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7844 		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7845 			      E1000_RTTBCNRC_RF_INT_MASK);
7846 		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7847 	} else {
7848 		bcnrc_val = 0;
7849 	}
7850 
7851 	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7852 	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7853 	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7854 	 */
7855 	wr32(E1000_RTTBCNRM, 0x14);
7856 	wr32(E1000_RTTBCNRC, bcnrc_val);
7857 }
7858 
7859 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7860 {
7861 	int actual_link_speed, i;
7862 	bool reset_rate = false;
7863 
7864 	/* VF TX rate limit was not set or not supported */
7865 	if ((adapter->vf_rate_link_speed == 0) ||
7866 	    (adapter->hw.mac.type != e1000_82576))
7867 		return;
7868 
7869 	actual_link_speed = igb_link_mbps(adapter->link_speed);
7870 	if (actual_link_speed != adapter->vf_rate_link_speed) {
7871 		reset_rate = true;
7872 		adapter->vf_rate_link_speed = 0;
7873 		dev_info(&adapter->pdev->dev,
7874 			 "Link speed has been changed. VF Transmit rate is disabled\n");
7875 	}
7876 
7877 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7878 		if (reset_rate)
7879 			adapter->vf_data[i].tx_rate = 0;
7880 
7881 		igb_set_vf_rate_limit(&adapter->hw, i,
7882 				      adapter->vf_data[i].tx_rate,
7883 				      actual_link_speed);
7884 	}
7885 }
7886 
7887 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
7888 			     int min_tx_rate, int max_tx_rate)
7889 {
7890 	struct igb_adapter *adapter = netdev_priv(netdev);
7891 	struct e1000_hw *hw = &adapter->hw;
7892 	int actual_link_speed;
7893 
7894 	if (hw->mac.type != e1000_82576)
7895 		return -EOPNOTSUPP;
7896 
7897 	if (min_tx_rate)
7898 		return -EINVAL;
7899 
7900 	actual_link_speed = igb_link_mbps(adapter->link_speed);
7901 	if ((vf >= adapter->vfs_allocated_count) ||
7902 	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7903 	    (max_tx_rate < 0) ||
7904 	    (max_tx_rate > actual_link_speed))
7905 		return -EINVAL;
7906 
7907 	adapter->vf_rate_link_speed = actual_link_speed;
7908 	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
7909 	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
7910 
7911 	return 0;
7912 }
7913 
7914 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7915 				   bool setting)
7916 {
7917 	struct igb_adapter *adapter = netdev_priv(netdev);
7918 	struct e1000_hw *hw = &adapter->hw;
7919 	u32 reg_val, reg_offset;
7920 
7921 	if (!adapter->vfs_allocated_count)
7922 		return -EOPNOTSUPP;
7923 
7924 	if (vf >= adapter->vfs_allocated_count)
7925 		return -EINVAL;
7926 
7927 	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7928 	reg_val = rd32(reg_offset);
7929 	if (setting)
7930 		reg_val |= ((1 << vf) |
7931 			    (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7932 	else
7933 		reg_val &= ~((1 << vf) |
7934 			     (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7935 	wr32(reg_offset, reg_val);
7936 
7937 	adapter->vf_data[vf].spoofchk_enabled = setting;
7938 	return 0;
7939 }
7940 
7941 static int igb_ndo_get_vf_config(struct net_device *netdev,
7942 				 int vf, struct ifla_vf_info *ivi)
7943 {
7944 	struct igb_adapter *adapter = netdev_priv(netdev);
7945 	if (vf >= adapter->vfs_allocated_count)
7946 		return -EINVAL;
7947 	ivi->vf = vf;
7948 	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7949 	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
7950 	ivi->min_tx_rate = 0;
7951 	ivi->vlan = adapter->vf_data[vf].pf_vlan;
7952 	ivi->qos = adapter->vf_data[vf].pf_qos;
7953 	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7954 	return 0;
7955 }
7956 
7957 static void igb_vmm_control(struct igb_adapter *adapter)
7958 {
7959 	struct e1000_hw *hw = &adapter->hw;
7960 	u32 reg;
7961 
7962 	switch (hw->mac.type) {
7963 	case e1000_82575:
7964 	case e1000_i210:
7965 	case e1000_i211:
7966 	case e1000_i354:
7967 	default:
7968 		/* replication is not supported for 82575 */
7969 		return;
7970 	case e1000_82576:
7971 		/* notify HW that the MAC is adding vlan tags */
7972 		reg = rd32(E1000_DTXCTL);
7973 		reg |= E1000_DTXCTL_VLAN_ADDED;
7974 		wr32(E1000_DTXCTL, reg);
7975 		/* Fall through */
7976 	case e1000_82580:
7977 		/* enable replication vlan tag stripping */
7978 		reg = rd32(E1000_RPLOLR);
7979 		reg |= E1000_RPLOLR_STRVLAN;
7980 		wr32(E1000_RPLOLR, reg);
7981 		/* Fall through */
7982 	case e1000_i350:
7983 		/* none of the above registers are supported by i350 */
7984 		break;
7985 	}
7986 
7987 	if (adapter->vfs_allocated_count) {
7988 		igb_vmdq_set_loopback_pf(hw, true);
7989 		igb_vmdq_set_replication_pf(hw, true);
7990 		igb_vmdq_set_anti_spoofing_pf(hw, true,
7991 					      adapter->vfs_allocated_count);
7992 	} else {
7993 		igb_vmdq_set_loopback_pf(hw, false);
7994 		igb_vmdq_set_replication_pf(hw, false);
7995 	}
7996 }
7997 
7998 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7999 {
8000 	struct e1000_hw *hw = &adapter->hw;
8001 	u32 dmac_thr;
8002 	u16 hwm;
8003 
8004 	if (hw->mac.type > e1000_82580) {
8005 		if (adapter->flags & IGB_FLAG_DMAC) {
8006 			u32 reg;
8007 
8008 			/* force threshold to 0. */
8009 			wr32(E1000_DMCTXTH, 0);
8010 
8011 			/* DMA Coalescing high water mark needs to be greater
8012 			 * than the Rx threshold. Set hwm to PBA - max frame
8013 			 * size in 16B units, capping it at PBA - 6KB.
8014 			 */
8015 			hwm = 64 * pba - adapter->max_frame_size / 16;
8016 			if (hwm < 64 * (pba - 6))
8017 				hwm = 64 * (pba - 6);
8018 			reg = rd32(E1000_FCRTC);
8019 			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
8020 			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
8021 				& E1000_FCRTC_RTH_COAL_MASK);
8022 			wr32(E1000_FCRTC, reg);
8023 
8024 			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
8025 			 * frame size, capping it at PBA - 10KB.
8026 			 */
8027 			dmac_thr = pba - adapter->max_frame_size / 512;
8028 			if (dmac_thr < pba - 10)
8029 				dmac_thr = pba - 10;
8030 			reg = rd32(E1000_DMACR);
8031 			reg &= ~E1000_DMACR_DMACTHR_MASK;
8032 			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8033 				& E1000_DMACR_DMACTHR_MASK);
8034 
8035 			/* transition to L0x or L1 if available..*/
8036 			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8037 
8038 			/* watchdog timer= +-1000 usec in 32usec intervals */
8039 			reg |= (1000 >> 5);
8040 
8041 			/* Disable BMC-to-OS Watchdog Enable */
8042 			if (hw->mac.type != e1000_i354)
8043 				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8044 
8045 			wr32(E1000_DMACR, reg);
8046 
8047 			/* no lower threshold to disable
8048 			 * coalescing(smart fifb)-UTRESH=0
8049 			 */
8050 			wr32(E1000_DMCRTRH, 0);
8051 
8052 			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8053 
8054 			wr32(E1000_DMCTLX, reg);
8055 
8056 			/* free space in tx packet buffer to wake from
8057 			 * DMA coal
8058 			 */
8059 			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8060 			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8061 
8062 			/* make low power state decision controlled
8063 			 * by DMA coal
8064 			 */
8065 			reg = rd32(E1000_PCIEMISC);
8066 			reg &= ~E1000_PCIEMISC_LX_DECISION;
8067 			wr32(E1000_PCIEMISC, reg);
8068 		} /* endif adapter->dmac is not disabled */
8069 	} else if (hw->mac.type == e1000_82580) {
8070 		u32 reg = rd32(E1000_PCIEMISC);
8071 
8072 		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8073 		wr32(E1000_DMACR, 0);
8074 	}
8075 }
8076 
8077 /**
8078  *  igb_read_i2c_byte - Reads 8 bit word over I2C
8079  *  @hw: pointer to hardware structure
8080  *  @byte_offset: byte offset to read
8081  *  @dev_addr: device address
8082  *  @data: value read
8083  *
8084  *  Performs byte read operation over I2C interface at
8085  *  a specified device address.
8086  **/
8087 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8088 		      u8 dev_addr, u8 *data)
8089 {
8090 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8091 	struct i2c_client *this_client = adapter->i2c_client;
8092 	s32 status;
8093 	u16 swfw_mask = 0;
8094 
8095 	if (!this_client)
8096 		return E1000_ERR_I2C;
8097 
8098 	swfw_mask = E1000_SWFW_PHY0_SM;
8099 
8100 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8101 		return E1000_ERR_SWFW_SYNC;
8102 
8103 	status = i2c_smbus_read_byte_data(this_client, byte_offset);
8104 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8105 
8106 	if (status < 0)
8107 		return E1000_ERR_I2C;
8108 	else {
8109 		*data = status;
8110 		return 0;
8111 	}
8112 }
8113 
8114 /**
8115  *  igb_write_i2c_byte - Writes 8 bit word over I2C
8116  *  @hw: pointer to hardware structure
8117  *  @byte_offset: byte offset to write
8118  *  @dev_addr: device address
8119  *  @data: value to write
8120  *
8121  *  Performs byte write operation over I2C interface at
8122  *  a specified device address.
8123  **/
8124 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8125 		       u8 dev_addr, u8 data)
8126 {
8127 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8128 	struct i2c_client *this_client = adapter->i2c_client;
8129 	s32 status;
8130 	u16 swfw_mask = E1000_SWFW_PHY0_SM;
8131 
8132 	if (!this_client)
8133 		return E1000_ERR_I2C;
8134 
8135 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8136 		return E1000_ERR_SWFW_SYNC;
8137 	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8138 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8139 
8140 	if (status)
8141 		return E1000_ERR_I2C;
8142 	else
8143 		return 0;
8144 
8145 }
8146 
8147 int igb_reinit_queues(struct igb_adapter *adapter)
8148 {
8149 	struct net_device *netdev = adapter->netdev;
8150 	struct pci_dev *pdev = adapter->pdev;
8151 	int err = 0;
8152 
8153 	if (netif_running(netdev))
8154 		igb_close(netdev);
8155 
8156 	igb_reset_interrupt_capability(adapter);
8157 
8158 	if (igb_init_interrupt_scheme(adapter, true)) {
8159 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8160 		return -ENOMEM;
8161 	}
8162 
8163 	if (netif_running(netdev))
8164 		err = igb_open(netdev);
8165 
8166 	return err;
8167 }
8168 /* igb_main.c */
8169