xref: /openbmc/linux/drivers/net/ethernet/intel/igb/igb_main.c (revision 1e1129b65ef3f72dbccf24de56b700a181b45227)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3 
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/aer.h>
32 #include <linux/prefetch.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/etherdevice.h>
35 #ifdef CONFIG_IGB_DCA
36 #include <linux/dca.h>
37 #endif
38 #include <linux/i2c.h>
39 #include "igb.h"
40 
41 enum queue_mode {
42 	QUEUE_MODE_STRICT_PRIORITY,
43 	QUEUE_MODE_STREAM_RESERVATION,
44 };
45 
46 enum tx_queue_prio {
47 	TX_QUEUE_PRIO_HIGH,
48 	TX_QUEUE_PRIO_LOW,
49 };
50 
51 char igb_driver_name[] = "igb";
52 static const char igb_driver_string[] =
53 				"Intel(R) Gigabit Ethernet Network Driver";
54 static const char igb_copyright[] =
55 				"Copyright (c) 2007-2014 Intel Corporation.";
56 
57 static const struct e1000_info *igb_info_tbl[] = {
58 	[board_82575] = &e1000_82575_info,
59 };
60 
61 static const struct pci_device_id igb_pci_tbl[] = {
62 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
63 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
64 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
65 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
66 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
67 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
68 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
69 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
70 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
71 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
72 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
73 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
74 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
75 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
76 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
77 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
78 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
79 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
80 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
81 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
82 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
83 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
84 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
85 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
86 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
87 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
88 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
89 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
90 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
91 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
92 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
93 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
94 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
95 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
96 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
97 	/* required last entry */
98 	{0, }
99 };
100 
101 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
102 
103 static int igb_setup_all_tx_resources(struct igb_adapter *);
104 static int igb_setup_all_rx_resources(struct igb_adapter *);
105 static void igb_free_all_tx_resources(struct igb_adapter *);
106 static void igb_free_all_rx_resources(struct igb_adapter *);
107 static void igb_setup_mrqc(struct igb_adapter *);
108 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
109 static void igb_remove(struct pci_dev *pdev);
110 static int igb_sw_init(struct igb_adapter *);
111 int igb_open(struct net_device *);
112 int igb_close(struct net_device *);
113 static void igb_configure(struct igb_adapter *);
114 static void igb_configure_tx(struct igb_adapter *);
115 static void igb_configure_rx(struct igb_adapter *);
116 static void igb_clean_all_tx_rings(struct igb_adapter *);
117 static void igb_clean_all_rx_rings(struct igb_adapter *);
118 static void igb_clean_tx_ring(struct igb_ring *);
119 static void igb_clean_rx_ring(struct igb_ring *);
120 static void igb_set_rx_mode(struct net_device *);
121 static void igb_update_phy_info(struct timer_list *);
122 static void igb_watchdog(struct timer_list *);
123 static void igb_watchdog_task(struct work_struct *);
124 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
125 static void igb_get_stats64(struct net_device *dev,
126 			    struct rtnl_link_stats64 *stats);
127 static int igb_change_mtu(struct net_device *, int);
128 static int igb_set_mac(struct net_device *, void *);
129 static void igb_set_uta(struct igb_adapter *adapter, bool set);
130 static irqreturn_t igb_intr(int irq, void *);
131 static irqreturn_t igb_intr_msi(int irq, void *);
132 static irqreturn_t igb_msix_other(int irq, void *);
133 static irqreturn_t igb_msix_ring(int irq, void *);
134 #ifdef CONFIG_IGB_DCA
135 static void igb_update_dca(struct igb_q_vector *);
136 static void igb_setup_dca(struct igb_adapter *);
137 #endif /* CONFIG_IGB_DCA */
138 static int igb_poll(struct napi_struct *, int);
139 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
140 static int igb_clean_rx_irq(struct igb_q_vector *, int);
141 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
142 static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
143 static void igb_reset_task(struct work_struct *);
144 static void igb_vlan_mode(struct net_device *netdev,
145 			  netdev_features_t features);
146 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
147 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
148 static void igb_restore_vlan(struct igb_adapter *);
149 static void igb_rar_set_index(struct igb_adapter *, u32);
150 static void igb_ping_all_vfs(struct igb_adapter *);
151 static void igb_msg_task(struct igb_adapter *);
152 static void igb_vmm_control(struct igb_adapter *);
153 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
154 static void igb_flush_mac_table(struct igb_adapter *);
155 static int igb_available_rars(struct igb_adapter *, u8);
156 static void igb_set_default_mac_filter(struct igb_adapter *);
157 static int igb_uc_sync(struct net_device *, const unsigned char *);
158 static int igb_uc_unsync(struct net_device *, const unsigned char *);
159 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
160 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
161 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
162 			       int vf, u16 vlan, u8 qos, __be16 vlan_proto);
163 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
164 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
165 				   bool setting);
166 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
167 				bool setting);
168 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
169 				 struct ifla_vf_info *ivi);
170 static void igb_check_vf_rate_limit(struct igb_adapter *);
171 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
172 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
173 
174 #ifdef CONFIG_PCI_IOV
175 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
176 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
177 static int igb_disable_sriov(struct pci_dev *dev);
178 static int igb_pci_disable_sriov(struct pci_dev *dev);
179 #endif
180 
181 static int igb_suspend(struct device *);
182 static int igb_resume(struct device *);
183 static int igb_runtime_suspend(struct device *dev);
184 static int igb_runtime_resume(struct device *dev);
185 static int igb_runtime_idle(struct device *dev);
186 static const struct dev_pm_ops igb_pm_ops = {
187 	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
188 	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
189 			igb_runtime_idle)
190 };
191 static void igb_shutdown(struct pci_dev *);
192 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
193 #ifdef CONFIG_IGB_DCA
194 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
195 static struct notifier_block dca_notifier = {
196 	.notifier_call	= igb_notify_dca,
197 	.next		= NULL,
198 	.priority	= 0
199 };
200 #endif
201 #ifdef CONFIG_PCI_IOV
202 static unsigned int max_vfs;
203 module_param(max_vfs, uint, 0);
204 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
205 #endif /* CONFIG_PCI_IOV */
206 
207 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
208 		     pci_channel_state_t);
209 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
210 static void igb_io_resume(struct pci_dev *);
211 
212 static const struct pci_error_handlers igb_err_handler = {
213 	.error_detected = igb_io_error_detected,
214 	.slot_reset = igb_io_slot_reset,
215 	.resume = igb_io_resume,
216 };
217 
218 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
219 
220 static struct pci_driver igb_driver = {
221 	.name     = igb_driver_name,
222 	.id_table = igb_pci_tbl,
223 	.probe    = igb_probe,
224 	.remove   = igb_remove,
225 #ifdef CONFIG_PM
226 	.driver.pm = &igb_pm_ops,
227 #endif
228 	.shutdown = igb_shutdown,
229 	.sriov_configure = igb_pci_sriov_configure,
230 	.err_handler = &igb_err_handler
231 };
232 
233 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
234 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
235 MODULE_LICENSE("GPL v2");
236 
237 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
238 static int debug = -1;
239 module_param(debug, int, 0);
240 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
241 
242 struct igb_reg_info {
243 	u32 ofs;
244 	char *name;
245 };
246 
247 static const struct igb_reg_info igb_reg_info_tbl[] = {
248 
249 	/* General Registers */
250 	{E1000_CTRL, "CTRL"},
251 	{E1000_STATUS, "STATUS"},
252 	{E1000_CTRL_EXT, "CTRL_EXT"},
253 
254 	/* Interrupt Registers */
255 	{E1000_ICR, "ICR"},
256 
257 	/* RX Registers */
258 	{E1000_RCTL, "RCTL"},
259 	{E1000_RDLEN(0), "RDLEN"},
260 	{E1000_RDH(0), "RDH"},
261 	{E1000_RDT(0), "RDT"},
262 	{E1000_RXDCTL(0), "RXDCTL"},
263 	{E1000_RDBAL(0), "RDBAL"},
264 	{E1000_RDBAH(0), "RDBAH"},
265 
266 	/* TX Registers */
267 	{E1000_TCTL, "TCTL"},
268 	{E1000_TDBAL(0), "TDBAL"},
269 	{E1000_TDBAH(0), "TDBAH"},
270 	{E1000_TDLEN(0), "TDLEN"},
271 	{E1000_TDH(0), "TDH"},
272 	{E1000_TDT(0), "TDT"},
273 	{E1000_TXDCTL(0), "TXDCTL"},
274 	{E1000_TDFH, "TDFH"},
275 	{E1000_TDFT, "TDFT"},
276 	{E1000_TDFHS, "TDFHS"},
277 	{E1000_TDFPC, "TDFPC"},
278 
279 	/* List Terminator */
280 	{}
281 };
282 
283 /* igb_regdump - register printout routine */
284 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
285 {
286 	int n = 0;
287 	char rname[16];
288 	u32 regs[8];
289 
290 	switch (reginfo->ofs) {
291 	case E1000_RDLEN(0):
292 		for (n = 0; n < 4; n++)
293 			regs[n] = rd32(E1000_RDLEN(n));
294 		break;
295 	case E1000_RDH(0):
296 		for (n = 0; n < 4; n++)
297 			regs[n] = rd32(E1000_RDH(n));
298 		break;
299 	case E1000_RDT(0):
300 		for (n = 0; n < 4; n++)
301 			regs[n] = rd32(E1000_RDT(n));
302 		break;
303 	case E1000_RXDCTL(0):
304 		for (n = 0; n < 4; n++)
305 			regs[n] = rd32(E1000_RXDCTL(n));
306 		break;
307 	case E1000_RDBAL(0):
308 		for (n = 0; n < 4; n++)
309 			regs[n] = rd32(E1000_RDBAL(n));
310 		break;
311 	case E1000_RDBAH(0):
312 		for (n = 0; n < 4; n++)
313 			regs[n] = rd32(E1000_RDBAH(n));
314 		break;
315 	case E1000_TDBAL(0):
316 		for (n = 0; n < 4; n++)
317 			regs[n] = rd32(E1000_RDBAL(n));
318 		break;
319 	case E1000_TDBAH(0):
320 		for (n = 0; n < 4; n++)
321 			regs[n] = rd32(E1000_TDBAH(n));
322 		break;
323 	case E1000_TDLEN(0):
324 		for (n = 0; n < 4; n++)
325 			regs[n] = rd32(E1000_TDLEN(n));
326 		break;
327 	case E1000_TDH(0):
328 		for (n = 0; n < 4; n++)
329 			regs[n] = rd32(E1000_TDH(n));
330 		break;
331 	case E1000_TDT(0):
332 		for (n = 0; n < 4; n++)
333 			regs[n] = rd32(E1000_TDT(n));
334 		break;
335 	case E1000_TXDCTL(0):
336 		for (n = 0; n < 4; n++)
337 			regs[n] = rd32(E1000_TXDCTL(n));
338 		break;
339 	default:
340 		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
341 		return;
342 	}
343 
344 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
345 	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
346 		regs[2], regs[3]);
347 }
348 
349 /* igb_dump - Print registers, Tx-rings and Rx-rings */
350 static void igb_dump(struct igb_adapter *adapter)
351 {
352 	struct net_device *netdev = adapter->netdev;
353 	struct e1000_hw *hw = &adapter->hw;
354 	struct igb_reg_info *reginfo;
355 	struct igb_ring *tx_ring;
356 	union e1000_adv_tx_desc *tx_desc;
357 	struct my_u0 { u64 a; u64 b; } *u0;
358 	struct igb_ring *rx_ring;
359 	union e1000_adv_rx_desc *rx_desc;
360 	u32 staterr;
361 	u16 i, n;
362 
363 	if (!netif_msg_hw(adapter))
364 		return;
365 
366 	/* Print netdevice Info */
367 	if (netdev) {
368 		dev_info(&adapter->pdev->dev, "Net device Info\n");
369 		pr_info("Device Name     state            trans_start\n");
370 		pr_info("%-15s %016lX %016lX\n", netdev->name,
371 			netdev->state, dev_trans_start(netdev));
372 	}
373 
374 	/* Print Registers */
375 	dev_info(&adapter->pdev->dev, "Register Dump\n");
376 	pr_info(" Register Name   Value\n");
377 	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
378 	     reginfo->name; reginfo++) {
379 		igb_regdump(hw, reginfo);
380 	}
381 
382 	/* Print TX Ring Summary */
383 	if (!netdev || !netif_running(netdev))
384 		goto exit;
385 
386 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
387 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
388 	for (n = 0; n < adapter->num_tx_queues; n++) {
389 		struct igb_tx_buffer *buffer_info;
390 		tx_ring = adapter->tx_ring[n];
391 		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
392 		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
393 			n, tx_ring->next_to_use, tx_ring->next_to_clean,
394 			(u64)dma_unmap_addr(buffer_info, dma),
395 			dma_unmap_len(buffer_info, len),
396 			buffer_info->next_to_watch,
397 			(u64)buffer_info->time_stamp);
398 	}
399 
400 	/* Print TX Rings */
401 	if (!netif_msg_tx_done(adapter))
402 		goto rx_ring_summary;
403 
404 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
405 
406 	/* Transmit Descriptor Formats
407 	 *
408 	 * Advanced Transmit Descriptor
409 	 *   +--------------------------------------------------------------+
410 	 * 0 |         Buffer Address [63:0]                                |
411 	 *   +--------------------------------------------------------------+
412 	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
413 	 *   +--------------------------------------------------------------+
414 	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
415 	 */
416 
417 	for (n = 0; n < adapter->num_tx_queues; n++) {
418 		tx_ring = adapter->tx_ring[n];
419 		pr_info("------------------------------------\n");
420 		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
421 		pr_info("------------------------------------\n");
422 		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
423 
424 		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
425 			const char *next_desc;
426 			struct igb_tx_buffer *buffer_info;
427 			tx_desc = IGB_TX_DESC(tx_ring, i);
428 			buffer_info = &tx_ring->tx_buffer_info[i];
429 			u0 = (struct my_u0 *)tx_desc;
430 			if (i == tx_ring->next_to_use &&
431 			    i == tx_ring->next_to_clean)
432 				next_desc = " NTC/U";
433 			else if (i == tx_ring->next_to_use)
434 				next_desc = " NTU";
435 			else if (i == tx_ring->next_to_clean)
436 				next_desc = " NTC";
437 			else
438 				next_desc = "";
439 
440 			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
441 				i, le64_to_cpu(u0->a),
442 				le64_to_cpu(u0->b),
443 				(u64)dma_unmap_addr(buffer_info, dma),
444 				dma_unmap_len(buffer_info, len),
445 				buffer_info->next_to_watch,
446 				(u64)buffer_info->time_stamp,
447 				buffer_info->skb, next_desc);
448 
449 			if (netif_msg_pktdata(adapter) && buffer_info->skb)
450 				print_hex_dump(KERN_INFO, "",
451 					DUMP_PREFIX_ADDRESS,
452 					16, 1, buffer_info->skb->data,
453 					dma_unmap_len(buffer_info, len),
454 					true);
455 		}
456 	}
457 
458 	/* Print RX Rings Summary */
459 rx_ring_summary:
460 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
461 	pr_info("Queue [NTU] [NTC]\n");
462 	for (n = 0; n < adapter->num_rx_queues; n++) {
463 		rx_ring = adapter->rx_ring[n];
464 		pr_info(" %5d %5X %5X\n",
465 			n, rx_ring->next_to_use, rx_ring->next_to_clean);
466 	}
467 
468 	/* Print RX Rings */
469 	if (!netif_msg_rx_status(adapter))
470 		goto exit;
471 
472 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
473 
474 	/* Advanced Receive Descriptor (Read) Format
475 	 *    63                                           1        0
476 	 *    +-----------------------------------------------------+
477 	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
478 	 *    +----------------------------------------------+------+
479 	 *  8 |       Header Buffer Address [63:1]           |  DD  |
480 	 *    +-----------------------------------------------------+
481 	 *
482 	 *
483 	 * Advanced Receive Descriptor (Write-Back) Format
484 	 *
485 	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
486 	 *   +------------------------------------------------------+
487 	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
488 	 *   | Checksum   Ident  |   |           |    | Type | Type |
489 	 *   +------------------------------------------------------+
490 	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
491 	 *   +------------------------------------------------------+
492 	 *   63       48 47    32 31            20 19               0
493 	 */
494 
495 	for (n = 0; n < adapter->num_rx_queues; n++) {
496 		rx_ring = adapter->rx_ring[n];
497 		pr_info("------------------------------------\n");
498 		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
499 		pr_info("------------------------------------\n");
500 		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
501 		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
502 
503 		for (i = 0; i < rx_ring->count; i++) {
504 			const char *next_desc;
505 			struct igb_rx_buffer *buffer_info;
506 			buffer_info = &rx_ring->rx_buffer_info[i];
507 			rx_desc = IGB_RX_DESC(rx_ring, i);
508 			u0 = (struct my_u0 *)rx_desc;
509 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
510 
511 			if (i == rx_ring->next_to_use)
512 				next_desc = " NTU";
513 			else if (i == rx_ring->next_to_clean)
514 				next_desc = " NTC";
515 			else
516 				next_desc = "";
517 
518 			if (staterr & E1000_RXD_STAT_DD) {
519 				/* Descriptor Done */
520 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
521 					"RWB", i,
522 					le64_to_cpu(u0->a),
523 					le64_to_cpu(u0->b),
524 					next_desc);
525 			} else {
526 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
527 					"R  ", i,
528 					le64_to_cpu(u0->a),
529 					le64_to_cpu(u0->b),
530 					(u64)buffer_info->dma,
531 					next_desc);
532 
533 				if (netif_msg_pktdata(adapter) &&
534 				    buffer_info->dma && buffer_info->page) {
535 					print_hex_dump(KERN_INFO, "",
536 					  DUMP_PREFIX_ADDRESS,
537 					  16, 1,
538 					  page_address(buffer_info->page) +
539 						      buffer_info->page_offset,
540 					  igb_rx_bufsz(rx_ring), true);
541 				}
542 			}
543 		}
544 	}
545 
546 exit:
547 	return;
548 }
549 
550 /**
551  *  igb_get_i2c_data - Reads the I2C SDA data bit
552  *  @hw: pointer to hardware structure
553  *  @i2cctl: Current value of I2CCTL register
554  *
555  *  Returns the I2C data bit value
556  **/
557 static int igb_get_i2c_data(void *data)
558 {
559 	struct igb_adapter *adapter = (struct igb_adapter *)data;
560 	struct e1000_hw *hw = &adapter->hw;
561 	s32 i2cctl = rd32(E1000_I2CPARAMS);
562 
563 	return !!(i2cctl & E1000_I2C_DATA_IN);
564 }
565 
566 /**
567  *  igb_set_i2c_data - Sets the I2C data bit
568  *  @data: pointer to hardware structure
569  *  @state: I2C data value (0 or 1) to set
570  *
571  *  Sets the I2C data bit
572  **/
573 static void igb_set_i2c_data(void *data, int state)
574 {
575 	struct igb_adapter *adapter = (struct igb_adapter *)data;
576 	struct e1000_hw *hw = &adapter->hw;
577 	s32 i2cctl = rd32(E1000_I2CPARAMS);
578 
579 	if (state)
580 		i2cctl |= E1000_I2C_DATA_OUT;
581 	else
582 		i2cctl &= ~E1000_I2C_DATA_OUT;
583 
584 	i2cctl &= ~E1000_I2C_DATA_OE_N;
585 	i2cctl |= E1000_I2C_CLK_OE_N;
586 	wr32(E1000_I2CPARAMS, i2cctl);
587 	wrfl();
588 
589 }
590 
591 /**
592  *  igb_set_i2c_clk - Sets the I2C SCL clock
593  *  @data: pointer to hardware structure
594  *  @state: state to set clock
595  *
596  *  Sets the I2C clock line to state
597  **/
598 static void igb_set_i2c_clk(void *data, int state)
599 {
600 	struct igb_adapter *adapter = (struct igb_adapter *)data;
601 	struct e1000_hw *hw = &adapter->hw;
602 	s32 i2cctl = rd32(E1000_I2CPARAMS);
603 
604 	if (state) {
605 		i2cctl |= E1000_I2C_CLK_OUT;
606 		i2cctl &= ~E1000_I2C_CLK_OE_N;
607 	} else {
608 		i2cctl &= ~E1000_I2C_CLK_OUT;
609 		i2cctl &= ~E1000_I2C_CLK_OE_N;
610 	}
611 	wr32(E1000_I2CPARAMS, i2cctl);
612 	wrfl();
613 }
614 
615 /**
616  *  igb_get_i2c_clk - Gets the I2C SCL clock state
617  *  @data: pointer to hardware structure
618  *
619  *  Gets the I2C clock state
620  **/
621 static int igb_get_i2c_clk(void *data)
622 {
623 	struct igb_adapter *adapter = (struct igb_adapter *)data;
624 	struct e1000_hw *hw = &adapter->hw;
625 	s32 i2cctl = rd32(E1000_I2CPARAMS);
626 
627 	return !!(i2cctl & E1000_I2C_CLK_IN);
628 }
629 
630 static const struct i2c_algo_bit_data igb_i2c_algo = {
631 	.setsda		= igb_set_i2c_data,
632 	.setscl		= igb_set_i2c_clk,
633 	.getsda		= igb_get_i2c_data,
634 	.getscl		= igb_get_i2c_clk,
635 	.udelay		= 5,
636 	.timeout	= 20,
637 };
638 
639 /**
640  *  igb_get_hw_dev - return device
641  *  @hw: pointer to hardware structure
642  *
643  *  used by hardware layer to print debugging information
644  **/
645 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
646 {
647 	struct igb_adapter *adapter = hw->back;
648 	return adapter->netdev;
649 }
650 
651 /**
652  *  igb_init_module - Driver Registration Routine
653  *
654  *  igb_init_module is the first routine called when the driver is
655  *  loaded. All it does is register with the PCI subsystem.
656  **/
657 static int __init igb_init_module(void)
658 {
659 	int ret;
660 
661 	pr_info("%s\n", igb_driver_string);
662 	pr_info("%s\n", igb_copyright);
663 
664 #ifdef CONFIG_IGB_DCA
665 	dca_register_notify(&dca_notifier);
666 #endif
667 	ret = pci_register_driver(&igb_driver);
668 	return ret;
669 }
670 
671 module_init(igb_init_module);
672 
673 /**
674  *  igb_exit_module - Driver Exit Cleanup Routine
675  *
676  *  igb_exit_module is called just before the driver is removed
677  *  from memory.
678  **/
679 static void __exit igb_exit_module(void)
680 {
681 #ifdef CONFIG_IGB_DCA
682 	dca_unregister_notify(&dca_notifier);
683 #endif
684 	pci_unregister_driver(&igb_driver);
685 }
686 
687 module_exit(igb_exit_module);
688 
689 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
690 /**
691  *  igb_cache_ring_register - Descriptor ring to register mapping
692  *  @adapter: board private structure to initialize
693  *
694  *  Once we know the feature-set enabled for the device, we'll cache
695  *  the register offset the descriptor ring is assigned to.
696  **/
697 static void igb_cache_ring_register(struct igb_adapter *adapter)
698 {
699 	int i = 0, j = 0;
700 	u32 rbase_offset = adapter->vfs_allocated_count;
701 
702 	switch (adapter->hw.mac.type) {
703 	case e1000_82576:
704 		/* The queues are allocated for virtualization such that VF 0
705 		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
706 		 * In order to avoid collision we start at the first free queue
707 		 * and continue consuming queues in the same sequence
708 		 */
709 		if (adapter->vfs_allocated_count) {
710 			for (; i < adapter->rss_queues; i++)
711 				adapter->rx_ring[i]->reg_idx = rbase_offset +
712 							       Q_IDX_82576(i);
713 		}
714 		fallthrough;
715 	case e1000_82575:
716 	case e1000_82580:
717 	case e1000_i350:
718 	case e1000_i354:
719 	case e1000_i210:
720 	case e1000_i211:
721 		fallthrough;
722 	default:
723 		for (; i < adapter->num_rx_queues; i++)
724 			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
725 		for (; j < adapter->num_tx_queues; j++)
726 			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
727 		break;
728 	}
729 }
730 
731 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
732 {
733 	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
734 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
735 	u32 value = 0;
736 
737 	if (E1000_REMOVED(hw_addr))
738 		return ~value;
739 
740 	value = readl(&hw_addr[reg]);
741 
742 	/* reads should not return all F's */
743 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
744 		struct net_device *netdev = igb->netdev;
745 		hw->hw_addr = NULL;
746 		netdev_err(netdev, "PCIe link lost\n");
747 		WARN(pci_device_is_present(igb->pdev),
748 		     "igb: Failed to read reg 0x%x!\n", reg);
749 	}
750 
751 	return value;
752 }
753 
754 /**
755  *  igb_write_ivar - configure ivar for given MSI-X vector
756  *  @hw: pointer to the HW structure
757  *  @msix_vector: vector number we are allocating to a given ring
758  *  @index: row index of IVAR register to write within IVAR table
759  *  @offset: column offset of in IVAR, should be multiple of 8
760  *
761  *  This function is intended to handle the writing of the IVAR register
762  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
763  *  each containing an cause allocation for an Rx and Tx ring, and a
764  *  variable number of rows depending on the number of queues supported.
765  **/
766 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
767 			   int index, int offset)
768 {
769 	u32 ivar = array_rd32(E1000_IVAR0, index);
770 
771 	/* clear any bits that are currently set */
772 	ivar &= ~((u32)0xFF << offset);
773 
774 	/* write vector and valid bit */
775 	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
776 
777 	array_wr32(E1000_IVAR0, index, ivar);
778 }
779 
780 #define IGB_N0_QUEUE -1
781 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
782 {
783 	struct igb_adapter *adapter = q_vector->adapter;
784 	struct e1000_hw *hw = &adapter->hw;
785 	int rx_queue = IGB_N0_QUEUE;
786 	int tx_queue = IGB_N0_QUEUE;
787 	u32 msixbm = 0;
788 
789 	if (q_vector->rx.ring)
790 		rx_queue = q_vector->rx.ring->reg_idx;
791 	if (q_vector->tx.ring)
792 		tx_queue = q_vector->tx.ring->reg_idx;
793 
794 	switch (hw->mac.type) {
795 	case e1000_82575:
796 		/* The 82575 assigns vectors using a bitmask, which matches the
797 		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
798 		 * or more queues to a vector, we write the appropriate bits
799 		 * into the MSIXBM register for that vector.
800 		 */
801 		if (rx_queue > IGB_N0_QUEUE)
802 			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
803 		if (tx_queue > IGB_N0_QUEUE)
804 			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
805 		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
806 			msixbm |= E1000_EIMS_OTHER;
807 		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
808 		q_vector->eims_value = msixbm;
809 		break;
810 	case e1000_82576:
811 		/* 82576 uses a table that essentially consists of 2 columns
812 		 * with 8 rows.  The ordering is column-major so we use the
813 		 * lower 3 bits as the row index, and the 4th bit as the
814 		 * column offset.
815 		 */
816 		if (rx_queue > IGB_N0_QUEUE)
817 			igb_write_ivar(hw, msix_vector,
818 				       rx_queue & 0x7,
819 				       (rx_queue & 0x8) << 1);
820 		if (tx_queue > IGB_N0_QUEUE)
821 			igb_write_ivar(hw, msix_vector,
822 				       tx_queue & 0x7,
823 				       ((tx_queue & 0x8) << 1) + 8);
824 		q_vector->eims_value = BIT(msix_vector);
825 		break;
826 	case e1000_82580:
827 	case e1000_i350:
828 	case e1000_i354:
829 	case e1000_i210:
830 	case e1000_i211:
831 		/* On 82580 and newer adapters the scheme is similar to 82576
832 		 * however instead of ordering column-major we have things
833 		 * ordered row-major.  So we traverse the table by using
834 		 * bit 0 as the column offset, and the remaining bits as the
835 		 * row index.
836 		 */
837 		if (rx_queue > IGB_N0_QUEUE)
838 			igb_write_ivar(hw, msix_vector,
839 				       rx_queue >> 1,
840 				       (rx_queue & 0x1) << 4);
841 		if (tx_queue > IGB_N0_QUEUE)
842 			igb_write_ivar(hw, msix_vector,
843 				       tx_queue >> 1,
844 				       ((tx_queue & 0x1) << 4) + 8);
845 		q_vector->eims_value = BIT(msix_vector);
846 		break;
847 	default:
848 		BUG();
849 		break;
850 	}
851 
852 	/* add q_vector eims value to global eims_enable_mask */
853 	adapter->eims_enable_mask |= q_vector->eims_value;
854 
855 	/* configure q_vector to set itr on first interrupt */
856 	q_vector->set_itr = 1;
857 }
858 
859 /**
860  *  igb_configure_msix - Configure MSI-X hardware
861  *  @adapter: board private structure to initialize
862  *
863  *  igb_configure_msix sets up the hardware to properly
864  *  generate MSI-X interrupts.
865  **/
866 static void igb_configure_msix(struct igb_adapter *adapter)
867 {
868 	u32 tmp;
869 	int i, vector = 0;
870 	struct e1000_hw *hw = &adapter->hw;
871 
872 	adapter->eims_enable_mask = 0;
873 
874 	/* set vector for other causes, i.e. link changes */
875 	switch (hw->mac.type) {
876 	case e1000_82575:
877 		tmp = rd32(E1000_CTRL_EXT);
878 		/* enable MSI-X PBA support*/
879 		tmp |= E1000_CTRL_EXT_PBA_CLR;
880 
881 		/* Auto-Mask interrupts upon ICR read. */
882 		tmp |= E1000_CTRL_EXT_EIAME;
883 		tmp |= E1000_CTRL_EXT_IRCA;
884 
885 		wr32(E1000_CTRL_EXT, tmp);
886 
887 		/* enable msix_other interrupt */
888 		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
889 		adapter->eims_other = E1000_EIMS_OTHER;
890 
891 		break;
892 
893 	case e1000_82576:
894 	case e1000_82580:
895 	case e1000_i350:
896 	case e1000_i354:
897 	case e1000_i210:
898 	case e1000_i211:
899 		/* Turn on MSI-X capability first, or our settings
900 		 * won't stick.  And it will take days to debug.
901 		 */
902 		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
903 		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
904 		     E1000_GPIE_NSICR);
905 
906 		/* enable msix_other interrupt */
907 		adapter->eims_other = BIT(vector);
908 		tmp = (vector++ | E1000_IVAR_VALID) << 8;
909 
910 		wr32(E1000_IVAR_MISC, tmp);
911 		break;
912 	default:
913 		/* do nothing, since nothing else supports MSI-X */
914 		break;
915 	} /* switch (hw->mac.type) */
916 
917 	adapter->eims_enable_mask |= adapter->eims_other;
918 
919 	for (i = 0; i < adapter->num_q_vectors; i++)
920 		igb_assign_vector(adapter->q_vector[i], vector++);
921 
922 	wrfl();
923 }
924 
925 /**
926  *  igb_request_msix - Initialize MSI-X interrupts
927  *  @adapter: board private structure to initialize
928  *
929  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
930  *  kernel.
931  **/
932 static int igb_request_msix(struct igb_adapter *adapter)
933 {
934 	struct net_device *netdev = adapter->netdev;
935 	int i, err = 0, vector = 0, free_vector = 0;
936 
937 	err = request_irq(adapter->msix_entries[vector].vector,
938 			  igb_msix_other, 0, netdev->name, adapter);
939 	if (err)
940 		goto err_out;
941 
942 	for (i = 0; i < adapter->num_q_vectors; i++) {
943 		struct igb_q_vector *q_vector = adapter->q_vector[i];
944 
945 		vector++;
946 
947 		q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
948 
949 		if (q_vector->rx.ring && q_vector->tx.ring)
950 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
951 				q_vector->rx.ring->queue_index);
952 		else if (q_vector->tx.ring)
953 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
954 				q_vector->tx.ring->queue_index);
955 		else if (q_vector->rx.ring)
956 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
957 				q_vector->rx.ring->queue_index);
958 		else
959 			sprintf(q_vector->name, "%s-unused", netdev->name);
960 
961 		err = request_irq(adapter->msix_entries[vector].vector,
962 				  igb_msix_ring, 0, q_vector->name,
963 				  q_vector);
964 		if (err)
965 			goto err_free;
966 	}
967 
968 	igb_configure_msix(adapter);
969 	return 0;
970 
971 err_free:
972 	/* free already assigned IRQs */
973 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
974 
975 	vector--;
976 	for (i = 0; i < vector; i++) {
977 		free_irq(adapter->msix_entries[free_vector++].vector,
978 			 adapter->q_vector[i]);
979 	}
980 err_out:
981 	return err;
982 }
983 
984 /**
985  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
986  *  @adapter: board private structure to initialize
987  *  @v_idx: Index of vector to be freed
988  *
989  *  This function frees the memory allocated to the q_vector.
990  **/
991 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
992 {
993 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
994 
995 	adapter->q_vector[v_idx] = NULL;
996 
997 	/* igb_get_stats64() might access the rings on this vector,
998 	 * we must wait a grace period before freeing it.
999 	 */
1000 	if (q_vector)
1001 		kfree_rcu(q_vector, rcu);
1002 }
1003 
1004 /**
1005  *  igb_reset_q_vector - Reset config for interrupt vector
1006  *  @adapter: board private structure to initialize
1007  *  @v_idx: Index of vector to be reset
1008  *
1009  *  If NAPI is enabled it will delete any references to the
1010  *  NAPI struct. This is preparation for igb_free_q_vector.
1011  **/
1012 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1013 {
1014 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1015 
1016 	/* Coming from igb_set_interrupt_capability, the vectors are not yet
1017 	 * allocated. So, q_vector is NULL so we should stop here.
1018 	 */
1019 	if (!q_vector)
1020 		return;
1021 
1022 	if (q_vector->tx.ring)
1023 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1024 
1025 	if (q_vector->rx.ring)
1026 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1027 
1028 	netif_napi_del(&q_vector->napi);
1029 
1030 }
1031 
1032 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1033 {
1034 	int v_idx = adapter->num_q_vectors;
1035 
1036 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1037 		pci_disable_msix(adapter->pdev);
1038 	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1039 		pci_disable_msi(adapter->pdev);
1040 
1041 	while (v_idx--)
1042 		igb_reset_q_vector(adapter, v_idx);
1043 }
1044 
1045 /**
1046  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1047  *  @adapter: board private structure to initialize
1048  *
1049  *  This function frees the memory allocated to the q_vectors.  In addition if
1050  *  NAPI is enabled it will delete any references to the NAPI struct prior
1051  *  to freeing the q_vector.
1052  **/
1053 static void igb_free_q_vectors(struct igb_adapter *adapter)
1054 {
1055 	int v_idx = adapter->num_q_vectors;
1056 
1057 	adapter->num_tx_queues = 0;
1058 	adapter->num_rx_queues = 0;
1059 	adapter->num_q_vectors = 0;
1060 
1061 	while (v_idx--) {
1062 		igb_reset_q_vector(adapter, v_idx);
1063 		igb_free_q_vector(adapter, v_idx);
1064 	}
1065 }
1066 
1067 /**
1068  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1069  *  @adapter: board private structure to initialize
1070  *
1071  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1072  *  MSI-X interrupts allocated.
1073  */
1074 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1075 {
1076 	igb_free_q_vectors(adapter);
1077 	igb_reset_interrupt_capability(adapter);
1078 }
1079 
1080 /**
1081  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1082  *  @adapter: board private structure to initialize
1083  *  @msix: boolean value of MSIX capability
1084  *
1085  *  Attempt to configure interrupts using the best available
1086  *  capabilities of the hardware and kernel.
1087  **/
1088 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1089 {
1090 	int err;
1091 	int numvecs, i;
1092 
1093 	if (!msix)
1094 		goto msi_only;
1095 	adapter->flags |= IGB_FLAG_HAS_MSIX;
1096 
1097 	/* Number of supported queues. */
1098 	adapter->num_rx_queues = adapter->rss_queues;
1099 	if (adapter->vfs_allocated_count)
1100 		adapter->num_tx_queues = 1;
1101 	else
1102 		adapter->num_tx_queues = adapter->rss_queues;
1103 
1104 	/* start with one vector for every Rx queue */
1105 	numvecs = adapter->num_rx_queues;
1106 
1107 	/* if Tx handler is separate add 1 for every Tx queue */
1108 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1109 		numvecs += adapter->num_tx_queues;
1110 
1111 	/* store the number of vectors reserved for queues */
1112 	adapter->num_q_vectors = numvecs;
1113 
1114 	/* add 1 vector for link status interrupts */
1115 	numvecs++;
1116 	for (i = 0; i < numvecs; i++)
1117 		adapter->msix_entries[i].entry = i;
1118 
1119 	err = pci_enable_msix_range(adapter->pdev,
1120 				    adapter->msix_entries,
1121 				    numvecs,
1122 				    numvecs);
1123 	if (err > 0)
1124 		return;
1125 
1126 	igb_reset_interrupt_capability(adapter);
1127 
1128 	/* If we can't do MSI-X, try MSI */
1129 msi_only:
1130 	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1131 #ifdef CONFIG_PCI_IOV
1132 	/* disable SR-IOV for non MSI-X configurations */
1133 	if (adapter->vf_data) {
1134 		struct e1000_hw *hw = &adapter->hw;
1135 		/* disable iov and allow time for transactions to clear */
1136 		pci_disable_sriov(adapter->pdev);
1137 		msleep(500);
1138 
1139 		kfree(adapter->vf_mac_list);
1140 		adapter->vf_mac_list = NULL;
1141 		kfree(adapter->vf_data);
1142 		adapter->vf_data = NULL;
1143 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1144 		wrfl();
1145 		msleep(100);
1146 		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1147 	}
1148 #endif
1149 	adapter->vfs_allocated_count = 0;
1150 	adapter->rss_queues = 1;
1151 	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1152 	adapter->num_rx_queues = 1;
1153 	adapter->num_tx_queues = 1;
1154 	adapter->num_q_vectors = 1;
1155 	if (!pci_enable_msi(adapter->pdev))
1156 		adapter->flags |= IGB_FLAG_HAS_MSI;
1157 }
1158 
1159 static void igb_add_ring(struct igb_ring *ring,
1160 			 struct igb_ring_container *head)
1161 {
1162 	head->ring = ring;
1163 	head->count++;
1164 }
1165 
1166 /**
1167  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1168  *  @adapter: board private structure to initialize
1169  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1170  *  @v_idx: index of vector in adapter struct
1171  *  @txr_count: total number of Tx rings to allocate
1172  *  @txr_idx: index of first Tx ring to allocate
1173  *  @rxr_count: total number of Rx rings to allocate
1174  *  @rxr_idx: index of first Rx ring to allocate
1175  *
1176  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1177  **/
1178 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1179 			      int v_count, int v_idx,
1180 			      int txr_count, int txr_idx,
1181 			      int rxr_count, int rxr_idx)
1182 {
1183 	struct igb_q_vector *q_vector;
1184 	struct igb_ring *ring;
1185 	int ring_count;
1186 	size_t size;
1187 
1188 	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1189 	if (txr_count > 1 || rxr_count > 1)
1190 		return -ENOMEM;
1191 
1192 	ring_count = txr_count + rxr_count;
1193 	size = struct_size(q_vector, ring, ring_count);
1194 
1195 	/* allocate q_vector and rings */
1196 	q_vector = adapter->q_vector[v_idx];
1197 	if (!q_vector) {
1198 		q_vector = kzalloc(size, GFP_KERNEL);
1199 	} else if (size > ksize(q_vector)) {
1200 		kfree_rcu(q_vector, rcu);
1201 		q_vector = kzalloc(size, GFP_KERNEL);
1202 	} else {
1203 		memset(q_vector, 0, size);
1204 	}
1205 	if (!q_vector)
1206 		return -ENOMEM;
1207 
1208 	/* initialize NAPI */
1209 	netif_napi_add(adapter->netdev, &q_vector->napi,
1210 		       igb_poll, 64);
1211 
1212 	/* tie q_vector and adapter together */
1213 	adapter->q_vector[v_idx] = q_vector;
1214 	q_vector->adapter = adapter;
1215 
1216 	/* initialize work limits */
1217 	q_vector->tx.work_limit = adapter->tx_work_limit;
1218 
1219 	/* initialize ITR configuration */
1220 	q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1221 	q_vector->itr_val = IGB_START_ITR;
1222 
1223 	/* initialize pointer to rings */
1224 	ring = q_vector->ring;
1225 
1226 	/* intialize ITR */
1227 	if (rxr_count) {
1228 		/* rx or rx/tx vector */
1229 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1230 			q_vector->itr_val = adapter->rx_itr_setting;
1231 	} else {
1232 		/* tx only vector */
1233 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1234 			q_vector->itr_val = adapter->tx_itr_setting;
1235 	}
1236 
1237 	if (txr_count) {
1238 		/* assign generic ring traits */
1239 		ring->dev = &adapter->pdev->dev;
1240 		ring->netdev = adapter->netdev;
1241 
1242 		/* configure backlink on ring */
1243 		ring->q_vector = q_vector;
1244 
1245 		/* update q_vector Tx values */
1246 		igb_add_ring(ring, &q_vector->tx);
1247 
1248 		/* For 82575, context index must be unique per ring. */
1249 		if (adapter->hw.mac.type == e1000_82575)
1250 			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1251 
1252 		/* apply Tx specific ring traits */
1253 		ring->count = adapter->tx_ring_count;
1254 		ring->queue_index = txr_idx;
1255 
1256 		ring->cbs_enable = false;
1257 		ring->idleslope = 0;
1258 		ring->sendslope = 0;
1259 		ring->hicredit = 0;
1260 		ring->locredit = 0;
1261 
1262 		u64_stats_init(&ring->tx_syncp);
1263 		u64_stats_init(&ring->tx_syncp2);
1264 
1265 		/* assign ring to adapter */
1266 		adapter->tx_ring[txr_idx] = ring;
1267 
1268 		/* push pointer to next ring */
1269 		ring++;
1270 	}
1271 
1272 	if (rxr_count) {
1273 		/* assign generic ring traits */
1274 		ring->dev = &adapter->pdev->dev;
1275 		ring->netdev = adapter->netdev;
1276 
1277 		/* configure backlink on ring */
1278 		ring->q_vector = q_vector;
1279 
1280 		/* update q_vector Rx values */
1281 		igb_add_ring(ring, &q_vector->rx);
1282 
1283 		/* set flag indicating ring supports SCTP checksum offload */
1284 		if (adapter->hw.mac.type >= e1000_82576)
1285 			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1286 
1287 		/* On i350, i354, i210, and i211, loopback VLAN packets
1288 		 * have the tag byte-swapped.
1289 		 */
1290 		if (adapter->hw.mac.type >= e1000_i350)
1291 			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1292 
1293 		/* apply Rx specific ring traits */
1294 		ring->count = adapter->rx_ring_count;
1295 		ring->queue_index = rxr_idx;
1296 
1297 		u64_stats_init(&ring->rx_syncp);
1298 
1299 		/* assign ring to adapter */
1300 		adapter->rx_ring[rxr_idx] = ring;
1301 	}
1302 
1303 	return 0;
1304 }
1305 
1306 
1307 /**
1308  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1309  *  @adapter: board private structure to initialize
1310  *
1311  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1312  *  return -ENOMEM.
1313  **/
1314 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1315 {
1316 	int q_vectors = adapter->num_q_vectors;
1317 	int rxr_remaining = adapter->num_rx_queues;
1318 	int txr_remaining = adapter->num_tx_queues;
1319 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1320 	int err;
1321 
1322 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1323 		for (; rxr_remaining; v_idx++) {
1324 			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1325 						 0, 0, 1, rxr_idx);
1326 
1327 			if (err)
1328 				goto err_out;
1329 
1330 			/* update counts and index */
1331 			rxr_remaining--;
1332 			rxr_idx++;
1333 		}
1334 	}
1335 
1336 	for (; v_idx < q_vectors; v_idx++) {
1337 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1338 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1339 
1340 		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1341 					 tqpv, txr_idx, rqpv, rxr_idx);
1342 
1343 		if (err)
1344 			goto err_out;
1345 
1346 		/* update counts and index */
1347 		rxr_remaining -= rqpv;
1348 		txr_remaining -= tqpv;
1349 		rxr_idx++;
1350 		txr_idx++;
1351 	}
1352 
1353 	return 0;
1354 
1355 err_out:
1356 	adapter->num_tx_queues = 0;
1357 	adapter->num_rx_queues = 0;
1358 	adapter->num_q_vectors = 0;
1359 
1360 	while (v_idx--)
1361 		igb_free_q_vector(adapter, v_idx);
1362 
1363 	return -ENOMEM;
1364 }
1365 
1366 /**
1367  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1368  *  @adapter: board private structure to initialize
1369  *  @msix: boolean value of MSIX capability
1370  *
1371  *  This function initializes the interrupts and allocates all of the queues.
1372  **/
1373 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1374 {
1375 	struct pci_dev *pdev = adapter->pdev;
1376 	int err;
1377 
1378 	igb_set_interrupt_capability(adapter, msix);
1379 
1380 	err = igb_alloc_q_vectors(adapter);
1381 	if (err) {
1382 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1383 		goto err_alloc_q_vectors;
1384 	}
1385 
1386 	igb_cache_ring_register(adapter);
1387 
1388 	return 0;
1389 
1390 err_alloc_q_vectors:
1391 	igb_reset_interrupt_capability(adapter);
1392 	return err;
1393 }
1394 
1395 /**
1396  *  igb_request_irq - initialize interrupts
1397  *  @adapter: board private structure to initialize
1398  *
1399  *  Attempts to configure interrupts using the best available
1400  *  capabilities of the hardware and kernel.
1401  **/
1402 static int igb_request_irq(struct igb_adapter *adapter)
1403 {
1404 	struct net_device *netdev = adapter->netdev;
1405 	struct pci_dev *pdev = adapter->pdev;
1406 	int err = 0;
1407 
1408 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1409 		err = igb_request_msix(adapter);
1410 		if (!err)
1411 			goto request_done;
1412 		/* fall back to MSI */
1413 		igb_free_all_tx_resources(adapter);
1414 		igb_free_all_rx_resources(adapter);
1415 
1416 		igb_clear_interrupt_scheme(adapter);
1417 		err = igb_init_interrupt_scheme(adapter, false);
1418 		if (err)
1419 			goto request_done;
1420 
1421 		igb_setup_all_tx_resources(adapter);
1422 		igb_setup_all_rx_resources(adapter);
1423 		igb_configure(adapter);
1424 	}
1425 
1426 	igb_assign_vector(adapter->q_vector[0], 0);
1427 
1428 	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1429 		err = request_irq(pdev->irq, igb_intr_msi, 0,
1430 				  netdev->name, adapter);
1431 		if (!err)
1432 			goto request_done;
1433 
1434 		/* fall back to legacy interrupts */
1435 		igb_reset_interrupt_capability(adapter);
1436 		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1437 	}
1438 
1439 	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1440 			  netdev->name, adapter);
1441 
1442 	if (err)
1443 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1444 			err);
1445 
1446 request_done:
1447 	return err;
1448 }
1449 
1450 static void igb_free_irq(struct igb_adapter *adapter)
1451 {
1452 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1453 		int vector = 0, i;
1454 
1455 		free_irq(adapter->msix_entries[vector++].vector, adapter);
1456 
1457 		for (i = 0; i < adapter->num_q_vectors; i++)
1458 			free_irq(adapter->msix_entries[vector++].vector,
1459 				 adapter->q_vector[i]);
1460 	} else {
1461 		free_irq(adapter->pdev->irq, adapter);
1462 	}
1463 }
1464 
1465 /**
1466  *  igb_irq_disable - Mask off interrupt generation on the NIC
1467  *  @adapter: board private structure
1468  **/
1469 static void igb_irq_disable(struct igb_adapter *adapter)
1470 {
1471 	struct e1000_hw *hw = &adapter->hw;
1472 
1473 	/* we need to be careful when disabling interrupts.  The VFs are also
1474 	 * mapped into these registers and so clearing the bits can cause
1475 	 * issues on the VF drivers so we only need to clear what we set
1476 	 */
1477 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1478 		u32 regval = rd32(E1000_EIAM);
1479 
1480 		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1481 		wr32(E1000_EIMC, adapter->eims_enable_mask);
1482 		regval = rd32(E1000_EIAC);
1483 		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1484 	}
1485 
1486 	wr32(E1000_IAM, 0);
1487 	wr32(E1000_IMC, ~0);
1488 	wrfl();
1489 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1490 		int i;
1491 
1492 		for (i = 0; i < adapter->num_q_vectors; i++)
1493 			synchronize_irq(adapter->msix_entries[i].vector);
1494 	} else {
1495 		synchronize_irq(adapter->pdev->irq);
1496 	}
1497 }
1498 
1499 /**
1500  *  igb_irq_enable - Enable default interrupt generation settings
1501  *  @adapter: board private structure
1502  **/
1503 static void igb_irq_enable(struct igb_adapter *adapter)
1504 {
1505 	struct e1000_hw *hw = &adapter->hw;
1506 
1507 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1508 		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1509 		u32 regval = rd32(E1000_EIAC);
1510 
1511 		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1512 		regval = rd32(E1000_EIAM);
1513 		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1514 		wr32(E1000_EIMS, adapter->eims_enable_mask);
1515 		if (adapter->vfs_allocated_count) {
1516 			wr32(E1000_MBVFIMR, 0xFF);
1517 			ims |= E1000_IMS_VMMB;
1518 		}
1519 		wr32(E1000_IMS, ims);
1520 	} else {
1521 		wr32(E1000_IMS, IMS_ENABLE_MASK |
1522 				E1000_IMS_DRSTA);
1523 		wr32(E1000_IAM, IMS_ENABLE_MASK |
1524 				E1000_IMS_DRSTA);
1525 	}
1526 }
1527 
1528 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1529 {
1530 	struct e1000_hw *hw = &adapter->hw;
1531 	u16 pf_id = adapter->vfs_allocated_count;
1532 	u16 vid = adapter->hw.mng_cookie.vlan_id;
1533 	u16 old_vid = adapter->mng_vlan_id;
1534 
1535 	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1536 		/* add VID to filter table */
1537 		igb_vfta_set(hw, vid, pf_id, true, true);
1538 		adapter->mng_vlan_id = vid;
1539 	} else {
1540 		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1541 	}
1542 
1543 	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1544 	    (vid != old_vid) &&
1545 	    !test_bit(old_vid, adapter->active_vlans)) {
1546 		/* remove VID from filter table */
1547 		igb_vfta_set(hw, vid, pf_id, false, true);
1548 	}
1549 }
1550 
1551 /**
1552  *  igb_release_hw_control - release control of the h/w to f/w
1553  *  @adapter: address of board private structure
1554  *
1555  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1556  *  For ASF and Pass Through versions of f/w this means that the
1557  *  driver is no longer loaded.
1558  **/
1559 static void igb_release_hw_control(struct igb_adapter *adapter)
1560 {
1561 	struct e1000_hw *hw = &adapter->hw;
1562 	u32 ctrl_ext;
1563 
1564 	/* Let firmware take over control of h/w */
1565 	ctrl_ext = rd32(E1000_CTRL_EXT);
1566 	wr32(E1000_CTRL_EXT,
1567 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1568 }
1569 
1570 /**
1571  *  igb_get_hw_control - get control of the h/w from f/w
1572  *  @adapter: address of board private structure
1573  *
1574  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1575  *  For ASF and Pass Through versions of f/w this means that
1576  *  the driver is loaded.
1577  **/
1578 static void igb_get_hw_control(struct igb_adapter *adapter)
1579 {
1580 	struct e1000_hw *hw = &adapter->hw;
1581 	u32 ctrl_ext;
1582 
1583 	/* Let firmware know the driver has taken over */
1584 	ctrl_ext = rd32(E1000_CTRL_EXT);
1585 	wr32(E1000_CTRL_EXT,
1586 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1587 }
1588 
1589 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1590 {
1591 	struct net_device *netdev = adapter->netdev;
1592 	struct e1000_hw *hw = &adapter->hw;
1593 
1594 	WARN_ON(hw->mac.type != e1000_i210);
1595 
1596 	if (enable)
1597 		adapter->flags |= IGB_FLAG_FQTSS;
1598 	else
1599 		adapter->flags &= ~IGB_FLAG_FQTSS;
1600 
1601 	if (netif_running(netdev))
1602 		schedule_work(&adapter->reset_task);
1603 }
1604 
1605 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1606 {
1607 	return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1608 }
1609 
1610 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1611 				   enum tx_queue_prio prio)
1612 {
1613 	u32 val;
1614 
1615 	WARN_ON(hw->mac.type != e1000_i210);
1616 	WARN_ON(queue < 0 || queue > 4);
1617 
1618 	val = rd32(E1000_I210_TXDCTL(queue));
1619 
1620 	if (prio == TX_QUEUE_PRIO_HIGH)
1621 		val |= E1000_TXDCTL_PRIORITY;
1622 	else
1623 		val &= ~E1000_TXDCTL_PRIORITY;
1624 
1625 	wr32(E1000_I210_TXDCTL(queue), val);
1626 }
1627 
1628 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1629 {
1630 	u32 val;
1631 
1632 	WARN_ON(hw->mac.type != e1000_i210);
1633 	WARN_ON(queue < 0 || queue > 1);
1634 
1635 	val = rd32(E1000_I210_TQAVCC(queue));
1636 
1637 	if (mode == QUEUE_MODE_STREAM_RESERVATION)
1638 		val |= E1000_TQAVCC_QUEUEMODE;
1639 	else
1640 		val &= ~E1000_TQAVCC_QUEUEMODE;
1641 
1642 	wr32(E1000_I210_TQAVCC(queue), val);
1643 }
1644 
1645 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1646 {
1647 	int i;
1648 
1649 	for (i = 0; i < adapter->num_tx_queues; i++) {
1650 		if (adapter->tx_ring[i]->cbs_enable)
1651 			return true;
1652 	}
1653 
1654 	return false;
1655 }
1656 
1657 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1658 {
1659 	int i;
1660 
1661 	for (i = 0; i < adapter->num_tx_queues; i++) {
1662 		if (adapter->tx_ring[i]->launchtime_enable)
1663 			return true;
1664 	}
1665 
1666 	return false;
1667 }
1668 
1669 /**
1670  *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1671  *  @adapter: pointer to adapter struct
1672  *  @queue: queue number
1673  *
1674  *  Configure CBS and Launchtime for a given hardware queue.
1675  *  Parameters are retrieved from the correct Tx ring, so
1676  *  igb_save_cbs_params() and igb_save_txtime_params() should be used
1677  *  for setting those correctly prior to this function being called.
1678  **/
1679 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1680 {
1681 	struct igb_ring *ring = adapter->tx_ring[queue];
1682 	struct net_device *netdev = adapter->netdev;
1683 	struct e1000_hw *hw = &adapter->hw;
1684 	u32 tqavcc, tqavctrl;
1685 	u16 value;
1686 
1687 	WARN_ON(hw->mac.type != e1000_i210);
1688 	WARN_ON(queue < 0 || queue > 1);
1689 
1690 	/* If any of the Qav features is enabled, configure queues as SR and
1691 	 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1692 	 * as SP.
1693 	 */
1694 	if (ring->cbs_enable || ring->launchtime_enable) {
1695 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1696 		set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1697 	} else {
1698 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1699 		set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1700 	}
1701 
1702 	/* If CBS is enabled, set DataTranARB and config its parameters. */
1703 	if (ring->cbs_enable || queue == 0) {
1704 		/* i210 does not allow the queue 0 to be in the Strict
1705 		 * Priority mode while the Qav mode is enabled, so,
1706 		 * instead of disabling strict priority mode, we give
1707 		 * queue 0 the maximum of credits possible.
1708 		 *
1709 		 * See section 8.12.19 of the i210 datasheet, "Note:
1710 		 * Queue0 QueueMode must be set to 1b when
1711 		 * TransmitMode is set to Qav."
1712 		 */
1713 		if (queue == 0 && !ring->cbs_enable) {
1714 			/* max "linkspeed" idleslope in kbps */
1715 			ring->idleslope = 1000000;
1716 			ring->hicredit = ETH_FRAME_LEN;
1717 		}
1718 
1719 		/* Always set data transfer arbitration to credit-based
1720 		 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1721 		 * the queues.
1722 		 */
1723 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1724 		tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1725 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1726 
1727 		/* According to i210 datasheet section 7.2.7.7, we should set
1728 		 * the 'idleSlope' field from TQAVCC register following the
1729 		 * equation:
1730 		 *
1731 		 * For 100 Mbps link speed:
1732 		 *
1733 		 *     value = BW * 0x7735 * 0.2                          (E1)
1734 		 *
1735 		 * For 1000Mbps link speed:
1736 		 *
1737 		 *     value = BW * 0x7735 * 2                            (E2)
1738 		 *
1739 		 * E1 and E2 can be merged into one equation as shown below.
1740 		 * Note that 'link-speed' is in Mbps.
1741 		 *
1742 		 *     value = BW * 0x7735 * 2 * link-speed
1743 		 *                           --------------               (E3)
1744 		 *                                1000
1745 		 *
1746 		 * 'BW' is the percentage bandwidth out of full link speed
1747 		 * which can be found with the following equation. Note that
1748 		 * idleSlope here is the parameter from this function which
1749 		 * is in kbps.
1750 		 *
1751 		 *     BW =     idleSlope
1752 		 *          -----------------                             (E4)
1753 		 *          link-speed * 1000
1754 		 *
1755 		 * That said, we can come up with a generic equation to
1756 		 * calculate the value we should set it TQAVCC register by
1757 		 * replacing 'BW' in E3 by E4. The resulting equation is:
1758 		 *
1759 		 * value =     idleSlope     * 0x7735 * 2 * link-speed
1760 		 *         -----------------            --------------    (E5)
1761 		 *         link-speed * 1000                 1000
1762 		 *
1763 		 * 'link-speed' is present in both sides of the fraction so
1764 		 * it is canceled out. The final equation is the following:
1765 		 *
1766 		 *     value = idleSlope * 61034
1767 		 *             -----------------                          (E6)
1768 		 *                  1000000
1769 		 *
1770 		 * NOTE: For i210, given the above, we can see that idleslope
1771 		 *       is represented in 16.38431 kbps units by the value at
1772 		 *       the TQAVCC register (1Gbps / 61034), which reduces
1773 		 *       the granularity for idleslope increments.
1774 		 *       For instance, if you want to configure a 2576kbps
1775 		 *       idleslope, the value to be written on the register
1776 		 *       would have to be 157.23. If rounded down, you end
1777 		 *       up with less bandwidth available than originally
1778 		 *       required (~2572 kbps). If rounded up, you end up
1779 		 *       with a higher bandwidth (~2589 kbps). Below the
1780 		 *       approach we take is to always round up the
1781 		 *       calculated value, so the resulting bandwidth might
1782 		 *       be slightly higher for some configurations.
1783 		 */
1784 		value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1785 
1786 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1787 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1788 		tqavcc |= value;
1789 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1790 
1791 		wr32(E1000_I210_TQAVHC(queue),
1792 		     0x80000000 + ring->hicredit * 0x7735);
1793 	} else {
1794 
1795 		/* Set idleSlope to zero. */
1796 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1797 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1798 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1799 
1800 		/* Set hiCredit to zero. */
1801 		wr32(E1000_I210_TQAVHC(queue), 0);
1802 
1803 		/* If CBS is not enabled for any queues anymore, then return to
1804 		 * the default state of Data Transmission Arbitration on
1805 		 * TQAVCTRL.
1806 		 */
1807 		if (!is_any_cbs_enabled(adapter)) {
1808 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1809 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1810 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1811 		}
1812 	}
1813 
1814 	/* If LaunchTime is enabled, set DataTranTIM. */
1815 	if (ring->launchtime_enable) {
1816 		/* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1817 		 * for any of the SR queues, and configure fetchtime delta.
1818 		 * XXX NOTE:
1819 		 *     - LaunchTime will be enabled for all SR queues.
1820 		 *     - A fixed offset can be added relative to the launch
1821 		 *       time of all packets if configured at reg LAUNCH_OS0.
1822 		 *       We are keeping it as 0 for now (default value).
1823 		 */
1824 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1825 		tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1826 		       E1000_TQAVCTRL_FETCHTIME_DELTA;
1827 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1828 	} else {
1829 		/* If Launchtime is not enabled for any SR queues anymore,
1830 		 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1831 		 * effectively disabling Launchtime.
1832 		 */
1833 		if (!is_any_txtime_enabled(adapter)) {
1834 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1835 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1836 			tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1837 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1838 		}
1839 	}
1840 
1841 	/* XXX: In i210 controller the sendSlope and loCredit parameters from
1842 	 * CBS are not configurable by software so we don't do any 'controller
1843 	 * configuration' in respect to these parameters.
1844 	 */
1845 
1846 	netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1847 		   ring->cbs_enable ? "enabled" : "disabled",
1848 		   ring->launchtime_enable ? "enabled" : "disabled",
1849 		   queue,
1850 		   ring->idleslope, ring->sendslope,
1851 		   ring->hicredit, ring->locredit);
1852 }
1853 
1854 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1855 				  bool enable)
1856 {
1857 	struct igb_ring *ring;
1858 
1859 	if (queue < 0 || queue > adapter->num_tx_queues)
1860 		return -EINVAL;
1861 
1862 	ring = adapter->tx_ring[queue];
1863 	ring->launchtime_enable = enable;
1864 
1865 	return 0;
1866 }
1867 
1868 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1869 			       bool enable, int idleslope, int sendslope,
1870 			       int hicredit, int locredit)
1871 {
1872 	struct igb_ring *ring;
1873 
1874 	if (queue < 0 || queue > adapter->num_tx_queues)
1875 		return -EINVAL;
1876 
1877 	ring = adapter->tx_ring[queue];
1878 
1879 	ring->cbs_enable = enable;
1880 	ring->idleslope = idleslope;
1881 	ring->sendslope = sendslope;
1882 	ring->hicredit = hicredit;
1883 	ring->locredit = locredit;
1884 
1885 	return 0;
1886 }
1887 
1888 /**
1889  *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1890  *  @adapter: pointer to adapter struct
1891  *
1892  *  Configure TQAVCTRL register switching the controller's Tx mode
1893  *  if FQTSS mode is enabled or disabled. Additionally, will issue
1894  *  a call to igb_config_tx_modes() per queue so any previously saved
1895  *  Tx parameters are applied.
1896  **/
1897 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1898 {
1899 	struct net_device *netdev = adapter->netdev;
1900 	struct e1000_hw *hw = &adapter->hw;
1901 	u32 val;
1902 
1903 	/* Only i210 controller supports changing the transmission mode. */
1904 	if (hw->mac.type != e1000_i210)
1905 		return;
1906 
1907 	if (is_fqtss_enabled(adapter)) {
1908 		int i, max_queue;
1909 
1910 		/* Configure TQAVCTRL register: set transmit mode to 'Qav',
1911 		 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1912 		 * so SP queues wait for SR ones.
1913 		 */
1914 		val = rd32(E1000_I210_TQAVCTRL);
1915 		val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1916 		val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1917 		wr32(E1000_I210_TQAVCTRL, val);
1918 
1919 		/* Configure Tx and Rx packet buffers sizes as described in
1920 		 * i210 datasheet section 7.2.7.7.
1921 		 */
1922 		val = rd32(E1000_TXPBS);
1923 		val &= ~I210_TXPBSIZE_MASK;
1924 		val |= I210_TXPBSIZE_PB0_8KB | I210_TXPBSIZE_PB1_8KB |
1925 			I210_TXPBSIZE_PB2_4KB | I210_TXPBSIZE_PB3_4KB;
1926 		wr32(E1000_TXPBS, val);
1927 
1928 		val = rd32(E1000_RXPBS);
1929 		val &= ~I210_RXPBSIZE_MASK;
1930 		val |= I210_RXPBSIZE_PB_30KB;
1931 		wr32(E1000_RXPBS, val);
1932 
1933 		/* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1934 		 * register should not exceed the buffer size programmed in
1935 		 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1936 		 * so according to the datasheet we should set MAX_TPKT_SIZE to
1937 		 * 4kB / 64.
1938 		 *
1939 		 * However, when we do so, no frame from queue 2 and 3 are
1940 		 * transmitted.  It seems the MAX_TPKT_SIZE should not be great
1941 		 * or _equal_ to the buffer size programmed in TXPBS. For this
1942 		 * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1943 		 */
1944 		val = (4096 - 1) / 64;
1945 		wr32(E1000_I210_DTXMXPKTSZ, val);
1946 
1947 		/* Since FQTSS mode is enabled, apply any CBS configuration
1948 		 * previously set. If no previous CBS configuration has been
1949 		 * done, then the initial configuration is applied, which means
1950 		 * CBS is disabled.
1951 		 */
1952 		max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1953 			    adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1954 
1955 		for (i = 0; i < max_queue; i++) {
1956 			igb_config_tx_modes(adapter, i);
1957 		}
1958 	} else {
1959 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1960 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1961 		wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1962 
1963 		val = rd32(E1000_I210_TQAVCTRL);
1964 		/* According to Section 8.12.21, the other flags we've set when
1965 		 * enabling FQTSS are not relevant when disabling FQTSS so we
1966 		 * don't set they here.
1967 		 */
1968 		val &= ~E1000_TQAVCTRL_XMIT_MODE;
1969 		wr32(E1000_I210_TQAVCTRL, val);
1970 	}
1971 
1972 	netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1973 		   "enabled" : "disabled");
1974 }
1975 
1976 /**
1977  *  igb_configure - configure the hardware for RX and TX
1978  *  @adapter: private board structure
1979  **/
1980 static void igb_configure(struct igb_adapter *adapter)
1981 {
1982 	struct net_device *netdev = adapter->netdev;
1983 	int i;
1984 
1985 	igb_get_hw_control(adapter);
1986 	igb_set_rx_mode(netdev);
1987 	igb_setup_tx_mode(adapter);
1988 
1989 	igb_restore_vlan(adapter);
1990 
1991 	igb_setup_tctl(adapter);
1992 	igb_setup_mrqc(adapter);
1993 	igb_setup_rctl(adapter);
1994 
1995 	igb_nfc_filter_restore(adapter);
1996 	igb_configure_tx(adapter);
1997 	igb_configure_rx(adapter);
1998 
1999 	igb_rx_fifo_flush_82575(&adapter->hw);
2000 
2001 	/* call igb_desc_unused which always leaves
2002 	 * at least 1 descriptor unused to make sure
2003 	 * next_to_use != next_to_clean
2004 	 */
2005 	for (i = 0; i < adapter->num_rx_queues; i++) {
2006 		struct igb_ring *ring = adapter->rx_ring[i];
2007 		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2008 	}
2009 }
2010 
2011 /**
2012  *  igb_power_up_link - Power up the phy/serdes link
2013  *  @adapter: address of board private structure
2014  **/
2015 void igb_power_up_link(struct igb_adapter *adapter)
2016 {
2017 	igb_reset_phy(&adapter->hw);
2018 
2019 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2020 		igb_power_up_phy_copper(&adapter->hw);
2021 	else
2022 		igb_power_up_serdes_link_82575(&adapter->hw);
2023 
2024 	igb_setup_link(&adapter->hw);
2025 }
2026 
2027 /**
2028  *  igb_power_down_link - Power down the phy/serdes link
2029  *  @adapter: address of board private structure
2030  */
2031 static void igb_power_down_link(struct igb_adapter *adapter)
2032 {
2033 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2034 		igb_power_down_phy_copper_82575(&adapter->hw);
2035 	else
2036 		igb_shutdown_serdes_link_82575(&adapter->hw);
2037 }
2038 
2039 /**
2040  * Detect and switch function for Media Auto Sense
2041  * @adapter: address of the board private structure
2042  **/
2043 static void igb_check_swap_media(struct igb_adapter *adapter)
2044 {
2045 	struct e1000_hw *hw = &adapter->hw;
2046 	u32 ctrl_ext, connsw;
2047 	bool swap_now = false;
2048 
2049 	ctrl_ext = rd32(E1000_CTRL_EXT);
2050 	connsw = rd32(E1000_CONNSW);
2051 
2052 	/* need to live swap if current media is copper and we have fiber/serdes
2053 	 * to go to.
2054 	 */
2055 
2056 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2057 	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2058 		swap_now = true;
2059 	} else if ((hw->phy.media_type != e1000_media_type_copper) &&
2060 		   !(connsw & E1000_CONNSW_SERDESD)) {
2061 		/* copper signal takes time to appear */
2062 		if (adapter->copper_tries < 4) {
2063 			adapter->copper_tries++;
2064 			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2065 			wr32(E1000_CONNSW, connsw);
2066 			return;
2067 		} else {
2068 			adapter->copper_tries = 0;
2069 			if ((connsw & E1000_CONNSW_PHYSD) &&
2070 			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
2071 				swap_now = true;
2072 				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2073 				wr32(E1000_CONNSW, connsw);
2074 			}
2075 		}
2076 	}
2077 
2078 	if (!swap_now)
2079 		return;
2080 
2081 	switch (hw->phy.media_type) {
2082 	case e1000_media_type_copper:
2083 		netdev_info(adapter->netdev,
2084 			"MAS: changing media to fiber/serdes\n");
2085 		ctrl_ext |=
2086 			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2087 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2088 		adapter->copper_tries = 0;
2089 		break;
2090 	case e1000_media_type_internal_serdes:
2091 	case e1000_media_type_fiber:
2092 		netdev_info(adapter->netdev,
2093 			"MAS: changing media to copper\n");
2094 		ctrl_ext &=
2095 			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2096 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2097 		break;
2098 	default:
2099 		/* shouldn't get here during regular operation */
2100 		netdev_err(adapter->netdev,
2101 			"AMS: Invalid media type found, returning\n");
2102 		break;
2103 	}
2104 	wr32(E1000_CTRL_EXT, ctrl_ext);
2105 }
2106 
2107 /**
2108  *  igb_up - Open the interface and prepare it to handle traffic
2109  *  @adapter: board private structure
2110  **/
2111 int igb_up(struct igb_adapter *adapter)
2112 {
2113 	struct e1000_hw *hw = &adapter->hw;
2114 	int i;
2115 
2116 	/* hardware has been reset, we need to reload some things */
2117 	igb_configure(adapter);
2118 
2119 	clear_bit(__IGB_DOWN, &adapter->state);
2120 
2121 	for (i = 0; i < adapter->num_q_vectors; i++)
2122 		napi_enable(&(adapter->q_vector[i]->napi));
2123 
2124 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
2125 		igb_configure_msix(adapter);
2126 	else
2127 		igb_assign_vector(adapter->q_vector[0], 0);
2128 
2129 	/* Clear any pending interrupts. */
2130 	rd32(E1000_TSICR);
2131 	rd32(E1000_ICR);
2132 	igb_irq_enable(adapter);
2133 
2134 	/* notify VFs that reset has been completed */
2135 	if (adapter->vfs_allocated_count) {
2136 		u32 reg_data = rd32(E1000_CTRL_EXT);
2137 
2138 		reg_data |= E1000_CTRL_EXT_PFRSTD;
2139 		wr32(E1000_CTRL_EXT, reg_data);
2140 	}
2141 
2142 	netif_tx_start_all_queues(adapter->netdev);
2143 
2144 	/* start the watchdog. */
2145 	hw->mac.get_link_status = 1;
2146 	schedule_work(&adapter->watchdog_task);
2147 
2148 	if ((adapter->flags & IGB_FLAG_EEE) &&
2149 	    (!hw->dev_spec._82575.eee_disable))
2150 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2151 
2152 	return 0;
2153 }
2154 
2155 void igb_down(struct igb_adapter *adapter)
2156 {
2157 	struct net_device *netdev = adapter->netdev;
2158 	struct e1000_hw *hw = &adapter->hw;
2159 	u32 tctl, rctl;
2160 	int i;
2161 
2162 	/* signal that we're down so the interrupt handler does not
2163 	 * reschedule our watchdog timer
2164 	 */
2165 	set_bit(__IGB_DOWN, &adapter->state);
2166 
2167 	/* disable receives in the hardware */
2168 	rctl = rd32(E1000_RCTL);
2169 	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2170 	/* flush and sleep below */
2171 
2172 	igb_nfc_filter_exit(adapter);
2173 
2174 	netif_carrier_off(netdev);
2175 	netif_tx_stop_all_queues(netdev);
2176 
2177 	/* disable transmits in the hardware */
2178 	tctl = rd32(E1000_TCTL);
2179 	tctl &= ~E1000_TCTL_EN;
2180 	wr32(E1000_TCTL, tctl);
2181 	/* flush both disables and wait for them to finish */
2182 	wrfl();
2183 	usleep_range(10000, 11000);
2184 
2185 	igb_irq_disable(adapter);
2186 
2187 	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2188 
2189 	for (i = 0; i < adapter->num_q_vectors; i++) {
2190 		if (adapter->q_vector[i]) {
2191 			napi_synchronize(&adapter->q_vector[i]->napi);
2192 			napi_disable(&adapter->q_vector[i]->napi);
2193 		}
2194 	}
2195 
2196 	del_timer_sync(&adapter->watchdog_timer);
2197 	del_timer_sync(&adapter->phy_info_timer);
2198 
2199 	/* record the stats before reset*/
2200 	spin_lock(&adapter->stats64_lock);
2201 	igb_update_stats(adapter);
2202 	spin_unlock(&adapter->stats64_lock);
2203 
2204 	adapter->link_speed = 0;
2205 	adapter->link_duplex = 0;
2206 
2207 	if (!pci_channel_offline(adapter->pdev))
2208 		igb_reset(adapter);
2209 
2210 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
2211 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2212 
2213 	igb_clean_all_tx_rings(adapter);
2214 	igb_clean_all_rx_rings(adapter);
2215 #ifdef CONFIG_IGB_DCA
2216 
2217 	/* since we reset the hardware DCA settings were cleared */
2218 	igb_setup_dca(adapter);
2219 #endif
2220 }
2221 
2222 void igb_reinit_locked(struct igb_adapter *adapter)
2223 {
2224 	WARN_ON(in_interrupt());
2225 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2226 		usleep_range(1000, 2000);
2227 	igb_down(adapter);
2228 	igb_up(adapter);
2229 	clear_bit(__IGB_RESETTING, &adapter->state);
2230 }
2231 
2232 /** igb_enable_mas - Media Autosense re-enable after swap
2233  *
2234  * @adapter: adapter struct
2235  **/
2236 static void igb_enable_mas(struct igb_adapter *adapter)
2237 {
2238 	struct e1000_hw *hw = &adapter->hw;
2239 	u32 connsw = rd32(E1000_CONNSW);
2240 
2241 	/* configure for SerDes media detect */
2242 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2243 	    (!(connsw & E1000_CONNSW_SERDESD))) {
2244 		connsw |= E1000_CONNSW_ENRGSRC;
2245 		connsw |= E1000_CONNSW_AUTOSENSE_EN;
2246 		wr32(E1000_CONNSW, connsw);
2247 		wrfl();
2248 	}
2249 }
2250 
2251 void igb_reset(struct igb_adapter *adapter)
2252 {
2253 	struct pci_dev *pdev = adapter->pdev;
2254 	struct e1000_hw *hw = &adapter->hw;
2255 	struct e1000_mac_info *mac = &hw->mac;
2256 	struct e1000_fc_info *fc = &hw->fc;
2257 	u32 pba, hwm;
2258 
2259 	/* Repartition Pba for greater than 9k mtu
2260 	 * To take effect CTRL.RST is required.
2261 	 */
2262 	switch (mac->type) {
2263 	case e1000_i350:
2264 	case e1000_i354:
2265 	case e1000_82580:
2266 		pba = rd32(E1000_RXPBS);
2267 		pba = igb_rxpbs_adjust_82580(pba);
2268 		break;
2269 	case e1000_82576:
2270 		pba = rd32(E1000_RXPBS);
2271 		pba &= E1000_RXPBS_SIZE_MASK_82576;
2272 		break;
2273 	case e1000_82575:
2274 	case e1000_i210:
2275 	case e1000_i211:
2276 	default:
2277 		pba = E1000_PBA_34K;
2278 		break;
2279 	}
2280 
2281 	if (mac->type == e1000_82575) {
2282 		u32 min_rx_space, min_tx_space, needed_tx_space;
2283 
2284 		/* write Rx PBA so that hardware can report correct Tx PBA */
2285 		wr32(E1000_PBA, pba);
2286 
2287 		/* To maintain wire speed transmits, the Tx FIFO should be
2288 		 * large enough to accommodate two full transmit packets,
2289 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
2290 		 * the Rx FIFO should be large enough to accommodate at least
2291 		 * one full receive packet and is similarly rounded up and
2292 		 * expressed in KB.
2293 		 */
2294 		min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2295 
2296 		/* The Tx FIFO also stores 16 bytes of information about the Tx
2297 		 * but don't include Ethernet FCS because hardware appends it.
2298 		 * We only need to round down to the nearest 512 byte block
2299 		 * count since the value we care about is 2 frames, not 1.
2300 		 */
2301 		min_tx_space = adapter->max_frame_size;
2302 		min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2303 		min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2304 
2305 		/* upper 16 bits has Tx packet buffer allocation size in KB */
2306 		needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2307 
2308 		/* If current Tx allocation is less than the min Tx FIFO size,
2309 		 * and the min Tx FIFO size is less than the current Rx FIFO
2310 		 * allocation, take space away from current Rx allocation.
2311 		 */
2312 		if (needed_tx_space < pba) {
2313 			pba -= needed_tx_space;
2314 
2315 			/* if short on Rx space, Rx wins and must trump Tx
2316 			 * adjustment
2317 			 */
2318 			if (pba < min_rx_space)
2319 				pba = min_rx_space;
2320 		}
2321 
2322 		/* adjust PBA for jumbo frames */
2323 		wr32(E1000_PBA, pba);
2324 	}
2325 
2326 	/* flow control settings
2327 	 * The high water mark must be low enough to fit one full frame
2328 	 * after transmitting the pause frame.  As such we must have enough
2329 	 * space to allow for us to complete our current transmit and then
2330 	 * receive the frame that is in progress from the link partner.
2331 	 * Set it to:
2332 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2333 	 */
2334 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2335 
2336 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
2337 	fc->low_water = fc->high_water - 16;
2338 	fc->pause_time = 0xFFFF;
2339 	fc->send_xon = 1;
2340 	fc->current_mode = fc->requested_mode;
2341 
2342 	/* disable receive for all VFs and wait one second */
2343 	if (adapter->vfs_allocated_count) {
2344 		int i;
2345 
2346 		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2347 			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2348 
2349 		/* ping all the active vfs to let them know we are going down */
2350 		igb_ping_all_vfs(adapter);
2351 
2352 		/* disable transmits and receives */
2353 		wr32(E1000_VFRE, 0);
2354 		wr32(E1000_VFTE, 0);
2355 	}
2356 
2357 	/* Allow time for pending master requests to run */
2358 	hw->mac.ops.reset_hw(hw);
2359 	wr32(E1000_WUC, 0);
2360 
2361 	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2362 		/* need to resetup here after media swap */
2363 		adapter->ei.get_invariants(hw);
2364 		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2365 	}
2366 	if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2367 	    (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2368 		igb_enable_mas(adapter);
2369 	}
2370 	if (hw->mac.ops.init_hw(hw))
2371 		dev_err(&pdev->dev, "Hardware Error\n");
2372 
2373 	/* RAR registers were cleared during init_hw, clear mac table */
2374 	igb_flush_mac_table(adapter);
2375 	__dev_uc_unsync(adapter->netdev, NULL);
2376 
2377 	/* Recover default RAR entry */
2378 	igb_set_default_mac_filter(adapter);
2379 
2380 	/* Flow control settings reset on hardware reset, so guarantee flow
2381 	 * control is off when forcing speed.
2382 	 */
2383 	if (!hw->mac.autoneg)
2384 		igb_force_mac_fc(hw);
2385 
2386 	igb_init_dmac(adapter, pba);
2387 #ifdef CONFIG_IGB_HWMON
2388 	/* Re-initialize the thermal sensor on i350 devices. */
2389 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
2390 		if (mac->type == e1000_i350 && hw->bus.func == 0) {
2391 			/* If present, re-initialize the external thermal sensor
2392 			 * interface.
2393 			 */
2394 			if (adapter->ets)
2395 				mac->ops.init_thermal_sensor_thresh(hw);
2396 		}
2397 	}
2398 #endif
2399 	/* Re-establish EEE setting */
2400 	if (hw->phy.media_type == e1000_media_type_copper) {
2401 		switch (mac->type) {
2402 		case e1000_i350:
2403 		case e1000_i210:
2404 		case e1000_i211:
2405 			igb_set_eee_i350(hw, true, true);
2406 			break;
2407 		case e1000_i354:
2408 			igb_set_eee_i354(hw, true, true);
2409 			break;
2410 		default:
2411 			break;
2412 		}
2413 	}
2414 	if (!netif_running(adapter->netdev))
2415 		igb_power_down_link(adapter);
2416 
2417 	igb_update_mng_vlan(adapter);
2418 
2419 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2420 	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2421 
2422 	/* Re-enable PTP, where applicable. */
2423 	if (adapter->ptp_flags & IGB_PTP_ENABLED)
2424 		igb_ptp_reset(adapter);
2425 
2426 	igb_get_phy_info(hw);
2427 }
2428 
2429 static netdev_features_t igb_fix_features(struct net_device *netdev,
2430 	netdev_features_t features)
2431 {
2432 	/* Since there is no support for separate Rx/Tx vlan accel
2433 	 * enable/disable make sure Tx flag is always in same state as Rx.
2434 	 */
2435 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2436 		features |= NETIF_F_HW_VLAN_CTAG_TX;
2437 	else
2438 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2439 
2440 	return features;
2441 }
2442 
2443 static int igb_set_features(struct net_device *netdev,
2444 	netdev_features_t features)
2445 {
2446 	netdev_features_t changed = netdev->features ^ features;
2447 	struct igb_adapter *adapter = netdev_priv(netdev);
2448 
2449 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2450 		igb_vlan_mode(netdev, features);
2451 
2452 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2453 		return 0;
2454 
2455 	if (!(features & NETIF_F_NTUPLE)) {
2456 		struct hlist_node *node2;
2457 		struct igb_nfc_filter *rule;
2458 
2459 		spin_lock(&adapter->nfc_lock);
2460 		hlist_for_each_entry_safe(rule, node2,
2461 					  &adapter->nfc_filter_list, nfc_node) {
2462 			igb_erase_filter(adapter, rule);
2463 			hlist_del(&rule->nfc_node);
2464 			kfree(rule);
2465 		}
2466 		spin_unlock(&adapter->nfc_lock);
2467 		adapter->nfc_filter_count = 0;
2468 	}
2469 
2470 	netdev->features = features;
2471 
2472 	if (netif_running(netdev))
2473 		igb_reinit_locked(adapter);
2474 	else
2475 		igb_reset(adapter);
2476 
2477 	return 1;
2478 }
2479 
2480 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2481 			   struct net_device *dev,
2482 			   const unsigned char *addr, u16 vid,
2483 			   u16 flags,
2484 			   struct netlink_ext_ack *extack)
2485 {
2486 	/* guarantee we can provide a unique filter for the unicast address */
2487 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2488 		struct igb_adapter *adapter = netdev_priv(dev);
2489 		int vfn = adapter->vfs_allocated_count;
2490 
2491 		if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2492 			return -ENOMEM;
2493 	}
2494 
2495 	return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2496 }
2497 
2498 #define IGB_MAX_MAC_HDR_LEN	127
2499 #define IGB_MAX_NETWORK_HDR_LEN	511
2500 
2501 static netdev_features_t
2502 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2503 		   netdev_features_t features)
2504 {
2505 	unsigned int network_hdr_len, mac_hdr_len;
2506 
2507 	/* Make certain the headers can be described by a context descriptor */
2508 	mac_hdr_len = skb_network_header(skb) - skb->data;
2509 	if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2510 		return features & ~(NETIF_F_HW_CSUM |
2511 				    NETIF_F_SCTP_CRC |
2512 				    NETIF_F_GSO_UDP_L4 |
2513 				    NETIF_F_HW_VLAN_CTAG_TX |
2514 				    NETIF_F_TSO |
2515 				    NETIF_F_TSO6);
2516 
2517 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2518 	if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2519 		return features & ~(NETIF_F_HW_CSUM |
2520 				    NETIF_F_SCTP_CRC |
2521 				    NETIF_F_GSO_UDP_L4 |
2522 				    NETIF_F_TSO |
2523 				    NETIF_F_TSO6);
2524 
2525 	/* We can only support IPV4 TSO in tunnels if we can mangle the
2526 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2527 	 */
2528 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2529 		features &= ~NETIF_F_TSO;
2530 
2531 	return features;
2532 }
2533 
2534 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2535 {
2536 	if (!is_fqtss_enabled(adapter)) {
2537 		enable_fqtss(adapter, true);
2538 		return;
2539 	}
2540 
2541 	igb_config_tx_modes(adapter, queue);
2542 
2543 	if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2544 		enable_fqtss(adapter, false);
2545 }
2546 
2547 static int igb_offload_cbs(struct igb_adapter *adapter,
2548 			   struct tc_cbs_qopt_offload *qopt)
2549 {
2550 	struct e1000_hw *hw = &adapter->hw;
2551 	int err;
2552 
2553 	/* CBS offloading is only supported by i210 controller. */
2554 	if (hw->mac.type != e1000_i210)
2555 		return -EOPNOTSUPP;
2556 
2557 	/* CBS offloading is only supported by queue 0 and queue 1. */
2558 	if (qopt->queue < 0 || qopt->queue > 1)
2559 		return -EINVAL;
2560 
2561 	err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2562 				  qopt->idleslope, qopt->sendslope,
2563 				  qopt->hicredit, qopt->locredit);
2564 	if (err)
2565 		return err;
2566 
2567 	igb_offload_apply(adapter, qopt->queue);
2568 
2569 	return 0;
2570 }
2571 
2572 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2573 #define VLAN_PRIO_FULL_MASK (0x07)
2574 
2575 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2576 				struct flow_cls_offload *f,
2577 				int traffic_class,
2578 				struct igb_nfc_filter *input)
2579 {
2580 	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2581 	struct flow_dissector *dissector = rule->match.dissector;
2582 	struct netlink_ext_ack *extack = f->common.extack;
2583 
2584 	if (dissector->used_keys &
2585 	    ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2586 	      BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2587 	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2588 	      BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2589 		NL_SET_ERR_MSG_MOD(extack,
2590 				   "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2591 		return -EOPNOTSUPP;
2592 	}
2593 
2594 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2595 		struct flow_match_eth_addrs match;
2596 
2597 		flow_rule_match_eth_addrs(rule, &match);
2598 		if (!is_zero_ether_addr(match.mask->dst)) {
2599 			if (!is_broadcast_ether_addr(match.mask->dst)) {
2600 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2601 				return -EINVAL;
2602 			}
2603 
2604 			input->filter.match_flags |=
2605 				IGB_FILTER_FLAG_DST_MAC_ADDR;
2606 			ether_addr_copy(input->filter.dst_addr, match.key->dst);
2607 		}
2608 
2609 		if (!is_zero_ether_addr(match.mask->src)) {
2610 			if (!is_broadcast_ether_addr(match.mask->src)) {
2611 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2612 				return -EINVAL;
2613 			}
2614 
2615 			input->filter.match_flags |=
2616 				IGB_FILTER_FLAG_SRC_MAC_ADDR;
2617 			ether_addr_copy(input->filter.src_addr, match.key->src);
2618 		}
2619 	}
2620 
2621 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2622 		struct flow_match_basic match;
2623 
2624 		flow_rule_match_basic(rule, &match);
2625 		if (match.mask->n_proto) {
2626 			if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2627 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2628 				return -EINVAL;
2629 			}
2630 
2631 			input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2632 			input->filter.etype = match.key->n_proto;
2633 		}
2634 	}
2635 
2636 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2637 		struct flow_match_vlan match;
2638 
2639 		flow_rule_match_vlan(rule, &match);
2640 		if (match.mask->vlan_priority) {
2641 			if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2642 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2643 				return -EINVAL;
2644 			}
2645 
2646 			input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2647 			input->filter.vlan_tci = match.key->vlan_priority;
2648 		}
2649 	}
2650 
2651 	input->action = traffic_class;
2652 	input->cookie = f->cookie;
2653 
2654 	return 0;
2655 }
2656 
2657 static int igb_configure_clsflower(struct igb_adapter *adapter,
2658 				   struct flow_cls_offload *cls_flower)
2659 {
2660 	struct netlink_ext_ack *extack = cls_flower->common.extack;
2661 	struct igb_nfc_filter *filter, *f;
2662 	int err, tc;
2663 
2664 	tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2665 	if (tc < 0) {
2666 		NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2667 		return -EINVAL;
2668 	}
2669 
2670 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2671 	if (!filter)
2672 		return -ENOMEM;
2673 
2674 	err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2675 	if (err < 0)
2676 		goto err_parse;
2677 
2678 	spin_lock(&adapter->nfc_lock);
2679 
2680 	hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2681 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2682 			err = -EEXIST;
2683 			NL_SET_ERR_MSG_MOD(extack,
2684 					   "This filter is already set in ethtool");
2685 			goto err_locked;
2686 		}
2687 	}
2688 
2689 	hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2690 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2691 			err = -EEXIST;
2692 			NL_SET_ERR_MSG_MOD(extack,
2693 					   "This filter is already set in cls_flower");
2694 			goto err_locked;
2695 		}
2696 	}
2697 
2698 	err = igb_add_filter(adapter, filter);
2699 	if (err < 0) {
2700 		NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2701 		goto err_locked;
2702 	}
2703 
2704 	hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2705 
2706 	spin_unlock(&adapter->nfc_lock);
2707 
2708 	return 0;
2709 
2710 err_locked:
2711 	spin_unlock(&adapter->nfc_lock);
2712 
2713 err_parse:
2714 	kfree(filter);
2715 
2716 	return err;
2717 }
2718 
2719 static int igb_delete_clsflower(struct igb_adapter *adapter,
2720 				struct flow_cls_offload *cls_flower)
2721 {
2722 	struct igb_nfc_filter *filter;
2723 	int err;
2724 
2725 	spin_lock(&adapter->nfc_lock);
2726 
2727 	hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2728 		if (filter->cookie == cls_flower->cookie)
2729 			break;
2730 
2731 	if (!filter) {
2732 		err = -ENOENT;
2733 		goto out;
2734 	}
2735 
2736 	err = igb_erase_filter(adapter, filter);
2737 	if (err < 0)
2738 		goto out;
2739 
2740 	hlist_del(&filter->nfc_node);
2741 	kfree(filter);
2742 
2743 out:
2744 	spin_unlock(&adapter->nfc_lock);
2745 
2746 	return err;
2747 }
2748 
2749 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2750 				   struct flow_cls_offload *cls_flower)
2751 {
2752 	switch (cls_flower->command) {
2753 	case FLOW_CLS_REPLACE:
2754 		return igb_configure_clsflower(adapter, cls_flower);
2755 	case FLOW_CLS_DESTROY:
2756 		return igb_delete_clsflower(adapter, cls_flower);
2757 	case FLOW_CLS_STATS:
2758 		return -EOPNOTSUPP;
2759 	default:
2760 		return -EOPNOTSUPP;
2761 	}
2762 }
2763 
2764 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2765 				 void *cb_priv)
2766 {
2767 	struct igb_adapter *adapter = cb_priv;
2768 
2769 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2770 		return -EOPNOTSUPP;
2771 
2772 	switch (type) {
2773 	case TC_SETUP_CLSFLOWER:
2774 		return igb_setup_tc_cls_flower(adapter, type_data);
2775 
2776 	default:
2777 		return -EOPNOTSUPP;
2778 	}
2779 }
2780 
2781 static int igb_offload_txtime(struct igb_adapter *adapter,
2782 			      struct tc_etf_qopt_offload *qopt)
2783 {
2784 	struct e1000_hw *hw = &adapter->hw;
2785 	int err;
2786 
2787 	/* Launchtime offloading is only supported by i210 controller. */
2788 	if (hw->mac.type != e1000_i210)
2789 		return -EOPNOTSUPP;
2790 
2791 	/* Launchtime offloading is only supported by queues 0 and 1. */
2792 	if (qopt->queue < 0 || qopt->queue > 1)
2793 		return -EINVAL;
2794 
2795 	err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2796 	if (err)
2797 		return err;
2798 
2799 	igb_offload_apply(adapter, qopt->queue);
2800 
2801 	return 0;
2802 }
2803 
2804 static LIST_HEAD(igb_block_cb_list);
2805 
2806 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2807 			void *type_data)
2808 {
2809 	struct igb_adapter *adapter = netdev_priv(dev);
2810 
2811 	switch (type) {
2812 	case TC_SETUP_QDISC_CBS:
2813 		return igb_offload_cbs(adapter, type_data);
2814 	case TC_SETUP_BLOCK:
2815 		return flow_block_cb_setup_simple(type_data,
2816 						  &igb_block_cb_list,
2817 						  igb_setup_tc_block_cb,
2818 						  adapter, adapter, true);
2819 
2820 	case TC_SETUP_QDISC_ETF:
2821 		return igb_offload_txtime(adapter, type_data);
2822 
2823 	default:
2824 		return -EOPNOTSUPP;
2825 	}
2826 }
2827 
2828 static const struct net_device_ops igb_netdev_ops = {
2829 	.ndo_open		= igb_open,
2830 	.ndo_stop		= igb_close,
2831 	.ndo_start_xmit		= igb_xmit_frame,
2832 	.ndo_get_stats64	= igb_get_stats64,
2833 	.ndo_set_rx_mode	= igb_set_rx_mode,
2834 	.ndo_set_mac_address	= igb_set_mac,
2835 	.ndo_change_mtu		= igb_change_mtu,
2836 	.ndo_do_ioctl		= igb_ioctl,
2837 	.ndo_tx_timeout		= igb_tx_timeout,
2838 	.ndo_validate_addr	= eth_validate_addr,
2839 	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
2840 	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
2841 	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
2842 	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
2843 	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
2844 	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
2845 	.ndo_set_vf_trust	= igb_ndo_set_vf_trust,
2846 	.ndo_get_vf_config	= igb_ndo_get_vf_config,
2847 	.ndo_fix_features	= igb_fix_features,
2848 	.ndo_set_features	= igb_set_features,
2849 	.ndo_fdb_add		= igb_ndo_fdb_add,
2850 	.ndo_features_check	= igb_features_check,
2851 	.ndo_setup_tc		= igb_setup_tc,
2852 };
2853 
2854 /**
2855  * igb_set_fw_version - Configure version string for ethtool
2856  * @adapter: adapter struct
2857  **/
2858 void igb_set_fw_version(struct igb_adapter *adapter)
2859 {
2860 	struct e1000_hw *hw = &adapter->hw;
2861 	struct e1000_fw_version fw;
2862 
2863 	igb_get_fw_version(hw, &fw);
2864 
2865 	switch (hw->mac.type) {
2866 	case e1000_i210:
2867 	case e1000_i211:
2868 		if (!(igb_get_flash_presence_i210(hw))) {
2869 			snprintf(adapter->fw_version,
2870 				 sizeof(adapter->fw_version),
2871 				 "%2d.%2d-%d",
2872 				 fw.invm_major, fw.invm_minor,
2873 				 fw.invm_img_type);
2874 			break;
2875 		}
2876 		fallthrough;
2877 	default:
2878 		/* if option is rom valid, display its version too */
2879 		if (fw.or_valid) {
2880 			snprintf(adapter->fw_version,
2881 				 sizeof(adapter->fw_version),
2882 				 "%d.%d, 0x%08x, %d.%d.%d",
2883 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
2884 				 fw.or_major, fw.or_build, fw.or_patch);
2885 		/* no option rom */
2886 		} else if (fw.etrack_id != 0X0000) {
2887 			snprintf(adapter->fw_version,
2888 			    sizeof(adapter->fw_version),
2889 			    "%d.%d, 0x%08x",
2890 			    fw.eep_major, fw.eep_minor, fw.etrack_id);
2891 		} else {
2892 		snprintf(adapter->fw_version,
2893 		    sizeof(adapter->fw_version),
2894 		    "%d.%d.%d",
2895 		    fw.eep_major, fw.eep_minor, fw.eep_build);
2896 		}
2897 		break;
2898 	}
2899 }
2900 
2901 /**
2902  * igb_init_mas - init Media Autosense feature if enabled in the NVM
2903  *
2904  * @adapter: adapter struct
2905  **/
2906 static void igb_init_mas(struct igb_adapter *adapter)
2907 {
2908 	struct e1000_hw *hw = &adapter->hw;
2909 	u16 eeprom_data;
2910 
2911 	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2912 	switch (hw->bus.func) {
2913 	case E1000_FUNC_0:
2914 		if (eeprom_data & IGB_MAS_ENABLE_0) {
2915 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2916 			netdev_info(adapter->netdev,
2917 				"MAS: Enabling Media Autosense for port %d\n",
2918 				hw->bus.func);
2919 		}
2920 		break;
2921 	case E1000_FUNC_1:
2922 		if (eeprom_data & IGB_MAS_ENABLE_1) {
2923 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2924 			netdev_info(adapter->netdev,
2925 				"MAS: Enabling Media Autosense for port %d\n",
2926 				hw->bus.func);
2927 		}
2928 		break;
2929 	case E1000_FUNC_2:
2930 		if (eeprom_data & IGB_MAS_ENABLE_2) {
2931 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2932 			netdev_info(adapter->netdev,
2933 				"MAS: Enabling Media Autosense for port %d\n",
2934 				hw->bus.func);
2935 		}
2936 		break;
2937 	case E1000_FUNC_3:
2938 		if (eeprom_data & IGB_MAS_ENABLE_3) {
2939 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2940 			netdev_info(adapter->netdev,
2941 				"MAS: Enabling Media Autosense for port %d\n",
2942 				hw->bus.func);
2943 		}
2944 		break;
2945 	default:
2946 		/* Shouldn't get here */
2947 		netdev_err(adapter->netdev,
2948 			"MAS: Invalid port configuration, returning\n");
2949 		break;
2950 	}
2951 }
2952 
2953 /**
2954  *  igb_init_i2c - Init I2C interface
2955  *  @adapter: pointer to adapter structure
2956  **/
2957 static s32 igb_init_i2c(struct igb_adapter *adapter)
2958 {
2959 	s32 status = 0;
2960 
2961 	/* I2C interface supported on i350 devices */
2962 	if (adapter->hw.mac.type != e1000_i350)
2963 		return 0;
2964 
2965 	/* Initialize the i2c bus which is controlled by the registers.
2966 	 * This bus will use the i2c_algo_bit structue that implements
2967 	 * the protocol through toggling of the 4 bits in the register.
2968 	 */
2969 	adapter->i2c_adap.owner = THIS_MODULE;
2970 	adapter->i2c_algo = igb_i2c_algo;
2971 	adapter->i2c_algo.data = adapter;
2972 	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2973 	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2974 	strlcpy(adapter->i2c_adap.name, "igb BB",
2975 		sizeof(adapter->i2c_adap.name));
2976 	status = i2c_bit_add_bus(&adapter->i2c_adap);
2977 	return status;
2978 }
2979 
2980 /**
2981  *  igb_probe - Device Initialization Routine
2982  *  @pdev: PCI device information struct
2983  *  @ent: entry in igb_pci_tbl
2984  *
2985  *  Returns 0 on success, negative on failure
2986  *
2987  *  igb_probe initializes an adapter identified by a pci_dev structure.
2988  *  The OS initialization, configuring of the adapter private structure,
2989  *  and a hardware reset occur.
2990  **/
2991 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2992 {
2993 	struct net_device *netdev;
2994 	struct igb_adapter *adapter;
2995 	struct e1000_hw *hw;
2996 	u16 eeprom_data = 0;
2997 	s32 ret_val;
2998 	static int global_quad_port_a; /* global quad port a indication */
2999 	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3000 	int err, pci_using_dac;
3001 	u8 part_str[E1000_PBANUM_LENGTH];
3002 
3003 	/* Catch broken hardware that put the wrong VF device ID in
3004 	 * the PCIe SR-IOV capability.
3005 	 */
3006 	if (pdev->is_virtfn) {
3007 		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
3008 			pci_name(pdev), pdev->vendor, pdev->device);
3009 		return -EINVAL;
3010 	}
3011 
3012 	err = pci_enable_device_mem(pdev);
3013 	if (err)
3014 		return err;
3015 
3016 	pci_using_dac = 0;
3017 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3018 	if (!err) {
3019 		pci_using_dac = 1;
3020 	} else {
3021 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3022 		if (err) {
3023 			dev_err(&pdev->dev,
3024 				"No usable DMA configuration, aborting\n");
3025 			goto err_dma;
3026 		}
3027 	}
3028 
3029 	err = pci_request_mem_regions(pdev, igb_driver_name);
3030 	if (err)
3031 		goto err_pci_reg;
3032 
3033 	pci_enable_pcie_error_reporting(pdev);
3034 
3035 	pci_set_master(pdev);
3036 	pci_save_state(pdev);
3037 
3038 	err = -ENOMEM;
3039 	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3040 				   IGB_MAX_TX_QUEUES);
3041 	if (!netdev)
3042 		goto err_alloc_etherdev;
3043 
3044 	SET_NETDEV_DEV(netdev, &pdev->dev);
3045 
3046 	pci_set_drvdata(pdev, netdev);
3047 	adapter = netdev_priv(netdev);
3048 	adapter->netdev = netdev;
3049 	adapter->pdev = pdev;
3050 	hw = &adapter->hw;
3051 	hw->back = adapter;
3052 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3053 
3054 	err = -EIO;
3055 	adapter->io_addr = pci_iomap(pdev, 0, 0);
3056 	if (!adapter->io_addr)
3057 		goto err_ioremap;
3058 	/* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3059 	hw->hw_addr = adapter->io_addr;
3060 
3061 	netdev->netdev_ops = &igb_netdev_ops;
3062 	igb_set_ethtool_ops(netdev);
3063 	netdev->watchdog_timeo = 5 * HZ;
3064 
3065 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3066 
3067 	netdev->mem_start = pci_resource_start(pdev, 0);
3068 	netdev->mem_end = pci_resource_end(pdev, 0);
3069 
3070 	/* PCI config space info */
3071 	hw->vendor_id = pdev->vendor;
3072 	hw->device_id = pdev->device;
3073 	hw->revision_id = pdev->revision;
3074 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3075 	hw->subsystem_device_id = pdev->subsystem_device;
3076 
3077 	/* Copy the default MAC, PHY and NVM function pointers */
3078 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3079 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3080 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3081 	/* Initialize skew-specific constants */
3082 	err = ei->get_invariants(hw);
3083 	if (err)
3084 		goto err_sw_init;
3085 
3086 	/* setup the private structure */
3087 	err = igb_sw_init(adapter);
3088 	if (err)
3089 		goto err_sw_init;
3090 
3091 	igb_get_bus_info_pcie(hw);
3092 
3093 	hw->phy.autoneg_wait_to_complete = false;
3094 
3095 	/* Copper options */
3096 	if (hw->phy.media_type == e1000_media_type_copper) {
3097 		hw->phy.mdix = AUTO_ALL_MODES;
3098 		hw->phy.disable_polarity_correction = false;
3099 		hw->phy.ms_type = e1000_ms_hw_default;
3100 	}
3101 
3102 	if (igb_check_reset_block(hw))
3103 		dev_info(&pdev->dev,
3104 			"PHY reset is blocked due to SOL/IDER session.\n");
3105 
3106 	/* features is initialized to 0 in allocation, it might have bits
3107 	 * set by igb_sw_init so we should use an or instead of an
3108 	 * assignment.
3109 	 */
3110 	netdev->features |= NETIF_F_SG |
3111 			    NETIF_F_TSO |
3112 			    NETIF_F_TSO6 |
3113 			    NETIF_F_RXHASH |
3114 			    NETIF_F_RXCSUM |
3115 			    NETIF_F_HW_CSUM;
3116 
3117 	if (hw->mac.type >= e1000_82576)
3118 		netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3119 
3120 	if (hw->mac.type >= e1000_i350)
3121 		netdev->features |= NETIF_F_HW_TC;
3122 
3123 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3124 				  NETIF_F_GSO_GRE_CSUM | \
3125 				  NETIF_F_GSO_IPXIP4 | \
3126 				  NETIF_F_GSO_IPXIP6 | \
3127 				  NETIF_F_GSO_UDP_TUNNEL | \
3128 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
3129 
3130 	netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3131 	netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3132 
3133 	/* copy netdev features into list of user selectable features */
3134 	netdev->hw_features |= netdev->features |
3135 			       NETIF_F_HW_VLAN_CTAG_RX |
3136 			       NETIF_F_HW_VLAN_CTAG_TX |
3137 			       NETIF_F_RXALL;
3138 
3139 	if (hw->mac.type >= e1000_i350)
3140 		netdev->hw_features |= NETIF_F_NTUPLE;
3141 
3142 	if (pci_using_dac)
3143 		netdev->features |= NETIF_F_HIGHDMA;
3144 
3145 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3146 	netdev->mpls_features |= NETIF_F_HW_CSUM;
3147 	netdev->hw_enc_features |= netdev->vlan_features;
3148 
3149 	/* set this bit last since it cannot be part of vlan_features */
3150 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3151 			    NETIF_F_HW_VLAN_CTAG_RX |
3152 			    NETIF_F_HW_VLAN_CTAG_TX;
3153 
3154 	netdev->priv_flags |= IFF_SUPP_NOFCS;
3155 
3156 	netdev->priv_flags |= IFF_UNICAST_FLT;
3157 
3158 	/* MTU range: 68 - 9216 */
3159 	netdev->min_mtu = ETH_MIN_MTU;
3160 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3161 
3162 	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3163 
3164 	/* before reading the NVM, reset the controller to put the device in a
3165 	 * known good starting state
3166 	 */
3167 	hw->mac.ops.reset_hw(hw);
3168 
3169 	/* make sure the NVM is good , i211/i210 parts can have special NVM
3170 	 * that doesn't contain a checksum
3171 	 */
3172 	switch (hw->mac.type) {
3173 	case e1000_i210:
3174 	case e1000_i211:
3175 		if (igb_get_flash_presence_i210(hw)) {
3176 			if (hw->nvm.ops.validate(hw) < 0) {
3177 				dev_err(&pdev->dev,
3178 					"The NVM Checksum Is Not Valid\n");
3179 				err = -EIO;
3180 				goto err_eeprom;
3181 			}
3182 		}
3183 		break;
3184 	default:
3185 		if (hw->nvm.ops.validate(hw) < 0) {
3186 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3187 			err = -EIO;
3188 			goto err_eeprom;
3189 		}
3190 		break;
3191 	}
3192 
3193 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3194 		/* copy the MAC address out of the NVM */
3195 		if (hw->mac.ops.read_mac_addr(hw))
3196 			dev_err(&pdev->dev, "NVM Read Error\n");
3197 	}
3198 
3199 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
3200 
3201 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3202 		dev_err(&pdev->dev, "Invalid MAC Address\n");
3203 		err = -EIO;
3204 		goto err_eeprom;
3205 	}
3206 
3207 	igb_set_default_mac_filter(adapter);
3208 
3209 	/* get firmware version for ethtool -i */
3210 	igb_set_fw_version(adapter);
3211 
3212 	/* configure RXPBSIZE and TXPBSIZE */
3213 	if (hw->mac.type == e1000_i210) {
3214 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3215 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3216 	}
3217 
3218 	timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3219 	timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3220 
3221 	INIT_WORK(&adapter->reset_task, igb_reset_task);
3222 	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3223 
3224 	/* Initialize link properties that are user-changeable */
3225 	adapter->fc_autoneg = true;
3226 	hw->mac.autoneg = true;
3227 	hw->phy.autoneg_advertised = 0x2f;
3228 
3229 	hw->fc.requested_mode = e1000_fc_default;
3230 	hw->fc.current_mode = e1000_fc_default;
3231 
3232 	igb_validate_mdi_setting(hw);
3233 
3234 	/* By default, support wake on port A */
3235 	if (hw->bus.func == 0)
3236 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3237 
3238 	/* Check the NVM for wake support on non-port A ports */
3239 	if (hw->mac.type >= e1000_82580)
3240 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3241 				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3242 				 &eeprom_data);
3243 	else if (hw->bus.func == 1)
3244 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3245 
3246 	if (eeprom_data & IGB_EEPROM_APME)
3247 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3248 
3249 	/* now that we have the eeprom settings, apply the special cases where
3250 	 * the eeprom may be wrong or the board simply won't support wake on
3251 	 * lan on a particular port
3252 	 */
3253 	switch (pdev->device) {
3254 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
3255 		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3256 		break;
3257 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
3258 	case E1000_DEV_ID_82576_FIBER:
3259 	case E1000_DEV_ID_82576_SERDES:
3260 		/* Wake events only supported on port A for dual fiber
3261 		 * regardless of eeprom setting
3262 		 */
3263 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3264 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3265 		break;
3266 	case E1000_DEV_ID_82576_QUAD_COPPER:
3267 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3268 		/* if quad port adapter, disable WoL on all but port A */
3269 		if (global_quad_port_a != 0)
3270 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3271 		else
3272 			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3273 		/* Reset for multiple quad port adapters */
3274 		if (++global_quad_port_a == 4)
3275 			global_quad_port_a = 0;
3276 		break;
3277 	default:
3278 		/* If the device can't wake, don't set software support */
3279 		if (!device_can_wakeup(&adapter->pdev->dev))
3280 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3281 	}
3282 
3283 	/* initialize the wol settings based on the eeprom settings */
3284 	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3285 		adapter->wol |= E1000_WUFC_MAG;
3286 
3287 	/* Some vendors want WoL disabled by default, but still supported */
3288 	if ((hw->mac.type == e1000_i350) &&
3289 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3290 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3291 		adapter->wol = 0;
3292 	}
3293 
3294 	/* Some vendors want the ability to Use the EEPROM setting as
3295 	 * enable/disable only, and not for capability
3296 	 */
3297 	if (((hw->mac.type == e1000_i350) ||
3298 	     (hw->mac.type == e1000_i354)) &&
3299 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3300 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3301 		adapter->wol = 0;
3302 	}
3303 	if (hw->mac.type == e1000_i350) {
3304 		if (((pdev->subsystem_device == 0x5001) ||
3305 		     (pdev->subsystem_device == 0x5002)) &&
3306 				(hw->bus.func == 0)) {
3307 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3308 			adapter->wol = 0;
3309 		}
3310 		if (pdev->subsystem_device == 0x1F52)
3311 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3312 	}
3313 
3314 	device_set_wakeup_enable(&adapter->pdev->dev,
3315 				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3316 
3317 	/* reset the hardware with the new settings */
3318 	igb_reset(adapter);
3319 
3320 	/* Init the I2C interface */
3321 	err = igb_init_i2c(adapter);
3322 	if (err) {
3323 		dev_err(&pdev->dev, "failed to init i2c interface\n");
3324 		goto err_eeprom;
3325 	}
3326 
3327 	/* let the f/w know that the h/w is now under the control of the
3328 	 * driver.
3329 	 */
3330 	igb_get_hw_control(adapter);
3331 
3332 	strcpy(netdev->name, "eth%d");
3333 	err = register_netdev(netdev);
3334 	if (err)
3335 		goto err_register;
3336 
3337 	/* carrier off reporting is important to ethtool even BEFORE open */
3338 	netif_carrier_off(netdev);
3339 
3340 #ifdef CONFIG_IGB_DCA
3341 	if (dca_add_requester(&pdev->dev) == 0) {
3342 		adapter->flags |= IGB_FLAG_DCA_ENABLED;
3343 		dev_info(&pdev->dev, "DCA enabled\n");
3344 		igb_setup_dca(adapter);
3345 	}
3346 
3347 #endif
3348 #ifdef CONFIG_IGB_HWMON
3349 	/* Initialize the thermal sensor on i350 devices. */
3350 	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3351 		u16 ets_word;
3352 
3353 		/* Read the NVM to determine if this i350 device supports an
3354 		 * external thermal sensor.
3355 		 */
3356 		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3357 		if (ets_word != 0x0000 && ets_word != 0xFFFF)
3358 			adapter->ets = true;
3359 		else
3360 			adapter->ets = false;
3361 		if (igb_sysfs_init(adapter))
3362 			dev_err(&pdev->dev,
3363 				"failed to allocate sysfs resources\n");
3364 	} else {
3365 		adapter->ets = false;
3366 	}
3367 #endif
3368 	/* Check if Media Autosense is enabled */
3369 	adapter->ei = *ei;
3370 	if (hw->dev_spec._82575.mas_capable)
3371 		igb_init_mas(adapter);
3372 
3373 	/* do hw tstamp init after resetting */
3374 	igb_ptp_init(adapter);
3375 
3376 	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3377 	/* print bus type/speed/width info, not applicable to i354 */
3378 	if (hw->mac.type != e1000_i354) {
3379 		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3380 			 netdev->name,
3381 			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3382 			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3383 			   "unknown"),
3384 			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3385 			  "Width x4" :
3386 			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
3387 			  "Width x2" :
3388 			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
3389 			  "Width x1" : "unknown"), netdev->dev_addr);
3390 	}
3391 
3392 	if ((hw->mac.type >= e1000_i210 ||
3393 	     igb_get_flash_presence_i210(hw))) {
3394 		ret_val = igb_read_part_string(hw, part_str,
3395 					       E1000_PBANUM_LENGTH);
3396 	} else {
3397 		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3398 	}
3399 
3400 	if (ret_val)
3401 		strcpy(part_str, "Unknown");
3402 	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3403 	dev_info(&pdev->dev,
3404 		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3405 		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3406 		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3407 		adapter->num_rx_queues, adapter->num_tx_queues);
3408 	if (hw->phy.media_type == e1000_media_type_copper) {
3409 		switch (hw->mac.type) {
3410 		case e1000_i350:
3411 		case e1000_i210:
3412 		case e1000_i211:
3413 			/* Enable EEE for internal copper PHY devices */
3414 			err = igb_set_eee_i350(hw, true, true);
3415 			if ((!err) &&
3416 			    (!hw->dev_spec._82575.eee_disable)) {
3417 				adapter->eee_advert =
3418 					MDIO_EEE_100TX | MDIO_EEE_1000T;
3419 				adapter->flags |= IGB_FLAG_EEE;
3420 			}
3421 			break;
3422 		case e1000_i354:
3423 			if ((rd32(E1000_CTRL_EXT) &
3424 			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3425 				err = igb_set_eee_i354(hw, true, true);
3426 				if ((!err) &&
3427 					(!hw->dev_spec._82575.eee_disable)) {
3428 					adapter->eee_advert =
3429 					   MDIO_EEE_100TX | MDIO_EEE_1000T;
3430 					adapter->flags |= IGB_FLAG_EEE;
3431 				}
3432 			}
3433 			break;
3434 		default:
3435 			break;
3436 		}
3437 	}
3438 
3439 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3440 
3441 	pm_runtime_put_noidle(&pdev->dev);
3442 	return 0;
3443 
3444 err_register:
3445 	igb_release_hw_control(adapter);
3446 	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3447 err_eeprom:
3448 	if (!igb_check_reset_block(hw))
3449 		igb_reset_phy(hw);
3450 
3451 	if (hw->flash_address)
3452 		iounmap(hw->flash_address);
3453 err_sw_init:
3454 	kfree(adapter->mac_table);
3455 	kfree(adapter->shadow_vfta);
3456 	igb_clear_interrupt_scheme(adapter);
3457 #ifdef CONFIG_PCI_IOV
3458 	igb_disable_sriov(pdev);
3459 #endif
3460 	pci_iounmap(pdev, adapter->io_addr);
3461 err_ioremap:
3462 	free_netdev(netdev);
3463 err_alloc_etherdev:
3464 	pci_release_mem_regions(pdev);
3465 err_pci_reg:
3466 err_dma:
3467 	pci_disable_device(pdev);
3468 	return err;
3469 }
3470 
3471 #ifdef CONFIG_PCI_IOV
3472 static int igb_disable_sriov(struct pci_dev *pdev)
3473 {
3474 	struct net_device *netdev = pci_get_drvdata(pdev);
3475 	struct igb_adapter *adapter = netdev_priv(netdev);
3476 	struct e1000_hw *hw = &adapter->hw;
3477 
3478 	/* reclaim resources allocated to VFs */
3479 	if (adapter->vf_data) {
3480 		/* disable iov and allow time for transactions to clear */
3481 		if (pci_vfs_assigned(pdev)) {
3482 			dev_warn(&pdev->dev,
3483 				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3484 			return -EPERM;
3485 		} else {
3486 			pci_disable_sriov(pdev);
3487 			msleep(500);
3488 		}
3489 
3490 		kfree(adapter->vf_mac_list);
3491 		adapter->vf_mac_list = NULL;
3492 		kfree(adapter->vf_data);
3493 		adapter->vf_data = NULL;
3494 		adapter->vfs_allocated_count = 0;
3495 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3496 		wrfl();
3497 		msleep(100);
3498 		dev_info(&pdev->dev, "IOV Disabled\n");
3499 
3500 		/* Re-enable DMA Coalescing flag since IOV is turned off */
3501 		adapter->flags |= IGB_FLAG_DMAC;
3502 	}
3503 
3504 	return 0;
3505 }
3506 
3507 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3508 {
3509 	struct net_device *netdev = pci_get_drvdata(pdev);
3510 	struct igb_adapter *adapter = netdev_priv(netdev);
3511 	int old_vfs = pci_num_vf(pdev);
3512 	struct vf_mac_filter *mac_list;
3513 	int err = 0;
3514 	int num_vf_mac_filters, i;
3515 
3516 	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3517 		err = -EPERM;
3518 		goto out;
3519 	}
3520 	if (!num_vfs)
3521 		goto out;
3522 
3523 	if (old_vfs) {
3524 		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3525 			 old_vfs, max_vfs);
3526 		adapter->vfs_allocated_count = old_vfs;
3527 	} else
3528 		adapter->vfs_allocated_count = num_vfs;
3529 
3530 	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3531 				sizeof(struct vf_data_storage), GFP_KERNEL);
3532 
3533 	/* if allocation failed then we do not support SR-IOV */
3534 	if (!adapter->vf_data) {
3535 		adapter->vfs_allocated_count = 0;
3536 		err = -ENOMEM;
3537 		goto out;
3538 	}
3539 
3540 	/* Due to the limited number of RAR entries calculate potential
3541 	 * number of MAC filters available for the VFs. Reserve entries
3542 	 * for PF default MAC, PF MAC filters and at least one RAR entry
3543 	 * for each VF for VF MAC.
3544 	 */
3545 	num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3546 			     (1 + IGB_PF_MAC_FILTERS_RESERVED +
3547 			      adapter->vfs_allocated_count);
3548 
3549 	adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3550 				       sizeof(struct vf_mac_filter),
3551 				       GFP_KERNEL);
3552 
3553 	mac_list = adapter->vf_mac_list;
3554 	INIT_LIST_HEAD(&adapter->vf_macs.l);
3555 
3556 	if (adapter->vf_mac_list) {
3557 		/* Initialize list of VF MAC filters */
3558 		for (i = 0; i < num_vf_mac_filters; i++) {
3559 			mac_list->vf = -1;
3560 			mac_list->free = true;
3561 			list_add(&mac_list->l, &adapter->vf_macs.l);
3562 			mac_list++;
3563 		}
3564 	} else {
3565 		/* If we could not allocate memory for the VF MAC filters
3566 		 * we can continue without this feature but warn user.
3567 		 */
3568 		dev_err(&pdev->dev,
3569 			"Unable to allocate memory for VF MAC filter list\n");
3570 	}
3571 
3572 	/* only call pci_enable_sriov() if no VFs are allocated already */
3573 	if (!old_vfs) {
3574 		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3575 		if (err)
3576 			goto err_out;
3577 	}
3578 	dev_info(&pdev->dev, "%d VFs allocated\n",
3579 		 adapter->vfs_allocated_count);
3580 	for (i = 0; i < adapter->vfs_allocated_count; i++)
3581 		igb_vf_configure(adapter, i);
3582 
3583 	/* DMA Coalescing is not supported in IOV mode. */
3584 	adapter->flags &= ~IGB_FLAG_DMAC;
3585 	goto out;
3586 
3587 err_out:
3588 	kfree(adapter->vf_mac_list);
3589 	adapter->vf_mac_list = NULL;
3590 	kfree(adapter->vf_data);
3591 	adapter->vf_data = NULL;
3592 	adapter->vfs_allocated_count = 0;
3593 out:
3594 	return err;
3595 }
3596 
3597 #endif
3598 /**
3599  *  igb_remove_i2c - Cleanup  I2C interface
3600  *  @adapter: pointer to adapter structure
3601  **/
3602 static void igb_remove_i2c(struct igb_adapter *adapter)
3603 {
3604 	/* free the adapter bus structure */
3605 	i2c_del_adapter(&adapter->i2c_adap);
3606 }
3607 
3608 /**
3609  *  igb_remove - Device Removal Routine
3610  *  @pdev: PCI device information struct
3611  *
3612  *  igb_remove is called by the PCI subsystem to alert the driver
3613  *  that it should release a PCI device.  The could be caused by a
3614  *  Hot-Plug event, or because the driver is going to be removed from
3615  *  memory.
3616  **/
3617 static void igb_remove(struct pci_dev *pdev)
3618 {
3619 	struct net_device *netdev = pci_get_drvdata(pdev);
3620 	struct igb_adapter *adapter = netdev_priv(netdev);
3621 	struct e1000_hw *hw = &adapter->hw;
3622 
3623 	pm_runtime_get_noresume(&pdev->dev);
3624 #ifdef CONFIG_IGB_HWMON
3625 	igb_sysfs_exit(adapter);
3626 #endif
3627 	igb_remove_i2c(adapter);
3628 	igb_ptp_stop(adapter);
3629 	/* The watchdog timer may be rescheduled, so explicitly
3630 	 * disable watchdog from being rescheduled.
3631 	 */
3632 	set_bit(__IGB_DOWN, &adapter->state);
3633 	del_timer_sync(&adapter->watchdog_timer);
3634 	del_timer_sync(&adapter->phy_info_timer);
3635 
3636 	cancel_work_sync(&adapter->reset_task);
3637 	cancel_work_sync(&adapter->watchdog_task);
3638 
3639 #ifdef CONFIG_IGB_DCA
3640 	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3641 		dev_info(&pdev->dev, "DCA disabled\n");
3642 		dca_remove_requester(&pdev->dev);
3643 		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3644 		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3645 	}
3646 #endif
3647 
3648 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
3649 	 * would have already happened in close and is redundant.
3650 	 */
3651 	igb_release_hw_control(adapter);
3652 
3653 #ifdef CONFIG_PCI_IOV
3654 	igb_disable_sriov(pdev);
3655 #endif
3656 
3657 	unregister_netdev(netdev);
3658 
3659 	igb_clear_interrupt_scheme(adapter);
3660 
3661 	pci_iounmap(pdev, adapter->io_addr);
3662 	if (hw->flash_address)
3663 		iounmap(hw->flash_address);
3664 	pci_release_mem_regions(pdev);
3665 
3666 	kfree(adapter->mac_table);
3667 	kfree(adapter->shadow_vfta);
3668 	free_netdev(netdev);
3669 
3670 	pci_disable_pcie_error_reporting(pdev);
3671 
3672 	pci_disable_device(pdev);
3673 }
3674 
3675 /**
3676  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3677  *  @adapter: board private structure to initialize
3678  *
3679  *  This function initializes the vf specific data storage and then attempts to
3680  *  allocate the VFs.  The reason for ordering it this way is because it is much
3681  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
3682  *  the memory for the VFs.
3683  **/
3684 static void igb_probe_vfs(struct igb_adapter *adapter)
3685 {
3686 #ifdef CONFIG_PCI_IOV
3687 	struct pci_dev *pdev = adapter->pdev;
3688 	struct e1000_hw *hw = &adapter->hw;
3689 
3690 	/* Virtualization features not supported on i210 family. */
3691 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3692 		return;
3693 
3694 	/* Of the below we really only want the effect of getting
3695 	 * IGB_FLAG_HAS_MSIX set (if available), without which
3696 	 * igb_enable_sriov() has no effect.
3697 	 */
3698 	igb_set_interrupt_capability(adapter, true);
3699 	igb_reset_interrupt_capability(adapter);
3700 
3701 	pci_sriov_set_totalvfs(pdev, 7);
3702 	igb_enable_sriov(pdev, max_vfs);
3703 
3704 #endif /* CONFIG_PCI_IOV */
3705 }
3706 
3707 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3708 {
3709 	struct e1000_hw *hw = &adapter->hw;
3710 	unsigned int max_rss_queues;
3711 
3712 	/* Determine the maximum number of RSS queues supported. */
3713 	switch (hw->mac.type) {
3714 	case e1000_i211:
3715 		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3716 		break;
3717 	case e1000_82575:
3718 	case e1000_i210:
3719 		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3720 		break;
3721 	case e1000_i350:
3722 		/* I350 cannot do RSS and SR-IOV at the same time */
3723 		if (!!adapter->vfs_allocated_count) {
3724 			max_rss_queues = 1;
3725 			break;
3726 		}
3727 		fallthrough;
3728 	case e1000_82576:
3729 		if (!!adapter->vfs_allocated_count) {
3730 			max_rss_queues = 2;
3731 			break;
3732 		}
3733 		fallthrough;
3734 	case e1000_82580:
3735 	case e1000_i354:
3736 	default:
3737 		max_rss_queues = IGB_MAX_RX_QUEUES;
3738 		break;
3739 	}
3740 
3741 	return max_rss_queues;
3742 }
3743 
3744 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3745 {
3746 	u32 max_rss_queues;
3747 
3748 	max_rss_queues = igb_get_max_rss_queues(adapter);
3749 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3750 
3751 	igb_set_flag_queue_pairs(adapter, max_rss_queues);
3752 }
3753 
3754 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3755 			      const u32 max_rss_queues)
3756 {
3757 	struct e1000_hw *hw = &adapter->hw;
3758 
3759 	/* Determine if we need to pair queues. */
3760 	switch (hw->mac.type) {
3761 	case e1000_82575:
3762 	case e1000_i211:
3763 		/* Device supports enough interrupts without queue pairing. */
3764 		break;
3765 	case e1000_82576:
3766 	case e1000_82580:
3767 	case e1000_i350:
3768 	case e1000_i354:
3769 	case e1000_i210:
3770 	default:
3771 		/* If rss_queues > half of max_rss_queues, pair the queues in
3772 		 * order to conserve interrupts due to limited supply.
3773 		 */
3774 		if (adapter->rss_queues > (max_rss_queues / 2))
3775 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3776 		else
3777 			adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3778 		break;
3779 	}
3780 }
3781 
3782 /**
3783  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
3784  *  @adapter: board private structure to initialize
3785  *
3786  *  igb_sw_init initializes the Adapter private data structure.
3787  *  Fields are initialized based on PCI device information and
3788  *  OS network device settings (MTU size).
3789  **/
3790 static int igb_sw_init(struct igb_adapter *adapter)
3791 {
3792 	struct e1000_hw *hw = &adapter->hw;
3793 	struct net_device *netdev = adapter->netdev;
3794 	struct pci_dev *pdev = adapter->pdev;
3795 
3796 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3797 
3798 	/* set default ring sizes */
3799 	adapter->tx_ring_count = IGB_DEFAULT_TXD;
3800 	adapter->rx_ring_count = IGB_DEFAULT_RXD;
3801 
3802 	/* set default ITR values */
3803 	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3804 	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3805 
3806 	/* set default work limits */
3807 	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3808 
3809 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3810 				  VLAN_HLEN;
3811 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3812 
3813 	spin_lock_init(&adapter->nfc_lock);
3814 	spin_lock_init(&adapter->stats64_lock);
3815 #ifdef CONFIG_PCI_IOV
3816 	switch (hw->mac.type) {
3817 	case e1000_82576:
3818 	case e1000_i350:
3819 		if (max_vfs > 7) {
3820 			dev_warn(&pdev->dev,
3821 				 "Maximum of 7 VFs per PF, using max\n");
3822 			max_vfs = adapter->vfs_allocated_count = 7;
3823 		} else
3824 			adapter->vfs_allocated_count = max_vfs;
3825 		if (adapter->vfs_allocated_count)
3826 			dev_warn(&pdev->dev,
3827 				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3828 		break;
3829 	default:
3830 		break;
3831 	}
3832 #endif /* CONFIG_PCI_IOV */
3833 
3834 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
3835 	adapter->flags |= IGB_FLAG_HAS_MSIX;
3836 
3837 	adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
3838 				     sizeof(struct igb_mac_addr),
3839 				     GFP_KERNEL);
3840 	if (!adapter->mac_table)
3841 		return -ENOMEM;
3842 
3843 	igb_probe_vfs(adapter);
3844 
3845 	igb_init_queue_configuration(adapter);
3846 
3847 	/* Setup and initialize a copy of the hw vlan table array */
3848 	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3849 				       GFP_KERNEL);
3850 	if (!adapter->shadow_vfta)
3851 		return -ENOMEM;
3852 
3853 	/* This call may decrease the number of queues */
3854 	if (igb_init_interrupt_scheme(adapter, true)) {
3855 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3856 		return -ENOMEM;
3857 	}
3858 
3859 	/* Explicitly disable IRQ since the NIC can be in any state. */
3860 	igb_irq_disable(adapter);
3861 
3862 	if (hw->mac.type >= e1000_i350)
3863 		adapter->flags &= ~IGB_FLAG_DMAC;
3864 
3865 	set_bit(__IGB_DOWN, &adapter->state);
3866 	return 0;
3867 }
3868 
3869 /**
3870  *  igb_open - Called when a network interface is made active
3871  *  @netdev: network interface device structure
3872  *
3873  *  Returns 0 on success, negative value on failure
3874  *
3875  *  The open entry point is called when a network interface is made
3876  *  active by the system (IFF_UP).  At this point all resources needed
3877  *  for transmit and receive operations are allocated, the interrupt
3878  *  handler is registered with the OS, the watchdog timer is started,
3879  *  and the stack is notified that the interface is ready.
3880  **/
3881 static int __igb_open(struct net_device *netdev, bool resuming)
3882 {
3883 	struct igb_adapter *adapter = netdev_priv(netdev);
3884 	struct e1000_hw *hw = &adapter->hw;
3885 	struct pci_dev *pdev = adapter->pdev;
3886 	int err;
3887 	int i;
3888 
3889 	/* disallow open during test */
3890 	if (test_bit(__IGB_TESTING, &adapter->state)) {
3891 		WARN_ON(resuming);
3892 		return -EBUSY;
3893 	}
3894 
3895 	if (!resuming)
3896 		pm_runtime_get_sync(&pdev->dev);
3897 
3898 	netif_carrier_off(netdev);
3899 
3900 	/* allocate transmit descriptors */
3901 	err = igb_setup_all_tx_resources(adapter);
3902 	if (err)
3903 		goto err_setup_tx;
3904 
3905 	/* allocate receive descriptors */
3906 	err = igb_setup_all_rx_resources(adapter);
3907 	if (err)
3908 		goto err_setup_rx;
3909 
3910 	igb_power_up_link(adapter);
3911 
3912 	/* before we allocate an interrupt, we must be ready to handle it.
3913 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3914 	 * as soon as we call pci_request_irq, so we have to setup our
3915 	 * clean_rx handler before we do so.
3916 	 */
3917 	igb_configure(adapter);
3918 
3919 	err = igb_request_irq(adapter);
3920 	if (err)
3921 		goto err_req_irq;
3922 
3923 	/* Notify the stack of the actual queue counts. */
3924 	err = netif_set_real_num_tx_queues(adapter->netdev,
3925 					   adapter->num_tx_queues);
3926 	if (err)
3927 		goto err_set_queues;
3928 
3929 	err = netif_set_real_num_rx_queues(adapter->netdev,
3930 					   adapter->num_rx_queues);
3931 	if (err)
3932 		goto err_set_queues;
3933 
3934 	/* From here on the code is the same as igb_up() */
3935 	clear_bit(__IGB_DOWN, &adapter->state);
3936 
3937 	for (i = 0; i < adapter->num_q_vectors; i++)
3938 		napi_enable(&(adapter->q_vector[i]->napi));
3939 
3940 	/* Clear any pending interrupts. */
3941 	rd32(E1000_TSICR);
3942 	rd32(E1000_ICR);
3943 
3944 	igb_irq_enable(adapter);
3945 
3946 	/* notify VFs that reset has been completed */
3947 	if (adapter->vfs_allocated_count) {
3948 		u32 reg_data = rd32(E1000_CTRL_EXT);
3949 
3950 		reg_data |= E1000_CTRL_EXT_PFRSTD;
3951 		wr32(E1000_CTRL_EXT, reg_data);
3952 	}
3953 
3954 	netif_tx_start_all_queues(netdev);
3955 
3956 	if (!resuming)
3957 		pm_runtime_put(&pdev->dev);
3958 
3959 	/* start the watchdog. */
3960 	hw->mac.get_link_status = 1;
3961 	schedule_work(&adapter->watchdog_task);
3962 
3963 	return 0;
3964 
3965 err_set_queues:
3966 	igb_free_irq(adapter);
3967 err_req_irq:
3968 	igb_release_hw_control(adapter);
3969 	igb_power_down_link(adapter);
3970 	igb_free_all_rx_resources(adapter);
3971 err_setup_rx:
3972 	igb_free_all_tx_resources(adapter);
3973 err_setup_tx:
3974 	igb_reset(adapter);
3975 	if (!resuming)
3976 		pm_runtime_put(&pdev->dev);
3977 
3978 	return err;
3979 }
3980 
3981 int igb_open(struct net_device *netdev)
3982 {
3983 	return __igb_open(netdev, false);
3984 }
3985 
3986 /**
3987  *  igb_close - Disables a network interface
3988  *  @netdev: network interface device structure
3989  *
3990  *  Returns 0, this is not allowed to fail
3991  *
3992  *  The close entry point is called when an interface is de-activated
3993  *  by the OS.  The hardware is still under the driver's control, but
3994  *  needs to be disabled.  A global MAC reset is issued to stop the
3995  *  hardware, and all transmit and receive resources are freed.
3996  **/
3997 static int __igb_close(struct net_device *netdev, bool suspending)
3998 {
3999 	struct igb_adapter *adapter = netdev_priv(netdev);
4000 	struct pci_dev *pdev = adapter->pdev;
4001 
4002 	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4003 
4004 	if (!suspending)
4005 		pm_runtime_get_sync(&pdev->dev);
4006 
4007 	igb_down(adapter);
4008 	igb_free_irq(adapter);
4009 
4010 	igb_free_all_tx_resources(adapter);
4011 	igb_free_all_rx_resources(adapter);
4012 
4013 	if (!suspending)
4014 		pm_runtime_put_sync(&pdev->dev);
4015 	return 0;
4016 }
4017 
4018 int igb_close(struct net_device *netdev)
4019 {
4020 	if (netif_device_present(netdev) || netdev->dismantle)
4021 		return __igb_close(netdev, false);
4022 	return 0;
4023 }
4024 
4025 /**
4026  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
4027  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
4028  *
4029  *  Return 0 on success, negative on failure
4030  **/
4031 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4032 {
4033 	struct device *dev = tx_ring->dev;
4034 	int size;
4035 
4036 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4037 
4038 	tx_ring->tx_buffer_info = vmalloc(size);
4039 	if (!tx_ring->tx_buffer_info)
4040 		goto err;
4041 
4042 	/* round up to nearest 4K */
4043 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4044 	tx_ring->size = ALIGN(tx_ring->size, 4096);
4045 
4046 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4047 					   &tx_ring->dma, GFP_KERNEL);
4048 	if (!tx_ring->desc)
4049 		goto err;
4050 
4051 	tx_ring->next_to_use = 0;
4052 	tx_ring->next_to_clean = 0;
4053 
4054 	return 0;
4055 
4056 err:
4057 	vfree(tx_ring->tx_buffer_info);
4058 	tx_ring->tx_buffer_info = NULL;
4059 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4060 	return -ENOMEM;
4061 }
4062 
4063 /**
4064  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
4065  *				 (Descriptors) for all queues
4066  *  @adapter: board private structure
4067  *
4068  *  Return 0 on success, negative on failure
4069  **/
4070 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4071 {
4072 	struct pci_dev *pdev = adapter->pdev;
4073 	int i, err = 0;
4074 
4075 	for (i = 0; i < adapter->num_tx_queues; i++) {
4076 		err = igb_setup_tx_resources(adapter->tx_ring[i]);
4077 		if (err) {
4078 			dev_err(&pdev->dev,
4079 				"Allocation for Tx Queue %u failed\n", i);
4080 			for (i--; i >= 0; i--)
4081 				igb_free_tx_resources(adapter->tx_ring[i]);
4082 			break;
4083 		}
4084 	}
4085 
4086 	return err;
4087 }
4088 
4089 /**
4090  *  igb_setup_tctl - configure the transmit control registers
4091  *  @adapter: Board private structure
4092  **/
4093 void igb_setup_tctl(struct igb_adapter *adapter)
4094 {
4095 	struct e1000_hw *hw = &adapter->hw;
4096 	u32 tctl;
4097 
4098 	/* disable queue 0 which is enabled by default on 82575 and 82576 */
4099 	wr32(E1000_TXDCTL(0), 0);
4100 
4101 	/* Program the Transmit Control Register */
4102 	tctl = rd32(E1000_TCTL);
4103 	tctl &= ~E1000_TCTL_CT;
4104 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4105 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4106 
4107 	igb_config_collision_dist(hw);
4108 
4109 	/* Enable transmits */
4110 	tctl |= E1000_TCTL_EN;
4111 
4112 	wr32(E1000_TCTL, tctl);
4113 }
4114 
4115 /**
4116  *  igb_configure_tx_ring - Configure transmit ring after Reset
4117  *  @adapter: board private structure
4118  *  @ring: tx ring to configure
4119  *
4120  *  Configure a transmit ring after a reset.
4121  **/
4122 void igb_configure_tx_ring(struct igb_adapter *adapter,
4123 			   struct igb_ring *ring)
4124 {
4125 	struct e1000_hw *hw = &adapter->hw;
4126 	u32 txdctl = 0;
4127 	u64 tdba = ring->dma;
4128 	int reg_idx = ring->reg_idx;
4129 
4130 	wr32(E1000_TDLEN(reg_idx),
4131 	     ring->count * sizeof(union e1000_adv_tx_desc));
4132 	wr32(E1000_TDBAL(reg_idx),
4133 	     tdba & 0x00000000ffffffffULL);
4134 	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4135 
4136 	ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4137 	wr32(E1000_TDH(reg_idx), 0);
4138 	writel(0, ring->tail);
4139 
4140 	txdctl |= IGB_TX_PTHRESH;
4141 	txdctl |= IGB_TX_HTHRESH << 8;
4142 	txdctl |= IGB_TX_WTHRESH << 16;
4143 
4144 	/* reinitialize tx_buffer_info */
4145 	memset(ring->tx_buffer_info, 0,
4146 	       sizeof(struct igb_tx_buffer) * ring->count);
4147 
4148 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4149 	wr32(E1000_TXDCTL(reg_idx), txdctl);
4150 }
4151 
4152 /**
4153  *  igb_configure_tx - Configure transmit Unit after Reset
4154  *  @adapter: board private structure
4155  *
4156  *  Configure the Tx unit of the MAC after a reset.
4157  **/
4158 static void igb_configure_tx(struct igb_adapter *adapter)
4159 {
4160 	struct e1000_hw *hw = &adapter->hw;
4161 	int i;
4162 
4163 	/* disable the queues */
4164 	for (i = 0; i < adapter->num_tx_queues; i++)
4165 		wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4166 
4167 	wrfl();
4168 	usleep_range(10000, 20000);
4169 
4170 	for (i = 0; i < adapter->num_tx_queues; i++)
4171 		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4172 }
4173 
4174 /**
4175  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
4176  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
4177  *
4178  *  Returns 0 on success, negative on failure
4179  **/
4180 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4181 {
4182 	struct device *dev = rx_ring->dev;
4183 	int size;
4184 
4185 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4186 
4187 	rx_ring->rx_buffer_info = vmalloc(size);
4188 	if (!rx_ring->rx_buffer_info)
4189 		goto err;
4190 
4191 	/* Round up to nearest 4K */
4192 	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4193 	rx_ring->size = ALIGN(rx_ring->size, 4096);
4194 
4195 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4196 					   &rx_ring->dma, GFP_KERNEL);
4197 	if (!rx_ring->desc)
4198 		goto err;
4199 
4200 	rx_ring->next_to_alloc = 0;
4201 	rx_ring->next_to_clean = 0;
4202 	rx_ring->next_to_use = 0;
4203 
4204 	return 0;
4205 
4206 err:
4207 	vfree(rx_ring->rx_buffer_info);
4208 	rx_ring->rx_buffer_info = NULL;
4209 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4210 	return -ENOMEM;
4211 }
4212 
4213 /**
4214  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
4215  *				 (Descriptors) for all queues
4216  *  @adapter: board private structure
4217  *
4218  *  Return 0 on success, negative on failure
4219  **/
4220 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4221 {
4222 	struct pci_dev *pdev = adapter->pdev;
4223 	int i, err = 0;
4224 
4225 	for (i = 0; i < adapter->num_rx_queues; i++) {
4226 		err = igb_setup_rx_resources(adapter->rx_ring[i]);
4227 		if (err) {
4228 			dev_err(&pdev->dev,
4229 				"Allocation for Rx Queue %u failed\n", i);
4230 			for (i--; i >= 0; i--)
4231 				igb_free_rx_resources(adapter->rx_ring[i]);
4232 			break;
4233 		}
4234 	}
4235 
4236 	return err;
4237 }
4238 
4239 /**
4240  *  igb_setup_mrqc - configure the multiple receive queue control registers
4241  *  @adapter: Board private structure
4242  **/
4243 static void igb_setup_mrqc(struct igb_adapter *adapter)
4244 {
4245 	struct e1000_hw *hw = &adapter->hw;
4246 	u32 mrqc, rxcsum;
4247 	u32 j, num_rx_queues;
4248 	u32 rss_key[10];
4249 
4250 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
4251 	for (j = 0; j < 10; j++)
4252 		wr32(E1000_RSSRK(j), rss_key[j]);
4253 
4254 	num_rx_queues = adapter->rss_queues;
4255 
4256 	switch (hw->mac.type) {
4257 	case e1000_82576:
4258 		/* 82576 supports 2 RSS queues for SR-IOV */
4259 		if (adapter->vfs_allocated_count)
4260 			num_rx_queues = 2;
4261 		break;
4262 	default:
4263 		break;
4264 	}
4265 
4266 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
4267 		for (j = 0; j < IGB_RETA_SIZE; j++)
4268 			adapter->rss_indir_tbl[j] =
4269 			(j * num_rx_queues) / IGB_RETA_SIZE;
4270 		adapter->rss_indir_tbl_init = num_rx_queues;
4271 	}
4272 	igb_write_rss_indir_tbl(adapter);
4273 
4274 	/* Disable raw packet checksumming so that RSS hash is placed in
4275 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
4276 	 * offloads as they are enabled by default
4277 	 */
4278 	rxcsum = rd32(E1000_RXCSUM);
4279 	rxcsum |= E1000_RXCSUM_PCSD;
4280 
4281 	if (adapter->hw.mac.type >= e1000_82576)
4282 		/* Enable Receive Checksum Offload for SCTP */
4283 		rxcsum |= E1000_RXCSUM_CRCOFL;
4284 
4285 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
4286 	wr32(E1000_RXCSUM, rxcsum);
4287 
4288 	/* Generate RSS hash based on packet types, TCP/UDP
4289 	 * port numbers and/or IPv4/v6 src and dst addresses
4290 	 */
4291 	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4292 	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
4293 	       E1000_MRQC_RSS_FIELD_IPV6 |
4294 	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
4295 	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4296 
4297 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4298 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4299 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4300 		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4301 
4302 	/* If VMDq is enabled then we set the appropriate mode for that, else
4303 	 * we default to RSS so that an RSS hash is calculated per packet even
4304 	 * if we are only using one queue
4305 	 */
4306 	if (adapter->vfs_allocated_count) {
4307 		if (hw->mac.type > e1000_82575) {
4308 			/* Set the default pool for the PF's first queue */
4309 			u32 vtctl = rd32(E1000_VT_CTL);
4310 
4311 			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4312 				   E1000_VT_CTL_DISABLE_DEF_POOL);
4313 			vtctl |= adapter->vfs_allocated_count <<
4314 				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4315 			wr32(E1000_VT_CTL, vtctl);
4316 		}
4317 		if (adapter->rss_queues > 1)
4318 			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4319 		else
4320 			mrqc |= E1000_MRQC_ENABLE_VMDQ;
4321 	} else {
4322 		if (hw->mac.type != e1000_i211)
4323 			mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4324 	}
4325 	igb_vmm_control(adapter);
4326 
4327 	wr32(E1000_MRQC, mrqc);
4328 }
4329 
4330 /**
4331  *  igb_setup_rctl - configure the receive control registers
4332  *  @adapter: Board private structure
4333  **/
4334 void igb_setup_rctl(struct igb_adapter *adapter)
4335 {
4336 	struct e1000_hw *hw = &adapter->hw;
4337 	u32 rctl;
4338 
4339 	rctl = rd32(E1000_RCTL);
4340 
4341 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4342 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4343 
4344 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4345 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4346 
4347 	/* enable stripping of CRC. It's unlikely this will break BMC
4348 	 * redirection as it did with e1000. Newer features require
4349 	 * that the HW strips the CRC.
4350 	 */
4351 	rctl |= E1000_RCTL_SECRC;
4352 
4353 	/* disable store bad packets and clear size bits. */
4354 	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4355 
4356 	/* enable LPE to allow for reception of jumbo frames */
4357 	rctl |= E1000_RCTL_LPE;
4358 
4359 	/* disable queue 0 to prevent tail write w/o re-config */
4360 	wr32(E1000_RXDCTL(0), 0);
4361 
4362 	/* Attention!!!  For SR-IOV PF driver operations you must enable
4363 	 * queue drop for all VF and PF queues to prevent head of line blocking
4364 	 * if an un-trusted VF does not provide descriptors to hardware.
4365 	 */
4366 	if (adapter->vfs_allocated_count) {
4367 		/* set all queue drop enable bits */
4368 		wr32(E1000_QDE, ALL_QUEUES);
4369 	}
4370 
4371 	/* This is useful for sniffing bad packets. */
4372 	if (adapter->netdev->features & NETIF_F_RXALL) {
4373 		/* UPE and MPE will be handled by normal PROMISC logic
4374 		 * in e1000e_set_rx_mode
4375 		 */
4376 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4377 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4378 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4379 
4380 		rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4381 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4382 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4383 		 * and that breaks VLANs.
4384 		 */
4385 	}
4386 
4387 	wr32(E1000_RCTL, rctl);
4388 }
4389 
4390 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4391 				   int vfn)
4392 {
4393 	struct e1000_hw *hw = &adapter->hw;
4394 	u32 vmolr;
4395 
4396 	if (size > MAX_JUMBO_FRAME_SIZE)
4397 		size = MAX_JUMBO_FRAME_SIZE;
4398 
4399 	vmolr = rd32(E1000_VMOLR(vfn));
4400 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
4401 	vmolr |= size | E1000_VMOLR_LPE;
4402 	wr32(E1000_VMOLR(vfn), vmolr);
4403 
4404 	return 0;
4405 }
4406 
4407 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4408 					 int vfn, bool enable)
4409 {
4410 	struct e1000_hw *hw = &adapter->hw;
4411 	u32 val, reg;
4412 
4413 	if (hw->mac.type < e1000_82576)
4414 		return;
4415 
4416 	if (hw->mac.type == e1000_i350)
4417 		reg = E1000_DVMOLR(vfn);
4418 	else
4419 		reg = E1000_VMOLR(vfn);
4420 
4421 	val = rd32(reg);
4422 	if (enable)
4423 		val |= E1000_VMOLR_STRVLAN;
4424 	else
4425 		val &= ~(E1000_VMOLR_STRVLAN);
4426 	wr32(reg, val);
4427 }
4428 
4429 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4430 				 int vfn, bool aupe)
4431 {
4432 	struct e1000_hw *hw = &adapter->hw;
4433 	u32 vmolr;
4434 
4435 	/* This register exists only on 82576 and newer so if we are older then
4436 	 * we should exit and do nothing
4437 	 */
4438 	if (hw->mac.type < e1000_82576)
4439 		return;
4440 
4441 	vmolr = rd32(E1000_VMOLR(vfn));
4442 	if (aupe)
4443 		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4444 	else
4445 		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4446 
4447 	/* clear all bits that might not be set */
4448 	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4449 
4450 	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4451 		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4452 	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
4453 	 * multicast packets
4454 	 */
4455 	if (vfn <= adapter->vfs_allocated_count)
4456 		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4457 
4458 	wr32(E1000_VMOLR(vfn), vmolr);
4459 }
4460 
4461 /**
4462  *  igb_setup_srrctl - configure the split and replication receive control
4463  *                     registers
4464  *  @adapter: Board private structure
4465  *  @ring: receive ring to be configured
4466  **/
4467 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4468 {
4469 	struct e1000_hw *hw = &adapter->hw;
4470 	int reg_idx = ring->reg_idx;
4471 	u32 srrctl = 0;
4472 
4473 	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4474 	if (ring_uses_large_buffer(ring))
4475 		srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4476 	else
4477 		srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4478 	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4479 	if (hw->mac.type >= e1000_82580)
4480 		srrctl |= E1000_SRRCTL_TIMESTAMP;
4481 	/* Only set Drop Enable if VFs allocated, or we are supporting multiple
4482 	 * queues and rx flow control is disabled
4483 	 */
4484 	if (adapter->vfs_allocated_count ||
4485 	    (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4486 	     adapter->num_rx_queues > 1))
4487 		srrctl |= E1000_SRRCTL_DROP_EN;
4488 
4489 	wr32(E1000_SRRCTL(reg_idx), srrctl);
4490 }
4491 
4492 /**
4493  *  igb_configure_rx_ring - Configure a receive ring after Reset
4494  *  @adapter: board private structure
4495  *  @ring: receive ring to be configured
4496  *
4497  *  Configure the Rx unit of the MAC after a reset.
4498  **/
4499 void igb_configure_rx_ring(struct igb_adapter *adapter,
4500 			   struct igb_ring *ring)
4501 {
4502 	struct e1000_hw *hw = &adapter->hw;
4503 	union e1000_adv_rx_desc *rx_desc;
4504 	u64 rdba = ring->dma;
4505 	int reg_idx = ring->reg_idx;
4506 	u32 rxdctl = 0;
4507 
4508 	/* disable the queue */
4509 	wr32(E1000_RXDCTL(reg_idx), 0);
4510 
4511 	/* Set DMA base address registers */
4512 	wr32(E1000_RDBAL(reg_idx),
4513 	     rdba & 0x00000000ffffffffULL);
4514 	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4515 	wr32(E1000_RDLEN(reg_idx),
4516 	     ring->count * sizeof(union e1000_adv_rx_desc));
4517 
4518 	/* initialize head and tail */
4519 	ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4520 	wr32(E1000_RDH(reg_idx), 0);
4521 	writel(0, ring->tail);
4522 
4523 	/* set descriptor configuration */
4524 	igb_setup_srrctl(adapter, ring);
4525 
4526 	/* set filtering for VMDQ pools */
4527 	igb_set_vmolr(adapter, reg_idx & 0x7, true);
4528 
4529 	rxdctl |= IGB_RX_PTHRESH;
4530 	rxdctl |= IGB_RX_HTHRESH << 8;
4531 	rxdctl |= IGB_RX_WTHRESH << 16;
4532 
4533 	/* initialize rx_buffer_info */
4534 	memset(ring->rx_buffer_info, 0,
4535 	       sizeof(struct igb_rx_buffer) * ring->count);
4536 
4537 	/* initialize Rx descriptor 0 */
4538 	rx_desc = IGB_RX_DESC(ring, 0);
4539 	rx_desc->wb.upper.length = 0;
4540 
4541 	/* enable receive descriptor fetching */
4542 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4543 	wr32(E1000_RXDCTL(reg_idx), rxdctl);
4544 }
4545 
4546 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4547 				  struct igb_ring *rx_ring)
4548 {
4549 	/* set build_skb and buffer size flags */
4550 	clear_ring_build_skb_enabled(rx_ring);
4551 	clear_ring_uses_large_buffer(rx_ring);
4552 
4553 	if (adapter->flags & IGB_FLAG_RX_LEGACY)
4554 		return;
4555 
4556 	set_ring_build_skb_enabled(rx_ring);
4557 
4558 #if (PAGE_SIZE < 8192)
4559 	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4560 		return;
4561 
4562 	set_ring_uses_large_buffer(rx_ring);
4563 #endif
4564 }
4565 
4566 /**
4567  *  igb_configure_rx - Configure receive Unit after Reset
4568  *  @adapter: board private structure
4569  *
4570  *  Configure the Rx unit of the MAC after a reset.
4571  **/
4572 static void igb_configure_rx(struct igb_adapter *adapter)
4573 {
4574 	int i;
4575 
4576 	/* set the correct pool for the PF default MAC address in entry 0 */
4577 	igb_set_default_mac_filter(adapter);
4578 
4579 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
4580 	 * the Base and Length of the Rx Descriptor Ring
4581 	 */
4582 	for (i = 0; i < adapter->num_rx_queues; i++) {
4583 		struct igb_ring *rx_ring = adapter->rx_ring[i];
4584 
4585 		igb_set_rx_buffer_len(adapter, rx_ring);
4586 		igb_configure_rx_ring(adapter, rx_ring);
4587 	}
4588 }
4589 
4590 /**
4591  *  igb_free_tx_resources - Free Tx Resources per Queue
4592  *  @tx_ring: Tx descriptor ring for a specific queue
4593  *
4594  *  Free all transmit software resources
4595  **/
4596 void igb_free_tx_resources(struct igb_ring *tx_ring)
4597 {
4598 	igb_clean_tx_ring(tx_ring);
4599 
4600 	vfree(tx_ring->tx_buffer_info);
4601 	tx_ring->tx_buffer_info = NULL;
4602 
4603 	/* if not set, then don't free */
4604 	if (!tx_ring->desc)
4605 		return;
4606 
4607 	dma_free_coherent(tx_ring->dev, tx_ring->size,
4608 			  tx_ring->desc, tx_ring->dma);
4609 
4610 	tx_ring->desc = NULL;
4611 }
4612 
4613 /**
4614  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
4615  *  @adapter: board private structure
4616  *
4617  *  Free all transmit software resources
4618  **/
4619 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4620 {
4621 	int i;
4622 
4623 	for (i = 0; i < adapter->num_tx_queues; i++)
4624 		if (adapter->tx_ring[i])
4625 			igb_free_tx_resources(adapter->tx_ring[i]);
4626 }
4627 
4628 /**
4629  *  igb_clean_tx_ring - Free Tx Buffers
4630  *  @tx_ring: ring to be cleaned
4631  **/
4632 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4633 {
4634 	u16 i = tx_ring->next_to_clean;
4635 	struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4636 
4637 	while (i != tx_ring->next_to_use) {
4638 		union e1000_adv_tx_desc *eop_desc, *tx_desc;
4639 
4640 		/* Free all the Tx ring sk_buffs */
4641 		dev_kfree_skb_any(tx_buffer->skb);
4642 
4643 		/* unmap skb header data */
4644 		dma_unmap_single(tx_ring->dev,
4645 				 dma_unmap_addr(tx_buffer, dma),
4646 				 dma_unmap_len(tx_buffer, len),
4647 				 DMA_TO_DEVICE);
4648 
4649 		/* check for eop_desc to determine the end of the packet */
4650 		eop_desc = tx_buffer->next_to_watch;
4651 		tx_desc = IGB_TX_DESC(tx_ring, i);
4652 
4653 		/* unmap remaining buffers */
4654 		while (tx_desc != eop_desc) {
4655 			tx_buffer++;
4656 			tx_desc++;
4657 			i++;
4658 			if (unlikely(i == tx_ring->count)) {
4659 				i = 0;
4660 				tx_buffer = tx_ring->tx_buffer_info;
4661 				tx_desc = IGB_TX_DESC(tx_ring, 0);
4662 			}
4663 
4664 			/* unmap any remaining paged data */
4665 			if (dma_unmap_len(tx_buffer, len))
4666 				dma_unmap_page(tx_ring->dev,
4667 					       dma_unmap_addr(tx_buffer, dma),
4668 					       dma_unmap_len(tx_buffer, len),
4669 					       DMA_TO_DEVICE);
4670 		}
4671 
4672 		/* move us one more past the eop_desc for start of next pkt */
4673 		tx_buffer++;
4674 		i++;
4675 		if (unlikely(i == tx_ring->count)) {
4676 			i = 0;
4677 			tx_buffer = tx_ring->tx_buffer_info;
4678 		}
4679 	}
4680 
4681 	/* reset BQL for queue */
4682 	netdev_tx_reset_queue(txring_txq(tx_ring));
4683 
4684 	/* reset next_to_use and next_to_clean */
4685 	tx_ring->next_to_use = 0;
4686 	tx_ring->next_to_clean = 0;
4687 }
4688 
4689 /**
4690  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
4691  *  @adapter: board private structure
4692  **/
4693 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4694 {
4695 	int i;
4696 
4697 	for (i = 0; i < adapter->num_tx_queues; i++)
4698 		if (adapter->tx_ring[i])
4699 			igb_clean_tx_ring(adapter->tx_ring[i]);
4700 }
4701 
4702 /**
4703  *  igb_free_rx_resources - Free Rx Resources
4704  *  @rx_ring: ring to clean the resources from
4705  *
4706  *  Free all receive software resources
4707  **/
4708 void igb_free_rx_resources(struct igb_ring *rx_ring)
4709 {
4710 	igb_clean_rx_ring(rx_ring);
4711 
4712 	vfree(rx_ring->rx_buffer_info);
4713 	rx_ring->rx_buffer_info = NULL;
4714 
4715 	/* if not set, then don't free */
4716 	if (!rx_ring->desc)
4717 		return;
4718 
4719 	dma_free_coherent(rx_ring->dev, rx_ring->size,
4720 			  rx_ring->desc, rx_ring->dma);
4721 
4722 	rx_ring->desc = NULL;
4723 }
4724 
4725 /**
4726  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
4727  *  @adapter: board private structure
4728  *
4729  *  Free all receive software resources
4730  **/
4731 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4732 {
4733 	int i;
4734 
4735 	for (i = 0; i < adapter->num_rx_queues; i++)
4736 		if (adapter->rx_ring[i])
4737 			igb_free_rx_resources(adapter->rx_ring[i]);
4738 }
4739 
4740 /**
4741  *  igb_clean_rx_ring - Free Rx Buffers per Queue
4742  *  @rx_ring: ring to free buffers from
4743  **/
4744 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4745 {
4746 	u16 i = rx_ring->next_to_clean;
4747 
4748 	dev_kfree_skb(rx_ring->skb);
4749 	rx_ring->skb = NULL;
4750 
4751 	/* Free all the Rx ring sk_buffs */
4752 	while (i != rx_ring->next_to_alloc) {
4753 		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4754 
4755 		/* Invalidate cache lines that may have been written to by
4756 		 * device so that we avoid corrupting memory.
4757 		 */
4758 		dma_sync_single_range_for_cpu(rx_ring->dev,
4759 					      buffer_info->dma,
4760 					      buffer_info->page_offset,
4761 					      igb_rx_bufsz(rx_ring),
4762 					      DMA_FROM_DEVICE);
4763 
4764 		/* free resources associated with mapping */
4765 		dma_unmap_page_attrs(rx_ring->dev,
4766 				     buffer_info->dma,
4767 				     igb_rx_pg_size(rx_ring),
4768 				     DMA_FROM_DEVICE,
4769 				     IGB_RX_DMA_ATTR);
4770 		__page_frag_cache_drain(buffer_info->page,
4771 					buffer_info->pagecnt_bias);
4772 
4773 		i++;
4774 		if (i == rx_ring->count)
4775 			i = 0;
4776 	}
4777 
4778 	rx_ring->next_to_alloc = 0;
4779 	rx_ring->next_to_clean = 0;
4780 	rx_ring->next_to_use = 0;
4781 }
4782 
4783 /**
4784  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
4785  *  @adapter: board private structure
4786  **/
4787 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4788 {
4789 	int i;
4790 
4791 	for (i = 0; i < adapter->num_rx_queues; i++)
4792 		if (adapter->rx_ring[i])
4793 			igb_clean_rx_ring(adapter->rx_ring[i]);
4794 }
4795 
4796 /**
4797  *  igb_set_mac - Change the Ethernet Address of the NIC
4798  *  @netdev: network interface device structure
4799  *  @p: pointer to an address structure
4800  *
4801  *  Returns 0 on success, negative on failure
4802  **/
4803 static int igb_set_mac(struct net_device *netdev, void *p)
4804 {
4805 	struct igb_adapter *adapter = netdev_priv(netdev);
4806 	struct e1000_hw *hw = &adapter->hw;
4807 	struct sockaddr *addr = p;
4808 
4809 	if (!is_valid_ether_addr(addr->sa_data))
4810 		return -EADDRNOTAVAIL;
4811 
4812 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4813 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4814 
4815 	/* set the correct pool for the new PF MAC address in entry 0 */
4816 	igb_set_default_mac_filter(adapter);
4817 
4818 	return 0;
4819 }
4820 
4821 /**
4822  *  igb_write_mc_addr_list - write multicast addresses to MTA
4823  *  @netdev: network interface device structure
4824  *
4825  *  Writes multicast address list to the MTA hash table.
4826  *  Returns: -ENOMEM on failure
4827  *           0 on no addresses written
4828  *           X on writing X addresses to MTA
4829  **/
4830 static int igb_write_mc_addr_list(struct net_device *netdev)
4831 {
4832 	struct igb_adapter *adapter = netdev_priv(netdev);
4833 	struct e1000_hw *hw = &adapter->hw;
4834 	struct netdev_hw_addr *ha;
4835 	u8  *mta_list;
4836 	int i;
4837 
4838 	if (netdev_mc_empty(netdev)) {
4839 		/* nothing to program, so clear mc list */
4840 		igb_update_mc_addr_list(hw, NULL, 0);
4841 		igb_restore_vf_multicasts(adapter);
4842 		return 0;
4843 	}
4844 
4845 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
4846 	if (!mta_list)
4847 		return -ENOMEM;
4848 
4849 	/* The shared function expects a packed array of only addresses. */
4850 	i = 0;
4851 	netdev_for_each_mc_addr(ha, netdev)
4852 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4853 
4854 	igb_update_mc_addr_list(hw, mta_list, i);
4855 	kfree(mta_list);
4856 
4857 	return netdev_mc_count(netdev);
4858 }
4859 
4860 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4861 {
4862 	struct e1000_hw *hw = &adapter->hw;
4863 	u32 i, pf_id;
4864 
4865 	switch (hw->mac.type) {
4866 	case e1000_i210:
4867 	case e1000_i211:
4868 	case e1000_i350:
4869 		/* VLAN filtering needed for VLAN prio filter */
4870 		if (adapter->netdev->features & NETIF_F_NTUPLE)
4871 			break;
4872 		fallthrough;
4873 	case e1000_82576:
4874 	case e1000_82580:
4875 	case e1000_i354:
4876 		/* VLAN filtering needed for pool filtering */
4877 		if (adapter->vfs_allocated_count)
4878 			break;
4879 		fallthrough;
4880 	default:
4881 		return 1;
4882 	}
4883 
4884 	/* We are already in VLAN promisc, nothing to do */
4885 	if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4886 		return 0;
4887 
4888 	if (!adapter->vfs_allocated_count)
4889 		goto set_vfta;
4890 
4891 	/* Add PF to all active pools */
4892 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4893 
4894 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4895 		u32 vlvf = rd32(E1000_VLVF(i));
4896 
4897 		vlvf |= BIT(pf_id);
4898 		wr32(E1000_VLVF(i), vlvf);
4899 	}
4900 
4901 set_vfta:
4902 	/* Set all bits in the VLAN filter table array */
4903 	for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4904 		hw->mac.ops.write_vfta(hw, i, ~0U);
4905 
4906 	/* Set flag so we don't redo unnecessary work */
4907 	adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4908 
4909 	return 0;
4910 }
4911 
4912 #define VFTA_BLOCK_SIZE 8
4913 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4914 {
4915 	struct e1000_hw *hw = &adapter->hw;
4916 	u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4917 	u32 vid_start = vfta_offset * 32;
4918 	u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4919 	u32 i, vid, word, bits, pf_id;
4920 
4921 	/* guarantee that we don't scrub out management VLAN */
4922 	vid = adapter->mng_vlan_id;
4923 	if (vid >= vid_start && vid < vid_end)
4924 		vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4925 
4926 	if (!adapter->vfs_allocated_count)
4927 		goto set_vfta;
4928 
4929 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4930 
4931 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4932 		u32 vlvf = rd32(E1000_VLVF(i));
4933 
4934 		/* pull VLAN ID from VLVF */
4935 		vid = vlvf & VLAN_VID_MASK;
4936 
4937 		/* only concern ourselves with a certain range */
4938 		if (vid < vid_start || vid >= vid_end)
4939 			continue;
4940 
4941 		if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4942 			/* record VLAN ID in VFTA */
4943 			vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4944 
4945 			/* if PF is part of this then continue */
4946 			if (test_bit(vid, adapter->active_vlans))
4947 				continue;
4948 		}
4949 
4950 		/* remove PF from the pool */
4951 		bits = ~BIT(pf_id);
4952 		bits &= rd32(E1000_VLVF(i));
4953 		wr32(E1000_VLVF(i), bits);
4954 	}
4955 
4956 set_vfta:
4957 	/* extract values from active_vlans and write back to VFTA */
4958 	for (i = VFTA_BLOCK_SIZE; i--;) {
4959 		vid = (vfta_offset + i) * 32;
4960 		word = vid / BITS_PER_LONG;
4961 		bits = vid % BITS_PER_LONG;
4962 
4963 		vfta[i] |= adapter->active_vlans[word] >> bits;
4964 
4965 		hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4966 	}
4967 }
4968 
4969 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4970 {
4971 	u32 i;
4972 
4973 	/* We are not in VLAN promisc, nothing to do */
4974 	if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4975 		return;
4976 
4977 	/* Set flag so we don't redo unnecessary work */
4978 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4979 
4980 	for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4981 		igb_scrub_vfta(adapter, i);
4982 }
4983 
4984 /**
4985  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4986  *  @netdev: network interface device structure
4987  *
4988  *  The set_rx_mode entry point is called whenever the unicast or multicast
4989  *  address lists or the network interface flags are updated.  This routine is
4990  *  responsible for configuring the hardware for proper unicast, multicast,
4991  *  promiscuous mode, and all-multi behavior.
4992  **/
4993 static void igb_set_rx_mode(struct net_device *netdev)
4994 {
4995 	struct igb_adapter *adapter = netdev_priv(netdev);
4996 	struct e1000_hw *hw = &adapter->hw;
4997 	unsigned int vfn = adapter->vfs_allocated_count;
4998 	u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
4999 	int count;
5000 
5001 	/* Check for Promiscuous and All Multicast modes */
5002 	if (netdev->flags & IFF_PROMISC) {
5003 		rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5004 		vmolr |= E1000_VMOLR_MPME;
5005 
5006 		/* enable use of UTA filter to force packets to default pool */
5007 		if (hw->mac.type == e1000_82576)
5008 			vmolr |= E1000_VMOLR_ROPE;
5009 	} else {
5010 		if (netdev->flags & IFF_ALLMULTI) {
5011 			rctl |= E1000_RCTL_MPE;
5012 			vmolr |= E1000_VMOLR_MPME;
5013 		} else {
5014 			/* Write addresses to the MTA, if the attempt fails
5015 			 * then we should just turn on promiscuous mode so
5016 			 * that we can at least receive multicast traffic
5017 			 */
5018 			count = igb_write_mc_addr_list(netdev);
5019 			if (count < 0) {
5020 				rctl |= E1000_RCTL_MPE;
5021 				vmolr |= E1000_VMOLR_MPME;
5022 			} else if (count) {
5023 				vmolr |= E1000_VMOLR_ROMPE;
5024 			}
5025 		}
5026 	}
5027 
5028 	/* Write addresses to available RAR registers, if there is not
5029 	 * sufficient space to store all the addresses then enable
5030 	 * unicast promiscuous mode
5031 	 */
5032 	if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5033 		rctl |= E1000_RCTL_UPE;
5034 		vmolr |= E1000_VMOLR_ROPE;
5035 	}
5036 
5037 	/* enable VLAN filtering by default */
5038 	rctl |= E1000_RCTL_VFE;
5039 
5040 	/* disable VLAN filtering for modes that require it */
5041 	if ((netdev->flags & IFF_PROMISC) ||
5042 	    (netdev->features & NETIF_F_RXALL)) {
5043 		/* if we fail to set all rules then just clear VFE */
5044 		if (igb_vlan_promisc_enable(adapter))
5045 			rctl &= ~E1000_RCTL_VFE;
5046 	} else {
5047 		igb_vlan_promisc_disable(adapter);
5048 	}
5049 
5050 	/* update state of unicast, multicast, and VLAN filtering modes */
5051 	rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5052 				     E1000_RCTL_VFE);
5053 	wr32(E1000_RCTL, rctl);
5054 
5055 #if (PAGE_SIZE < 8192)
5056 	if (!adapter->vfs_allocated_count) {
5057 		if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5058 			rlpml = IGB_MAX_FRAME_BUILD_SKB;
5059 	}
5060 #endif
5061 	wr32(E1000_RLPML, rlpml);
5062 
5063 	/* In order to support SR-IOV and eventually VMDq it is necessary to set
5064 	 * the VMOLR to enable the appropriate modes.  Without this workaround
5065 	 * we will have issues with VLAN tag stripping not being done for frames
5066 	 * that are only arriving because we are the default pool
5067 	 */
5068 	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5069 		return;
5070 
5071 	/* set UTA to appropriate mode */
5072 	igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5073 
5074 	vmolr |= rd32(E1000_VMOLR(vfn)) &
5075 		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5076 
5077 	/* enable Rx jumbo frames, restrict as needed to support build_skb */
5078 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
5079 #if (PAGE_SIZE < 8192)
5080 	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5081 		vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5082 	else
5083 #endif
5084 		vmolr |= MAX_JUMBO_FRAME_SIZE;
5085 	vmolr |= E1000_VMOLR_LPE;
5086 
5087 	wr32(E1000_VMOLR(vfn), vmolr);
5088 
5089 	igb_restore_vf_multicasts(adapter);
5090 }
5091 
5092 static void igb_check_wvbr(struct igb_adapter *adapter)
5093 {
5094 	struct e1000_hw *hw = &adapter->hw;
5095 	u32 wvbr = 0;
5096 
5097 	switch (hw->mac.type) {
5098 	case e1000_82576:
5099 	case e1000_i350:
5100 		wvbr = rd32(E1000_WVBR);
5101 		if (!wvbr)
5102 			return;
5103 		break;
5104 	default:
5105 		break;
5106 	}
5107 
5108 	adapter->wvbr |= wvbr;
5109 }
5110 
5111 #define IGB_STAGGERED_QUEUE_OFFSET 8
5112 
5113 static void igb_spoof_check(struct igb_adapter *adapter)
5114 {
5115 	int j;
5116 
5117 	if (!adapter->wvbr)
5118 		return;
5119 
5120 	for (j = 0; j < adapter->vfs_allocated_count; j++) {
5121 		if (adapter->wvbr & BIT(j) ||
5122 		    adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5123 			dev_warn(&adapter->pdev->dev,
5124 				"Spoof event(s) detected on VF %d\n", j);
5125 			adapter->wvbr &=
5126 				~(BIT(j) |
5127 				  BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5128 		}
5129 	}
5130 }
5131 
5132 /* Need to wait a few seconds after link up to get diagnostic information from
5133  * the phy
5134  */
5135 static void igb_update_phy_info(struct timer_list *t)
5136 {
5137 	struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5138 	igb_get_phy_info(&adapter->hw);
5139 }
5140 
5141 /**
5142  *  igb_has_link - check shared code for link and determine up/down
5143  *  @adapter: pointer to driver private info
5144  **/
5145 bool igb_has_link(struct igb_adapter *adapter)
5146 {
5147 	struct e1000_hw *hw = &adapter->hw;
5148 	bool link_active = false;
5149 
5150 	/* get_link_status is set on LSC (link status) interrupt or
5151 	 * rx sequence error interrupt.  get_link_status will stay
5152 	 * false until the e1000_check_for_link establishes link
5153 	 * for copper adapters ONLY
5154 	 */
5155 	switch (hw->phy.media_type) {
5156 	case e1000_media_type_copper:
5157 		if (!hw->mac.get_link_status)
5158 			return true;
5159 		fallthrough;
5160 	case e1000_media_type_internal_serdes:
5161 		hw->mac.ops.check_for_link(hw);
5162 		link_active = !hw->mac.get_link_status;
5163 		break;
5164 	default:
5165 	case e1000_media_type_unknown:
5166 		break;
5167 	}
5168 
5169 	if (((hw->mac.type == e1000_i210) ||
5170 	     (hw->mac.type == e1000_i211)) &&
5171 	     (hw->phy.id == I210_I_PHY_ID)) {
5172 		if (!netif_carrier_ok(adapter->netdev)) {
5173 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5174 		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5175 			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5176 			adapter->link_check_timeout = jiffies;
5177 		}
5178 	}
5179 
5180 	return link_active;
5181 }
5182 
5183 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5184 {
5185 	bool ret = false;
5186 	u32 ctrl_ext, thstat;
5187 
5188 	/* check for thermal sensor event on i350 copper only */
5189 	if (hw->mac.type == e1000_i350) {
5190 		thstat = rd32(E1000_THSTAT);
5191 		ctrl_ext = rd32(E1000_CTRL_EXT);
5192 
5193 		if ((hw->phy.media_type == e1000_media_type_copper) &&
5194 		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5195 			ret = !!(thstat & event);
5196 	}
5197 
5198 	return ret;
5199 }
5200 
5201 /**
5202  *  igb_check_lvmmc - check for malformed packets received
5203  *  and indicated in LVMMC register
5204  *  @adapter: pointer to adapter
5205  **/
5206 static void igb_check_lvmmc(struct igb_adapter *adapter)
5207 {
5208 	struct e1000_hw *hw = &adapter->hw;
5209 	u32 lvmmc;
5210 
5211 	lvmmc = rd32(E1000_LVMMC);
5212 	if (lvmmc) {
5213 		if (unlikely(net_ratelimit())) {
5214 			netdev_warn(adapter->netdev,
5215 				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5216 				    lvmmc);
5217 		}
5218 	}
5219 }
5220 
5221 /**
5222  *  igb_watchdog - Timer Call-back
5223  *  @data: pointer to adapter cast into an unsigned long
5224  **/
5225 static void igb_watchdog(struct timer_list *t)
5226 {
5227 	struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5228 	/* Do the rest outside of interrupt context */
5229 	schedule_work(&adapter->watchdog_task);
5230 }
5231 
5232 static void igb_watchdog_task(struct work_struct *work)
5233 {
5234 	struct igb_adapter *adapter = container_of(work,
5235 						   struct igb_adapter,
5236 						   watchdog_task);
5237 	struct e1000_hw *hw = &adapter->hw;
5238 	struct e1000_phy_info *phy = &hw->phy;
5239 	struct net_device *netdev = adapter->netdev;
5240 	u32 link;
5241 	int i;
5242 	u32 connsw;
5243 	u16 phy_data, retry_count = 20;
5244 
5245 	link = igb_has_link(adapter);
5246 
5247 	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5248 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5249 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5250 		else
5251 			link = false;
5252 	}
5253 
5254 	/* Force link down if we have fiber to swap to */
5255 	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5256 		if (hw->phy.media_type == e1000_media_type_copper) {
5257 			connsw = rd32(E1000_CONNSW);
5258 			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5259 				link = 0;
5260 		}
5261 	}
5262 	if (link) {
5263 		/* Perform a reset if the media type changed. */
5264 		if (hw->dev_spec._82575.media_changed) {
5265 			hw->dev_spec._82575.media_changed = false;
5266 			adapter->flags |= IGB_FLAG_MEDIA_RESET;
5267 			igb_reset(adapter);
5268 		}
5269 		/* Cancel scheduled suspend requests. */
5270 		pm_runtime_resume(netdev->dev.parent);
5271 
5272 		if (!netif_carrier_ok(netdev)) {
5273 			u32 ctrl;
5274 
5275 			hw->mac.ops.get_speed_and_duplex(hw,
5276 							 &adapter->link_speed,
5277 							 &adapter->link_duplex);
5278 
5279 			ctrl = rd32(E1000_CTRL);
5280 			/* Links status message must follow this format */
5281 			netdev_info(netdev,
5282 			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5283 			       netdev->name,
5284 			       adapter->link_speed,
5285 			       adapter->link_duplex == FULL_DUPLEX ?
5286 			       "Full" : "Half",
5287 			       (ctrl & E1000_CTRL_TFCE) &&
5288 			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5289 			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
5290 			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
5291 
5292 			/* disable EEE if enabled */
5293 			if ((adapter->flags & IGB_FLAG_EEE) &&
5294 				(adapter->link_duplex == HALF_DUPLEX)) {
5295 				dev_info(&adapter->pdev->dev,
5296 				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5297 				adapter->hw.dev_spec._82575.eee_disable = true;
5298 				adapter->flags &= ~IGB_FLAG_EEE;
5299 			}
5300 
5301 			/* check if SmartSpeed worked */
5302 			igb_check_downshift(hw);
5303 			if (phy->speed_downgraded)
5304 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5305 
5306 			/* check for thermal sensor event */
5307 			if (igb_thermal_sensor_event(hw,
5308 			    E1000_THSTAT_LINK_THROTTLE))
5309 				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5310 
5311 			/* adjust timeout factor according to speed/duplex */
5312 			adapter->tx_timeout_factor = 1;
5313 			switch (adapter->link_speed) {
5314 			case SPEED_10:
5315 				adapter->tx_timeout_factor = 14;
5316 				break;
5317 			case SPEED_100:
5318 				/* maybe add some timeout factor ? */
5319 				break;
5320 			}
5321 
5322 			if (adapter->link_speed != SPEED_1000)
5323 				goto no_wait;
5324 
5325 			/* wait for Remote receiver status OK */
5326 retry_read_status:
5327 			if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5328 					      &phy_data)) {
5329 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5330 				    retry_count) {
5331 					msleep(100);
5332 					retry_count--;
5333 					goto retry_read_status;
5334 				} else if (!retry_count) {
5335 					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5336 				}
5337 			} else {
5338 				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5339 			}
5340 no_wait:
5341 			netif_carrier_on(netdev);
5342 
5343 			igb_ping_all_vfs(adapter);
5344 			igb_check_vf_rate_limit(adapter);
5345 
5346 			/* link state has changed, schedule phy info update */
5347 			if (!test_bit(__IGB_DOWN, &adapter->state))
5348 				mod_timer(&adapter->phy_info_timer,
5349 					  round_jiffies(jiffies + 2 * HZ));
5350 		}
5351 	} else {
5352 		if (netif_carrier_ok(netdev)) {
5353 			adapter->link_speed = 0;
5354 			adapter->link_duplex = 0;
5355 
5356 			/* check for thermal sensor event */
5357 			if (igb_thermal_sensor_event(hw,
5358 			    E1000_THSTAT_PWR_DOWN)) {
5359 				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5360 			}
5361 
5362 			/* Links status message must follow this format */
5363 			netdev_info(netdev, "igb: %s NIC Link is Down\n",
5364 			       netdev->name);
5365 			netif_carrier_off(netdev);
5366 
5367 			igb_ping_all_vfs(adapter);
5368 
5369 			/* link state has changed, schedule phy info update */
5370 			if (!test_bit(__IGB_DOWN, &adapter->state))
5371 				mod_timer(&adapter->phy_info_timer,
5372 					  round_jiffies(jiffies + 2 * HZ));
5373 
5374 			/* link is down, time to check for alternate media */
5375 			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5376 				igb_check_swap_media(adapter);
5377 				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5378 					schedule_work(&adapter->reset_task);
5379 					/* return immediately */
5380 					return;
5381 				}
5382 			}
5383 			pm_schedule_suspend(netdev->dev.parent,
5384 					    MSEC_PER_SEC * 5);
5385 
5386 		/* also check for alternate media here */
5387 		} else if (!netif_carrier_ok(netdev) &&
5388 			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5389 			igb_check_swap_media(adapter);
5390 			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5391 				schedule_work(&adapter->reset_task);
5392 				/* return immediately */
5393 				return;
5394 			}
5395 		}
5396 	}
5397 
5398 	spin_lock(&adapter->stats64_lock);
5399 	igb_update_stats(adapter);
5400 	spin_unlock(&adapter->stats64_lock);
5401 
5402 	for (i = 0; i < adapter->num_tx_queues; i++) {
5403 		struct igb_ring *tx_ring = adapter->tx_ring[i];
5404 		if (!netif_carrier_ok(netdev)) {
5405 			/* We've lost link, so the controller stops DMA,
5406 			 * but we've got queued Tx work that's never going
5407 			 * to get done, so reset controller to flush Tx.
5408 			 * (Do the reset outside of interrupt context).
5409 			 */
5410 			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5411 				adapter->tx_timeout_count++;
5412 				schedule_work(&adapter->reset_task);
5413 				/* return immediately since reset is imminent */
5414 				return;
5415 			}
5416 		}
5417 
5418 		/* Force detection of hung controller every watchdog period */
5419 		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5420 	}
5421 
5422 	/* Cause software interrupt to ensure Rx ring is cleaned */
5423 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5424 		u32 eics = 0;
5425 
5426 		for (i = 0; i < adapter->num_q_vectors; i++)
5427 			eics |= adapter->q_vector[i]->eims_value;
5428 		wr32(E1000_EICS, eics);
5429 	} else {
5430 		wr32(E1000_ICS, E1000_ICS_RXDMT0);
5431 	}
5432 
5433 	igb_spoof_check(adapter);
5434 	igb_ptp_rx_hang(adapter);
5435 	igb_ptp_tx_hang(adapter);
5436 
5437 	/* Check LVMMC register on i350/i354 only */
5438 	if ((adapter->hw.mac.type == e1000_i350) ||
5439 	    (adapter->hw.mac.type == e1000_i354))
5440 		igb_check_lvmmc(adapter);
5441 
5442 	/* Reset the timer */
5443 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5444 		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5445 			mod_timer(&adapter->watchdog_timer,
5446 				  round_jiffies(jiffies +  HZ));
5447 		else
5448 			mod_timer(&adapter->watchdog_timer,
5449 				  round_jiffies(jiffies + 2 * HZ));
5450 	}
5451 }
5452 
5453 enum latency_range {
5454 	lowest_latency = 0,
5455 	low_latency = 1,
5456 	bulk_latency = 2,
5457 	latency_invalid = 255
5458 };
5459 
5460 /**
5461  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
5462  *  @q_vector: pointer to q_vector
5463  *
5464  *  Stores a new ITR value based on strictly on packet size.  This
5465  *  algorithm is less sophisticated than that used in igb_update_itr,
5466  *  due to the difficulty of synchronizing statistics across multiple
5467  *  receive rings.  The divisors and thresholds used by this function
5468  *  were determined based on theoretical maximum wire speed and testing
5469  *  data, in order to minimize response time while increasing bulk
5470  *  throughput.
5471  *  This functionality is controlled by ethtool's coalescing settings.
5472  *  NOTE:  This function is called only when operating in a multiqueue
5473  *         receive environment.
5474  **/
5475 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5476 {
5477 	int new_val = q_vector->itr_val;
5478 	int avg_wire_size = 0;
5479 	struct igb_adapter *adapter = q_vector->adapter;
5480 	unsigned int packets;
5481 
5482 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
5483 	 * ints/sec - ITR timer value of 120 ticks.
5484 	 */
5485 	if (adapter->link_speed != SPEED_1000) {
5486 		new_val = IGB_4K_ITR;
5487 		goto set_itr_val;
5488 	}
5489 
5490 	packets = q_vector->rx.total_packets;
5491 	if (packets)
5492 		avg_wire_size = q_vector->rx.total_bytes / packets;
5493 
5494 	packets = q_vector->tx.total_packets;
5495 	if (packets)
5496 		avg_wire_size = max_t(u32, avg_wire_size,
5497 				      q_vector->tx.total_bytes / packets);
5498 
5499 	/* if avg_wire_size isn't set no work was done */
5500 	if (!avg_wire_size)
5501 		goto clear_counts;
5502 
5503 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
5504 	avg_wire_size += 24;
5505 
5506 	/* Don't starve jumbo frames */
5507 	avg_wire_size = min(avg_wire_size, 3000);
5508 
5509 	/* Give a little boost to mid-size frames */
5510 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5511 		new_val = avg_wire_size / 3;
5512 	else
5513 		new_val = avg_wire_size / 2;
5514 
5515 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5516 	if (new_val < IGB_20K_ITR &&
5517 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5518 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5519 		new_val = IGB_20K_ITR;
5520 
5521 set_itr_val:
5522 	if (new_val != q_vector->itr_val) {
5523 		q_vector->itr_val = new_val;
5524 		q_vector->set_itr = 1;
5525 	}
5526 clear_counts:
5527 	q_vector->rx.total_bytes = 0;
5528 	q_vector->rx.total_packets = 0;
5529 	q_vector->tx.total_bytes = 0;
5530 	q_vector->tx.total_packets = 0;
5531 }
5532 
5533 /**
5534  *  igb_update_itr - update the dynamic ITR value based on statistics
5535  *  @q_vector: pointer to q_vector
5536  *  @ring_container: ring info to update the itr for
5537  *
5538  *  Stores a new ITR value based on packets and byte
5539  *  counts during the last interrupt.  The advantage of per interrupt
5540  *  computation is faster updates and more accurate ITR for the current
5541  *  traffic pattern.  Constants in this function were computed
5542  *  based on theoretical maximum wire speed and thresholds were set based
5543  *  on testing data as well as attempting to minimize response time
5544  *  while increasing bulk throughput.
5545  *  This functionality is controlled by ethtool's coalescing settings.
5546  *  NOTE:  These calculations are only valid when operating in a single-
5547  *         queue environment.
5548  **/
5549 static void igb_update_itr(struct igb_q_vector *q_vector,
5550 			   struct igb_ring_container *ring_container)
5551 {
5552 	unsigned int packets = ring_container->total_packets;
5553 	unsigned int bytes = ring_container->total_bytes;
5554 	u8 itrval = ring_container->itr;
5555 
5556 	/* no packets, exit with status unchanged */
5557 	if (packets == 0)
5558 		return;
5559 
5560 	switch (itrval) {
5561 	case lowest_latency:
5562 		/* handle TSO and jumbo frames */
5563 		if (bytes/packets > 8000)
5564 			itrval = bulk_latency;
5565 		else if ((packets < 5) && (bytes > 512))
5566 			itrval = low_latency;
5567 		break;
5568 	case low_latency:  /* 50 usec aka 20000 ints/s */
5569 		if (bytes > 10000) {
5570 			/* this if handles the TSO accounting */
5571 			if (bytes/packets > 8000)
5572 				itrval = bulk_latency;
5573 			else if ((packets < 10) || ((bytes/packets) > 1200))
5574 				itrval = bulk_latency;
5575 			else if ((packets > 35))
5576 				itrval = lowest_latency;
5577 		} else if (bytes/packets > 2000) {
5578 			itrval = bulk_latency;
5579 		} else if (packets <= 2 && bytes < 512) {
5580 			itrval = lowest_latency;
5581 		}
5582 		break;
5583 	case bulk_latency: /* 250 usec aka 4000 ints/s */
5584 		if (bytes > 25000) {
5585 			if (packets > 35)
5586 				itrval = low_latency;
5587 		} else if (bytes < 1500) {
5588 			itrval = low_latency;
5589 		}
5590 		break;
5591 	}
5592 
5593 	/* clear work counters since we have the values we need */
5594 	ring_container->total_bytes = 0;
5595 	ring_container->total_packets = 0;
5596 
5597 	/* write updated itr to ring container */
5598 	ring_container->itr = itrval;
5599 }
5600 
5601 static void igb_set_itr(struct igb_q_vector *q_vector)
5602 {
5603 	struct igb_adapter *adapter = q_vector->adapter;
5604 	u32 new_itr = q_vector->itr_val;
5605 	u8 current_itr = 0;
5606 
5607 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5608 	if (adapter->link_speed != SPEED_1000) {
5609 		current_itr = 0;
5610 		new_itr = IGB_4K_ITR;
5611 		goto set_itr_now;
5612 	}
5613 
5614 	igb_update_itr(q_vector, &q_vector->tx);
5615 	igb_update_itr(q_vector, &q_vector->rx);
5616 
5617 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5618 
5619 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5620 	if (current_itr == lowest_latency &&
5621 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5622 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5623 		current_itr = low_latency;
5624 
5625 	switch (current_itr) {
5626 	/* counts and packets in update_itr are dependent on these numbers */
5627 	case lowest_latency:
5628 		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5629 		break;
5630 	case low_latency:
5631 		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5632 		break;
5633 	case bulk_latency:
5634 		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5635 		break;
5636 	default:
5637 		break;
5638 	}
5639 
5640 set_itr_now:
5641 	if (new_itr != q_vector->itr_val) {
5642 		/* this attempts to bias the interrupt rate towards Bulk
5643 		 * by adding intermediate steps when interrupt rate is
5644 		 * increasing
5645 		 */
5646 		new_itr = new_itr > q_vector->itr_val ?
5647 			  max((new_itr * q_vector->itr_val) /
5648 			  (new_itr + (q_vector->itr_val >> 2)),
5649 			  new_itr) : new_itr;
5650 		/* Don't write the value here; it resets the adapter's
5651 		 * internal timer, and causes us to delay far longer than
5652 		 * we should between interrupts.  Instead, we write the ITR
5653 		 * value at the beginning of the next interrupt so the timing
5654 		 * ends up being correct.
5655 		 */
5656 		q_vector->itr_val = new_itr;
5657 		q_vector->set_itr = 1;
5658 	}
5659 }
5660 
5661 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5662 			    struct igb_tx_buffer *first,
5663 			    u32 vlan_macip_lens, u32 type_tucmd,
5664 			    u32 mss_l4len_idx)
5665 {
5666 	struct e1000_adv_tx_context_desc *context_desc;
5667 	u16 i = tx_ring->next_to_use;
5668 	struct timespec64 ts;
5669 
5670 	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5671 
5672 	i++;
5673 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5674 
5675 	/* set bits to identify this as an advanced context descriptor */
5676 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5677 
5678 	/* For 82575, context index must be unique per ring. */
5679 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5680 		mss_l4len_idx |= tx_ring->reg_idx << 4;
5681 
5682 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
5683 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
5684 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
5685 
5686 	/* We assume there is always a valid tx time available. Invalid times
5687 	 * should have been handled by the upper layers.
5688 	 */
5689 	if (tx_ring->launchtime_enable) {
5690 		ts = ktime_to_timespec64(first->skb->tstamp);
5691 		first->skb->tstamp = ktime_set(0, 0);
5692 		context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5693 	} else {
5694 		context_desc->seqnum_seed = 0;
5695 	}
5696 }
5697 
5698 static int igb_tso(struct igb_ring *tx_ring,
5699 		   struct igb_tx_buffer *first,
5700 		   u8 *hdr_len)
5701 {
5702 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5703 	struct sk_buff *skb = first->skb;
5704 	union {
5705 		struct iphdr *v4;
5706 		struct ipv6hdr *v6;
5707 		unsigned char *hdr;
5708 	} ip;
5709 	union {
5710 		struct tcphdr *tcp;
5711 		struct udphdr *udp;
5712 		unsigned char *hdr;
5713 	} l4;
5714 	u32 paylen, l4_offset;
5715 	int err;
5716 
5717 	if (skb->ip_summed != CHECKSUM_PARTIAL)
5718 		return 0;
5719 
5720 	if (!skb_is_gso(skb))
5721 		return 0;
5722 
5723 	err = skb_cow_head(skb, 0);
5724 	if (err < 0)
5725 		return err;
5726 
5727 	ip.hdr = skb_network_header(skb);
5728 	l4.hdr = skb_checksum_start(skb);
5729 
5730 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5731 	type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
5732 		      E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
5733 
5734 	/* initialize outer IP header fields */
5735 	if (ip.v4->version == 4) {
5736 		unsigned char *csum_start = skb_checksum_start(skb);
5737 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5738 
5739 		/* IP header will have to cancel out any data that
5740 		 * is not a part of the outer IP header
5741 		 */
5742 		ip.v4->check = csum_fold(csum_partial(trans_start,
5743 						      csum_start - trans_start,
5744 						      0));
5745 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5746 
5747 		ip.v4->tot_len = 0;
5748 		first->tx_flags |= IGB_TX_FLAGS_TSO |
5749 				   IGB_TX_FLAGS_CSUM |
5750 				   IGB_TX_FLAGS_IPV4;
5751 	} else {
5752 		ip.v6->payload_len = 0;
5753 		first->tx_flags |= IGB_TX_FLAGS_TSO |
5754 				   IGB_TX_FLAGS_CSUM;
5755 	}
5756 
5757 	/* determine offset of inner transport header */
5758 	l4_offset = l4.hdr - skb->data;
5759 
5760 	/* remove payload length from inner checksum */
5761 	paylen = skb->len - l4_offset;
5762 	if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
5763 		/* compute length of segmentation header */
5764 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
5765 		csum_replace_by_diff(&l4.tcp->check,
5766 			(__force __wsum)htonl(paylen));
5767 	} else {
5768 		/* compute length of segmentation header */
5769 		*hdr_len = sizeof(*l4.udp) + l4_offset;
5770 		csum_replace_by_diff(&l4.udp->check,
5771 				     (__force __wsum)htonl(paylen));
5772 	}
5773 
5774 	/* update gso size and bytecount with header size */
5775 	first->gso_segs = skb_shinfo(skb)->gso_segs;
5776 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
5777 
5778 	/* MSS L4LEN IDX */
5779 	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5780 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5781 
5782 	/* VLAN MACLEN IPLEN */
5783 	vlan_macip_lens = l4.hdr - ip.hdr;
5784 	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5785 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5786 
5787 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
5788 			type_tucmd, mss_l4len_idx);
5789 
5790 	return 1;
5791 }
5792 
5793 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
5794 {
5795 	unsigned int offset = 0;
5796 
5797 	ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
5798 
5799 	return offset == skb_checksum_start_offset(skb);
5800 }
5801 
5802 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5803 {
5804 	struct sk_buff *skb = first->skb;
5805 	u32 vlan_macip_lens = 0;
5806 	u32 type_tucmd = 0;
5807 
5808 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
5809 csum_failed:
5810 		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
5811 		    !tx_ring->launchtime_enable)
5812 			return;
5813 		goto no_csum;
5814 	}
5815 
5816 	switch (skb->csum_offset) {
5817 	case offsetof(struct tcphdr, check):
5818 		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5819 		fallthrough;
5820 	case offsetof(struct udphdr, check):
5821 		break;
5822 	case offsetof(struct sctphdr, checksum):
5823 		/* validate that this is actually an SCTP request */
5824 		if (((first->protocol == htons(ETH_P_IP)) &&
5825 		     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
5826 		    ((first->protocol == htons(ETH_P_IPV6)) &&
5827 		     igb_ipv6_csum_is_sctp(skb))) {
5828 			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
5829 			break;
5830 		}
5831 		fallthrough;
5832 	default:
5833 		skb_checksum_help(skb);
5834 		goto csum_failed;
5835 	}
5836 
5837 	/* update TX checksum flag */
5838 	first->tx_flags |= IGB_TX_FLAGS_CSUM;
5839 	vlan_macip_lens = skb_checksum_start_offset(skb) -
5840 			  skb_network_offset(skb);
5841 no_csum:
5842 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5843 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5844 
5845 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
5846 }
5847 
5848 #define IGB_SET_FLAG(_input, _flag, _result) \
5849 	((_flag <= _result) ? \
5850 	 ((u32)(_input & _flag) * (_result / _flag)) : \
5851 	 ((u32)(_input & _flag) / (_flag / _result)))
5852 
5853 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5854 {
5855 	/* set type for advanced descriptor with frame checksum insertion */
5856 	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5857 		       E1000_ADVTXD_DCMD_DEXT |
5858 		       E1000_ADVTXD_DCMD_IFCS;
5859 
5860 	/* set HW vlan bit if vlan is present */
5861 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5862 				 (E1000_ADVTXD_DCMD_VLE));
5863 
5864 	/* set segmentation bits for TSO */
5865 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5866 				 (E1000_ADVTXD_DCMD_TSE));
5867 
5868 	/* set timestamp bit if present */
5869 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5870 				 (E1000_ADVTXD_MAC_TSTAMP));
5871 
5872 	/* insert frame checksum */
5873 	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5874 
5875 	return cmd_type;
5876 }
5877 
5878 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5879 				 union e1000_adv_tx_desc *tx_desc,
5880 				 u32 tx_flags, unsigned int paylen)
5881 {
5882 	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5883 
5884 	/* 82575 requires a unique index per ring */
5885 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5886 		olinfo_status |= tx_ring->reg_idx << 4;
5887 
5888 	/* insert L4 checksum */
5889 	olinfo_status |= IGB_SET_FLAG(tx_flags,
5890 				      IGB_TX_FLAGS_CSUM,
5891 				      (E1000_TXD_POPTS_TXSM << 8));
5892 
5893 	/* insert IPv4 checksum */
5894 	olinfo_status |= IGB_SET_FLAG(tx_flags,
5895 				      IGB_TX_FLAGS_IPV4,
5896 				      (E1000_TXD_POPTS_IXSM << 8));
5897 
5898 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5899 }
5900 
5901 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5902 {
5903 	struct net_device *netdev = tx_ring->netdev;
5904 
5905 	netif_stop_subqueue(netdev, tx_ring->queue_index);
5906 
5907 	/* Herbert's original patch had:
5908 	 *  smp_mb__after_netif_stop_queue();
5909 	 * but since that doesn't exist yet, just open code it.
5910 	 */
5911 	smp_mb();
5912 
5913 	/* We need to check again in a case another CPU has just
5914 	 * made room available.
5915 	 */
5916 	if (igb_desc_unused(tx_ring) < size)
5917 		return -EBUSY;
5918 
5919 	/* A reprieve! */
5920 	netif_wake_subqueue(netdev, tx_ring->queue_index);
5921 
5922 	u64_stats_update_begin(&tx_ring->tx_syncp2);
5923 	tx_ring->tx_stats.restart_queue2++;
5924 	u64_stats_update_end(&tx_ring->tx_syncp2);
5925 
5926 	return 0;
5927 }
5928 
5929 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5930 {
5931 	if (igb_desc_unused(tx_ring) >= size)
5932 		return 0;
5933 	return __igb_maybe_stop_tx(tx_ring, size);
5934 }
5935 
5936 static int igb_tx_map(struct igb_ring *tx_ring,
5937 		      struct igb_tx_buffer *first,
5938 		      const u8 hdr_len)
5939 {
5940 	struct sk_buff *skb = first->skb;
5941 	struct igb_tx_buffer *tx_buffer;
5942 	union e1000_adv_tx_desc *tx_desc;
5943 	skb_frag_t *frag;
5944 	dma_addr_t dma;
5945 	unsigned int data_len, size;
5946 	u32 tx_flags = first->tx_flags;
5947 	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5948 	u16 i = tx_ring->next_to_use;
5949 
5950 	tx_desc = IGB_TX_DESC(tx_ring, i);
5951 
5952 	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5953 
5954 	size = skb_headlen(skb);
5955 	data_len = skb->data_len;
5956 
5957 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5958 
5959 	tx_buffer = first;
5960 
5961 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5962 		if (dma_mapping_error(tx_ring->dev, dma))
5963 			goto dma_error;
5964 
5965 		/* record length, and DMA address */
5966 		dma_unmap_len_set(tx_buffer, len, size);
5967 		dma_unmap_addr_set(tx_buffer, dma, dma);
5968 
5969 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
5970 
5971 		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5972 			tx_desc->read.cmd_type_len =
5973 				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5974 
5975 			i++;
5976 			tx_desc++;
5977 			if (i == tx_ring->count) {
5978 				tx_desc = IGB_TX_DESC(tx_ring, 0);
5979 				i = 0;
5980 			}
5981 			tx_desc->read.olinfo_status = 0;
5982 
5983 			dma += IGB_MAX_DATA_PER_TXD;
5984 			size -= IGB_MAX_DATA_PER_TXD;
5985 
5986 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
5987 		}
5988 
5989 		if (likely(!data_len))
5990 			break;
5991 
5992 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5993 
5994 		i++;
5995 		tx_desc++;
5996 		if (i == tx_ring->count) {
5997 			tx_desc = IGB_TX_DESC(tx_ring, 0);
5998 			i = 0;
5999 		}
6000 		tx_desc->read.olinfo_status = 0;
6001 
6002 		size = skb_frag_size(frag);
6003 		data_len -= size;
6004 
6005 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6006 				       size, DMA_TO_DEVICE);
6007 
6008 		tx_buffer = &tx_ring->tx_buffer_info[i];
6009 	}
6010 
6011 	/* write last descriptor with RS and EOP bits */
6012 	cmd_type |= size | IGB_TXD_DCMD;
6013 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6014 
6015 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6016 
6017 	/* set the timestamp */
6018 	first->time_stamp = jiffies;
6019 
6020 	skb_tx_timestamp(skb);
6021 
6022 	/* Force memory writes to complete before letting h/w know there
6023 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
6024 	 * memory model archs, such as IA-64).
6025 	 *
6026 	 * We also need this memory barrier to make certain all of the
6027 	 * status bits have been updated before next_to_watch is written.
6028 	 */
6029 	dma_wmb();
6030 
6031 	/* set next_to_watch value indicating a packet is present */
6032 	first->next_to_watch = tx_desc;
6033 
6034 	i++;
6035 	if (i == tx_ring->count)
6036 		i = 0;
6037 
6038 	tx_ring->next_to_use = i;
6039 
6040 	/* Make sure there is space in the ring for the next send. */
6041 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6042 
6043 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6044 		writel(i, tx_ring->tail);
6045 	}
6046 	return 0;
6047 
6048 dma_error:
6049 	dev_err(tx_ring->dev, "TX DMA map failed\n");
6050 	tx_buffer = &tx_ring->tx_buffer_info[i];
6051 
6052 	/* clear dma mappings for failed tx_buffer_info map */
6053 	while (tx_buffer != first) {
6054 		if (dma_unmap_len(tx_buffer, len))
6055 			dma_unmap_page(tx_ring->dev,
6056 				       dma_unmap_addr(tx_buffer, dma),
6057 				       dma_unmap_len(tx_buffer, len),
6058 				       DMA_TO_DEVICE);
6059 		dma_unmap_len_set(tx_buffer, len, 0);
6060 
6061 		if (i-- == 0)
6062 			i += tx_ring->count;
6063 		tx_buffer = &tx_ring->tx_buffer_info[i];
6064 	}
6065 
6066 	if (dma_unmap_len(tx_buffer, len))
6067 		dma_unmap_single(tx_ring->dev,
6068 				 dma_unmap_addr(tx_buffer, dma),
6069 				 dma_unmap_len(tx_buffer, len),
6070 				 DMA_TO_DEVICE);
6071 	dma_unmap_len_set(tx_buffer, len, 0);
6072 
6073 	dev_kfree_skb_any(tx_buffer->skb);
6074 	tx_buffer->skb = NULL;
6075 
6076 	tx_ring->next_to_use = i;
6077 
6078 	return -1;
6079 }
6080 
6081 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6082 				struct igb_ring *tx_ring)
6083 {
6084 	struct igb_tx_buffer *first;
6085 	int tso;
6086 	u32 tx_flags = 0;
6087 	unsigned short f;
6088 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
6089 	__be16 protocol = vlan_get_protocol(skb);
6090 	u8 hdr_len = 0;
6091 
6092 	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6093 	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6094 	 *       + 2 desc gap to keep tail from touching head,
6095 	 *       + 1 desc for context descriptor,
6096 	 * otherwise try next time
6097 	 */
6098 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6099 		count += TXD_USE_COUNT(skb_frag_size(
6100 						&skb_shinfo(skb)->frags[f]));
6101 
6102 	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6103 		/* this is a hard error */
6104 		return NETDEV_TX_BUSY;
6105 	}
6106 
6107 	/* record the location of the first descriptor for this packet */
6108 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6109 	first->skb = skb;
6110 	first->bytecount = skb->len;
6111 	first->gso_segs = 1;
6112 
6113 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6114 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6115 
6116 		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6117 		    !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6118 					   &adapter->state)) {
6119 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6120 			tx_flags |= IGB_TX_FLAGS_TSTAMP;
6121 
6122 			adapter->ptp_tx_skb = skb_get(skb);
6123 			adapter->ptp_tx_start = jiffies;
6124 			if (adapter->hw.mac.type == e1000_82576)
6125 				schedule_work(&adapter->ptp_tx_work);
6126 		} else {
6127 			adapter->tx_hwtstamp_skipped++;
6128 		}
6129 	}
6130 
6131 	if (skb_vlan_tag_present(skb)) {
6132 		tx_flags |= IGB_TX_FLAGS_VLAN;
6133 		tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6134 	}
6135 
6136 	/* record initial flags and protocol */
6137 	first->tx_flags = tx_flags;
6138 	first->protocol = protocol;
6139 
6140 	tso = igb_tso(tx_ring, first, &hdr_len);
6141 	if (tso < 0)
6142 		goto out_drop;
6143 	else if (!tso)
6144 		igb_tx_csum(tx_ring, first);
6145 
6146 	if (igb_tx_map(tx_ring, first, hdr_len))
6147 		goto cleanup_tx_tstamp;
6148 
6149 	return NETDEV_TX_OK;
6150 
6151 out_drop:
6152 	dev_kfree_skb_any(first->skb);
6153 	first->skb = NULL;
6154 cleanup_tx_tstamp:
6155 	if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6156 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6157 
6158 		dev_kfree_skb_any(adapter->ptp_tx_skb);
6159 		adapter->ptp_tx_skb = NULL;
6160 		if (adapter->hw.mac.type == e1000_82576)
6161 			cancel_work_sync(&adapter->ptp_tx_work);
6162 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6163 	}
6164 
6165 	return NETDEV_TX_OK;
6166 }
6167 
6168 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6169 						    struct sk_buff *skb)
6170 {
6171 	unsigned int r_idx = skb->queue_mapping;
6172 
6173 	if (r_idx >= adapter->num_tx_queues)
6174 		r_idx = r_idx % adapter->num_tx_queues;
6175 
6176 	return adapter->tx_ring[r_idx];
6177 }
6178 
6179 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6180 				  struct net_device *netdev)
6181 {
6182 	struct igb_adapter *adapter = netdev_priv(netdev);
6183 
6184 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6185 	 * in order to meet this minimum size requirement.
6186 	 */
6187 	if (skb_put_padto(skb, 17))
6188 		return NETDEV_TX_OK;
6189 
6190 	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6191 }
6192 
6193 /**
6194  *  igb_tx_timeout - Respond to a Tx Hang
6195  *  @netdev: network interface device structure
6196  **/
6197 static void igb_tx_timeout(struct net_device *netdev, unsigned int txqueue)
6198 {
6199 	struct igb_adapter *adapter = netdev_priv(netdev);
6200 	struct e1000_hw *hw = &adapter->hw;
6201 
6202 	/* Do the reset outside of interrupt context */
6203 	adapter->tx_timeout_count++;
6204 
6205 	if (hw->mac.type >= e1000_82580)
6206 		hw->dev_spec._82575.global_device_reset = true;
6207 
6208 	schedule_work(&adapter->reset_task);
6209 	wr32(E1000_EICS,
6210 	     (adapter->eims_enable_mask & ~adapter->eims_other));
6211 }
6212 
6213 static void igb_reset_task(struct work_struct *work)
6214 {
6215 	struct igb_adapter *adapter;
6216 	adapter = container_of(work, struct igb_adapter, reset_task);
6217 
6218 	rtnl_lock();
6219 	/* If we're already down or resetting, just bail */
6220 	if (test_bit(__IGB_DOWN, &adapter->state) ||
6221 	    test_bit(__IGB_RESETTING, &adapter->state)) {
6222 		rtnl_unlock();
6223 		return;
6224 	}
6225 
6226 	igb_dump(adapter);
6227 	netdev_err(adapter->netdev, "Reset adapter\n");
6228 	igb_reinit_locked(adapter);
6229 	rtnl_unlock();
6230 }
6231 
6232 /**
6233  *  igb_get_stats64 - Get System Network Statistics
6234  *  @netdev: network interface device structure
6235  *  @stats: rtnl_link_stats64 pointer
6236  **/
6237 static void igb_get_stats64(struct net_device *netdev,
6238 			    struct rtnl_link_stats64 *stats)
6239 {
6240 	struct igb_adapter *adapter = netdev_priv(netdev);
6241 
6242 	spin_lock(&adapter->stats64_lock);
6243 	igb_update_stats(adapter);
6244 	memcpy(stats, &adapter->stats64, sizeof(*stats));
6245 	spin_unlock(&adapter->stats64_lock);
6246 }
6247 
6248 /**
6249  *  igb_change_mtu - Change the Maximum Transfer Unit
6250  *  @netdev: network interface device structure
6251  *  @new_mtu: new value for maximum frame size
6252  *
6253  *  Returns 0 on success, negative on failure
6254  **/
6255 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6256 {
6257 	struct igb_adapter *adapter = netdev_priv(netdev);
6258 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
6259 
6260 	/* adjust max frame to be at least the size of a standard frame */
6261 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6262 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6263 
6264 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6265 		usleep_range(1000, 2000);
6266 
6267 	/* igb_down has a dependency on max_frame_size */
6268 	adapter->max_frame_size = max_frame;
6269 
6270 	if (netif_running(netdev))
6271 		igb_down(adapter);
6272 
6273 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
6274 		   netdev->mtu, new_mtu);
6275 	netdev->mtu = new_mtu;
6276 
6277 	if (netif_running(netdev))
6278 		igb_up(adapter);
6279 	else
6280 		igb_reset(adapter);
6281 
6282 	clear_bit(__IGB_RESETTING, &adapter->state);
6283 
6284 	return 0;
6285 }
6286 
6287 /**
6288  *  igb_update_stats - Update the board statistics counters
6289  *  @adapter: board private structure
6290  **/
6291 void igb_update_stats(struct igb_adapter *adapter)
6292 {
6293 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6294 	struct e1000_hw *hw = &adapter->hw;
6295 	struct pci_dev *pdev = adapter->pdev;
6296 	u32 reg, mpc;
6297 	int i;
6298 	u64 bytes, packets;
6299 	unsigned int start;
6300 	u64 _bytes, _packets;
6301 
6302 	/* Prevent stats update while adapter is being reset, or if the pci
6303 	 * connection is down.
6304 	 */
6305 	if (adapter->link_speed == 0)
6306 		return;
6307 	if (pci_channel_offline(pdev))
6308 		return;
6309 
6310 	bytes = 0;
6311 	packets = 0;
6312 
6313 	rcu_read_lock();
6314 	for (i = 0; i < adapter->num_rx_queues; i++) {
6315 		struct igb_ring *ring = adapter->rx_ring[i];
6316 		u32 rqdpc = rd32(E1000_RQDPC(i));
6317 		if (hw->mac.type >= e1000_i210)
6318 			wr32(E1000_RQDPC(i), 0);
6319 
6320 		if (rqdpc) {
6321 			ring->rx_stats.drops += rqdpc;
6322 			net_stats->rx_fifo_errors += rqdpc;
6323 		}
6324 
6325 		do {
6326 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
6327 			_bytes = ring->rx_stats.bytes;
6328 			_packets = ring->rx_stats.packets;
6329 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
6330 		bytes += _bytes;
6331 		packets += _packets;
6332 	}
6333 
6334 	net_stats->rx_bytes = bytes;
6335 	net_stats->rx_packets = packets;
6336 
6337 	bytes = 0;
6338 	packets = 0;
6339 	for (i = 0; i < adapter->num_tx_queues; i++) {
6340 		struct igb_ring *ring = adapter->tx_ring[i];
6341 		do {
6342 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
6343 			_bytes = ring->tx_stats.bytes;
6344 			_packets = ring->tx_stats.packets;
6345 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
6346 		bytes += _bytes;
6347 		packets += _packets;
6348 	}
6349 	net_stats->tx_bytes = bytes;
6350 	net_stats->tx_packets = packets;
6351 	rcu_read_unlock();
6352 
6353 	/* read stats registers */
6354 	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6355 	adapter->stats.gprc += rd32(E1000_GPRC);
6356 	adapter->stats.gorc += rd32(E1000_GORCL);
6357 	rd32(E1000_GORCH); /* clear GORCL */
6358 	adapter->stats.bprc += rd32(E1000_BPRC);
6359 	adapter->stats.mprc += rd32(E1000_MPRC);
6360 	adapter->stats.roc += rd32(E1000_ROC);
6361 
6362 	adapter->stats.prc64 += rd32(E1000_PRC64);
6363 	adapter->stats.prc127 += rd32(E1000_PRC127);
6364 	adapter->stats.prc255 += rd32(E1000_PRC255);
6365 	adapter->stats.prc511 += rd32(E1000_PRC511);
6366 	adapter->stats.prc1023 += rd32(E1000_PRC1023);
6367 	adapter->stats.prc1522 += rd32(E1000_PRC1522);
6368 	adapter->stats.symerrs += rd32(E1000_SYMERRS);
6369 	adapter->stats.sec += rd32(E1000_SEC);
6370 
6371 	mpc = rd32(E1000_MPC);
6372 	adapter->stats.mpc += mpc;
6373 	net_stats->rx_fifo_errors += mpc;
6374 	adapter->stats.scc += rd32(E1000_SCC);
6375 	adapter->stats.ecol += rd32(E1000_ECOL);
6376 	adapter->stats.mcc += rd32(E1000_MCC);
6377 	adapter->stats.latecol += rd32(E1000_LATECOL);
6378 	adapter->stats.dc += rd32(E1000_DC);
6379 	adapter->stats.rlec += rd32(E1000_RLEC);
6380 	adapter->stats.xonrxc += rd32(E1000_XONRXC);
6381 	adapter->stats.xontxc += rd32(E1000_XONTXC);
6382 	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6383 	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6384 	adapter->stats.fcruc += rd32(E1000_FCRUC);
6385 	adapter->stats.gptc += rd32(E1000_GPTC);
6386 	adapter->stats.gotc += rd32(E1000_GOTCL);
6387 	rd32(E1000_GOTCH); /* clear GOTCL */
6388 	adapter->stats.rnbc += rd32(E1000_RNBC);
6389 	adapter->stats.ruc += rd32(E1000_RUC);
6390 	adapter->stats.rfc += rd32(E1000_RFC);
6391 	adapter->stats.rjc += rd32(E1000_RJC);
6392 	adapter->stats.tor += rd32(E1000_TORH);
6393 	adapter->stats.tot += rd32(E1000_TOTH);
6394 	adapter->stats.tpr += rd32(E1000_TPR);
6395 
6396 	adapter->stats.ptc64 += rd32(E1000_PTC64);
6397 	adapter->stats.ptc127 += rd32(E1000_PTC127);
6398 	adapter->stats.ptc255 += rd32(E1000_PTC255);
6399 	adapter->stats.ptc511 += rd32(E1000_PTC511);
6400 	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6401 	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6402 
6403 	adapter->stats.mptc += rd32(E1000_MPTC);
6404 	adapter->stats.bptc += rd32(E1000_BPTC);
6405 
6406 	adapter->stats.tpt += rd32(E1000_TPT);
6407 	adapter->stats.colc += rd32(E1000_COLC);
6408 
6409 	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6410 	/* read internal phy specific stats */
6411 	reg = rd32(E1000_CTRL_EXT);
6412 	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6413 		adapter->stats.rxerrc += rd32(E1000_RXERRC);
6414 
6415 		/* this stat has invalid values on i210/i211 */
6416 		if ((hw->mac.type != e1000_i210) &&
6417 		    (hw->mac.type != e1000_i211))
6418 			adapter->stats.tncrs += rd32(E1000_TNCRS);
6419 	}
6420 
6421 	adapter->stats.tsctc += rd32(E1000_TSCTC);
6422 	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6423 
6424 	adapter->stats.iac += rd32(E1000_IAC);
6425 	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6426 	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6427 	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6428 	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6429 	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6430 	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6431 	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6432 	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6433 
6434 	/* Fill out the OS statistics structure */
6435 	net_stats->multicast = adapter->stats.mprc;
6436 	net_stats->collisions = adapter->stats.colc;
6437 
6438 	/* Rx Errors */
6439 
6440 	/* RLEC on some newer hardware can be incorrect so build
6441 	 * our own version based on RUC and ROC
6442 	 */
6443 	net_stats->rx_errors = adapter->stats.rxerrc +
6444 		adapter->stats.crcerrs + adapter->stats.algnerrc +
6445 		adapter->stats.ruc + adapter->stats.roc +
6446 		adapter->stats.cexterr;
6447 	net_stats->rx_length_errors = adapter->stats.ruc +
6448 				      adapter->stats.roc;
6449 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
6450 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
6451 	net_stats->rx_missed_errors = adapter->stats.mpc;
6452 
6453 	/* Tx Errors */
6454 	net_stats->tx_errors = adapter->stats.ecol +
6455 			       adapter->stats.latecol;
6456 	net_stats->tx_aborted_errors = adapter->stats.ecol;
6457 	net_stats->tx_window_errors = adapter->stats.latecol;
6458 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
6459 
6460 	/* Tx Dropped needs to be maintained elsewhere */
6461 
6462 	/* Management Stats */
6463 	adapter->stats.mgptc += rd32(E1000_MGTPTC);
6464 	adapter->stats.mgprc += rd32(E1000_MGTPRC);
6465 	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6466 
6467 	/* OS2BMC Stats */
6468 	reg = rd32(E1000_MANC);
6469 	if (reg & E1000_MANC_EN_BMC2OS) {
6470 		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6471 		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6472 		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6473 		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6474 	}
6475 }
6476 
6477 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6478 {
6479 	struct e1000_hw *hw = &adapter->hw;
6480 	struct ptp_clock_event event;
6481 	struct timespec64 ts;
6482 	u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
6483 
6484 	if (tsicr & TSINTR_SYS_WRAP) {
6485 		event.type = PTP_CLOCK_PPS;
6486 		if (adapter->ptp_caps.pps)
6487 			ptp_clock_event(adapter->ptp_clock, &event);
6488 		ack |= TSINTR_SYS_WRAP;
6489 	}
6490 
6491 	if (tsicr & E1000_TSICR_TXTS) {
6492 		/* retrieve hardware timestamp */
6493 		schedule_work(&adapter->ptp_tx_work);
6494 		ack |= E1000_TSICR_TXTS;
6495 	}
6496 
6497 	if (tsicr & TSINTR_TT0) {
6498 		spin_lock(&adapter->tmreg_lock);
6499 		ts = timespec64_add(adapter->perout[0].start,
6500 				    adapter->perout[0].period);
6501 		/* u32 conversion of tv_sec is safe until y2106 */
6502 		wr32(E1000_TRGTTIML0, ts.tv_nsec);
6503 		wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
6504 		tsauxc = rd32(E1000_TSAUXC);
6505 		tsauxc |= TSAUXC_EN_TT0;
6506 		wr32(E1000_TSAUXC, tsauxc);
6507 		adapter->perout[0].start = ts;
6508 		spin_unlock(&adapter->tmreg_lock);
6509 		ack |= TSINTR_TT0;
6510 	}
6511 
6512 	if (tsicr & TSINTR_TT1) {
6513 		spin_lock(&adapter->tmreg_lock);
6514 		ts = timespec64_add(adapter->perout[1].start,
6515 				    adapter->perout[1].period);
6516 		wr32(E1000_TRGTTIML1, ts.tv_nsec);
6517 		wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
6518 		tsauxc = rd32(E1000_TSAUXC);
6519 		tsauxc |= TSAUXC_EN_TT1;
6520 		wr32(E1000_TSAUXC, tsauxc);
6521 		adapter->perout[1].start = ts;
6522 		spin_unlock(&adapter->tmreg_lock);
6523 		ack |= TSINTR_TT1;
6524 	}
6525 
6526 	if (tsicr & TSINTR_AUTT0) {
6527 		nsec = rd32(E1000_AUXSTMPL0);
6528 		sec  = rd32(E1000_AUXSTMPH0);
6529 		event.type = PTP_CLOCK_EXTTS;
6530 		event.index = 0;
6531 		event.timestamp = sec * 1000000000ULL + nsec;
6532 		ptp_clock_event(adapter->ptp_clock, &event);
6533 		ack |= TSINTR_AUTT0;
6534 	}
6535 
6536 	if (tsicr & TSINTR_AUTT1) {
6537 		nsec = rd32(E1000_AUXSTMPL1);
6538 		sec  = rd32(E1000_AUXSTMPH1);
6539 		event.type = PTP_CLOCK_EXTTS;
6540 		event.index = 1;
6541 		event.timestamp = sec * 1000000000ULL + nsec;
6542 		ptp_clock_event(adapter->ptp_clock, &event);
6543 		ack |= TSINTR_AUTT1;
6544 	}
6545 
6546 	/* acknowledge the interrupts */
6547 	wr32(E1000_TSICR, ack);
6548 }
6549 
6550 static irqreturn_t igb_msix_other(int irq, void *data)
6551 {
6552 	struct igb_adapter *adapter = data;
6553 	struct e1000_hw *hw = &adapter->hw;
6554 	u32 icr = rd32(E1000_ICR);
6555 	/* reading ICR causes bit 31 of EICR to be cleared */
6556 
6557 	if (icr & E1000_ICR_DRSTA)
6558 		schedule_work(&adapter->reset_task);
6559 
6560 	if (icr & E1000_ICR_DOUTSYNC) {
6561 		/* HW is reporting DMA is out of sync */
6562 		adapter->stats.doosync++;
6563 		/* The DMA Out of Sync is also indication of a spoof event
6564 		 * in IOV mode. Check the Wrong VM Behavior register to
6565 		 * see if it is really a spoof event.
6566 		 */
6567 		igb_check_wvbr(adapter);
6568 	}
6569 
6570 	/* Check for a mailbox event */
6571 	if (icr & E1000_ICR_VMMB)
6572 		igb_msg_task(adapter);
6573 
6574 	if (icr & E1000_ICR_LSC) {
6575 		hw->mac.get_link_status = 1;
6576 		/* guard against interrupt when we're going down */
6577 		if (!test_bit(__IGB_DOWN, &adapter->state))
6578 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6579 	}
6580 
6581 	if (icr & E1000_ICR_TS)
6582 		igb_tsync_interrupt(adapter);
6583 
6584 	wr32(E1000_EIMS, adapter->eims_other);
6585 
6586 	return IRQ_HANDLED;
6587 }
6588 
6589 static void igb_write_itr(struct igb_q_vector *q_vector)
6590 {
6591 	struct igb_adapter *adapter = q_vector->adapter;
6592 	u32 itr_val = q_vector->itr_val & 0x7FFC;
6593 
6594 	if (!q_vector->set_itr)
6595 		return;
6596 
6597 	if (!itr_val)
6598 		itr_val = 0x4;
6599 
6600 	if (adapter->hw.mac.type == e1000_82575)
6601 		itr_val |= itr_val << 16;
6602 	else
6603 		itr_val |= E1000_EITR_CNT_IGNR;
6604 
6605 	writel(itr_val, q_vector->itr_register);
6606 	q_vector->set_itr = 0;
6607 }
6608 
6609 static irqreturn_t igb_msix_ring(int irq, void *data)
6610 {
6611 	struct igb_q_vector *q_vector = data;
6612 
6613 	/* Write the ITR value calculated from the previous interrupt. */
6614 	igb_write_itr(q_vector);
6615 
6616 	napi_schedule(&q_vector->napi);
6617 
6618 	return IRQ_HANDLED;
6619 }
6620 
6621 #ifdef CONFIG_IGB_DCA
6622 static void igb_update_tx_dca(struct igb_adapter *adapter,
6623 			      struct igb_ring *tx_ring,
6624 			      int cpu)
6625 {
6626 	struct e1000_hw *hw = &adapter->hw;
6627 	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6628 
6629 	if (hw->mac.type != e1000_82575)
6630 		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
6631 
6632 	/* We can enable relaxed ordering for reads, but not writes when
6633 	 * DCA is enabled.  This is due to a known issue in some chipsets
6634 	 * which will cause the DCA tag to be cleared.
6635 	 */
6636 	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6637 		  E1000_DCA_TXCTRL_DATA_RRO_EN |
6638 		  E1000_DCA_TXCTRL_DESC_DCA_EN;
6639 
6640 	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6641 }
6642 
6643 static void igb_update_rx_dca(struct igb_adapter *adapter,
6644 			      struct igb_ring *rx_ring,
6645 			      int cpu)
6646 {
6647 	struct e1000_hw *hw = &adapter->hw;
6648 	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6649 
6650 	if (hw->mac.type != e1000_82575)
6651 		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
6652 
6653 	/* We can enable relaxed ordering for reads, but not writes when
6654 	 * DCA is enabled.  This is due to a known issue in some chipsets
6655 	 * which will cause the DCA tag to be cleared.
6656 	 */
6657 	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6658 		  E1000_DCA_RXCTRL_DESC_DCA_EN;
6659 
6660 	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6661 }
6662 
6663 static void igb_update_dca(struct igb_q_vector *q_vector)
6664 {
6665 	struct igb_adapter *adapter = q_vector->adapter;
6666 	int cpu = get_cpu();
6667 
6668 	if (q_vector->cpu == cpu)
6669 		goto out_no_update;
6670 
6671 	if (q_vector->tx.ring)
6672 		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6673 
6674 	if (q_vector->rx.ring)
6675 		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6676 
6677 	q_vector->cpu = cpu;
6678 out_no_update:
6679 	put_cpu();
6680 }
6681 
6682 static void igb_setup_dca(struct igb_adapter *adapter)
6683 {
6684 	struct e1000_hw *hw = &adapter->hw;
6685 	int i;
6686 
6687 	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
6688 		return;
6689 
6690 	/* Always use CB2 mode, difference is masked in the CB driver. */
6691 	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6692 
6693 	for (i = 0; i < adapter->num_q_vectors; i++) {
6694 		adapter->q_vector[i]->cpu = -1;
6695 		igb_update_dca(adapter->q_vector[i]);
6696 	}
6697 }
6698 
6699 static int __igb_notify_dca(struct device *dev, void *data)
6700 {
6701 	struct net_device *netdev = dev_get_drvdata(dev);
6702 	struct igb_adapter *adapter = netdev_priv(netdev);
6703 	struct pci_dev *pdev = adapter->pdev;
6704 	struct e1000_hw *hw = &adapter->hw;
6705 	unsigned long event = *(unsigned long *)data;
6706 
6707 	switch (event) {
6708 	case DCA_PROVIDER_ADD:
6709 		/* if already enabled, don't do it again */
6710 		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
6711 			break;
6712 		if (dca_add_requester(dev) == 0) {
6713 			adapter->flags |= IGB_FLAG_DCA_ENABLED;
6714 			dev_info(&pdev->dev, "DCA enabled\n");
6715 			igb_setup_dca(adapter);
6716 			break;
6717 		}
6718 		fallthrough; /* since DCA is disabled. */
6719 	case DCA_PROVIDER_REMOVE:
6720 		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
6721 			/* without this a class_device is left
6722 			 * hanging around in the sysfs model
6723 			 */
6724 			dca_remove_requester(dev);
6725 			dev_info(&pdev->dev, "DCA disabled\n");
6726 			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
6727 			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
6728 		}
6729 		break;
6730 	}
6731 
6732 	return 0;
6733 }
6734 
6735 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
6736 			  void *p)
6737 {
6738 	int ret_val;
6739 
6740 	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
6741 					 __igb_notify_dca);
6742 
6743 	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
6744 }
6745 #endif /* CONFIG_IGB_DCA */
6746 
6747 #ifdef CONFIG_PCI_IOV
6748 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
6749 {
6750 	unsigned char mac_addr[ETH_ALEN];
6751 
6752 	eth_zero_addr(mac_addr);
6753 	igb_set_vf_mac(adapter, vf, mac_addr);
6754 
6755 	/* By default spoof check is enabled for all VFs */
6756 	adapter->vf_data[vf].spoofchk_enabled = true;
6757 
6758 	/* By default VFs are not trusted */
6759 	adapter->vf_data[vf].trusted = false;
6760 
6761 	return 0;
6762 }
6763 
6764 #endif
6765 static void igb_ping_all_vfs(struct igb_adapter *adapter)
6766 {
6767 	struct e1000_hw *hw = &adapter->hw;
6768 	u32 ping;
6769 	int i;
6770 
6771 	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
6772 		ping = E1000_PF_CONTROL_MSG;
6773 		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
6774 			ping |= E1000_VT_MSGTYPE_CTS;
6775 		igb_write_mbx(hw, &ping, 1, i);
6776 	}
6777 }
6778 
6779 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6780 {
6781 	struct e1000_hw *hw = &adapter->hw;
6782 	u32 vmolr = rd32(E1000_VMOLR(vf));
6783 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6784 
6785 	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
6786 			    IGB_VF_FLAG_MULTI_PROMISC);
6787 	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6788 
6789 	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
6790 		vmolr |= E1000_VMOLR_MPME;
6791 		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
6792 		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
6793 	} else {
6794 		/* if we have hashes and we are clearing a multicast promisc
6795 		 * flag we need to write the hashes to the MTA as this step
6796 		 * was previously skipped
6797 		 */
6798 		if (vf_data->num_vf_mc_hashes > 30) {
6799 			vmolr |= E1000_VMOLR_MPME;
6800 		} else if (vf_data->num_vf_mc_hashes) {
6801 			int j;
6802 
6803 			vmolr |= E1000_VMOLR_ROMPE;
6804 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6805 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6806 		}
6807 	}
6808 
6809 	wr32(E1000_VMOLR(vf), vmolr);
6810 
6811 	/* there are flags left unprocessed, likely not supported */
6812 	if (*msgbuf & E1000_VT_MSGINFO_MASK)
6813 		return -EINVAL;
6814 
6815 	return 0;
6816 }
6817 
6818 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
6819 				  u32 *msgbuf, u32 vf)
6820 {
6821 	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6822 	u16 *hash_list = (u16 *)&msgbuf[1];
6823 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6824 	int i;
6825 
6826 	/* salt away the number of multicast addresses assigned
6827 	 * to this VF for later use to restore when the PF multi cast
6828 	 * list changes
6829 	 */
6830 	vf_data->num_vf_mc_hashes = n;
6831 
6832 	/* only up to 30 hash values supported */
6833 	if (n > 30)
6834 		n = 30;
6835 
6836 	/* store the hashes for later use */
6837 	for (i = 0; i < n; i++)
6838 		vf_data->vf_mc_hashes[i] = hash_list[i];
6839 
6840 	/* Flush and reset the mta with the new values */
6841 	igb_set_rx_mode(adapter->netdev);
6842 
6843 	return 0;
6844 }
6845 
6846 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
6847 {
6848 	struct e1000_hw *hw = &adapter->hw;
6849 	struct vf_data_storage *vf_data;
6850 	int i, j;
6851 
6852 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
6853 		u32 vmolr = rd32(E1000_VMOLR(i));
6854 
6855 		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6856 
6857 		vf_data = &adapter->vf_data[i];
6858 
6859 		if ((vf_data->num_vf_mc_hashes > 30) ||
6860 		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6861 			vmolr |= E1000_VMOLR_MPME;
6862 		} else if (vf_data->num_vf_mc_hashes) {
6863 			vmolr |= E1000_VMOLR_ROMPE;
6864 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6865 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6866 		}
6867 		wr32(E1000_VMOLR(i), vmolr);
6868 	}
6869 }
6870 
6871 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6872 {
6873 	struct e1000_hw *hw = &adapter->hw;
6874 	u32 pool_mask, vlvf_mask, i;
6875 
6876 	/* create mask for VF and other pools */
6877 	pool_mask = E1000_VLVF_POOLSEL_MASK;
6878 	vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6879 
6880 	/* drop PF from pool bits */
6881 	pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6882 			     adapter->vfs_allocated_count);
6883 
6884 	/* Find the vlan filter for this id */
6885 	for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6886 		u32 vlvf = rd32(E1000_VLVF(i));
6887 		u32 vfta_mask, vid, vfta;
6888 
6889 		/* remove the vf from the pool */
6890 		if (!(vlvf & vlvf_mask))
6891 			continue;
6892 
6893 		/* clear out bit from VLVF */
6894 		vlvf ^= vlvf_mask;
6895 
6896 		/* if other pools are present, just remove ourselves */
6897 		if (vlvf & pool_mask)
6898 			goto update_vlvfb;
6899 
6900 		/* if PF is present, leave VFTA */
6901 		if (vlvf & E1000_VLVF_POOLSEL_MASK)
6902 			goto update_vlvf;
6903 
6904 		vid = vlvf & E1000_VLVF_VLANID_MASK;
6905 		vfta_mask = BIT(vid % 32);
6906 
6907 		/* clear bit from VFTA */
6908 		vfta = adapter->shadow_vfta[vid / 32];
6909 		if (vfta & vfta_mask)
6910 			hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6911 update_vlvf:
6912 		/* clear pool selection enable */
6913 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6914 			vlvf &= E1000_VLVF_POOLSEL_MASK;
6915 		else
6916 			vlvf = 0;
6917 update_vlvfb:
6918 		/* clear pool bits */
6919 		wr32(E1000_VLVF(i), vlvf);
6920 	}
6921 }
6922 
6923 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6924 {
6925 	u32 vlvf;
6926 	int idx;
6927 
6928 	/* short cut the special case */
6929 	if (vlan == 0)
6930 		return 0;
6931 
6932 	/* Search for the VLAN id in the VLVF entries */
6933 	for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6934 		vlvf = rd32(E1000_VLVF(idx));
6935 		if ((vlvf & VLAN_VID_MASK) == vlan)
6936 			break;
6937 	}
6938 
6939 	return idx;
6940 }
6941 
6942 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6943 {
6944 	struct e1000_hw *hw = &adapter->hw;
6945 	u32 bits, pf_id;
6946 	int idx;
6947 
6948 	idx = igb_find_vlvf_entry(hw, vid);
6949 	if (!idx)
6950 		return;
6951 
6952 	/* See if any other pools are set for this VLAN filter
6953 	 * entry other than the PF.
6954 	 */
6955 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6956 	bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6957 	bits &= rd32(E1000_VLVF(idx));
6958 
6959 	/* Disable the filter so this falls into the default pool. */
6960 	if (!bits) {
6961 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6962 			wr32(E1000_VLVF(idx), BIT(pf_id));
6963 		else
6964 			wr32(E1000_VLVF(idx), 0);
6965 	}
6966 }
6967 
6968 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6969 			   bool add, u32 vf)
6970 {
6971 	int pf_id = adapter->vfs_allocated_count;
6972 	struct e1000_hw *hw = &adapter->hw;
6973 	int err;
6974 
6975 	/* If VLAN overlaps with one the PF is currently monitoring make
6976 	 * sure that we are able to allocate a VLVF entry.  This may be
6977 	 * redundant but it guarantees PF will maintain visibility to
6978 	 * the VLAN.
6979 	 */
6980 	if (add && test_bit(vid, adapter->active_vlans)) {
6981 		err = igb_vfta_set(hw, vid, pf_id, true, false);
6982 		if (err)
6983 			return err;
6984 	}
6985 
6986 	err = igb_vfta_set(hw, vid, vf, add, false);
6987 
6988 	if (add && !err)
6989 		return err;
6990 
6991 	/* If we failed to add the VF VLAN or we are removing the VF VLAN
6992 	 * we may need to drop the PF pool bit in order to allow us to free
6993 	 * up the VLVF resources.
6994 	 */
6995 	if (test_bit(vid, adapter->active_vlans) ||
6996 	    (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6997 		igb_update_pf_vlvf(adapter, vid);
6998 
6999 	return err;
7000 }
7001 
7002 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7003 {
7004 	struct e1000_hw *hw = &adapter->hw;
7005 
7006 	if (vid)
7007 		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7008 	else
7009 		wr32(E1000_VMVIR(vf), 0);
7010 }
7011 
7012 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7013 				u16 vlan, u8 qos)
7014 {
7015 	int err;
7016 
7017 	err = igb_set_vf_vlan(adapter, vlan, true, vf);
7018 	if (err)
7019 		return err;
7020 
7021 	igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7022 	igb_set_vmolr(adapter, vf, !vlan);
7023 
7024 	/* revoke access to previous VLAN */
7025 	if (vlan != adapter->vf_data[vf].pf_vlan)
7026 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7027 				false, vf);
7028 
7029 	adapter->vf_data[vf].pf_vlan = vlan;
7030 	adapter->vf_data[vf].pf_qos = qos;
7031 	igb_set_vf_vlan_strip(adapter, vf, true);
7032 	dev_info(&adapter->pdev->dev,
7033 		 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7034 	if (test_bit(__IGB_DOWN, &adapter->state)) {
7035 		dev_warn(&adapter->pdev->dev,
7036 			 "The VF VLAN has been set, but the PF device is not up.\n");
7037 		dev_warn(&adapter->pdev->dev,
7038 			 "Bring the PF device up before attempting to use the VF device.\n");
7039 	}
7040 
7041 	return err;
7042 }
7043 
7044 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7045 {
7046 	/* Restore tagless access via VLAN 0 */
7047 	igb_set_vf_vlan(adapter, 0, true, vf);
7048 
7049 	igb_set_vmvir(adapter, 0, vf);
7050 	igb_set_vmolr(adapter, vf, true);
7051 
7052 	/* Remove any PF assigned VLAN */
7053 	if (adapter->vf_data[vf].pf_vlan)
7054 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7055 				false, vf);
7056 
7057 	adapter->vf_data[vf].pf_vlan = 0;
7058 	adapter->vf_data[vf].pf_qos = 0;
7059 	igb_set_vf_vlan_strip(adapter, vf, false);
7060 
7061 	return 0;
7062 }
7063 
7064 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7065 			       u16 vlan, u8 qos, __be16 vlan_proto)
7066 {
7067 	struct igb_adapter *adapter = netdev_priv(netdev);
7068 
7069 	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7070 		return -EINVAL;
7071 
7072 	if (vlan_proto != htons(ETH_P_8021Q))
7073 		return -EPROTONOSUPPORT;
7074 
7075 	return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7076 			       igb_disable_port_vlan(adapter, vf);
7077 }
7078 
7079 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7080 {
7081 	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7082 	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7083 	int ret;
7084 
7085 	if (adapter->vf_data[vf].pf_vlan)
7086 		return -1;
7087 
7088 	/* VLAN 0 is a special case, don't allow it to be removed */
7089 	if (!vid && !add)
7090 		return 0;
7091 
7092 	ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7093 	if (!ret)
7094 		igb_set_vf_vlan_strip(adapter, vf, !!vid);
7095 	return ret;
7096 }
7097 
7098 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7099 {
7100 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7101 
7102 	/* clear flags - except flag that indicates PF has set the MAC */
7103 	vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7104 	vf_data->last_nack = jiffies;
7105 
7106 	/* reset vlans for device */
7107 	igb_clear_vf_vfta(adapter, vf);
7108 	igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7109 	igb_set_vmvir(adapter, vf_data->pf_vlan |
7110 			       (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7111 	igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7112 	igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7113 
7114 	/* reset multicast table array for vf */
7115 	adapter->vf_data[vf].num_vf_mc_hashes = 0;
7116 
7117 	/* Flush and reset the mta with the new values */
7118 	igb_set_rx_mode(adapter->netdev);
7119 }
7120 
7121 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7122 {
7123 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7124 
7125 	/* clear mac address as we were hotplug removed/added */
7126 	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7127 		eth_zero_addr(vf_mac);
7128 
7129 	/* process remaining reset events */
7130 	igb_vf_reset(adapter, vf);
7131 }
7132 
7133 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7134 {
7135 	struct e1000_hw *hw = &adapter->hw;
7136 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7137 	u32 reg, msgbuf[3];
7138 	u8 *addr = (u8 *)(&msgbuf[1]);
7139 
7140 	/* process all the same items cleared in a function level reset */
7141 	igb_vf_reset(adapter, vf);
7142 
7143 	/* set vf mac address */
7144 	igb_set_vf_mac(adapter, vf, vf_mac);
7145 
7146 	/* enable transmit and receive for vf */
7147 	reg = rd32(E1000_VFTE);
7148 	wr32(E1000_VFTE, reg | BIT(vf));
7149 	reg = rd32(E1000_VFRE);
7150 	wr32(E1000_VFRE, reg | BIT(vf));
7151 
7152 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7153 
7154 	/* reply to reset with ack and vf mac address */
7155 	if (!is_zero_ether_addr(vf_mac)) {
7156 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7157 		memcpy(addr, vf_mac, ETH_ALEN);
7158 	} else {
7159 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7160 	}
7161 	igb_write_mbx(hw, msgbuf, 3, vf);
7162 }
7163 
7164 static void igb_flush_mac_table(struct igb_adapter *adapter)
7165 {
7166 	struct e1000_hw *hw = &adapter->hw;
7167 	int i;
7168 
7169 	for (i = 0; i < hw->mac.rar_entry_count; i++) {
7170 		adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7171 		eth_zero_addr(adapter->mac_table[i].addr);
7172 		adapter->mac_table[i].queue = 0;
7173 		igb_rar_set_index(adapter, i);
7174 	}
7175 }
7176 
7177 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7178 {
7179 	struct e1000_hw *hw = &adapter->hw;
7180 	/* do not count rar entries reserved for VFs MAC addresses */
7181 	int rar_entries = hw->mac.rar_entry_count -
7182 			  adapter->vfs_allocated_count;
7183 	int i, count = 0;
7184 
7185 	for (i = 0; i < rar_entries; i++) {
7186 		/* do not count default entries */
7187 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7188 			continue;
7189 
7190 		/* do not count "in use" entries for different queues */
7191 		if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7192 		    (adapter->mac_table[i].queue != queue))
7193 			continue;
7194 
7195 		count++;
7196 	}
7197 
7198 	return count;
7199 }
7200 
7201 /* Set default MAC address for the PF in the first RAR entry */
7202 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7203 {
7204 	struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7205 
7206 	ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7207 	mac_table->queue = adapter->vfs_allocated_count;
7208 	mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7209 
7210 	igb_rar_set_index(adapter, 0);
7211 }
7212 
7213 /* If the filter to be added and an already existing filter express
7214  * the same address and address type, it should be possible to only
7215  * override the other configurations, for example the queue to steer
7216  * traffic.
7217  */
7218 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7219 				      const u8 *addr, const u8 flags)
7220 {
7221 	if (!(entry->state & IGB_MAC_STATE_IN_USE))
7222 		return true;
7223 
7224 	if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7225 	    (flags & IGB_MAC_STATE_SRC_ADDR))
7226 		return false;
7227 
7228 	if (!ether_addr_equal(addr, entry->addr))
7229 		return false;
7230 
7231 	return true;
7232 }
7233 
7234 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7235  * 'flags' is used to indicate what kind of match is made, match is by
7236  * default for the destination address, if matching by source address
7237  * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7238  */
7239 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7240 				    const u8 *addr, const u8 queue,
7241 				    const u8 flags)
7242 {
7243 	struct e1000_hw *hw = &adapter->hw;
7244 	int rar_entries = hw->mac.rar_entry_count -
7245 			  adapter->vfs_allocated_count;
7246 	int i;
7247 
7248 	if (is_zero_ether_addr(addr))
7249 		return -EINVAL;
7250 
7251 	/* Search for the first empty entry in the MAC table.
7252 	 * Do not touch entries at the end of the table reserved for the VF MAC
7253 	 * addresses.
7254 	 */
7255 	for (i = 0; i < rar_entries; i++) {
7256 		if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7257 					       addr, flags))
7258 			continue;
7259 
7260 		ether_addr_copy(adapter->mac_table[i].addr, addr);
7261 		adapter->mac_table[i].queue = queue;
7262 		adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7263 
7264 		igb_rar_set_index(adapter, i);
7265 		return i;
7266 	}
7267 
7268 	return -ENOSPC;
7269 }
7270 
7271 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7272 			      const u8 queue)
7273 {
7274 	return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7275 }
7276 
7277 /* Remove a MAC filter for 'addr' directing matching traffic to
7278  * 'queue', 'flags' is used to indicate what kind of match need to be
7279  * removed, match is by default for the destination address, if
7280  * matching by source address is to be removed the flag
7281  * IGB_MAC_STATE_SRC_ADDR can be used.
7282  */
7283 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7284 				    const u8 *addr, const u8 queue,
7285 				    const u8 flags)
7286 {
7287 	struct e1000_hw *hw = &adapter->hw;
7288 	int rar_entries = hw->mac.rar_entry_count -
7289 			  adapter->vfs_allocated_count;
7290 	int i;
7291 
7292 	if (is_zero_ether_addr(addr))
7293 		return -EINVAL;
7294 
7295 	/* Search for matching entry in the MAC table based on given address
7296 	 * and queue. Do not touch entries at the end of the table reserved
7297 	 * for the VF MAC addresses.
7298 	 */
7299 	for (i = 0; i < rar_entries; i++) {
7300 		if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7301 			continue;
7302 		if ((adapter->mac_table[i].state & flags) != flags)
7303 			continue;
7304 		if (adapter->mac_table[i].queue != queue)
7305 			continue;
7306 		if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7307 			continue;
7308 
7309 		/* When a filter for the default address is "deleted",
7310 		 * we return it to its initial configuration
7311 		 */
7312 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7313 			adapter->mac_table[i].state =
7314 				IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7315 			adapter->mac_table[i].queue =
7316 				adapter->vfs_allocated_count;
7317 		} else {
7318 			adapter->mac_table[i].state = 0;
7319 			adapter->mac_table[i].queue = 0;
7320 			eth_zero_addr(adapter->mac_table[i].addr);
7321 		}
7322 
7323 		igb_rar_set_index(adapter, i);
7324 		return 0;
7325 	}
7326 
7327 	return -ENOENT;
7328 }
7329 
7330 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7331 			      const u8 queue)
7332 {
7333 	return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7334 }
7335 
7336 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7337 				const u8 *addr, u8 queue, u8 flags)
7338 {
7339 	struct e1000_hw *hw = &adapter->hw;
7340 
7341 	/* In theory, this should be supported on 82575 as well, but
7342 	 * that part wasn't easily accessible during development.
7343 	 */
7344 	if (hw->mac.type != e1000_i210)
7345 		return -EOPNOTSUPP;
7346 
7347 	return igb_add_mac_filter_flags(adapter, addr, queue,
7348 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7349 }
7350 
7351 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7352 				const u8 *addr, u8 queue, u8 flags)
7353 {
7354 	return igb_del_mac_filter_flags(adapter, addr, queue,
7355 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7356 }
7357 
7358 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7359 {
7360 	struct igb_adapter *adapter = netdev_priv(netdev);
7361 	int ret;
7362 
7363 	ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7364 
7365 	return min_t(int, ret, 0);
7366 }
7367 
7368 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7369 {
7370 	struct igb_adapter *adapter = netdev_priv(netdev);
7371 
7372 	igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7373 
7374 	return 0;
7375 }
7376 
7377 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7378 				 const u32 info, const u8 *addr)
7379 {
7380 	struct pci_dev *pdev = adapter->pdev;
7381 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7382 	struct list_head *pos;
7383 	struct vf_mac_filter *entry = NULL;
7384 	int ret = 0;
7385 
7386 	switch (info) {
7387 	case E1000_VF_MAC_FILTER_CLR:
7388 		/* remove all unicast MAC filters related to the current VF */
7389 		list_for_each(pos, &adapter->vf_macs.l) {
7390 			entry = list_entry(pos, struct vf_mac_filter, l);
7391 			if (entry->vf == vf) {
7392 				entry->vf = -1;
7393 				entry->free = true;
7394 				igb_del_mac_filter(adapter, entry->vf_mac, vf);
7395 			}
7396 		}
7397 		break;
7398 	case E1000_VF_MAC_FILTER_ADD:
7399 		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7400 		    !vf_data->trusted) {
7401 			dev_warn(&pdev->dev,
7402 				 "VF %d requested MAC filter but is administratively denied\n",
7403 				 vf);
7404 			return -EINVAL;
7405 		}
7406 		if (!is_valid_ether_addr(addr)) {
7407 			dev_warn(&pdev->dev,
7408 				 "VF %d attempted to set invalid MAC filter\n",
7409 				 vf);
7410 			return -EINVAL;
7411 		}
7412 
7413 		/* try to find empty slot in the list */
7414 		list_for_each(pos, &adapter->vf_macs.l) {
7415 			entry = list_entry(pos, struct vf_mac_filter, l);
7416 			if (entry->free)
7417 				break;
7418 		}
7419 
7420 		if (entry && entry->free) {
7421 			entry->free = false;
7422 			entry->vf = vf;
7423 			ether_addr_copy(entry->vf_mac, addr);
7424 
7425 			ret = igb_add_mac_filter(adapter, addr, vf);
7426 			ret = min_t(int, ret, 0);
7427 		} else {
7428 			ret = -ENOSPC;
7429 		}
7430 
7431 		if (ret == -ENOSPC)
7432 			dev_warn(&pdev->dev,
7433 				 "VF %d has requested MAC filter but there is no space for it\n",
7434 				 vf);
7435 		break;
7436 	default:
7437 		ret = -EINVAL;
7438 		break;
7439 	}
7440 
7441 	return ret;
7442 }
7443 
7444 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7445 {
7446 	struct pci_dev *pdev = adapter->pdev;
7447 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7448 	u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7449 
7450 	/* The VF MAC Address is stored in a packed array of bytes
7451 	 * starting at the second 32 bit word of the msg array
7452 	 */
7453 	unsigned char *addr = (unsigned char *)&msg[1];
7454 	int ret = 0;
7455 
7456 	if (!info) {
7457 		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7458 		    !vf_data->trusted) {
7459 			dev_warn(&pdev->dev,
7460 				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7461 				 vf);
7462 			return -EINVAL;
7463 		}
7464 
7465 		if (!is_valid_ether_addr(addr)) {
7466 			dev_warn(&pdev->dev,
7467 				 "VF %d attempted to set invalid MAC\n",
7468 				 vf);
7469 			return -EINVAL;
7470 		}
7471 
7472 		ret = igb_set_vf_mac(adapter, vf, addr);
7473 	} else {
7474 		ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7475 	}
7476 
7477 	return ret;
7478 }
7479 
7480 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7481 {
7482 	struct e1000_hw *hw = &adapter->hw;
7483 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7484 	u32 msg = E1000_VT_MSGTYPE_NACK;
7485 
7486 	/* if device isn't clear to send it shouldn't be reading either */
7487 	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7488 	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7489 		igb_write_mbx(hw, &msg, 1, vf);
7490 		vf_data->last_nack = jiffies;
7491 	}
7492 }
7493 
7494 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7495 {
7496 	struct pci_dev *pdev = adapter->pdev;
7497 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
7498 	struct e1000_hw *hw = &adapter->hw;
7499 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7500 	s32 retval;
7501 
7502 	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7503 
7504 	if (retval) {
7505 		/* if receive failed revoke VF CTS stats and restart init */
7506 		dev_err(&pdev->dev, "Error receiving message from VF\n");
7507 		vf_data->flags &= ~IGB_VF_FLAG_CTS;
7508 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7509 			goto unlock;
7510 		goto out;
7511 	}
7512 
7513 	/* this is a message we already processed, do nothing */
7514 	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7515 		goto unlock;
7516 
7517 	/* until the vf completes a reset it should not be
7518 	 * allowed to start any configuration.
7519 	 */
7520 	if (msgbuf[0] == E1000_VF_RESET) {
7521 		/* unlocks mailbox */
7522 		igb_vf_reset_msg(adapter, vf);
7523 		return;
7524 	}
7525 
7526 	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7527 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7528 			goto unlock;
7529 		retval = -1;
7530 		goto out;
7531 	}
7532 
7533 	switch ((msgbuf[0] & 0xFFFF)) {
7534 	case E1000_VF_SET_MAC_ADDR:
7535 		retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7536 		break;
7537 	case E1000_VF_SET_PROMISC:
7538 		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7539 		break;
7540 	case E1000_VF_SET_MULTICAST:
7541 		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7542 		break;
7543 	case E1000_VF_SET_LPE:
7544 		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7545 		break;
7546 	case E1000_VF_SET_VLAN:
7547 		retval = -1;
7548 		if (vf_data->pf_vlan)
7549 			dev_warn(&pdev->dev,
7550 				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7551 				 vf);
7552 		else
7553 			retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7554 		break;
7555 	default:
7556 		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7557 		retval = -1;
7558 		break;
7559 	}
7560 
7561 	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7562 out:
7563 	/* notify the VF of the results of what it sent us */
7564 	if (retval)
7565 		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7566 	else
7567 		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7568 
7569 	/* unlocks mailbox */
7570 	igb_write_mbx(hw, msgbuf, 1, vf);
7571 	return;
7572 
7573 unlock:
7574 	igb_unlock_mbx(hw, vf);
7575 }
7576 
7577 static void igb_msg_task(struct igb_adapter *adapter)
7578 {
7579 	struct e1000_hw *hw = &adapter->hw;
7580 	u32 vf;
7581 
7582 	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7583 		/* process any reset requests */
7584 		if (!igb_check_for_rst(hw, vf))
7585 			igb_vf_reset_event(adapter, vf);
7586 
7587 		/* process any messages pending */
7588 		if (!igb_check_for_msg(hw, vf))
7589 			igb_rcv_msg_from_vf(adapter, vf);
7590 
7591 		/* process any acks */
7592 		if (!igb_check_for_ack(hw, vf))
7593 			igb_rcv_ack_from_vf(adapter, vf);
7594 	}
7595 }
7596 
7597 /**
7598  *  igb_set_uta - Set unicast filter table address
7599  *  @adapter: board private structure
7600  *  @set: boolean indicating if we are setting or clearing bits
7601  *
7602  *  The unicast table address is a register array of 32-bit registers.
7603  *  The table is meant to be used in a way similar to how the MTA is used
7604  *  however due to certain limitations in the hardware it is necessary to
7605  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7606  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
7607  **/
7608 static void igb_set_uta(struct igb_adapter *adapter, bool set)
7609 {
7610 	struct e1000_hw *hw = &adapter->hw;
7611 	u32 uta = set ? ~0 : 0;
7612 	int i;
7613 
7614 	/* we only need to do this if VMDq is enabled */
7615 	if (!adapter->vfs_allocated_count)
7616 		return;
7617 
7618 	for (i = hw->mac.uta_reg_count; i--;)
7619 		array_wr32(E1000_UTA, i, uta);
7620 }
7621 
7622 /**
7623  *  igb_intr_msi - Interrupt Handler
7624  *  @irq: interrupt number
7625  *  @data: pointer to a network interface device structure
7626  **/
7627 static irqreturn_t igb_intr_msi(int irq, void *data)
7628 {
7629 	struct igb_adapter *adapter = data;
7630 	struct igb_q_vector *q_vector = adapter->q_vector[0];
7631 	struct e1000_hw *hw = &adapter->hw;
7632 	/* read ICR disables interrupts using IAM */
7633 	u32 icr = rd32(E1000_ICR);
7634 
7635 	igb_write_itr(q_vector);
7636 
7637 	if (icr & E1000_ICR_DRSTA)
7638 		schedule_work(&adapter->reset_task);
7639 
7640 	if (icr & E1000_ICR_DOUTSYNC) {
7641 		/* HW is reporting DMA is out of sync */
7642 		adapter->stats.doosync++;
7643 	}
7644 
7645 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7646 		hw->mac.get_link_status = 1;
7647 		if (!test_bit(__IGB_DOWN, &adapter->state))
7648 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
7649 	}
7650 
7651 	if (icr & E1000_ICR_TS)
7652 		igb_tsync_interrupt(adapter);
7653 
7654 	napi_schedule(&q_vector->napi);
7655 
7656 	return IRQ_HANDLED;
7657 }
7658 
7659 /**
7660  *  igb_intr - Legacy Interrupt Handler
7661  *  @irq: interrupt number
7662  *  @data: pointer to a network interface device structure
7663  **/
7664 static irqreturn_t igb_intr(int irq, void *data)
7665 {
7666 	struct igb_adapter *adapter = data;
7667 	struct igb_q_vector *q_vector = adapter->q_vector[0];
7668 	struct e1000_hw *hw = &adapter->hw;
7669 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
7670 	 * need for the IMC write
7671 	 */
7672 	u32 icr = rd32(E1000_ICR);
7673 
7674 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
7675 	 * not set, then the adapter didn't send an interrupt
7676 	 */
7677 	if (!(icr & E1000_ICR_INT_ASSERTED))
7678 		return IRQ_NONE;
7679 
7680 	igb_write_itr(q_vector);
7681 
7682 	if (icr & E1000_ICR_DRSTA)
7683 		schedule_work(&adapter->reset_task);
7684 
7685 	if (icr & E1000_ICR_DOUTSYNC) {
7686 		/* HW is reporting DMA is out of sync */
7687 		adapter->stats.doosync++;
7688 	}
7689 
7690 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7691 		hw->mac.get_link_status = 1;
7692 		/* guard against interrupt when we're going down */
7693 		if (!test_bit(__IGB_DOWN, &adapter->state))
7694 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
7695 	}
7696 
7697 	if (icr & E1000_ICR_TS)
7698 		igb_tsync_interrupt(adapter);
7699 
7700 	napi_schedule(&q_vector->napi);
7701 
7702 	return IRQ_HANDLED;
7703 }
7704 
7705 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
7706 {
7707 	struct igb_adapter *adapter = q_vector->adapter;
7708 	struct e1000_hw *hw = &adapter->hw;
7709 
7710 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
7711 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
7712 		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
7713 			igb_set_itr(q_vector);
7714 		else
7715 			igb_update_ring_itr(q_vector);
7716 	}
7717 
7718 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
7719 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
7720 			wr32(E1000_EIMS, q_vector->eims_value);
7721 		else
7722 			igb_irq_enable(adapter);
7723 	}
7724 }
7725 
7726 /**
7727  *  igb_poll - NAPI Rx polling callback
7728  *  @napi: napi polling structure
7729  *  @budget: count of how many packets we should handle
7730  **/
7731 static int igb_poll(struct napi_struct *napi, int budget)
7732 {
7733 	struct igb_q_vector *q_vector = container_of(napi,
7734 						     struct igb_q_vector,
7735 						     napi);
7736 	bool clean_complete = true;
7737 	int work_done = 0;
7738 
7739 #ifdef CONFIG_IGB_DCA
7740 	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
7741 		igb_update_dca(q_vector);
7742 #endif
7743 	if (q_vector->tx.ring)
7744 		clean_complete = igb_clean_tx_irq(q_vector, budget);
7745 
7746 	if (q_vector->rx.ring) {
7747 		int cleaned = igb_clean_rx_irq(q_vector, budget);
7748 
7749 		work_done += cleaned;
7750 		if (cleaned >= budget)
7751 			clean_complete = false;
7752 	}
7753 
7754 	/* If all work not completed, return budget and keep polling */
7755 	if (!clean_complete)
7756 		return budget;
7757 
7758 	/* Exit the polling mode, but don't re-enable interrupts if stack might
7759 	 * poll us due to busy-polling
7760 	 */
7761 	if (likely(napi_complete_done(napi, work_done)))
7762 		igb_ring_irq_enable(q_vector);
7763 
7764 	return min(work_done, budget - 1);
7765 }
7766 
7767 /**
7768  *  igb_clean_tx_irq - Reclaim resources after transmit completes
7769  *  @q_vector: pointer to q_vector containing needed info
7770  *  @napi_budget: Used to determine if we are in netpoll
7771  *
7772  *  returns true if ring is completely cleaned
7773  **/
7774 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
7775 {
7776 	struct igb_adapter *adapter = q_vector->adapter;
7777 	struct igb_ring *tx_ring = q_vector->tx.ring;
7778 	struct igb_tx_buffer *tx_buffer;
7779 	union e1000_adv_tx_desc *tx_desc;
7780 	unsigned int total_bytes = 0, total_packets = 0;
7781 	unsigned int budget = q_vector->tx.work_limit;
7782 	unsigned int i = tx_ring->next_to_clean;
7783 
7784 	if (test_bit(__IGB_DOWN, &adapter->state))
7785 		return true;
7786 
7787 	tx_buffer = &tx_ring->tx_buffer_info[i];
7788 	tx_desc = IGB_TX_DESC(tx_ring, i);
7789 	i -= tx_ring->count;
7790 
7791 	do {
7792 		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
7793 
7794 		/* if next_to_watch is not set then there is no work pending */
7795 		if (!eop_desc)
7796 			break;
7797 
7798 		/* prevent any other reads prior to eop_desc */
7799 		smp_rmb();
7800 
7801 		/* if DD is not set pending work has not been completed */
7802 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
7803 			break;
7804 
7805 		/* clear next_to_watch to prevent false hangs */
7806 		tx_buffer->next_to_watch = NULL;
7807 
7808 		/* update the statistics for this packet */
7809 		total_bytes += tx_buffer->bytecount;
7810 		total_packets += tx_buffer->gso_segs;
7811 
7812 		/* free the skb */
7813 		napi_consume_skb(tx_buffer->skb, napi_budget);
7814 
7815 		/* unmap skb header data */
7816 		dma_unmap_single(tx_ring->dev,
7817 				 dma_unmap_addr(tx_buffer, dma),
7818 				 dma_unmap_len(tx_buffer, len),
7819 				 DMA_TO_DEVICE);
7820 
7821 		/* clear tx_buffer data */
7822 		dma_unmap_len_set(tx_buffer, len, 0);
7823 
7824 		/* clear last DMA location and unmap remaining buffers */
7825 		while (tx_desc != eop_desc) {
7826 			tx_buffer++;
7827 			tx_desc++;
7828 			i++;
7829 			if (unlikely(!i)) {
7830 				i -= tx_ring->count;
7831 				tx_buffer = tx_ring->tx_buffer_info;
7832 				tx_desc = IGB_TX_DESC(tx_ring, 0);
7833 			}
7834 
7835 			/* unmap any remaining paged data */
7836 			if (dma_unmap_len(tx_buffer, len)) {
7837 				dma_unmap_page(tx_ring->dev,
7838 					       dma_unmap_addr(tx_buffer, dma),
7839 					       dma_unmap_len(tx_buffer, len),
7840 					       DMA_TO_DEVICE);
7841 				dma_unmap_len_set(tx_buffer, len, 0);
7842 			}
7843 		}
7844 
7845 		/* move us one more past the eop_desc for start of next pkt */
7846 		tx_buffer++;
7847 		tx_desc++;
7848 		i++;
7849 		if (unlikely(!i)) {
7850 			i -= tx_ring->count;
7851 			tx_buffer = tx_ring->tx_buffer_info;
7852 			tx_desc = IGB_TX_DESC(tx_ring, 0);
7853 		}
7854 
7855 		/* issue prefetch for next Tx descriptor */
7856 		prefetch(tx_desc);
7857 
7858 		/* update budget accounting */
7859 		budget--;
7860 	} while (likely(budget));
7861 
7862 	netdev_tx_completed_queue(txring_txq(tx_ring),
7863 				  total_packets, total_bytes);
7864 	i += tx_ring->count;
7865 	tx_ring->next_to_clean = i;
7866 	u64_stats_update_begin(&tx_ring->tx_syncp);
7867 	tx_ring->tx_stats.bytes += total_bytes;
7868 	tx_ring->tx_stats.packets += total_packets;
7869 	u64_stats_update_end(&tx_ring->tx_syncp);
7870 	q_vector->tx.total_bytes += total_bytes;
7871 	q_vector->tx.total_packets += total_packets;
7872 
7873 	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
7874 		struct e1000_hw *hw = &adapter->hw;
7875 
7876 		/* Detect a transmit hang in hardware, this serializes the
7877 		 * check with the clearing of time_stamp and movement of i
7878 		 */
7879 		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
7880 		if (tx_buffer->next_to_watch &&
7881 		    time_after(jiffies, tx_buffer->time_stamp +
7882 			       (adapter->tx_timeout_factor * HZ)) &&
7883 		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
7884 
7885 			/* detected Tx unit hang */
7886 			dev_err(tx_ring->dev,
7887 				"Detected Tx Unit Hang\n"
7888 				"  Tx Queue             <%d>\n"
7889 				"  TDH                  <%x>\n"
7890 				"  TDT                  <%x>\n"
7891 				"  next_to_use          <%x>\n"
7892 				"  next_to_clean        <%x>\n"
7893 				"buffer_info[next_to_clean]\n"
7894 				"  time_stamp           <%lx>\n"
7895 				"  next_to_watch        <%p>\n"
7896 				"  jiffies              <%lx>\n"
7897 				"  desc.status          <%x>\n",
7898 				tx_ring->queue_index,
7899 				rd32(E1000_TDH(tx_ring->reg_idx)),
7900 				readl(tx_ring->tail),
7901 				tx_ring->next_to_use,
7902 				tx_ring->next_to_clean,
7903 				tx_buffer->time_stamp,
7904 				tx_buffer->next_to_watch,
7905 				jiffies,
7906 				tx_buffer->next_to_watch->wb.status);
7907 			netif_stop_subqueue(tx_ring->netdev,
7908 					    tx_ring->queue_index);
7909 
7910 			/* we are about to reset, no point in enabling stuff */
7911 			return true;
7912 		}
7913 	}
7914 
7915 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
7916 	if (unlikely(total_packets &&
7917 	    netif_carrier_ok(tx_ring->netdev) &&
7918 	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
7919 		/* Make sure that anybody stopping the queue after this
7920 		 * sees the new next_to_clean.
7921 		 */
7922 		smp_mb();
7923 		if (__netif_subqueue_stopped(tx_ring->netdev,
7924 					     tx_ring->queue_index) &&
7925 		    !(test_bit(__IGB_DOWN, &adapter->state))) {
7926 			netif_wake_subqueue(tx_ring->netdev,
7927 					    tx_ring->queue_index);
7928 
7929 			u64_stats_update_begin(&tx_ring->tx_syncp);
7930 			tx_ring->tx_stats.restart_queue++;
7931 			u64_stats_update_end(&tx_ring->tx_syncp);
7932 		}
7933 	}
7934 
7935 	return !!budget;
7936 }
7937 
7938 /**
7939  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
7940  *  @rx_ring: rx descriptor ring to store buffers on
7941  *  @old_buff: donor buffer to have page reused
7942  *
7943  *  Synchronizes page for reuse by the adapter
7944  **/
7945 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
7946 			      struct igb_rx_buffer *old_buff)
7947 {
7948 	struct igb_rx_buffer *new_buff;
7949 	u16 nta = rx_ring->next_to_alloc;
7950 
7951 	new_buff = &rx_ring->rx_buffer_info[nta];
7952 
7953 	/* update, and store next to alloc */
7954 	nta++;
7955 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
7956 
7957 	/* Transfer page from old buffer to new buffer.
7958 	 * Move each member individually to avoid possible store
7959 	 * forwarding stalls.
7960 	 */
7961 	new_buff->dma		= old_buff->dma;
7962 	new_buff->page		= old_buff->page;
7963 	new_buff->page_offset	= old_buff->page_offset;
7964 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
7965 }
7966 
7967 static inline bool igb_page_is_reserved(struct page *page)
7968 {
7969 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
7970 }
7971 
7972 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer)
7973 {
7974 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
7975 	struct page *page = rx_buffer->page;
7976 
7977 	/* avoid re-using remote pages */
7978 	if (unlikely(igb_page_is_reserved(page)))
7979 		return false;
7980 
7981 #if (PAGE_SIZE < 8192)
7982 	/* if we are only owner of page we can reuse it */
7983 	if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
7984 		return false;
7985 #else
7986 #define IGB_LAST_OFFSET \
7987 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
7988 
7989 	if (rx_buffer->page_offset > IGB_LAST_OFFSET)
7990 		return false;
7991 #endif
7992 
7993 	/* If we have drained the page fragment pool we need to update
7994 	 * the pagecnt_bias and page count so that we fully restock the
7995 	 * number of references the driver holds.
7996 	 */
7997 	if (unlikely(!pagecnt_bias)) {
7998 		page_ref_add(page, USHRT_MAX);
7999 		rx_buffer->pagecnt_bias = USHRT_MAX;
8000 	}
8001 
8002 	return true;
8003 }
8004 
8005 /**
8006  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8007  *  @rx_ring: rx descriptor ring to transact packets on
8008  *  @rx_buffer: buffer containing page to add
8009  *  @skb: sk_buff to place the data into
8010  *  @size: size of buffer to be added
8011  *
8012  *  This function will add the data contained in rx_buffer->page to the skb.
8013  **/
8014 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8015 			    struct igb_rx_buffer *rx_buffer,
8016 			    struct sk_buff *skb,
8017 			    unsigned int size)
8018 {
8019 #if (PAGE_SIZE < 8192)
8020 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8021 #else
8022 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8023 				SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8024 				SKB_DATA_ALIGN(size);
8025 #endif
8026 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8027 			rx_buffer->page_offset, size, truesize);
8028 #if (PAGE_SIZE < 8192)
8029 	rx_buffer->page_offset ^= truesize;
8030 #else
8031 	rx_buffer->page_offset += truesize;
8032 #endif
8033 }
8034 
8035 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8036 					 struct igb_rx_buffer *rx_buffer,
8037 					 union e1000_adv_rx_desc *rx_desc,
8038 					 unsigned int size)
8039 {
8040 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8041 #if (PAGE_SIZE < 8192)
8042 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8043 #else
8044 	unsigned int truesize = SKB_DATA_ALIGN(size);
8045 #endif
8046 	unsigned int headlen;
8047 	struct sk_buff *skb;
8048 
8049 	/* prefetch first cache line of first page */
8050 	prefetch(va);
8051 #if L1_CACHE_BYTES < 128
8052 	prefetch(va + L1_CACHE_BYTES);
8053 #endif
8054 
8055 	/* allocate a skb to store the frags */
8056 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8057 	if (unlikely(!skb))
8058 		return NULL;
8059 
8060 	if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
8061 		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
8062 		va += IGB_TS_HDR_LEN;
8063 		size -= IGB_TS_HDR_LEN;
8064 	}
8065 
8066 	/* Determine available headroom for copy */
8067 	headlen = size;
8068 	if (headlen > IGB_RX_HDR_LEN)
8069 		headlen = eth_get_headlen(skb->dev, va, IGB_RX_HDR_LEN);
8070 
8071 	/* align pull length to size of long to optimize memcpy performance */
8072 	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
8073 
8074 	/* update all of the pointers */
8075 	size -= headlen;
8076 	if (size) {
8077 		skb_add_rx_frag(skb, 0, rx_buffer->page,
8078 				(va + headlen) - page_address(rx_buffer->page),
8079 				size, truesize);
8080 #if (PAGE_SIZE < 8192)
8081 		rx_buffer->page_offset ^= truesize;
8082 #else
8083 		rx_buffer->page_offset += truesize;
8084 #endif
8085 	} else {
8086 		rx_buffer->pagecnt_bias++;
8087 	}
8088 
8089 	return skb;
8090 }
8091 
8092 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8093 				     struct igb_rx_buffer *rx_buffer,
8094 				     union e1000_adv_rx_desc *rx_desc,
8095 				     unsigned int size)
8096 {
8097 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8098 #if (PAGE_SIZE < 8192)
8099 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8100 #else
8101 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8102 				SKB_DATA_ALIGN(IGB_SKB_PAD + size);
8103 #endif
8104 	struct sk_buff *skb;
8105 
8106 	/* prefetch first cache line of first page */
8107 	prefetch(va);
8108 #if L1_CACHE_BYTES < 128
8109 	prefetch(va + L1_CACHE_BYTES);
8110 #endif
8111 
8112 	/* build an skb around the page buffer */
8113 	skb = build_skb(va - IGB_SKB_PAD, truesize);
8114 	if (unlikely(!skb))
8115 		return NULL;
8116 
8117 	/* update pointers within the skb to store the data */
8118 	skb_reserve(skb, IGB_SKB_PAD);
8119 	__skb_put(skb, size);
8120 
8121 	/* pull timestamp out of packet data */
8122 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8123 		igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
8124 		__skb_pull(skb, IGB_TS_HDR_LEN);
8125 	}
8126 
8127 	/* update buffer offset */
8128 #if (PAGE_SIZE < 8192)
8129 	rx_buffer->page_offset ^= truesize;
8130 #else
8131 	rx_buffer->page_offset += truesize;
8132 #endif
8133 
8134 	return skb;
8135 }
8136 
8137 static inline void igb_rx_checksum(struct igb_ring *ring,
8138 				   union e1000_adv_rx_desc *rx_desc,
8139 				   struct sk_buff *skb)
8140 {
8141 	skb_checksum_none_assert(skb);
8142 
8143 	/* Ignore Checksum bit is set */
8144 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8145 		return;
8146 
8147 	/* Rx checksum disabled via ethtool */
8148 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
8149 		return;
8150 
8151 	/* TCP/UDP checksum error bit is set */
8152 	if (igb_test_staterr(rx_desc,
8153 			     E1000_RXDEXT_STATERR_TCPE |
8154 			     E1000_RXDEXT_STATERR_IPE)) {
8155 		/* work around errata with sctp packets where the TCPE aka
8156 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8157 		 * packets, (aka let the stack check the crc32c)
8158 		 */
8159 		if (!((skb->len == 60) &&
8160 		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8161 			u64_stats_update_begin(&ring->rx_syncp);
8162 			ring->rx_stats.csum_err++;
8163 			u64_stats_update_end(&ring->rx_syncp);
8164 		}
8165 		/* let the stack verify checksum errors */
8166 		return;
8167 	}
8168 	/* It must be a TCP or UDP packet with a valid checksum */
8169 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8170 				      E1000_RXD_STAT_UDPCS))
8171 		skb->ip_summed = CHECKSUM_UNNECESSARY;
8172 
8173 	dev_dbg(ring->dev, "cksum success: bits %08X\n",
8174 		le32_to_cpu(rx_desc->wb.upper.status_error));
8175 }
8176 
8177 static inline void igb_rx_hash(struct igb_ring *ring,
8178 			       union e1000_adv_rx_desc *rx_desc,
8179 			       struct sk_buff *skb)
8180 {
8181 	if (ring->netdev->features & NETIF_F_RXHASH)
8182 		skb_set_hash(skb,
8183 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8184 			     PKT_HASH_TYPE_L3);
8185 }
8186 
8187 /**
8188  *  igb_is_non_eop - process handling of non-EOP buffers
8189  *  @rx_ring: Rx ring being processed
8190  *  @rx_desc: Rx descriptor for current buffer
8191  *  @skb: current socket buffer containing buffer in progress
8192  *
8193  *  This function updates next to clean.  If the buffer is an EOP buffer
8194  *  this function exits returning false, otherwise it will place the
8195  *  sk_buff in the next buffer to be chained and return true indicating
8196  *  that this is in fact a non-EOP buffer.
8197  **/
8198 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8199 			   union e1000_adv_rx_desc *rx_desc)
8200 {
8201 	u32 ntc = rx_ring->next_to_clean + 1;
8202 
8203 	/* fetch, update, and store next to clean */
8204 	ntc = (ntc < rx_ring->count) ? ntc : 0;
8205 	rx_ring->next_to_clean = ntc;
8206 
8207 	prefetch(IGB_RX_DESC(rx_ring, ntc));
8208 
8209 	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8210 		return false;
8211 
8212 	return true;
8213 }
8214 
8215 /**
8216  *  igb_cleanup_headers - Correct corrupted or empty headers
8217  *  @rx_ring: rx descriptor ring packet is being transacted on
8218  *  @rx_desc: pointer to the EOP Rx descriptor
8219  *  @skb: pointer to current skb being fixed
8220  *
8221  *  Address the case where we are pulling data in on pages only
8222  *  and as such no data is present in the skb header.
8223  *
8224  *  In addition if skb is not at least 60 bytes we need to pad it so that
8225  *  it is large enough to qualify as a valid Ethernet frame.
8226  *
8227  *  Returns true if an error was encountered and skb was freed.
8228  **/
8229 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8230 				union e1000_adv_rx_desc *rx_desc,
8231 				struct sk_buff *skb)
8232 {
8233 	if (unlikely((igb_test_staterr(rx_desc,
8234 				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8235 		struct net_device *netdev = rx_ring->netdev;
8236 		if (!(netdev->features & NETIF_F_RXALL)) {
8237 			dev_kfree_skb_any(skb);
8238 			return true;
8239 		}
8240 	}
8241 
8242 	/* if eth_skb_pad returns an error the skb was freed */
8243 	if (eth_skb_pad(skb))
8244 		return true;
8245 
8246 	return false;
8247 }
8248 
8249 /**
8250  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
8251  *  @rx_ring: rx descriptor ring packet is being transacted on
8252  *  @rx_desc: pointer to the EOP Rx descriptor
8253  *  @skb: pointer to current skb being populated
8254  *
8255  *  This function checks the ring, descriptor, and packet information in
8256  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
8257  *  other fields within the skb.
8258  **/
8259 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8260 				   union e1000_adv_rx_desc *rx_desc,
8261 				   struct sk_buff *skb)
8262 {
8263 	struct net_device *dev = rx_ring->netdev;
8264 
8265 	igb_rx_hash(rx_ring, rx_desc, skb);
8266 
8267 	igb_rx_checksum(rx_ring, rx_desc, skb);
8268 
8269 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8270 	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8271 		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8272 
8273 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8274 	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8275 		u16 vid;
8276 
8277 		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8278 		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8279 			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
8280 		else
8281 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8282 
8283 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8284 	}
8285 
8286 	skb_record_rx_queue(skb, rx_ring->queue_index);
8287 
8288 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8289 }
8290 
8291 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8292 					       const unsigned int size)
8293 {
8294 	struct igb_rx_buffer *rx_buffer;
8295 
8296 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8297 	prefetchw(rx_buffer->page);
8298 
8299 	/* we are reusing so sync this buffer for CPU use */
8300 	dma_sync_single_range_for_cpu(rx_ring->dev,
8301 				      rx_buffer->dma,
8302 				      rx_buffer->page_offset,
8303 				      size,
8304 				      DMA_FROM_DEVICE);
8305 
8306 	rx_buffer->pagecnt_bias--;
8307 
8308 	return rx_buffer;
8309 }
8310 
8311 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8312 			      struct igb_rx_buffer *rx_buffer)
8313 {
8314 	if (igb_can_reuse_rx_page(rx_buffer)) {
8315 		/* hand second half of page back to the ring */
8316 		igb_reuse_rx_page(rx_ring, rx_buffer);
8317 	} else {
8318 		/* We are not reusing the buffer so unmap it and free
8319 		 * any references we are holding to it
8320 		 */
8321 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8322 				     igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8323 				     IGB_RX_DMA_ATTR);
8324 		__page_frag_cache_drain(rx_buffer->page,
8325 					rx_buffer->pagecnt_bias);
8326 	}
8327 
8328 	/* clear contents of rx_buffer */
8329 	rx_buffer->page = NULL;
8330 }
8331 
8332 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8333 {
8334 	struct igb_ring *rx_ring = q_vector->rx.ring;
8335 	struct sk_buff *skb = rx_ring->skb;
8336 	unsigned int total_bytes = 0, total_packets = 0;
8337 	u16 cleaned_count = igb_desc_unused(rx_ring);
8338 
8339 	while (likely(total_packets < budget)) {
8340 		union e1000_adv_rx_desc *rx_desc;
8341 		struct igb_rx_buffer *rx_buffer;
8342 		unsigned int size;
8343 
8344 		/* return some buffers to hardware, one at a time is too slow */
8345 		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8346 			igb_alloc_rx_buffers(rx_ring, cleaned_count);
8347 			cleaned_count = 0;
8348 		}
8349 
8350 		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8351 		size = le16_to_cpu(rx_desc->wb.upper.length);
8352 		if (!size)
8353 			break;
8354 
8355 		/* This memory barrier is needed to keep us from reading
8356 		 * any other fields out of the rx_desc until we know the
8357 		 * descriptor has been written back
8358 		 */
8359 		dma_rmb();
8360 
8361 		rx_buffer = igb_get_rx_buffer(rx_ring, size);
8362 
8363 		/* retrieve a buffer from the ring */
8364 		if (skb)
8365 			igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8366 		else if (ring_uses_build_skb(rx_ring))
8367 			skb = igb_build_skb(rx_ring, rx_buffer, rx_desc, size);
8368 		else
8369 			skb = igb_construct_skb(rx_ring, rx_buffer,
8370 						rx_desc, size);
8371 
8372 		/* exit if we failed to retrieve a buffer */
8373 		if (!skb) {
8374 			rx_ring->rx_stats.alloc_failed++;
8375 			rx_buffer->pagecnt_bias++;
8376 			break;
8377 		}
8378 
8379 		igb_put_rx_buffer(rx_ring, rx_buffer);
8380 		cleaned_count++;
8381 
8382 		/* fetch next buffer in frame if non-eop */
8383 		if (igb_is_non_eop(rx_ring, rx_desc))
8384 			continue;
8385 
8386 		/* verify the packet layout is correct */
8387 		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8388 			skb = NULL;
8389 			continue;
8390 		}
8391 
8392 		/* probably a little skewed due to removing CRC */
8393 		total_bytes += skb->len;
8394 
8395 		/* populate checksum, timestamp, VLAN, and protocol */
8396 		igb_process_skb_fields(rx_ring, rx_desc, skb);
8397 
8398 		napi_gro_receive(&q_vector->napi, skb);
8399 
8400 		/* reset skb pointer */
8401 		skb = NULL;
8402 
8403 		/* update budget accounting */
8404 		total_packets++;
8405 	}
8406 
8407 	/* place incomplete frames back on ring for completion */
8408 	rx_ring->skb = skb;
8409 
8410 	u64_stats_update_begin(&rx_ring->rx_syncp);
8411 	rx_ring->rx_stats.packets += total_packets;
8412 	rx_ring->rx_stats.bytes += total_bytes;
8413 	u64_stats_update_end(&rx_ring->rx_syncp);
8414 	q_vector->rx.total_packets += total_packets;
8415 	q_vector->rx.total_bytes += total_bytes;
8416 
8417 	if (cleaned_count)
8418 		igb_alloc_rx_buffers(rx_ring, cleaned_count);
8419 
8420 	return total_packets;
8421 }
8422 
8423 static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8424 {
8425 	return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8426 }
8427 
8428 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8429 				  struct igb_rx_buffer *bi)
8430 {
8431 	struct page *page = bi->page;
8432 	dma_addr_t dma;
8433 
8434 	/* since we are recycling buffers we should seldom need to alloc */
8435 	if (likely(page))
8436 		return true;
8437 
8438 	/* alloc new page for storage */
8439 	page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8440 	if (unlikely(!page)) {
8441 		rx_ring->rx_stats.alloc_failed++;
8442 		return false;
8443 	}
8444 
8445 	/* map page for use */
8446 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8447 				 igb_rx_pg_size(rx_ring),
8448 				 DMA_FROM_DEVICE,
8449 				 IGB_RX_DMA_ATTR);
8450 
8451 	/* if mapping failed free memory back to system since
8452 	 * there isn't much point in holding memory we can't use
8453 	 */
8454 	if (dma_mapping_error(rx_ring->dev, dma)) {
8455 		__free_pages(page, igb_rx_pg_order(rx_ring));
8456 
8457 		rx_ring->rx_stats.alloc_failed++;
8458 		return false;
8459 	}
8460 
8461 	bi->dma = dma;
8462 	bi->page = page;
8463 	bi->page_offset = igb_rx_offset(rx_ring);
8464 	bi->pagecnt_bias = 1;
8465 
8466 	return true;
8467 }
8468 
8469 /**
8470  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
8471  *  @adapter: address of board private structure
8472  **/
8473 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
8474 {
8475 	union e1000_adv_rx_desc *rx_desc;
8476 	struct igb_rx_buffer *bi;
8477 	u16 i = rx_ring->next_to_use;
8478 	u16 bufsz;
8479 
8480 	/* nothing to do */
8481 	if (!cleaned_count)
8482 		return;
8483 
8484 	rx_desc = IGB_RX_DESC(rx_ring, i);
8485 	bi = &rx_ring->rx_buffer_info[i];
8486 	i -= rx_ring->count;
8487 
8488 	bufsz = igb_rx_bufsz(rx_ring);
8489 
8490 	do {
8491 		if (!igb_alloc_mapped_page(rx_ring, bi))
8492 			break;
8493 
8494 		/* sync the buffer for use by the device */
8495 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
8496 						 bi->page_offset, bufsz,
8497 						 DMA_FROM_DEVICE);
8498 
8499 		/* Refresh the desc even if buffer_addrs didn't change
8500 		 * because each write-back erases this info.
8501 		 */
8502 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8503 
8504 		rx_desc++;
8505 		bi++;
8506 		i++;
8507 		if (unlikely(!i)) {
8508 			rx_desc = IGB_RX_DESC(rx_ring, 0);
8509 			bi = rx_ring->rx_buffer_info;
8510 			i -= rx_ring->count;
8511 		}
8512 
8513 		/* clear the length for the next_to_use descriptor */
8514 		rx_desc->wb.upper.length = 0;
8515 
8516 		cleaned_count--;
8517 	} while (cleaned_count);
8518 
8519 	i += rx_ring->count;
8520 
8521 	if (rx_ring->next_to_use != i) {
8522 		/* record the next descriptor to use */
8523 		rx_ring->next_to_use = i;
8524 
8525 		/* update next to alloc since we have filled the ring */
8526 		rx_ring->next_to_alloc = i;
8527 
8528 		/* Force memory writes to complete before letting h/w
8529 		 * know there are new descriptors to fetch.  (Only
8530 		 * applicable for weak-ordered memory model archs,
8531 		 * such as IA-64).
8532 		 */
8533 		dma_wmb();
8534 		writel(i, rx_ring->tail);
8535 	}
8536 }
8537 
8538 /**
8539  * igb_mii_ioctl -
8540  * @netdev:
8541  * @ifreq:
8542  * @cmd:
8543  **/
8544 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8545 {
8546 	struct igb_adapter *adapter = netdev_priv(netdev);
8547 	struct mii_ioctl_data *data = if_mii(ifr);
8548 
8549 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
8550 		return -EOPNOTSUPP;
8551 
8552 	switch (cmd) {
8553 	case SIOCGMIIPHY:
8554 		data->phy_id = adapter->hw.phy.addr;
8555 		break;
8556 	case SIOCGMIIREG:
8557 		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
8558 				     &data->val_out))
8559 			return -EIO;
8560 		break;
8561 	case SIOCSMIIREG:
8562 	default:
8563 		return -EOPNOTSUPP;
8564 	}
8565 	return 0;
8566 }
8567 
8568 /**
8569  * igb_ioctl -
8570  * @netdev:
8571  * @ifreq:
8572  * @cmd:
8573  **/
8574 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8575 {
8576 	switch (cmd) {
8577 	case SIOCGMIIPHY:
8578 	case SIOCGMIIREG:
8579 	case SIOCSMIIREG:
8580 		return igb_mii_ioctl(netdev, ifr, cmd);
8581 	case SIOCGHWTSTAMP:
8582 		return igb_ptp_get_ts_config(netdev, ifr);
8583 	case SIOCSHWTSTAMP:
8584 		return igb_ptp_set_ts_config(netdev, ifr);
8585 	default:
8586 		return -EOPNOTSUPP;
8587 	}
8588 }
8589 
8590 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8591 {
8592 	struct igb_adapter *adapter = hw->back;
8593 
8594 	pci_read_config_word(adapter->pdev, reg, value);
8595 }
8596 
8597 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8598 {
8599 	struct igb_adapter *adapter = hw->back;
8600 
8601 	pci_write_config_word(adapter->pdev, reg, *value);
8602 }
8603 
8604 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8605 {
8606 	struct igb_adapter *adapter = hw->back;
8607 
8608 	if (pcie_capability_read_word(adapter->pdev, reg, value))
8609 		return -E1000_ERR_CONFIG;
8610 
8611 	return 0;
8612 }
8613 
8614 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8615 {
8616 	struct igb_adapter *adapter = hw->back;
8617 
8618 	if (pcie_capability_write_word(adapter->pdev, reg, *value))
8619 		return -E1000_ERR_CONFIG;
8620 
8621 	return 0;
8622 }
8623 
8624 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
8625 {
8626 	struct igb_adapter *adapter = netdev_priv(netdev);
8627 	struct e1000_hw *hw = &adapter->hw;
8628 	u32 ctrl, rctl;
8629 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
8630 
8631 	if (enable) {
8632 		/* enable VLAN tag insert/strip */
8633 		ctrl = rd32(E1000_CTRL);
8634 		ctrl |= E1000_CTRL_VME;
8635 		wr32(E1000_CTRL, ctrl);
8636 
8637 		/* Disable CFI check */
8638 		rctl = rd32(E1000_RCTL);
8639 		rctl &= ~E1000_RCTL_CFIEN;
8640 		wr32(E1000_RCTL, rctl);
8641 	} else {
8642 		/* disable VLAN tag insert/strip */
8643 		ctrl = rd32(E1000_CTRL);
8644 		ctrl &= ~E1000_CTRL_VME;
8645 		wr32(E1000_CTRL, ctrl);
8646 	}
8647 
8648 	igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
8649 }
8650 
8651 static int igb_vlan_rx_add_vid(struct net_device *netdev,
8652 			       __be16 proto, u16 vid)
8653 {
8654 	struct igb_adapter *adapter = netdev_priv(netdev);
8655 	struct e1000_hw *hw = &adapter->hw;
8656 	int pf_id = adapter->vfs_allocated_count;
8657 
8658 	/* add the filter since PF can receive vlans w/o entry in vlvf */
8659 	if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8660 		igb_vfta_set(hw, vid, pf_id, true, !!vid);
8661 
8662 	set_bit(vid, adapter->active_vlans);
8663 
8664 	return 0;
8665 }
8666 
8667 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
8668 				__be16 proto, u16 vid)
8669 {
8670 	struct igb_adapter *adapter = netdev_priv(netdev);
8671 	int pf_id = adapter->vfs_allocated_count;
8672 	struct e1000_hw *hw = &adapter->hw;
8673 
8674 	/* remove VID from filter table */
8675 	if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8676 		igb_vfta_set(hw, vid, pf_id, false, true);
8677 
8678 	clear_bit(vid, adapter->active_vlans);
8679 
8680 	return 0;
8681 }
8682 
8683 static void igb_restore_vlan(struct igb_adapter *adapter)
8684 {
8685 	u16 vid = 1;
8686 
8687 	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
8688 	igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
8689 
8690 	for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
8691 		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
8692 }
8693 
8694 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
8695 {
8696 	struct pci_dev *pdev = adapter->pdev;
8697 	struct e1000_mac_info *mac = &adapter->hw.mac;
8698 
8699 	mac->autoneg = 0;
8700 
8701 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
8702 	 * for the switch() below to work
8703 	 */
8704 	if ((spd & 1) || (dplx & ~1))
8705 		goto err_inval;
8706 
8707 	/* Fiber NIC's only allow 1000 gbps Full duplex
8708 	 * and 100Mbps Full duplex for 100baseFx sfp
8709 	 */
8710 	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
8711 		switch (spd + dplx) {
8712 		case SPEED_10 + DUPLEX_HALF:
8713 		case SPEED_10 + DUPLEX_FULL:
8714 		case SPEED_100 + DUPLEX_HALF:
8715 			goto err_inval;
8716 		default:
8717 			break;
8718 		}
8719 	}
8720 
8721 	switch (spd + dplx) {
8722 	case SPEED_10 + DUPLEX_HALF:
8723 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
8724 		break;
8725 	case SPEED_10 + DUPLEX_FULL:
8726 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
8727 		break;
8728 	case SPEED_100 + DUPLEX_HALF:
8729 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
8730 		break;
8731 	case SPEED_100 + DUPLEX_FULL:
8732 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
8733 		break;
8734 	case SPEED_1000 + DUPLEX_FULL:
8735 		mac->autoneg = 1;
8736 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
8737 		break;
8738 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
8739 	default:
8740 		goto err_inval;
8741 	}
8742 
8743 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
8744 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
8745 
8746 	return 0;
8747 
8748 err_inval:
8749 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
8750 	return -EINVAL;
8751 }
8752 
8753 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
8754 			  bool runtime)
8755 {
8756 	struct net_device *netdev = pci_get_drvdata(pdev);
8757 	struct igb_adapter *adapter = netdev_priv(netdev);
8758 	struct e1000_hw *hw = &adapter->hw;
8759 	u32 ctrl, rctl, status;
8760 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
8761 	bool wake;
8762 
8763 	rtnl_lock();
8764 	netif_device_detach(netdev);
8765 
8766 	if (netif_running(netdev))
8767 		__igb_close(netdev, true);
8768 
8769 	igb_ptp_suspend(adapter);
8770 
8771 	igb_clear_interrupt_scheme(adapter);
8772 	rtnl_unlock();
8773 
8774 	status = rd32(E1000_STATUS);
8775 	if (status & E1000_STATUS_LU)
8776 		wufc &= ~E1000_WUFC_LNKC;
8777 
8778 	if (wufc) {
8779 		igb_setup_rctl(adapter);
8780 		igb_set_rx_mode(netdev);
8781 
8782 		/* turn on all-multi mode if wake on multicast is enabled */
8783 		if (wufc & E1000_WUFC_MC) {
8784 			rctl = rd32(E1000_RCTL);
8785 			rctl |= E1000_RCTL_MPE;
8786 			wr32(E1000_RCTL, rctl);
8787 		}
8788 
8789 		ctrl = rd32(E1000_CTRL);
8790 		ctrl |= E1000_CTRL_ADVD3WUC;
8791 		wr32(E1000_CTRL, ctrl);
8792 
8793 		/* Allow time for pending master requests to run */
8794 		igb_disable_pcie_master(hw);
8795 
8796 		wr32(E1000_WUC, E1000_WUC_PME_EN);
8797 		wr32(E1000_WUFC, wufc);
8798 	} else {
8799 		wr32(E1000_WUC, 0);
8800 		wr32(E1000_WUFC, 0);
8801 	}
8802 
8803 	wake = wufc || adapter->en_mng_pt;
8804 	if (!wake)
8805 		igb_power_down_link(adapter);
8806 	else
8807 		igb_power_up_link(adapter);
8808 
8809 	if (enable_wake)
8810 		*enable_wake = wake;
8811 
8812 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
8813 	 * would have already happened in close and is redundant.
8814 	 */
8815 	igb_release_hw_control(adapter);
8816 
8817 	pci_disable_device(pdev);
8818 
8819 	return 0;
8820 }
8821 
8822 static void igb_deliver_wake_packet(struct net_device *netdev)
8823 {
8824 	struct igb_adapter *adapter = netdev_priv(netdev);
8825 	struct e1000_hw *hw = &adapter->hw;
8826 	struct sk_buff *skb;
8827 	u32 wupl;
8828 
8829 	wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
8830 
8831 	/* WUPM stores only the first 128 bytes of the wake packet.
8832 	 * Read the packet only if we have the whole thing.
8833 	 */
8834 	if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
8835 		return;
8836 
8837 	skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
8838 	if (!skb)
8839 		return;
8840 
8841 	skb_put(skb, wupl);
8842 
8843 	/* Ensure reads are 32-bit aligned */
8844 	wupl = roundup(wupl, 4);
8845 
8846 	memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
8847 
8848 	skb->protocol = eth_type_trans(skb, netdev);
8849 	netif_rx(skb);
8850 }
8851 
8852 static int __maybe_unused igb_suspend(struct device *dev)
8853 {
8854 	return __igb_shutdown(to_pci_dev(dev), NULL, 0);
8855 }
8856 
8857 static int __maybe_unused igb_resume(struct device *dev)
8858 {
8859 	struct pci_dev *pdev = to_pci_dev(dev);
8860 	struct net_device *netdev = pci_get_drvdata(pdev);
8861 	struct igb_adapter *adapter = netdev_priv(netdev);
8862 	struct e1000_hw *hw = &adapter->hw;
8863 	u32 err, val;
8864 
8865 	pci_set_power_state(pdev, PCI_D0);
8866 	pci_restore_state(pdev);
8867 	pci_save_state(pdev);
8868 
8869 	if (!pci_device_is_present(pdev))
8870 		return -ENODEV;
8871 	err = pci_enable_device_mem(pdev);
8872 	if (err) {
8873 		dev_err(&pdev->dev,
8874 			"igb: Cannot enable PCI device from suspend\n");
8875 		return err;
8876 	}
8877 	pci_set_master(pdev);
8878 
8879 	pci_enable_wake(pdev, PCI_D3hot, 0);
8880 	pci_enable_wake(pdev, PCI_D3cold, 0);
8881 
8882 	if (igb_init_interrupt_scheme(adapter, true)) {
8883 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8884 		return -ENOMEM;
8885 	}
8886 
8887 	igb_reset(adapter);
8888 
8889 	/* let the f/w know that the h/w is now under the control of the
8890 	 * driver.
8891 	 */
8892 	igb_get_hw_control(adapter);
8893 
8894 	val = rd32(E1000_WUS);
8895 	if (val & WAKE_PKT_WUS)
8896 		igb_deliver_wake_packet(netdev);
8897 
8898 	wr32(E1000_WUS, ~0);
8899 
8900 	rtnl_lock();
8901 	if (!err && netif_running(netdev))
8902 		err = __igb_open(netdev, true);
8903 
8904 	if (!err)
8905 		netif_device_attach(netdev);
8906 	rtnl_unlock();
8907 
8908 	return err;
8909 }
8910 
8911 static int __maybe_unused igb_runtime_idle(struct device *dev)
8912 {
8913 	struct net_device *netdev = dev_get_drvdata(dev);
8914 	struct igb_adapter *adapter = netdev_priv(netdev);
8915 
8916 	if (!igb_has_link(adapter))
8917 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
8918 
8919 	return -EBUSY;
8920 }
8921 
8922 static int __maybe_unused igb_runtime_suspend(struct device *dev)
8923 {
8924 	return __igb_shutdown(to_pci_dev(dev), NULL, 1);
8925 }
8926 
8927 static int __maybe_unused igb_runtime_resume(struct device *dev)
8928 {
8929 	return igb_resume(dev);
8930 }
8931 
8932 static void igb_shutdown(struct pci_dev *pdev)
8933 {
8934 	bool wake;
8935 
8936 	__igb_shutdown(pdev, &wake, 0);
8937 
8938 	if (system_state == SYSTEM_POWER_OFF) {
8939 		pci_wake_from_d3(pdev, wake);
8940 		pci_set_power_state(pdev, PCI_D3hot);
8941 	}
8942 }
8943 
8944 #ifdef CONFIG_PCI_IOV
8945 static int igb_sriov_reinit(struct pci_dev *dev)
8946 {
8947 	struct net_device *netdev = pci_get_drvdata(dev);
8948 	struct igb_adapter *adapter = netdev_priv(netdev);
8949 	struct pci_dev *pdev = adapter->pdev;
8950 
8951 	rtnl_lock();
8952 
8953 	if (netif_running(netdev))
8954 		igb_close(netdev);
8955 	else
8956 		igb_reset(adapter);
8957 
8958 	igb_clear_interrupt_scheme(adapter);
8959 
8960 	igb_init_queue_configuration(adapter);
8961 
8962 	if (igb_init_interrupt_scheme(adapter, true)) {
8963 		rtnl_unlock();
8964 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8965 		return -ENOMEM;
8966 	}
8967 
8968 	if (netif_running(netdev))
8969 		igb_open(netdev);
8970 
8971 	rtnl_unlock();
8972 
8973 	return 0;
8974 }
8975 
8976 static int igb_pci_disable_sriov(struct pci_dev *dev)
8977 {
8978 	int err = igb_disable_sriov(dev);
8979 
8980 	if (!err)
8981 		err = igb_sriov_reinit(dev);
8982 
8983 	return err;
8984 }
8985 
8986 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
8987 {
8988 	int err = igb_enable_sriov(dev, num_vfs);
8989 
8990 	if (err)
8991 		goto out;
8992 
8993 	err = igb_sriov_reinit(dev);
8994 	if (!err)
8995 		return num_vfs;
8996 
8997 out:
8998 	return err;
8999 }
9000 
9001 #endif
9002 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9003 {
9004 #ifdef CONFIG_PCI_IOV
9005 	if (num_vfs == 0)
9006 		return igb_pci_disable_sriov(dev);
9007 	else
9008 		return igb_pci_enable_sriov(dev, num_vfs);
9009 #endif
9010 	return 0;
9011 }
9012 
9013 /**
9014  *  igb_io_error_detected - called when PCI error is detected
9015  *  @pdev: Pointer to PCI device
9016  *  @state: The current pci connection state
9017  *
9018  *  This function is called after a PCI bus error affecting
9019  *  this device has been detected.
9020  **/
9021 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9022 					      pci_channel_state_t state)
9023 {
9024 	struct net_device *netdev = pci_get_drvdata(pdev);
9025 	struct igb_adapter *adapter = netdev_priv(netdev);
9026 
9027 	netif_device_detach(netdev);
9028 
9029 	if (state == pci_channel_io_perm_failure)
9030 		return PCI_ERS_RESULT_DISCONNECT;
9031 
9032 	if (netif_running(netdev))
9033 		igb_down(adapter);
9034 	pci_disable_device(pdev);
9035 
9036 	/* Request a slot slot reset. */
9037 	return PCI_ERS_RESULT_NEED_RESET;
9038 }
9039 
9040 /**
9041  *  igb_io_slot_reset - called after the pci bus has been reset.
9042  *  @pdev: Pointer to PCI device
9043  *
9044  *  Restart the card from scratch, as if from a cold-boot. Implementation
9045  *  resembles the first-half of the igb_resume routine.
9046  **/
9047 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9048 {
9049 	struct net_device *netdev = pci_get_drvdata(pdev);
9050 	struct igb_adapter *adapter = netdev_priv(netdev);
9051 	struct e1000_hw *hw = &adapter->hw;
9052 	pci_ers_result_t result;
9053 
9054 	if (pci_enable_device_mem(pdev)) {
9055 		dev_err(&pdev->dev,
9056 			"Cannot re-enable PCI device after reset.\n");
9057 		result = PCI_ERS_RESULT_DISCONNECT;
9058 	} else {
9059 		pci_set_master(pdev);
9060 		pci_restore_state(pdev);
9061 		pci_save_state(pdev);
9062 
9063 		pci_enable_wake(pdev, PCI_D3hot, 0);
9064 		pci_enable_wake(pdev, PCI_D3cold, 0);
9065 
9066 		/* In case of PCI error, adapter lose its HW address
9067 		 * so we should re-assign it here.
9068 		 */
9069 		hw->hw_addr = adapter->io_addr;
9070 
9071 		igb_reset(adapter);
9072 		wr32(E1000_WUS, ~0);
9073 		result = PCI_ERS_RESULT_RECOVERED;
9074 	}
9075 
9076 	return result;
9077 }
9078 
9079 /**
9080  *  igb_io_resume - called when traffic can start flowing again.
9081  *  @pdev: Pointer to PCI device
9082  *
9083  *  This callback is called when the error recovery driver tells us that
9084  *  its OK to resume normal operation. Implementation resembles the
9085  *  second-half of the igb_resume routine.
9086  */
9087 static void igb_io_resume(struct pci_dev *pdev)
9088 {
9089 	struct net_device *netdev = pci_get_drvdata(pdev);
9090 	struct igb_adapter *adapter = netdev_priv(netdev);
9091 
9092 	if (netif_running(netdev)) {
9093 		if (igb_up(adapter)) {
9094 			dev_err(&pdev->dev, "igb_up failed after reset\n");
9095 			return;
9096 		}
9097 	}
9098 
9099 	netif_device_attach(netdev);
9100 
9101 	/* let the f/w know that the h/w is now under the control of the
9102 	 * driver.
9103 	 */
9104 	igb_get_hw_control(adapter);
9105 }
9106 
9107 /**
9108  *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9109  *  @adapter: Pointer to adapter structure
9110  *  @index: Index of the RAR entry which need to be synced with MAC table
9111  **/
9112 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9113 {
9114 	struct e1000_hw *hw = &adapter->hw;
9115 	u32 rar_low, rar_high;
9116 	u8 *addr = adapter->mac_table[index].addr;
9117 
9118 	/* HW expects these to be in network order when they are plugged
9119 	 * into the registers which are little endian.  In order to guarantee
9120 	 * that ordering we need to do an leXX_to_cpup here in order to be
9121 	 * ready for the byteswap that occurs with writel
9122 	 */
9123 	rar_low = le32_to_cpup((__le32 *)(addr));
9124 	rar_high = le16_to_cpup((__le16 *)(addr + 4));
9125 
9126 	/* Indicate to hardware the Address is Valid. */
9127 	if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9128 		if (is_valid_ether_addr(addr))
9129 			rar_high |= E1000_RAH_AV;
9130 
9131 		if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9132 			rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9133 
9134 		switch (hw->mac.type) {
9135 		case e1000_82575:
9136 		case e1000_i210:
9137 			if (adapter->mac_table[index].state &
9138 			    IGB_MAC_STATE_QUEUE_STEERING)
9139 				rar_high |= E1000_RAH_QSEL_ENABLE;
9140 
9141 			rar_high |= E1000_RAH_POOL_1 *
9142 				    adapter->mac_table[index].queue;
9143 			break;
9144 		default:
9145 			rar_high |= E1000_RAH_POOL_1 <<
9146 				    adapter->mac_table[index].queue;
9147 			break;
9148 		}
9149 	}
9150 
9151 	wr32(E1000_RAL(index), rar_low);
9152 	wrfl();
9153 	wr32(E1000_RAH(index), rar_high);
9154 	wrfl();
9155 }
9156 
9157 static int igb_set_vf_mac(struct igb_adapter *adapter,
9158 			  int vf, unsigned char *mac_addr)
9159 {
9160 	struct e1000_hw *hw = &adapter->hw;
9161 	/* VF MAC addresses start at end of receive addresses and moves
9162 	 * towards the first, as a result a collision should not be possible
9163 	 */
9164 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9165 	unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9166 
9167 	ether_addr_copy(vf_mac_addr, mac_addr);
9168 	ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9169 	adapter->mac_table[rar_entry].queue = vf;
9170 	adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9171 	igb_rar_set_index(adapter, rar_entry);
9172 
9173 	return 0;
9174 }
9175 
9176 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9177 {
9178 	struct igb_adapter *adapter = netdev_priv(netdev);
9179 
9180 	if (vf >= adapter->vfs_allocated_count)
9181 		return -EINVAL;
9182 
9183 	/* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9184 	 * flag and allows to overwrite the MAC via VF netdev.  This
9185 	 * is necessary to allow libvirt a way to restore the original
9186 	 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9187 	 * down a VM.
9188 	 */
9189 	if (is_zero_ether_addr(mac)) {
9190 		adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9191 		dev_info(&adapter->pdev->dev,
9192 			 "remove administratively set MAC on VF %d\n",
9193 			 vf);
9194 	} else if (is_valid_ether_addr(mac)) {
9195 		adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9196 		dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9197 			 mac, vf);
9198 		dev_info(&adapter->pdev->dev,
9199 			 "Reload the VF driver to make this change effective.");
9200 		/* Generate additional warning if PF is down */
9201 		if (test_bit(__IGB_DOWN, &adapter->state)) {
9202 			dev_warn(&adapter->pdev->dev,
9203 				 "The VF MAC address has been set, but the PF device is not up.\n");
9204 			dev_warn(&adapter->pdev->dev,
9205 				 "Bring the PF device up before attempting to use the VF device.\n");
9206 		}
9207 	} else {
9208 		return -EINVAL;
9209 	}
9210 	return igb_set_vf_mac(adapter, vf, mac);
9211 }
9212 
9213 static int igb_link_mbps(int internal_link_speed)
9214 {
9215 	switch (internal_link_speed) {
9216 	case SPEED_100:
9217 		return 100;
9218 	case SPEED_1000:
9219 		return 1000;
9220 	default:
9221 		return 0;
9222 	}
9223 }
9224 
9225 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9226 				  int link_speed)
9227 {
9228 	int rf_dec, rf_int;
9229 	u32 bcnrc_val;
9230 
9231 	if (tx_rate != 0) {
9232 		/* Calculate the rate factor values to set */
9233 		rf_int = link_speed / tx_rate;
9234 		rf_dec = (link_speed - (rf_int * tx_rate));
9235 		rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9236 			 tx_rate;
9237 
9238 		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9239 		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9240 			      E1000_RTTBCNRC_RF_INT_MASK);
9241 		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9242 	} else {
9243 		bcnrc_val = 0;
9244 	}
9245 
9246 	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9247 	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9248 	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9249 	 */
9250 	wr32(E1000_RTTBCNRM, 0x14);
9251 	wr32(E1000_RTTBCNRC, bcnrc_val);
9252 }
9253 
9254 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9255 {
9256 	int actual_link_speed, i;
9257 	bool reset_rate = false;
9258 
9259 	/* VF TX rate limit was not set or not supported */
9260 	if ((adapter->vf_rate_link_speed == 0) ||
9261 	    (adapter->hw.mac.type != e1000_82576))
9262 		return;
9263 
9264 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9265 	if (actual_link_speed != adapter->vf_rate_link_speed) {
9266 		reset_rate = true;
9267 		adapter->vf_rate_link_speed = 0;
9268 		dev_info(&adapter->pdev->dev,
9269 			 "Link speed has been changed. VF Transmit rate is disabled\n");
9270 	}
9271 
9272 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
9273 		if (reset_rate)
9274 			adapter->vf_data[i].tx_rate = 0;
9275 
9276 		igb_set_vf_rate_limit(&adapter->hw, i,
9277 				      adapter->vf_data[i].tx_rate,
9278 				      actual_link_speed);
9279 	}
9280 }
9281 
9282 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9283 			     int min_tx_rate, int max_tx_rate)
9284 {
9285 	struct igb_adapter *adapter = netdev_priv(netdev);
9286 	struct e1000_hw *hw = &adapter->hw;
9287 	int actual_link_speed;
9288 
9289 	if (hw->mac.type != e1000_82576)
9290 		return -EOPNOTSUPP;
9291 
9292 	if (min_tx_rate)
9293 		return -EINVAL;
9294 
9295 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9296 	if ((vf >= adapter->vfs_allocated_count) ||
9297 	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9298 	    (max_tx_rate < 0) ||
9299 	    (max_tx_rate > actual_link_speed))
9300 		return -EINVAL;
9301 
9302 	adapter->vf_rate_link_speed = actual_link_speed;
9303 	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9304 	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9305 
9306 	return 0;
9307 }
9308 
9309 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9310 				   bool setting)
9311 {
9312 	struct igb_adapter *adapter = netdev_priv(netdev);
9313 	struct e1000_hw *hw = &adapter->hw;
9314 	u32 reg_val, reg_offset;
9315 
9316 	if (!adapter->vfs_allocated_count)
9317 		return -EOPNOTSUPP;
9318 
9319 	if (vf >= adapter->vfs_allocated_count)
9320 		return -EINVAL;
9321 
9322 	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9323 	reg_val = rd32(reg_offset);
9324 	if (setting)
9325 		reg_val |= (BIT(vf) |
9326 			    BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9327 	else
9328 		reg_val &= ~(BIT(vf) |
9329 			     BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9330 	wr32(reg_offset, reg_val);
9331 
9332 	adapter->vf_data[vf].spoofchk_enabled = setting;
9333 	return 0;
9334 }
9335 
9336 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9337 {
9338 	struct igb_adapter *adapter = netdev_priv(netdev);
9339 
9340 	if (vf >= adapter->vfs_allocated_count)
9341 		return -EINVAL;
9342 	if (adapter->vf_data[vf].trusted == setting)
9343 		return 0;
9344 
9345 	adapter->vf_data[vf].trusted = setting;
9346 
9347 	dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9348 		 vf, setting ? "" : "not ");
9349 	return 0;
9350 }
9351 
9352 static int igb_ndo_get_vf_config(struct net_device *netdev,
9353 				 int vf, struct ifla_vf_info *ivi)
9354 {
9355 	struct igb_adapter *adapter = netdev_priv(netdev);
9356 	if (vf >= adapter->vfs_allocated_count)
9357 		return -EINVAL;
9358 	ivi->vf = vf;
9359 	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9360 	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9361 	ivi->min_tx_rate = 0;
9362 	ivi->vlan = adapter->vf_data[vf].pf_vlan;
9363 	ivi->qos = adapter->vf_data[vf].pf_qos;
9364 	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9365 	ivi->trusted = adapter->vf_data[vf].trusted;
9366 	return 0;
9367 }
9368 
9369 static void igb_vmm_control(struct igb_adapter *adapter)
9370 {
9371 	struct e1000_hw *hw = &adapter->hw;
9372 	u32 reg;
9373 
9374 	switch (hw->mac.type) {
9375 	case e1000_82575:
9376 	case e1000_i210:
9377 	case e1000_i211:
9378 	case e1000_i354:
9379 	default:
9380 		/* replication is not supported for 82575 */
9381 		return;
9382 	case e1000_82576:
9383 		/* notify HW that the MAC is adding vlan tags */
9384 		reg = rd32(E1000_DTXCTL);
9385 		reg |= E1000_DTXCTL_VLAN_ADDED;
9386 		wr32(E1000_DTXCTL, reg);
9387 		fallthrough;
9388 	case e1000_82580:
9389 		/* enable replication vlan tag stripping */
9390 		reg = rd32(E1000_RPLOLR);
9391 		reg |= E1000_RPLOLR_STRVLAN;
9392 		wr32(E1000_RPLOLR, reg);
9393 		fallthrough;
9394 	case e1000_i350:
9395 		/* none of the above registers are supported by i350 */
9396 		break;
9397 	}
9398 
9399 	if (adapter->vfs_allocated_count) {
9400 		igb_vmdq_set_loopback_pf(hw, true);
9401 		igb_vmdq_set_replication_pf(hw, true);
9402 		igb_vmdq_set_anti_spoofing_pf(hw, true,
9403 					      adapter->vfs_allocated_count);
9404 	} else {
9405 		igb_vmdq_set_loopback_pf(hw, false);
9406 		igb_vmdq_set_replication_pf(hw, false);
9407 	}
9408 }
9409 
9410 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9411 {
9412 	struct e1000_hw *hw = &adapter->hw;
9413 	u32 dmac_thr;
9414 	u16 hwm;
9415 
9416 	if (hw->mac.type > e1000_82580) {
9417 		if (adapter->flags & IGB_FLAG_DMAC) {
9418 			u32 reg;
9419 
9420 			/* force threshold to 0. */
9421 			wr32(E1000_DMCTXTH, 0);
9422 
9423 			/* DMA Coalescing high water mark needs to be greater
9424 			 * than the Rx threshold. Set hwm to PBA - max frame
9425 			 * size in 16B units, capping it at PBA - 6KB.
9426 			 */
9427 			hwm = 64 * (pba - 6);
9428 			reg = rd32(E1000_FCRTC);
9429 			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9430 			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9431 				& E1000_FCRTC_RTH_COAL_MASK);
9432 			wr32(E1000_FCRTC, reg);
9433 
9434 			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9435 			 * frame size, capping it at PBA - 10KB.
9436 			 */
9437 			dmac_thr = pba - 10;
9438 			reg = rd32(E1000_DMACR);
9439 			reg &= ~E1000_DMACR_DMACTHR_MASK;
9440 			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9441 				& E1000_DMACR_DMACTHR_MASK);
9442 
9443 			/* transition to L0x or L1 if available..*/
9444 			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9445 
9446 			/* watchdog timer= +-1000 usec in 32usec intervals */
9447 			reg |= (1000 >> 5);
9448 
9449 			/* Disable BMC-to-OS Watchdog Enable */
9450 			if (hw->mac.type != e1000_i354)
9451 				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9452 
9453 			wr32(E1000_DMACR, reg);
9454 
9455 			/* no lower threshold to disable
9456 			 * coalescing(smart fifb)-UTRESH=0
9457 			 */
9458 			wr32(E1000_DMCRTRH, 0);
9459 
9460 			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9461 
9462 			wr32(E1000_DMCTLX, reg);
9463 
9464 			/* free space in tx packet buffer to wake from
9465 			 * DMA coal
9466 			 */
9467 			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9468 			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9469 
9470 			/* make low power state decision controlled
9471 			 * by DMA coal
9472 			 */
9473 			reg = rd32(E1000_PCIEMISC);
9474 			reg &= ~E1000_PCIEMISC_LX_DECISION;
9475 			wr32(E1000_PCIEMISC, reg);
9476 		} /* endif adapter->dmac is not disabled */
9477 	} else if (hw->mac.type == e1000_82580) {
9478 		u32 reg = rd32(E1000_PCIEMISC);
9479 
9480 		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
9481 		wr32(E1000_DMACR, 0);
9482 	}
9483 }
9484 
9485 /**
9486  *  igb_read_i2c_byte - Reads 8 bit word over I2C
9487  *  @hw: pointer to hardware structure
9488  *  @byte_offset: byte offset to read
9489  *  @dev_addr: device address
9490  *  @data: value read
9491  *
9492  *  Performs byte read operation over I2C interface at
9493  *  a specified device address.
9494  **/
9495 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9496 		      u8 dev_addr, u8 *data)
9497 {
9498 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9499 	struct i2c_client *this_client = adapter->i2c_client;
9500 	s32 status;
9501 	u16 swfw_mask = 0;
9502 
9503 	if (!this_client)
9504 		return E1000_ERR_I2C;
9505 
9506 	swfw_mask = E1000_SWFW_PHY0_SM;
9507 
9508 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9509 		return E1000_ERR_SWFW_SYNC;
9510 
9511 	status = i2c_smbus_read_byte_data(this_client, byte_offset);
9512 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9513 
9514 	if (status < 0)
9515 		return E1000_ERR_I2C;
9516 	else {
9517 		*data = status;
9518 		return 0;
9519 	}
9520 }
9521 
9522 /**
9523  *  igb_write_i2c_byte - Writes 8 bit word over I2C
9524  *  @hw: pointer to hardware structure
9525  *  @byte_offset: byte offset to write
9526  *  @dev_addr: device address
9527  *  @data: value to write
9528  *
9529  *  Performs byte write operation over I2C interface at
9530  *  a specified device address.
9531  **/
9532 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9533 		       u8 dev_addr, u8 data)
9534 {
9535 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9536 	struct i2c_client *this_client = adapter->i2c_client;
9537 	s32 status;
9538 	u16 swfw_mask = E1000_SWFW_PHY0_SM;
9539 
9540 	if (!this_client)
9541 		return E1000_ERR_I2C;
9542 
9543 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9544 		return E1000_ERR_SWFW_SYNC;
9545 	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9546 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9547 
9548 	if (status)
9549 		return E1000_ERR_I2C;
9550 	else
9551 		return 0;
9552 
9553 }
9554 
9555 int igb_reinit_queues(struct igb_adapter *adapter)
9556 {
9557 	struct net_device *netdev = adapter->netdev;
9558 	struct pci_dev *pdev = adapter->pdev;
9559 	int err = 0;
9560 
9561 	if (netif_running(netdev))
9562 		igb_close(netdev);
9563 
9564 	igb_reset_interrupt_capability(adapter);
9565 
9566 	if (igb_init_interrupt_scheme(adapter, true)) {
9567 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9568 		return -ENOMEM;
9569 	}
9570 
9571 	if (netif_running(netdev))
9572 		err = igb_open(netdev);
9573 
9574 	return err;
9575 }
9576 
9577 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
9578 {
9579 	struct igb_nfc_filter *rule;
9580 
9581 	spin_lock(&adapter->nfc_lock);
9582 
9583 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9584 		igb_erase_filter(adapter, rule);
9585 
9586 	hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
9587 		igb_erase_filter(adapter, rule);
9588 
9589 	spin_unlock(&adapter->nfc_lock);
9590 }
9591 
9592 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
9593 {
9594 	struct igb_nfc_filter *rule;
9595 
9596 	spin_lock(&adapter->nfc_lock);
9597 
9598 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9599 		igb_add_filter(adapter, rule);
9600 
9601 	spin_unlock(&adapter->nfc_lock);
9602 }
9603 /* igb_main.c */
9604