1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3 
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/aer.h>
32 #include <linux/prefetch.h>
33 #include <linux/bpf.h>
34 #include <linux/bpf_trace.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/etherdevice.h>
37 #ifdef CONFIG_IGB_DCA
38 #include <linux/dca.h>
39 #endif
40 #include <linux/i2c.h>
41 #include "igb.h"
42 
43 enum queue_mode {
44 	QUEUE_MODE_STRICT_PRIORITY,
45 	QUEUE_MODE_STREAM_RESERVATION,
46 };
47 
48 enum tx_queue_prio {
49 	TX_QUEUE_PRIO_HIGH,
50 	TX_QUEUE_PRIO_LOW,
51 };
52 
53 char igb_driver_name[] = "igb";
54 static const char igb_driver_string[] =
55 				"Intel(R) Gigabit Ethernet Network Driver";
56 static const char igb_copyright[] =
57 				"Copyright (c) 2007-2014 Intel Corporation.";
58 
59 static const struct e1000_info *igb_info_tbl[] = {
60 	[board_82575] = &e1000_82575_info,
61 };
62 
63 static const struct pci_device_id igb_pci_tbl[] = {
64 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
65 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
66 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
67 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
68 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
69 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
70 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
71 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
72 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
73 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
74 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
75 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
76 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
77 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
78 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
79 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
80 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
81 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
82 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
83 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
84 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
85 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
86 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
87 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
88 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
89 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
90 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
91 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
92 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
93 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
94 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
95 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
96 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
97 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
98 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
99 	/* required last entry */
100 	{0, }
101 };
102 
103 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
104 
105 static int igb_setup_all_tx_resources(struct igb_adapter *);
106 static int igb_setup_all_rx_resources(struct igb_adapter *);
107 static void igb_free_all_tx_resources(struct igb_adapter *);
108 static void igb_free_all_rx_resources(struct igb_adapter *);
109 static void igb_setup_mrqc(struct igb_adapter *);
110 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
111 static void igb_remove(struct pci_dev *pdev);
112 static int igb_sw_init(struct igb_adapter *);
113 int igb_open(struct net_device *);
114 int igb_close(struct net_device *);
115 static void igb_configure(struct igb_adapter *);
116 static void igb_configure_tx(struct igb_adapter *);
117 static void igb_configure_rx(struct igb_adapter *);
118 static void igb_clean_all_tx_rings(struct igb_adapter *);
119 static void igb_clean_all_rx_rings(struct igb_adapter *);
120 static void igb_clean_tx_ring(struct igb_ring *);
121 static void igb_clean_rx_ring(struct igb_ring *);
122 static void igb_set_rx_mode(struct net_device *);
123 static void igb_update_phy_info(struct timer_list *);
124 static void igb_watchdog(struct timer_list *);
125 static void igb_watchdog_task(struct work_struct *);
126 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
127 static void igb_get_stats64(struct net_device *dev,
128 			    struct rtnl_link_stats64 *stats);
129 static int igb_change_mtu(struct net_device *, int);
130 static int igb_set_mac(struct net_device *, void *);
131 static void igb_set_uta(struct igb_adapter *adapter, bool set);
132 static irqreturn_t igb_intr(int irq, void *);
133 static irqreturn_t igb_intr_msi(int irq, void *);
134 static irqreturn_t igb_msix_other(int irq, void *);
135 static irqreturn_t igb_msix_ring(int irq, void *);
136 #ifdef CONFIG_IGB_DCA
137 static void igb_update_dca(struct igb_q_vector *);
138 static void igb_setup_dca(struct igb_adapter *);
139 #endif /* CONFIG_IGB_DCA */
140 static int igb_poll(struct napi_struct *, int);
141 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
142 static int igb_clean_rx_irq(struct igb_q_vector *, int);
143 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
144 static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
145 static void igb_reset_task(struct work_struct *);
146 static void igb_vlan_mode(struct net_device *netdev,
147 			  netdev_features_t features);
148 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
149 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
150 static void igb_restore_vlan(struct igb_adapter *);
151 static void igb_rar_set_index(struct igb_adapter *, u32);
152 static void igb_ping_all_vfs(struct igb_adapter *);
153 static void igb_msg_task(struct igb_adapter *);
154 static void igb_vmm_control(struct igb_adapter *);
155 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
156 static void igb_flush_mac_table(struct igb_adapter *);
157 static int igb_available_rars(struct igb_adapter *, u8);
158 static void igb_set_default_mac_filter(struct igb_adapter *);
159 static int igb_uc_sync(struct net_device *, const unsigned char *);
160 static int igb_uc_unsync(struct net_device *, const unsigned char *);
161 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
162 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
163 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
164 			       int vf, u16 vlan, u8 qos, __be16 vlan_proto);
165 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
166 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
167 				   bool setting);
168 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
169 				bool setting);
170 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
171 				 struct ifla_vf_info *ivi);
172 static void igb_check_vf_rate_limit(struct igb_adapter *);
173 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
174 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
175 
176 #ifdef CONFIG_PCI_IOV
177 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
178 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
179 static int igb_disable_sriov(struct pci_dev *dev);
180 static int igb_pci_disable_sriov(struct pci_dev *dev);
181 #endif
182 
183 static int igb_suspend(struct device *);
184 static int igb_resume(struct device *);
185 static int igb_runtime_suspend(struct device *dev);
186 static int igb_runtime_resume(struct device *dev);
187 static int igb_runtime_idle(struct device *dev);
188 static const struct dev_pm_ops igb_pm_ops = {
189 	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
190 	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
191 			igb_runtime_idle)
192 };
193 static void igb_shutdown(struct pci_dev *);
194 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
195 #ifdef CONFIG_IGB_DCA
196 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
197 static struct notifier_block dca_notifier = {
198 	.notifier_call	= igb_notify_dca,
199 	.next		= NULL,
200 	.priority	= 0
201 };
202 #endif
203 #ifdef CONFIG_PCI_IOV
204 static unsigned int max_vfs;
205 module_param(max_vfs, uint, 0);
206 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
207 #endif /* CONFIG_PCI_IOV */
208 
209 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
210 		     pci_channel_state_t);
211 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
212 static void igb_io_resume(struct pci_dev *);
213 
214 static const struct pci_error_handlers igb_err_handler = {
215 	.error_detected = igb_io_error_detected,
216 	.slot_reset = igb_io_slot_reset,
217 	.resume = igb_io_resume,
218 };
219 
220 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
221 
222 static struct pci_driver igb_driver = {
223 	.name     = igb_driver_name,
224 	.id_table = igb_pci_tbl,
225 	.probe    = igb_probe,
226 	.remove   = igb_remove,
227 #ifdef CONFIG_PM
228 	.driver.pm = &igb_pm_ops,
229 #endif
230 	.shutdown = igb_shutdown,
231 	.sriov_configure = igb_pci_sriov_configure,
232 	.err_handler = &igb_err_handler
233 };
234 
235 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
236 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
237 MODULE_LICENSE("GPL v2");
238 
239 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
240 static int debug = -1;
241 module_param(debug, int, 0);
242 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
243 
244 struct igb_reg_info {
245 	u32 ofs;
246 	char *name;
247 };
248 
249 static const struct igb_reg_info igb_reg_info_tbl[] = {
250 
251 	/* General Registers */
252 	{E1000_CTRL, "CTRL"},
253 	{E1000_STATUS, "STATUS"},
254 	{E1000_CTRL_EXT, "CTRL_EXT"},
255 
256 	/* Interrupt Registers */
257 	{E1000_ICR, "ICR"},
258 
259 	/* RX Registers */
260 	{E1000_RCTL, "RCTL"},
261 	{E1000_RDLEN(0), "RDLEN"},
262 	{E1000_RDH(0), "RDH"},
263 	{E1000_RDT(0), "RDT"},
264 	{E1000_RXDCTL(0), "RXDCTL"},
265 	{E1000_RDBAL(0), "RDBAL"},
266 	{E1000_RDBAH(0), "RDBAH"},
267 
268 	/* TX Registers */
269 	{E1000_TCTL, "TCTL"},
270 	{E1000_TDBAL(0), "TDBAL"},
271 	{E1000_TDBAH(0), "TDBAH"},
272 	{E1000_TDLEN(0), "TDLEN"},
273 	{E1000_TDH(0), "TDH"},
274 	{E1000_TDT(0), "TDT"},
275 	{E1000_TXDCTL(0), "TXDCTL"},
276 	{E1000_TDFH, "TDFH"},
277 	{E1000_TDFT, "TDFT"},
278 	{E1000_TDFHS, "TDFHS"},
279 	{E1000_TDFPC, "TDFPC"},
280 
281 	/* List Terminator */
282 	{}
283 };
284 
285 /* igb_regdump - register printout routine */
286 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
287 {
288 	int n = 0;
289 	char rname[16];
290 	u32 regs[8];
291 
292 	switch (reginfo->ofs) {
293 	case E1000_RDLEN(0):
294 		for (n = 0; n < 4; n++)
295 			regs[n] = rd32(E1000_RDLEN(n));
296 		break;
297 	case E1000_RDH(0):
298 		for (n = 0; n < 4; n++)
299 			regs[n] = rd32(E1000_RDH(n));
300 		break;
301 	case E1000_RDT(0):
302 		for (n = 0; n < 4; n++)
303 			regs[n] = rd32(E1000_RDT(n));
304 		break;
305 	case E1000_RXDCTL(0):
306 		for (n = 0; n < 4; n++)
307 			regs[n] = rd32(E1000_RXDCTL(n));
308 		break;
309 	case E1000_RDBAL(0):
310 		for (n = 0; n < 4; n++)
311 			regs[n] = rd32(E1000_RDBAL(n));
312 		break;
313 	case E1000_RDBAH(0):
314 		for (n = 0; n < 4; n++)
315 			regs[n] = rd32(E1000_RDBAH(n));
316 		break;
317 	case E1000_TDBAL(0):
318 		for (n = 0; n < 4; n++)
319 			regs[n] = rd32(E1000_TDBAL(n));
320 		break;
321 	case E1000_TDBAH(0):
322 		for (n = 0; n < 4; n++)
323 			regs[n] = rd32(E1000_TDBAH(n));
324 		break;
325 	case E1000_TDLEN(0):
326 		for (n = 0; n < 4; n++)
327 			regs[n] = rd32(E1000_TDLEN(n));
328 		break;
329 	case E1000_TDH(0):
330 		for (n = 0; n < 4; n++)
331 			regs[n] = rd32(E1000_TDH(n));
332 		break;
333 	case E1000_TDT(0):
334 		for (n = 0; n < 4; n++)
335 			regs[n] = rd32(E1000_TDT(n));
336 		break;
337 	case E1000_TXDCTL(0):
338 		for (n = 0; n < 4; n++)
339 			regs[n] = rd32(E1000_TXDCTL(n));
340 		break;
341 	default:
342 		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
343 		return;
344 	}
345 
346 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
347 	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
348 		regs[2], regs[3]);
349 }
350 
351 /* igb_dump - Print registers, Tx-rings and Rx-rings */
352 static void igb_dump(struct igb_adapter *adapter)
353 {
354 	struct net_device *netdev = adapter->netdev;
355 	struct e1000_hw *hw = &adapter->hw;
356 	struct igb_reg_info *reginfo;
357 	struct igb_ring *tx_ring;
358 	union e1000_adv_tx_desc *tx_desc;
359 	struct my_u0 { __le64 a; __le64 b; } *u0;
360 	struct igb_ring *rx_ring;
361 	union e1000_adv_rx_desc *rx_desc;
362 	u32 staterr;
363 	u16 i, n;
364 
365 	if (!netif_msg_hw(adapter))
366 		return;
367 
368 	/* Print netdevice Info */
369 	if (netdev) {
370 		dev_info(&adapter->pdev->dev, "Net device Info\n");
371 		pr_info("Device Name     state            trans_start\n");
372 		pr_info("%-15s %016lX %016lX\n", netdev->name,
373 			netdev->state, dev_trans_start(netdev));
374 	}
375 
376 	/* Print Registers */
377 	dev_info(&adapter->pdev->dev, "Register Dump\n");
378 	pr_info(" Register Name   Value\n");
379 	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
380 	     reginfo->name; reginfo++) {
381 		igb_regdump(hw, reginfo);
382 	}
383 
384 	/* Print TX Ring Summary */
385 	if (!netdev || !netif_running(netdev))
386 		goto exit;
387 
388 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
389 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
390 	for (n = 0; n < adapter->num_tx_queues; n++) {
391 		struct igb_tx_buffer *buffer_info;
392 		tx_ring = adapter->tx_ring[n];
393 		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
394 		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
395 			n, tx_ring->next_to_use, tx_ring->next_to_clean,
396 			(u64)dma_unmap_addr(buffer_info, dma),
397 			dma_unmap_len(buffer_info, len),
398 			buffer_info->next_to_watch,
399 			(u64)buffer_info->time_stamp);
400 	}
401 
402 	/* Print TX Rings */
403 	if (!netif_msg_tx_done(adapter))
404 		goto rx_ring_summary;
405 
406 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
407 
408 	/* Transmit Descriptor Formats
409 	 *
410 	 * Advanced Transmit Descriptor
411 	 *   +--------------------------------------------------------------+
412 	 * 0 |         Buffer Address [63:0]                                |
413 	 *   +--------------------------------------------------------------+
414 	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
415 	 *   +--------------------------------------------------------------+
416 	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
417 	 */
418 
419 	for (n = 0; n < adapter->num_tx_queues; n++) {
420 		tx_ring = adapter->tx_ring[n];
421 		pr_info("------------------------------------\n");
422 		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
423 		pr_info("------------------------------------\n");
424 		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
425 
426 		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
427 			const char *next_desc;
428 			struct igb_tx_buffer *buffer_info;
429 			tx_desc = IGB_TX_DESC(tx_ring, i);
430 			buffer_info = &tx_ring->tx_buffer_info[i];
431 			u0 = (struct my_u0 *)tx_desc;
432 			if (i == tx_ring->next_to_use &&
433 			    i == tx_ring->next_to_clean)
434 				next_desc = " NTC/U";
435 			else if (i == tx_ring->next_to_use)
436 				next_desc = " NTU";
437 			else if (i == tx_ring->next_to_clean)
438 				next_desc = " NTC";
439 			else
440 				next_desc = "";
441 
442 			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
443 				i, le64_to_cpu(u0->a),
444 				le64_to_cpu(u0->b),
445 				(u64)dma_unmap_addr(buffer_info, dma),
446 				dma_unmap_len(buffer_info, len),
447 				buffer_info->next_to_watch,
448 				(u64)buffer_info->time_stamp,
449 				buffer_info->skb, next_desc);
450 
451 			if (netif_msg_pktdata(adapter) && buffer_info->skb)
452 				print_hex_dump(KERN_INFO, "",
453 					DUMP_PREFIX_ADDRESS,
454 					16, 1, buffer_info->skb->data,
455 					dma_unmap_len(buffer_info, len),
456 					true);
457 		}
458 	}
459 
460 	/* Print RX Rings Summary */
461 rx_ring_summary:
462 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
463 	pr_info("Queue [NTU] [NTC]\n");
464 	for (n = 0; n < adapter->num_rx_queues; n++) {
465 		rx_ring = adapter->rx_ring[n];
466 		pr_info(" %5d %5X %5X\n",
467 			n, rx_ring->next_to_use, rx_ring->next_to_clean);
468 	}
469 
470 	/* Print RX Rings */
471 	if (!netif_msg_rx_status(adapter))
472 		goto exit;
473 
474 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
475 
476 	/* Advanced Receive Descriptor (Read) Format
477 	 *    63                                           1        0
478 	 *    +-----------------------------------------------------+
479 	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
480 	 *    +----------------------------------------------+------+
481 	 *  8 |       Header Buffer Address [63:1]           |  DD  |
482 	 *    +-----------------------------------------------------+
483 	 *
484 	 *
485 	 * Advanced Receive Descriptor (Write-Back) Format
486 	 *
487 	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
488 	 *   +------------------------------------------------------+
489 	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
490 	 *   | Checksum   Ident  |   |           |    | Type | Type |
491 	 *   +------------------------------------------------------+
492 	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
493 	 *   +------------------------------------------------------+
494 	 *   63       48 47    32 31            20 19               0
495 	 */
496 
497 	for (n = 0; n < adapter->num_rx_queues; n++) {
498 		rx_ring = adapter->rx_ring[n];
499 		pr_info("------------------------------------\n");
500 		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
501 		pr_info("------------------------------------\n");
502 		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
503 		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
504 
505 		for (i = 0; i < rx_ring->count; i++) {
506 			const char *next_desc;
507 			struct igb_rx_buffer *buffer_info;
508 			buffer_info = &rx_ring->rx_buffer_info[i];
509 			rx_desc = IGB_RX_DESC(rx_ring, i);
510 			u0 = (struct my_u0 *)rx_desc;
511 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
512 
513 			if (i == rx_ring->next_to_use)
514 				next_desc = " NTU";
515 			else if (i == rx_ring->next_to_clean)
516 				next_desc = " NTC";
517 			else
518 				next_desc = "";
519 
520 			if (staterr & E1000_RXD_STAT_DD) {
521 				/* Descriptor Done */
522 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
523 					"RWB", i,
524 					le64_to_cpu(u0->a),
525 					le64_to_cpu(u0->b),
526 					next_desc);
527 			} else {
528 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
529 					"R  ", i,
530 					le64_to_cpu(u0->a),
531 					le64_to_cpu(u0->b),
532 					(u64)buffer_info->dma,
533 					next_desc);
534 
535 				if (netif_msg_pktdata(adapter) &&
536 				    buffer_info->dma && buffer_info->page) {
537 					print_hex_dump(KERN_INFO, "",
538 					  DUMP_PREFIX_ADDRESS,
539 					  16, 1,
540 					  page_address(buffer_info->page) +
541 						      buffer_info->page_offset,
542 					  igb_rx_bufsz(rx_ring), true);
543 				}
544 			}
545 		}
546 	}
547 
548 exit:
549 	return;
550 }
551 
552 /**
553  *  igb_get_i2c_data - Reads the I2C SDA data bit
554  *  @data: opaque pointer to adapter struct
555  *
556  *  Returns the I2C data bit value
557  **/
558 static int igb_get_i2c_data(void *data)
559 {
560 	struct igb_adapter *adapter = (struct igb_adapter *)data;
561 	struct e1000_hw *hw = &adapter->hw;
562 	s32 i2cctl = rd32(E1000_I2CPARAMS);
563 
564 	return !!(i2cctl & E1000_I2C_DATA_IN);
565 }
566 
567 /**
568  *  igb_set_i2c_data - Sets the I2C data bit
569  *  @data: pointer to hardware structure
570  *  @state: I2C data value (0 or 1) to set
571  *
572  *  Sets the I2C data bit
573  **/
574 static void igb_set_i2c_data(void *data, int state)
575 {
576 	struct igb_adapter *adapter = (struct igb_adapter *)data;
577 	struct e1000_hw *hw = &adapter->hw;
578 	s32 i2cctl = rd32(E1000_I2CPARAMS);
579 
580 	if (state) {
581 		i2cctl |= E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N;
582 	} else {
583 		i2cctl &= ~E1000_I2C_DATA_OE_N;
584 		i2cctl &= ~E1000_I2C_DATA_OUT;
585 	}
586 
587 	wr32(E1000_I2CPARAMS, i2cctl);
588 	wrfl();
589 }
590 
591 /**
592  *  igb_set_i2c_clk - Sets the I2C SCL clock
593  *  @data: pointer to hardware structure
594  *  @state: state to set clock
595  *
596  *  Sets the I2C clock line to state
597  **/
598 static void igb_set_i2c_clk(void *data, int state)
599 {
600 	struct igb_adapter *adapter = (struct igb_adapter *)data;
601 	struct e1000_hw *hw = &adapter->hw;
602 	s32 i2cctl = rd32(E1000_I2CPARAMS);
603 
604 	if (state) {
605 		i2cctl |= E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N;
606 	} else {
607 		i2cctl &= ~E1000_I2C_CLK_OUT;
608 		i2cctl &= ~E1000_I2C_CLK_OE_N;
609 	}
610 	wr32(E1000_I2CPARAMS, i2cctl);
611 	wrfl();
612 }
613 
614 /**
615  *  igb_get_i2c_clk - Gets the I2C SCL clock state
616  *  @data: pointer to hardware structure
617  *
618  *  Gets the I2C clock state
619  **/
620 static int igb_get_i2c_clk(void *data)
621 {
622 	struct igb_adapter *adapter = (struct igb_adapter *)data;
623 	struct e1000_hw *hw = &adapter->hw;
624 	s32 i2cctl = rd32(E1000_I2CPARAMS);
625 
626 	return !!(i2cctl & E1000_I2C_CLK_IN);
627 }
628 
629 static const struct i2c_algo_bit_data igb_i2c_algo = {
630 	.setsda		= igb_set_i2c_data,
631 	.setscl		= igb_set_i2c_clk,
632 	.getsda		= igb_get_i2c_data,
633 	.getscl		= igb_get_i2c_clk,
634 	.udelay		= 5,
635 	.timeout	= 20,
636 };
637 
638 /**
639  *  igb_get_hw_dev - return device
640  *  @hw: pointer to hardware structure
641  *
642  *  used by hardware layer to print debugging information
643  **/
644 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
645 {
646 	struct igb_adapter *adapter = hw->back;
647 	return adapter->netdev;
648 }
649 
650 /**
651  *  igb_init_module - Driver Registration Routine
652  *
653  *  igb_init_module is the first routine called when the driver is
654  *  loaded. All it does is register with the PCI subsystem.
655  **/
656 static int __init igb_init_module(void)
657 {
658 	int ret;
659 
660 	pr_info("%s\n", igb_driver_string);
661 	pr_info("%s\n", igb_copyright);
662 
663 #ifdef CONFIG_IGB_DCA
664 	dca_register_notify(&dca_notifier);
665 #endif
666 	ret = pci_register_driver(&igb_driver);
667 	return ret;
668 }
669 
670 module_init(igb_init_module);
671 
672 /**
673  *  igb_exit_module - Driver Exit Cleanup Routine
674  *
675  *  igb_exit_module is called just before the driver is removed
676  *  from memory.
677  **/
678 static void __exit igb_exit_module(void)
679 {
680 #ifdef CONFIG_IGB_DCA
681 	dca_unregister_notify(&dca_notifier);
682 #endif
683 	pci_unregister_driver(&igb_driver);
684 }
685 
686 module_exit(igb_exit_module);
687 
688 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
689 /**
690  *  igb_cache_ring_register - Descriptor ring to register mapping
691  *  @adapter: board private structure to initialize
692  *
693  *  Once we know the feature-set enabled for the device, we'll cache
694  *  the register offset the descriptor ring is assigned to.
695  **/
696 static void igb_cache_ring_register(struct igb_adapter *adapter)
697 {
698 	int i = 0, j = 0;
699 	u32 rbase_offset = adapter->vfs_allocated_count;
700 
701 	switch (adapter->hw.mac.type) {
702 	case e1000_82576:
703 		/* The queues are allocated for virtualization such that VF 0
704 		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
705 		 * In order to avoid collision we start at the first free queue
706 		 * and continue consuming queues in the same sequence
707 		 */
708 		if (adapter->vfs_allocated_count) {
709 			for (; i < adapter->rss_queues; i++)
710 				adapter->rx_ring[i]->reg_idx = rbase_offset +
711 							       Q_IDX_82576(i);
712 		}
713 		fallthrough;
714 	case e1000_82575:
715 	case e1000_82580:
716 	case e1000_i350:
717 	case e1000_i354:
718 	case e1000_i210:
719 	case e1000_i211:
720 	default:
721 		for (; i < adapter->num_rx_queues; i++)
722 			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
723 		for (; j < adapter->num_tx_queues; j++)
724 			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
725 		break;
726 	}
727 }
728 
729 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
730 {
731 	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
732 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
733 	u32 value = 0;
734 
735 	if (E1000_REMOVED(hw_addr))
736 		return ~value;
737 
738 	value = readl(&hw_addr[reg]);
739 
740 	/* reads should not return all F's */
741 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
742 		struct net_device *netdev = igb->netdev;
743 		hw->hw_addr = NULL;
744 		netdev_err(netdev, "PCIe link lost\n");
745 		WARN(pci_device_is_present(igb->pdev),
746 		     "igb: Failed to read reg 0x%x!\n", reg);
747 	}
748 
749 	return value;
750 }
751 
752 /**
753  *  igb_write_ivar - configure ivar for given MSI-X vector
754  *  @hw: pointer to the HW structure
755  *  @msix_vector: vector number we are allocating to a given ring
756  *  @index: row index of IVAR register to write within IVAR table
757  *  @offset: column offset of in IVAR, should be multiple of 8
758  *
759  *  This function is intended to handle the writing of the IVAR register
760  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
761  *  each containing an cause allocation for an Rx and Tx ring, and a
762  *  variable number of rows depending on the number of queues supported.
763  **/
764 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
765 			   int index, int offset)
766 {
767 	u32 ivar = array_rd32(E1000_IVAR0, index);
768 
769 	/* clear any bits that are currently set */
770 	ivar &= ~((u32)0xFF << offset);
771 
772 	/* write vector and valid bit */
773 	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
774 
775 	array_wr32(E1000_IVAR0, index, ivar);
776 }
777 
778 #define IGB_N0_QUEUE -1
779 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
780 {
781 	struct igb_adapter *adapter = q_vector->adapter;
782 	struct e1000_hw *hw = &adapter->hw;
783 	int rx_queue = IGB_N0_QUEUE;
784 	int tx_queue = IGB_N0_QUEUE;
785 	u32 msixbm = 0;
786 
787 	if (q_vector->rx.ring)
788 		rx_queue = q_vector->rx.ring->reg_idx;
789 	if (q_vector->tx.ring)
790 		tx_queue = q_vector->tx.ring->reg_idx;
791 
792 	switch (hw->mac.type) {
793 	case e1000_82575:
794 		/* The 82575 assigns vectors using a bitmask, which matches the
795 		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
796 		 * or more queues to a vector, we write the appropriate bits
797 		 * into the MSIXBM register for that vector.
798 		 */
799 		if (rx_queue > IGB_N0_QUEUE)
800 			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
801 		if (tx_queue > IGB_N0_QUEUE)
802 			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
803 		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
804 			msixbm |= E1000_EIMS_OTHER;
805 		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
806 		q_vector->eims_value = msixbm;
807 		break;
808 	case e1000_82576:
809 		/* 82576 uses a table that essentially consists of 2 columns
810 		 * with 8 rows.  The ordering is column-major so we use the
811 		 * lower 3 bits as the row index, and the 4th bit as the
812 		 * column offset.
813 		 */
814 		if (rx_queue > IGB_N0_QUEUE)
815 			igb_write_ivar(hw, msix_vector,
816 				       rx_queue & 0x7,
817 				       (rx_queue & 0x8) << 1);
818 		if (tx_queue > IGB_N0_QUEUE)
819 			igb_write_ivar(hw, msix_vector,
820 				       tx_queue & 0x7,
821 				       ((tx_queue & 0x8) << 1) + 8);
822 		q_vector->eims_value = BIT(msix_vector);
823 		break;
824 	case e1000_82580:
825 	case e1000_i350:
826 	case e1000_i354:
827 	case e1000_i210:
828 	case e1000_i211:
829 		/* On 82580 and newer adapters the scheme is similar to 82576
830 		 * however instead of ordering column-major we have things
831 		 * ordered row-major.  So we traverse the table by using
832 		 * bit 0 as the column offset, and the remaining bits as the
833 		 * row index.
834 		 */
835 		if (rx_queue > IGB_N0_QUEUE)
836 			igb_write_ivar(hw, msix_vector,
837 				       rx_queue >> 1,
838 				       (rx_queue & 0x1) << 4);
839 		if (tx_queue > IGB_N0_QUEUE)
840 			igb_write_ivar(hw, msix_vector,
841 				       tx_queue >> 1,
842 				       ((tx_queue & 0x1) << 4) + 8);
843 		q_vector->eims_value = BIT(msix_vector);
844 		break;
845 	default:
846 		BUG();
847 		break;
848 	}
849 
850 	/* add q_vector eims value to global eims_enable_mask */
851 	adapter->eims_enable_mask |= q_vector->eims_value;
852 
853 	/* configure q_vector to set itr on first interrupt */
854 	q_vector->set_itr = 1;
855 }
856 
857 /**
858  *  igb_configure_msix - Configure MSI-X hardware
859  *  @adapter: board private structure to initialize
860  *
861  *  igb_configure_msix sets up the hardware to properly
862  *  generate MSI-X interrupts.
863  **/
864 static void igb_configure_msix(struct igb_adapter *adapter)
865 {
866 	u32 tmp;
867 	int i, vector = 0;
868 	struct e1000_hw *hw = &adapter->hw;
869 
870 	adapter->eims_enable_mask = 0;
871 
872 	/* set vector for other causes, i.e. link changes */
873 	switch (hw->mac.type) {
874 	case e1000_82575:
875 		tmp = rd32(E1000_CTRL_EXT);
876 		/* enable MSI-X PBA support*/
877 		tmp |= E1000_CTRL_EXT_PBA_CLR;
878 
879 		/* Auto-Mask interrupts upon ICR read. */
880 		tmp |= E1000_CTRL_EXT_EIAME;
881 		tmp |= E1000_CTRL_EXT_IRCA;
882 
883 		wr32(E1000_CTRL_EXT, tmp);
884 
885 		/* enable msix_other interrupt */
886 		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
887 		adapter->eims_other = E1000_EIMS_OTHER;
888 
889 		break;
890 
891 	case e1000_82576:
892 	case e1000_82580:
893 	case e1000_i350:
894 	case e1000_i354:
895 	case e1000_i210:
896 	case e1000_i211:
897 		/* Turn on MSI-X capability first, or our settings
898 		 * won't stick.  And it will take days to debug.
899 		 */
900 		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
901 		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
902 		     E1000_GPIE_NSICR);
903 
904 		/* enable msix_other interrupt */
905 		adapter->eims_other = BIT(vector);
906 		tmp = (vector++ | E1000_IVAR_VALID) << 8;
907 
908 		wr32(E1000_IVAR_MISC, tmp);
909 		break;
910 	default:
911 		/* do nothing, since nothing else supports MSI-X */
912 		break;
913 	} /* switch (hw->mac.type) */
914 
915 	adapter->eims_enable_mask |= adapter->eims_other;
916 
917 	for (i = 0; i < adapter->num_q_vectors; i++)
918 		igb_assign_vector(adapter->q_vector[i], vector++);
919 
920 	wrfl();
921 }
922 
923 /**
924  *  igb_request_msix - Initialize MSI-X interrupts
925  *  @adapter: board private structure to initialize
926  *
927  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
928  *  kernel.
929  **/
930 static int igb_request_msix(struct igb_adapter *adapter)
931 {
932 	unsigned int num_q_vectors = adapter->num_q_vectors;
933 	struct net_device *netdev = adapter->netdev;
934 	int i, err = 0, vector = 0, free_vector = 0;
935 
936 	err = request_irq(adapter->msix_entries[vector].vector,
937 			  igb_msix_other, 0, netdev->name, adapter);
938 	if (err)
939 		goto err_out;
940 
941 	if (num_q_vectors > MAX_Q_VECTORS) {
942 		num_q_vectors = MAX_Q_VECTORS;
943 		dev_warn(&adapter->pdev->dev,
944 			 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
945 			 adapter->num_q_vectors, MAX_Q_VECTORS);
946 	}
947 	for (i = 0; i < num_q_vectors; i++) {
948 		struct igb_q_vector *q_vector = adapter->q_vector[i];
949 
950 		vector++;
951 
952 		q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
953 
954 		if (q_vector->rx.ring && q_vector->tx.ring)
955 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
956 				q_vector->rx.ring->queue_index);
957 		else if (q_vector->tx.ring)
958 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
959 				q_vector->tx.ring->queue_index);
960 		else if (q_vector->rx.ring)
961 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
962 				q_vector->rx.ring->queue_index);
963 		else
964 			sprintf(q_vector->name, "%s-unused", netdev->name);
965 
966 		err = request_irq(adapter->msix_entries[vector].vector,
967 				  igb_msix_ring, 0, q_vector->name,
968 				  q_vector);
969 		if (err)
970 			goto err_free;
971 	}
972 
973 	igb_configure_msix(adapter);
974 	return 0;
975 
976 err_free:
977 	/* free already assigned IRQs */
978 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
979 
980 	vector--;
981 	for (i = 0; i < vector; i++) {
982 		free_irq(adapter->msix_entries[free_vector++].vector,
983 			 adapter->q_vector[i]);
984 	}
985 err_out:
986 	return err;
987 }
988 
989 /**
990  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
991  *  @adapter: board private structure to initialize
992  *  @v_idx: Index of vector to be freed
993  *
994  *  This function frees the memory allocated to the q_vector.
995  **/
996 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
997 {
998 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
999 
1000 	adapter->q_vector[v_idx] = NULL;
1001 
1002 	/* igb_get_stats64() might access the rings on this vector,
1003 	 * we must wait a grace period before freeing it.
1004 	 */
1005 	if (q_vector)
1006 		kfree_rcu(q_vector, rcu);
1007 }
1008 
1009 /**
1010  *  igb_reset_q_vector - Reset config for interrupt vector
1011  *  @adapter: board private structure to initialize
1012  *  @v_idx: Index of vector to be reset
1013  *
1014  *  If NAPI is enabled it will delete any references to the
1015  *  NAPI struct. This is preparation for igb_free_q_vector.
1016  **/
1017 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1018 {
1019 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1020 
1021 	/* Coming from igb_set_interrupt_capability, the vectors are not yet
1022 	 * allocated. So, q_vector is NULL so we should stop here.
1023 	 */
1024 	if (!q_vector)
1025 		return;
1026 
1027 	if (q_vector->tx.ring)
1028 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1029 
1030 	if (q_vector->rx.ring)
1031 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1032 
1033 	netif_napi_del(&q_vector->napi);
1034 
1035 }
1036 
1037 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1038 {
1039 	int v_idx = adapter->num_q_vectors;
1040 
1041 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1042 		pci_disable_msix(adapter->pdev);
1043 	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1044 		pci_disable_msi(adapter->pdev);
1045 
1046 	while (v_idx--)
1047 		igb_reset_q_vector(adapter, v_idx);
1048 }
1049 
1050 /**
1051  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1052  *  @adapter: board private structure to initialize
1053  *
1054  *  This function frees the memory allocated to the q_vectors.  In addition if
1055  *  NAPI is enabled it will delete any references to the NAPI struct prior
1056  *  to freeing the q_vector.
1057  **/
1058 static void igb_free_q_vectors(struct igb_adapter *adapter)
1059 {
1060 	int v_idx = adapter->num_q_vectors;
1061 
1062 	adapter->num_tx_queues = 0;
1063 	adapter->num_rx_queues = 0;
1064 	adapter->num_q_vectors = 0;
1065 
1066 	while (v_idx--) {
1067 		igb_reset_q_vector(adapter, v_idx);
1068 		igb_free_q_vector(adapter, v_idx);
1069 	}
1070 }
1071 
1072 /**
1073  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1074  *  @adapter: board private structure to initialize
1075  *
1076  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1077  *  MSI-X interrupts allocated.
1078  */
1079 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1080 {
1081 	igb_free_q_vectors(adapter);
1082 	igb_reset_interrupt_capability(adapter);
1083 }
1084 
1085 /**
1086  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1087  *  @adapter: board private structure to initialize
1088  *  @msix: boolean value of MSIX capability
1089  *
1090  *  Attempt to configure interrupts using the best available
1091  *  capabilities of the hardware and kernel.
1092  **/
1093 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1094 {
1095 	int err;
1096 	int numvecs, i;
1097 
1098 	if (!msix)
1099 		goto msi_only;
1100 	adapter->flags |= IGB_FLAG_HAS_MSIX;
1101 
1102 	/* Number of supported queues. */
1103 	adapter->num_rx_queues = adapter->rss_queues;
1104 	if (adapter->vfs_allocated_count)
1105 		adapter->num_tx_queues = 1;
1106 	else
1107 		adapter->num_tx_queues = adapter->rss_queues;
1108 
1109 	/* start with one vector for every Rx queue */
1110 	numvecs = adapter->num_rx_queues;
1111 
1112 	/* if Tx handler is separate add 1 for every Tx queue */
1113 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1114 		numvecs += adapter->num_tx_queues;
1115 
1116 	/* store the number of vectors reserved for queues */
1117 	adapter->num_q_vectors = numvecs;
1118 
1119 	/* add 1 vector for link status interrupts */
1120 	numvecs++;
1121 	for (i = 0; i < numvecs; i++)
1122 		adapter->msix_entries[i].entry = i;
1123 
1124 	err = pci_enable_msix_range(adapter->pdev,
1125 				    adapter->msix_entries,
1126 				    numvecs,
1127 				    numvecs);
1128 	if (err > 0)
1129 		return;
1130 
1131 	igb_reset_interrupt_capability(adapter);
1132 
1133 	/* If we can't do MSI-X, try MSI */
1134 msi_only:
1135 	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1136 #ifdef CONFIG_PCI_IOV
1137 	/* disable SR-IOV for non MSI-X configurations */
1138 	if (adapter->vf_data) {
1139 		struct e1000_hw *hw = &adapter->hw;
1140 		/* disable iov and allow time for transactions to clear */
1141 		pci_disable_sriov(adapter->pdev);
1142 		msleep(500);
1143 
1144 		kfree(adapter->vf_mac_list);
1145 		adapter->vf_mac_list = NULL;
1146 		kfree(adapter->vf_data);
1147 		adapter->vf_data = NULL;
1148 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1149 		wrfl();
1150 		msleep(100);
1151 		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1152 	}
1153 #endif
1154 	adapter->vfs_allocated_count = 0;
1155 	adapter->rss_queues = 1;
1156 	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1157 	adapter->num_rx_queues = 1;
1158 	adapter->num_tx_queues = 1;
1159 	adapter->num_q_vectors = 1;
1160 	if (!pci_enable_msi(adapter->pdev))
1161 		adapter->flags |= IGB_FLAG_HAS_MSI;
1162 }
1163 
1164 static void igb_add_ring(struct igb_ring *ring,
1165 			 struct igb_ring_container *head)
1166 {
1167 	head->ring = ring;
1168 	head->count++;
1169 }
1170 
1171 /**
1172  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1173  *  @adapter: board private structure to initialize
1174  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1175  *  @v_idx: index of vector in adapter struct
1176  *  @txr_count: total number of Tx rings to allocate
1177  *  @txr_idx: index of first Tx ring to allocate
1178  *  @rxr_count: total number of Rx rings to allocate
1179  *  @rxr_idx: index of first Rx ring to allocate
1180  *
1181  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1182  **/
1183 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1184 			      int v_count, int v_idx,
1185 			      int txr_count, int txr_idx,
1186 			      int rxr_count, int rxr_idx)
1187 {
1188 	struct igb_q_vector *q_vector;
1189 	struct igb_ring *ring;
1190 	int ring_count;
1191 	size_t size;
1192 
1193 	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1194 	if (txr_count > 1 || rxr_count > 1)
1195 		return -ENOMEM;
1196 
1197 	ring_count = txr_count + rxr_count;
1198 	size = kmalloc_size_roundup(struct_size(q_vector, ring, ring_count));
1199 
1200 	/* allocate q_vector and rings */
1201 	q_vector = adapter->q_vector[v_idx];
1202 	if (!q_vector) {
1203 		q_vector = kzalloc(size, GFP_KERNEL);
1204 	} else if (size > ksize(q_vector)) {
1205 		struct igb_q_vector *new_q_vector;
1206 
1207 		new_q_vector = kzalloc(size, GFP_KERNEL);
1208 		if (new_q_vector)
1209 			kfree_rcu(q_vector, rcu);
1210 		q_vector = new_q_vector;
1211 	} else {
1212 		memset(q_vector, 0, size);
1213 	}
1214 	if (!q_vector)
1215 		return -ENOMEM;
1216 
1217 	/* initialize NAPI */
1218 	netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll);
1219 
1220 	/* tie q_vector and adapter together */
1221 	adapter->q_vector[v_idx] = q_vector;
1222 	q_vector->adapter = adapter;
1223 
1224 	/* initialize work limits */
1225 	q_vector->tx.work_limit = adapter->tx_work_limit;
1226 
1227 	/* initialize ITR configuration */
1228 	q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1229 	q_vector->itr_val = IGB_START_ITR;
1230 
1231 	/* initialize pointer to rings */
1232 	ring = q_vector->ring;
1233 
1234 	/* intialize ITR */
1235 	if (rxr_count) {
1236 		/* rx or rx/tx vector */
1237 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1238 			q_vector->itr_val = adapter->rx_itr_setting;
1239 	} else {
1240 		/* tx only vector */
1241 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1242 			q_vector->itr_val = adapter->tx_itr_setting;
1243 	}
1244 
1245 	if (txr_count) {
1246 		/* assign generic ring traits */
1247 		ring->dev = &adapter->pdev->dev;
1248 		ring->netdev = adapter->netdev;
1249 
1250 		/* configure backlink on ring */
1251 		ring->q_vector = q_vector;
1252 
1253 		/* update q_vector Tx values */
1254 		igb_add_ring(ring, &q_vector->tx);
1255 
1256 		/* For 82575, context index must be unique per ring. */
1257 		if (adapter->hw.mac.type == e1000_82575)
1258 			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1259 
1260 		/* apply Tx specific ring traits */
1261 		ring->count = adapter->tx_ring_count;
1262 		ring->queue_index = txr_idx;
1263 
1264 		ring->cbs_enable = false;
1265 		ring->idleslope = 0;
1266 		ring->sendslope = 0;
1267 		ring->hicredit = 0;
1268 		ring->locredit = 0;
1269 
1270 		u64_stats_init(&ring->tx_syncp);
1271 		u64_stats_init(&ring->tx_syncp2);
1272 
1273 		/* assign ring to adapter */
1274 		adapter->tx_ring[txr_idx] = ring;
1275 
1276 		/* push pointer to next ring */
1277 		ring++;
1278 	}
1279 
1280 	if (rxr_count) {
1281 		/* assign generic ring traits */
1282 		ring->dev = &adapter->pdev->dev;
1283 		ring->netdev = adapter->netdev;
1284 
1285 		/* configure backlink on ring */
1286 		ring->q_vector = q_vector;
1287 
1288 		/* update q_vector Rx values */
1289 		igb_add_ring(ring, &q_vector->rx);
1290 
1291 		/* set flag indicating ring supports SCTP checksum offload */
1292 		if (adapter->hw.mac.type >= e1000_82576)
1293 			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1294 
1295 		/* On i350, i354, i210, and i211, loopback VLAN packets
1296 		 * have the tag byte-swapped.
1297 		 */
1298 		if (adapter->hw.mac.type >= e1000_i350)
1299 			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1300 
1301 		/* apply Rx specific ring traits */
1302 		ring->count = adapter->rx_ring_count;
1303 		ring->queue_index = rxr_idx;
1304 
1305 		u64_stats_init(&ring->rx_syncp);
1306 
1307 		/* assign ring to adapter */
1308 		adapter->rx_ring[rxr_idx] = ring;
1309 	}
1310 
1311 	return 0;
1312 }
1313 
1314 
1315 /**
1316  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1317  *  @adapter: board private structure to initialize
1318  *
1319  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1320  *  return -ENOMEM.
1321  **/
1322 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1323 {
1324 	int q_vectors = adapter->num_q_vectors;
1325 	int rxr_remaining = adapter->num_rx_queues;
1326 	int txr_remaining = adapter->num_tx_queues;
1327 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1328 	int err;
1329 
1330 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1331 		for (; rxr_remaining; v_idx++) {
1332 			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1333 						 0, 0, 1, rxr_idx);
1334 
1335 			if (err)
1336 				goto err_out;
1337 
1338 			/* update counts and index */
1339 			rxr_remaining--;
1340 			rxr_idx++;
1341 		}
1342 	}
1343 
1344 	for (; v_idx < q_vectors; v_idx++) {
1345 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1346 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1347 
1348 		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1349 					 tqpv, txr_idx, rqpv, rxr_idx);
1350 
1351 		if (err)
1352 			goto err_out;
1353 
1354 		/* update counts and index */
1355 		rxr_remaining -= rqpv;
1356 		txr_remaining -= tqpv;
1357 		rxr_idx++;
1358 		txr_idx++;
1359 	}
1360 
1361 	return 0;
1362 
1363 err_out:
1364 	adapter->num_tx_queues = 0;
1365 	adapter->num_rx_queues = 0;
1366 	adapter->num_q_vectors = 0;
1367 
1368 	while (v_idx--)
1369 		igb_free_q_vector(adapter, v_idx);
1370 
1371 	return -ENOMEM;
1372 }
1373 
1374 /**
1375  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1376  *  @adapter: board private structure to initialize
1377  *  @msix: boolean value of MSIX capability
1378  *
1379  *  This function initializes the interrupts and allocates all of the queues.
1380  **/
1381 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1382 {
1383 	struct pci_dev *pdev = adapter->pdev;
1384 	int err;
1385 
1386 	igb_set_interrupt_capability(adapter, msix);
1387 
1388 	err = igb_alloc_q_vectors(adapter);
1389 	if (err) {
1390 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1391 		goto err_alloc_q_vectors;
1392 	}
1393 
1394 	igb_cache_ring_register(adapter);
1395 
1396 	return 0;
1397 
1398 err_alloc_q_vectors:
1399 	igb_reset_interrupt_capability(adapter);
1400 	return err;
1401 }
1402 
1403 /**
1404  *  igb_request_irq - initialize interrupts
1405  *  @adapter: board private structure to initialize
1406  *
1407  *  Attempts to configure interrupts using the best available
1408  *  capabilities of the hardware and kernel.
1409  **/
1410 static int igb_request_irq(struct igb_adapter *adapter)
1411 {
1412 	struct net_device *netdev = adapter->netdev;
1413 	struct pci_dev *pdev = adapter->pdev;
1414 	int err = 0;
1415 
1416 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1417 		err = igb_request_msix(adapter);
1418 		if (!err)
1419 			goto request_done;
1420 		/* fall back to MSI */
1421 		igb_free_all_tx_resources(adapter);
1422 		igb_free_all_rx_resources(adapter);
1423 
1424 		igb_clear_interrupt_scheme(adapter);
1425 		err = igb_init_interrupt_scheme(adapter, false);
1426 		if (err)
1427 			goto request_done;
1428 
1429 		igb_setup_all_tx_resources(adapter);
1430 		igb_setup_all_rx_resources(adapter);
1431 		igb_configure(adapter);
1432 	}
1433 
1434 	igb_assign_vector(adapter->q_vector[0], 0);
1435 
1436 	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1437 		err = request_irq(pdev->irq, igb_intr_msi, 0,
1438 				  netdev->name, adapter);
1439 		if (!err)
1440 			goto request_done;
1441 
1442 		/* fall back to legacy interrupts */
1443 		igb_reset_interrupt_capability(adapter);
1444 		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1445 	}
1446 
1447 	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1448 			  netdev->name, adapter);
1449 
1450 	if (err)
1451 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1452 			err);
1453 
1454 request_done:
1455 	return err;
1456 }
1457 
1458 static void igb_free_irq(struct igb_adapter *adapter)
1459 {
1460 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1461 		int vector = 0, i;
1462 
1463 		free_irq(adapter->msix_entries[vector++].vector, adapter);
1464 
1465 		for (i = 0; i < adapter->num_q_vectors; i++)
1466 			free_irq(adapter->msix_entries[vector++].vector,
1467 				 adapter->q_vector[i]);
1468 	} else {
1469 		free_irq(adapter->pdev->irq, adapter);
1470 	}
1471 }
1472 
1473 /**
1474  *  igb_irq_disable - Mask off interrupt generation on the NIC
1475  *  @adapter: board private structure
1476  **/
1477 static void igb_irq_disable(struct igb_adapter *adapter)
1478 {
1479 	struct e1000_hw *hw = &adapter->hw;
1480 
1481 	/* we need to be careful when disabling interrupts.  The VFs are also
1482 	 * mapped into these registers and so clearing the bits can cause
1483 	 * issues on the VF drivers so we only need to clear what we set
1484 	 */
1485 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1486 		u32 regval = rd32(E1000_EIAM);
1487 
1488 		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1489 		wr32(E1000_EIMC, adapter->eims_enable_mask);
1490 		regval = rd32(E1000_EIAC);
1491 		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1492 	}
1493 
1494 	wr32(E1000_IAM, 0);
1495 	wr32(E1000_IMC, ~0);
1496 	wrfl();
1497 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1498 		int i;
1499 
1500 		for (i = 0; i < adapter->num_q_vectors; i++)
1501 			synchronize_irq(adapter->msix_entries[i].vector);
1502 	} else {
1503 		synchronize_irq(adapter->pdev->irq);
1504 	}
1505 }
1506 
1507 /**
1508  *  igb_irq_enable - Enable default interrupt generation settings
1509  *  @adapter: board private structure
1510  **/
1511 static void igb_irq_enable(struct igb_adapter *adapter)
1512 {
1513 	struct e1000_hw *hw = &adapter->hw;
1514 
1515 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1516 		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1517 		u32 regval = rd32(E1000_EIAC);
1518 
1519 		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1520 		regval = rd32(E1000_EIAM);
1521 		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1522 		wr32(E1000_EIMS, adapter->eims_enable_mask);
1523 		if (adapter->vfs_allocated_count) {
1524 			wr32(E1000_MBVFIMR, 0xFF);
1525 			ims |= E1000_IMS_VMMB;
1526 		}
1527 		wr32(E1000_IMS, ims);
1528 	} else {
1529 		wr32(E1000_IMS, IMS_ENABLE_MASK |
1530 				E1000_IMS_DRSTA);
1531 		wr32(E1000_IAM, IMS_ENABLE_MASK |
1532 				E1000_IMS_DRSTA);
1533 	}
1534 }
1535 
1536 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1537 {
1538 	struct e1000_hw *hw = &adapter->hw;
1539 	u16 pf_id = adapter->vfs_allocated_count;
1540 	u16 vid = adapter->hw.mng_cookie.vlan_id;
1541 	u16 old_vid = adapter->mng_vlan_id;
1542 
1543 	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1544 		/* add VID to filter table */
1545 		igb_vfta_set(hw, vid, pf_id, true, true);
1546 		adapter->mng_vlan_id = vid;
1547 	} else {
1548 		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1549 	}
1550 
1551 	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1552 	    (vid != old_vid) &&
1553 	    !test_bit(old_vid, adapter->active_vlans)) {
1554 		/* remove VID from filter table */
1555 		igb_vfta_set(hw, vid, pf_id, false, true);
1556 	}
1557 }
1558 
1559 /**
1560  *  igb_release_hw_control - release control of the h/w to f/w
1561  *  @adapter: address of board private structure
1562  *
1563  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1564  *  For ASF and Pass Through versions of f/w this means that the
1565  *  driver is no longer loaded.
1566  **/
1567 static void igb_release_hw_control(struct igb_adapter *adapter)
1568 {
1569 	struct e1000_hw *hw = &adapter->hw;
1570 	u32 ctrl_ext;
1571 
1572 	/* Let firmware take over control of h/w */
1573 	ctrl_ext = rd32(E1000_CTRL_EXT);
1574 	wr32(E1000_CTRL_EXT,
1575 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1576 }
1577 
1578 /**
1579  *  igb_get_hw_control - get control of the h/w from f/w
1580  *  @adapter: address of board private structure
1581  *
1582  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1583  *  For ASF and Pass Through versions of f/w this means that
1584  *  the driver is loaded.
1585  **/
1586 static void igb_get_hw_control(struct igb_adapter *adapter)
1587 {
1588 	struct e1000_hw *hw = &adapter->hw;
1589 	u32 ctrl_ext;
1590 
1591 	/* Let firmware know the driver has taken over */
1592 	ctrl_ext = rd32(E1000_CTRL_EXT);
1593 	wr32(E1000_CTRL_EXT,
1594 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1595 }
1596 
1597 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1598 {
1599 	struct net_device *netdev = adapter->netdev;
1600 	struct e1000_hw *hw = &adapter->hw;
1601 
1602 	WARN_ON(hw->mac.type != e1000_i210);
1603 
1604 	if (enable)
1605 		adapter->flags |= IGB_FLAG_FQTSS;
1606 	else
1607 		adapter->flags &= ~IGB_FLAG_FQTSS;
1608 
1609 	if (netif_running(netdev))
1610 		schedule_work(&adapter->reset_task);
1611 }
1612 
1613 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1614 {
1615 	return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1616 }
1617 
1618 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1619 				   enum tx_queue_prio prio)
1620 {
1621 	u32 val;
1622 
1623 	WARN_ON(hw->mac.type != e1000_i210);
1624 	WARN_ON(queue < 0 || queue > 4);
1625 
1626 	val = rd32(E1000_I210_TXDCTL(queue));
1627 
1628 	if (prio == TX_QUEUE_PRIO_HIGH)
1629 		val |= E1000_TXDCTL_PRIORITY;
1630 	else
1631 		val &= ~E1000_TXDCTL_PRIORITY;
1632 
1633 	wr32(E1000_I210_TXDCTL(queue), val);
1634 }
1635 
1636 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1637 {
1638 	u32 val;
1639 
1640 	WARN_ON(hw->mac.type != e1000_i210);
1641 	WARN_ON(queue < 0 || queue > 1);
1642 
1643 	val = rd32(E1000_I210_TQAVCC(queue));
1644 
1645 	if (mode == QUEUE_MODE_STREAM_RESERVATION)
1646 		val |= E1000_TQAVCC_QUEUEMODE;
1647 	else
1648 		val &= ~E1000_TQAVCC_QUEUEMODE;
1649 
1650 	wr32(E1000_I210_TQAVCC(queue), val);
1651 }
1652 
1653 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1654 {
1655 	int i;
1656 
1657 	for (i = 0; i < adapter->num_tx_queues; i++) {
1658 		if (adapter->tx_ring[i]->cbs_enable)
1659 			return true;
1660 	}
1661 
1662 	return false;
1663 }
1664 
1665 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1666 {
1667 	int i;
1668 
1669 	for (i = 0; i < adapter->num_tx_queues; i++) {
1670 		if (adapter->tx_ring[i]->launchtime_enable)
1671 			return true;
1672 	}
1673 
1674 	return false;
1675 }
1676 
1677 /**
1678  *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1679  *  @adapter: pointer to adapter struct
1680  *  @queue: queue number
1681  *
1682  *  Configure CBS and Launchtime for a given hardware queue.
1683  *  Parameters are retrieved from the correct Tx ring, so
1684  *  igb_save_cbs_params() and igb_save_txtime_params() should be used
1685  *  for setting those correctly prior to this function being called.
1686  **/
1687 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1688 {
1689 	struct net_device *netdev = adapter->netdev;
1690 	struct e1000_hw *hw = &adapter->hw;
1691 	struct igb_ring *ring;
1692 	u32 tqavcc, tqavctrl;
1693 	u16 value;
1694 
1695 	WARN_ON(hw->mac.type != e1000_i210);
1696 	WARN_ON(queue < 0 || queue > 1);
1697 	ring = adapter->tx_ring[queue];
1698 
1699 	/* If any of the Qav features is enabled, configure queues as SR and
1700 	 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1701 	 * as SP.
1702 	 */
1703 	if (ring->cbs_enable || ring->launchtime_enable) {
1704 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1705 		set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1706 	} else {
1707 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1708 		set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1709 	}
1710 
1711 	/* If CBS is enabled, set DataTranARB and config its parameters. */
1712 	if (ring->cbs_enable || queue == 0) {
1713 		/* i210 does not allow the queue 0 to be in the Strict
1714 		 * Priority mode while the Qav mode is enabled, so,
1715 		 * instead of disabling strict priority mode, we give
1716 		 * queue 0 the maximum of credits possible.
1717 		 *
1718 		 * See section 8.12.19 of the i210 datasheet, "Note:
1719 		 * Queue0 QueueMode must be set to 1b when
1720 		 * TransmitMode is set to Qav."
1721 		 */
1722 		if (queue == 0 && !ring->cbs_enable) {
1723 			/* max "linkspeed" idleslope in kbps */
1724 			ring->idleslope = 1000000;
1725 			ring->hicredit = ETH_FRAME_LEN;
1726 		}
1727 
1728 		/* Always set data transfer arbitration to credit-based
1729 		 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1730 		 * the queues.
1731 		 */
1732 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1733 		tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1734 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1735 
1736 		/* According to i210 datasheet section 7.2.7.7, we should set
1737 		 * the 'idleSlope' field from TQAVCC register following the
1738 		 * equation:
1739 		 *
1740 		 * For 100 Mbps link speed:
1741 		 *
1742 		 *     value = BW * 0x7735 * 0.2                          (E1)
1743 		 *
1744 		 * For 1000Mbps link speed:
1745 		 *
1746 		 *     value = BW * 0x7735 * 2                            (E2)
1747 		 *
1748 		 * E1 and E2 can be merged into one equation as shown below.
1749 		 * Note that 'link-speed' is in Mbps.
1750 		 *
1751 		 *     value = BW * 0x7735 * 2 * link-speed
1752 		 *                           --------------               (E3)
1753 		 *                                1000
1754 		 *
1755 		 * 'BW' is the percentage bandwidth out of full link speed
1756 		 * which can be found with the following equation. Note that
1757 		 * idleSlope here is the parameter from this function which
1758 		 * is in kbps.
1759 		 *
1760 		 *     BW =     idleSlope
1761 		 *          -----------------                             (E4)
1762 		 *          link-speed * 1000
1763 		 *
1764 		 * That said, we can come up with a generic equation to
1765 		 * calculate the value we should set it TQAVCC register by
1766 		 * replacing 'BW' in E3 by E4. The resulting equation is:
1767 		 *
1768 		 * value =     idleSlope     * 0x7735 * 2 * link-speed
1769 		 *         -----------------            --------------    (E5)
1770 		 *         link-speed * 1000                 1000
1771 		 *
1772 		 * 'link-speed' is present in both sides of the fraction so
1773 		 * it is canceled out. The final equation is the following:
1774 		 *
1775 		 *     value = idleSlope * 61034
1776 		 *             -----------------                          (E6)
1777 		 *                  1000000
1778 		 *
1779 		 * NOTE: For i210, given the above, we can see that idleslope
1780 		 *       is represented in 16.38431 kbps units by the value at
1781 		 *       the TQAVCC register (1Gbps / 61034), which reduces
1782 		 *       the granularity for idleslope increments.
1783 		 *       For instance, if you want to configure a 2576kbps
1784 		 *       idleslope, the value to be written on the register
1785 		 *       would have to be 157.23. If rounded down, you end
1786 		 *       up with less bandwidth available than originally
1787 		 *       required (~2572 kbps). If rounded up, you end up
1788 		 *       with a higher bandwidth (~2589 kbps). Below the
1789 		 *       approach we take is to always round up the
1790 		 *       calculated value, so the resulting bandwidth might
1791 		 *       be slightly higher for some configurations.
1792 		 */
1793 		value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1794 
1795 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1796 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1797 		tqavcc |= value;
1798 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1799 
1800 		wr32(E1000_I210_TQAVHC(queue),
1801 		     0x80000000 + ring->hicredit * 0x7735);
1802 	} else {
1803 
1804 		/* Set idleSlope to zero. */
1805 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1806 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1807 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1808 
1809 		/* Set hiCredit to zero. */
1810 		wr32(E1000_I210_TQAVHC(queue), 0);
1811 
1812 		/* If CBS is not enabled for any queues anymore, then return to
1813 		 * the default state of Data Transmission Arbitration on
1814 		 * TQAVCTRL.
1815 		 */
1816 		if (!is_any_cbs_enabled(adapter)) {
1817 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1818 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1819 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1820 		}
1821 	}
1822 
1823 	/* If LaunchTime is enabled, set DataTranTIM. */
1824 	if (ring->launchtime_enable) {
1825 		/* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1826 		 * for any of the SR queues, and configure fetchtime delta.
1827 		 * XXX NOTE:
1828 		 *     - LaunchTime will be enabled for all SR queues.
1829 		 *     - A fixed offset can be added relative to the launch
1830 		 *       time of all packets if configured at reg LAUNCH_OS0.
1831 		 *       We are keeping it as 0 for now (default value).
1832 		 */
1833 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1834 		tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1835 		       E1000_TQAVCTRL_FETCHTIME_DELTA;
1836 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1837 	} else {
1838 		/* If Launchtime is not enabled for any SR queues anymore,
1839 		 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1840 		 * effectively disabling Launchtime.
1841 		 */
1842 		if (!is_any_txtime_enabled(adapter)) {
1843 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1844 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1845 			tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1846 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1847 		}
1848 	}
1849 
1850 	/* XXX: In i210 controller the sendSlope and loCredit parameters from
1851 	 * CBS are not configurable by software so we don't do any 'controller
1852 	 * configuration' in respect to these parameters.
1853 	 */
1854 
1855 	netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1856 		   ring->cbs_enable ? "enabled" : "disabled",
1857 		   ring->launchtime_enable ? "enabled" : "disabled",
1858 		   queue,
1859 		   ring->idleslope, ring->sendslope,
1860 		   ring->hicredit, ring->locredit);
1861 }
1862 
1863 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1864 				  bool enable)
1865 {
1866 	struct igb_ring *ring;
1867 
1868 	if (queue < 0 || queue > adapter->num_tx_queues)
1869 		return -EINVAL;
1870 
1871 	ring = adapter->tx_ring[queue];
1872 	ring->launchtime_enable = enable;
1873 
1874 	return 0;
1875 }
1876 
1877 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1878 			       bool enable, int idleslope, int sendslope,
1879 			       int hicredit, int locredit)
1880 {
1881 	struct igb_ring *ring;
1882 
1883 	if (queue < 0 || queue > adapter->num_tx_queues)
1884 		return -EINVAL;
1885 
1886 	ring = adapter->tx_ring[queue];
1887 
1888 	ring->cbs_enable = enable;
1889 	ring->idleslope = idleslope;
1890 	ring->sendslope = sendslope;
1891 	ring->hicredit = hicredit;
1892 	ring->locredit = locredit;
1893 
1894 	return 0;
1895 }
1896 
1897 /**
1898  *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1899  *  @adapter: pointer to adapter struct
1900  *
1901  *  Configure TQAVCTRL register switching the controller's Tx mode
1902  *  if FQTSS mode is enabled or disabled. Additionally, will issue
1903  *  a call to igb_config_tx_modes() per queue so any previously saved
1904  *  Tx parameters are applied.
1905  **/
1906 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1907 {
1908 	struct net_device *netdev = adapter->netdev;
1909 	struct e1000_hw *hw = &adapter->hw;
1910 	u32 val;
1911 
1912 	/* Only i210 controller supports changing the transmission mode. */
1913 	if (hw->mac.type != e1000_i210)
1914 		return;
1915 
1916 	if (is_fqtss_enabled(adapter)) {
1917 		int i, max_queue;
1918 
1919 		/* Configure TQAVCTRL register: set transmit mode to 'Qav',
1920 		 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1921 		 * so SP queues wait for SR ones.
1922 		 */
1923 		val = rd32(E1000_I210_TQAVCTRL);
1924 		val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1925 		val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1926 		wr32(E1000_I210_TQAVCTRL, val);
1927 
1928 		/* Configure Tx and Rx packet buffers sizes as described in
1929 		 * i210 datasheet section 7.2.7.7.
1930 		 */
1931 		val = rd32(E1000_TXPBS);
1932 		val &= ~I210_TXPBSIZE_MASK;
1933 		val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB |
1934 			I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB;
1935 		wr32(E1000_TXPBS, val);
1936 
1937 		val = rd32(E1000_RXPBS);
1938 		val &= ~I210_RXPBSIZE_MASK;
1939 		val |= I210_RXPBSIZE_PB_30KB;
1940 		wr32(E1000_RXPBS, val);
1941 
1942 		/* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1943 		 * register should not exceed the buffer size programmed in
1944 		 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1945 		 * so according to the datasheet we should set MAX_TPKT_SIZE to
1946 		 * 4kB / 64.
1947 		 *
1948 		 * However, when we do so, no frame from queue 2 and 3 are
1949 		 * transmitted.  It seems the MAX_TPKT_SIZE should not be great
1950 		 * or _equal_ to the buffer size programmed in TXPBS. For this
1951 		 * reason, we set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1952 		 */
1953 		val = (4096 - 1) / 64;
1954 		wr32(E1000_I210_DTXMXPKTSZ, val);
1955 
1956 		/* Since FQTSS mode is enabled, apply any CBS configuration
1957 		 * previously set. If no previous CBS configuration has been
1958 		 * done, then the initial configuration is applied, which means
1959 		 * CBS is disabled.
1960 		 */
1961 		max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1962 			    adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1963 
1964 		for (i = 0; i < max_queue; i++) {
1965 			igb_config_tx_modes(adapter, i);
1966 		}
1967 	} else {
1968 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1969 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1970 		wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1971 
1972 		val = rd32(E1000_I210_TQAVCTRL);
1973 		/* According to Section 8.12.21, the other flags we've set when
1974 		 * enabling FQTSS are not relevant when disabling FQTSS so we
1975 		 * don't set they here.
1976 		 */
1977 		val &= ~E1000_TQAVCTRL_XMIT_MODE;
1978 		wr32(E1000_I210_TQAVCTRL, val);
1979 	}
1980 
1981 	netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1982 		   "enabled" : "disabled");
1983 }
1984 
1985 /**
1986  *  igb_configure - configure the hardware for RX and TX
1987  *  @adapter: private board structure
1988  **/
1989 static void igb_configure(struct igb_adapter *adapter)
1990 {
1991 	struct net_device *netdev = adapter->netdev;
1992 	int i;
1993 
1994 	igb_get_hw_control(adapter);
1995 	igb_set_rx_mode(netdev);
1996 	igb_setup_tx_mode(adapter);
1997 
1998 	igb_restore_vlan(adapter);
1999 
2000 	igb_setup_tctl(adapter);
2001 	igb_setup_mrqc(adapter);
2002 	igb_setup_rctl(adapter);
2003 
2004 	igb_nfc_filter_restore(adapter);
2005 	igb_configure_tx(adapter);
2006 	igb_configure_rx(adapter);
2007 
2008 	igb_rx_fifo_flush_82575(&adapter->hw);
2009 
2010 	/* call igb_desc_unused which always leaves
2011 	 * at least 1 descriptor unused to make sure
2012 	 * next_to_use != next_to_clean
2013 	 */
2014 	for (i = 0; i < adapter->num_rx_queues; i++) {
2015 		struct igb_ring *ring = adapter->rx_ring[i];
2016 		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2017 	}
2018 }
2019 
2020 /**
2021  *  igb_power_up_link - Power up the phy/serdes link
2022  *  @adapter: address of board private structure
2023  **/
2024 void igb_power_up_link(struct igb_adapter *adapter)
2025 {
2026 	igb_reset_phy(&adapter->hw);
2027 
2028 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2029 		igb_power_up_phy_copper(&adapter->hw);
2030 	else
2031 		igb_power_up_serdes_link_82575(&adapter->hw);
2032 
2033 	igb_setup_link(&adapter->hw);
2034 }
2035 
2036 /**
2037  *  igb_power_down_link - Power down the phy/serdes link
2038  *  @adapter: address of board private structure
2039  */
2040 static void igb_power_down_link(struct igb_adapter *adapter)
2041 {
2042 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2043 		igb_power_down_phy_copper_82575(&adapter->hw);
2044 	else
2045 		igb_shutdown_serdes_link_82575(&adapter->hw);
2046 }
2047 
2048 /**
2049  * igb_check_swap_media -  Detect and switch function for Media Auto Sense
2050  * @adapter: address of the board private structure
2051  **/
2052 static void igb_check_swap_media(struct igb_adapter *adapter)
2053 {
2054 	struct e1000_hw *hw = &adapter->hw;
2055 	u32 ctrl_ext, connsw;
2056 	bool swap_now = false;
2057 
2058 	ctrl_ext = rd32(E1000_CTRL_EXT);
2059 	connsw = rd32(E1000_CONNSW);
2060 
2061 	/* need to live swap if current media is copper and we have fiber/serdes
2062 	 * to go to.
2063 	 */
2064 
2065 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2066 	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2067 		swap_now = true;
2068 	} else if ((hw->phy.media_type != e1000_media_type_copper) &&
2069 		   !(connsw & E1000_CONNSW_SERDESD)) {
2070 		/* copper signal takes time to appear */
2071 		if (adapter->copper_tries < 4) {
2072 			adapter->copper_tries++;
2073 			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2074 			wr32(E1000_CONNSW, connsw);
2075 			return;
2076 		} else {
2077 			adapter->copper_tries = 0;
2078 			if ((connsw & E1000_CONNSW_PHYSD) &&
2079 			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
2080 				swap_now = true;
2081 				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2082 				wr32(E1000_CONNSW, connsw);
2083 			}
2084 		}
2085 	}
2086 
2087 	if (!swap_now)
2088 		return;
2089 
2090 	switch (hw->phy.media_type) {
2091 	case e1000_media_type_copper:
2092 		netdev_info(adapter->netdev,
2093 			"MAS: changing media to fiber/serdes\n");
2094 		ctrl_ext |=
2095 			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2096 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2097 		adapter->copper_tries = 0;
2098 		break;
2099 	case e1000_media_type_internal_serdes:
2100 	case e1000_media_type_fiber:
2101 		netdev_info(adapter->netdev,
2102 			"MAS: changing media to copper\n");
2103 		ctrl_ext &=
2104 			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2105 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2106 		break;
2107 	default:
2108 		/* shouldn't get here during regular operation */
2109 		netdev_err(adapter->netdev,
2110 			"AMS: Invalid media type found, returning\n");
2111 		break;
2112 	}
2113 	wr32(E1000_CTRL_EXT, ctrl_ext);
2114 }
2115 
2116 /**
2117  *  igb_up - Open the interface and prepare it to handle traffic
2118  *  @adapter: board private structure
2119  **/
2120 int igb_up(struct igb_adapter *adapter)
2121 {
2122 	struct e1000_hw *hw = &adapter->hw;
2123 	int i;
2124 
2125 	/* hardware has been reset, we need to reload some things */
2126 	igb_configure(adapter);
2127 
2128 	clear_bit(__IGB_DOWN, &adapter->state);
2129 
2130 	for (i = 0; i < adapter->num_q_vectors; i++)
2131 		napi_enable(&(adapter->q_vector[i]->napi));
2132 
2133 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
2134 		igb_configure_msix(adapter);
2135 	else
2136 		igb_assign_vector(adapter->q_vector[0], 0);
2137 
2138 	/* Clear any pending interrupts. */
2139 	rd32(E1000_TSICR);
2140 	rd32(E1000_ICR);
2141 	igb_irq_enable(adapter);
2142 
2143 	/* notify VFs that reset has been completed */
2144 	if (adapter->vfs_allocated_count) {
2145 		u32 reg_data = rd32(E1000_CTRL_EXT);
2146 
2147 		reg_data |= E1000_CTRL_EXT_PFRSTD;
2148 		wr32(E1000_CTRL_EXT, reg_data);
2149 	}
2150 
2151 	netif_tx_start_all_queues(adapter->netdev);
2152 
2153 	/* start the watchdog. */
2154 	hw->mac.get_link_status = 1;
2155 	schedule_work(&adapter->watchdog_task);
2156 
2157 	if ((adapter->flags & IGB_FLAG_EEE) &&
2158 	    (!hw->dev_spec._82575.eee_disable))
2159 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2160 
2161 	return 0;
2162 }
2163 
2164 void igb_down(struct igb_adapter *adapter)
2165 {
2166 	struct net_device *netdev = adapter->netdev;
2167 	struct e1000_hw *hw = &adapter->hw;
2168 	u32 tctl, rctl;
2169 	int i;
2170 
2171 	/* signal that we're down so the interrupt handler does not
2172 	 * reschedule our watchdog timer
2173 	 */
2174 	set_bit(__IGB_DOWN, &adapter->state);
2175 
2176 	/* disable receives in the hardware */
2177 	rctl = rd32(E1000_RCTL);
2178 	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2179 	/* flush and sleep below */
2180 
2181 	igb_nfc_filter_exit(adapter);
2182 
2183 	netif_carrier_off(netdev);
2184 	netif_tx_stop_all_queues(netdev);
2185 
2186 	/* disable transmits in the hardware */
2187 	tctl = rd32(E1000_TCTL);
2188 	tctl &= ~E1000_TCTL_EN;
2189 	wr32(E1000_TCTL, tctl);
2190 	/* flush both disables and wait for them to finish */
2191 	wrfl();
2192 	usleep_range(10000, 11000);
2193 
2194 	igb_irq_disable(adapter);
2195 
2196 	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2197 
2198 	for (i = 0; i < adapter->num_q_vectors; i++) {
2199 		if (adapter->q_vector[i]) {
2200 			napi_synchronize(&adapter->q_vector[i]->napi);
2201 			napi_disable(&adapter->q_vector[i]->napi);
2202 		}
2203 	}
2204 
2205 	del_timer_sync(&adapter->watchdog_timer);
2206 	del_timer_sync(&adapter->phy_info_timer);
2207 
2208 	/* record the stats before reset*/
2209 	spin_lock(&adapter->stats64_lock);
2210 	igb_update_stats(adapter);
2211 	spin_unlock(&adapter->stats64_lock);
2212 
2213 	adapter->link_speed = 0;
2214 	adapter->link_duplex = 0;
2215 
2216 	if (!pci_channel_offline(adapter->pdev))
2217 		igb_reset(adapter);
2218 
2219 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
2220 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2221 
2222 	igb_clean_all_tx_rings(adapter);
2223 	igb_clean_all_rx_rings(adapter);
2224 #ifdef CONFIG_IGB_DCA
2225 
2226 	/* since we reset the hardware DCA settings were cleared */
2227 	igb_setup_dca(adapter);
2228 #endif
2229 }
2230 
2231 void igb_reinit_locked(struct igb_adapter *adapter)
2232 {
2233 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2234 		usleep_range(1000, 2000);
2235 	igb_down(adapter);
2236 	igb_up(adapter);
2237 	clear_bit(__IGB_RESETTING, &adapter->state);
2238 }
2239 
2240 /** igb_enable_mas - Media Autosense re-enable after swap
2241  *
2242  * @adapter: adapter struct
2243  **/
2244 static void igb_enable_mas(struct igb_adapter *adapter)
2245 {
2246 	struct e1000_hw *hw = &adapter->hw;
2247 	u32 connsw = rd32(E1000_CONNSW);
2248 
2249 	/* configure for SerDes media detect */
2250 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2251 	    (!(connsw & E1000_CONNSW_SERDESD))) {
2252 		connsw |= E1000_CONNSW_ENRGSRC;
2253 		connsw |= E1000_CONNSW_AUTOSENSE_EN;
2254 		wr32(E1000_CONNSW, connsw);
2255 		wrfl();
2256 	}
2257 }
2258 
2259 #ifdef CONFIG_IGB_HWMON
2260 /**
2261  *  igb_set_i2c_bb - Init I2C interface
2262  *  @hw: pointer to hardware structure
2263  **/
2264 static void igb_set_i2c_bb(struct e1000_hw *hw)
2265 {
2266 	u32 ctrl_ext;
2267 	s32 i2cctl;
2268 
2269 	ctrl_ext = rd32(E1000_CTRL_EXT);
2270 	ctrl_ext |= E1000_CTRL_I2C_ENA;
2271 	wr32(E1000_CTRL_EXT, ctrl_ext);
2272 	wrfl();
2273 
2274 	i2cctl = rd32(E1000_I2CPARAMS);
2275 	i2cctl |= E1000_I2CBB_EN
2276 		| E1000_I2C_CLK_OE_N
2277 		| E1000_I2C_DATA_OE_N;
2278 	wr32(E1000_I2CPARAMS, i2cctl);
2279 	wrfl();
2280 }
2281 #endif
2282 
2283 void igb_reset(struct igb_adapter *adapter)
2284 {
2285 	struct pci_dev *pdev = adapter->pdev;
2286 	struct e1000_hw *hw = &adapter->hw;
2287 	struct e1000_mac_info *mac = &hw->mac;
2288 	struct e1000_fc_info *fc = &hw->fc;
2289 	u32 pba, hwm;
2290 
2291 	/* Repartition Pba for greater than 9k mtu
2292 	 * To take effect CTRL.RST is required.
2293 	 */
2294 	switch (mac->type) {
2295 	case e1000_i350:
2296 	case e1000_i354:
2297 	case e1000_82580:
2298 		pba = rd32(E1000_RXPBS);
2299 		pba = igb_rxpbs_adjust_82580(pba);
2300 		break;
2301 	case e1000_82576:
2302 		pba = rd32(E1000_RXPBS);
2303 		pba &= E1000_RXPBS_SIZE_MASK_82576;
2304 		break;
2305 	case e1000_82575:
2306 	case e1000_i210:
2307 	case e1000_i211:
2308 	default:
2309 		pba = E1000_PBA_34K;
2310 		break;
2311 	}
2312 
2313 	if (mac->type == e1000_82575) {
2314 		u32 min_rx_space, min_tx_space, needed_tx_space;
2315 
2316 		/* write Rx PBA so that hardware can report correct Tx PBA */
2317 		wr32(E1000_PBA, pba);
2318 
2319 		/* To maintain wire speed transmits, the Tx FIFO should be
2320 		 * large enough to accommodate two full transmit packets,
2321 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
2322 		 * the Rx FIFO should be large enough to accommodate at least
2323 		 * one full receive packet and is similarly rounded up and
2324 		 * expressed in KB.
2325 		 */
2326 		min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2327 
2328 		/* The Tx FIFO also stores 16 bytes of information about the Tx
2329 		 * but don't include Ethernet FCS because hardware appends it.
2330 		 * We only need to round down to the nearest 512 byte block
2331 		 * count since the value we care about is 2 frames, not 1.
2332 		 */
2333 		min_tx_space = adapter->max_frame_size;
2334 		min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2335 		min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2336 
2337 		/* upper 16 bits has Tx packet buffer allocation size in KB */
2338 		needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2339 
2340 		/* If current Tx allocation is less than the min Tx FIFO size,
2341 		 * and the min Tx FIFO size is less than the current Rx FIFO
2342 		 * allocation, take space away from current Rx allocation.
2343 		 */
2344 		if (needed_tx_space < pba) {
2345 			pba -= needed_tx_space;
2346 
2347 			/* if short on Rx space, Rx wins and must trump Tx
2348 			 * adjustment
2349 			 */
2350 			if (pba < min_rx_space)
2351 				pba = min_rx_space;
2352 		}
2353 
2354 		/* adjust PBA for jumbo frames */
2355 		wr32(E1000_PBA, pba);
2356 	}
2357 
2358 	/* flow control settings
2359 	 * The high water mark must be low enough to fit one full frame
2360 	 * after transmitting the pause frame.  As such we must have enough
2361 	 * space to allow for us to complete our current transmit and then
2362 	 * receive the frame that is in progress from the link partner.
2363 	 * Set it to:
2364 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2365 	 */
2366 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2367 
2368 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
2369 	fc->low_water = fc->high_water - 16;
2370 	fc->pause_time = 0xFFFF;
2371 	fc->send_xon = 1;
2372 	fc->current_mode = fc->requested_mode;
2373 
2374 	/* disable receive for all VFs and wait one second */
2375 	if (adapter->vfs_allocated_count) {
2376 		int i;
2377 
2378 		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2379 			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2380 
2381 		/* ping all the active vfs to let them know we are going down */
2382 		igb_ping_all_vfs(adapter);
2383 
2384 		/* disable transmits and receives */
2385 		wr32(E1000_VFRE, 0);
2386 		wr32(E1000_VFTE, 0);
2387 	}
2388 
2389 	/* Allow time for pending master requests to run */
2390 	hw->mac.ops.reset_hw(hw);
2391 	wr32(E1000_WUC, 0);
2392 
2393 	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2394 		/* need to resetup here after media swap */
2395 		adapter->ei.get_invariants(hw);
2396 		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2397 	}
2398 	if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2399 	    (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2400 		igb_enable_mas(adapter);
2401 	}
2402 	if (hw->mac.ops.init_hw(hw))
2403 		dev_err(&pdev->dev, "Hardware Error\n");
2404 
2405 	/* RAR registers were cleared during init_hw, clear mac table */
2406 	igb_flush_mac_table(adapter);
2407 	__dev_uc_unsync(adapter->netdev, NULL);
2408 
2409 	/* Recover default RAR entry */
2410 	igb_set_default_mac_filter(adapter);
2411 
2412 	/* Flow control settings reset on hardware reset, so guarantee flow
2413 	 * control is off when forcing speed.
2414 	 */
2415 	if (!hw->mac.autoneg)
2416 		igb_force_mac_fc(hw);
2417 
2418 	igb_init_dmac(adapter, pba);
2419 #ifdef CONFIG_IGB_HWMON
2420 	/* Re-initialize the thermal sensor on i350 devices. */
2421 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
2422 		if (mac->type == e1000_i350 && hw->bus.func == 0) {
2423 			/* If present, re-initialize the external thermal sensor
2424 			 * interface.
2425 			 */
2426 			if (adapter->ets)
2427 				igb_set_i2c_bb(hw);
2428 			mac->ops.init_thermal_sensor_thresh(hw);
2429 		}
2430 	}
2431 #endif
2432 	/* Re-establish EEE setting */
2433 	if (hw->phy.media_type == e1000_media_type_copper) {
2434 		switch (mac->type) {
2435 		case e1000_i350:
2436 		case e1000_i210:
2437 		case e1000_i211:
2438 			igb_set_eee_i350(hw, true, true);
2439 			break;
2440 		case e1000_i354:
2441 			igb_set_eee_i354(hw, true, true);
2442 			break;
2443 		default:
2444 			break;
2445 		}
2446 	}
2447 	if (!netif_running(adapter->netdev))
2448 		igb_power_down_link(adapter);
2449 
2450 	igb_update_mng_vlan(adapter);
2451 
2452 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2453 	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2454 
2455 	/* Re-enable PTP, where applicable. */
2456 	if (adapter->ptp_flags & IGB_PTP_ENABLED)
2457 		igb_ptp_reset(adapter);
2458 
2459 	igb_get_phy_info(hw);
2460 }
2461 
2462 static netdev_features_t igb_fix_features(struct net_device *netdev,
2463 	netdev_features_t features)
2464 {
2465 	/* Since there is no support for separate Rx/Tx vlan accel
2466 	 * enable/disable make sure Tx flag is always in same state as Rx.
2467 	 */
2468 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2469 		features |= NETIF_F_HW_VLAN_CTAG_TX;
2470 	else
2471 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2472 
2473 	return features;
2474 }
2475 
2476 static int igb_set_features(struct net_device *netdev,
2477 	netdev_features_t features)
2478 {
2479 	netdev_features_t changed = netdev->features ^ features;
2480 	struct igb_adapter *adapter = netdev_priv(netdev);
2481 
2482 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2483 		igb_vlan_mode(netdev, features);
2484 
2485 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2486 		return 0;
2487 
2488 	if (!(features & NETIF_F_NTUPLE)) {
2489 		struct hlist_node *node2;
2490 		struct igb_nfc_filter *rule;
2491 
2492 		spin_lock(&adapter->nfc_lock);
2493 		hlist_for_each_entry_safe(rule, node2,
2494 					  &adapter->nfc_filter_list, nfc_node) {
2495 			igb_erase_filter(adapter, rule);
2496 			hlist_del(&rule->nfc_node);
2497 			kfree(rule);
2498 		}
2499 		spin_unlock(&adapter->nfc_lock);
2500 		adapter->nfc_filter_count = 0;
2501 	}
2502 
2503 	netdev->features = features;
2504 
2505 	if (netif_running(netdev))
2506 		igb_reinit_locked(adapter);
2507 	else
2508 		igb_reset(adapter);
2509 
2510 	return 1;
2511 }
2512 
2513 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2514 			   struct net_device *dev,
2515 			   const unsigned char *addr, u16 vid,
2516 			   u16 flags,
2517 			   struct netlink_ext_ack *extack)
2518 {
2519 	/* guarantee we can provide a unique filter for the unicast address */
2520 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2521 		struct igb_adapter *adapter = netdev_priv(dev);
2522 		int vfn = adapter->vfs_allocated_count;
2523 
2524 		if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2525 			return -ENOMEM;
2526 	}
2527 
2528 	return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2529 }
2530 
2531 #define IGB_MAX_MAC_HDR_LEN	127
2532 #define IGB_MAX_NETWORK_HDR_LEN	511
2533 
2534 static netdev_features_t
2535 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2536 		   netdev_features_t features)
2537 {
2538 	unsigned int network_hdr_len, mac_hdr_len;
2539 
2540 	/* Make certain the headers can be described by a context descriptor */
2541 	mac_hdr_len = skb_network_header(skb) - skb->data;
2542 	if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2543 		return features & ~(NETIF_F_HW_CSUM |
2544 				    NETIF_F_SCTP_CRC |
2545 				    NETIF_F_GSO_UDP_L4 |
2546 				    NETIF_F_HW_VLAN_CTAG_TX |
2547 				    NETIF_F_TSO |
2548 				    NETIF_F_TSO6);
2549 
2550 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2551 	if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2552 		return features & ~(NETIF_F_HW_CSUM |
2553 				    NETIF_F_SCTP_CRC |
2554 				    NETIF_F_GSO_UDP_L4 |
2555 				    NETIF_F_TSO |
2556 				    NETIF_F_TSO6);
2557 
2558 	/* We can only support IPV4 TSO in tunnels if we can mangle the
2559 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2560 	 */
2561 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2562 		features &= ~NETIF_F_TSO;
2563 
2564 	return features;
2565 }
2566 
2567 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2568 {
2569 	if (!is_fqtss_enabled(adapter)) {
2570 		enable_fqtss(adapter, true);
2571 		return;
2572 	}
2573 
2574 	igb_config_tx_modes(adapter, queue);
2575 
2576 	if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2577 		enable_fqtss(adapter, false);
2578 }
2579 
2580 static int igb_offload_cbs(struct igb_adapter *adapter,
2581 			   struct tc_cbs_qopt_offload *qopt)
2582 {
2583 	struct e1000_hw *hw = &adapter->hw;
2584 	int err;
2585 
2586 	/* CBS offloading is only supported by i210 controller. */
2587 	if (hw->mac.type != e1000_i210)
2588 		return -EOPNOTSUPP;
2589 
2590 	/* CBS offloading is only supported by queue 0 and queue 1. */
2591 	if (qopt->queue < 0 || qopt->queue > 1)
2592 		return -EINVAL;
2593 
2594 	err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2595 				  qopt->idleslope, qopt->sendslope,
2596 				  qopt->hicredit, qopt->locredit);
2597 	if (err)
2598 		return err;
2599 
2600 	igb_offload_apply(adapter, qopt->queue);
2601 
2602 	return 0;
2603 }
2604 
2605 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2606 #define VLAN_PRIO_FULL_MASK (0x07)
2607 
2608 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2609 				struct flow_cls_offload *f,
2610 				int traffic_class,
2611 				struct igb_nfc_filter *input)
2612 {
2613 	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2614 	struct flow_dissector *dissector = rule->match.dissector;
2615 	struct netlink_ext_ack *extack = f->common.extack;
2616 
2617 	if (dissector->used_keys &
2618 	    ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2619 	      BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2620 	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2621 	      BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2622 		NL_SET_ERR_MSG_MOD(extack,
2623 				   "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2624 		return -EOPNOTSUPP;
2625 	}
2626 
2627 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2628 		struct flow_match_eth_addrs match;
2629 
2630 		flow_rule_match_eth_addrs(rule, &match);
2631 		if (!is_zero_ether_addr(match.mask->dst)) {
2632 			if (!is_broadcast_ether_addr(match.mask->dst)) {
2633 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2634 				return -EINVAL;
2635 			}
2636 
2637 			input->filter.match_flags |=
2638 				IGB_FILTER_FLAG_DST_MAC_ADDR;
2639 			ether_addr_copy(input->filter.dst_addr, match.key->dst);
2640 		}
2641 
2642 		if (!is_zero_ether_addr(match.mask->src)) {
2643 			if (!is_broadcast_ether_addr(match.mask->src)) {
2644 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2645 				return -EINVAL;
2646 			}
2647 
2648 			input->filter.match_flags |=
2649 				IGB_FILTER_FLAG_SRC_MAC_ADDR;
2650 			ether_addr_copy(input->filter.src_addr, match.key->src);
2651 		}
2652 	}
2653 
2654 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2655 		struct flow_match_basic match;
2656 
2657 		flow_rule_match_basic(rule, &match);
2658 		if (match.mask->n_proto) {
2659 			if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2660 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2661 				return -EINVAL;
2662 			}
2663 
2664 			input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2665 			input->filter.etype = match.key->n_proto;
2666 		}
2667 	}
2668 
2669 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2670 		struct flow_match_vlan match;
2671 
2672 		flow_rule_match_vlan(rule, &match);
2673 		if (match.mask->vlan_priority) {
2674 			if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2675 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2676 				return -EINVAL;
2677 			}
2678 
2679 			input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2680 			input->filter.vlan_tci =
2681 				(__force __be16)match.key->vlan_priority;
2682 		}
2683 	}
2684 
2685 	input->action = traffic_class;
2686 	input->cookie = f->cookie;
2687 
2688 	return 0;
2689 }
2690 
2691 static int igb_configure_clsflower(struct igb_adapter *adapter,
2692 				   struct flow_cls_offload *cls_flower)
2693 {
2694 	struct netlink_ext_ack *extack = cls_flower->common.extack;
2695 	struct igb_nfc_filter *filter, *f;
2696 	int err, tc;
2697 
2698 	tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2699 	if (tc < 0) {
2700 		NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2701 		return -EINVAL;
2702 	}
2703 
2704 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2705 	if (!filter)
2706 		return -ENOMEM;
2707 
2708 	err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2709 	if (err < 0)
2710 		goto err_parse;
2711 
2712 	spin_lock(&adapter->nfc_lock);
2713 
2714 	hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2715 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2716 			err = -EEXIST;
2717 			NL_SET_ERR_MSG_MOD(extack,
2718 					   "This filter is already set in ethtool");
2719 			goto err_locked;
2720 		}
2721 	}
2722 
2723 	hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2724 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2725 			err = -EEXIST;
2726 			NL_SET_ERR_MSG_MOD(extack,
2727 					   "This filter is already set in cls_flower");
2728 			goto err_locked;
2729 		}
2730 	}
2731 
2732 	err = igb_add_filter(adapter, filter);
2733 	if (err < 0) {
2734 		NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2735 		goto err_locked;
2736 	}
2737 
2738 	hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2739 
2740 	spin_unlock(&adapter->nfc_lock);
2741 
2742 	return 0;
2743 
2744 err_locked:
2745 	spin_unlock(&adapter->nfc_lock);
2746 
2747 err_parse:
2748 	kfree(filter);
2749 
2750 	return err;
2751 }
2752 
2753 static int igb_delete_clsflower(struct igb_adapter *adapter,
2754 				struct flow_cls_offload *cls_flower)
2755 {
2756 	struct igb_nfc_filter *filter;
2757 	int err;
2758 
2759 	spin_lock(&adapter->nfc_lock);
2760 
2761 	hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2762 		if (filter->cookie == cls_flower->cookie)
2763 			break;
2764 
2765 	if (!filter) {
2766 		err = -ENOENT;
2767 		goto out;
2768 	}
2769 
2770 	err = igb_erase_filter(adapter, filter);
2771 	if (err < 0)
2772 		goto out;
2773 
2774 	hlist_del(&filter->nfc_node);
2775 	kfree(filter);
2776 
2777 out:
2778 	spin_unlock(&adapter->nfc_lock);
2779 
2780 	return err;
2781 }
2782 
2783 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2784 				   struct flow_cls_offload *cls_flower)
2785 {
2786 	switch (cls_flower->command) {
2787 	case FLOW_CLS_REPLACE:
2788 		return igb_configure_clsflower(adapter, cls_flower);
2789 	case FLOW_CLS_DESTROY:
2790 		return igb_delete_clsflower(adapter, cls_flower);
2791 	case FLOW_CLS_STATS:
2792 		return -EOPNOTSUPP;
2793 	default:
2794 		return -EOPNOTSUPP;
2795 	}
2796 }
2797 
2798 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2799 				 void *cb_priv)
2800 {
2801 	struct igb_adapter *adapter = cb_priv;
2802 
2803 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2804 		return -EOPNOTSUPP;
2805 
2806 	switch (type) {
2807 	case TC_SETUP_CLSFLOWER:
2808 		return igb_setup_tc_cls_flower(adapter, type_data);
2809 
2810 	default:
2811 		return -EOPNOTSUPP;
2812 	}
2813 }
2814 
2815 static int igb_offload_txtime(struct igb_adapter *adapter,
2816 			      struct tc_etf_qopt_offload *qopt)
2817 {
2818 	struct e1000_hw *hw = &adapter->hw;
2819 	int err;
2820 
2821 	/* Launchtime offloading is only supported by i210 controller. */
2822 	if (hw->mac.type != e1000_i210)
2823 		return -EOPNOTSUPP;
2824 
2825 	/* Launchtime offloading is only supported by queues 0 and 1. */
2826 	if (qopt->queue < 0 || qopt->queue > 1)
2827 		return -EINVAL;
2828 
2829 	err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2830 	if (err)
2831 		return err;
2832 
2833 	igb_offload_apply(adapter, qopt->queue);
2834 
2835 	return 0;
2836 }
2837 
2838 static int igb_tc_query_caps(struct igb_adapter *adapter,
2839 			     struct tc_query_caps_base *base)
2840 {
2841 	switch (base->type) {
2842 	case TC_SETUP_QDISC_TAPRIO: {
2843 		struct tc_taprio_caps *caps = base->caps;
2844 
2845 		caps->broken_mqprio = true;
2846 
2847 		return 0;
2848 	}
2849 	default:
2850 		return -EOPNOTSUPP;
2851 	}
2852 }
2853 
2854 static LIST_HEAD(igb_block_cb_list);
2855 
2856 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2857 			void *type_data)
2858 {
2859 	struct igb_adapter *adapter = netdev_priv(dev);
2860 
2861 	switch (type) {
2862 	case TC_QUERY_CAPS:
2863 		return igb_tc_query_caps(adapter, type_data);
2864 	case TC_SETUP_QDISC_CBS:
2865 		return igb_offload_cbs(adapter, type_data);
2866 	case TC_SETUP_BLOCK:
2867 		return flow_block_cb_setup_simple(type_data,
2868 						  &igb_block_cb_list,
2869 						  igb_setup_tc_block_cb,
2870 						  adapter, adapter, true);
2871 
2872 	case TC_SETUP_QDISC_ETF:
2873 		return igb_offload_txtime(adapter, type_data);
2874 
2875 	default:
2876 		return -EOPNOTSUPP;
2877 	}
2878 }
2879 
2880 static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
2881 {
2882 	int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
2883 	struct igb_adapter *adapter = netdev_priv(dev);
2884 	struct bpf_prog *prog = bpf->prog, *old_prog;
2885 	bool running = netif_running(dev);
2886 	bool need_reset;
2887 
2888 	/* verify igb ring attributes are sufficient for XDP */
2889 	for (i = 0; i < adapter->num_rx_queues; i++) {
2890 		struct igb_ring *ring = adapter->rx_ring[i];
2891 
2892 		if (frame_size > igb_rx_bufsz(ring)) {
2893 			NL_SET_ERR_MSG_MOD(bpf->extack,
2894 					   "The RX buffer size is too small for the frame size");
2895 			netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
2896 				    igb_rx_bufsz(ring), frame_size);
2897 			return -EINVAL;
2898 		}
2899 	}
2900 
2901 	old_prog = xchg(&adapter->xdp_prog, prog);
2902 	need_reset = (!!prog != !!old_prog);
2903 
2904 	/* device is up and bpf is added/removed, must setup the RX queues */
2905 	if (need_reset && running) {
2906 		igb_close(dev);
2907 	} else {
2908 		for (i = 0; i < adapter->num_rx_queues; i++)
2909 			(void)xchg(&adapter->rx_ring[i]->xdp_prog,
2910 			    adapter->xdp_prog);
2911 	}
2912 
2913 	if (old_prog)
2914 		bpf_prog_put(old_prog);
2915 
2916 	/* bpf is just replaced, RXQ and MTU are already setup */
2917 	if (!need_reset) {
2918 		return 0;
2919 	} else {
2920 		if (prog)
2921 			xdp_features_set_redirect_target(dev, true);
2922 		else
2923 			xdp_features_clear_redirect_target(dev);
2924 	}
2925 
2926 	if (running)
2927 		igb_open(dev);
2928 
2929 	return 0;
2930 }
2931 
2932 static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2933 {
2934 	switch (xdp->command) {
2935 	case XDP_SETUP_PROG:
2936 		return igb_xdp_setup(dev, xdp);
2937 	default:
2938 		return -EINVAL;
2939 	}
2940 }
2941 
2942 static void igb_xdp_ring_update_tail(struct igb_ring *ring)
2943 {
2944 	/* Force memory writes to complete before letting h/w know there
2945 	 * are new descriptors to fetch.
2946 	 */
2947 	wmb();
2948 	writel(ring->next_to_use, ring->tail);
2949 }
2950 
2951 static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter)
2952 {
2953 	unsigned int r_idx = smp_processor_id();
2954 
2955 	if (r_idx >= adapter->num_tx_queues)
2956 		r_idx = r_idx % adapter->num_tx_queues;
2957 
2958 	return adapter->tx_ring[r_idx];
2959 }
2960 
2961 static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
2962 {
2963 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2964 	int cpu = smp_processor_id();
2965 	struct igb_ring *tx_ring;
2966 	struct netdev_queue *nq;
2967 	u32 ret;
2968 
2969 	if (unlikely(!xdpf))
2970 		return IGB_XDP_CONSUMED;
2971 
2972 	/* During program transitions its possible adapter->xdp_prog is assigned
2973 	 * but ring has not been configured yet. In this case simply abort xmit.
2974 	 */
2975 	tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2976 	if (unlikely(!tx_ring))
2977 		return IGB_XDP_CONSUMED;
2978 
2979 	nq = txring_txq(tx_ring);
2980 	__netif_tx_lock(nq, cpu);
2981 	/* Avoid transmit queue timeout since we share it with the slow path */
2982 	txq_trans_cond_update(nq);
2983 	ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2984 	__netif_tx_unlock(nq);
2985 
2986 	return ret;
2987 }
2988 
2989 static int igb_xdp_xmit(struct net_device *dev, int n,
2990 			struct xdp_frame **frames, u32 flags)
2991 {
2992 	struct igb_adapter *adapter = netdev_priv(dev);
2993 	int cpu = smp_processor_id();
2994 	struct igb_ring *tx_ring;
2995 	struct netdev_queue *nq;
2996 	int nxmit = 0;
2997 	int i;
2998 
2999 	if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
3000 		return -ENETDOWN;
3001 
3002 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3003 		return -EINVAL;
3004 
3005 	/* During program transitions its possible adapter->xdp_prog is assigned
3006 	 * but ring has not been configured yet. In this case simply abort xmit.
3007 	 */
3008 	tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
3009 	if (unlikely(!tx_ring))
3010 		return -ENXIO;
3011 
3012 	nq = txring_txq(tx_ring);
3013 	__netif_tx_lock(nq, cpu);
3014 
3015 	/* Avoid transmit queue timeout since we share it with the slow path */
3016 	txq_trans_cond_update(nq);
3017 
3018 	for (i = 0; i < n; i++) {
3019 		struct xdp_frame *xdpf = frames[i];
3020 		int err;
3021 
3022 		err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
3023 		if (err != IGB_XDP_TX)
3024 			break;
3025 		nxmit++;
3026 	}
3027 
3028 	__netif_tx_unlock(nq);
3029 
3030 	if (unlikely(flags & XDP_XMIT_FLUSH))
3031 		igb_xdp_ring_update_tail(tx_ring);
3032 
3033 	return nxmit;
3034 }
3035 
3036 static const struct net_device_ops igb_netdev_ops = {
3037 	.ndo_open		= igb_open,
3038 	.ndo_stop		= igb_close,
3039 	.ndo_start_xmit		= igb_xmit_frame,
3040 	.ndo_get_stats64	= igb_get_stats64,
3041 	.ndo_set_rx_mode	= igb_set_rx_mode,
3042 	.ndo_set_mac_address	= igb_set_mac,
3043 	.ndo_change_mtu		= igb_change_mtu,
3044 	.ndo_eth_ioctl		= igb_ioctl,
3045 	.ndo_tx_timeout		= igb_tx_timeout,
3046 	.ndo_validate_addr	= eth_validate_addr,
3047 	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
3048 	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
3049 	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
3050 	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
3051 	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
3052 	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
3053 	.ndo_set_vf_trust	= igb_ndo_set_vf_trust,
3054 	.ndo_get_vf_config	= igb_ndo_get_vf_config,
3055 	.ndo_fix_features	= igb_fix_features,
3056 	.ndo_set_features	= igb_set_features,
3057 	.ndo_fdb_add		= igb_ndo_fdb_add,
3058 	.ndo_features_check	= igb_features_check,
3059 	.ndo_setup_tc		= igb_setup_tc,
3060 	.ndo_bpf		= igb_xdp,
3061 	.ndo_xdp_xmit		= igb_xdp_xmit,
3062 };
3063 
3064 /**
3065  * igb_set_fw_version - Configure version string for ethtool
3066  * @adapter: adapter struct
3067  **/
3068 void igb_set_fw_version(struct igb_adapter *adapter)
3069 {
3070 	struct e1000_hw *hw = &adapter->hw;
3071 	struct e1000_fw_version fw;
3072 
3073 	igb_get_fw_version(hw, &fw);
3074 
3075 	switch (hw->mac.type) {
3076 	case e1000_i210:
3077 	case e1000_i211:
3078 		if (!(igb_get_flash_presence_i210(hw))) {
3079 			snprintf(adapter->fw_version,
3080 				 sizeof(adapter->fw_version),
3081 				 "%2d.%2d-%d",
3082 				 fw.invm_major, fw.invm_minor,
3083 				 fw.invm_img_type);
3084 			break;
3085 		}
3086 		fallthrough;
3087 	default:
3088 		/* if option is rom valid, display its version too */
3089 		if (fw.or_valid) {
3090 			snprintf(adapter->fw_version,
3091 				 sizeof(adapter->fw_version),
3092 				 "%d.%d, 0x%08x, %d.%d.%d",
3093 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
3094 				 fw.or_major, fw.or_build, fw.or_patch);
3095 		/* no option rom */
3096 		} else if (fw.etrack_id != 0X0000) {
3097 			snprintf(adapter->fw_version,
3098 			    sizeof(adapter->fw_version),
3099 			    "%d.%d, 0x%08x",
3100 			    fw.eep_major, fw.eep_minor, fw.etrack_id);
3101 		} else {
3102 		snprintf(adapter->fw_version,
3103 		    sizeof(adapter->fw_version),
3104 		    "%d.%d.%d",
3105 		    fw.eep_major, fw.eep_minor, fw.eep_build);
3106 		}
3107 		break;
3108 	}
3109 }
3110 
3111 /**
3112  * igb_init_mas - init Media Autosense feature if enabled in the NVM
3113  *
3114  * @adapter: adapter struct
3115  **/
3116 static void igb_init_mas(struct igb_adapter *adapter)
3117 {
3118 	struct e1000_hw *hw = &adapter->hw;
3119 	u16 eeprom_data;
3120 
3121 	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
3122 	switch (hw->bus.func) {
3123 	case E1000_FUNC_0:
3124 		if (eeprom_data & IGB_MAS_ENABLE_0) {
3125 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3126 			netdev_info(adapter->netdev,
3127 				"MAS: Enabling Media Autosense for port %d\n",
3128 				hw->bus.func);
3129 		}
3130 		break;
3131 	case E1000_FUNC_1:
3132 		if (eeprom_data & IGB_MAS_ENABLE_1) {
3133 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3134 			netdev_info(adapter->netdev,
3135 				"MAS: Enabling Media Autosense for port %d\n",
3136 				hw->bus.func);
3137 		}
3138 		break;
3139 	case E1000_FUNC_2:
3140 		if (eeprom_data & IGB_MAS_ENABLE_2) {
3141 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3142 			netdev_info(adapter->netdev,
3143 				"MAS: Enabling Media Autosense for port %d\n",
3144 				hw->bus.func);
3145 		}
3146 		break;
3147 	case E1000_FUNC_3:
3148 		if (eeprom_data & IGB_MAS_ENABLE_3) {
3149 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
3150 			netdev_info(adapter->netdev,
3151 				"MAS: Enabling Media Autosense for port %d\n",
3152 				hw->bus.func);
3153 		}
3154 		break;
3155 	default:
3156 		/* Shouldn't get here */
3157 		netdev_err(adapter->netdev,
3158 			"MAS: Invalid port configuration, returning\n");
3159 		break;
3160 	}
3161 }
3162 
3163 /**
3164  *  igb_init_i2c - Init I2C interface
3165  *  @adapter: pointer to adapter structure
3166  **/
3167 static s32 igb_init_i2c(struct igb_adapter *adapter)
3168 {
3169 	s32 status = 0;
3170 
3171 	/* I2C interface supported on i350 devices */
3172 	if (adapter->hw.mac.type != e1000_i350)
3173 		return 0;
3174 
3175 	/* Initialize the i2c bus which is controlled by the registers.
3176 	 * This bus will use the i2c_algo_bit structure that implements
3177 	 * the protocol through toggling of the 4 bits in the register.
3178 	 */
3179 	adapter->i2c_adap.owner = THIS_MODULE;
3180 	adapter->i2c_algo = igb_i2c_algo;
3181 	adapter->i2c_algo.data = adapter;
3182 	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3183 	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3184 	strscpy(adapter->i2c_adap.name, "igb BB",
3185 		sizeof(adapter->i2c_adap.name));
3186 	status = i2c_bit_add_bus(&adapter->i2c_adap);
3187 	return status;
3188 }
3189 
3190 /**
3191  *  igb_probe - Device Initialization Routine
3192  *  @pdev: PCI device information struct
3193  *  @ent: entry in igb_pci_tbl
3194  *
3195  *  Returns 0 on success, negative on failure
3196  *
3197  *  igb_probe initializes an adapter identified by a pci_dev structure.
3198  *  The OS initialization, configuring of the adapter private structure,
3199  *  and a hardware reset occur.
3200  **/
3201 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3202 {
3203 	struct net_device *netdev;
3204 	struct igb_adapter *adapter;
3205 	struct e1000_hw *hw;
3206 	u16 eeprom_data = 0;
3207 	s32 ret_val;
3208 	static int global_quad_port_a; /* global quad port a indication */
3209 	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3210 	u8 part_str[E1000_PBANUM_LENGTH];
3211 	int err;
3212 
3213 	/* Catch broken hardware that put the wrong VF device ID in
3214 	 * the PCIe SR-IOV capability.
3215 	 */
3216 	if (pdev->is_virtfn) {
3217 		WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n",
3218 			pci_name(pdev), pdev->vendor, pdev->device);
3219 		return -EINVAL;
3220 	}
3221 
3222 	err = pci_enable_device_mem(pdev);
3223 	if (err)
3224 		return err;
3225 
3226 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3227 	if (err) {
3228 		dev_err(&pdev->dev,
3229 			"No usable DMA configuration, aborting\n");
3230 		goto err_dma;
3231 	}
3232 
3233 	err = pci_request_mem_regions(pdev, igb_driver_name);
3234 	if (err)
3235 		goto err_pci_reg;
3236 
3237 	pci_set_master(pdev);
3238 	pci_save_state(pdev);
3239 
3240 	err = -ENOMEM;
3241 	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3242 				   IGB_MAX_TX_QUEUES);
3243 	if (!netdev)
3244 		goto err_alloc_etherdev;
3245 
3246 	SET_NETDEV_DEV(netdev, &pdev->dev);
3247 
3248 	pci_set_drvdata(pdev, netdev);
3249 	adapter = netdev_priv(netdev);
3250 	adapter->netdev = netdev;
3251 	adapter->pdev = pdev;
3252 	hw = &adapter->hw;
3253 	hw->back = adapter;
3254 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3255 
3256 	err = -EIO;
3257 	adapter->io_addr = pci_iomap(pdev, 0, 0);
3258 	if (!adapter->io_addr)
3259 		goto err_ioremap;
3260 	/* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3261 	hw->hw_addr = adapter->io_addr;
3262 
3263 	netdev->netdev_ops = &igb_netdev_ops;
3264 	igb_set_ethtool_ops(netdev);
3265 	netdev->watchdog_timeo = 5 * HZ;
3266 
3267 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3268 
3269 	netdev->mem_start = pci_resource_start(pdev, 0);
3270 	netdev->mem_end = pci_resource_end(pdev, 0);
3271 
3272 	/* PCI config space info */
3273 	hw->vendor_id = pdev->vendor;
3274 	hw->device_id = pdev->device;
3275 	hw->revision_id = pdev->revision;
3276 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3277 	hw->subsystem_device_id = pdev->subsystem_device;
3278 
3279 	/* Copy the default MAC, PHY and NVM function pointers */
3280 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3281 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3282 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3283 	/* Initialize skew-specific constants */
3284 	err = ei->get_invariants(hw);
3285 	if (err)
3286 		goto err_sw_init;
3287 
3288 	/* setup the private structure */
3289 	err = igb_sw_init(adapter);
3290 	if (err)
3291 		goto err_sw_init;
3292 
3293 	igb_get_bus_info_pcie(hw);
3294 
3295 	hw->phy.autoneg_wait_to_complete = false;
3296 
3297 	/* Copper options */
3298 	if (hw->phy.media_type == e1000_media_type_copper) {
3299 		hw->phy.mdix = AUTO_ALL_MODES;
3300 		hw->phy.disable_polarity_correction = false;
3301 		hw->phy.ms_type = e1000_ms_hw_default;
3302 	}
3303 
3304 	if (igb_check_reset_block(hw))
3305 		dev_info(&pdev->dev,
3306 			"PHY reset is blocked due to SOL/IDER session.\n");
3307 
3308 	/* features is initialized to 0 in allocation, it might have bits
3309 	 * set by igb_sw_init so we should use an or instead of an
3310 	 * assignment.
3311 	 */
3312 	netdev->features |= NETIF_F_SG |
3313 			    NETIF_F_TSO |
3314 			    NETIF_F_TSO6 |
3315 			    NETIF_F_RXHASH |
3316 			    NETIF_F_RXCSUM |
3317 			    NETIF_F_HW_CSUM;
3318 
3319 	if (hw->mac.type >= e1000_82576)
3320 		netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3321 
3322 	if (hw->mac.type >= e1000_i350)
3323 		netdev->features |= NETIF_F_HW_TC;
3324 
3325 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3326 				  NETIF_F_GSO_GRE_CSUM | \
3327 				  NETIF_F_GSO_IPXIP4 | \
3328 				  NETIF_F_GSO_IPXIP6 | \
3329 				  NETIF_F_GSO_UDP_TUNNEL | \
3330 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
3331 
3332 	netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3333 	netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3334 
3335 	/* copy netdev features into list of user selectable features */
3336 	netdev->hw_features |= netdev->features |
3337 			       NETIF_F_HW_VLAN_CTAG_RX |
3338 			       NETIF_F_HW_VLAN_CTAG_TX |
3339 			       NETIF_F_RXALL;
3340 
3341 	if (hw->mac.type >= e1000_i350)
3342 		netdev->hw_features |= NETIF_F_NTUPLE;
3343 
3344 	netdev->features |= NETIF_F_HIGHDMA;
3345 
3346 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3347 	netdev->mpls_features |= NETIF_F_HW_CSUM;
3348 	netdev->hw_enc_features |= netdev->vlan_features;
3349 
3350 	/* set this bit last since it cannot be part of vlan_features */
3351 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3352 			    NETIF_F_HW_VLAN_CTAG_RX |
3353 			    NETIF_F_HW_VLAN_CTAG_TX;
3354 
3355 	netdev->priv_flags |= IFF_SUPP_NOFCS;
3356 
3357 	netdev->priv_flags |= IFF_UNICAST_FLT;
3358 	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT;
3359 
3360 	/* MTU range: 68 - 9216 */
3361 	netdev->min_mtu = ETH_MIN_MTU;
3362 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3363 
3364 	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3365 
3366 	/* before reading the NVM, reset the controller to put the device in a
3367 	 * known good starting state
3368 	 */
3369 	hw->mac.ops.reset_hw(hw);
3370 
3371 	/* make sure the NVM is good , i211/i210 parts can have special NVM
3372 	 * that doesn't contain a checksum
3373 	 */
3374 	switch (hw->mac.type) {
3375 	case e1000_i210:
3376 	case e1000_i211:
3377 		if (igb_get_flash_presence_i210(hw)) {
3378 			if (hw->nvm.ops.validate(hw) < 0) {
3379 				dev_err(&pdev->dev,
3380 					"The NVM Checksum Is Not Valid\n");
3381 				err = -EIO;
3382 				goto err_eeprom;
3383 			}
3384 		}
3385 		break;
3386 	default:
3387 		if (hw->nvm.ops.validate(hw) < 0) {
3388 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3389 			err = -EIO;
3390 			goto err_eeprom;
3391 		}
3392 		break;
3393 	}
3394 
3395 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3396 		/* copy the MAC address out of the NVM */
3397 		if (hw->mac.ops.read_mac_addr(hw))
3398 			dev_err(&pdev->dev, "NVM Read Error\n");
3399 	}
3400 
3401 	eth_hw_addr_set(netdev, hw->mac.addr);
3402 
3403 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3404 		dev_err(&pdev->dev, "Invalid MAC Address\n");
3405 		err = -EIO;
3406 		goto err_eeprom;
3407 	}
3408 
3409 	igb_set_default_mac_filter(adapter);
3410 
3411 	/* get firmware version for ethtool -i */
3412 	igb_set_fw_version(adapter);
3413 
3414 	/* configure RXPBSIZE and TXPBSIZE */
3415 	if (hw->mac.type == e1000_i210) {
3416 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3417 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3418 	}
3419 
3420 	timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3421 	timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3422 
3423 	INIT_WORK(&adapter->reset_task, igb_reset_task);
3424 	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3425 
3426 	/* Initialize link properties that are user-changeable */
3427 	adapter->fc_autoneg = true;
3428 	hw->mac.autoneg = true;
3429 	hw->phy.autoneg_advertised = 0x2f;
3430 
3431 	hw->fc.requested_mode = e1000_fc_default;
3432 	hw->fc.current_mode = e1000_fc_default;
3433 
3434 	igb_validate_mdi_setting(hw);
3435 
3436 	/* By default, support wake on port A */
3437 	if (hw->bus.func == 0)
3438 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3439 
3440 	/* Check the NVM for wake support on non-port A ports */
3441 	if (hw->mac.type >= e1000_82580)
3442 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3443 				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3444 				 &eeprom_data);
3445 	else if (hw->bus.func == 1)
3446 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3447 
3448 	if (eeprom_data & IGB_EEPROM_APME)
3449 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3450 
3451 	/* now that we have the eeprom settings, apply the special cases where
3452 	 * the eeprom may be wrong or the board simply won't support wake on
3453 	 * lan on a particular port
3454 	 */
3455 	switch (pdev->device) {
3456 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
3457 		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3458 		break;
3459 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
3460 	case E1000_DEV_ID_82576_FIBER:
3461 	case E1000_DEV_ID_82576_SERDES:
3462 		/* Wake events only supported on port A for dual fiber
3463 		 * regardless of eeprom setting
3464 		 */
3465 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3466 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3467 		break;
3468 	case E1000_DEV_ID_82576_QUAD_COPPER:
3469 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3470 		/* if quad port adapter, disable WoL on all but port A */
3471 		if (global_quad_port_a != 0)
3472 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3473 		else
3474 			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3475 		/* Reset for multiple quad port adapters */
3476 		if (++global_quad_port_a == 4)
3477 			global_quad_port_a = 0;
3478 		break;
3479 	default:
3480 		/* If the device can't wake, don't set software support */
3481 		if (!device_can_wakeup(&adapter->pdev->dev))
3482 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3483 	}
3484 
3485 	/* initialize the wol settings based on the eeprom settings */
3486 	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3487 		adapter->wol |= E1000_WUFC_MAG;
3488 
3489 	/* Some vendors want WoL disabled by default, but still supported */
3490 	if ((hw->mac.type == e1000_i350) &&
3491 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3492 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3493 		adapter->wol = 0;
3494 	}
3495 
3496 	/* Some vendors want the ability to Use the EEPROM setting as
3497 	 * enable/disable only, and not for capability
3498 	 */
3499 	if (((hw->mac.type == e1000_i350) ||
3500 	     (hw->mac.type == e1000_i354)) &&
3501 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3502 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3503 		adapter->wol = 0;
3504 	}
3505 	if (hw->mac.type == e1000_i350) {
3506 		if (((pdev->subsystem_device == 0x5001) ||
3507 		     (pdev->subsystem_device == 0x5002)) &&
3508 				(hw->bus.func == 0)) {
3509 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3510 			adapter->wol = 0;
3511 		}
3512 		if (pdev->subsystem_device == 0x1F52)
3513 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3514 	}
3515 
3516 	device_set_wakeup_enable(&adapter->pdev->dev,
3517 				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3518 
3519 	/* reset the hardware with the new settings */
3520 	igb_reset(adapter);
3521 
3522 	/* Init the I2C interface */
3523 	err = igb_init_i2c(adapter);
3524 	if (err) {
3525 		dev_err(&pdev->dev, "failed to init i2c interface\n");
3526 		goto err_eeprom;
3527 	}
3528 
3529 	/* let the f/w know that the h/w is now under the control of the
3530 	 * driver.
3531 	 */
3532 	igb_get_hw_control(adapter);
3533 
3534 	strcpy(netdev->name, "eth%d");
3535 	err = register_netdev(netdev);
3536 	if (err)
3537 		goto err_register;
3538 
3539 	/* carrier off reporting is important to ethtool even BEFORE open */
3540 	netif_carrier_off(netdev);
3541 
3542 #ifdef CONFIG_IGB_DCA
3543 	if (dca_add_requester(&pdev->dev) == 0) {
3544 		adapter->flags |= IGB_FLAG_DCA_ENABLED;
3545 		dev_info(&pdev->dev, "DCA enabled\n");
3546 		igb_setup_dca(adapter);
3547 	}
3548 
3549 #endif
3550 #ifdef CONFIG_IGB_HWMON
3551 	/* Initialize the thermal sensor on i350 devices. */
3552 	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3553 		u16 ets_word;
3554 
3555 		/* Read the NVM to determine if this i350 device supports an
3556 		 * external thermal sensor.
3557 		 */
3558 		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3559 		if (ets_word != 0x0000 && ets_word != 0xFFFF)
3560 			adapter->ets = true;
3561 		else
3562 			adapter->ets = false;
3563 		/* Only enable I2C bit banging if an external thermal
3564 		 * sensor is supported.
3565 		 */
3566 		if (adapter->ets)
3567 			igb_set_i2c_bb(hw);
3568 		hw->mac.ops.init_thermal_sensor_thresh(hw);
3569 		if (igb_sysfs_init(adapter))
3570 			dev_err(&pdev->dev,
3571 				"failed to allocate sysfs resources\n");
3572 	} else {
3573 		adapter->ets = false;
3574 	}
3575 #endif
3576 	/* Check if Media Autosense is enabled */
3577 	adapter->ei = *ei;
3578 	if (hw->dev_spec._82575.mas_capable)
3579 		igb_init_mas(adapter);
3580 
3581 	/* do hw tstamp init after resetting */
3582 	igb_ptp_init(adapter);
3583 
3584 	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3585 	/* print bus type/speed/width info, not applicable to i354 */
3586 	if (hw->mac.type != e1000_i354) {
3587 		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3588 			 netdev->name,
3589 			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3590 			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3591 			   "unknown"),
3592 			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3593 			  "Width x4" :
3594 			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
3595 			  "Width x2" :
3596 			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
3597 			  "Width x1" : "unknown"), netdev->dev_addr);
3598 	}
3599 
3600 	if ((hw->mac.type == e1000_82576 &&
3601 	     rd32(E1000_EECD) & E1000_EECD_PRES) ||
3602 	    (hw->mac.type >= e1000_i210 ||
3603 	     igb_get_flash_presence_i210(hw))) {
3604 		ret_val = igb_read_part_string(hw, part_str,
3605 					       E1000_PBANUM_LENGTH);
3606 	} else {
3607 		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3608 	}
3609 
3610 	if (ret_val)
3611 		strcpy(part_str, "Unknown");
3612 	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3613 	dev_info(&pdev->dev,
3614 		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3615 		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3616 		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3617 		adapter->num_rx_queues, adapter->num_tx_queues);
3618 	if (hw->phy.media_type == e1000_media_type_copper) {
3619 		switch (hw->mac.type) {
3620 		case e1000_i350:
3621 		case e1000_i210:
3622 		case e1000_i211:
3623 			/* Enable EEE for internal copper PHY devices */
3624 			err = igb_set_eee_i350(hw, true, true);
3625 			if ((!err) &&
3626 			    (!hw->dev_spec._82575.eee_disable)) {
3627 				adapter->eee_advert =
3628 					MDIO_EEE_100TX | MDIO_EEE_1000T;
3629 				adapter->flags |= IGB_FLAG_EEE;
3630 			}
3631 			break;
3632 		case e1000_i354:
3633 			if ((rd32(E1000_CTRL_EXT) &
3634 			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3635 				err = igb_set_eee_i354(hw, true, true);
3636 				if ((!err) &&
3637 					(!hw->dev_spec._82575.eee_disable)) {
3638 					adapter->eee_advert =
3639 					   MDIO_EEE_100TX | MDIO_EEE_1000T;
3640 					adapter->flags |= IGB_FLAG_EEE;
3641 				}
3642 			}
3643 			break;
3644 		default:
3645 			break;
3646 		}
3647 	}
3648 
3649 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3650 
3651 	pm_runtime_put_noidle(&pdev->dev);
3652 	return 0;
3653 
3654 err_register:
3655 	igb_release_hw_control(adapter);
3656 	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3657 err_eeprom:
3658 	if (!igb_check_reset_block(hw))
3659 		igb_reset_phy(hw);
3660 
3661 	if (hw->flash_address)
3662 		iounmap(hw->flash_address);
3663 err_sw_init:
3664 	kfree(adapter->mac_table);
3665 	kfree(adapter->shadow_vfta);
3666 	igb_clear_interrupt_scheme(adapter);
3667 #ifdef CONFIG_PCI_IOV
3668 	igb_disable_sriov(pdev);
3669 #endif
3670 	pci_iounmap(pdev, adapter->io_addr);
3671 err_ioremap:
3672 	free_netdev(netdev);
3673 err_alloc_etherdev:
3674 	pci_release_mem_regions(pdev);
3675 err_pci_reg:
3676 err_dma:
3677 	pci_disable_device(pdev);
3678 	return err;
3679 }
3680 
3681 #ifdef CONFIG_PCI_IOV
3682 static int igb_disable_sriov(struct pci_dev *pdev)
3683 {
3684 	struct net_device *netdev = pci_get_drvdata(pdev);
3685 	struct igb_adapter *adapter = netdev_priv(netdev);
3686 	struct e1000_hw *hw = &adapter->hw;
3687 	unsigned long flags;
3688 
3689 	/* reclaim resources allocated to VFs */
3690 	if (adapter->vf_data) {
3691 		/* disable iov and allow time for transactions to clear */
3692 		if (pci_vfs_assigned(pdev)) {
3693 			dev_warn(&pdev->dev,
3694 				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3695 			return -EPERM;
3696 		} else {
3697 			pci_disable_sriov(pdev);
3698 			msleep(500);
3699 		}
3700 		spin_lock_irqsave(&adapter->vfs_lock, flags);
3701 		kfree(adapter->vf_mac_list);
3702 		adapter->vf_mac_list = NULL;
3703 		kfree(adapter->vf_data);
3704 		adapter->vf_data = NULL;
3705 		adapter->vfs_allocated_count = 0;
3706 		spin_unlock_irqrestore(&adapter->vfs_lock, flags);
3707 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3708 		wrfl();
3709 		msleep(100);
3710 		dev_info(&pdev->dev, "IOV Disabled\n");
3711 
3712 		/* Re-enable DMA Coalescing flag since IOV is turned off */
3713 		adapter->flags |= IGB_FLAG_DMAC;
3714 	}
3715 
3716 	return 0;
3717 }
3718 
3719 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3720 {
3721 	struct net_device *netdev = pci_get_drvdata(pdev);
3722 	struct igb_adapter *adapter = netdev_priv(netdev);
3723 	int old_vfs = pci_num_vf(pdev);
3724 	struct vf_mac_filter *mac_list;
3725 	int err = 0;
3726 	int num_vf_mac_filters, i;
3727 
3728 	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3729 		err = -EPERM;
3730 		goto out;
3731 	}
3732 	if (!num_vfs)
3733 		goto out;
3734 
3735 	if (old_vfs) {
3736 		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3737 			 old_vfs, max_vfs);
3738 		adapter->vfs_allocated_count = old_vfs;
3739 	} else
3740 		adapter->vfs_allocated_count = num_vfs;
3741 
3742 	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3743 				sizeof(struct vf_data_storage), GFP_KERNEL);
3744 
3745 	/* if allocation failed then we do not support SR-IOV */
3746 	if (!adapter->vf_data) {
3747 		adapter->vfs_allocated_count = 0;
3748 		err = -ENOMEM;
3749 		goto out;
3750 	}
3751 
3752 	/* Due to the limited number of RAR entries calculate potential
3753 	 * number of MAC filters available for the VFs. Reserve entries
3754 	 * for PF default MAC, PF MAC filters and at least one RAR entry
3755 	 * for each VF for VF MAC.
3756 	 */
3757 	num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3758 			     (1 + IGB_PF_MAC_FILTERS_RESERVED +
3759 			      adapter->vfs_allocated_count);
3760 
3761 	adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3762 				       sizeof(struct vf_mac_filter),
3763 				       GFP_KERNEL);
3764 
3765 	mac_list = adapter->vf_mac_list;
3766 	INIT_LIST_HEAD(&adapter->vf_macs.l);
3767 
3768 	if (adapter->vf_mac_list) {
3769 		/* Initialize list of VF MAC filters */
3770 		for (i = 0; i < num_vf_mac_filters; i++) {
3771 			mac_list->vf = -1;
3772 			mac_list->free = true;
3773 			list_add(&mac_list->l, &adapter->vf_macs.l);
3774 			mac_list++;
3775 		}
3776 	} else {
3777 		/* If we could not allocate memory for the VF MAC filters
3778 		 * we can continue without this feature but warn user.
3779 		 */
3780 		dev_err(&pdev->dev,
3781 			"Unable to allocate memory for VF MAC filter list\n");
3782 	}
3783 
3784 	/* only call pci_enable_sriov() if no VFs are allocated already */
3785 	if (!old_vfs) {
3786 		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3787 		if (err)
3788 			goto err_out;
3789 	}
3790 	dev_info(&pdev->dev, "%d VFs allocated\n",
3791 		 adapter->vfs_allocated_count);
3792 	for (i = 0; i < adapter->vfs_allocated_count; i++)
3793 		igb_vf_configure(adapter, i);
3794 
3795 	/* DMA Coalescing is not supported in IOV mode. */
3796 	adapter->flags &= ~IGB_FLAG_DMAC;
3797 	goto out;
3798 
3799 err_out:
3800 	kfree(adapter->vf_mac_list);
3801 	adapter->vf_mac_list = NULL;
3802 	kfree(adapter->vf_data);
3803 	adapter->vf_data = NULL;
3804 	adapter->vfs_allocated_count = 0;
3805 out:
3806 	return err;
3807 }
3808 
3809 #endif
3810 /**
3811  *  igb_remove_i2c - Cleanup  I2C interface
3812  *  @adapter: pointer to adapter structure
3813  **/
3814 static void igb_remove_i2c(struct igb_adapter *adapter)
3815 {
3816 	/* free the adapter bus structure */
3817 	i2c_del_adapter(&adapter->i2c_adap);
3818 }
3819 
3820 /**
3821  *  igb_remove - Device Removal Routine
3822  *  @pdev: PCI device information struct
3823  *
3824  *  igb_remove is called by the PCI subsystem to alert the driver
3825  *  that it should release a PCI device.  The could be caused by a
3826  *  Hot-Plug event, or because the driver is going to be removed from
3827  *  memory.
3828  **/
3829 static void igb_remove(struct pci_dev *pdev)
3830 {
3831 	struct net_device *netdev = pci_get_drvdata(pdev);
3832 	struct igb_adapter *adapter = netdev_priv(netdev);
3833 	struct e1000_hw *hw = &adapter->hw;
3834 
3835 	pm_runtime_get_noresume(&pdev->dev);
3836 #ifdef CONFIG_IGB_HWMON
3837 	igb_sysfs_exit(adapter);
3838 #endif
3839 	igb_remove_i2c(adapter);
3840 	igb_ptp_stop(adapter);
3841 	/* The watchdog timer may be rescheduled, so explicitly
3842 	 * disable watchdog from being rescheduled.
3843 	 */
3844 	set_bit(__IGB_DOWN, &adapter->state);
3845 	del_timer_sync(&adapter->watchdog_timer);
3846 	del_timer_sync(&adapter->phy_info_timer);
3847 
3848 	cancel_work_sync(&adapter->reset_task);
3849 	cancel_work_sync(&adapter->watchdog_task);
3850 
3851 #ifdef CONFIG_IGB_DCA
3852 	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3853 		dev_info(&pdev->dev, "DCA disabled\n");
3854 		dca_remove_requester(&pdev->dev);
3855 		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3856 		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3857 	}
3858 #endif
3859 
3860 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
3861 	 * would have already happened in close and is redundant.
3862 	 */
3863 	igb_release_hw_control(adapter);
3864 
3865 #ifdef CONFIG_PCI_IOV
3866 	rtnl_lock();
3867 	igb_disable_sriov(pdev);
3868 	rtnl_unlock();
3869 #endif
3870 
3871 	unregister_netdev(netdev);
3872 
3873 	igb_clear_interrupt_scheme(adapter);
3874 
3875 	pci_iounmap(pdev, adapter->io_addr);
3876 	if (hw->flash_address)
3877 		iounmap(hw->flash_address);
3878 	pci_release_mem_regions(pdev);
3879 
3880 	kfree(adapter->mac_table);
3881 	kfree(adapter->shadow_vfta);
3882 	free_netdev(netdev);
3883 
3884 	pci_disable_device(pdev);
3885 }
3886 
3887 /**
3888  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3889  *  @adapter: board private structure to initialize
3890  *
3891  *  This function initializes the vf specific data storage and then attempts to
3892  *  allocate the VFs.  The reason for ordering it this way is because it is much
3893  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
3894  *  the memory for the VFs.
3895  **/
3896 static void igb_probe_vfs(struct igb_adapter *adapter)
3897 {
3898 #ifdef CONFIG_PCI_IOV
3899 	struct pci_dev *pdev = adapter->pdev;
3900 	struct e1000_hw *hw = &adapter->hw;
3901 
3902 	/* Virtualization features not supported on i210 family. */
3903 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3904 		return;
3905 
3906 	/* Of the below we really only want the effect of getting
3907 	 * IGB_FLAG_HAS_MSIX set (if available), without which
3908 	 * igb_enable_sriov() has no effect.
3909 	 */
3910 	igb_set_interrupt_capability(adapter, true);
3911 	igb_reset_interrupt_capability(adapter);
3912 
3913 	pci_sriov_set_totalvfs(pdev, 7);
3914 	igb_enable_sriov(pdev, max_vfs);
3915 
3916 #endif /* CONFIG_PCI_IOV */
3917 }
3918 
3919 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3920 {
3921 	struct e1000_hw *hw = &adapter->hw;
3922 	unsigned int max_rss_queues;
3923 
3924 	/* Determine the maximum number of RSS queues supported. */
3925 	switch (hw->mac.type) {
3926 	case e1000_i211:
3927 		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3928 		break;
3929 	case e1000_82575:
3930 	case e1000_i210:
3931 		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3932 		break;
3933 	case e1000_i350:
3934 		/* I350 cannot do RSS and SR-IOV at the same time */
3935 		if (!!adapter->vfs_allocated_count) {
3936 			max_rss_queues = 1;
3937 			break;
3938 		}
3939 		fallthrough;
3940 	case e1000_82576:
3941 		if (!!adapter->vfs_allocated_count) {
3942 			max_rss_queues = 2;
3943 			break;
3944 		}
3945 		fallthrough;
3946 	case e1000_82580:
3947 	case e1000_i354:
3948 	default:
3949 		max_rss_queues = IGB_MAX_RX_QUEUES;
3950 		break;
3951 	}
3952 
3953 	return max_rss_queues;
3954 }
3955 
3956 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3957 {
3958 	u32 max_rss_queues;
3959 
3960 	max_rss_queues = igb_get_max_rss_queues(adapter);
3961 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3962 
3963 	igb_set_flag_queue_pairs(adapter, max_rss_queues);
3964 }
3965 
3966 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3967 			      const u32 max_rss_queues)
3968 {
3969 	struct e1000_hw *hw = &adapter->hw;
3970 
3971 	/* Determine if we need to pair queues. */
3972 	switch (hw->mac.type) {
3973 	case e1000_82575:
3974 	case e1000_i211:
3975 		/* Device supports enough interrupts without queue pairing. */
3976 		break;
3977 	case e1000_82576:
3978 	case e1000_82580:
3979 	case e1000_i350:
3980 	case e1000_i354:
3981 	case e1000_i210:
3982 	default:
3983 		/* If rss_queues > half of max_rss_queues, pair the queues in
3984 		 * order to conserve interrupts due to limited supply.
3985 		 */
3986 		if (adapter->rss_queues > (max_rss_queues / 2))
3987 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3988 		else
3989 			adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3990 		break;
3991 	}
3992 }
3993 
3994 /**
3995  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
3996  *  @adapter: board private structure to initialize
3997  *
3998  *  igb_sw_init initializes the Adapter private data structure.
3999  *  Fields are initialized based on PCI device information and
4000  *  OS network device settings (MTU size).
4001  **/
4002 static int igb_sw_init(struct igb_adapter *adapter)
4003 {
4004 	struct e1000_hw *hw = &adapter->hw;
4005 	struct net_device *netdev = adapter->netdev;
4006 	struct pci_dev *pdev = adapter->pdev;
4007 
4008 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4009 
4010 	/* set default ring sizes */
4011 	adapter->tx_ring_count = IGB_DEFAULT_TXD;
4012 	adapter->rx_ring_count = IGB_DEFAULT_RXD;
4013 
4014 	/* set default ITR values */
4015 	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
4016 	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
4017 
4018 	/* set default work limits */
4019 	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
4020 
4021 	adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
4022 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4023 
4024 	spin_lock_init(&adapter->nfc_lock);
4025 	spin_lock_init(&adapter->stats64_lock);
4026 
4027 	/* init spinlock to avoid concurrency of VF resources */
4028 	spin_lock_init(&adapter->vfs_lock);
4029 #ifdef CONFIG_PCI_IOV
4030 	switch (hw->mac.type) {
4031 	case e1000_82576:
4032 	case e1000_i350:
4033 		if (max_vfs > 7) {
4034 			dev_warn(&pdev->dev,
4035 				 "Maximum of 7 VFs per PF, using max\n");
4036 			max_vfs = adapter->vfs_allocated_count = 7;
4037 		} else
4038 			adapter->vfs_allocated_count = max_vfs;
4039 		if (adapter->vfs_allocated_count)
4040 			dev_warn(&pdev->dev,
4041 				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
4042 		break;
4043 	default:
4044 		break;
4045 	}
4046 #endif /* CONFIG_PCI_IOV */
4047 
4048 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
4049 	adapter->flags |= IGB_FLAG_HAS_MSIX;
4050 
4051 	adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
4052 				     sizeof(struct igb_mac_addr),
4053 				     GFP_KERNEL);
4054 	if (!adapter->mac_table)
4055 		return -ENOMEM;
4056 
4057 	igb_probe_vfs(adapter);
4058 
4059 	igb_init_queue_configuration(adapter);
4060 
4061 	/* Setup and initialize a copy of the hw vlan table array */
4062 	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
4063 				       GFP_KERNEL);
4064 	if (!adapter->shadow_vfta)
4065 		return -ENOMEM;
4066 
4067 	/* This call may decrease the number of queues */
4068 	if (igb_init_interrupt_scheme(adapter, true)) {
4069 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4070 		return -ENOMEM;
4071 	}
4072 
4073 	/* Explicitly disable IRQ since the NIC can be in any state. */
4074 	igb_irq_disable(adapter);
4075 
4076 	if (hw->mac.type >= e1000_i350)
4077 		adapter->flags &= ~IGB_FLAG_DMAC;
4078 
4079 	set_bit(__IGB_DOWN, &adapter->state);
4080 	return 0;
4081 }
4082 
4083 /**
4084  *  __igb_open - Called when a network interface is made active
4085  *  @netdev: network interface device structure
4086  *  @resuming: indicates whether we are in a resume call
4087  *
4088  *  Returns 0 on success, negative value on failure
4089  *
4090  *  The open entry point is called when a network interface is made
4091  *  active by the system (IFF_UP).  At this point all resources needed
4092  *  for transmit and receive operations are allocated, the interrupt
4093  *  handler is registered with the OS, the watchdog timer is started,
4094  *  and the stack is notified that the interface is ready.
4095  **/
4096 static int __igb_open(struct net_device *netdev, bool resuming)
4097 {
4098 	struct igb_adapter *adapter = netdev_priv(netdev);
4099 	struct e1000_hw *hw = &adapter->hw;
4100 	struct pci_dev *pdev = adapter->pdev;
4101 	int err;
4102 	int i;
4103 
4104 	/* disallow open during test */
4105 	if (test_bit(__IGB_TESTING, &adapter->state)) {
4106 		WARN_ON(resuming);
4107 		return -EBUSY;
4108 	}
4109 
4110 	if (!resuming)
4111 		pm_runtime_get_sync(&pdev->dev);
4112 
4113 	netif_carrier_off(netdev);
4114 
4115 	/* allocate transmit descriptors */
4116 	err = igb_setup_all_tx_resources(adapter);
4117 	if (err)
4118 		goto err_setup_tx;
4119 
4120 	/* allocate receive descriptors */
4121 	err = igb_setup_all_rx_resources(adapter);
4122 	if (err)
4123 		goto err_setup_rx;
4124 
4125 	igb_power_up_link(adapter);
4126 
4127 	/* before we allocate an interrupt, we must be ready to handle it.
4128 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4129 	 * as soon as we call pci_request_irq, so we have to setup our
4130 	 * clean_rx handler before we do so.
4131 	 */
4132 	igb_configure(adapter);
4133 
4134 	err = igb_request_irq(adapter);
4135 	if (err)
4136 		goto err_req_irq;
4137 
4138 	/* Notify the stack of the actual queue counts. */
4139 	err = netif_set_real_num_tx_queues(adapter->netdev,
4140 					   adapter->num_tx_queues);
4141 	if (err)
4142 		goto err_set_queues;
4143 
4144 	err = netif_set_real_num_rx_queues(adapter->netdev,
4145 					   adapter->num_rx_queues);
4146 	if (err)
4147 		goto err_set_queues;
4148 
4149 	/* From here on the code is the same as igb_up() */
4150 	clear_bit(__IGB_DOWN, &adapter->state);
4151 
4152 	for (i = 0; i < adapter->num_q_vectors; i++)
4153 		napi_enable(&(adapter->q_vector[i]->napi));
4154 
4155 	/* Clear any pending interrupts. */
4156 	rd32(E1000_TSICR);
4157 	rd32(E1000_ICR);
4158 
4159 	igb_irq_enable(adapter);
4160 
4161 	/* notify VFs that reset has been completed */
4162 	if (adapter->vfs_allocated_count) {
4163 		u32 reg_data = rd32(E1000_CTRL_EXT);
4164 
4165 		reg_data |= E1000_CTRL_EXT_PFRSTD;
4166 		wr32(E1000_CTRL_EXT, reg_data);
4167 	}
4168 
4169 	netif_tx_start_all_queues(netdev);
4170 
4171 	if (!resuming)
4172 		pm_runtime_put(&pdev->dev);
4173 
4174 	/* start the watchdog. */
4175 	hw->mac.get_link_status = 1;
4176 	schedule_work(&adapter->watchdog_task);
4177 
4178 	return 0;
4179 
4180 err_set_queues:
4181 	igb_free_irq(adapter);
4182 err_req_irq:
4183 	igb_release_hw_control(adapter);
4184 	igb_power_down_link(adapter);
4185 	igb_free_all_rx_resources(adapter);
4186 err_setup_rx:
4187 	igb_free_all_tx_resources(adapter);
4188 err_setup_tx:
4189 	igb_reset(adapter);
4190 	if (!resuming)
4191 		pm_runtime_put(&pdev->dev);
4192 
4193 	return err;
4194 }
4195 
4196 int igb_open(struct net_device *netdev)
4197 {
4198 	return __igb_open(netdev, false);
4199 }
4200 
4201 /**
4202  *  __igb_close - Disables a network interface
4203  *  @netdev: network interface device structure
4204  *  @suspending: indicates we are in a suspend call
4205  *
4206  *  Returns 0, this is not allowed to fail
4207  *
4208  *  The close entry point is called when an interface is de-activated
4209  *  by the OS.  The hardware is still under the driver's control, but
4210  *  needs to be disabled.  A global MAC reset is issued to stop the
4211  *  hardware, and all transmit and receive resources are freed.
4212  **/
4213 static int __igb_close(struct net_device *netdev, bool suspending)
4214 {
4215 	struct igb_adapter *adapter = netdev_priv(netdev);
4216 	struct pci_dev *pdev = adapter->pdev;
4217 
4218 	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4219 
4220 	if (!suspending)
4221 		pm_runtime_get_sync(&pdev->dev);
4222 
4223 	igb_down(adapter);
4224 	igb_free_irq(adapter);
4225 
4226 	igb_free_all_tx_resources(adapter);
4227 	igb_free_all_rx_resources(adapter);
4228 
4229 	if (!suspending)
4230 		pm_runtime_put_sync(&pdev->dev);
4231 	return 0;
4232 }
4233 
4234 int igb_close(struct net_device *netdev)
4235 {
4236 	if (netif_device_present(netdev) || netdev->dismantle)
4237 		return __igb_close(netdev, false);
4238 	return 0;
4239 }
4240 
4241 /**
4242  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
4243  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
4244  *
4245  *  Return 0 on success, negative on failure
4246  **/
4247 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4248 {
4249 	struct device *dev = tx_ring->dev;
4250 	int size;
4251 
4252 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4253 
4254 	tx_ring->tx_buffer_info = vmalloc(size);
4255 	if (!tx_ring->tx_buffer_info)
4256 		goto err;
4257 
4258 	/* round up to nearest 4K */
4259 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4260 	tx_ring->size = ALIGN(tx_ring->size, 4096);
4261 
4262 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4263 					   &tx_ring->dma, GFP_KERNEL);
4264 	if (!tx_ring->desc)
4265 		goto err;
4266 
4267 	tx_ring->next_to_use = 0;
4268 	tx_ring->next_to_clean = 0;
4269 
4270 	return 0;
4271 
4272 err:
4273 	vfree(tx_ring->tx_buffer_info);
4274 	tx_ring->tx_buffer_info = NULL;
4275 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4276 	return -ENOMEM;
4277 }
4278 
4279 /**
4280  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
4281  *				 (Descriptors) for all queues
4282  *  @adapter: board private structure
4283  *
4284  *  Return 0 on success, negative on failure
4285  **/
4286 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4287 {
4288 	struct pci_dev *pdev = adapter->pdev;
4289 	int i, err = 0;
4290 
4291 	for (i = 0; i < adapter->num_tx_queues; i++) {
4292 		err = igb_setup_tx_resources(adapter->tx_ring[i]);
4293 		if (err) {
4294 			dev_err(&pdev->dev,
4295 				"Allocation for Tx Queue %u failed\n", i);
4296 			for (i--; i >= 0; i--)
4297 				igb_free_tx_resources(adapter->tx_ring[i]);
4298 			break;
4299 		}
4300 	}
4301 
4302 	return err;
4303 }
4304 
4305 /**
4306  *  igb_setup_tctl - configure the transmit control registers
4307  *  @adapter: Board private structure
4308  **/
4309 void igb_setup_tctl(struct igb_adapter *adapter)
4310 {
4311 	struct e1000_hw *hw = &adapter->hw;
4312 	u32 tctl;
4313 
4314 	/* disable queue 0 which is enabled by default on 82575 and 82576 */
4315 	wr32(E1000_TXDCTL(0), 0);
4316 
4317 	/* Program the Transmit Control Register */
4318 	tctl = rd32(E1000_TCTL);
4319 	tctl &= ~E1000_TCTL_CT;
4320 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4321 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4322 
4323 	igb_config_collision_dist(hw);
4324 
4325 	/* Enable transmits */
4326 	tctl |= E1000_TCTL_EN;
4327 
4328 	wr32(E1000_TCTL, tctl);
4329 }
4330 
4331 /**
4332  *  igb_configure_tx_ring - Configure transmit ring after Reset
4333  *  @adapter: board private structure
4334  *  @ring: tx ring to configure
4335  *
4336  *  Configure a transmit ring after a reset.
4337  **/
4338 void igb_configure_tx_ring(struct igb_adapter *adapter,
4339 			   struct igb_ring *ring)
4340 {
4341 	struct e1000_hw *hw = &adapter->hw;
4342 	u32 txdctl = 0;
4343 	u64 tdba = ring->dma;
4344 	int reg_idx = ring->reg_idx;
4345 
4346 	wr32(E1000_TDLEN(reg_idx),
4347 	     ring->count * sizeof(union e1000_adv_tx_desc));
4348 	wr32(E1000_TDBAL(reg_idx),
4349 	     tdba & 0x00000000ffffffffULL);
4350 	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4351 
4352 	ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4353 	wr32(E1000_TDH(reg_idx), 0);
4354 	writel(0, ring->tail);
4355 
4356 	txdctl |= IGB_TX_PTHRESH;
4357 	txdctl |= IGB_TX_HTHRESH << 8;
4358 	txdctl |= IGB_TX_WTHRESH << 16;
4359 
4360 	/* reinitialize tx_buffer_info */
4361 	memset(ring->tx_buffer_info, 0,
4362 	       sizeof(struct igb_tx_buffer) * ring->count);
4363 
4364 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4365 	wr32(E1000_TXDCTL(reg_idx), txdctl);
4366 }
4367 
4368 /**
4369  *  igb_configure_tx - Configure transmit Unit after Reset
4370  *  @adapter: board private structure
4371  *
4372  *  Configure the Tx unit of the MAC after a reset.
4373  **/
4374 static void igb_configure_tx(struct igb_adapter *adapter)
4375 {
4376 	struct e1000_hw *hw = &adapter->hw;
4377 	int i;
4378 
4379 	/* disable the queues */
4380 	for (i = 0; i < adapter->num_tx_queues; i++)
4381 		wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4382 
4383 	wrfl();
4384 	usleep_range(10000, 20000);
4385 
4386 	for (i = 0; i < adapter->num_tx_queues; i++)
4387 		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4388 }
4389 
4390 /**
4391  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
4392  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
4393  *
4394  *  Returns 0 on success, negative on failure
4395  **/
4396 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4397 {
4398 	struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
4399 	struct device *dev = rx_ring->dev;
4400 	int size, res;
4401 
4402 	/* XDP RX-queue info */
4403 	if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
4404 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4405 	res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
4406 			       rx_ring->queue_index, 0);
4407 	if (res < 0) {
4408 		dev_err(dev, "Failed to register xdp_rxq index %u\n",
4409 			rx_ring->queue_index);
4410 		return res;
4411 	}
4412 
4413 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4414 
4415 	rx_ring->rx_buffer_info = vmalloc(size);
4416 	if (!rx_ring->rx_buffer_info)
4417 		goto err;
4418 
4419 	/* Round up to nearest 4K */
4420 	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4421 	rx_ring->size = ALIGN(rx_ring->size, 4096);
4422 
4423 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4424 					   &rx_ring->dma, GFP_KERNEL);
4425 	if (!rx_ring->desc)
4426 		goto err;
4427 
4428 	rx_ring->next_to_alloc = 0;
4429 	rx_ring->next_to_clean = 0;
4430 	rx_ring->next_to_use = 0;
4431 
4432 	rx_ring->xdp_prog = adapter->xdp_prog;
4433 
4434 	return 0;
4435 
4436 err:
4437 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4438 	vfree(rx_ring->rx_buffer_info);
4439 	rx_ring->rx_buffer_info = NULL;
4440 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4441 	return -ENOMEM;
4442 }
4443 
4444 /**
4445  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
4446  *				 (Descriptors) for all queues
4447  *  @adapter: board private structure
4448  *
4449  *  Return 0 on success, negative on failure
4450  **/
4451 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4452 {
4453 	struct pci_dev *pdev = adapter->pdev;
4454 	int i, err = 0;
4455 
4456 	for (i = 0; i < adapter->num_rx_queues; i++) {
4457 		err = igb_setup_rx_resources(adapter->rx_ring[i]);
4458 		if (err) {
4459 			dev_err(&pdev->dev,
4460 				"Allocation for Rx Queue %u failed\n", i);
4461 			for (i--; i >= 0; i--)
4462 				igb_free_rx_resources(adapter->rx_ring[i]);
4463 			break;
4464 		}
4465 	}
4466 
4467 	return err;
4468 }
4469 
4470 /**
4471  *  igb_setup_mrqc - configure the multiple receive queue control registers
4472  *  @adapter: Board private structure
4473  **/
4474 static void igb_setup_mrqc(struct igb_adapter *adapter)
4475 {
4476 	struct e1000_hw *hw = &adapter->hw;
4477 	u32 mrqc, rxcsum;
4478 	u32 j, num_rx_queues;
4479 	u32 rss_key[10];
4480 
4481 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
4482 	for (j = 0; j < 10; j++)
4483 		wr32(E1000_RSSRK(j), rss_key[j]);
4484 
4485 	num_rx_queues = adapter->rss_queues;
4486 
4487 	switch (hw->mac.type) {
4488 	case e1000_82576:
4489 		/* 82576 supports 2 RSS queues for SR-IOV */
4490 		if (adapter->vfs_allocated_count)
4491 			num_rx_queues = 2;
4492 		break;
4493 	default:
4494 		break;
4495 	}
4496 
4497 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
4498 		for (j = 0; j < IGB_RETA_SIZE; j++)
4499 			adapter->rss_indir_tbl[j] =
4500 			(j * num_rx_queues) / IGB_RETA_SIZE;
4501 		adapter->rss_indir_tbl_init = num_rx_queues;
4502 	}
4503 	igb_write_rss_indir_tbl(adapter);
4504 
4505 	/* Disable raw packet checksumming so that RSS hash is placed in
4506 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
4507 	 * offloads as they are enabled by default
4508 	 */
4509 	rxcsum = rd32(E1000_RXCSUM);
4510 	rxcsum |= E1000_RXCSUM_PCSD;
4511 
4512 	if (adapter->hw.mac.type >= e1000_82576)
4513 		/* Enable Receive Checksum Offload for SCTP */
4514 		rxcsum |= E1000_RXCSUM_CRCOFL;
4515 
4516 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
4517 	wr32(E1000_RXCSUM, rxcsum);
4518 
4519 	/* Generate RSS hash based on packet types, TCP/UDP
4520 	 * port numbers and/or IPv4/v6 src and dst addresses
4521 	 */
4522 	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4523 	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
4524 	       E1000_MRQC_RSS_FIELD_IPV6 |
4525 	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
4526 	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4527 
4528 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4529 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4530 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4531 		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4532 
4533 	/* If VMDq is enabled then we set the appropriate mode for that, else
4534 	 * we default to RSS so that an RSS hash is calculated per packet even
4535 	 * if we are only using one queue
4536 	 */
4537 	if (adapter->vfs_allocated_count) {
4538 		if (hw->mac.type > e1000_82575) {
4539 			/* Set the default pool for the PF's first queue */
4540 			u32 vtctl = rd32(E1000_VT_CTL);
4541 
4542 			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4543 				   E1000_VT_CTL_DISABLE_DEF_POOL);
4544 			vtctl |= adapter->vfs_allocated_count <<
4545 				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4546 			wr32(E1000_VT_CTL, vtctl);
4547 		}
4548 		if (adapter->rss_queues > 1)
4549 			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4550 		else
4551 			mrqc |= E1000_MRQC_ENABLE_VMDQ;
4552 	} else {
4553 		mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4554 	}
4555 	igb_vmm_control(adapter);
4556 
4557 	wr32(E1000_MRQC, mrqc);
4558 }
4559 
4560 /**
4561  *  igb_setup_rctl - configure the receive control registers
4562  *  @adapter: Board private structure
4563  **/
4564 void igb_setup_rctl(struct igb_adapter *adapter)
4565 {
4566 	struct e1000_hw *hw = &adapter->hw;
4567 	u32 rctl;
4568 
4569 	rctl = rd32(E1000_RCTL);
4570 
4571 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4572 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4573 
4574 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4575 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4576 
4577 	/* enable stripping of CRC. It's unlikely this will break BMC
4578 	 * redirection as it did with e1000. Newer features require
4579 	 * that the HW strips the CRC.
4580 	 */
4581 	rctl |= E1000_RCTL_SECRC;
4582 
4583 	/* disable store bad packets and clear size bits. */
4584 	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4585 
4586 	/* enable LPE to allow for reception of jumbo frames */
4587 	rctl |= E1000_RCTL_LPE;
4588 
4589 	/* disable queue 0 to prevent tail write w/o re-config */
4590 	wr32(E1000_RXDCTL(0), 0);
4591 
4592 	/* Attention!!!  For SR-IOV PF driver operations you must enable
4593 	 * queue drop for all VF and PF queues to prevent head of line blocking
4594 	 * if an un-trusted VF does not provide descriptors to hardware.
4595 	 */
4596 	if (adapter->vfs_allocated_count) {
4597 		/* set all queue drop enable bits */
4598 		wr32(E1000_QDE, ALL_QUEUES);
4599 	}
4600 
4601 	/* This is useful for sniffing bad packets. */
4602 	if (adapter->netdev->features & NETIF_F_RXALL) {
4603 		/* UPE and MPE will be handled by normal PROMISC logic
4604 		 * in e1000e_set_rx_mode
4605 		 */
4606 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4607 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4608 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4609 
4610 		rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4611 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4612 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4613 		 * and that breaks VLANs.
4614 		 */
4615 	}
4616 
4617 	wr32(E1000_RCTL, rctl);
4618 }
4619 
4620 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4621 				   int vfn)
4622 {
4623 	struct e1000_hw *hw = &adapter->hw;
4624 	u32 vmolr;
4625 
4626 	if (size > MAX_JUMBO_FRAME_SIZE)
4627 		size = MAX_JUMBO_FRAME_SIZE;
4628 
4629 	vmolr = rd32(E1000_VMOLR(vfn));
4630 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
4631 	vmolr |= size | E1000_VMOLR_LPE;
4632 	wr32(E1000_VMOLR(vfn), vmolr);
4633 
4634 	return 0;
4635 }
4636 
4637 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4638 					 int vfn, bool enable)
4639 {
4640 	struct e1000_hw *hw = &adapter->hw;
4641 	u32 val, reg;
4642 
4643 	if (hw->mac.type < e1000_82576)
4644 		return;
4645 
4646 	if (hw->mac.type == e1000_i350)
4647 		reg = E1000_DVMOLR(vfn);
4648 	else
4649 		reg = E1000_VMOLR(vfn);
4650 
4651 	val = rd32(reg);
4652 	if (enable)
4653 		val |= E1000_VMOLR_STRVLAN;
4654 	else
4655 		val &= ~(E1000_VMOLR_STRVLAN);
4656 	wr32(reg, val);
4657 }
4658 
4659 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4660 				 int vfn, bool aupe)
4661 {
4662 	struct e1000_hw *hw = &adapter->hw;
4663 	u32 vmolr;
4664 
4665 	/* This register exists only on 82576 and newer so if we are older then
4666 	 * we should exit and do nothing
4667 	 */
4668 	if (hw->mac.type < e1000_82576)
4669 		return;
4670 
4671 	vmolr = rd32(E1000_VMOLR(vfn));
4672 	if (aupe)
4673 		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4674 	else
4675 		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4676 
4677 	/* clear all bits that might not be set */
4678 	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4679 
4680 	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4681 		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4682 	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
4683 	 * multicast packets
4684 	 */
4685 	if (vfn <= adapter->vfs_allocated_count)
4686 		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4687 
4688 	wr32(E1000_VMOLR(vfn), vmolr);
4689 }
4690 
4691 /**
4692  *  igb_setup_srrctl - configure the split and replication receive control
4693  *                     registers
4694  *  @adapter: Board private structure
4695  *  @ring: receive ring to be configured
4696  **/
4697 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4698 {
4699 	struct e1000_hw *hw = &adapter->hw;
4700 	int reg_idx = ring->reg_idx;
4701 	u32 srrctl = 0;
4702 
4703 	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4704 	if (ring_uses_large_buffer(ring))
4705 		srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4706 	else
4707 		srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4708 	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4709 	if (hw->mac.type >= e1000_82580)
4710 		srrctl |= E1000_SRRCTL_TIMESTAMP;
4711 	/* Only set Drop Enable if VFs allocated, or we are supporting multiple
4712 	 * queues and rx flow control is disabled
4713 	 */
4714 	if (adapter->vfs_allocated_count ||
4715 	    (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4716 	     adapter->num_rx_queues > 1))
4717 		srrctl |= E1000_SRRCTL_DROP_EN;
4718 
4719 	wr32(E1000_SRRCTL(reg_idx), srrctl);
4720 }
4721 
4722 /**
4723  *  igb_configure_rx_ring - Configure a receive ring after Reset
4724  *  @adapter: board private structure
4725  *  @ring: receive ring to be configured
4726  *
4727  *  Configure the Rx unit of the MAC after a reset.
4728  **/
4729 void igb_configure_rx_ring(struct igb_adapter *adapter,
4730 			   struct igb_ring *ring)
4731 {
4732 	struct e1000_hw *hw = &adapter->hw;
4733 	union e1000_adv_rx_desc *rx_desc;
4734 	u64 rdba = ring->dma;
4735 	int reg_idx = ring->reg_idx;
4736 	u32 rxdctl = 0;
4737 
4738 	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
4739 	WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4740 					   MEM_TYPE_PAGE_SHARED, NULL));
4741 
4742 	/* disable the queue */
4743 	wr32(E1000_RXDCTL(reg_idx), 0);
4744 
4745 	/* Set DMA base address registers */
4746 	wr32(E1000_RDBAL(reg_idx),
4747 	     rdba & 0x00000000ffffffffULL);
4748 	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4749 	wr32(E1000_RDLEN(reg_idx),
4750 	     ring->count * sizeof(union e1000_adv_rx_desc));
4751 
4752 	/* initialize head and tail */
4753 	ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4754 	wr32(E1000_RDH(reg_idx), 0);
4755 	writel(0, ring->tail);
4756 
4757 	/* set descriptor configuration */
4758 	igb_setup_srrctl(adapter, ring);
4759 
4760 	/* set filtering for VMDQ pools */
4761 	igb_set_vmolr(adapter, reg_idx & 0x7, true);
4762 
4763 	rxdctl |= IGB_RX_PTHRESH;
4764 	rxdctl |= IGB_RX_HTHRESH << 8;
4765 	rxdctl |= IGB_RX_WTHRESH << 16;
4766 
4767 	/* initialize rx_buffer_info */
4768 	memset(ring->rx_buffer_info, 0,
4769 	       sizeof(struct igb_rx_buffer) * ring->count);
4770 
4771 	/* initialize Rx descriptor 0 */
4772 	rx_desc = IGB_RX_DESC(ring, 0);
4773 	rx_desc->wb.upper.length = 0;
4774 
4775 	/* enable receive descriptor fetching */
4776 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4777 	wr32(E1000_RXDCTL(reg_idx), rxdctl);
4778 }
4779 
4780 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4781 				  struct igb_ring *rx_ring)
4782 {
4783 	/* set build_skb and buffer size flags */
4784 	clear_ring_build_skb_enabled(rx_ring);
4785 	clear_ring_uses_large_buffer(rx_ring);
4786 
4787 	if (adapter->flags & IGB_FLAG_RX_LEGACY)
4788 		return;
4789 
4790 	set_ring_build_skb_enabled(rx_ring);
4791 
4792 #if (PAGE_SIZE < 8192)
4793 	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4794 		return;
4795 
4796 	set_ring_uses_large_buffer(rx_ring);
4797 #endif
4798 }
4799 
4800 /**
4801  *  igb_configure_rx - Configure receive Unit after Reset
4802  *  @adapter: board private structure
4803  *
4804  *  Configure the Rx unit of the MAC after a reset.
4805  **/
4806 static void igb_configure_rx(struct igb_adapter *adapter)
4807 {
4808 	int i;
4809 
4810 	/* set the correct pool for the PF default MAC address in entry 0 */
4811 	igb_set_default_mac_filter(adapter);
4812 
4813 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
4814 	 * the Base and Length of the Rx Descriptor Ring
4815 	 */
4816 	for (i = 0; i < adapter->num_rx_queues; i++) {
4817 		struct igb_ring *rx_ring = adapter->rx_ring[i];
4818 
4819 		igb_set_rx_buffer_len(adapter, rx_ring);
4820 		igb_configure_rx_ring(adapter, rx_ring);
4821 	}
4822 }
4823 
4824 /**
4825  *  igb_free_tx_resources - Free Tx Resources per Queue
4826  *  @tx_ring: Tx descriptor ring for a specific queue
4827  *
4828  *  Free all transmit software resources
4829  **/
4830 void igb_free_tx_resources(struct igb_ring *tx_ring)
4831 {
4832 	igb_clean_tx_ring(tx_ring);
4833 
4834 	vfree(tx_ring->tx_buffer_info);
4835 	tx_ring->tx_buffer_info = NULL;
4836 
4837 	/* if not set, then don't free */
4838 	if (!tx_ring->desc)
4839 		return;
4840 
4841 	dma_free_coherent(tx_ring->dev, tx_ring->size,
4842 			  tx_ring->desc, tx_ring->dma);
4843 
4844 	tx_ring->desc = NULL;
4845 }
4846 
4847 /**
4848  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
4849  *  @adapter: board private structure
4850  *
4851  *  Free all transmit software resources
4852  **/
4853 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4854 {
4855 	int i;
4856 
4857 	for (i = 0; i < adapter->num_tx_queues; i++)
4858 		if (adapter->tx_ring[i])
4859 			igb_free_tx_resources(adapter->tx_ring[i]);
4860 }
4861 
4862 /**
4863  *  igb_clean_tx_ring - Free Tx Buffers
4864  *  @tx_ring: ring to be cleaned
4865  **/
4866 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4867 {
4868 	u16 i = tx_ring->next_to_clean;
4869 	struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4870 
4871 	while (i != tx_ring->next_to_use) {
4872 		union e1000_adv_tx_desc *eop_desc, *tx_desc;
4873 
4874 		/* Free all the Tx ring sk_buffs or xdp frames */
4875 		if (tx_buffer->type == IGB_TYPE_SKB)
4876 			dev_kfree_skb_any(tx_buffer->skb);
4877 		else
4878 			xdp_return_frame(tx_buffer->xdpf);
4879 
4880 		/* unmap skb header data */
4881 		dma_unmap_single(tx_ring->dev,
4882 				 dma_unmap_addr(tx_buffer, dma),
4883 				 dma_unmap_len(tx_buffer, len),
4884 				 DMA_TO_DEVICE);
4885 
4886 		/* check for eop_desc to determine the end of the packet */
4887 		eop_desc = tx_buffer->next_to_watch;
4888 		tx_desc = IGB_TX_DESC(tx_ring, i);
4889 
4890 		/* unmap remaining buffers */
4891 		while (tx_desc != eop_desc) {
4892 			tx_buffer++;
4893 			tx_desc++;
4894 			i++;
4895 			if (unlikely(i == tx_ring->count)) {
4896 				i = 0;
4897 				tx_buffer = tx_ring->tx_buffer_info;
4898 				tx_desc = IGB_TX_DESC(tx_ring, 0);
4899 			}
4900 
4901 			/* unmap any remaining paged data */
4902 			if (dma_unmap_len(tx_buffer, len))
4903 				dma_unmap_page(tx_ring->dev,
4904 					       dma_unmap_addr(tx_buffer, dma),
4905 					       dma_unmap_len(tx_buffer, len),
4906 					       DMA_TO_DEVICE);
4907 		}
4908 
4909 		tx_buffer->next_to_watch = NULL;
4910 
4911 		/* move us one more past the eop_desc for start of next pkt */
4912 		tx_buffer++;
4913 		i++;
4914 		if (unlikely(i == tx_ring->count)) {
4915 			i = 0;
4916 			tx_buffer = tx_ring->tx_buffer_info;
4917 		}
4918 	}
4919 
4920 	/* reset BQL for queue */
4921 	netdev_tx_reset_queue(txring_txq(tx_ring));
4922 
4923 	/* reset next_to_use and next_to_clean */
4924 	tx_ring->next_to_use = 0;
4925 	tx_ring->next_to_clean = 0;
4926 }
4927 
4928 /**
4929  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
4930  *  @adapter: board private structure
4931  **/
4932 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4933 {
4934 	int i;
4935 
4936 	for (i = 0; i < adapter->num_tx_queues; i++)
4937 		if (adapter->tx_ring[i])
4938 			igb_clean_tx_ring(adapter->tx_ring[i]);
4939 }
4940 
4941 /**
4942  *  igb_free_rx_resources - Free Rx Resources
4943  *  @rx_ring: ring to clean the resources from
4944  *
4945  *  Free all receive software resources
4946  **/
4947 void igb_free_rx_resources(struct igb_ring *rx_ring)
4948 {
4949 	igb_clean_rx_ring(rx_ring);
4950 
4951 	rx_ring->xdp_prog = NULL;
4952 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4953 	vfree(rx_ring->rx_buffer_info);
4954 	rx_ring->rx_buffer_info = NULL;
4955 
4956 	/* if not set, then don't free */
4957 	if (!rx_ring->desc)
4958 		return;
4959 
4960 	dma_free_coherent(rx_ring->dev, rx_ring->size,
4961 			  rx_ring->desc, rx_ring->dma);
4962 
4963 	rx_ring->desc = NULL;
4964 }
4965 
4966 /**
4967  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
4968  *  @adapter: board private structure
4969  *
4970  *  Free all receive software resources
4971  **/
4972 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4973 {
4974 	int i;
4975 
4976 	for (i = 0; i < adapter->num_rx_queues; i++)
4977 		if (adapter->rx_ring[i])
4978 			igb_free_rx_resources(adapter->rx_ring[i]);
4979 }
4980 
4981 /**
4982  *  igb_clean_rx_ring - Free Rx Buffers per Queue
4983  *  @rx_ring: ring to free buffers from
4984  **/
4985 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4986 {
4987 	u16 i = rx_ring->next_to_clean;
4988 
4989 	dev_kfree_skb(rx_ring->skb);
4990 	rx_ring->skb = NULL;
4991 
4992 	/* Free all the Rx ring sk_buffs */
4993 	while (i != rx_ring->next_to_alloc) {
4994 		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4995 
4996 		/* Invalidate cache lines that may have been written to by
4997 		 * device so that we avoid corrupting memory.
4998 		 */
4999 		dma_sync_single_range_for_cpu(rx_ring->dev,
5000 					      buffer_info->dma,
5001 					      buffer_info->page_offset,
5002 					      igb_rx_bufsz(rx_ring),
5003 					      DMA_FROM_DEVICE);
5004 
5005 		/* free resources associated with mapping */
5006 		dma_unmap_page_attrs(rx_ring->dev,
5007 				     buffer_info->dma,
5008 				     igb_rx_pg_size(rx_ring),
5009 				     DMA_FROM_DEVICE,
5010 				     IGB_RX_DMA_ATTR);
5011 		__page_frag_cache_drain(buffer_info->page,
5012 					buffer_info->pagecnt_bias);
5013 
5014 		i++;
5015 		if (i == rx_ring->count)
5016 			i = 0;
5017 	}
5018 
5019 	rx_ring->next_to_alloc = 0;
5020 	rx_ring->next_to_clean = 0;
5021 	rx_ring->next_to_use = 0;
5022 }
5023 
5024 /**
5025  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
5026  *  @adapter: board private structure
5027  **/
5028 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
5029 {
5030 	int i;
5031 
5032 	for (i = 0; i < adapter->num_rx_queues; i++)
5033 		if (adapter->rx_ring[i])
5034 			igb_clean_rx_ring(adapter->rx_ring[i]);
5035 }
5036 
5037 /**
5038  *  igb_set_mac - Change the Ethernet Address of the NIC
5039  *  @netdev: network interface device structure
5040  *  @p: pointer to an address structure
5041  *
5042  *  Returns 0 on success, negative on failure
5043  **/
5044 static int igb_set_mac(struct net_device *netdev, void *p)
5045 {
5046 	struct igb_adapter *adapter = netdev_priv(netdev);
5047 	struct e1000_hw *hw = &adapter->hw;
5048 	struct sockaddr *addr = p;
5049 
5050 	if (!is_valid_ether_addr(addr->sa_data))
5051 		return -EADDRNOTAVAIL;
5052 
5053 	eth_hw_addr_set(netdev, addr->sa_data);
5054 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
5055 
5056 	/* set the correct pool for the new PF MAC address in entry 0 */
5057 	igb_set_default_mac_filter(adapter);
5058 
5059 	return 0;
5060 }
5061 
5062 /**
5063  *  igb_write_mc_addr_list - write multicast addresses to MTA
5064  *  @netdev: network interface device structure
5065  *
5066  *  Writes multicast address list to the MTA hash table.
5067  *  Returns: -ENOMEM on failure
5068  *           0 on no addresses written
5069  *           X on writing X addresses to MTA
5070  **/
5071 static int igb_write_mc_addr_list(struct net_device *netdev)
5072 {
5073 	struct igb_adapter *adapter = netdev_priv(netdev);
5074 	struct e1000_hw *hw = &adapter->hw;
5075 	struct netdev_hw_addr *ha;
5076 	u8  *mta_list;
5077 	int i;
5078 
5079 	if (netdev_mc_empty(netdev)) {
5080 		/* nothing to program, so clear mc list */
5081 		igb_update_mc_addr_list(hw, NULL, 0);
5082 		igb_restore_vf_multicasts(adapter);
5083 		return 0;
5084 	}
5085 
5086 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
5087 	if (!mta_list)
5088 		return -ENOMEM;
5089 
5090 	/* The shared function expects a packed array of only addresses. */
5091 	i = 0;
5092 	netdev_for_each_mc_addr(ha, netdev)
5093 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
5094 
5095 	igb_update_mc_addr_list(hw, mta_list, i);
5096 	kfree(mta_list);
5097 
5098 	return netdev_mc_count(netdev);
5099 }
5100 
5101 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
5102 {
5103 	struct e1000_hw *hw = &adapter->hw;
5104 	u32 i, pf_id;
5105 
5106 	switch (hw->mac.type) {
5107 	case e1000_i210:
5108 	case e1000_i211:
5109 	case e1000_i350:
5110 		/* VLAN filtering needed for VLAN prio filter */
5111 		if (adapter->netdev->features & NETIF_F_NTUPLE)
5112 			break;
5113 		fallthrough;
5114 	case e1000_82576:
5115 	case e1000_82580:
5116 	case e1000_i354:
5117 		/* VLAN filtering needed for pool filtering */
5118 		if (adapter->vfs_allocated_count)
5119 			break;
5120 		fallthrough;
5121 	default:
5122 		return 1;
5123 	}
5124 
5125 	/* We are already in VLAN promisc, nothing to do */
5126 	if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5127 		return 0;
5128 
5129 	if (!adapter->vfs_allocated_count)
5130 		goto set_vfta;
5131 
5132 	/* Add PF to all active pools */
5133 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5134 
5135 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5136 		u32 vlvf = rd32(E1000_VLVF(i));
5137 
5138 		vlvf |= BIT(pf_id);
5139 		wr32(E1000_VLVF(i), vlvf);
5140 	}
5141 
5142 set_vfta:
5143 	/* Set all bits in the VLAN filter table array */
5144 	for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
5145 		hw->mac.ops.write_vfta(hw, i, ~0U);
5146 
5147 	/* Set flag so we don't redo unnecessary work */
5148 	adapter->flags |= IGB_FLAG_VLAN_PROMISC;
5149 
5150 	return 0;
5151 }
5152 
5153 #define VFTA_BLOCK_SIZE 8
5154 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
5155 {
5156 	struct e1000_hw *hw = &adapter->hw;
5157 	u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
5158 	u32 vid_start = vfta_offset * 32;
5159 	u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
5160 	u32 i, vid, word, bits, pf_id;
5161 
5162 	/* guarantee that we don't scrub out management VLAN */
5163 	vid = adapter->mng_vlan_id;
5164 	if (vid >= vid_start && vid < vid_end)
5165 		vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5166 
5167 	if (!adapter->vfs_allocated_count)
5168 		goto set_vfta;
5169 
5170 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5171 
5172 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5173 		u32 vlvf = rd32(E1000_VLVF(i));
5174 
5175 		/* pull VLAN ID from VLVF */
5176 		vid = vlvf & VLAN_VID_MASK;
5177 
5178 		/* only concern ourselves with a certain range */
5179 		if (vid < vid_start || vid >= vid_end)
5180 			continue;
5181 
5182 		if (vlvf & E1000_VLVF_VLANID_ENABLE) {
5183 			/* record VLAN ID in VFTA */
5184 			vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5185 
5186 			/* if PF is part of this then continue */
5187 			if (test_bit(vid, adapter->active_vlans))
5188 				continue;
5189 		}
5190 
5191 		/* remove PF from the pool */
5192 		bits = ~BIT(pf_id);
5193 		bits &= rd32(E1000_VLVF(i));
5194 		wr32(E1000_VLVF(i), bits);
5195 	}
5196 
5197 set_vfta:
5198 	/* extract values from active_vlans and write back to VFTA */
5199 	for (i = VFTA_BLOCK_SIZE; i--;) {
5200 		vid = (vfta_offset + i) * 32;
5201 		word = vid / BITS_PER_LONG;
5202 		bits = vid % BITS_PER_LONG;
5203 
5204 		vfta[i] |= adapter->active_vlans[word] >> bits;
5205 
5206 		hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
5207 	}
5208 }
5209 
5210 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
5211 {
5212 	u32 i;
5213 
5214 	/* We are not in VLAN promisc, nothing to do */
5215 	if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
5216 		return;
5217 
5218 	/* Set flag so we don't redo unnecessary work */
5219 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
5220 
5221 	for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
5222 		igb_scrub_vfta(adapter, i);
5223 }
5224 
5225 /**
5226  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5227  *  @netdev: network interface device structure
5228  *
5229  *  The set_rx_mode entry point is called whenever the unicast or multicast
5230  *  address lists or the network interface flags are updated.  This routine is
5231  *  responsible for configuring the hardware for proper unicast, multicast,
5232  *  promiscuous mode, and all-multi behavior.
5233  **/
5234 static void igb_set_rx_mode(struct net_device *netdev)
5235 {
5236 	struct igb_adapter *adapter = netdev_priv(netdev);
5237 	struct e1000_hw *hw = &adapter->hw;
5238 	unsigned int vfn = adapter->vfs_allocated_count;
5239 	u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5240 	int count;
5241 
5242 	/* Check for Promiscuous and All Multicast modes */
5243 	if (netdev->flags & IFF_PROMISC) {
5244 		rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5245 		vmolr |= E1000_VMOLR_MPME;
5246 
5247 		/* enable use of UTA filter to force packets to default pool */
5248 		if (hw->mac.type == e1000_82576)
5249 			vmolr |= E1000_VMOLR_ROPE;
5250 	} else {
5251 		if (netdev->flags & IFF_ALLMULTI) {
5252 			rctl |= E1000_RCTL_MPE;
5253 			vmolr |= E1000_VMOLR_MPME;
5254 		} else {
5255 			/* Write addresses to the MTA, if the attempt fails
5256 			 * then we should just turn on promiscuous mode so
5257 			 * that we can at least receive multicast traffic
5258 			 */
5259 			count = igb_write_mc_addr_list(netdev);
5260 			if (count < 0) {
5261 				rctl |= E1000_RCTL_MPE;
5262 				vmolr |= E1000_VMOLR_MPME;
5263 			} else if (count) {
5264 				vmolr |= E1000_VMOLR_ROMPE;
5265 			}
5266 		}
5267 	}
5268 
5269 	/* Write addresses to available RAR registers, if there is not
5270 	 * sufficient space to store all the addresses then enable
5271 	 * unicast promiscuous mode
5272 	 */
5273 	if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5274 		rctl |= E1000_RCTL_UPE;
5275 		vmolr |= E1000_VMOLR_ROPE;
5276 	}
5277 
5278 	/* enable VLAN filtering by default */
5279 	rctl |= E1000_RCTL_VFE;
5280 
5281 	/* disable VLAN filtering for modes that require it */
5282 	if ((netdev->flags & IFF_PROMISC) ||
5283 	    (netdev->features & NETIF_F_RXALL)) {
5284 		/* if we fail to set all rules then just clear VFE */
5285 		if (igb_vlan_promisc_enable(adapter))
5286 			rctl &= ~E1000_RCTL_VFE;
5287 	} else {
5288 		igb_vlan_promisc_disable(adapter);
5289 	}
5290 
5291 	/* update state of unicast, multicast, and VLAN filtering modes */
5292 	rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5293 				     E1000_RCTL_VFE);
5294 	wr32(E1000_RCTL, rctl);
5295 
5296 #if (PAGE_SIZE < 8192)
5297 	if (!adapter->vfs_allocated_count) {
5298 		if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5299 			rlpml = IGB_MAX_FRAME_BUILD_SKB;
5300 	}
5301 #endif
5302 	wr32(E1000_RLPML, rlpml);
5303 
5304 	/* In order to support SR-IOV and eventually VMDq it is necessary to set
5305 	 * the VMOLR to enable the appropriate modes.  Without this workaround
5306 	 * we will have issues with VLAN tag stripping not being done for frames
5307 	 * that are only arriving because we are the default pool
5308 	 */
5309 	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5310 		return;
5311 
5312 	/* set UTA to appropriate mode */
5313 	igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5314 
5315 	vmolr |= rd32(E1000_VMOLR(vfn)) &
5316 		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5317 
5318 	/* enable Rx jumbo frames, restrict as needed to support build_skb */
5319 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
5320 #if (PAGE_SIZE < 8192)
5321 	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5322 		vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5323 	else
5324 #endif
5325 		vmolr |= MAX_JUMBO_FRAME_SIZE;
5326 	vmolr |= E1000_VMOLR_LPE;
5327 
5328 	wr32(E1000_VMOLR(vfn), vmolr);
5329 
5330 	igb_restore_vf_multicasts(adapter);
5331 }
5332 
5333 static void igb_check_wvbr(struct igb_adapter *adapter)
5334 {
5335 	struct e1000_hw *hw = &adapter->hw;
5336 	u32 wvbr = 0;
5337 
5338 	switch (hw->mac.type) {
5339 	case e1000_82576:
5340 	case e1000_i350:
5341 		wvbr = rd32(E1000_WVBR);
5342 		if (!wvbr)
5343 			return;
5344 		break;
5345 	default:
5346 		break;
5347 	}
5348 
5349 	adapter->wvbr |= wvbr;
5350 }
5351 
5352 #define IGB_STAGGERED_QUEUE_OFFSET 8
5353 
5354 static void igb_spoof_check(struct igb_adapter *adapter)
5355 {
5356 	int j;
5357 
5358 	if (!adapter->wvbr)
5359 		return;
5360 
5361 	for (j = 0; j < adapter->vfs_allocated_count; j++) {
5362 		if (adapter->wvbr & BIT(j) ||
5363 		    adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5364 			dev_warn(&adapter->pdev->dev,
5365 				"Spoof event(s) detected on VF %d\n", j);
5366 			adapter->wvbr &=
5367 				~(BIT(j) |
5368 				  BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5369 		}
5370 	}
5371 }
5372 
5373 /* Need to wait a few seconds after link up to get diagnostic information from
5374  * the phy
5375  */
5376 static void igb_update_phy_info(struct timer_list *t)
5377 {
5378 	struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5379 	igb_get_phy_info(&adapter->hw);
5380 }
5381 
5382 /**
5383  *  igb_has_link - check shared code for link and determine up/down
5384  *  @adapter: pointer to driver private info
5385  **/
5386 bool igb_has_link(struct igb_adapter *adapter)
5387 {
5388 	struct e1000_hw *hw = &adapter->hw;
5389 	bool link_active = false;
5390 
5391 	/* get_link_status is set on LSC (link status) interrupt or
5392 	 * rx sequence error interrupt.  get_link_status will stay
5393 	 * false until the e1000_check_for_link establishes link
5394 	 * for copper adapters ONLY
5395 	 */
5396 	switch (hw->phy.media_type) {
5397 	case e1000_media_type_copper:
5398 		if (!hw->mac.get_link_status)
5399 			return true;
5400 		fallthrough;
5401 	case e1000_media_type_internal_serdes:
5402 		hw->mac.ops.check_for_link(hw);
5403 		link_active = !hw->mac.get_link_status;
5404 		break;
5405 	default:
5406 	case e1000_media_type_unknown:
5407 		break;
5408 	}
5409 
5410 	if (((hw->mac.type == e1000_i210) ||
5411 	     (hw->mac.type == e1000_i211)) &&
5412 	     (hw->phy.id == I210_I_PHY_ID)) {
5413 		if (!netif_carrier_ok(adapter->netdev)) {
5414 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5415 		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5416 			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5417 			adapter->link_check_timeout = jiffies;
5418 		}
5419 	}
5420 
5421 	return link_active;
5422 }
5423 
5424 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5425 {
5426 	bool ret = false;
5427 	u32 ctrl_ext, thstat;
5428 
5429 	/* check for thermal sensor event on i350 copper only */
5430 	if (hw->mac.type == e1000_i350) {
5431 		thstat = rd32(E1000_THSTAT);
5432 		ctrl_ext = rd32(E1000_CTRL_EXT);
5433 
5434 		if ((hw->phy.media_type == e1000_media_type_copper) &&
5435 		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5436 			ret = !!(thstat & event);
5437 	}
5438 
5439 	return ret;
5440 }
5441 
5442 /**
5443  *  igb_check_lvmmc - check for malformed packets received
5444  *  and indicated in LVMMC register
5445  *  @adapter: pointer to adapter
5446  **/
5447 static void igb_check_lvmmc(struct igb_adapter *adapter)
5448 {
5449 	struct e1000_hw *hw = &adapter->hw;
5450 	u32 lvmmc;
5451 
5452 	lvmmc = rd32(E1000_LVMMC);
5453 	if (lvmmc) {
5454 		if (unlikely(net_ratelimit())) {
5455 			netdev_warn(adapter->netdev,
5456 				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5457 				    lvmmc);
5458 		}
5459 	}
5460 }
5461 
5462 /**
5463  *  igb_watchdog - Timer Call-back
5464  *  @t: pointer to timer_list containing our private info pointer
5465  **/
5466 static void igb_watchdog(struct timer_list *t)
5467 {
5468 	struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5469 	/* Do the rest outside of interrupt context */
5470 	schedule_work(&adapter->watchdog_task);
5471 }
5472 
5473 static void igb_watchdog_task(struct work_struct *work)
5474 {
5475 	struct igb_adapter *adapter = container_of(work,
5476 						   struct igb_adapter,
5477 						   watchdog_task);
5478 	struct e1000_hw *hw = &adapter->hw;
5479 	struct e1000_phy_info *phy = &hw->phy;
5480 	struct net_device *netdev = adapter->netdev;
5481 	u32 link;
5482 	int i;
5483 	u32 connsw;
5484 	u16 phy_data, retry_count = 20;
5485 
5486 	link = igb_has_link(adapter);
5487 
5488 	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5489 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5490 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5491 		else
5492 			link = false;
5493 	}
5494 
5495 	/* Force link down if we have fiber to swap to */
5496 	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5497 		if (hw->phy.media_type == e1000_media_type_copper) {
5498 			connsw = rd32(E1000_CONNSW);
5499 			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5500 				link = 0;
5501 		}
5502 	}
5503 	if (link) {
5504 		/* Perform a reset if the media type changed. */
5505 		if (hw->dev_spec._82575.media_changed) {
5506 			hw->dev_spec._82575.media_changed = false;
5507 			adapter->flags |= IGB_FLAG_MEDIA_RESET;
5508 			igb_reset(adapter);
5509 		}
5510 		/* Cancel scheduled suspend requests. */
5511 		pm_runtime_resume(netdev->dev.parent);
5512 
5513 		if (!netif_carrier_ok(netdev)) {
5514 			u32 ctrl;
5515 
5516 			hw->mac.ops.get_speed_and_duplex(hw,
5517 							 &adapter->link_speed,
5518 							 &adapter->link_duplex);
5519 
5520 			ctrl = rd32(E1000_CTRL);
5521 			/* Links status message must follow this format */
5522 			netdev_info(netdev,
5523 			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5524 			       netdev->name,
5525 			       adapter->link_speed,
5526 			       adapter->link_duplex == FULL_DUPLEX ?
5527 			       "Full" : "Half",
5528 			       (ctrl & E1000_CTRL_TFCE) &&
5529 			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5530 			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
5531 			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
5532 
5533 			/* disable EEE if enabled */
5534 			if ((adapter->flags & IGB_FLAG_EEE) &&
5535 				(adapter->link_duplex == HALF_DUPLEX)) {
5536 				dev_info(&adapter->pdev->dev,
5537 				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5538 				adapter->hw.dev_spec._82575.eee_disable = true;
5539 				adapter->flags &= ~IGB_FLAG_EEE;
5540 			}
5541 
5542 			/* check if SmartSpeed worked */
5543 			igb_check_downshift(hw);
5544 			if (phy->speed_downgraded)
5545 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5546 
5547 			/* check for thermal sensor event */
5548 			if (igb_thermal_sensor_event(hw,
5549 			    E1000_THSTAT_LINK_THROTTLE))
5550 				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5551 
5552 			/* adjust timeout factor according to speed/duplex */
5553 			adapter->tx_timeout_factor = 1;
5554 			switch (adapter->link_speed) {
5555 			case SPEED_10:
5556 				adapter->tx_timeout_factor = 14;
5557 				break;
5558 			case SPEED_100:
5559 				/* maybe add some timeout factor ? */
5560 				break;
5561 			}
5562 
5563 			if (adapter->link_speed != SPEED_1000 ||
5564 			    !hw->phy.ops.read_reg)
5565 				goto no_wait;
5566 
5567 			/* wait for Remote receiver status OK */
5568 retry_read_status:
5569 			if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5570 					      &phy_data)) {
5571 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5572 				    retry_count) {
5573 					msleep(100);
5574 					retry_count--;
5575 					goto retry_read_status;
5576 				} else if (!retry_count) {
5577 					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5578 				}
5579 			} else {
5580 				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5581 			}
5582 no_wait:
5583 			netif_carrier_on(netdev);
5584 
5585 			igb_ping_all_vfs(adapter);
5586 			igb_check_vf_rate_limit(adapter);
5587 
5588 			/* link state has changed, schedule phy info update */
5589 			if (!test_bit(__IGB_DOWN, &adapter->state))
5590 				mod_timer(&adapter->phy_info_timer,
5591 					  round_jiffies(jiffies + 2 * HZ));
5592 		}
5593 	} else {
5594 		if (netif_carrier_ok(netdev)) {
5595 			adapter->link_speed = 0;
5596 			adapter->link_duplex = 0;
5597 
5598 			/* check for thermal sensor event */
5599 			if (igb_thermal_sensor_event(hw,
5600 			    E1000_THSTAT_PWR_DOWN)) {
5601 				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5602 			}
5603 
5604 			/* Links status message must follow this format */
5605 			netdev_info(netdev, "igb: %s NIC Link is Down\n",
5606 			       netdev->name);
5607 			netif_carrier_off(netdev);
5608 
5609 			igb_ping_all_vfs(adapter);
5610 
5611 			/* link state has changed, schedule phy info update */
5612 			if (!test_bit(__IGB_DOWN, &adapter->state))
5613 				mod_timer(&adapter->phy_info_timer,
5614 					  round_jiffies(jiffies + 2 * HZ));
5615 
5616 			/* link is down, time to check for alternate media */
5617 			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5618 				igb_check_swap_media(adapter);
5619 				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5620 					schedule_work(&adapter->reset_task);
5621 					/* return immediately */
5622 					return;
5623 				}
5624 			}
5625 			pm_schedule_suspend(netdev->dev.parent,
5626 					    MSEC_PER_SEC * 5);
5627 
5628 		/* also check for alternate media here */
5629 		} else if (!netif_carrier_ok(netdev) &&
5630 			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5631 			igb_check_swap_media(adapter);
5632 			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5633 				schedule_work(&adapter->reset_task);
5634 				/* return immediately */
5635 				return;
5636 			}
5637 		}
5638 	}
5639 
5640 	spin_lock(&adapter->stats64_lock);
5641 	igb_update_stats(adapter);
5642 	spin_unlock(&adapter->stats64_lock);
5643 
5644 	for (i = 0; i < adapter->num_tx_queues; i++) {
5645 		struct igb_ring *tx_ring = adapter->tx_ring[i];
5646 		if (!netif_carrier_ok(netdev)) {
5647 			/* We've lost link, so the controller stops DMA,
5648 			 * but we've got queued Tx work that's never going
5649 			 * to get done, so reset controller to flush Tx.
5650 			 * (Do the reset outside of interrupt context).
5651 			 */
5652 			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5653 				adapter->tx_timeout_count++;
5654 				schedule_work(&adapter->reset_task);
5655 				/* return immediately since reset is imminent */
5656 				return;
5657 			}
5658 		}
5659 
5660 		/* Force detection of hung controller every watchdog period */
5661 		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5662 	}
5663 
5664 	/* Cause software interrupt to ensure Rx ring is cleaned */
5665 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5666 		u32 eics = 0;
5667 
5668 		for (i = 0; i < adapter->num_q_vectors; i++)
5669 			eics |= adapter->q_vector[i]->eims_value;
5670 		wr32(E1000_EICS, eics);
5671 	} else {
5672 		wr32(E1000_ICS, E1000_ICS_RXDMT0);
5673 	}
5674 
5675 	igb_spoof_check(adapter);
5676 	igb_ptp_rx_hang(adapter);
5677 	igb_ptp_tx_hang(adapter);
5678 
5679 	/* Check LVMMC register on i350/i354 only */
5680 	if ((adapter->hw.mac.type == e1000_i350) ||
5681 	    (adapter->hw.mac.type == e1000_i354))
5682 		igb_check_lvmmc(adapter);
5683 
5684 	/* Reset the timer */
5685 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5686 		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5687 			mod_timer(&adapter->watchdog_timer,
5688 				  round_jiffies(jiffies +  HZ));
5689 		else
5690 			mod_timer(&adapter->watchdog_timer,
5691 				  round_jiffies(jiffies + 2 * HZ));
5692 	}
5693 }
5694 
5695 enum latency_range {
5696 	lowest_latency = 0,
5697 	low_latency = 1,
5698 	bulk_latency = 2,
5699 	latency_invalid = 255
5700 };
5701 
5702 /**
5703  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
5704  *  @q_vector: pointer to q_vector
5705  *
5706  *  Stores a new ITR value based on strictly on packet size.  This
5707  *  algorithm is less sophisticated than that used in igb_update_itr,
5708  *  due to the difficulty of synchronizing statistics across multiple
5709  *  receive rings.  The divisors and thresholds used by this function
5710  *  were determined based on theoretical maximum wire speed and testing
5711  *  data, in order to minimize response time while increasing bulk
5712  *  throughput.
5713  *  This functionality is controlled by ethtool's coalescing settings.
5714  *  NOTE:  This function is called only when operating in a multiqueue
5715  *         receive environment.
5716  **/
5717 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5718 {
5719 	int new_val = q_vector->itr_val;
5720 	int avg_wire_size = 0;
5721 	struct igb_adapter *adapter = q_vector->adapter;
5722 	unsigned int packets;
5723 
5724 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
5725 	 * ints/sec - ITR timer value of 120 ticks.
5726 	 */
5727 	if (adapter->link_speed != SPEED_1000) {
5728 		new_val = IGB_4K_ITR;
5729 		goto set_itr_val;
5730 	}
5731 
5732 	packets = q_vector->rx.total_packets;
5733 	if (packets)
5734 		avg_wire_size = q_vector->rx.total_bytes / packets;
5735 
5736 	packets = q_vector->tx.total_packets;
5737 	if (packets)
5738 		avg_wire_size = max_t(u32, avg_wire_size,
5739 				      q_vector->tx.total_bytes / packets);
5740 
5741 	/* if avg_wire_size isn't set no work was done */
5742 	if (!avg_wire_size)
5743 		goto clear_counts;
5744 
5745 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
5746 	avg_wire_size += 24;
5747 
5748 	/* Don't starve jumbo frames */
5749 	avg_wire_size = min(avg_wire_size, 3000);
5750 
5751 	/* Give a little boost to mid-size frames */
5752 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5753 		new_val = avg_wire_size / 3;
5754 	else
5755 		new_val = avg_wire_size / 2;
5756 
5757 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5758 	if (new_val < IGB_20K_ITR &&
5759 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5760 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5761 		new_val = IGB_20K_ITR;
5762 
5763 set_itr_val:
5764 	if (new_val != q_vector->itr_val) {
5765 		q_vector->itr_val = new_val;
5766 		q_vector->set_itr = 1;
5767 	}
5768 clear_counts:
5769 	q_vector->rx.total_bytes = 0;
5770 	q_vector->rx.total_packets = 0;
5771 	q_vector->tx.total_bytes = 0;
5772 	q_vector->tx.total_packets = 0;
5773 }
5774 
5775 /**
5776  *  igb_update_itr - update the dynamic ITR value based on statistics
5777  *  @q_vector: pointer to q_vector
5778  *  @ring_container: ring info to update the itr for
5779  *
5780  *  Stores a new ITR value based on packets and byte
5781  *  counts during the last interrupt.  The advantage of per interrupt
5782  *  computation is faster updates and more accurate ITR for the current
5783  *  traffic pattern.  Constants in this function were computed
5784  *  based on theoretical maximum wire speed and thresholds were set based
5785  *  on testing data as well as attempting to minimize response time
5786  *  while increasing bulk throughput.
5787  *  This functionality is controlled by ethtool's coalescing settings.
5788  *  NOTE:  These calculations are only valid when operating in a single-
5789  *         queue environment.
5790  **/
5791 static void igb_update_itr(struct igb_q_vector *q_vector,
5792 			   struct igb_ring_container *ring_container)
5793 {
5794 	unsigned int packets = ring_container->total_packets;
5795 	unsigned int bytes = ring_container->total_bytes;
5796 	u8 itrval = ring_container->itr;
5797 
5798 	/* no packets, exit with status unchanged */
5799 	if (packets == 0)
5800 		return;
5801 
5802 	switch (itrval) {
5803 	case lowest_latency:
5804 		/* handle TSO and jumbo frames */
5805 		if (bytes/packets > 8000)
5806 			itrval = bulk_latency;
5807 		else if ((packets < 5) && (bytes > 512))
5808 			itrval = low_latency;
5809 		break;
5810 	case low_latency:  /* 50 usec aka 20000 ints/s */
5811 		if (bytes > 10000) {
5812 			/* this if handles the TSO accounting */
5813 			if (bytes/packets > 8000)
5814 				itrval = bulk_latency;
5815 			else if ((packets < 10) || ((bytes/packets) > 1200))
5816 				itrval = bulk_latency;
5817 			else if ((packets > 35))
5818 				itrval = lowest_latency;
5819 		} else if (bytes/packets > 2000) {
5820 			itrval = bulk_latency;
5821 		} else if (packets <= 2 && bytes < 512) {
5822 			itrval = lowest_latency;
5823 		}
5824 		break;
5825 	case bulk_latency: /* 250 usec aka 4000 ints/s */
5826 		if (bytes > 25000) {
5827 			if (packets > 35)
5828 				itrval = low_latency;
5829 		} else if (bytes < 1500) {
5830 			itrval = low_latency;
5831 		}
5832 		break;
5833 	}
5834 
5835 	/* clear work counters since we have the values we need */
5836 	ring_container->total_bytes = 0;
5837 	ring_container->total_packets = 0;
5838 
5839 	/* write updated itr to ring container */
5840 	ring_container->itr = itrval;
5841 }
5842 
5843 static void igb_set_itr(struct igb_q_vector *q_vector)
5844 {
5845 	struct igb_adapter *adapter = q_vector->adapter;
5846 	u32 new_itr = q_vector->itr_val;
5847 	u8 current_itr = 0;
5848 
5849 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5850 	if (adapter->link_speed != SPEED_1000) {
5851 		current_itr = 0;
5852 		new_itr = IGB_4K_ITR;
5853 		goto set_itr_now;
5854 	}
5855 
5856 	igb_update_itr(q_vector, &q_vector->tx);
5857 	igb_update_itr(q_vector, &q_vector->rx);
5858 
5859 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5860 
5861 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5862 	if (current_itr == lowest_latency &&
5863 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5864 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5865 		current_itr = low_latency;
5866 
5867 	switch (current_itr) {
5868 	/* counts and packets in update_itr are dependent on these numbers */
5869 	case lowest_latency:
5870 		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5871 		break;
5872 	case low_latency:
5873 		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5874 		break;
5875 	case bulk_latency:
5876 		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5877 		break;
5878 	default:
5879 		break;
5880 	}
5881 
5882 set_itr_now:
5883 	if (new_itr != q_vector->itr_val) {
5884 		/* this attempts to bias the interrupt rate towards Bulk
5885 		 * by adding intermediate steps when interrupt rate is
5886 		 * increasing
5887 		 */
5888 		new_itr = new_itr > q_vector->itr_val ?
5889 			  max((new_itr * q_vector->itr_val) /
5890 			  (new_itr + (q_vector->itr_val >> 2)),
5891 			  new_itr) : new_itr;
5892 		/* Don't write the value here; it resets the adapter's
5893 		 * internal timer, and causes us to delay far longer than
5894 		 * we should between interrupts.  Instead, we write the ITR
5895 		 * value at the beginning of the next interrupt so the timing
5896 		 * ends up being correct.
5897 		 */
5898 		q_vector->itr_val = new_itr;
5899 		q_vector->set_itr = 1;
5900 	}
5901 }
5902 
5903 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5904 			    struct igb_tx_buffer *first,
5905 			    u32 vlan_macip_lens, u32 type_tucmd,
5906 			    u32 mss_l4len_idx)
5907 {
5908 	struct e1000_adv_tx_context_desc *context_desc;
5909 	u16 i = tx_ring->next_to_use;
5910 	struct timespec64 ts;
5911 
5912 	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5913 
5914 	i++;
5915 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5916 
5917 	/* set bits to identify this as an advanced context descriptor */
5918 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5919 
5920 	/* For 82575, context index must be unique per ring. */
5921 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5922 		mss_l4len_idx |= tx_ring->reg_idx << 4;
5923 
5924 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
5925 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
5926 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
5927 
5928 	/* We assume there is always a valid tx time available. Invalid times
5929 	 * should have been handled by the upper layers.
5930 	 */
5931 	if (tx_ring->launchtime_enable) {
5932 		ts = ktime_to_timespec64(first->skb->tstamp);
5933 		skb_txtime_consumed(first->skb);
5934 		context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5935 	} else {
5936 		context_desc->seqnum_seed = 0;
5937 	}
5938 }
5939 
5940 static int igb_tso(struct igb_ring *tx_ring,
5941 		   struct igb_tx_buffer *first,
5942 		   u8 *hdr_len)
5943 {
5944 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5945 	struct sk_buff *skb = first->skb;
5946 	union {
5947 		struct iphdr *v4;
5948 		struct ipv6hdr *v6;
5949 		unsigned char *hdr;
5950 	} ip;
5951 	union {
5952 		struct tcphdr *tcp;
5953 		struct udphdr *udp;
5954 		unsigned char *hdr;
5955 	} l4;
5956 	u32 paylen, l4_offset;
5957 	int err;
5958 
5959 	if (skb->ip_summed != CHECKSUM_PARTIAL)
5960 		return 0;
5961 
5962 	if (!skb_is_gso(skb))
5963 		return 0;
5964 
5965 	err = skb_cow_head(skb, 0);
5966 	if (err < 0)
5967 		return err;
5968 
5969 	ip.hdr = skb_network_header(skb);
5970 	l4.hdr = skb_checksum_start(skb);
5971 
5972 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5973 	type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
5974 		      E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
5975 
5976 	/* initialize outer IP header fields */
5977 	if (ip.v4->version == 4) {
5978 		unsigned char *csum_start = skb_checksum_start(skb);
5979 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5980 
5981 		/* IP header will have to cancel out any data that
5982 		 * is not a part of the outer IP header
5983 		 */
5984 		ip.v4->check = csum_fold(csum_partial(trans_start,
5985 						      csum_start - trans_start,
5986 						      0));
5987 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5988 
5989 		ip.v4->tot_len = 0;
5990 		first->tx_flags |= IGB_TX_FLAGS_TSO |
5991 				   IGB_TX_FLAGS_CSUM |
5992 				   IGB_TX_FLAGS_IPV4;
5993 	} else {
5994 		ip.v6->payload_len = 0;
5995 		first->tx_flags |= IGB_TX_FLAGS_TSO |
5996 				   IGB_TX_FLAGS_CSUM;
5997 	}
5998 
5999 	/* determine offset of inner transport header */
6000 	l4_offset = l4.hdr - skb->data;
6001 
6002 	/* remove payload length from inner checksum */
6003 	paylen = skb->len - l4_offset;
6004 	if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
6005 		/* compute length of segmentation header */
6006 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
6007 		csum_replace_by_diff(&l4.tcp->check,
6008 			(__force __wsum)htonl(paylen));
6009 	} else {
6010 		/* compute length of segmentation header */
6011 		*hdr_len = sizeof(*l4.udp) + l4_offset;
6012 		csum_replace_by_diff(&l4.udp->check,
6013 				     (__force __wsum)htonl(paylen));
6014 	}
6015 
6016 	/* update gso size and bytecount with header size */
6017 	first->gso_segs = skb_shinfo(skb)->gso_segs;
6018 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
6019 
6020 	/* MSS L4LEN IDX */
6021 	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
6022 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
6023 
6024 	/* VLAN MACLEN IPLEN */
6025 	vlan_macip_lens = l4.hdr - ip.hdr;
6026 	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
6027 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6028 
6029 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
6030 			type_tucmd, mss_l4len_idx);
6031 
6032 	return 1;
6033 }
6034 
6035 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
6036 {
6037 	struct sk_buff *skb = first->skb;
6038 	u32 vlan_macip_lens = 0;
6039 	u32 type_tucmd = 0;
6040 
6041 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
6042 csum_failed:
6043 		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
6044 		    !tx_ring->launchtime_enable)
6045 			return;
6046 		goto no_csum;
6047 	}
6048 
6049 	switch (skb->csum_offset) {
6050 	case offsetof(struct tcphdr, check):
6051 		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
6052 		fallthrough;
6053 	case offsetof(struct udphdr, check):
6054 		break;
6055 	case offsetof(struct sctphdr, checksum):
6056 		/* validate that this is actually an SCTP request */
6057 		if (skb_csum_is_sctp(skb)) {
6058 			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
6059 			break;
6060 		}
6061 		fallthrough;
6062 	default:
6063 		skb_checksum_help(skb);
6064 		goto csum_failed;
6065 	}
6066 
6067 	/* update TX checksum flag */
6068 	first->tx_flags |= IGB_TX_FLAGS_CSUM;
6069 	vlan_macip_lens = skb_checksum_start_offset(skb) -
6070 			  skb_network_offset(skb);
6071 no_csum:
6072 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
6073 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6074 
6075 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
6076 }
6077 
6078 #define IGB_SET_FLAG(_input, _flag, _result) \
6079 	((_flag <= _result) ? \
6080 	 ((u32)(_input & _flag) * (_result / _flag)) : \
6081 	 ((u32)(_input & _flag) / (_flag / _result)))
6082 
6083 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
6084 {
6085 	/* set type for advanced descriptor with frame checksum insertion */
6086 	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
6087 		       E1000_ADVTXD_DCMD_DEXT |
6088 		       E1000_ADVTXD_DCMD_IFCS;
6089 
6090 	/* set HW vlan bit if vlan is present */
6091 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
6092 				 (E1000_ADVTXD_DCMD_VLE));
6093 
6094 	/* set segmentation bits for TSO */
6095 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
6096 				 (E1000_ADVTXD_DCMD_TSE));
6097 
6098 	/* set timestamp bit if present */
6099 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
6100 				 (E1000_ADVTXD_MAC_TSTAMP));
6101 
6102 	/* insert frame checksum */
6103 	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
6104 
6105 	return cmd_type;
6106 }
6107 
6108 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
6109 				 union e1000_adv_tx_desc *tx_desc,
6110 				 u32 tx_flags, unsigned int paylen)
6111 {
6112 	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
6113 
6114 	/* 82575 requires a unique index per ring */
6115 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6116 		olinfo_status |= tx_ring->reg_idx << 4;
6117 
6118 	/* insert L4 checksum */
6119 	olinfo_status |= IGB_SET_FLAG(tx_flags,
6120 				      IGB_TX_FLAGS_CSUM,
6121 				      (E1000_TXD_POPTS_TXSM << 8));
6122 
6123 	/* insert IPv4 checksum */
6124 	olinfo_status |= IGB_SET_FLAG(tx_flags,
6125 				      IGB_TX_FLAGS_IPV4,
6126 				      (E1000_TXD_POPTS_IXSM << 8));
6127 
6128 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6129 }
6130 
6131 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6132 {
6133 	struct net_device *netdev = tx_ring->netdev;
6134 
6135 	netif_stop_subqueue(netdev, tx_ring->queue_index);
6136 
6137 	/* Herbert's original patch had:
6138 	 *  smp_mb__after_netif_stop_queue();
6139 	 * but since that doesn't exist yet, just open code it.
6140 	 */
6141 	smp_mb();
6142 
6143 	/* We need to check again in a case another CPU has just
6144 	 * made room available.
6145 	 */
6146 	if (igb_desc_unused(tx_ring) < size)
6147 		return -EBUSY;
6148 
6149 	/* A reprieve! */
6150 	netif_wake_subqueue(netdev, tx_ring->queue_index);
6151 
6152 	u64_stats_update_begin(&tx_ring->tx_syncp2);
6153 	tx_ring->tx_stats.restart_queue2++;
6154 	u64_stats_update_end(&tx_ring->tx_syncp2);
6155 
6156 	return 0;
6157 }
6158 
6159 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6160 {
6161 	if (igb_desc_unused(tx_ring) >= size)
6162 		return 0;
6163 	return __igb_maybe_stop_tx(tx_ring, size);
6164 }
6165 
6166 static int igb_tx_map(struct igb_ring *tx_ring,
6167 		      struct igb_tx_buffer *first,
6168 		      const u8 hdr_len)
6169 {
6170 	struct sk_buff *skb = first->skb;
6171 	struct igb_tx_buffer *tx_buffer;
6172 	union e1000_adv_tx_desc *tx_desc;
6173 	skb_frag_t *frag;
6174 	dma_addr_t dma;
6175 	unsigned int data_len, size;
6176 	u32 tx_flags = first->tx_flags;
6177 	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
6178 	u16 i = tx_ring->next_to_use;
6179 
6180 	tx_desc = IGB_TX_DESC(tx_ring, i);
6181 
6182 	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
6183 
6184 	size = skb_headlen(skb);
6185 	data_len = skb->data_len;
6186 
6187 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
6188 
6189 	tx_buffer = first;
6190 
6191 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
6192 		if (dma_mapping_error(tx_ring->dev, dma))
6193 			goto dma_error;
6194 
6195 		/* record length, and DMA address */
6196 		dma_unmap_len_set(tx_buffer, len, size);
6197 		dma_unmap_addr_set(tx_buffer, dma, dma);
6198 
6199 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
6200 
6201 		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
6202 			tx_desc->read.cmd_type_len =
6203 				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
6204 
6205 			i++;
6206 			tx_desc++;
6207 			if (i == tx_ring->count) {
6208 				tx_desc = IGB_TX_DESC(tx_ring, 0);
6209 				i = 0;
6210 			}
6211 			tx_desc->read.olinfo_status = 0;
6212 
6213 			dma += IGB_MAX_DATA_PER_TXD;
6214 			size -= IGB_MAX_DATA_PER_TXD;
6215 
6216 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
6217 		}
6218 
6219 		if (likely(!data_len))
6220 			break;
6221 
6222 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6223 
6224 		i++;
6225 		tx_desc++;
6226 		if (i == tx_ring->count) {
6227 			tx_desc = IGB_TX_DESC(tx_ring, 0);
6228 			i = 0;
6229 		}
6230 		tx_desc->read.olinfo_status = 0;
6231 
6232 		size = skb_frag_size(frag);
6233 		data_len -= size;
6234 
6235 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6236 				       size, DMA_TO_DEVICE);
6237 
6238 		tx_buffer = &tx_ring->tx_buffer_info[i];
6239 	}
6240 
6241 	/* write last descriptor with RS and EOP bits */
6242 	cmd_type |= size | IGB_TXD_DCMD;
6243 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6244 
6245 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6246 
6247 	/* set the timestamp */
6248 	first->time_stamp = jiffies;
6249 
6250 	skb_tx_timestamp(skb);
6251 
6252 	/* Force memory writes to complete before letting h/w know there
6253 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
6254 	 * memory model archs, such as IA-64).
6255 	 *
6256 	 * We also need this memory barrier to make certain all of the
6257 	 * status bits have been updated before next_to_watch is written.
6258 	 */
6259 	dma_wmb();
6260 
6261 	/* set next_to_watch value indicating a packet is present */
6262 	first->next_to_watch = tx_desc;
6263 
6264 	i++;
6265 	if (i == tx_ring->count)
6266 		i = 0;
6267 
6268 	tx_ring->next_to_use = i;
6269 
6270 	/* Make sure there is space in the ring for the next send. */
6271 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6272 
6273 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6274 		writel(i, tx_ring->tail);
6275 	}
6276 	return 0;
6277 
6278 dma_error:
6279 	dev_err(tx_ring->dev, "TX DMA map failed\n");
6280 	tx_buffer = &tx_ring->tx_buffer_info[i];
6281 
6282 	/* clear dma mappings for failed tx_buffer_info map */
6283 	while (tx_buffer != first) {
6284 		if (dma_unmap_len(tx_buffer, len))
6285 			dma_unmap_page(tx_ring->dev,
6286 				       dma_unmap_addr(tx_buffer, dma),
6287 				       dma_unmap_len(tx_buffer, len),
6288 				       DMA_TO_DEVICE);
6289 		dma_unmap_len_set(tx_buffer, len, 0);
6290 
6291 		if (i-- == 0)
6292 			i += tx_ring->count;
6293 		tx_buffer = &tx_ring->tx_buffer_info[i];
6294 	}
6295 
6296 	if (dma_unmap_len(tx_buffer, len))
6297 		dma_unmap_single(tx_ring->dev,
6298 				 dma_unmap_addr(tx_buffer, dma),
6299 				 dma_unmap_len(tx_buffer, len),
6300 				 DMA_TO_DEVICE);
6301 	dma_unmap_len_set(tx_buffer, len, 0);
6302 
6303 	dev_kfree_skb_any(tx_buffer->skb);
6304 	tx_buffer->skb = NULL;
6305 
6306 	tx_ring->next_to_use = i;
6307 
6308 	return -1;
6309 }
6310 
6311 int igb_xmit_xdp_ring(struct igb_adapter *adapter,
6312 		      struct igb_ring *tx_ring,
6313 		      struct xdp_frame *xdpf)
6314 {
6315 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
6316 	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
6317 	u16 count, i, index = tx_ring->next_to_use;
6318 	struct igb_tx_buffer *tx_head = &tx_ring->tx_buffer_info[index];
6319 	struct igb_tx_buffer *tx_buffer = tx_head;
6320 	union e1000_adv_tx_desc *tx_desc = IGB_TX_DESC(tx_ring, index);
6321 	u32 len = xdpf->len, cmd_type, olinfo_status;
6322 	void *data = xdpf->data;
6323 
6324 	count = TXD_USE_COUNT(len);
6325 	for (i = 0; i < nr_frags; i++)
6326 		count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
6327 
6328 	if (igb_maybe_stop_tx(tx_ring, count + 3))
6329 		return IGB_XDP_CONSUMED;
6330 
6331 	i = 0;
6332 	/* record the location of the first descriptor for this packet */
6333 	tx_head->bytecount = xdp_get_frame_len(xdpf);
6334 	tx_head->type = IGB_TYPE_XDP;
6335 	tx_head->gso_segs = 1;
6336 	tx_head->xdpf = xdpf;
6337 
6338 	olinfo_status = tx_head->bytecount << E1000_ADVTXD_PAYLEN_SHIFT;
6339 	/* 82575 requires a unique index per ring */
6340 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6341 		olinfo_status |= tx_ring->reg_idx << 4;
6342 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6343 
6344 	for (;;) {
6345 		dma_addr_t dma;
6346 
6347 		dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
6348 		if (dma_mapping_error(tx_ring->dev, dma))
6349 			goto unmap;
6350 
6351 		/* record length, and DMA address */
6352 		dma_unmap_len_set(tx_buffer, len, len);
6353 		dma_unmap_addr_set(tx_buffer, dma, dma);
6354 
6355 		/* put descriptor type bits */
6356 		cmd_type = E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_DEXT |
6357 			   E1000_ADVTXD_DCMD_IFCS | len;
6358 
6359 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6360 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
6361 
6362 		tx_buffer->protocol = 0;
6363 
6364 		if (++index == tx_ring->count)
6365 			index = 0;
6366 
6367 		if (i == nr_frags)
6368 			break;
6369 
6370 		tx_buffer = &tx_ring->tx_buffer_info[index];
6371 		tx_desc = IGB_TX_DESC(tx_ring, index);
6372 		tx_desc->read.olinfo_status = 0;
6373 
6374 		data = skb_frag_address(&sinfo->frags[i]);
6375 		len = skb_frag_size(&sinfo->frags[i]);
6376 		i++;
6377 	}
6378 	tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_TXD_DCMD);
6379 
6380 	netdev_tx_sent_queue(txring_txq(tx_ring), tx_head->bytecount);
6381 	/* set the timestamp */
6382 	tx_head->time_stamp = jiffies;
6383 
6384 	/* Avoid any potential race with xdp_xmit and cleanup */
6385 	smp_wmb();
6386 
6387 	/* set next_to_watch value indicating a packet is present */
6388 	tx_head->next_to_watch = tx_desc;
6389 	tx_ring->next_to_use = index;
6390 
6391 	/* Make sure there is space in the ring for the next send. */
6392 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6393 
6394 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
6395 		writel(index, tx_ring->tail);
6396 
6397 	return IGB_XDP_TX;
6398 
6399 unmap:
6400 	for (;;) {
6401 		tx_buffer = &tx_ring->tx_buffer_info[index];
6402 		if (dma_unmap_len(tx_buffer, len))
6403 			dma_unmap_page(tx_ring->dev,
6404 				       dma_unmap_addr(tx_buffer, dma),
6405 				       dma_unmap_len(tx_buffer, len),
6406 				       DMA_TO_DEVICE);
6407 		dma_unmap_len_set(tx_buffer, len, 0);
6408 		if (tx_buffer == tx_head)
6409 			break;
6410 
6411 		if (!index)
6412 			index += tx_ring->count;
6413 		index--;
6414 	}
6415 
6416 	return IGB_XDP_CONSUMED;
6417 }
6418 
6419 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6420 				struct igb_ring *tx_ring)
6421 {
6422 	struct igb_tx_buffer *first;
6423 	int tso;
6424 	u32 tx_flags = 0;
6425 	unsigned short f;
6426 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
6427 	__be16 protocol = vlan_get_protocol(skb);
6428 	u8 hdr_len = 0;
6429 
6430 	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6431 	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6432 	 *       + 2 desc gap to keep tail from touching head,
6433 	 *       + 1 desc for context descriptor,
6434 	 * otherwise try next time
6435 	 */
6436 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6437 		count += TXD_USE_COUNT(skb_frag_size(
6438 						&skb_shinfo(skb)->frags[f]));
6439 
6440 	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6441 		/* this is a hard error */
6442 		return NETDEV_TX_BUSY;
6443 	}
6444 
6445 	/* record the location of the first descriptor for this packet */
6446 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6447 	first->type = IGB_TYPE_SKB;
6448 	first->skb = skb;
6449 	first->bytecount = skb->len;
6450 	first->gso_segs = 1;
6451 
6452 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6453 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6454 
6455 		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6456 		    !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6457 					   &adapter->state)) {
6458 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6459 			tx_flags |= IGB_TX_FLAGS_TSTAMP;
6460 
6461 			adapter->ptp_tx_skb = skb_get(skb);
6462 			adapter->ptp_tx_start = jiffies;
6463 			if (adapter->hw.mac.type == e1000_82576)
6464 				schedule_work(&adapter->ptp_tx_work);
6465 		} else {
6466 			adapter->tx_hwtstamp_skipped++;
6467 		}
6468 	}
6469 
6470 	if (skb_vlan_tag_present(skb)) {
6471 		tx_flags |= IGB_TX_FLAGS_VLAN;
6472 		tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6473 	}
6474 
6475 	/* record initial flags and protocol */
6476 	first->tx_flags = tx_flags;
6477 	first->protocol = protocol;
6478 
6479 	tso = igb_tso(tx_ring, first, &hdr_len);
6480 	if (tso < 0)
6481 		goto out_drop;
6482 	else if (!tso)
6483 		igb_tx_csum(tx_ring, first);
6484 
6485 	if (igb_tx_map(tx_ring, first, hdr_len))
6486 		goto cleanup_tx_tstamp;
6487 
6488 	return NETDEV_TX_OK;
6489 
6490 out_drop:
6491 	dev_kfree_skb_any(first->skb);
6492 	first->skb = NULL;
6493 cleanup_tx_tstamp:
6494 	if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6495 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6496 
6497 		dev_kfree_skb_any(adapter->ptp_tx_skb);
6498 		adapter->ptp_tx_skb = NULL;
6499 		if (adapter->hw.mac.type == e1000_82576)
6500 			cancel_work_sync(&adapter->ptp_tx_work);
6501 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6502 	}
6503 
6504 	return NETDEV_TX_OK;
6505 }
6506 
6507 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6508 						    struct sk_buff *skb)
6509 {
6510 	unsigned int r_idx = skb->queue_mapping;
6511 
6512 	if (r_idx >= adapter->num_tx_queues)
6513 		r_idx = r_idx % adapter->num_tx_queues;
6514 
6515 	return adapter->tx_ring[r_idx];
6516 }
6517 
6518 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6519 				  struct net_device *netdev)
6520 {
6521 	struct igb_adapter *adapter = netdev_priv(netdev);
6522 
6523 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6524 	 * in order to meet this minimum size requirement.
6525 	 */
6526 	if (skb_put_padto(skb, 17))
6527 		return NETDEV_TX_OK;
6528 
6529 	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6530 }
6531 
6532 /**
6533  *  igb_tx_timeout - Respond to a Tx Hang
6534  *  @netdev: network interface device structure
6535  *  @txqueue: number of the Tx queue that hung (unused)
6536  **/
6537 static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
6538 {
6539 	struct igb_adapter *adapter = netdev_priv(netdev);
6540 	struct e1000_hw *hw = &adapter->hw;
6541 
6542 	/* Do the reset outside of interrupt context */
6543 	adapter->tx_timeout_count++;
6544 
6545 	if (hw->mac.type >= e1000_82580)
6546 		hw->dev_spec._82575.global_device_reset = true;
6547 
6548 	schedule_work(&adapter->reset_task);
6549 	wr32(E1000_EICS,
6550 	     (adapter->eims_enable_mask & ~adapter->eims_other));
6551 }
6552 
6553 static void igb_reset_task(struct work_struct *work)
6554 {
6555 	struct igb_adapter *adapter;
6556 	adapter = container_of(work, struct igb_adapter, reset_task);
6557 
6558 	rtnl_lock();
6559 	/* If we're already down or resetting, just bail */
6560 	if (test_bit(__IGB_DOWN, &adapter->state) ||
6561 	    test_bit(__IGB_RESETTING, &adapter->state)) {
6562 		rtnl_unlock();
6563 		return;
6564 	}
6565 
6566 	igb_dump(adapter);
6567 	netdev_err(adapter->netdev, "Reset adapter\n");
6568 	igb_reinit_locked(adapter);
6569 	rtnl_unlock();
6570 }
6571 
6572 /**
6573  *  igb_get_stats64 - Get System Network Statistics
6574  *  @netdev: network interface device structure
6575  *  @stats: rtnl_link_stats64 pointer
6576  **/
6577 static void igb_get_stats64(struct net_device *netdev,
6578 			    struct rtnl_link_stats64 *stats)
6579 {
6580 	struct igb_adapter *adapter = netdev_priv(netdev);
6581 
6582 	spin_lock(&adapter->stats64_lock);
6583 	igb_update_stats(adapter);
6584 	memcpy(stats, &adapter->stats64, sizeof(*stats));
6585 	spin_unlock(&adapter->stats64_lock);
6586 }
6587 
6588 /**
6589  *  igb_change_mtu - Change the Maximum Transfer Unit
6590  *  @netdev: network interface device structure
6591  *  @new_mtu: new value for maximum frame size
6592  *
6593  *  Returns 0 on success, negative on failure
6594  **/
6595 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6596 {
6597 	struct igb_adapter *adapter = netdev_priv(netdev);
6598 	int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
6599 
6600 	if (adapter->xdp_prog) {
6601 		int i;
6602 
6603 		for (i = 0; i < adapter->num_rx_queues; i++) {
6604 			struct igb_ring *ring = adapter->rx_ring[i];
6605 
6606 			if (max_frame > igb_rx_bufsz(ring)) {
6607 				netdev_warn(adapter->netdev,
6608 					    "Requested MTU size is not supported with XDP. Max frame size is %d\n",
6609 					    max_frame);
6610 				return -EINVAL;
6611 			}
6612 		}
6613 	}
6614 
6615 	/* adjust max frame to be at least the size of a standard frame */
6616 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6617 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6618 
6619 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6620 		usleep_range(1000, 2000);
6621 
6622 	/* igb_down has a dependency on max_frame_size */
6623 	adapter->max_frame_size = max_frame;
6624 
6625 	if (netif_running(netdev))
6626 		igb_down(adapter);
6627 
6628 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
6629 		   netdev->mtu, new_mtu);
6630 	netdev->mtu = new_mtu;
6631 
6632 	if (netif_running(netdev))
6633 		igb_up(adapter);
6634 	else
6635 		igb_reset(adapter);
6636 
6637 	clear_bit(__IGB_RESETTING, &adapter->state);
6638 
6639 	return 0;
6640 }
6641 
6642 /**
6643  *  igb_update_stats - Update the board statistics counters
6644  *  @adapter: board private structure
6645  **/
6646 void igb_update_stats(struct igb_adapter *adapter)
6647 {
6648 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6649 	struct e1000_hw *hw = &adapter->hw;
6650 	struct pci_dev *pdev = adapter->pdev;
6651 	u32 reg, mpc;
6652 	int i;
6653 	u64 bytes, packets;
6654 	unsigned int start;
6655 	u64 _bytes, _packets;
6656 
6657 	/* Prevent stats update while adapter is being reset, or if the pci
6658 	 * connection is down.
6659 	 */
6660 	if (adapter->link_speed == 0)
6661 		return;
6662 	if (pci_channel_offline(pdev))
6663 		return;
6664 
6665 	bytes = 0;
6666 	packets = 0;
6667 
6668 	rcu_read_lock();
6669 	for (i = 0; i < adapter->num_rx_queues; i++) {
6670 		struct igb_ring *ring = adapter->rx_ring[i];
6671 		u32 rqdpc = rd32(E1000_RQDPC(i));
6672 		if (hw->mac.type >= e1000_i210)
6673 			wr32(E1000_RQDPC(i), 0);
6674 
6675 		if (rqdpc) {
6676 			ring->rx_stats.drops += rqdpc;
6677 			net_stats->rx_fifo_errors += rqdpc;
6678 		}
6679 
6680 		do {
6681 			start = u64_stats_fetch_begin(&ring->rx_syncp);
6682 			_bytes = ring->rx_stats.bytes;
6683 			_packets = ring->rx_stats.packets;
6684 		} while (u64_stats_fetch_retry(&ring->rx_syncp, start));
6685 		bytes += _bytes;
6686 		packets += _packets;
6687 	}
6688 
6689 	net_stats->rx_bytes = bytes;
6690 	net_stats->rx_packets = packets;
6691 
6692 	bytes = 0;
6693 	packets = 0;
6694 	for (i = 0; i < adapter->num_tx_queues; i++) {
6695 		struct igb_ring *ring = adapter->tx_ring[i];
6696 		do {
6697 			start = u64_stats_fetch_begin(&ring->tx_syncp);
6698 			_bytes = ring->tx_stats.bytes;
6699 			_packets = ring->tx_stats.packets;
6700 		} while (u64_stats_fetch_retry(&ring->tx_syncp, start));
6701 		bytes += _bytes;
6702 		packets += _packets;
6703 	}
6704 	net_stats->tx_bytes = bytes;
6705 	net_stats->tx_packets = packets;
6706 	rcu_read_unlock();
6707 
6708 	/* read stats registers */
6709 	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6710 	adapter->stats.gprc += rd32(E1000_GPRC);
6711 	adapter->stats.gorc += rd32(E1000_GORCL);
6712 	rd32(E1000_GORCH); /* clear GORCL */
6713 	adapter->stats.bprc += rd32(E1000_BPRC);
6714 	adapter->stats.mprc += rd32(E1000_MPRC);
6715 	adapter->stats.roc += rd32(E1000_ROC);
6716 
6717 	adapter->stats.prc64 += rd32(E1000_PRC64);
6718 	adapter->stats.prc127 += rd32(E1000_PRC127);
6719 	adapter->stats.prc255 += rd32(E1000_PRC255);
6720 	adapter->stats.prc511 += rd32(E1000_PRC511);
6721 	adapter->stats.prc1023 += rd32(E1000_PRC1023);
6722 	adapter->stats.prc1522 += rd32(E1000_PRC1522);
6723 	adapter->stats.symerrs += rd32(E1000_SYMERRS);
6724 	adapter->stats.sec += rd32(E1000_SEC);
6725 
6726 	mpc = rd32(E1000_MPC);
6727 	adapter->stats.mpc += mpc;
6728 	net_stats->rx_fifo_errors += mpc;
6729 	adapter->stats.scc += rd32(E1000_SCC);
6730 	adapter->stats.ecol += rd32(E1000_ECOL);
6731 	adapter->stats.mcc += rd32(E1000_MCC);
6732 	adapter->stats.latecol += rd32(E1000_LATECOL);
6733 	adapter->stats.dc += rd32(E1000_DC);
6734 	adapter->stats.rlec += rd32(E1000_RLEC);
6735 	adapter->stats.xonrxc += rd32(E1000_XONRXC);
6736 	adapter->stats.xontxc += rd32(E1000_XONTXC);
6737 	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6738 	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6739 	adapter->stats.fcruc += rd32(E1000_FCRUC);
6740 	adapter->stats.gptc += rd32(E1000_GPTC);
6741 	adapter->stats.gotc += rd32(E1000_GOTCL);
6742 	rd32(E1000_GOTCH); /* clear GOTCL */
6743 	adapter->stats.rnbc += rd32(E1000_RNBC);
6744 	adapter->stats.ruc += rd32(E1000_RUC);
6745 	adapter->stats.rfc += rd32(E1000_RFC);
6746 	adapter->stats.rjc += rd32(E1000_RJC);
6747 	adapter->stats.tor += rd32(E1000_TORH);
6748 	adapter->stats.tot += rd32(E1000_TOTH);
6749 	adapter->stats.tpr += rd32(E1000_TPR);
6750 
6751 	adapter->stats.ptc64 += rd32(E1000_PTC64);
6752 	adapter->stats.ptc127 += rd32(E1000_PTC127);
6753 	adapter->stats.ptc255 += rd32(E1000_PTC255);
6754 	adapter->stats.ptc511 += rd32(E1000_PTC511);
6755 	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6756 	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6757 
6758 	adapter->stats.mptc += rd32(E1000_MPTC);
6759 	adapter->stats.bptc += rd32(E1000_BPTC);
6760 
6761 	adapter->stats.tpt += rd32(E1000_TPT);
6762 	adapter->stats.colc += rd32(E1000_COLC);
6763 
6764 	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6765 	/* read internal phy specific stats */
6766 	reg = rd32(E1000_CTRL_EXT);
6767 	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6768 		adapter->stats.rxerrc += rd32(E1000_RXERRC);
6769 
6770 		/* this stat has invalid values on i210/i211 */
6771 		if ((hw->mac.type != e1000_i210) &&
6772 		    (hw->mac.type != e1000_i211))
6773 			adapter->stats.tncrs += rd32(E1000_TNCRS);
6774 	}
6775 
6776 	adapter->stats.tsctc += rd32(E1000_TSCTC);
6777 	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6778 
6779 	adapter->stats.iac += rd32(E1000_IAC);
6780 	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6781 	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6782 	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6783 	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6784 	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6785 	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6786 	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6787 	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6788 
6789 	/* Fill out the OS statistics structure */
6790 	net_stats->multicast = adapter->stats.mprc;
6791 	net_stats->collisions = adapter->stats.colc;
6792 
6793 	/* Rx Errors */
6794 
6795 	/* RLEC on some newer hardware can be incorrect so build
6796 	 * our own version based on RUC and ROC
6797 	 */
6798 	net_stats->rx_errors = adapter->stats.rxerrc +
6799 		adapter->stats.crcerrs + adapter->stats.algnerrc +
6800 		adapter->stats.ruc + adapter->stats.roc +
6801 		adapter->stats.cexterr;
6802 	net_stats->rx_length_errors = adapter->stats.ruc +
6803 				      adapter->stats.roc;
6804 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
6805 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
6806 	net_stats->rx_missed_errors = adapter->stats.mpc;
6807 
6808 	/* Tx Errors */
6809 	net_stats->tx_errors = adapter->stats.ecol +
6810 			       adapter->stats.latecol;
6811 	net_stats->tx_aborted_errors = adapter->stats.ecol;
6812 	net_stats->tx_window_errors = adapter->stats.latecol;
6813 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
6814 
6815 	/* Tx Dropped needs to be maintained elsewhere */
6816 
6817 	/* Management Stats */
6818 	adapter->stats.mgptc += rd32(E1000_MGTPTC);
6819 	adapter->stats.mgprc += rd32(E1000_MGTPRC);
6820 	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6821 
6822 	/* OS2BMC Stats */
6823 	reg = rd32(E1000_MANC);
6824 	if (reg & E1000_MANC_EN_BMC2OS) {
6825 		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6826 		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6827 		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6828 		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6829 	}
6830 }
6831 
6832 static void igb_perout(struct igb_adapter *adapter, int tsintr_tt)
6833 {
6834 	int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_PEROUT, tsintr_tt);
6835 	struct e1000_hw *hw = &adapter->hw;
6836 	struct timespec64 ts;
6837 	u32 tsauxc;
6838 
6839 	if (pin < 0 || pin >= IGB_N_SDP)
6840 		return;
6841 
6842 	spin_lock(&adapter->tmreg_lock);
6843 
6844 	if (hw->mac.type == e1000_82580 ||
6845 	    hw->mac.type == e1000_i354 ||
6846 	    hw->mac.type == e1000_i350) {
6847 		s64 ns = timespec64_to_ns(&adapter->perout[tsintr_tt].period);
6848 		u32 systiml, systimh, level_mask, level, rem;
6849 		u64 systim, now;
6850 
6851 		/* read systim registers in sequence */
6852 		rd32(E1000_SYSTIMR);
6853 		systiml = rd32(E1000_SYSTIML);
6854 		systimh = rd32(E1000_SYSTIMH);
6855 		systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
6856 		now = timecounter_cyc2time(&adapter->tc, systim);
6857 
6858 		if (pin < 2) {
6859 			level_mask = (tsintr_tt == 1) ? 0x80000 : 0x40000;
6860 			level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
6861 		} else {
6862 			level_mask = (tsintr_tt == 1) ? 0x80 : 0x40;
6863 			level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
6864 		}
6865 
6866 		div_u64_rem(now, ns, &rem);
6867 		systim = systim + (ns - rem);
6868 
6869 		/* synchronize pin level with rising/falling edges */
6870 		div_u64_rem(now, ns << 1, &rem);
6871 		if (rem < ns) {
6872 			/* first half of period */
6873 			if (level == 0) {
6874 				/* output is already low, skip this period */
6875 				systim += ns;
6876 				pr_notice("igb: periodic output on %s missed falling edge\n",
6877 					  adapter->sdp_config[pin].name);
6878 			}
6879 		} else {
6880 			/* second half of period */
6881 			if (level == 1) {
6882 				/* output is already high, skip this period */
6883 				systim += ns;
6884 				pr_notice("igb: periodic output on %s missed rising edge\n",
6885 					  adapter->sdp_config[pin].name);
6886 			}
6887 		}
6888 
6889 		/* for this chip family tv_sec is the upper part of the binary value,
6890 		 * so not seconds
6891 		 */
6892 		ts.tv_nsec = (u32)systim;
6893 		ts.tv_sec  = ((u32)(systim >> 32)) & 0xFF;
6894 	} else {
6895 		ts = timespec64_add(adapter->perout[tsintr_tt].start,
6896 				    adapter->perout[tsintr_tt].period);
6897 	}
6898 
6899 	/* u32 conversion of tv_sec is safe until y2106 */
6900 	wr32((tsintr_tt == 1) ? E1000_TRGTTIML1 : E1000_TRGTTIML0, ts.tv_nsec);
6901 	wr32((tsintr_tt == 1) ? E1000_TRGTTIMH1 : E1000_TRGTTIMH0, (u32)ts.tv_sec);
6902 	tsauxc = rd32(E1000_TSAUXC);
6903 	tsauxc |= TSAUXC_EN_TT0;
6904 	wr32(E1000_TSAUXC, tsauxc);
6905 	adapter->perout[tsintr_tt].start = ts;
6906 
6907 	spin_unlock(&adapter->tmreg_lock);
6908 }
6909 
6910 static void igb_extts(struct igb_adapter *adapter, int tsintr_tt)
6911 {
6912 	int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_EXTTS, tsintr_tt);
6913 	int auxstmpl = (tsintr_tt == 1) ? E1000_AUXSTMPL1 : E1000_AUXSTMPL0;
6914 	int auxstmph = (tsintr_tt == 1) ? E1000_AUXSTMPH1 : E1000_AUXSTMPH0;
6915 	struct e1000_hw *hw = &adapter->hw;
6916 	struct ptp_clock_event event;
6917 	struct timespec64 ts;
6918 
6919 	if (pin < 0 || pin >= IGB_N_SDP)
6920 		return;
6921 
6922 	if (hw->mac.type == e1000_82580 ||
6923 	    hw->mac.type == e1000_i354 ||
6924 	    hw->mac.type == e1000_i350) {
6925 		s64 ns = rd32(auxstmpl);
6926 
6927 		ns += ((s64)(rd32(auxstmph) & 0xFF)) << 32;
6928 		ts = ns_to_timespec64(ns);
6929 	} else {
6930 		ts.tv_nsec = rd32(auxstmpl);
6931 		ts.tv_sec  = rd32(auxstmph);
6932 	}
6933 
6934 	event.type = PTP_CLOCK_EXTTS;
6935 	event.index = tsintr_tt;
6936 	event.timestamp = ts.tv_sec * 1000000000ULL + ts.tv_nsec;
6937 	ptp_clock_event(adapter->ptp_clock, &event);
6938 }
6939 
6940 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6941 {
6942 	struct e1000_hw *hw = &adapter->hw;
6943 	u32 ack = 0, tsicr = rd32(E1000_TSICR);
6944 	struct ptp_clock_event event;
6945 
6946 	if (tsicr & TSINTR_SYS_WRAP) {
6947 		event.type = PTP_CLOCK_PPS;
6948 		if (adapter->ptp_caps.pps)
6949 			ptp_clock_event(adapter->ptp_clock, &event);
6950 		ack |= TSINTR_SYS_WRAP;
6951 	}
6952 
6953 	if (tsicr & E1000_TSICR_TXTS) {
6954 		/* retrieve hardware timestamp */
6955 		schedule_work(&adapter->ptp_tx_work);
6956 		ack |= E1000_TSICR_TXTS;
6957 	}
6958 
6959 	if (tsicr & TSINTR_TT0) {
6960 		igb_perout(adapter, 0);
6961 		ack |= TSINTR_TT0;
6962 	}
6963 
6964 	if (tsicr & TSINTR_TT1) {
6965 		igb_perout(adapter, 1);
6966 		ack |= TSINTR_TT1;
6967 	}
6968 
6969 	if (tsicr & TSINTR_AUTT0) {
6970 		igb_extts(adapter, 0);
6971 		ack |= TSINTR_AUTT0;
6972 	}
6973 
6974 	if (tsicr & TSINTR_AUTT1) {
6975 		igb_extts(adapter, 1);
6976 		ack |= TSINTR_AUTT1;
6977 	}
6978 
6979 	/* acknowledge the interrupts */
6980 	wr32(E1000_TSICR, ack);
6981 }
6982 
6983 static irqreturn_t igb_msix_other(int irq, void *data)
6984 {
6985 	struct igb_adapter *adapter = data;
6986 	struct e1000_hw *hw = &adapter->hw;
6987 	u32 icr = rd32(E1000_ICR);
6988 	/* reading ICR causes bit 31 of EICR to be cleared */
6989 
6990 	if (icr & E1000_ICR_DRSTA)
6991 		schedule_work(&adapter->reset_task);
6992 
6993 	if (icr & E1000_ICR_DOUTSYNC) {
6994 		/* HW is reporting DMA is out of sync */
6995 		adapter->stats.doosync++;
6996 		/* The DMA Out of Sync is also indication of a spoof event
6997 		 * in IOV mode. Check the Wrong VM Behavior register to
6998 		 * see if it is really a spoof event.
6999 		 */
7000 		igb_check_wvbr(adapter);
7001 	}
7002 
7003 	/* Check for a mailbox event */
7004 	if (icr & E1000_ICR_VMMB)
7005 		igb_msg_task(adapter);
7006 
7007 	if (icr & E1000_ICR_LSC) {
7008 		hw->mac.get_link_status = 1;
7009 		/* guard against interrupt when we're going down */
7010 		if (!test_bit(__IGB_DOWN, &adapter->state))
7011 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
7012 	}
7013 
7014 	if (icr & E1000_ICR_TS)
7015 		igb_tsync_interrupt(adapter);
7016 
7017 	wr32(E1000_EIMS, adapter->eims_other);
7018 
7019 	return IRQ_HANDLED;
7020 }
7021 
7022 static void igb_write_itr(struct igb_q_vector *q_vector)
7023 {
7024 	struct igb_adapter *adapter = q_vector->adapter;
7025 	u32 itr_val = q_vector->itr_val & 0x7FFC;
7026 
7027 	if (!q_vector->set_itr)
7028 		return;
7029 
7030 	if (!itr_val)
7031 		itr_val = 0x4;
7032 
7033 	if (adapter->hw.mac.type == e1000_82575)
7034 		itr_val |= itr_val << 16;
7035 	else
7036 		itr_val |= E1000_EITR_CNT_IGNR;
7037 
7038 	writel(itr_val, q_vector->itr_register);
7039 	q_vector->set_itr = 0;
7040 }
7041 
7042 static irqreturn_t igb_msix_ring(int irq, void *data)
7043 {
7044 	struct igb_q_vector *q_vector = data;
7045 
7046 	/* Write the ITR value calculated from the previous interrupt. */
7047 	igb_write_itr(q_vector);
7048 
7049 	napi_schedule(&q_vector->napi);
7050 
7051 	return IRQ_HANDLED;
7052 }
7053 
7054 #ifdef CONFIG_IGB_DCA
7055 static void igb_update_tx_dca(struct igb_adapter *adapter,
7056 			      struct igb_ring *tx_ring,
7057 			      int cpu)
7058 {
7059 	struct e1000_hw *hw = &adapter->hw;
7060 	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
7061 
7062 	if (hw->mac.type != e1000_82575)
7063 		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
7064 
7065 	/* We can enable relaxed ordering for reads, but not writes when
7066 	 * DCA is enabled.  This is due to a known issue in some chipsets
7067 	 * which will cause the DCA tag to be cleared.
7068 	 */
7069 	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
7070 		  E1000_DCA_TXCTRL_DATA_RRO_EN |
7071 		  E1000_DCA_TXCTRL_DESC_DCA_EN;
7072 
7073 	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
7074 }
7075 
7076 static void igb_update_rx_dca(struct igb_adapter *adapter,
7077 			      struct igb_ring *rx_ring,
7078 			      int cpu)
7079 {
7080 	struct e1000_hw *hw = &adapter->hw;
7081 	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
7082 
7083 	if (hw->mac.type != e1000_82575)
7084 		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
7085 
7086 	/* We can enable relaxed ordering for reads, but not writes when
7087 	 * DCA is enabled.  This is due to a known issue in some chipsets
7088 	 * which will cause the DCA tag to be cleared.
7089 	 */
7090 	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
7091 		  E1000_DCA_RXCTRL_DESC_DCA_EN;
7092 
7093 	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
7094 }
7095 
7096 static void igb_update_dca(struct igb_q_vector *q_vector)
7097 {
7098 	struct igb_adapter *adapter = q_vector->adapter;
7099 	int cpu = get_cpu();
7100 
7101 	if (q_vector->cpu == cpu)
7102 		goto out_no_update;
7103 
7104 	if (q_vector->tx.ring)
7105 		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
7106 
7107 	if (q_vector->rx.ring)
7108 		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
7109 
7110 	q_vector->cpu = cpu;
7111 out_no_update:
7112 	put_cpu();
7113 }
7114 
7115 static void igb_setup_dca(struct igb_adapter *adapter)
7116 {
7117 	struct e1000_hw *hw = &adapter->hw;
7118 	int i;
7119 
7120 	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
7121 		return;
7122 
7123 	/* Always use CB2 mode, difference is masked in the CB driver. */
7124 	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
7125 
7126 	for (i = 0; i < adapter->num_q_vectors; i++) {
7127 		adapter->q_vector[i]->cpu = -1;
7128 		igb_update_dca(adapter->q_vector[i]);
7129 	}
7130 }
7131 
7132 static int __igb_notify_dca(struct device *dev, void *data)
7133 {
7134 	struct net_device *netdev = dev_get_drvdata(dev);
7135 	struct igb_adapter *adapter = netdev_priv(netdev);
7136 	struct pci_dev *pdev = adapter->pdev;
7137 	struct e1000_hw *hw = &adapter->hw;
7138 	unsigned long event = *(unsigned long *)data;
7139 
7140 	switch (event) {
7141 	case DCA_PROVIDER_ADD:
7142 		/* if already enabled, don't do it again */
7143 		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
7144 			break;
7145 		if (dca_add_requester(dev) == 0) {
7146 			adapter->flags |= IGB_FLAG_DCA_ENABLED;
7147 			dev_info(&pdev->dev, "DCA enabled\n");
7148 			igb_setup_dca(adapter);
7149 			break;
7150 		}
7151 		fallthrough; /* since DCA is disabled. */
7152 	case DCA_PROVIDER_REMOVE:
7153 		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
7154 			/* without this a class_device is left
7155 			 * hanging around in the sysfs model
7156 			 */
7157 			dca_remove_requester(dev);
7158 			dev_info(&pdev->dev, "DCA disabled\n");
7159 			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
7160 			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
7161 		}
7162 		break;
7163 	}
7164 
7165 	return 0;
7166 }
7167 
7168 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
7169 			  void *p)
7170 {
7171 	int ret_val;
7172 
7173 	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
7174 					 __igb_notify_dca);
7175 
7176 	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
7177 }
7178 #endif /* CONFIG_IGB_DCA */
7179 
7180 #ifdef CONFIG_PCI_IOV
7181 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
7182 {
7183 	unsigned char mac_addr[ETH_ALEN];
7184 
7185 	eth_zero_addr(mac_addr);
7186 	igb_set_vf_mac(adapter, vf, mac_addr);
7187 
7188 	/* By default spoof check is enabled for all VFs */
7189 	adapter->vf_data[vf].spoofchk_enabled = true;
7190 
7191 	/* By default VFs are not trusted */
7192 	adapter->vf_data[vf].trusted = false;
7193 
7194 	return 0;
7195 }
7196 
7197 #endif
7198 static void igb_ping_all_vfs(struct igb_adapter *adapter)
7199 {
7200 	struct e1000_hw *hw = &adapter->hw;
7201 	u32 ping;
7202 	int i;
7203 
7204 	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
7205 		ping = E1000_PF_CONTROL_MSG;
7206 		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
7207 			ping |= E1000_VT_MSGTYPE_CTS;
7208 		igb_write_mbx(hw, &ping, 1, i);
7209 	}
7210 }
7211 
7212 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7213 {
7214 	struct e1000_hw *hw = &adapter->hw;
7215 	u32 vmolr = rd32(E1000_VMOLR(vf));
7216 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7217 
7218 	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7219 			    IGB_VF_FLAG_MULTI_PROMISC);
7220 	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7221 
7222 	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
7223 		vmolr |= E1000_VMOLR_MPME;
7224 		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7225 		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
7226 	} else {
7227 		/* if we have hashes and we are clearing a multicast promisc
7228 		 * flag we need to write the hashes to the MTA as this step
7229 		 * was previously skipped
7230 		 */
7231 		if (vf_data->num_vf_mc_hashes > 30) {
7232 			vmolr |= E1000_VMOLR_MPME;
7233 		} else if (vf_data->num_vf_mc_hashes) {
7234 			int j;
7235 
7236 			vmolr |= E1000_VMOLR_ROMPE;
7237 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7238 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7239 		}
7240 	}
7241 
7242 	wr32(E1000_VMOLR(vf), vmolr);
7243 
7244 	/* there are flags left unprocessed, likely not supported */
7245 	if (*msgbuf & E1000_VT_MSGINFO_MASK)
7246 		return -EINVAL;
7247 
7248 	return 0;
7249 }
7250 
7251 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
7252 				  u32 *msgbuf, u32 vf)
7253 {
7254 	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7255 	u16 *hash_list = (u16 *)&msgbuf[1];
7256 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7257 	int i;
7258 
7259 	/* salt away the number of multicast addresses assigned
7260 	 * to this VF for later use to restore when the PF multi cast
7261 	 * list changes
7262 	 */
7263 	vf_data->num_vf_mc_hashes = n;
7264 
7265 	/* only up to 30 hash values supported */
7266 	if (n > 30)
7267 		n = 30;
7268 
7269 	/* store the hashes for later use */
7270 	for (i = 0; i < n; i++)
7271 		vf_data->vf_mc_hashes[i] = hash_list[i];
7272 
7273 	/* Flush and reset the mta with the new values */
7274 	igb_set_rx_mode(adapter->netdev);
7275 
7276 	return 0;
7277 }
7278 
7279 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
7280 {
7281 	struct e1000_hw *hw = &adapter->hw;
7282 	struct vf_data_storage *vf_data;
7283 	int i, j;
7284 
7285 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7286 		u32 vmolr = rd32(E1000_VMOLR(i));
7287 
7288 		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7289 
7290 		vf_data = &adapter->vf_data[i];
7291 
7292 		if ((vf_data->num_vf_mc_hashes > 30) ||
7293 		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
7294 			vmolr |= E1000_VMOLR_MPME;
7295 		} else if (vf_data->num_vf_mc_hashes) {
7296 			vmolr |= E1000_VMOLR_ROMPE;
7297 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7298 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7299 		}
7300 		wr32(E1000_VMOLR(i), vmolr);
7301 	}
7302 }
7303 
7304 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
7305 {
7306 	struct e1000_hw *hw = &adapter->hw;
7307 	u32 pool_mask, vlvf_mask, i;
7308 
7309 	/* create mask for VF and other pools */
7310 	pool_mask = E1000_VLVF_POOLSEL_MASK;
7311 	vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
7312 
7313 	/* drop PF from pool bits */
7314 	pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
7315 			     adapter->vfs_allocated_count);
7316 
7317 	/* Find the vlan filter for this id */
7318 	for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
7319 		u32 vlvf = rd32(E1000_VLVF(i));
7320 		u32 vfta_mask, vid, vfta;
7321 
7322 		/* remove the vf from the pool */
7323 		if (!(vlvf & vlvf_mask))
7324 			continue;
7325 
7326 		/* clear out bit from VLVF */
7327 		vlvf ^= vlvf_mask;
7328 
7329 		/* if other pools are present, just remove ourselves */
7330 		if (vlvf & pool_mask)
7331 			goto update_vlvfb;
7332 
7333 		/* if PF is present, leave VFTA */
7334 		if (vlvf & E1000_VLVF_POOLSEL_MASK)
7335 			goto update_vlvf;
7336 
7337 		vid = vlvf & E1000_VLVF_VLANID_MASK;
7338 		vfta_mask = BIT(vid % 32);
7339 
7340 		/* clear bit from VFTA */
7341 		vfta = adapter->shadow_vfta[vid / 32];
7342 		if (vfta & vfta_mask)
7343 			hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
7344 update_vlvf:
7345 		/* clear pool selection enable */
7346 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7347 			vlvf &= E1000_VLVF_POOLSEL_MASK;
7348 		else
7349 			vlvf = 0;
7350 update_vlvfb:
7351 		/* clear pool bits */
7352 		wr32(E1000_VLVF(i), vlvf);
7353 	}
7354 }
7355 
7356 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
7357 {
7358 	u32 vlvf;
7359 	int idx;
7360 
7361 	/* short cut the special case */
7362 	if (vlan == 0)
7363 		return 0;
7364 
7365 	/* Search for the VLAN id in the VLVF entries */
7366 	for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
7367 		vlvf = rd32(E1000_VLVF(idx));
7368 		if ((vlvf & VLAN_VID_MASK) == vlan)
7369 			break;
7370 	}
7371 
7372 	return idx;
7373 }
7374 
7375 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
7376 {
7377 	struct e1000_hw *hw = &adapter->hw;
7378 	u32 bits, pf_id;
7379 	int idx;
7380 
7381 	idx = igb_find_vlvf_entry(hw, vid);
7382 	if (!idx)
7383 		return;
7384 
7385 	/* See if any other pools are set for this VLAN filter
7386 	 * entry other than the PF.
7387 	 */
7388 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
7389 	bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
7390 	bits &= rd32(E1000_VLVF(idx));
7391 
7392 	/* Disable the filter so this falls into the default pool. */
7393 	if (!bits) {
7394 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7395 			wr32(E1000_VLVF(idx), BIT(pf_id));
7396 		else
7397 			wr32(E1000_VLVF(idx), 0);
7398 	}
7399 }
7400 
7401 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
7402 			   bool add, u32 vf)
7403 {
7404 	int pf_id = adapter->vfs_allocated_count;
7405 	struct e1000_hw *hw = &adapter->hw;
7406 	int err;
7407 
7408 	/* If VLAN overlaps with one the PF is currently monitoring make
7409 	 * sure that we are able to allocate a VLVF entry.  This may be
7410 	 * redundant but it guarantees PF will maintain visibility to
7411 	 * the VLAN.
7412 	 */
7413 	if (add && test_bit(vid, adapter->active_vlans)) {
7414 		err = igb_vfta_set(hw, vid, pf_id, true, false);
7415 		if (err)
7416 			return err;
7417 	}
7418 
7419 	err = igb_vfta_set(hw, vid, vf, add, false);
7420 
7421 	if (add && !err)
7422 		return err;
7423 
7424 	/* If we failed to add the VF VLAN or we are removing the VF VLAN
7425 	 * we may need to drop the PF pool bit in order to allow us to free
7426 	 * up the VLVF resources.
7427 	 */
7428 	if (test_bit(vid, adapter->active_vlans) ||
7429 	    (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7430 		igb_update_pf_vlvf(adapter, vid);
7431 
7432 	return err;
7433 }
7434 
7435 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7436 {
7437 	struct e1000_hw *hw = &adapter->hw;
7438 
7439 	if (vid)
7440 		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7441 	else
7442 		wr32(E1000_VMVIR(vf), 0);
7443 }
7444 
7445 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7446 				u16 vlan, u8 qos)
7447 {
7448 	int err;
7449 
7450 	err = igb_set_vf_vlan(adapter, vlan, true, vf);
7451 	if (err)
7452 		return err;
7453 
7454 	igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7455 	igb_set_vmolr(adapter, vf, !vlan);
7456 
7457 	/* revoke access to previous VLAN */
7458 	if (vlan != adapter->vf_data[vf].pf_vlan)
7459 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7460 				false, vf);
7461 
7462 	adapter->vf_data[vf].pf_vlan = vlan;
7463 	adapter->vf_data[vf].pf_qos = qos;
7464 	igb_set_vf_vlan_strip(adapter, vf, true);
7465 	dev_info(&adapter->pdev->dev,
7466 		 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7467 	if (test_bit(__IGB_DOWN, &adapter->state)) {
7468 		dev_warn(&adapter->pdev->dev,
7469 			 "The VF VLAN has been set, but the PF device is not up.\n");
7470 		dev_warn(&adapter->pdev->dev,
7471 			 "Bring the PF device up before attempting to use the VF device.\n");
7472 	}
7473 
7474 	return err;
7475 }
7476 
7477 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7478 {
7479 	/* Restore tagless access via VLAN 0 */
7480 	igb_set_vf_vlan(adapter, 0, true, vf);
7481 
7482 	igb_set_vmvir(adapter, 0, vf);
7483 	igb_set_vmolr(adapter, vf, true);
7484 
7485 	/* Remove any PF assigned VLAN */
7486 	if (adapter->vf_data[vf].pf_vlan)
7487 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7488 				false, vf);
7489 
7490 	adapter->vf_data[vf].pf_vlan = 0;
7491 	adapter->vf_data[vf].pf_qos = 0;
7492 	igb_set_vf_vlan_strip(adapter, vf, false);
7493 
7494 	return 0;
7495 }
7496 
7497 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7498 			       u16 vlan, u8 qos, __be16 vlan_proto)
7499 {
7500 	struct igb_adapter *adapter = netdev_priv(netdev);
7501 
7502 	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7503 		return -EINVAL;
7504 
7505 	if (vlan_proto != htons(ETH_P_8021Q))
7506 		return -EPROTONOSUPPORT;
7507 
7508 	return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7509 			       igb_disable_port_vlan(adapter, vf);
7510 }
7511 
7512 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7513 {
7514 	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7515 	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7516 	int ret;
7517 
7518 	if (adapter->vf_data[vf].pf_vlan)
7519 		return -1;
7520 
7521 	/* VLAN 0 is a special case, don't allow it to be removed */
7522 	if (!vid && !add)
7523 		return 0;
7524 
7525 	ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7526 	if (!ret)
7527 		igb_set_vf_vlan_strip(adapter, vf, !!vid);
7528 	return ret;
7529 }
7530 
7531 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7532 {
7533 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7534 
7535 	/* clear flags - except flag that indicates PF has set the MAC */
7536 	vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7537 	vf_data->last_nack = jiffies;
7538 
7539 	/* reset vlans for device */
7540 	igb_clear_vf_vfta(adapter, vf);
7541 	igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7542 	igb_set_vmvir(adapter, vf_data->pf_vlan |
7543 			       (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7544 	igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7545 	igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7546 
7547 	/* reset multicast table array for vf */
7548 	adapter->vf_data[vf].num_vf_mc_hashes = 0;
7549 
7550 	/* Flush and reset the mta with the new values */
7551 	igb_set_rx_mode(adapter->netdev);
7552 }
7553 
7554 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7555 {
7556 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7557 
7558 	/* clear mac address as we were hotplug removed/added */
7559 	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7560 		eth_zero_addr(vf_mac);
7561 
7562 	/* process remaining reset events */
7563 	igb_vf_reset(adapter, vf);
7564 }
7565 
7566 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7567 {
7568 	struct e1000_hw *hw = &adapter->hw;
7569 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7570 	u32 reg, msgbuf[3] = {};
7571 	u8 *addr = (u8 *)(&msgbuf[1]);
7572 
7573 	/* process all the same items cleared in a function level reset */
7574 	igb_vf_reset(adapter, vf);
7575 
7576 	/* set vf mac address */
7577 	igb_set_vf_mac(adapter, vf, vf_mac);
7578 
7579 	/* enable transmit and receive for vf */
7580 	reg = rd32(E1000_VFTE);
7581 	wr32(E1000_VFTE, reg | BIT(vf));
7582 	reg = rd32(E1000_VFRE);
7583 	wr32(E1000_VFRE, reg | BIT(vf));
7584 
7585 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7586 
7587 	/* reply to reset with ack and vf mac address */
7588 	if (!is_zero_ether_addr(vf_mac)) {
7589 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7590 		memcpy(addr, vf_mac, ETH_ALEN);
7591 	} else {
7592 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7593 	}
7594 	igb_write_mbx(hw, msgbuf, 3, vf);
7595 }
7596 
7597 static void igb_flush_mac_table(struct igb_adapter *adapter)
7598 {
7599 	struct e1000_hw *hw = &adapter->hw;
7600 	int i;
7601 
7602 	for (i = 0; i < hw->mac.rar_entry_count; i++) {
7603 		adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7604 		eth_zero_addr(adapter->mac_table[i].addr);
7605 		adapter->mac_table[i].queue = 0;
7606 		igb_rar_set_index(adapter, i);
7607 	}
7608 }
7609 
7610 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7611 {
7612 	struct e1000_hw *hw = &adapter->hw;
7613 	/* do not count rar entries reserved for VFs MAC addresses */
7614 	int rar_entries = hw->mac.rar_entry_count -
7615 			  adapter->vfs_allocated_count;
7616 	int i, count = 0;
7617 
7618 	for (i = 0; i < rar_entries; i++) {
7619 		/* do not count default entries */
7620 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7621 			continue;
7622 
7623 		/* do not count "in use" entries for different queues */
7624 		if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7625 		    (adapter->mac_table[i].queue != queue))
7626 			continue;
7627 
7628 		count++;
7629 	}
7630 
7631 	return count;
7632 }
7633 
7634 /* Set default MAC address for the PF in the first RAR entry */
7635 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7636 {
7637 	struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7638 
7639 	ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7640 	mac_table->queue = adapter->vfs_allocated_count;
7641 	mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7642 
7643 	igb_rar_set_index(adapter, 0);
7644 }
7645 
7646 /* If the filter to be added and an already existing filter express
7647  * the same address and address type, it should be possible to only
7648  * override the other configurations, for example the queue to steer
7649  * traffic.
7650  */
7651 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7652 				      const u8 *addr, const u8 flags)
7653 {
7654 	if (!(entry->state & IGB_MAC_STATE_IN_USE))
7655 		return true;
7656 
7657 	if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7658 	    (flags & IGB_MAC_STATE_SRC_ADDR))
7659 		return false;
7660 
7661 	if (!ether_addr_equal(addr, entry->addr))
7662 		return false;
7663 
7664 	return true;
7665 }
7666 
7667 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7668  * 'flags' is used to indicate what kind of match is made, match is by
7669  * default for the destination address, if matching by source address
7670  * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7671  */
7672 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7673 				    const u8 *addr, const u8 queue,
7674 				    const u8 flags)
7675 {
7676 	struct e1000_hw *hw = &adapter->hw;
7677 	int rar_entries = hw->mac.rar_entry_count -
7678 			  adapter->vfs_allocated_count;
7679 	int i;
7680 
7681 	if (is_zero_ether_addr(addr))
7682 		return -EINVAL;
7683 
7684 	/* Search for the first empty entry in the MAC table.
7685 	 * Do not touch entries at the end of the table reserved for the VF MAC
7686 	 * addresses.
7687 	 */
7688 	for (i = 0; i < rar_entries; i++) {
7689 		if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7690 					       addr, flags))
7691 			continue;
7692 
7693 		ether_addr_copy(adapter->mac_table[i].addr, addr);
7694 		adapter->mac_table[i].queue = queue;
7695 		adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7696 
7697 		igb_rar_set_index(adapter, i);
7698 		return i;
7699 	}
7700 
7701 	return -ENOSPC;
7702 }
7703 
7704 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7705 			      const u8 queue)
7706 {
7707 	return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7708 }
7709 
7710 /* Remove a MAC filter for 'addr' directing matching traffic to
7711  * 'queue', 'flags' is used to indicate what kind of match need to be
7712  * removed, match is by default for the destination address, if
7713  * matching by source address is to be removed the flag
7714  * IGB_MAC_STATE_SRC_ADDR can be used.
7715  */
7716 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7717 				    const u8 *addr, const u8 queue,
7718 				    const u8 flags)
7719 {
7720 	struct e1000_hw *hw = &adapter->hw;
7721 	int rar_entries = hw->mac.rar_entry_count -
7722 			  adapter->vfs_allocated_count;
7723 	int i;
7724 
7725 	if (is_zero_ether_addr(addr))
7726 		return -EINVAL;
7727 
7728 	/* Search for matching entry in the MAC table based on given address
7729 	 * and queue. Do not touch entries at the end of the table reserved
7730 	 * for the VF MAC addresses.
7731 	 */
7732 	for (i = 0; i < rar_entries; i++) {
7733 		if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7734 			continue;
7735 		if ((adapter->mac_table[i].state & flags) != flags)
7736 			continue;
7737 		if (adapter->mac_table[i].queue != queue)
7738 			continue;
7739 		if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7740 			continue;
7741 
7742 		/* When a filter for the default address is "deleted",
7743 		 * we return it to its initial configuration
7744 		 */
7745 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7746 			adapter->mac_table[i].state =
7747 				IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7748 			adapter->mac_table[i].queue =
7749 				adapter->vfs_allocated_count;
7750 		} else {
7751 			adapter->mac_table[i].state = 0;
7752 			adapter->mac_table[i].queue = 0;
7753 			eth_zero_addr(adapter->mac_table[i].addr);
7754 		}
7755 
7756 		igb_rar_set_index(adapter, i);
7757 		return 0;
7758 	}
7759 
7760 	return -ENOENT;
7761 }
7762 
7763 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7764 			      const u8 queue)
7765 {
7766 	return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7767 }
7768 
7769 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7770 				const u8 *addr, u8 queue, u8 flags)
7771 {
7772 	struct e1000_hw *hw = &adapter->hw;
7773 
7774 	/* In theory, this should be supported on 82575 as well, but
7775 	 * that part wasn't easily accessible during development.
7776 	 */
7777 	if (hw->mac.type != e1000_i210)
7778 		return -EOPNOTSUPP;
7779 
7780 	return igb_add_mac_filter_flags(adapter, addr, queue,
7781 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7782 }
7783 
7784 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7785 				const u8 *addr, u8 queue, u8 flags)
7786 {
7787 	return igb_del_mac_filter_flags(adapter, addr, queue,
7788 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7789 }
7790 
7791 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7792 {
7793 	struct igb_adapter *adapter = netdev_priv(netdev);
7794 	int ret;
7795 
7796 	ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7797 
7798 	return min_t(int, ret, 0);
7799 }
7800 
7801 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7802 {
7803 	struct igb_adapter *adapter = netdev_priv(netdev);
7804 
7805 	igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7806 
7807 	return 0;
7808 }
7809 
7810 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7811 				 const u32 info, const u8 *addr)
7812 {
7813 	struct pci_dev *pdev = adapter->pdev;
7814 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7815 	struct list_head *pos;
7816 	struct vf_mac_filter *entry = NULL;
7817 	int ret = 0;
7818 
7819 	if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7820 	    !vf_data->trusted) {
7821 		dev_warn(&pdev->dev,
7822 			 "VF %d requested MAC filter but is administratively denied\n",
7823 			  vf);
7824 		return -EINVAL;
7825 	}
7826 	if (!is_valid_ether_addr(addr)) {
7827 		dev_warn(&pdev->dev,
7828 			 "VF %d attempted to set invalid MAC filter\n",
7829 			  vf);
7830 		return -EINVAL;
7831 	}
7832 
7833 	switch (info) {
7834 	case E1000_VF_MAC_FILTER_CLR:
7835 		/* remove all unicast MAC filters related to the current VF */
7836 		list_for_each(pos, &adapter->vf_macs.l) {
7837 			entry = list_entry(pos, struct vf_mac_filter, l);
7838 			if (entry->vf == vf) {
7839 				entry->vf = -1;
7840 				entry->free = true;
7841 				igb_del_mac_filter(adapter, entry->vf_mac, vf);
7842 			}
7843 		}
7844 		break;
7845 	case E1000_VF_MAC_FILTER_ADD:
7846 		/* try to find empty slot in the list */
7847 		list_for_each(pos, &adapter->vf_macs.l) {
7848 			entry = list_entry(pos, struct vf_mac_filter, l);
7849 			if (entry->free)
7850 				break;
7851 		}
7852 
7853 		if (entry && entry->free) {
7854 			entry->free = false;
7855 			entry->vf = vf;
7856 			ether_addr_copy(entry->vf_mac, addr);
7857 
7858 			ret = igb_add_mac_filter(adapter, addr, vf);
7859 			ret = min_t(int, ret, 0);
7860 		} else {
7861 			ret = -ENOSPC;
7862 		}
7863 
7864 		if (ret == -ENOSPC)
7865 			dev_warn(&pdev->dev,
7866 				 "VF %d has requested MAC filter but there is no space for it\n",
7867 				 vf);
7868 		break;
7869 	default:
7870 		ret = -EINVAL;
7871 		break;
7872 	}
7873 
7874 	return ret;
7875 }
7876 
7877 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7878 {
7879 	struct pci_dev *pdev = adapter->pdev;
7880 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7881 	u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7882 
7883 	/* The VF MAC Address is stored in a packed array of bytes
7884 	 * starting at the second 32 bit word of the msg array
7885 	 */
7886 	unsigned char *addr = (unsigned char *)&msg[1];
7887 	int ret = 0;
7888 
7889 	if (!info) {
7890 		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7891 		    !vf_data->trusted) {
7892 			dev_warn(&pdev->dev,
7893 				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7894 				 vf);
7895 			return -EINVAL;
7896 		}
7897 
7898 		if (!is_valid_ether_addr(addr)) {
7899 			dev_warn(&pdev->dev,
7900 				 "VF %d attempted to set invalid MAC\n",
7901 				 vf);
7902 			return -EINVAL;
7903 		}
7904 
7905 		ret = igb_set_vf_mac(adapter, vf, addr);
7906 	} else {
7907 		ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7908 	}
7909 
7910 	return ret;
7911 }
7912 
7913 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7914 {
7915 	struct e1000_hw *hw = &adapter->hw;
7916 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7917 	u32 msg = E1000_VT_MSGTYPE_NACK;
7918 
7919 	/* if device isn't clear to send it shouldn't be reading either */
7920 	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7921 	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7922 		igb_write_mbx(hw, &msg, 1, vf);
7923 		vf_data->last_nack = jiffies;
7924 	}
7925 }
7926 
7927 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7928 {
7929 	struct pci_dev *pdev = adapter->pdev;
7930 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
7931 	struct e1000_hw *hw = &adapter->hw;
7932 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7933 	s32 retval;
7934 
7935 	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7936 
7937 	if (retval) {
7938 		/* if receive failed revoke VF CTS stats and restart init */
7939 		dev_err(&pdev->dev, "Error receiving message from VF\n");
7940 		vf_data->flags &= ~IGB_VF_FLAG_CTS;
7941 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7942 			goto unlock;
7943 		goto out;
7944 	}
7945 
7946 	/* this is a message we already processed, do nothing */
7947 	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7948 		goto unlock;
7949 
7950 	/* until the vf completes a reset it should not be
7951 	 * allowed to start any configuration.
7952 	 */
7953 	if (msgbuf[0] == E1000_VF_RESET) {
7954 		/* unlocks mailbox */
7955 		igb_vf_reset_msg(adapter, vf);
7956 		return;
7957 	}
7958 
7959 	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7960 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7961 			goto unlock;
7962 		retval = -1;
7963 		goto out;
7964 	}
7965 
7966 	switch ((msgbuf[0] & 0xFFFF)) {
7967 	case E1000_VF_SET_MAC_ADDR:
7968 		retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7969 		break;
7970 	case E1000_VF_SET_PROMISC:
7971 		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7972 		break;
7973 	case E1000_VF_SET_MULTICAST:
7974 		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7975 		break;
7976 	case E1000_VF_SET_LPE:
7977 		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7978 		break;
7979 	case E1000_VF_SET_VLAN:
7980 		retval = -1;
7981 		if (vf_data->pf_vlan)
7982 			dev_warn(&pdev->dev,
7983 				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7984 				 vf);
7985 		else
7986 			retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7987 		break;
7988 	default:
7989 		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7990 		retval = -1;
7991 		break;
7992 	}
7993 
7994 	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7995 out:
7996 	/* notify the VF of the results of what it sent us */
7997 	if (retval)
7998 		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7999 	else
8000 		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
8001 
8002 	/* unlocks mailbox */
8003 	igb_write_mbx(hw, msgbuf, 1, vf);
8004 	return;
8005 
8006 unlock:
8007 	igb_unlock_mbx(hw, vf);
8008 }
8009 
8010 static void igb_msg_task(struct igb_adapter *adapter)
8011 {
8012 	struct e1000_hw *hw = &adapter->hw;
8013 	unsigned long flags;
8014 	u32 vf;
8015 
8016 	spin_lock_irqsave(&adapter->vfs_lock, flags);
8017 	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
8018 		/* process any reset requests */
8019 		if (!igb_check_for_rst(hw, vf))
8020 			igb_vf_reset_event(adapter, vf);
8021 
8022 		/* process any messages pending */
8023 		if (!igb_check_for_msg(hw, vf))
8024 			igb_rcv_msg_from_vf(adapter, vf);
8025 
8026 		/* process any acks */
8027 		if (!igb_check_for_ack(hw, vf))
8028 			igb_rcv_ack_from_vf(adapter, vf);
8029 	}
8030 	spin_unlock_irqrestore(&adapter->vfs_lock, flags);
8031 }
8032 
8033 /**
8034  *  igb_set_uta - Set unicast filter table address
8035  *  @adapter: board private structure
8036  *  @set: boolean indicating if we are setting or clearing bits
8037  *
8038  *  The unicast table address is a register array of 32-bit registers.
8039  *  The table is meant to be used in a way similar to how the MTA is used
8040  *  however due to certain limitations in the hardware it is necessary to
8041  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
8042  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
8043  **/
8044 static void igb_set_uta(struct igb_adapter *adapter, bool set)
8045 {
8046 	struct e1000_hw *hw = &adapter->hw;
8047 	u32 uta = set ? ~0 : 0;
8048 	int i;
8049 
8050 	/* we only need to do this if VMDq is enabled */
8051 	if (!adapter->vfs_allocated_count)
8052 		return;
8053 
8054 	for (i = hw->mac.uta_reg_count; i--;)
8055 		array_wr32(E1000_UTA, i, uta);
8056 }
8057 
8058 /**
8059  *  igb_intr_msi - Interrupt Handler
8060  *  @irq: interrupt number
8061  *  @data: pointer to a network interface device structure
8062  **/
8063 static irqreturn_t igb_intr_msi(int irq, void *data)
8064 {
8065 	struct igb_adapter *adapter = data;
8066 	struct igb_q_vector *q_vector = adapter->q_vector[0];
8067 	struct e1000_hw *hw = &adapter->hw;
8068 	/* read ICR disables interrupts using IAM */
8069 	u32 icr = rd32(E1000_ICR);
8070 
8071 	igb_write_itr(q_vector);
8072 
8073 	if (icr & E1000_ICR_DRSTA)
8074 		schedule_work(&adapter->reset_task);
8075 
8076 	if (icr & E1000_ICR_DOUTSYNC) {
8077 		/* HW is reporting DMA is out of sync */
8078 		adapter->stats.doosync++;
8079 	}
8080 
8081 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8082 		hw->mac.get_link_status = 1;
8083 		if (!test_bit(__IGB_DOWN, &adapter->state))
8084 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
8085 	}
8086 
8087 	if (icr & E1000_ICR_TS)
8088 		igb_tsync_interrupt(adapter);
8089 
8090 	napi_schedule(&q_vector->napi);
8091 
8092 	return IRQ_HANDLED;
8093 }
8094 
8095 /**
8096  *  igb_intr - Legacy Interrupt Handler
8097  *  @irq: interrupt number
8098  *  @data: pointer to a network interface device structure
8099  **/
8100 static irqreturn_t igb_intr(int irq, void *data)
8101 {
8102 	struct igb_adapter *adapter = data;
8103 	struct igb_q_vector *q_vector = adapter->q_vector[0];
8104 	struct e1000_hw *hw = &adapter->hw;
8105 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
8106 	 * need for the IMC write
8107 	 */
8108 	u32 icr = rd32(E1000_ICR);
8109 
8110 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
8111 	 * not set, then the adapter didn't send an interrupt
8112 	 */
8113 	if (!(icr & E1000_ICR_INT_ASSERTED))
8114 		return IRQ_NONE;
8115 
8116 	igb_write_itr(q_vector);
8117 
8118 	if (icr & E1000_ICR_DRSTA)
8119 		schedule_work(&adapter->reset_task);
8120 
8121 	if (icr & E1000_ICR_DOUTSYNC) {
8122 		/* HW is reporting DMA is out of sync */
8123 		adapter->stats.doosync++;
8124 	}
8125 
8126 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8127 		hw->mac.get_link_status = 1;
8128 		/* guard against interrupt when we're going down */
8129 		if (!test_bit(__IGB_DOWN, &adapter->state))
8130 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
8131 	}
8132 
8133 	if (icr & E1000_ICR_TS)
8134 		igb_tsync_interrupt(adapter);
8135 
8136 	napi_schedule(&q_vector->napi);
8137 
8138 	return IRQ_HANDLED;
8139 }
8140 
8141 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
8142 {
8143 	struct igb_adapter *adapter = q_vector->adapter;
8144 	struct e1000_hw *hw = &adapter->hw;
8145 
8146 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
8147 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
8148 		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
8149 			igb_set_itr(q_vector);
8150 		else
8151 			igb_update_ring_itr(q_vector);
8152 	}
8153 
8154 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
8155 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
8156 			wr32(E1000_EIMS, q_vector->eims_value);
8157 		else
8158 			igb_irq_enable(adapter);
8159 	}
8160 }
8161 
8162 /**
8163  *  igb_poll - NAPI Rx polling callback
8164  *  @napi: napi polling structure
8165  *  @budget: count of how many packets we should handle
8166  **/
8167 static int igb_poll(struct napi_struct *napi, int budget)
8168 {
8169 	struct igb_q_vector *q_vector = container_of(napi,
8170 						     struct igb_q_vector,
8171 						     napi);
8172 	bool clean_complete = true;
8173 	int work_done = 0;
8174 
8175 #ifdef CONFIG_IGB_DCA
8176 	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
8177 		igb_update_dca(q_vector);
8178 #endif
8179 	if (q_vector->tx.ring)
8180 		clean_complete = igb_clean_tx_irq(q_vector, budget);
8181 
8182 	if (q_vector->rx.ring) {
8183 		int cleaned = igb_clean_rx_irq(q_vector, budget);
8184 
8185 		work_done += cleaned;
8186 		if (cleaned >= budget)
8187 			clean_complete = false;
8188 	}
8189 
8190 	/* If all work not completed, return budget and keep polling */
8191 	if (!clean_complete)
8192 		return budget;
8193 
8194 	/* Exit the polling mode, but don't re-enable interrupts if stack might
8195 	 * poll us due to busy-polling
8196 	 */
8197 	if (likely(napi_complete_done(napi, work_done)))
8198 		igb_ring_irq_enable(q_vector);
8199 
8200 	return work_done;
8201 }
8202 
8203 /**
8204  *  igb_clean_tx_irq - Reclaim resources after transmit completes
8205  *  @q_vector: pointer to q_vector containing needed info
8206  *  @napi_budget: Used to determine if we are in netpoll
8207  *
8208  *  returns true if ring is completely cleaned
8209  **/
8210 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
8211 {
8212 	struct igb_adapter *adapter = q_vector->adapter;
8213 	struct igb_ring *tx_ring = q_vector->tx.ring;
8214 	struct igb_tx_buffer *tx_buffer;
8215 	union e1000_adv_tx_desc *tx_desc;
8216 	unsigned int total_bytes = 0, total_packets = 0;
8217 	unsigned int budget = q_vector->tx.work_limit;
8218 	unsigned int i = tx_ring->next_to_clean;
8219 
8220 	if (test_bit(__IGB_DOWN, &adapter->state))
8221 		return true;
8222 
8223 	tx_buffer = &tx_ring->tx_buffer_info[i];
8224 	tx_desc = IGB_TX_DESC(tx_ring, i);
8225 	i -= tx_ring->count;
8226 
8227 	do {
8228 		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8229 
8230 		/* if next_to_watch is not set then there is no work pending */
8231 		if (!eop_desc)
8232 			break;
8233 
8234 		/* prevent any other reads prior to eop_desc */
8235 		smp_rmb();
8236 
8237 		/* if DD is not set pending work has not been completed */
8238 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
8239 			break;
8240 
8241 		/* clear next_to_watch to prevent false hangs */
8242 		tx_buffer->next_to_watch = NULL;
8243 
8244 		/* update the statistics for this packet */
8245 		total_bytes += tx_buffer->bytecount;
8246 		total_packets += tx_buffer->gso_segs;
8247 
8248 		/* free the skb */
8249 		if (tx_buffer->type == IGB_TYPE_SKB)
8250 			napi_consume_skb(tx_buffer->skb, napi_budget);
8251 		else
8252 			xdp_return_frame(tx_buffer->xdpf);
8253 
8254 		/* unmap skb header data */
8255 		dma_unmap_single(tx_ring->dev,
8256 				 dma_unmap_addr(tx_buffer, dma),
8257 				 dma_unmap_len(tx_buffer, len),
8258 				 DMA_TO_DEVICE);
8259 
8260 		/* clear tx_buffer data */
8261 		dma_unmap_len_set(tx_buffer, len, 0);
8262 
8263 		/* clear last DMA location and unmap remaining buffers */
8264 		while (tx_desc != eop_desc) {
8265 			tx_buffer++;
8266 			tx_desc++;
8267 			i++;
8268 			if (unlikely(!i)) {
8269 				i -= tx_ring->count;
8270 				tx_buffer = tx_ring->tx_buffer_info;
8271 				tx_desc = IGB_TX_DESC(tx_ring, 0);
8272 			}
8273 
8274 			/* unmap any remaining paged data */
8275 			if (dma_unmap_len(tx_buffer, len)) {
8276 				dma_unmap_page(tx_ring->dev,
8277 					       dma_unmap_addr(tx_buffer, dma),
8278 					       dma_unmap_len(tx_buffer, len),
8279 					       DMA_TO_DEVICE);
8280 				dma_unmap_len_set(tx_buffer, len, 0);
8281 			}
8282 		}
8283 
8284 		/* move us one more past the eop_desc for start of next pkt */
8285 		tx_buffer++;
8286 		tx_desc++;
8287 		i++;
8288 		if (unlikely(!i)) {
8289 			i -= tx_ring->count;
8290 			tx_buffer = tx_ring->tx_buffer_info;
8291 			tx_desc = IGB_TX_DESC(tx_ring, 0);
8292 		}
8293 
8294 		/* issue prefetch for next Tx descriptor */
8295 		prefetch(tx_desc);
8296 
8297 		/* update budget accounting */
8298 		budget--;
8299 	} while (likely(budget));
8300 
8301 	netdev_tx_completed_queue(txring_txq(tx_ring),
8302 				  total_packets, total_bytes);
8303 	i += tx_ring->count;
8304 	tx_ring->next_to_clean = i;
8305 	u64_stats_update_begin(&tx_ring->tx_syncp);
8306 	tx_ring->tx_stats.bytes += total_bytes;
8307 	tx_ring->tx_stats.packets += total_packets;
8308 	u64_stats_update_end(&tx_ring->tx_syncp);
8309 	q_vector->tx.total_bytes += total_bytes;
8310 	q_vector->tx.total_packets += total_packets;
8311 
8312 	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
8313 		struct e1000_hw *hw = &adapter->hw;
8314 
8315 		/* Detect a transmit hang in hardware, this serializes the
8316 		 * check with the clearing of time_stamp and movement of i
8317 		 */
8318 		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8319 		if (tx_buffer->next_to_watch &&
8320 		    time_after(jiffies, tx_buffer->time_stamp +
8321 			       (adapter->tx_timeout_factor * HZ)) &&
8322 		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
8323 
8324 			/* detected Tx unit hang */
8325 			dev_err(tx_ring->dev,
8326 				"Detected Tx Unit Hang\n"
8327 				"  Tx Queue             <%d>\n"
8328 				"  TDH                  <%x>\n"
8329 				"  TDT                  <%x>\n"
8330 				"  next_to_use          <%x>\n"
8331 				"  next_to_clean        <%x>\n"
8332 				"buffer_info[next_to_clean]\n"
8333 				"  time_stamp           <%lx>\n"
8334 				"  next_to_watch        <%p>\n"
8335 				"  jiffies              <%lx>\n"
8336 				"  desc.status          <%x>\n",
8337 				tx_ring->queue_index,
8338 				rd32(E1000_TDH(tx_ring->reg_idx)),
8339 				readl(tx_ring->tail),
8340 				tx_ring->next_to_use,
8341 				tx_ring->next_to_clean,
8342 				tx_buffer->time_stamp,
8343 				tx_buffer->next_to_watch,
8344 				jiffies,
8345 				tx_buffer->next_to_watch->wb.status);
8346 			netif_stop_subqueue(tx_ring->netdev,
8347 					    tx_ring->queue_index);
8348 
8349 			/* we are about to reset, no point in enabling stuff */
8350 			return true;
8351 		}
8352 	}
8353 
8354 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
8355 	if (unlikely(total_packets &&
8356 	    netif_carrier_ok(tx_ring->netdev) &&
8357 	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
8358 		/* Make sure that anybody stopping the queue after this
8359 		 * sees the new next_to_clean.
8360 		 */
8361 		smp_mb();
8362 		if (__netif_subqueue_stopped(tx_ring->netdev,
8363 					     tx_ring->queue_index) &&
8364 		    !(test_bit(__IGB_DOWN, &adapter->state))) {
8365 			netif_wake_subqueue(tx_ring->netdev,
8366 					    tx_ring->queue_index);
8367 
8368 			u64_stats_update_begin(&tx_ring->tx_syncp);
8369 			tx_ring->tx_stats.restart_queue++;
8370 			u64_stats_update_end(&tx_ring->tx_syncp);
8371 		}
8372 	}
8373 
8374 	return !!budget;
8375 }
8376 
8377 /**
8378  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
8379  *  @rx_ring: rx descriptor ring to store buffers on
8380  *  @old_buff: donor buffer to have page reused
8381  *
8382  *  Synchronizes page for reuse by the adapter
8383  **/
8384 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
8385 			      struct igb_rx_buffer *old_buff)
8386 {
8387 	struct igb_rx_buffer *new_buff;
8388 	u16 nta = rx_ring->next_to_alloc;
8389 
8390 	new_buff = &rx_ring->rx_buffer_info[nta];
8391 
8392 	/* update, and store next to alloc */
8393 	nta++;
8394 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
8395 
8396 	/* Transfer page from old buffer to new buffer.
8397 	 * Move each member individually to avoid possible store
8398 	 * forwarding stalls.
8399 	 */
8400 	new_buff->dma		= old_buff->dma;
8401 	new_buff->page		= old_buff->page;
8402 	new_buff->page_offset	= old_buff->page_offset;
8403 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
8404 }
8405 
8406 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
8407 				  int rx_buf_pgcnt)
8408 {
8409 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
8410 	struct page *page = rx_buffer->page;
8411 
8412 	/* avoid re-using remote and pfmemalloc pages */
8413 	if (!dev_page_is_reusable(page))
8414 		return false;
8415 
8416 #if (PAGE_SIZE < 8192)
8417 	/* if we are only owner of page we can reuse it */
8418 	if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
8419 		return false;
8420 #else
8421 #define IGB_LAST_OFFSET \
8422 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
8423 
8424 	if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8425 		return false;
8426 #endif
8427 
8428 	/* If we have drained the page fragment pool we need to update
8429 	 * the pagecnt_bias and page count so that we fully restock the
8430 	 * number of references the driver holds.
8431 	 */
8432 	if (unlikely(pagecnt_bias == 1)) {
8433 		page_ref_add(page, USHRT_MAX - 1);
8434 		rx_buffer->pagecnt_bias = USHRT_MAX;
8435 	}
8436 
8437 	return true;
8438 }
8439 
8440 /**
8441  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8442  *  @rx_ring: rx descriptor ring to transact packets on
8443  *  @rx_buffer: buffer containing page to add
8444  *  @skb: sk_buff to place the data into
8445  *  @size: size of buffer to be added
8446  *
8447  *  This function will add the data contained in rx_buffer->page to the skb.
8448  **/
8449 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8450 			    struct igb_rx_buffer *rx_buffer,
8451 			    struct sk_buff *skb,
8452 			    unsigned int size)
8453 {
8454 #if (PAGE_SIZE < 8192)
8455 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8456 #else
8457 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8458 				SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8459 				SKB_DATA_ALIGN(size);
8460 #endif
8461 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8462 			rx_buffer->page_offset, size, truesize);
8463 #if (PAGE_SIZE < 8192)
8464 	rx_buffer->page_offset ^= truesize;
8465 #else
8466 	rx_buffer->page_offset += truesize;
8467 #endif
8468 }
8469 
8470 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8471 					 struct igb_rx_buffer *rx_buffer,
8472 					 struct xdp_buff *xdp,
8473 					 ktime_t timestamp)
8474 {
8475 #if (PAGE_SIZE < 8192)
8476 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8477 #else
8478 	unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
8479 					       xdp->data_hard_start);
8480 #endif
8481 	unsigned int size = xdp->data_end - xdp->data;
8482 	unsigned int headlen;
8483 	struct sk_buff *skb;
8484 
8485 	/* prefetch first cache line of first page */
8486 	net_prefetch(xdp->data);
8487 
8488 	/* allocate a skb to store the frags */
8489 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8490 	if (unlikely(!skb))
8491 		return NULL;
8492 
8493 	if (timestamp)
8494 		skb_hwtstamps(skb)->hwtstamp = timestamp;
8495 
8496 	/* Determine available headroom for copy */
8497 	headlen = size;
8498 	if (headlen > IGB_RX_HDR_LEN)
8499 		headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
8500 
8501 	/* align pull length to size of long to optimize memcpy performance */
8502 	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
8503 
8504 	/* update all of the pointers */
8505 	size -= headlen;
8506 	if (size) {
8507 		skb_add_rx_frag(skb, 0, rx_buffer->page,
8508 				(xdp->data + headlen) - page_address(rx_buffer->page),
8509 				size, truesize);
8510 #if (PAGE_SIZE < 8192)
8511 		rx_buffer->page_offset ^= truesize;
8512 #else
8513 		rx_buffer->page_offset += truesize;
8514 #endif
8515 	} else {
8516 		rx_buffer->pagecnt_bias++;
8517 	}
8518 
8519 	return skb;
8520 }
8521 
8522 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8523 				     struct igb_rx_buffer *rx_buffer,
8524 				     struct xdp_buff *xdp,
8525 				     ktime_t timestamp)
8526 {
8527 #if (PAGE_SIZE < 8192)
8528 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8529 #else
8530 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8531 				SKB_DATA_ALIGN(xdp->data_end -
8532 					       xdp->data_hard_start);
8533 #endif
8534 	unsigned int metasize = xdp->data - xdp->data_meta;
8535 	struct sk_buff *skb;
8536 
8537 	/* prefetch first cache line of first page */
8538 	net_prefetch(xdp->data_meta);
8539 
8540 	/* build an skb around the page buffer */
8541 	skb = napi_build_skb(xdp->data_hard_start, truesize);
8542 	if (unlikely(!skb))
8543 		return NULL;
8544 
8545 	/* update pointers within the skb to store the data */
8546 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
8547 	__skb_put(skb, xdp->data_end - xdp->data);
8548 
8549 	if (metasize)
8550 		skb_metadata_set(skb, metasize);
8551 
8552 	if (timestamp)
8553 		skb_hwtstamps(skb)->hwtstamp = timestamp;
8554 
8555 	/* update buffer offset */
8556 #if (PAGE_SIZE < 8192)
8557 	rx_buffer->page_offset ^= truesize;
8558 #else
8559 	rx_buffer->page_offset += truesize;
8560 #endif
8561 
8562 	return skb;
8563 }
8564 
8565 static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter,
8566 				   struct igb_ring *rx_ring,
8567 				   struct xdp_buff *xdp)
8568 {
8569 	int err, result = IGB_XDP_PASS;
8570 	struct bpf_prog *xdp_prog;
8571 	u32 act;
8572 
8573 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
8574 
8575 	if (!xdp_prog)
8576 		goto xdp_out;
8577 
8578 	prefetchw(xdp->data_hard_start); /* xdp_frame write */
8579 
8580 	act = bpf_prog_run_xdp(xdp_prog, xdp);
8581 	switch (act) {
8582 	case XDP_PASS:
8583 		break;
8584 	case XDP_TX:
8585 		result = igb_xdp_xmit_back(adapter, xdp);
8586 		if (result == IGB_XDP_CONSUMED)
8587 			goto out_failure;
8588 		break;
8589 	case XDP_REDIRECT:
8590 		err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
8591 		if (err)
8592 			goto out_failure;
8593 		result = IGB_XDP_REDIR;
8594 		break;
8595 	default:
8596 		bpf_warn_invalid_xdp_action(adapter->netdev, xdp_prog, act);
8597 		fallthrough;
8598 	case XDP_ABORTED:
8599 out_failure:
8600 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
8601 		fallthrough;
8602 	case XDP_DROP:
8603 		result = IGB_XDP_CONSUMED;
8604 		break;
8605 	}
8606 xdp_out:
8607 	return ERR_PTR(-result);
8608 }
8609 
8610 static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
8611 					  unsigned int size)
8612 {
8613 	unsigned int truesize;
8614 
8615 #if (PAGE_SIZE < 8192)
8616 	truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
8617 #else
8618 	truesize = ring_uses_build_skb(rx_ring) ?
8619 		SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
8620 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
8621 		SKB_DATA_ALIGN(size);
8622 #endif
8623 	return truesize;
8624 }
8625 
8626 static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
8627 			       struct igb_rx_buffer *rx_buffer,
8628 			       unsigned int size)
8629 {
8630 	unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
8631 #if (PAGE_SIZE < 8192)
8632 	rx_buffer->page_offset ^= truesize;
8633 #else
8634 	rx_buffer->page_offset += truesize;
8635 #endif
8636 }
8637 
8638 static inline void igb_rx_checksum(struct igb_ring *ring,
8639 				   union e1000_adv_rx_desc *rx_desc,
8640 				   struct sk_buff *skb)
8641 {
8642 	skb_checksum_none_assert(skb);
8643 
8644 	/* Ignore Checksum bit is set */
8645 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8646 		return;
8647 
8648 	/* Rx checksum disabled via ethtool */
8649 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
8650 		return;
8651 
8652 	/* TCP/UDP checksum error bit is set */
8653 	if (igb_test_staterr(rx_desc,
8654 			     E1000_RXDEXT_STATERR_TCPE |
8655 			     E1000_RXDEXT_STATERR_IPE)) {
8656 		/* work around errata with sctp packets where the TCPE aka
8657 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8658 		 * packets, (aka let the stack check the crc32c)
8659 		 */
8660 		if (!((skb->len == 60) &&
8661 		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8662 			u64_stats_update_begin(&ring->rx_syncp);
8663 			ring->rx_stats.csum_err++;
8664 			u64_stats_update_end(&ring->rx_syncp);
8665 		}
8666 		/* let the stack verify checksum errors */
8667 		return;
8668 	}
8669 	/* It must be a TCP or UDP packet with a valid checksum */
8670 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8671 				      E1000_RXD_STAT_UDPCS))
8672 		skb->ip_summed = CHECKSUM_UNNECESSARY;
8673 
8674 	dev_dbg(ring->dev, "cksum success: bits %08X\n",
8675 		le32_to_cpu(rx_desc->wb.upper.status_error));
8676 }
8677 
8678 static inline void igb_rx_hash(struct igb_ring *ring,
8679 			       union e1000_adv_rx_desc *rx_desc,
8680 			       struct sk_buff *skb)
8681 {
8682 	if (ring->netdev->features & NETIF_F_RXHASH)
8683 		skb_set_hash(skb,
8684 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8685 			     PKT_HASH_TYPE_L3);
8686 }
8687 
8688 /**
8689  *  igb_is_non_eop - process handling of non-EOP buffers
8690  *  @rx_ring: Rx ring being processed
8691  *  @rx_desc: Rx descriptor for current buffer
8692  *
8693  *  This function updates next to clean.  If the buffer is an EOP buffer
8694  *  this function exits returning false, otherwise it will place the
8695  *  sk_buff in the next buffer to be chained and return true indicating
8696  *  that this is in fact a non-EOP buffer.
8697  **/
8698 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8699 			   union e1000_adv_rx_desc *rx_desc)
8700 {
8701 	u32 ntc = rx_ring->next_to_clean + 1;
8702 
8703 	/* fetch, update, and store next to clean */
8704 	ntc = (ntc < rx_ring->count) ? ntc : 0;
8705 	rx_ring->next_to_clean = ntc;
8706 
8707 	prefetch(IGB_RX_DESC(rx_ring, ntc));
8708 
8709 	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8710 		return false;
8711 
8712 	return true;
8713 }
8714 
8715 /**
8716  *  igb_cleanup_headers - Correct corrupted or empty headers
8717  *  @rx_ring: rx descriptor ring packet is being transacted on
8718  *  @rx_desc: pointer to the EOP Rx descriptor
8719  *  @skb: pointer to current skb being fixed
8720  *
8721  *  Address the case where we are pulling data in on pages only
8722  *  and as such no data is present in the skb header.
8723  *
8724  *  In addition if skb is not at least 60 bytes we need to pad it so that
8725  *  it is large enough to qualify as a valid Ethernet frame.
8726  *
8727  *  Returns true if an error was encountered and skb was freed.
8728  **/
8729 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8730 				union e1000_adv_rx_desc *rx_desc,
8731 				struct sk_buff *skb)
8732 {
8733 	/* XDP packets use error pointer so abort at this point */
8734 	if (IS_ERR(skb))
8735 		return true;
8736 
8737 	if (unlikely((igb_test_staterr(rx_desc,
8738 				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8739 		struct net_device *netdev = rx_ring->netdev;
8740 		if (!(netdev->features & NETIF_F_RXALL)) {
8741 			dev_kfree_skb_any(skb);
8742 			return true;
8743 		}
8744 	}
8745 
8746 	/* if eth_skb_pad returns an error the skb was freed */
8747 	if (eth_skb_pad(skb))
8748 		return true;
8749 
8750 	return false;
8751 }
8752 
8753 /**
8754  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
8755  *  @rx_ring: rx descriptor ring packet is being transacted on
8756  *  @rx_desc: pointer to the EOP Rx descriptor
8757  *  @skb: pointer to current skb being populated
8758  *
8759  *  This function checks the ring, descriptor, and packet information in
8760  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
8761  *  other fields within the skb.
8762  **/
8763 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8764 				   union e1000_adv_rx_desc *rx_desc,
8765 				   struct sk_buff *skb)
8766 {
8767 	struct net_device *dev = rx_ring->netdev;
8768 
8769 	igb_rx_hash(rx_ring, rx_desc, skb);
8770 
8771 	igb_rx_checksum(rx_ring, rx_desc, skb);
8772 
8773 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8774 	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8775 		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8776 
8777 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8778 	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8779 		u16 vid;
8780 
8781 		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8782 		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8783 			vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
8784 		else
8785 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8786 
8787 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8788 	}
8789 
8790 	skb_record_rx_queue(skb, rx_ring->queue_index);
8791 
8792 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8793 }
8794 
8795 static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8796 {
8797 	return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8798 }
8799 
8800 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8801 					       const unsigned int size, int *rx_buf_pgcnt)
8802 {
8803 	struct igb_rx_buffer *rx_buffer;
8804 
8805 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8806 	*rx_buf_pgcnt =
8807 #if (PAGE_SIZE < 8192)
8808 		page_count(rx_buffer->page);
8809 #else
8810 		0;
8811 #endif
8812 	prefetchw(rx_buffer->page);
8813 
8814 	/* we are reusing so sync this buffer for CPU use */
8815 	dma_sync_single_range_for_cpu(rx_ring->dev,
8816 				      rx_buffer->dma,
8817 				      rx_buffer->page_offset,
8818 				      size,
8819 				      DMA_FROM_DEVICE);
8820 
8821 	rx_buffer->pagecnt_bias--;
8822 
8823 	return rx_buffer;
8824 }
8825 
8826 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8827 			      struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt)
8828 {
8829 	if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) {
8830 		/* hand second half of page back to the ring */
8831 		igb_reuse_rx_page(rx_ring, rx_buffer);
8832 	} else {
8833 		/* We are not reusing the buffer so unmap it and free
8834 		 * any references we are holding to it
8835 		 */
8836 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8837 				     igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8838 				     IGB_RX_DMA_ATTR);
8839 		__page_frag_cache_drain(rx_buffer->page,
8840 					rx_buffer->pagecnt_bias);
8841 	}
8842 
8843 	/* clear contents of rx_buffer */
8844 	rx_buffer->page = NULL;
8845 }
8846 
8847 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8848 {
8849 	struct igb_adapter *adapter = q_vector->adapter;
8850 	struct igb_ring *rx_ring = q_vector->rx.ring;
8851 	struct sk_buff *skb = rx_ring->skb;
8852 	unsigned int total_bytes = 0, total_packets = 0;
8853 	u16 cleaned_count = igb_desc_unused(rx_ring);
8854 	unsigned int xdp_xmit = 0;
8855 	struct xdp_buff xdp;
8856 	u32 frame_sz = 0;
8857 	int rx_buf_pgcnt;
8858 
8859 	/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
8860 #if (PAGE_SIZE < 8192)
8861 	frame_sz = igb_rx_frame_truesize(rx_ring, 0);
8862 #endif
8863 	xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
8864 
8865 	while (likely(total_packets < budget)) {
8866 		union e1000_adv_rx_desc *rx_desc;
8867 		struct igb_rx_buffer *rx_buffer;
8868 		ktime_t timestamp = 0;
8869 		int pkt_offset = 0;
8870 		unsigned int size;
8871 		void *pktbuf;
8872 
8873 		/* return some buffers to hardware, one at a time is too slow */
8874 		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8875 			igb_alloc_rx_buffers(rx_ring, cleaned_count);
8876 			cleaned_count = 0;
8877 		}
8878 
8879 		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8880 		size = le16_to_cpu(rx_desc->wb.upper.length);
8881 		if (!size)
8882 			break;
8883 
8884 		/* This memory barrier is needed to keep us from reading
8885 		 * any other fields out of the rx_desc until we know the
8886 		 * descriptor has been written back
8887 		 */
8888 		dma_rmb();
8889 
8890 		rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt);
8891 		pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
8892 
8893 		/* pull rx packet timestamp if available and valid */
8894 		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8895 			int ts_hdr_len;
8896 
8897 			ts_hdr_len = igb_ptp_rx_pktstamp(rx_ring->q_vector,
8898 							 pktbuf, &timestamp);
8899 
8900 			pkt_offset += ts_hdr_len;
8901 			size -= ts_hdr_len;
8902 		}
8903 
8904 		/* retrieve a buffer from the ring */
8905 		if (!skb) {
8906 			unsigned char *hard_start = pktbuf - igb_rx_offset(rx_ring);
8907 			unsigned int offset = pkt_offset + igb_rx_offset(rx_ring);
8908 
8909 			xdp_prepare_buff(&xdp, hard_start, offset, size, true);
8910 			xdp_buff_clear_frags_flag(&xdp);
8911 #if (PAGE_SIZE > 4096)
8912 			/* At larger PAGE_SIZE, frame_sz depend on len size */
8913 			xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
8914 #endif
8915 			skb = igb_run_xdp(adapter, rx_ring, &xdp);
8916 		}
8917 
8918 		if (IS_ERR(skb)) {
8919 			unsigned int xdp_res = -PTR_ERR(skb);
8920 
8921 			if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
8922 				xdp_xmit |= xdp_res;
8923 				igb_rx_buffer_flip(rx_ring, rx_buffer, size);
8924 			} else {
8925 				rx_buffer->pagecnt_bias++;
8926 			}
8927 			total_packets++;
8928 			total_bytes += size;
8929 		} else if (skb)
8930 			igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8931 		else if (ring_uses_build_skb(rx_ring))
8932 			skb = igb_build_skb(rx_ring, rx_buffer, &xdp,
8933 					    timestamp);
8934 		else
8935 			skb = igb_construct_skb(rx_ring, rx_buffer,
8936 						&xdp, timestamp);
8937 
8938 		/* exit if we failed to retrieve a buffer */
8939 		if (!skb) {
8940 			rx_ring->rx_stats.alloc_failed++;
8941 			rx_buffer->pagecnt_bias++;
8942 			break;
8943 		}
8944 
8945 		igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt);
8946 		cleaned_count++;
8947 
8948 		/* fetch next buffer in frame if non-eop */
8949 		if (igb_is_non_eop(rx_ring, rx_desc))
8950 			continue;
8951 
8952 		/* verify the packet layout is correct */
8953 		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8954 			skb = NULL;
8955 			continue;
8956 		}
8957 
8958 		/* probably a little skewed due to removing CRC */
8959 		total_bytes += skb->len;
8960 
8961 		/* populate checksum, timestamp, VLAN, and protocol */
8962 		igb_process_skb_fields(rx_ring, rx_desc, skb);
8963 
8964 		napi_gro_receive(&q_vector->napi, skb);
8965 
8966 		/* reset skb pointer */
8967 		skb = NULL;
8968 
8969 		/* update budget accounting */
8970 		total_packets++;
8971 	}
8972 
8973 	/* place incomplete frames back on ring for completion */
8974 	rx_ring->skb = skb;
8975 
8976 	if (xdp_xmit & IGB_XDP_REDIR)
8977 		xdp_do_flush();
8978 
8979 	if (xdp_xmit & IGB_XDP_TX) {
8980 		struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
8981 
8982 		igb_xdp_ring_update_tail(tx_ring);
8983 	}
8984 
8985 	u64_stats_update_begin(&rx_ring->rx_syncp);
8986 	rx_ring->rx_stats.packets += total_packets;
8987 	rx_ring->rx_stats.bytes += total_bytes;
8988 	u64_stats_update_end(&rx_ring->rx_syncp);
8989 	q_vector->rx.total_packets += total_packets;
8990 	q_vector->rx.total_bytes += total_bytes;
8991 
8992 	if (cleaned_count)
8993 		igb_alloc_rx_buffers(rx_ring, cleaned_count);
8994 
8995 	return total_packets;
8996 }
8997 
8998 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8999 				  struct igb_rx_buffer *bi)
9000 {
9001 	struct page *page = bi->page;
9002 	dma_addr_t dma;
9003 
9004 	/* since we are recycling buffers we should seldom need to alloc */
9005 	if (likely(page))
9006 		return true;
9007 
9008 	/* alloc new page for storage */
9009 	page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
9010 	if (unlikely(!page)) {
9011 		rx_ring->rx_stats.alloc_failed++;
9012 		return false;
9013 	}
9014 
9015 	/* map page for use */
9016 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
9017 				 igb_rx_pg_size(rx_ring),
9018 				 DMA_FROM_DEVICE,
9019 				 IGB_RX_DMA_ATTR);
9020 
9021 	/* if mapping failed free memory back to system since
9022 	 * there isn't much point in holding memory we can't use
9023 	 */
9024 	if (dma_mapping_error(rx_ring->dev, dma)) {
9025 		__free_pages(page, igb_rx_pg_order(rx_ring));
9026 
9027 		rx_ring->rx_stats.alloc_failed++;
9028 		return false;
9029 	}
9030 
9031 	bi->dma = dma;
9032 	bi->page = page;
9033 	bi->page_offset = igb_rx_offset(rx_ring);
9034 	page_ref_add(page, USHRT_MAX - 1);
9035 	bi->pagecnt_bias = USHRT_MAX;
9036 
9037 	return true;
9038 }
9039 
9040 /**
9041  *  igb_alloc_rx_buffers - Replace used receive buffers
9042  *  @rx_ring: rx descriptor ring to allocate new receive buffers
9043  *  @cleaned_count: count of buffers to allocate
9044  **/
9045 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9046 {
9047 	union e1000_adv_rx_desc *rx_desc;
9048 	struct igb_rx_buffer *bi;
9049 	u16 i = rx_ring->next_to_use;
9050 	u16 bufsz;
9051 
9052 	/* nothing to do */
9053 	if (!cleaned_count)
9054 		return;
9055 
9056 	rx_desc = IGB_RX_DESC(rx_ring, i);
9057 	bi = &rx_ring->rx_buffer_info[i];
9058 	i -= rx_ring->count;
9059 
9060 	bufsz = igb_rx_bufsz(rx_ring);
9061 
9062 	do {
9063 		if (!igb_alloc_mapped_page(rx_ring, bi))
9064 			break;
9065 
9066 		/* sync the buffer for use by the device */
9067 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
9068 						 bi->page_offset, bufsz,
9069 						 DMA_FROM_DEVICE);
9070 
9071 		/* Refresh the desc even if buffer_addrs didn't change
9072 		 * because each write-back erases this info.
9073 		 */
9074 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
9075 
9076 		rx_desc++;
9077 		bi++;
9078 		i++;
9079 		if (unlikely(!i)) {
9080 			rx_desc = IGB_RX_DESC(rx_ring, 0);
9081 			bi = rx_ring->rx_buffer_info;
9082 			i -= rx_ring->count;
9083 		}
9084 
9085 		/* clear the length for the next_to_use descriptor */
9086 		rx_desc->wb.upper.length = 0;
9087 
9088 		cleaned_count--;
9089 	} while (cleaned_count);
9090 
9091 	i += rx_ring->count;
9092 
9093 	if (rx_ring->next_to_use != i) {
9094 		/* record the next descriptor to use */
9095 		rx_ring->next_to_use = i;
9096 
9097 		/* update next to alloc since we have filled the ring */
9098 		rx_ring->next_to_alloc = i;
9099 
9100 		/* Force memory writes to complete before letting h/w
9101 		 * know there are new descriptors to fetch.  (Only
9102 		 * applicable for weak-ordered memory model archs,
9103 		 * such as IA-64).
9104 		 */
9105 		dma_wmb();
9106 		writel(i, rx_ring->tail);
9107 	}
9108 }
9109 
9110 /**
9111  * igb_mii_ioctl -
9112  * @netdev: pointer to netdev struct
9113  * @ifr: interface structure
9114  * @cmd: ioctl command to execute
9115  **/
9116 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9117 {
9118 	struct igb_adapter *adapter = netdev_priv(netdev);
9119 	struct mii_ioctl_data *data = if_mii(ifr);
9120 
9121 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
9122 		return -EOPNOTSUPP;
9123 
9124 	switch (cmd) {
9125 	case SIOCGMIIPHY:
9126 		data->phy_id = adapter->hw.phy.addr;
9127 		break;
9128 	case SIOCGMIIREG:
9129 		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9130 				     &data->val_out))
9131 			return -EIO;
9132 		break;
9133 	case SIOCSMIIREG:
9134 	default:
9135 		return -EOPNOTSUPP;
9136 	}
9137 	return 0;
9138 }
9139 
9140 /**
9141  * igb_ioctl -
9142  * @netdev: pointer to netdev struct
9143  * @ifr: interface structure
9144  * @cmd: ioctl command to execute
9145  **/
9146 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9147 {
9148 	switch (cmd) {
9149 	case SIOCGMIIPHY:
9150 	case SIOCGMIIREG:
9151 	case SIOCSMIIREG:
9152 		return igb_mii_ioctl(netdev, ifr, cmd);
9153 	case SIOCGHWTSTAMP:
9154 		return igb_ptp_get_ts_config(netdev, ifr);
9155 	case SIOCSHWTSTAMP:
9156 		return igb_ptp_set_ts_config(netdev, ifr);
9157 	default:
9158 		return -EOPNOTSUPP;
9159 	}
9160 }
9161 
9162 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9163 {
9164 	struct igb_adapter *adapter = hw->back;
9165 
9166 	pci_read_config_word(adapter->pdev, reg, value);
9167 }
9168 
9169 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9170 {
9171 	struct igb_adapter *adapter = hw->back;
9172 
9173 	pci_write_config_word(adapter->pdev, reg, *value);
9174 }
9175 
9176 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9177 {
9178 	struct igb_adapter *adapter = hw->back;
9179 
9180 	if (pcie_capability_read_word(adapter->pdev, reg, value))
9181 		return -E1000_ERR_CONFIG;
9182 
9183 	return 0;
9184 }
9185 
9186 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9187 {
9188 	struct igb_adapter *adapter = hw->back;
9189 
9190 	if (pcie_capability_write_word(adapter->pdev, reg, *value))
9191 		return -E1000_ERR_CONFIG;
9192 
9193 	return 0;
9194 }
9195 
9196 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9197 {
9198 	struct igb_adapter *adapter = netdev_priv(netdev);
9199 	struct e1000_hw *hw = &adapter->hw;
9200 	u32 ctrl, rctl;
9201 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9202 
9203 	if (enable) {
9204 		/* enable VLAN tag insert/strip */
9205 		ctrl = rd32(E1000_CTRL);
9206 		ctrl |= E1000_CTRL_VME;
9207 		wr32(E1000_CTRL, ctrl);
9208 
9209 		/* Disable CFI check */
9210 		rctl = rd32(E1000_RCTL);
9211 		rctl &= ~E1000_RCTL_CFIEN;
9212 		wr32(E1000_RCTL, rctl);
9213 	} else {
9214 		/* disable VLAN tag insert/strip */
9215 		ctrl = rd32(E1000_CTRL);
9216 		ctrl &= ~E1000_CTRL_VME;
9217 		wr32(E1000_CTRL, ctrl);
9218 	}
9219 
9220 	igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9221 }
9222 
9223 static int igb_vlan_rx_add_vid(struct net_device *netdev,
9224 			       __be16 proto, u16 vid)
9225 {
9226 	struct igb_adapter *adapter = netdev_priv(netdev);
9227 	struct e1000_hw *hw = &adapter->hw;
9228 	int pf_id = adapter->vfs_allocated_count;
9229 
9230 	/* add the filter since PF can receive vlans w/o entry in vlvf */
9231 	if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9232 		igb_vfta_set(hw, vid, pf_id, true, !!vid);
9233 
9234 	set_bit(vid, adapter->active_vlans);
9235 
9236 	return 0;
9237 }
9238 
9239 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
9240 				__be16 proto, u16 vid)
9241 {
9242 	struct igb_adapter *adapter = netdev_priv(netdev);
9243 	int pf_id = adapter->vfs_allocated_count;
9244 	struct e1000_hw *hw = &adapter->hw;
9245 
9246 	/* remove VID from filter table */
9247 	if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9248 		igb_vfta_set(hw, vid, pf_id, false, true);
9249 
9250 	clear_bit(vid, adapter->active_vlans);
9251 
9252 	return 0;
9253 }
9254 
9255 static void igb_restore_vlan(struct igb_adapter *adapter)
9256 {
9257 	u16 vid = 1;
9258 
9259 	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
9260 	igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
9261 
9262 	for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
9263 		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9264 }
9265 
9266 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9267 {
9268 	struct pci_dev *pdev = adapter->pdev;
9269 	struct e1000_mac_info *mac = &adapter->hw.mac;
9270 
9271 	mac->autoneg = 0;
9272 
9273 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
9274 	 * for the switch() below to work
9275 	 */
9276 	if ((spd & 1) || (dplx & ~1))
9277 		goto err_inval;
9278 
9279 	/* Fiber NIC's only allow 1000 gbps Full duplex
9280 	 * and 100Mbps Full duplex for 100baseFx sfp
9281 	 */
9282 	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
9283 		switch (spd + dplx) {
9284 		case SPEED_10 + DUPLEX_HALF:
9285 		case SPEED_10 + DUPLEX_FULL:
9286 		case SPEED_100 + DUPLEX_HALF:
9287 			goto err_inval;
9288 		default:
9289 			break;
9290 		}
9291 	}
9292 
9293 	switch (spd + dplx) {
9294 	case SPEED_10 + DUPLEX_HALF:
9295 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
9296 		break;
9297 	case SPEED_10 + DUPLEX_FULL:
9298 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
9299 		break;
9300 	case SPEED_100 + DUPLEX_HALF:
9301 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
9302 		break;
9303 	case SPEED_100 + DUPLEX_FULL:
9304 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
9305 		break;
9306 	case SPEED_1000 + DUPLEX_FULL:
9307 		mac->autoneg = 1;
9308 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
9309 		break;
9310 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
9311 	default:
9312 		goto err_inval;
9313 	}
9314 
9315 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
9316 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
9317 
9318 	return 0;
9319 
9320 err_inval:
9321 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9322 	return -EINVAL;
9323 }
9324 
9325 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
9326 			  bool runtime)
9327 {
9328 	struct net_device *netdev = pci_get_drvdata(pdev);
9329 	struct igb_adapter *adapter = netdev_priv(netdev);
9330 	struct e1000_hw *hw = &adapter->hw;
9331 	u32 ctrl, rctl, status;
9332 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9333 	bool wake;
9334 
9335 	rtnl_lock();
9336 	netif_device_detach(netdev);
9337 
9338 	if (netif_running(netdev))
9339 		__igb_close(netdev, true);
9340 
9341 	igb_ptp_suspend(adapter);
9342 
9343 	igb_clear_interrupt_scheme(adapter);
9344 	rtnl_unlock();
9345 
9346 	status = rd32(E1000_STATUS);
9347 	if (status & E1000_STATUS_LU)
9348 		wufc &= ~E1000_WUFC_LNKC;
9349 
9350 	if (wufc) {
9351 		igb_setup_rctl(adapter);
9352 		igb_set_rx_mode(netdev);
9353 
9354 		/* turn on all-multi mode if wake on multicast is enabled */
9355 		if (wufc & E1000_WUFC_MC) {
9356 			rctl = rd32(E1000_RCTL);
9357 			rctl |= E1000_RCTL_MPE;
9358 			wr32(E1000_RCTL, rctl);
9359 		}
9360 
9361 		ctrl = rd32(E1000_CTRL);
9362 		ctrl |= E1000_CTRL_ADVD3WUC;
9363 		wr32(E1000_CTRL, ctrl);
9364 
9365 		/* Allow time for pending master requests to run */
9366 		igb_disable_pcie_master(hw);
9367 
9368 		wr32(E1000_WUC, E1000_WUC_PME_EN);
9369 		wr32(E1000_WUFC, wufc);
9370 	} else {
9371 		wr32(E1000_WUC, 0);
9372 		wr32(E1000_WUFC, 0);
9373 	}
9374 
9375 	wake = wufc || adapter->en_mng_pt;
9376 	if (!wake)
9377 		igb_power_down_link(adapter);
9378 	else
9379 		igb_power_up_link(adapter);
9380 
9381 	if (enable_wake)
9382 		*enable_wake = wake;
9383 
9384 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
9385 	 * would have already happened in close and is redundant.
9386 	 */
9387 	igb_release_hw_control(adapter);
9388 
9389 	pci_disable_device(pdev);
9390 
9391 	return 0;
9392 }
9393 
9394 static void igb_deliver_wake_packet(struct net_device *netdev)
9395 {
9396 	struct igb_adapter *adapter = netdev_priv(netdev);
9397 	struct e1000_hw *hw = &adapter->hw;
9398 	struct sk_buff *skb;
9399 	u32 wupl;
9400 
9401 	wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
9402 
9403 	/* WUPM stores only the first 128 bytes of the wake packet.
9404 	 * Read the packet only if we have the whole thing.
9405 	 */
9406 	if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
9407 		return;
9408 
9409 	skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
9410 	if (!skb)
9411 		return;
9412 
9413 	skb_put(skb, wupl);
9414 
9415 	/* Ensure reads are 32-bit aligned */
9416 	wupl = roundup(wupl, 4);
9417 
9418 	memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
9419 
9420 	skb->protocol = eth_type_trans(skb, netdev);
9421 	netif_rx(skb);
9422 }
9423 
9424 static int __maybe_unused igb_suspend(struct device *dev)
9425 {
9426 	return __igb_shutdown(to_pci_dev(dev), NULL, 0);
9427 }
9428 
9429 static int __maybe_unused __igb_resume(struct device *dev, bool rpm)
9430 {
9431 	struct pci_dev *pdev = to_pci_dev(dev);
9432 	struct net_device *netdev = pci_get_drvdata(pdev);
9433 	struct igb_adapter *adapter = netdev_priv(netdev);
9434 	struct e1000_hw *hw = &adapter->hw;
9435 	u32 err, val;
9436 
9437 	pci_set_power_state(pdev, PCI_D0);
9438 	pci_restore_state(pdev);
9439 	pci_save_state(pdev);
9440 
9441 	if (!pci_device_is_present(pdev))
9442 		return -ENODEV;
9443 	err = pci_enable_device_mem(pdev);
9444 	if (err) {
9445 		dev_err(&pdev->dev,
9446 			"igb: Cannot enable PCI device from suspend\n");
9447 		return err;
9448 	}
9449 	pci_set_master(pdev);
9450 
9451 	pci_enable_wake(pdev, PCI_D3hot, 0);
9452 	pci_enable_wake(pdev, PCI_D3cold, 0);
9453 
9454 	if (igb_init_interrupt_scheme(adapter, true)) {
9455 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9456 		return -ENOMEM;
9457 	}
9458 
9459 	igb_reset(adapter);
9460 
9461 	/* let the f/w know that the h/w is now under the control of the
9462 	 * driver.
9463 	 */
9464 	igb_get_hw_control(adapter);
9465 
9466 	val = rd32(E1000_WUS);
9467 	if (val & WAKE_PKT_WUS)
9468 		igb_deliver_wake_packet(netdev);
9469 
9470 	wr32(E1000_WUS, ~0);
9471 
9472 	if (!rpm)
9473 		rtnl_lock();
9474 	if (!err && netif_running(netdev))
9475 		err = __igb_open(netdev, true);
9476 
9477 	if (!err)
9478 		netif_device_attach(netdev);
9479 	if (!rpm)
9480 		rtnl_unlock();
9481 
9482 	return err;
9483 }
9484 
9485 static int __maybe_unused igb_resume(struct device *dev)
9486 {
9487 	return __igb_resume(dev, false);
9488 }
9489 
9490 static int __maybe_unused igb_runtime_idle(struct device *dev)
9491 {
9492 	struct net_device *netdev = dev_get_drvdata(dev);
9493 	struct igb_adapter *adapter = netdev_priv(netdev);
9494 
9495 	if (!igb_has_link(adapter))
9496 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9497 
9498 	return -EBUSY;
9499 }
9500 
9501 static int __maybe_unused igb_runtime_suspend(struct device *dev)
9502 {
9503 	return __igb_shutdown(to_pci_dev(dev), NULL, 1);
9504 }
9505 
9506 static int __maybe_unused igb_runtime_resume(struct device *dev)
9507 {
9508 	return __igb_resume(dev, true);
9509 }
9510 
9511 static void igb_shutdown(struct pci_dev *pdev)
9512 {
9513 	bool wake;
9514 
9515 	__igb_shutdown(pdev, &wake, 0);
9516 
9517 	if (system_state == SYSTEM_POWER_OFF) {
9518 		pci_wake_from_d3(pdev, wake);
9519 		pci_set_power_state(pdev, PCI_D3hot);
9520 	}
9521 }
9522 
9523 #ifdef CONFIG_PCI_IOV
9524 static int igb_sriov_reinit(struct pci_dev *dev)
9525 {
9526 	struct net_device *netdev = pci_get_drvdata(dev);
9527 	struct igb_adapter *adapter = netdev_priv(netdev);
9528 	struct pci_dev *pdev = adapter->pdev;
9529 
9530 	rtnl_lock();
9531 
9532 	if (netif_running(netdev))
9533 		igb_close(netdev);
9534 	else
9535 		igb_reset(adapter);
9536 
9537 	igb_clear_interrupt_scheme(adapter);
9538 
9539 	igb_init_queue_configuration(adapter);
9540 
9541 	if (igb_init_interrupt_scheme(adapter, true)) {
9542 		rtnl_unlock();
9543 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9544 		return -ENOMEM;
9545 	}
9546 
9547 	if (netif_running(netdev))
9548 		igb_open(netdev);
9549 
9550 	rtnl_unlock();
9551 
9552 	return 0;
9553 }
9554 
9555 static int igb_pci_disable_sriov(struct pci_dev *dev)
9556 {
9557 	int err = igb_disable_sriov(dev);
9558 
9559 	if (!err)
9560 		err = igb_sriov_reinit(dev);
9561 
9562 	return err;
9563 }
9564 
9565 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
9566 {
9567 	int err = igb_enable_sriov(dev, num_vfs);
9568 
9569 	if (err)
9570 		goto out;
9571 
9572 	err = igb_sriov_reinit(dev);
9573 	if (!err)
9574 		return num_vfs;
9575 
9576 out:
9577 	return err;
9578 }
9579 
9580 #endif
9581 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9582 {
9583 #ifdef CONFIG_PCI_IOV
9584 	if (num_vfs == 0)
9585 		return igb_pci_disable_sriov(dev);
9586 	else
9587 		return igb_pci_enable_sriov(dev, num_vfs);
9588 #endif
9589 	return 0;
9590 }
9591 
9592 /**
9593  *  igb_io_error_detected - called when PCI error is detected
9594  *  @pdev: Pointer to PCI device
9595  *  @state: The current pci connection state
9596  *
9597  *  This function is called after a PCI bus error affecting
9598  *  this device has been detected.
9599  **/
9600 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9601 					      pci_channel_state_t state)
9602 {
9603 	struct net_device *netdev = pci_get_drvdata(pdev);
9604 	struct igb_adapter *adapter = netdev_priv(netdev);
9605 
9606 	netif_device_detach(netdev);
9607 
9608 	if (state == pci_channel_io_perm_failure)
9609 		return PCI_ERS_RESULT_DISCONNECT;
9610 
9611 	if (netif_running(netdev))
9612 		igb_down(adapter);
9613 	pci_disable_device(pdev);
9614 
9615 	/* Request a slot reset. */
9616 	return PCI_ERS_RESULT_NEED_RESET;
9617 }
9618 
9619 /**
9620  *  igb_io_slot_reset - called after the pci bus has been reset.
9621  *  @pdev: Pointer to PCI device
9622  *
9623  *  Restart the card from scratch, as if from a cold-boot. Implementation
9624  *  resembles the first-half of the __igb_resume routine.
9625  **/
9626 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9627 {
9628 	struct net_device *netdev = pci_get_drvdata(pdev);
9629 	struct igb_adapter *adapter = netdev_priv(netdev);
9630 	struct e1000_hw *hw = &adapter->hw;
9631 	pci_ers_result_t result;
9632 
9633 	if (pci_enable_device_mem(pdev)) {
9634 		dev_err(&pdev->dev,
9635 			"Cannot re-enable PCI device after reset.\n");
9636 		result = PCI_ERS_RESULT_DISCONNECT;
9637 	} else {
9638 		pci_set_master(pdev);
9639 		pci_restore_state(pdev);
9640 		pci_save_state(pdev);
9641 
9642 		pci_enable_wake(pdev, PCI_D3hot, 0);
9643 		pci_enable_wake(pdev, PCI_D3cold, 0);
9644 
9645 		/* In case of PCI error, adapter lose its HW address
9646 		 * so we should re-assign it here.
9647 		 */
9648 		hw->hw_addr = adapter->io_addr;
9649 
9650 		igb_reset(adapter);
9651 		wr32(E1000_WUS, ~0);
9652 		result = PCI_ERS_RESULT_RECOVERED;
9653 	}
9654 
9655 	return result;
9656 }
9657 
9658 /**
9659  *  igb_io_resume - called when traffic can start flowing again.
9660  *  @pdev: Pointer to PCI device
9661  *
9662  *  This callback is called when the error recovery driver tells us that
9663  *  its OK to resume normal operation. Implementation resembles the
9664  *  second-half of the __igb_resume routine.
9665  */
9666 static void igb_io_resume(struct pci_dev *pdev)
9667 {
9668 	struct net_device *netdev = pci_get_drvdata(pdev);
9669 	struct igb_adapter *adapter = netdev_priv(netdev);
9670 
9671 	if (netif_running(netdev)) {
9672 		if (igb_up(adapter)) {
9673 			dev_err(&pdev->dev, "igb_up failed after reset\n");
9674 			return;
9675 		}
9676 	}
9677 
9678 	netif_device_attach(netdev);
9679 
9680 	/* let the f/w know that the h/w is now under the control of the
9681 	 * driver.
9682 	 */
9683 	igb_get_hw_control(adapter);
9684 }
9685 
9686 /**
9687  *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9688  *  @adapter: Pointer to adapter structure
9689  *  @index: Index of the RAR entry which need to be synced with MAC table
9690  **/
9691 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9692 {
9693 	struct e1000_hw *hw = &adapter->hw;
9694 	u32 rar_low, rar_high;
9695 	u8 *addr = adapter->mac_table[index].addr;
9696 
9697 	/* HW expects these to be in network order when they are plugged
9698 	 * into the registers which are little endian.  In order to guarantee
9699 	 * that ordering we need to do an leXX_to_cpup here in order to be
9700 	 * ready for the byteswap that occurs with writel
9701 	 */
9702 	rar_low = le32_to_cpup((__le32 *)(addr));
9703 	rar_high = le16_to_cpup((__le16 *)(addr + 4));
9704 
9705 	/* Indicate to hardware the Address is Valid. */
9706 	if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9707 		if (is_valid_ether_addr(addr))
9708 			rar_high |= E1000_RAH_AV;
9709 
9710 		if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9711 			rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9712 
9713 		switch (hw->mac.type) {
9714 		case e1000_82575:
9715 		case e1000_i210:
9716 			if (adapter->mac_table[index].state &
9717 			    IGB_MAC_STATE_QUEUE_STEERING)
9718 				rar_high |= E1000_RAH_QSEL_ENABLE;
9719 
9720 			rar_high |= E1000_RAH_POOL_1 *
9721 				    adapter->mac_table[index].queue;
9722 			break;
9723 		default:
9724 			rar_high |= E1000_RAH_POOL_1 <<
9725 				    adapter->mac_table[index].queue;
9726 			break;
9727 		}
9728 	}
9729 
9730 	wr32(E1000_RAL(index), rar_low);
9731 	wrfl();
9732 	wr32(E1000_RAH(index), rar_high);
9733 	wrfl();
9734 }
9735 
9736 static int igb_set_vf_mac(struct igb_adapter *adapter,
9737 			  int vf, unsigned char *mac_addr)
9738 {
9739 	struct e1000_hw *hw = &adapter->hw;
9740 	/* VF MAC addresses start at end of receive addresses and moves
9741 	 * towards the first, as a result a collision should not be possible
9742 	 */
9743 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9744 	unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9745 
9746 	ether_addr_copy(vf_mac_addr, mac_addr);
9747 	ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9748 	adapter->mac_table[rar_entry].queue = vf;
9749 	adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9750 	igb_rar_set_index(adapter, rar_entry);
9751 
9752 	return 0;
9753 }
9754 
9755 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9756 {
9757 	struct igb_adapter *adapter = netdev_priv(netdev);
9758 
9759 	if (vf >= adapter->vfs_allocated_count)
9760 		return -EINVAL;
9761 
9762 	/* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9763 	 * flag and allows to overwrite the MAC via VF netdev.  This
9764 	 * is necessary to allow libvirt a way to restore the original
9765 	 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9766 	 * down a VM.
9767 	 */
9768 	if (is_zero_ether_addr(mac)) {
9769 		adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9770 		dev_info(&adapter->pdev->dev,
9771 			 "remove administratively set MAC on VF %d\n",
9772 			 vf);
9773 	} else if (is_valid_ether_addr(mac)) {
9774 		adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9775 		dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9776 			 mac, vf);
9777 		dev_info(&adapter->pdev->dev,
9778 			 "Reload the VF driver to make this change effective.");
9779 		/* Generate additional warning if PF is down */
9780 		if (test_bit(__IGB_DOWN, &adapter->state)) {
9781 			dev_warn(&adapter->pdev->dev,
9782 				 "The VF MAC address has been set, but the PF device is not up.\n");
9783 			dev_warn(&adapter->pdev->dev,
9784 				 "Bring the PF device up before attempting to use the VF device.\n");
9785 		}
9786 	} else {
9787 		return -EINVAL;
9788 	}
9789 	return igb_set_vf_mac(adapter, vf, mac);
9790 }
9791 
9792 static int igb_link_mbps(int internal_link_speed)
9793 {
9794 	switch (internal_link_speed) {
9795 	case SPEED_100:
9796 		return 100;
9797 	case SPEED_1000:
9798 		return 1000;
9799 	default:
9800 		return 0;
9801 	}
9802 }
9803 
9804 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9805 				  int link_speed)
9806 {
9807 	int rf_dec, rf_int;
9808 	u32 bcnrc_val;
9809 
9810 	if (tx_rate != 0) {
9811 		/* Calculate the rate factor values to set */
9812 		rf_int = link_speed / tx_rate;
9813 		rf_dec = (link_speed - (rf_int * tx_rate));
9814 		rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9815 			 tx_rate;
9816 
9817 		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9818 		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9819 			      E1000_RTTBCNRC_RF_INT_MASK);
9820 		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9821 	} else {
9822 		bcnrc_val = 0;
9823 	}
9824 
9825 	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9826 	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9827 	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9828 	 */
9829 	wr32(E1000_RTTBCNRM, 0x14);
9830 	wr32(E1000_RTTBCNRC, bcnrc_val);
9831 }
9832 
9833 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9834 {
9835 	int actual_link_speed, i;
9836 	bool reset_rate = false;
9837 
9838 	/* VF TX rate limit was not set or not supported */
9839 	if ((adapter->vf_rate_link_speed == 0) ||
9840 	    (adapter->hw.mac.type != e1000_82576))
9841 		return;
9842 
9843 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9844 	if (actual_link_speed != adapter->vf_rate_link_speed) {
9845 		reset_rate = true;
9846 		adapter->vf_rate_link_speed = 0;
9847 		dev_info(&adapter->pdev->dev,
9848 			 "Link speed has been changed. VF Transmit rate is disabled\n");
9849 	}
9850 
9851 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
9852 		if (reset_rate)
9853 			adapter->vf_data[i].tx_rate = 0;
9854 
9855 		igb_set_vf_rate_limit(&adapter->hw, i,
9856 				      adapter->vf_data[i].tx_rate,
9857 				      actual_link_speed);
9858 	}
9859 }
9860 
9861 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9862 			     int min_tx_rate, int max_tx_rate)
9863 {
9864 	struct igb_adapter *adapter = netdev_priv(netdev);
9865 	struct e1000_hw *hw = &adapter->hw;
9866 	int actual_link_speed;
9867 
9868 	if (hw->mac.type != e1000_82576)
9869 		return -EOPNOTSUPP;
9870 
9871 	if (min_tx_rate)
9872 		return -EINVAL;
9873 
9874 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9875 	if ((vf >= adapter->vfs_allocated_count) ||
9876 	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9877 	    (max_tx_rate < 0) ||
9878 	    (max_tx_rate > actual_link_speed))
9879 		return -EINVAL;
9880 
9881 	adapter->vf_rate_link_speed = actual_link_speed;
9882 	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9883 	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9884 
9885 	return 0;
9886 }
9887 
9888 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9889 				   bool setting)
9890 {
9891 	struct igb_adapter *adapter = netdev_priv(netdev);
9892 	struct e1000_hw *hw = &adapter->hw;
9893 	u32 reg_val, reg_offset;
9894 
9895 	if (!adapter->vfs_allocated_count)
9896 		return -EOPNOTSUPP;
9897 
9898 	if (vf >= adapter->vfs_allocated_count)
9899 		return -EINVAL;
9900 
9901 	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9902 	reg_val = rd32(reg_offset);
9903 	if (setting)
9904 		reg_val |= (BIT(vf) |
9905 			    BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9906 	else
9907 		reg_val &= ~(BIT(vf) |
9908 			     BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9909 	wr32(reg_offset, reg_val);
9910 
9911 	adapter->vf_data[vf].spoofchk_enabled = setting;
9912 	return 0;
9913 }
9914 
9915 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9916 {
9917 	struct igb_adapter *adapter = netdev_priv(netdev);
9918 
9919 	if (vf >= adapter->vfs_allocated_count)
9920 		return -EINVAL;
9921 	if (adapter->vf_data[vf].trusted == setting)
9922 		return 0;
9923 
9924 	adapter->vf_data[vf].trusted = setting;
9925 
9926 	dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9927 		 vf, setting ? "" : "not ");
9928 	return 0;
9929 }
9930 
9931 static int igb_ndo_get_vf_config(struct net_device *netdev,
9932 				 int vf, struct ifla_vf_info *ivi)
9933 {
9934 	struct igb_adapter *adapter = netdev_priv(netdev);
9935 	if (vf >= adapter->vfs_allocated_count)
9936 		return -EINVAL;
9937 	ivi->vf = vf;
9938 	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9939 	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9940 	ivi->min_tx_rate = 0;
9941 	ivi->vlan = adapter->vf_data[vf].pf_vlan;
9942 	ivi->qos = adapter->vf_data[vf].pf_qos;
9943 	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9944 	ivi->trusted = adapter->vf_data[vf].trusted;
9945 	return 0;
9946 }
9947 
9948 static void igb_vmm_control(struct igb_adapter *adapter)
9949 {
9950 	struct e1000_hw *hw = &adapter->hw;
9951 	u32 reg;
9952 
9953 	switch (hw->mac.type) {
9954 	case e1000_82575:
9955 	case e1000_i210:
9956 	case e1000_i211:
9957 	case e1000_i354:
9958 	default:
9959 		/* replication is not supported for 82575 */
9960 		return;
9961 	case e1000_82576:
9962 		/* notify HW that the MAC is adding vlan tags */
9963 		reg = rd32(E1000_DTXCTL);
9964 		reg |= E1000_DTXCTL_VLAN_ADDED;
9965 		wr32(E1000_DTXCTL, reg);
9966 		fallthrough;
9967 	case e1000_82580:
9968 		/* enable replication vlan tag stripping */
9969 		reg = rd32(E1000_RPLOLR);
9970 		reg |= E1000_RPLOLR_STRVLAN;
9971 		wr32(E1000_RPLOLR, reg);
9972 		fallthrough;
9973 	case e1000_i350:
9974 		/* none of the above registers are supported by i350 */
9975 		break;
9976 	}
9977 
9978 	if (adapter->vfs_allocated_count) {
9979 		igb_vmdq_set_loopback_pf(hw, true);
9980 		igb_vmdq_set_replication_pf(hw, true);
9981 		igb_vmdq_set_anti_spoofing_pf(hw, true,
9982 					      adapter->vfs_allocated_count);
9983 	} else {
9984 		igb_vmdq_set_loopback_pf(hw, false);
9985 		igb_vmdq_set_replication_pf(hw, false);
9986 	}
9987 }
9988 
9989 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9990 {
9991 	struct e1000_hw *hw = &adapter->hw;
9992 	u32 dmac_thr;
9993 	u16 hwm;
9994 	u32 reg;
9995 
9996 	if (hw->mac.type > e1000_82580) {
9997 		if (adapter->flags & IGB_FLAG_DMAC) {
9998 			/* force threshold to 0. */
9999 			wr32(E1000_DMCTXTH, 0);
10000 
10001 			/* DMA Coalescing high water mark needs to be greater
10002 			 * than the Rx threshold. Set hwm to PBA - max frame
10003 			 * size in 16B units, capping it at PBA - 6KB.
10004 			 */
10005 			hwm = 64 * (pba - 6);
10006 			reg = rd32(E1000_FCRTC);
10007 			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
10008 			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
10009 				& E1000_FCRTC_RTH_COAL_MASK);
10010 			wr32(E1000_FCRTC, reg);
10011 
10012 			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
10013 			 * frame size, capping it at PBA - 10KB.
10014 			 */
10015 			dmac_thr = pba - 10;
10016 			reg = rd32(E1000_DMACR);
10017 			reg &= ~E1000_DMACR_DMACTHR_MASK;
10018 			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
10019 				& E1000_DMACR_DMACTHR_MASK);
10020 
10021 			/* transition to L0x or L1 if available..*/
10022 			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
10023 
10024 			/* watchdog timer= +-1000 usec in 32usec intervals */
10025 			reg |= (1000 >> 5);
10026 
10027 			/* Disable BMC-to-OS Watchdog Enable */
10028 			if (hw->mac.type != e1000_i354)
10029 				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
10030 			wr32(E1000_DMACR, reg);
10031 
10032 			/* no lower threshold to disable
10033 			 * coalescing(smart fifb)-UTRESH=0
10034 			 */
10035 			wr32(E1000_DMCRTRH, 0);
10036 
10037 			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
10038 
10039 			wr32(E1000_DMCTLX, reg);
10040 
10041 			/* free space in tx packet buffer to wake from
10042 			 * DMA coal
10043 			 */
10044 			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
10045 			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
10046 		}
10047 
10048 		if (hw->mac.type >= e1000_i210 ||
10049 		    (adapter->flags & IGB_FLAG_DMAC)) {
10050 			reg = rd32(E1000_PCIEMISC);
10051 			reg |= E1000_PCIEMISC_LX_DECISION;
10052 			wr32(E1000_PCIEMISC, reg);
10053 		} /* endif adapter->dmac is not disabled */
10054 	} else if (hw->mac.type == e1000_82580) {
10055 		u32 reg = rd32(E1000_PCIEMISC);
10056 
10057 		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
10058 		wr32(E1000_DMACR, 0);
10059 	}
10060 }
10061 
10062 /**
10063  *  igb_read_i2c_byte - Reads 8 bit word over I2C
10064  *  @hw: pointer to hardware structure
10065  *  @byte_offset: byte offset to read
10066  *  @dev_addr: device address
10067  *  @data: value read
10068  *
10069  *  Performs byte read operation over I2C interface at
10070  *  a specified device address.
10071  **/
10072 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10073 		      u8 dev_addr, u8 *data)
10074 {
10075 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10076 	struct i2c_client *this_client = adapter->i2c_client;
10077 	s32 status;
10078 	u16 swfw_mask = 0;
10079 
10080 	if (!this_client)
10081 		return E1000_ERR_I2C;
10082 
10083 	swfw_mask = E1000_SWFW_PHY0_SM;
10084 
10085 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10086 		return E1000_ERR_SWFW_SYNC;
10087 
10088 	status = i2c_smbus_read_byte_data(this_client, byte_offset);
10089 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10090 
10091 	if (status < 0)
10092 		return E1000_ERR_I2C;
10093 	else {
10094 		*data = status;
10095 		return 0;
10096 	}
10097 }
10098 
10099 /**
10100  *  igb_write_i2c_byte - Writes 8 bit word over I2C
10101  *  @hw: pointer to hardware structure
10102  *  @byte_offset: byte offset to write
10103  *  @dev_addr: device address
10104  *  @data: value to write
10105  *
10106  *  Performs byte write operation over I2C interface at
10107  *  a specified device address.
10108  **/
10109 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10110 		       u8 dev_addr, u8 data)
10111 {
10112 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10113 	struct i2c_client *this_client = adapter->i2c_client;
10114 	s32 status;
10115 	u16 swfw_mask = E1000_SWFW_PHY0_SM;
10116 
10117 	if (!this_client)
10118 		return E1000_ERR_I2C;
10119 
10120 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10121 		return E1000_ERR_SWFW_SYNC;
10122 	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
10123 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10124 
10125 	if (status)
10126 		return E1000_ERR_I2C;
10127 	else
10128 		return 0;
10129 
10130 }
10131 
10132 int igb_reinit_queues(struct igb_adapter *adapter)
10133 {
10134 	struct net_device *netdev = adapter->netdev;
10135 	struct pci_dev *pdev = adapter->pdev;
10136 	int err = 0;
10137 
10138 	if (netif_running(netdev))
10139 		igb_close(netdev);
10140 
10141 	igb_reset_interrupt_capability(adapter);
10142 
10143 	if (igb_init_interrupt_scheme(adapter, true)) {
10144 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
10145 		return -ENOMEM;
10146 	}
10147 
10148 	if (netif_running(netdev))
10149 		err = igb_open(netdev);
10150 
10151 	return err;
10152 }
10153 
10154 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
10155 {
10156 	struct igb_nfc_filter *rule;
10157 
10158 	spin_lock(&adapter->nfc_lock);
10159 
10160 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10161 		igb_erase_filter(adapter, rule);
10162 
10163 	hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
10164 		igb_erase_filter(adapter, rule);
10165 
10166 	spin_unlock(&adapter->nfc_lock);
10167 }
10168 
10169 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
10170 {
10171 	struct igb_nfc_filter *rule;
10172 
10173 	spin_lock(&adapter->nfc_lock);
10174 
10175 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10176 		igb_add_filter(adapter, rule);
10177 
10178 	spin_unlock(&adapter->nfc_lock);
10179 }
10180 /* igb_main.c */
10181