xref: /openbmc/linux/drivers/net/ethernet/intel/igb/igb_main.c (revision 0760aad038b5a032c31ea124feed63d88627d2f1)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3 
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/aer.h>
32 #include <linux/prefetch.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/etherdevice.h>
35 #ifdef CONFIG_IGB_DCA
36 #include <linux/dca.h>
37 #endif
38 #include <linux/i2c.h>
39 #include "igb.h"
40 
41 enum queue_mode {
42 	QUEUE_MODE_STRICT_PRIORITY,
43 	QUEUE_MODE_STREAM_RESERVATION,
44 };
45 
46 enum tx_queue_prio {
47 	TX_QUEUE_PRIO_HIGH,
48 	TX_QUEUE_PRIO_LOW,
49 };
50 
51 char igb_driver_name[] = "igb";
52 static const char igb_driver_string[] =
53 				"Intel(R) Gigabit Ethernet Network Driver";
54 static const char igb_copyright[] =
55 				"Copyright (c) 2007-2014 Intel Corporation.";
56 
57 static const struct e1000_info *igb_info_tbl[] = {
58 	[board_82575] = &e1000_82575_info,
59 };
60 
61 static const struct pci_device_id igb_pci_tbl[] = {
62 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
63 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
64 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
65 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
66 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
67 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
68 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
69 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
70 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
71 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
72 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
73 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
74 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
75 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
76 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
77 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
78 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
79 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
80 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
81 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
82 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
83 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
84 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
85 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
86 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
87 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
88 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
89 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
90 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
91 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
92 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
93 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
94 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
95 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
96 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
97 	/* required last entry */
98 	{0, }
99 };
100 
101 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
102 
103 static int igb_setup_all_tx_resources(struct igb_adapter *);
104 static int igb_setup_all_rx_resources(struct igb_adapter *);
105 static void igb_free_all_tx_resources(struct igb_adapter *);
106 static void igb_free_all_rx_resources(struct igb_adapter *);
107 static void igb_setup_mrqc(struct igb_adapter *);
108 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
109 static void igb_remove(struct pci_dev *pdev);
110 static int igb_sw_init(struct igb_adapter *);
111 int igb_open(struct net_device *);
112 int igb_close(struct net_device *);
113 static void igb_configure(struct igb_adapter *);
114 static void igb_configure_tx(struct igb_adapter *);
115 static void igb_configure_rx(struct igb_adapter *);
116 static void igb_clean_all_tx_rings(struct igb_adapter *);
117 static void igb_clean_all_rx_rings(struct igb_adapter *);
118 static void igb_clean_tx_ring(struct igb_ring *);
119 static void igb_clean_rx_ring(struct igb_ring *);
120 static void igb_set_rx_mode(struct net_device *);
121 static void igb_update_phy_info(struct timer_list *);
122 static void igb_watchdog(struct timer_list *);
123 static void igb_watchdog_task(struct work_struct *);
124 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
125 static void igb_get_stats64(struct net_device *dev,
126 			    struct rtnl_link_stats64 *stats);
127 static int igb_change_mtu(struct net_device *, int);
128 static int igb_set_mac(struct net_device *, void *);
129 static void igb_set_uta(struct igb_adapter *adapter, bool set);
130 static irqreturn_t igb_intr(int irq, void *);
131 static irqreturn_t igb_intr_msi(int irq, void *);
132 static irqreturn_t igb_msix_other(int irq, void *);
133 static irqreturn_t igb_msix_ring(int irq, void *);
134 #ifdef CONFIG_IGB_DCA
135 static void igb_update_dca(struct igb_q_vector *);
136 static void igb_setup_dca(struct igb_adapter *);
137 #endif /* CONFIG_IGB_DCA */
138 static int igb_poll(struct napi_struct *, int);
139 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
140 static int igb_clean_rx_irq(struct igb_q_vector *, int);
141 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
142 static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
143 static void igb_reset_task(struct work_struct *);
144 static void igb_vlan_mode(struct net_device *netdev,
145 			  netdev_features_t features);
146 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
147 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
148 static void igb_restore_vlan(struct igb_adapter *);
149 static void igb_rar_set_index(struct igb_adapter *, u32);
150 static void igb_ping_all_vfs(struct igb_adapter *);
151 static void igb_msg_task(struct igb_adapter *);
152 static void igb_vmm_control(struct igb_adapter *);
153 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
154 static void igb_flush_mac_table(struct igb_adapter *);
155 static int igb_available_rars(struct igb_adapter *, u8);
156 static void igb_set_default_mac_filter(struct igb_adapter *);
157 static int igb_uc_sync(struct net_device *, const unsigned char *);
158 static int igb_uc_unsync(struct net_device *, const unsigned char *);
159 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
160 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
161 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
162 			       int vf, u16 vlan, u8 qos, __be16 vlan_proto);
163 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
164 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
165 				   bool setting);
166 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
167 				bool setting);
168 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
169 				 struct ifla_vf_info *ivi);
170 static void igb_check_vf_rate_limit(struct igb_adapter *);
171 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
172 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
173 
174 #ifdef CONFIG_PCI_IOV
175 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
176 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
177 static int igb_disable_sriov(struct pci_dev *dev);
178 static int igb_pci_disable_sriov(struct pci_dev *dev);
179 #endif
180 
181 static int igb_suspend(struct device *);
182 static int igb_resume(struct device *);
183 static int igb_runtime_suspend(struct device *dev);
184 static int igb_runtime_resume(struct device *dev);
185 static int igb_runtime_idle(struct device *dev);
186 static const struct dev_pm_ops igb_pm_ops = {
187 	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
188 	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
189 			igb_runtime_idle)
190 };
191 static void igb_shutdown(struct pci_dev *);
192 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
193 #ifdef CONFIG_IGB_DCA
194 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
195 static struct notifier_block dca_notifier = {
196 	.notifier_call	= igb_notify_dca,
197 	.next		= NULL,
198 	.priority	= 0
199 };
200 #endif
201 #ifdef CONFIG_PCI_IOV
202 static unsigned int max_vfs;
203 module_param(max_vfs, uint, 0);
204 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
205 #endif /* CONFIG_PCI_IOV */
206 
207 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
208 		     pci_channel_state_t);
209 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
210 static void igb_io_resume(struct pci_dev *);
211 
212 static const struct pci_error_handlers igb_err_handler = {
213 	.error_detected = igb_io_error_detected,
214 	.slot_reset = igb_io_slot_reset,
215 	.resume = igb_io_resume,
216 };
217 
218 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
219 
220 static struct pci_driver igb_driver = {
221 	.name     = igb_driver_name,
222 	.id_table = igb_pci_tbl,
223 	.probe    = igb_probe,
224 	.remove   = igb_remove,
225 #ifdef CONFIG_PM
226 	.driver.pm = &igb_pm_ops,
227 #endif
228 	.shutdown = igb_shutdown,
229 	.sriov_configure = igb_pci_sriov_configure,
230 	.err_handler = &igb_err_handler
231 };
232 
233 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
234 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
235 MODULE_LICENSE("GPL v2");
236 
237 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
238 static int debug = -1;
239 module_param(debug, int, 0);
240 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
241 
242 struct igb_reg_info {
243 	u32 ofs;
244 	char *name;
245 };
246 
247 static const struct igb_reg_info igb_reg_info_tbl[] = {
248 
249 	/* General Registers */
250 	{E1000_CTRL, "CTRL"},
251 	{E1000_STATUS, "STATUS"},
252 	{E1000_CTRL_EXT, "CTRL_EXT"},
253 
254 	/* Interrupt Registers */
255 	{E1000_ICR, "ICR"},
256 
257 	/* RX Registers */
258 	{E1000_RCTL, "RCTL"},
259 	{E1000_RDLEN(0), "RDLEN"},
260 	{E1000_RDH(0), "RDH"},
261 	{E1000_RDT(0), "RDT"},
262 	{E1000_RXDCTL(0), "RXDCTL"},
263 	{E1000_RDBAL(0), "RDBAL"},
264 	{E1000_RDBAH(0), "RDBAH"},
265 
266 	/* TX Registers */
267 	{E1000_TCTL, "TCTL"},
268 	{E1000_TDBAL(0), "TDBAL"},
269 	{E1000_TDBAH(0), "TDBAH"},
270 	{E1000_TDLEN(0), "TDLEN"},
271 	{E1000_TDH(0), "TDH"},
272 	{E1000_TDT(0), "TDT"},
273 	{E1000_TXDCTL(0), "TXDCTL"},
274 	{E1000_TDFH, "TDFH"},
275 	{E1000_TDFT, "TDFT"},
276 	{E1000_TDFHS, "TDFHS"},
277 	{E1000_TDFPC, "TDFPC"},
278 
279 	/* List Terminator */
280 	{}
281 };
282 
283 /* igb_regdump - register printout routine */
284 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
285 {
286 	int n = 0;
287 	char rname[16];
288 	u32 regs[8];
289 
290 	switch (reginfo->ofs) {
291 	case E1000_RDLEN(0):
292 		for (n = 0; n < 4; n++)
293 			regs[n] = rd32(E1000_RDLEN(n));
294 		break;
295 	case E1000_RDH(0):
296 		for (n = 0; n < 4; n++)
297 			regs[n] = rd32(E1000_RDH(n));
298 		break;
299 	case E1000_RDT(0):
300 		for (n = 0; n < 4; n++)
301 			regs[n] = rd32(E1000_RDT(n));
302 		break;
303 	case E1000_RXDCTL(0):
304 		for (n = 0; n < 4; n++)
305 			regs[n] = rd32(E1000_RXDCTL(n));
306 		break;
307 	case E1000_RDBAL(0):
308 		for (n = 0; n < 4; n++)
309 			regs[n] = rd32(E1000_RDBAL(n));
310 		break;
311 	case E1000_RDBAH(0):
312 		for (n = 0; n < 4; n++)
313 			regs[n] = rd32(E1000_RDBAH(n));
314 		break;
315 	case E1000_TDBAL(0):
316 		for (n = 0; n < 4; n++)
317 			regs[n] = rd32(E1000_RDBAL(n));
318 		break;
319 	case E1000_TDBAH(0):
320 		for (n = 0; n < 4; n++)
321 			regs[n] = rd32(E1000_TDBAH(n));
322 		break;
323 	case E1000_TDLEN(0):
324 		for (n = 0; n < 4; n++)
325 			regs[n] = rd32(E1000_TDLEN(n));
326 		break;
327 	case E1000_TDH(0):
328 		for (n = 0; n < 4; n++)
329 			regs[n] = rd32(E1000_TDH(n));
330 		break;
331 	case E1000_TDT(0):
332 		for (n = 0; n < 4; n++)
333 			regs[n] = rd32(E1000_TDT(n));
334 		break;
335 	case E1000_TXDCTL(0):
336 		for (n = 0; n < 4; n++)
337 			regs[n] = rd32(E1000_TXDCTL(n));
338 		break;
339 	default:
340 		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
341 		return;
342 	}
343 
344 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
345 	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
346 		regs[2], regs[3]);
347 }
348 
349 /* igb_dump - Print registers, Tx-rings and Rx-rings */
350 static void igb_dump(struct igb_adapter *adapter)
351 {
352 	struct net_device *netdev = adapter->netdev;
353 	struct e1000_hw *hw = &adapter->hw;
354 	struct igb_reg_info *reginfo;
355 	struct igb_ring *tx_ring;
356 	union e1000_adv_tx_desc *tx_desc;
357 	struct my_u0 { u64 a; u64 b; } *u0;
358 	struct igb_ring *rx_ring;
359 	union e1000_adv_rx_desc *rx_desc;
360 	u32 staterr;
361 	u16 i, n;
362 
363 	if (!netif_msg_hw(adapter))
364 		return;
365 
366 	/* Print netdevice Info */
367 	if (netdev) {
368 		dev_info(&adapter->pdev->dev, "Net device Info\n");
369 		pr_info("Device Name     state            trans_start\n");
370 		pr_info("%-15s %016lX %016lX\n", netdev->name,
371 			netdev->state, dev_trans_start(netdev));
372 	}
373 
374 	/* Print Registers */
375 	dev_info(&adapter->pdev->dev, "Register Dump\n");
376 	pr_info(" Register Name   Value\n");
377 	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
378 	     reginfo->name; reginfo++) {
379 		igb_regdump(hw, reginfo);
380 	}
381 
382 	/* Print TX Ring Summary */
383 	if (!netdev || !netif_running(netdev))
384 		goto exit;
385 
386 	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
387 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
388 	for (n = 0; n < adapter->num_tx_queues; n++) {
389 		struct igb_tx_buffer *buffer_info;
390 		tx_ring = adapter->tx_ring[n];
391 		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
392 		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
393 			n, tx_ring->next_to_use, tx_ring->next_to_clean,
394 			(u64)dma_unmap_addr(buffer_info, dma),
395 			dma_unmap_len(buffer_info, len),
396 			buffer_info->next_to_watch,
397 			(u64)buffer_info->time_stamp);
398 	}
399 
400 	/* Print TX Rings */
401 	if (!netif_msg_tx_done(adapter))
402 		goto rx_ring_summary;
403 
404 	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
405 
406 	/* Transmit Descriptor Formats
407 	 *
408 	 * Advanced Transmit Descriptor
409 	 *   +--------------------------------------------------------------+
410 	 * 0 |         Buffer Address [63:0]                                |
411 	 *   +--------------------------------------------------------------+
412 	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
413 	 *   +--------------------------------------------------------------+
414 	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
415 	 */
416 
417 	for (n = 0; n < adapter->num_tx_queues; n++) {
418 		tx_ring = adapter->tx_ring[n];
419 		pr_info("------------------------------------\n");
420 		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
421 		pr_info("------------------------------------\n");
422 		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
423 
424 		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
425 			const char *next_desc;
426 			struct igb_tx_buffer *buffer_info;
427 			tx_desc = IGB_TX_DESC(tx_ring, i);
428 			buffer_info = &tx_ring->tx_buffer_info[i];
429 			u0 = (struct my_u0 *)tx_desc;
430 			if (i == tx_ring->next_to_use &&
431 			    i == tx_ring->next_to_clean)
432 				next_desc = " NTC/U";
433 			else if (i == tx_ring->next_to_use)
434 				next_desc = " NTU";
435 			else if (i == tx_ring->next_to_clean)
436 				next_desc = " NTC";
437 			else
438 				next_desc = "";
439 
440 			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
441 				i, le64_to_cpu(u0->a),
442 				le64_to_cpu(u0->b),
443 				(u64)dma_unmap_addr(buffer_info, dma),
444 				dma_unmap_len(buffer_info, len),
445 				buffer_info->next_to_watch,
446 				(u64)buffer_info->time_stamp,
447 				buffer_info->skb, next_desc);
448 
449 			if (netif_msg_pktdata(adapter) && buffer_info->skb)
450 				print_hex_dump(KERN_INFO, "",
451 					DUMP_PREFIX_ADDRESS,
452 					16, 1, buffer_info->skb->data,
453 					dma_unmap_len(buffer_info, len),
454 					true);
455 		}
456 	}
457 
458 	/* Print RX Rings Summary */
459 rx_ring_summary:
460 	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
461 	pr_info("Queue [NTU] [NTC]\n");
462 	for (n = 0; n < adapter->num_rx_queues; n++) {
463 		rx_ring = adapter->rx_ring[n];
464 		pr_info(" %5d %5X %5X\n",
465 			n, rx_ring->next_to_use, rx_ring->next_to_clean);
466 	}
467 
468 	/* Print RX Rings */
469 	if (!netif_msg_rx_status(adapter))
470 		goto exit;
471 
472 	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
473 
474 	/* Advanced Receive Descriptor (Read) Format
475 	 *    63                                           1        0
476 	 *    +-----------------------------------------------------+
477 	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
478 	 *    +----------------------------------------------+------+
479 	 *  8 |       Header Buffer Address [63:1]           |  DD  |
480 	 *    +-----------------------------------------------------+
481 	 *
482 	 *
483 	 * Advanced Receive Descriptor (Write-Back) Format
484 	 *
485 	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
486 	 *   +------------------------------------------------------+
487 	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
488 	 *   | Checksum   Ident  |   |           |    | Type | Type |
489 	 *   +------------------------------------------------------+
490 	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
491 	 *   +------------------------------------------------------+
492 	 *   63       48 47    32 31            20 19               0
493 	 */
494 
495 	for (n = 0; n < adapter->num_rx_queues; n++) {
496 		rx_ring = adapter->rx_ring[n];
497 		pr_info("------------------------------------\n");
498 		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
499 		pr_info("------------------------------------\n");
500 		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
501 		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
502 
503 		for (i = 0; i < rx_ring->count; i++) {
504 			const char *next_desc;
505 			struct igb_rx_buffer *buffer_info;
506 			buffer_info = &rx_ring->rx_buffer_info[i];
507 			rx_desc = IGB_RX_DESC(rx_ring, i);
508 			u0 = (struct my_u0 *)rx_desc;
509 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
510 
511 			if (i == rx_ring->next_to_use)
512 				next_desc = " NTU";
513 			else if (i == rx_ring->next_to_clean)
514 				next_desc = " NTC";
515 			else
516 				next_desc = "";
517 
518 			if (staterr & E1000_RXD_STAT_DD) {
519 				/* Descriptor Done */
520 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
521 					"RWB", i,
522 					le64_to_cpu(u0->a),
523 					le64_to_cpu(u0->b),
524 					next_desc);
525 			} else {
526 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
527 					"R  ", i,
528 					le64_to_cpu(u0->a),
529 					le64_to_cpu(u0->b),
530 					(u64)buffer_info->dma,
531 					next_desc);
532 
533 				if (netif_msg_pktdata(adapter) &&
534 				    buffer_info->dma && buffer_info->page) {
535 					print_hex_dump(KERN_INFO, "",
536 					  DUMP_PREFIX_ADDRESS,
537 					  16, 1,
538 					  page_address(buffer_info->page) +
539 						      buffer_info->page_offset,
540 					  igb_rx_bufsz(rx_ring), true);
541 				}
542 			}
543 		}
544 	}
545 
546 exit:
547 	return;
548 }
549 
550 /**
551  *  igb_get_i2c_data - Reads the I2C SDA data bit
552  *  @hw: pointer to hardware structure
553  *  @i2cctl: Current value of I2CCTL register
554  *
555  *  Returns the I2C data bit value
556  **/
557 static int igb_get_i2c_data(void *data)
558 {
559 	struct igb_adapter *adapter = (struct igb_adapter *)data;
560 	struct e1000_hw *hw = &adapter->hw;
561 	s32 i2cctl = rd32(E1000_I2CPARAMS);
562 
563 	return !!(i2cctl & E1000_I2C_DATA_IN);
564 }
565 
566 /**
567  *  igb_set_i2c_data - Sets the I2C data bit
568  *  @data: pointer to hardware structure
569  *  @state: I2C data value (0 or 1) to set
570  *
571  *  Sets the I2C data bit
572  **/
573 static void igb_set_i2c_data(void *data, int state)
574 {
575 	struct igb_adapter *adapter = (struct igb_adapter *)data;
576 	struct e1000_hw *hw = &adapter->hw;
577 	s32 i2cctl = rd32(E1000_I2CPARAMS);
578 
579 	if (state)
580 		i2cctl |= E1000_I2C_DATA_OUT;
581 	else
582 		i2cctl &= ~E1000_I2C_DATA_OUT;
583 
584 	i2cctl &= ~E1000_I2C_DATA_OE_N;
585 	i2cctl |= E1000_I2C_CLK_OE_N;
586 	wr32(E1000_I2CPARAMS, i2cctl);
587 	wrfl();
588 
589 }
590 
591 /**
592  *  igb_set_i2c_clk - Sets the I2C SCL clock
593  *  @data: pointer to hardware structure
594  *  @state: state to set clock
595  *
596  *  Sets the I2C clock line to state
597  **/
598 static void igb_set_i2c_clk(void *data, int state)
599 {
600 	struct igb_adapter *adapter = (struct igb_adapter *)data;
601 	struct e1000_hw *hw = &adapter->hw;
602 	s32 i2cctl = rd32(E1000_I2CPARAMS);
603 
604 	if (state) {
605 		i2cctl |= E1000_I2C_CLK_OUT;
606 		i2cctl &= ~E1000_I2C_CLK_OE_N;
607 	} else {
608 		i2cctl &= ~E1000_I2C_CLK_OUT;
609 		i2cctl &= ~E1000_I2C_CLK_OE_N;
610 	}
611 	wr32(E1000_I2CPARAMS, i2cctl);
612 	wrfl();
613 }
614 
615 /**
616  *  igb_get_i2c_clk - Gets the I2C SCL clock state
617  *  @data: pointer to hardware structure
618  *
619  *  Gets the I2C clock state
620  **/
621 static int igb_get_i2c_clk(void *data)
622 {
623 	struct igb_adapter *adapter = (struct igb_adapter *)data;
624 	struct e1000_hw *hw = &adapter->hw;
625 	s32 i2cctl = rd32(E1000_I2CPARAMS);
626 
627 	return !!(i2cctl & E1000_I2C_CLK_IN);
628 }
629 
630 static const struct i2c_algo_bit_data igb_i2c_algo = {
631 	.setsda		= igb_set_i2c_data,
632 	.setscl		= igb_set_i2c_clk,
633 	.getsda		= igb_get_i2c_data,
634 	.getscl		= igb_get_i2c_clk,
635 	.udelay		= 5,
636 	.timeout	= 20,
637 };
638 
639 /**
640  *  igb_get_hw_dev - return device
641  *  @hw: pointer to hardware structure
642  *
643  *  used by hardware layer to print debugging information
644  **/
645 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
646 {
647 	struct igb_adapter *adapter = hw->back;
648 	return adapter->netdev;
649 }
650 
651 /**
652  *  igb_init_module - Driver Registration Routine
653  *
654  *  igb_init_module is the first routine called when the driver is
655  *  loaded. All it does is register with the PCI subsystem.
656  **/
657 static int __init igb_init_module(void)
658 {
659 	int ret;
660 
661 	pr_info("%s\n", igb_driver_string);
662 	pr_info("%s\n", igb_copyright);
663 
664 #ifdef CONFIG_IGB_DCA
665 	dca_register_notify(&dca_notifier);
666 #endif
667 	ret = pci_register_driver(&igb_driver);
668 	return ret;
669 }
670 
671 module_init(igb_init_module);
672 
673 /**
674  *  igb_exit_module - Driver Exit Cleanup Routine
675  *
676  *  igb_exit_module is called just before the driver is removed
677  *  from memory.
678  **/
679 static void __exit igb_exit_module(void)
680 {
681 #ifdef CONFIG_IGB_DCA
682 	dca_unregister_notify(&dca_notifier);
683 #endif
684 	pci_unregister_driver(&igb_driver);
685 }
686 
687 module_exit(igb_exit_module);
688 
689 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
690 /**
691  *  igb_cache_ring_register - Descriptor ring to register mapping
692  *  @adapter: board private structure to initialize
693  *
694  *  Once we know the feature-set enabled for the device, we'll cache
695  *  the register offset the descriptor ring is assigned to.
696  **/
697 static void igb_cache_ring_register(struct igb_adapter *adapter)
698 {
699 	int i = 0, j = 0;
700 	u32 rbase_offset = adapter->vfs_allocated_count;
701 
702 	switch (adapter->hw.mac.type) {
703 	case e1000_82576:
704 		/* The queues are allocated for virtualization such that VF 0
705 		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
706 		 * In order to avoid collision we start at the first free queue
707 		 * and continue consuming queues in the same sequence
708 		 */
709 		if (adapter->vfs_allocated_count) {
710 			for (; i < adapter->rss_queues; i++)
711 				adapter->rx_ring[i]->reg_idx = rbase_offset +
712 							       Q_IDX_82576(i);
713 		}
714 		fallthrough;
715 	case e1000_82575:
716 	case e1000_82580:
717 	case e1000_i350:
718 	case e1000_i354:
719 	case e1000_i210:
720 	case e1000_i211:
721 	default:
722 		for (; i < adapter->num_rx_queues; i++)
723 			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
724 		for (; j < adapter->num_tx_queues; j++)
725 			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
726 		break;
727 	}
728 }
729 
730 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
731 {
732 	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
733 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
734 	u32 value = 0;
735 
736 	if (E1000_REMOVED(hw_addr))
737 		return ~value;
738 
739 	value = readl(&hw_addr[reg]);
740 
741 	/* reads should not return all F's */
742 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
743 		struct net_device *netdev = igb->netdev;
744 		hw->hw_addr = NULL;
745 		netdev_err(netdev, "PCIe link lost\n");
746 		WARN(pci_device_is_present(igb->pdev),
747 		     "igb: Failed to read reg 0x%x!\n", reg);
748 	}
749 
750 	return value;
751 }
752 
753 /**
754  *  igb_write_ivar - configure ivar for given MSI-X vector
755  *  @hw: pointer to the HW structure
756  *  @msix_vector: vector number we are allocating to a given ring
757  *  @index: row index of IVAR register to write within IVAR table
758  *  @offset: column offset of in IVAR, should be multiple of 8
759  *
760  *  This function is intended to handle the writing of the IVAR register
761  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
762  *  each containing an cause allocation for an Rx and Tx ring, and a
763  *  variable number of rows depending on the number of queues supported.
764  **/
765 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
766 			   int index, int offset)
767 {
768 	u32 ivar = array_rd32(E1000_IVAR0, index);
769 
770 	/* clear any bits that are currently set */
771 	ivar &= ~((u32)0xFF << offset);
772 
773 	/* write vector and valid bit */
774 	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
775 
776 	array_wr32(E1000_IVAR0, index, ivar);
777 }
778 
779 #define IGB_N0_QUEUE -1
780 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
781 {
782 	struct igb_adapter *adapter = q_vector->adapter;
783 	struct e1000_hw *hw = &adapter->hw;
784 	int rx_queue = IGB_N0_QUEUE;
785 	int tx_queue = IGB_N0_QUEUE;
786 	u32 msixbm = 0;
787 
788 	if (q_vector->rx.ring)
789 		rx_queue = q_vector->rx.ring->reg_idx;
790 	if (q_vector->tx.ring)
791 		tx_queue = q_vector->tx.ring->reg_idx;
792 
793 	switch (hw->mac.type) {
794 	case e1000_82575:
795 		/* The 82575 assigns vectors using a bitmask, which matches the
796 		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
797 		 * or more queues to a vector, we write the appropriate bits
798 		 * into the MSIXBM register for that vector.
799 		 */
800 		if (rx_queue > IGB_N0_QUEUE)
801 			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
802 		if (tx_queue > IGB_N0_QUEUE)
803 			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
804 		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
805 			msixbm |= E1000_EIMS_OTHER;
806 		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
807 		q_vector->eims_value = msixbm;
808 		break;
809 	case e1000_82576:
810 		/* 82576 uses a table that essentially consists of 2 columns
811 		 * with 8 rows.  The ordering is column-major so we use the
812 		 * lower 3 bits as the row index, and the 4th bit as the
813 		 * column offset.
814 		 */
815 		if (rx_queue > IGB_N0_QUEUE)
816 			igb_write_ivar(hw, msix_vector,
817 				       rx_queue & 0x7,
818 				       (rx_queue & 0x8) << 1);
819 		if (tx_queue > IGB_N0_QUEUE)
820 			igb_write_ivar(hw, msix_vector,
821 				       tx_queue & 0x7,
822 				       ((tx_queue & 0x8) << 1) + 8);
823 		q_vector->eims_value = BIT(msix_vector);
824 		break;
825 	case e1000_82580:
826 	case e1000_i350:
827 	case e1000_i354:
828 	case e1000_i210:
829 	case e1000_i211:
830 		/* On 82580 and newer adapters the scheme is similar to 82576
831 		 * however instead of ordering column-major we have things
832 		 * ordered row-major.  So we traverse the table by using
833 		 * bit 0 as the column offset, and the remaining bits as the
834 		 * row index.
835 		 */
836 		if (rx_queue > IGB_N0_QUEUE)
837 			igb_write_ivar(hw, msix_vector,
838 				       rx_queue >> 1,
839 				       (rx_queue & 0x1) << 4);
840 		if (tx_queue > IGB_N0_QUEUE)
841 			igb_write_ivar(hw, msix_vector,
842 				       tx_queue >> 1,
843 				       ((tx_queue & 0x1) << 4) + 8);
844 		q_vector->eims_value = BIT(msix_vector);
845 		break;
846 	default:
847 		BUG();
848 		break;
849 	}
850 
851 	/* add q_vector eims value to global eims_enable_mask */
852 	adapter->eims_enable_mask |= q_vector->eims_value;
853 
854 	/* configure q_vector to set itr on first interrupt */
855 	q_vector->set_itr = 1;
856 }
857 
858 /**
859  *  igb_configure_msix - Configure MSI-X hardware
860  *  @adapter: board private structure to initialize
861  *
862  *  igb_configure_msix sets up the hardware to properly
863  *  generate MSI-X interrupts.
864  **/
865 static void igb_configure_msix(struct igb_adapter *adapter)
866 {
867 	u32 tmp;
868 	int i, vector = 0;
869 	struct e1000_hw *hw = &adapter->hw;
870 
871 	adapter->eims_enable_mask = 0;
872 
873 	/* set vector for other causes, i.e. link changes */
874 	switch (hw->mac.type) {
875 	case e1000_82575:
876 		tmp = rd32(E1000_CTRL_EXT);
877 		/* enable MSI-X PBA support*/
878 		tmp |= E1000_CTRL_EXT_PBA_CLR;
879 
880 		/* Auto-Mask interrupts upon ICR read. */
881 		tmp |= E1000_CTRL_EXT_EIAME;
882 		tmp |= E1000_CTRL_EXT_IRCA;
883 
884 		wr32(E1000_CTRL_EXT, tmp);
885 
886 		/* enable msix_other interrupt */
887 		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
888 		adapter->eims_other = E1000_EIMS_OTHER;
889 
890 		break;
891 
892 	case e1000_82576:
893 	case e1000_82580:
894 	case e1000_i350:
895 	case e1000_i354:
896 	case e1000_i210:
897 	case e1000_i211:
898 		/* Turn on MSI-X capability first, or our settings
899 		 * won't stick.  And it will take days to debug.
900 		 */
901 		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
902 		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
903 		     E1000_GPIE_NSICR);
904 
905 		/* enable msix_other interrupt */
906 		adapter->eims_other = BIT(vector);
907 		tmp = (vector++ | E1000_IVAR_VALID) << 8;
908 
909 		wr32(E1000_IVAR_MISC, tmp);
910 		break;
911 	default:
912 		/* do nothing, since nothing else supports MSI-X */
913 		break;
914 	} /* switch (hw->mac.type) */
915 
916 	adapter->eims_enable_mask |= adapter->eims_other;
917 
918 	for (i = 0; i < adapter->num_q_vectors; i++)
919 		igb_assign_vector(adapter->q_vector[i], vector++);
920 
921 	wrfl();
922 }
923 
924 /**
925  *  igb_request_msix - Initialize MSI-X interrupts
926  *  @adapter: board private structure to initialize
927  *
928  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
929  *  kernel.
930  **/
931 static int igb_request_msix(struct igb_adapter *adapter)
932 {
933 	struct net_device *netdev = adapter->netdev;
934 	int i, err = 0, vector = 0, free_vector = 0;
935 
936 	err = request_irq(adapter->msix_entries[vector].vector,
937 			  igb_msix_other, 0, netdev->name, adapter);
938 	if (err)
939 		goto err_out;
940 
941 	for (i = 0; i < adapter->num_q_vectors; i++) {
942 		struct igb_q_vector *q_vector = adapter->q_vector[i];
943 
944 		vector++;
945 
946 		q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
947 
948 		if (q_vector->rx.ring && q_vector->tx.ring)
949 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
950 				q_vector->rx.ring->queue_index);
951 		else if (q_vector->tx.ring)
952 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
953 				q_vector->tx.ring->queue_index);
954 		else if (q_vector->rx.ring)
955 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
956 				q_vector->rx.ring->queue_index);
957 		else
958 			sprintf(q_vector->name, "%s-unused", netdev->name);
959 
960 		err = request_irq(adapter->msix_entries[vector].vector,
961 				  igb_msix_ring, 0, q_vector->name,
962 				  q_vector);
963 		if (err)
964 			goto err_free;
965 	}
966 
967 	igb_configure_msix(adapter);
968 	return 0;
969 
970 err_free:
971 	/* free already assigned IRQs */
972 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
973 
974 	vector--;
975 	for (i = 0; i < vector; i++) {
976 		free_irq(adapter->msix_entries[free_vector++].vector,
977 			 adapter->q_vector[i]);
978 	}
979 err_out:
980 	return err;
981 }
982 
983 /**
984  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
985  *  @adapter: board private structure to initialize
986  *  @v_idx: Index of vector to be freed
987  *
988  *  This function frees the memory allocated to the q_vector.
989  **/
990 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
991 {
992 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
993 
994 	adapter->q_vector[v_idx] = NULL;
995 
996 	/* igb_get_stats64() might access the rings on this vector,
997 	 * we must wait a grace period before freeing it.
998 	 */
999 	if (q_vector)
1000 		kfree_rcu(q_vector, rcu);
1001 }
1002 
1003 /**
1004  *  igb_reset_q_vector - Reset config for interrupt vector
1005  *  @adapter: board private structure to initialize
1006  *  @v_idx: Index of vector to be reset
1007  *
1008  *  If NAPI is enabled it will delete any references to the
1009  *  NAPI struct. This is preparation for igb_free_q_vector.
1010  **/
1011 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1012 {
1013 	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1014 
1015 	/* Coming from igb_set_interrupt_capability, the vectors are not yet
1016 	 * allocated. So, q_vector is NULL so we should stop here.
1017 	 */
1018 	if (!q_vector)
1019 		return;
1020 
1021 	if (q_vector->tx.ring)
1022 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1023 
1024 	if (q_vector->rx.ring)
1025 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1026 
1027 	netif_napi_del(&q_vector->napi);
1028 
1029 }
1030 
1031 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1032 {
1033 	int v_idx = adapter->num_q_vectors;
1034 
1035 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1036 		pci_disable_msix(adapter->pdev);
1037 	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1038 		pci_disable_msi(adapter->pdev);
1039 
1040 	while (v_idx--)
1041 		igb_reset_q_vector(adapter, v_idx);
1042 }
1043 
1044 /**
1045  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1046  *  @adapter: board private structure to initialize
1047  *
1048  *  This function frees the memory allocated to the q_vectors.  In addition if
1049  *  NAPI is enabled it will delete any references to the NAPI struct prior
1050  *  to freeing the q_vector.
1051  **/
1052 static void igb_free_q_vectors(struct igb_adapter *adapter)
1053 {
1054 	int v_idx = adapter->num_q_vectors;
1055 
1056 	adapter->num_tx_queues = 0;
1057 	adapter->num_rx_queues = 0;
1058 	adapter->num_q_vectors = 0;
1059 
1060 	while (v_idx--) {
1061 		igb_reset_q_vector(adapter, v_idx);
1062 		igb_free_q_vector(adapter, v_idx);
1063 	}
1064 }
1065 
1066 /**
1067  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1068  *  @adapter: board private structure to initialize
1069  *
1070  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1071  *  MSI-X interrupts allocated.
1072  */
1073 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1074 {
1075 	igb_free_q_vectors(adapter);
1076 	igb_reset_interrupt_capability(adapter);
1077 }
1078 
1079 /**
1080  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1081  *  @adapter: board private structure to initialize
1082  *  @msix: boolean value of MSIX capability
1083  *
1084  *  Attempt to configure interrupts using the best available
1085  *  capabilities of the hardware and kernel.
1086  **/
1087 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1088 {
1089 	int err;
1090 	int numvecs, i;
1091 
1092 	if (!msix)
1093 		goto msi_only;
1094 	adapter->flags |= IGB_FLAG_HAS_MSIX;
1095 
1096 	/* Number of supported queues. */
1097 	adapter->num_rx_queues = adapter->rss_queues;
1098 	if (adapter->vfs_allocated_count)
1099 		adapter->num_tx_queues = 1;
1100 	else
1101 		adapter->num_tx_queues = adapter->rss_queues;
1102 
1103 	/* start with one vector for every Rx queue */
1104 	numvecs = adapter->num_rx_queues;
1105 
1106 	/* if Tx handler is separate add 1 for every Tx queue */
1107 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1108 		numvecs += adapter->num_tx_queues;
1109 
1110 	/* store the number of vectors reserved for queues */
1111 	adapter->num_q_vectors = numvecs;
1112 
1113 	/* add 1 vector for link status interrupts */
1114 	numvecs++;
1115 	for (i = 0; i < numvecs; i++)
1116 		adapter->msix_entries[i].entry = i;
1117 
1118 	err = pci_enable_msix_range(adapter->pdev,
1119 				    adapter->msix_entries,
1120 				    numvecs,
1121 				    numvecs);
1122 	if (err > 0)
1123 		return;
1124 
1125 	igb_reset_interrupt_capability(adapter);
1126 
1127 	/* If we can't do MSI-X, try MSI */
1128 msi_only:
1129 	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1130 #ifdef CONFIG_PCI_IOV
1131 	/* disable SR-IOV for non MSI-X configurations */
1132 	if (adapter->vf_data) {
1133 		struct e1000_hw *hw = &adapter->hw;
1134 		/* disable iov and allow time for transactions to clear */
1135 		pci_disable_sriov(adapter->pdev);
1136 		msleep(500);
1137 
1138 		kfree(adapter->vf_mac_list);
1139 		adapter->vf_mac_list = NULL;
1140 		kfree(adapter->vf_data);
1141 		adapter->vf_data = NULL;
1142 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1143 		wrfl();
1144 		msleep(100);
1145 		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1146 	}
1147 #endif
1148 	adapter->vfs_allocated_count = 0;
1149 	adapter->rss_queues = 1;
1150 	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1151 	adapter->num_rx_queues = 1;
1152 	adapter->num_tx_queues = 1;
1153 	adapter->num_q_vectors = 1;
1154 	if (!pci_enable_msi(adapter->pdev))
1155 		adapter->flags |= IGB_FLAG_HAS_MSI;
1156 }
1157 
1158 static void igb_add_ring(struct igb_ring *ring,
1159 			 struct igb_ring_container *head)
1160 {
1161 	head->ring = ring;
1162 	head->count++;
1163 }
1164 
1165 /**
1166  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1167  *  @adapter: board private structure to initialize
1168  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1169  *  @v_idx: index of vector in adapter struct
1170  *  @txr_count: total number of Tx rings to allocate
1171  *  @txr_idx: index of first Tx ring to allocate
1172  *  @rxr_count: total number of Rx rings to allocate
1173  *  @rxr_idx: index of first Rx ring to allocate
1174  *
1175  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1176  **/
1177 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1178 			      int v_count, int v_idx,
1179 			      int txr_count, int txr_idx,
1180 			      int rxr_count, int rxr_idx)
1181 {
1182 	struct igb_q_vector *q_vector;
1183 	struct igb_ring *ring;
1184 	int ring_count;
1185 	size_t size;
1186 
1187 	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1188 	if (txr_count > 1 || rxr_count > 1)
1189 		return -ENOMEM;
1190 
1191 	ring_count = txr_count + rxr_count;
1192 	size = struct_size(q_vector, ring, ring_count);
1193 
1194 	/* allocate q_vector and rings */
1195 	q_vector = adapter->q_vector[v_idx];
1196 	if (!q_vector) {
1197 		q_vector = kzalloc(size, GFP_KERNEL);
1198 	} else if (size > ksize(q_vector)) {
1199 		kfree_rcu(q_vector, rcu);
1200 		q_vector = kzalloc(size, GFP_KERNEL);
1201 	} else {
1202 		memset(q_vector, 0, size);
1203 	}
1204 	if (!q_vector)
1205 		return -ENOMEM;
1206 
1207 	/* initialize NAPI */
1208 	netif_napi_add(adapter->netdev, &q_vector->napi,
1209 		       igb_poll, 64);
1210 
1211 	/* tie q_vector and adapter together */
1212 	adapter->q_vector[v_idx] = q_vector;
1213 	q_vector->adapter = adapter;
1214 
1215 	/* initialize work limits */
1216 	q_vector->tx.work_limit = adapter->tx_work_limit;
1217 
1218 	/* initialize ITR configuration */
1219 	q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1220 	q_vector->itr_val = IGB_START_ITR;
1221 
1222 	/* initialize pointer to rings */
1223 	ring = q_vector->ring;
1224 
1225 	/* intialize ITR */
1226 	if (rxr_count) {
1227 		/* rx or rx/tx vector */
1228 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1229 			q_vector->itr_val = adapter->rx_itr_setting;
1230 	} else {
1231 		/* tx only vector */
1232 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1233 			q_vector->itr_val = adapter->tx_itr_setting;
1234 	}
1235 
1236 	if (txr_count) {
1237 		/* assign generic ring traits */
1238 		ring->dev = &adapter->pdev->dev;
1239 		ring->netdev = adapter->netdev;
1240 
1241 		/* configure backlink on ring */
1242 		ring->q_vector = q_vector;
1243 
1244 		/* update q_vector Tx values */
1245 		igb_add_ring(ring, &q_vector->tx);
1246 
1247 		/* For 82575, context index must be unique per ring. */
1248 		if (adapter->hw.mac.type == e1000_82575)
1249 			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1250 
1251 		/* apply Tx specific ring traits */
1252 		ring->count = adapter->tx_ring_count;
1253 		ring->queue_index = txr_idx;
1254 
1255 		ring->cbs_enable = false;
1256 		ring->idleslope = 0;
1257 		ring->sendslope = 0;
1258 		ring->hicredit = 0;
1259 		ring->locredit = 0;
1260 
1261 		u64_stats_init(&ring->tx_syncp);
1262 		u64_stats_init(&ring->tx_syncp2);
1263 
1264 		/* assign ring to adapter */
1265 		adapter->tx_ring[txr_idx] = ring;
1266 
1267 		/* push pointer to next ring */
1268 		ring++;
1269 	}
1270 
1271 	if (rxr_count) {
1272 		/* assign generic ring traits */
1273 		ring->dev = &adapter->pdev->dev;
1274 		ring->netdev = adapter->netdev;
1275 
1276 		/* configure backlink on ring */
1277 		ring->q_vector = q_vector;
1278 
1279 		/* update q_vector Rx values */
1280 		igb_add_ring(ring, &q_vector->rx);
1281 
1282 		/* set flag indicating ring supports SCTP checksum offload */
1283 		if (adapter->hw.mac.type >= e1000_82576)
1284 			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1285 
1286 		/* On i350, i354, i210, and i211, loopback VLAN packets
1287 		 * have the tag byte-swapped.
1288 		 */
1289 		if (adapter->hw.mac.type >= e1000_i350)
1290 			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1291 
1292 		/* apply Rx specific ring traits */
1293 		ring->count = adapter->rx_ring_count;
1294 		ring->queue_index = rxr_idx;
1295 
1296 		u64_stats_init(&ring->rx_syncp);
1297 
1298 		/* assign ring to adapter */
1299 		adapter->rx_ring[rxr_idx] = ring;
1300 	}
1301 
1302 	return 0;
1303 }
1304 
1305 
1306 /**
1307  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1308  *  @adapter: board private structure to initialize
1309  *
1310  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1311  *  return -ENOMEM.
1312  **/
1313 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1314 {
1315 	int q_vectors = adapter->num_q_vectors;
1316 	int rxr_remaining = adapter->num_rx_queues;
1317 	int txr_remaining = adapter->num_tx_queues;
1318 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1319 	int err;
1320 
1321 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1322 		for (; rxr_remaining; v_idx++) {
1323 			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1324 						 0, 0, 1, rxr_idx);
1325 
1326 			if (err)
1327 				goto err_out;
1328 
1329 			/* update counts and index */
1330 			rxr_remaining--;
1331 			rxr_idx++;
1332 		}
1333 	}
1334 
1335 	for (; v_idx < q_vectors; v_idx++) {
1336 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1337 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1338 
1339 		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1340 					 tqpv, txr_idx, rqpv, rxr_idx);
1341 
1342 		if (err)
1343 			goto err_out;
1344 
1345 		/* update counts and index */
1346 		rxr_remaining -= rqpv;
1347 		txr_remaining -= tqpv;
1348 		rxr_idx++;
1349 		txr_idx++;
1350 	}
1351 
1352 	return 0;
1353 
1354 err_out:
1355 	adapter->num_tx_queues = 0;
1356 	adapter->num_rx_queues = 0;
1357 	adapter->num_q_vectors = 0;
1358 
1359 	while (v_idx--)
1360 		igb_free_q_vector(adapter, v_idx);
1361 
1362 	return -ENOMEM;
1363 }
1364 
1365 /**
1366  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1367  *  @adapter: board private structure to initialize
1368  *  @msix: boolean value of MSIX capability
1369  *
1370  *  This function initializes the interrupts and allocates all of the queues.
1371  **/
1372 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1373 {
1374 	struct pci_dev *pdev = adapter->pdev;
1375 	int err;
1376 
1377 	igb_set_interrupt_capability(adapter, msix);
1378 
1379 	err = igb_alloc_q_vectors(adapter);
1380 	if (err) {
1381 		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1382 		goto err_alloc_q_vectors;
1383 	}
1384 
1385 	igb_cache_ring_register(adapter);
1386 
1387 	return 0;
1388 
1389 err_alloc_q_vectors:
1390 	igb_reset_interrupt_capability(adapter);
1391 	return err;
1392 }
1393 
1394 /**
1395  *  igb_request_irq - initialize interrupts
1396  *  @adapter: board private structure to initialize
1397  *
1398  *  Attempts to configure interrupts using the best available
1399  *  capabilities of the hardware and kernel.
1400  **/
1401 static int igb_request_irq(struct igb_adapter *adapter)
1402 {
1403 	struct net_device *netdev = adapter->netdev;
1404 	struct pci_dev *pdev = adapter->pdev;
1405 	int err = 0;
1406 
1407 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1408 		err = igb_request_msix(adapter);
1409 		if (!err)
1410 			goto request_done;
1411 		/* fall back to MSI */
1412 		igb_free_all_tx_resources(adapter);
1413 		igb_free_all_rx_resources(adapter);
1414 
1415 		igb_clear_interrupt_scheme(adapter);
1416 		err = igb_init_interrupt_scheme(adapter, false);
1417 		if (err)
1418 			goto request_done;
1419 
1420 		igb_setup_all_tx_resources(adapter);
1421 		igb_setup_all_rx_resources(adapter);
1422 		igb_configure(adapter);
1423 	}
1424 
1425 	igb_assign_vector(adapter->q_vector[0], 0);
1426 
1427 	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1428 		err = request_irq(pdev->irq, igb_intr_msi, 0,
1429 				  netdev->name, adapter);
1430 		if (!err)
1431 			goto request_done;
1432 
1433 		/* fall back to legacy interrupts */
1434 		igb_reset_interrupt_capability(adapter);
1435 		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1436 	}
1437 
1438 	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1439 			  netdev->name, adapter);
1440 
1441 	if (err)
1442 		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1443 			err);
1444 
1445 request_done:
1446 	return err;
1447 }
1448 
1449 static void igb_free_irq(struct igb_adapter *adapter)
1450 {
1451 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1452 		int vector = 0, i;
1453 
1454 		free_irq(adapter->msix_entries[vector++].vector, adapter);
1455 
1456 		for (i = 0; i < adapter->num_q_vectors; i++)
1457 			free_irq(adapter->msix_entries[vector++].vector,
1458 				 adapter->q_vector[i]);
1459 	} else {
1460 		free_irq(adapter->pdev->irq, adapter);
1461 	}
1462 }
1463 
1464 /**
1465  *  igb_irq_disable - Mask off interrupt generation on the NIC
1466  *  @adapter: board private structure
1467  **/
1468 static void igb_irq_disable(struct igb_adapter *adapter)
1469 {
1470 	struct e1000_hw *hw = &adapter->hw;
1471 
1472 	/* we need to be careful when disabling interrupts.  The VFs are also
1473 	 * mapped into these registers and so clearing the bits can cause
1474 	 * issues on the VF drivers so we only need to clear what we set
1475 	 */
1476 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1477 		u32 regval = rd32(E1000_EIAM);
1478 
1479 		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1480 		wr32(E1000_EIMC, adapter->eims_enable_mask);
1481 		regval = rd32(E1000_EIAC);
1482 		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1483 	}
1484 
1485 	wr32(E1000_IAM, 0);
1486 	wr32(E1000_IMC, ~0);
1487 	wrfl();
1488 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1489 		int i;
1490 
1491 		for (i = 0; i < adapter->num_q_vectors; i++)
1492 			synchronize_irq(adapter->msix_entries[i].vector);
1493 	} else {
1494 		synchronize_irq(adapter->pdev->irq);
1495 	}
1496 }
1497 
1498 /**
1499  *  igb_irq_enable - Enable default interrupt generation settings
1500  *  @adapter: board private structure
1501  **/
1502 static void igb_irq_enable(struct igb_adapter *adapter)
1503 {
1504 	struct e1000_hw *hw = &adapter->hw;
1505 
1506 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1507 		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1508 		u32 regval = rd32(E1000_EIAC);
1509 
1510 		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1511 		regval = rd32(E1000_EIAM);
1512 		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1513 		wr32(E1000_EIMS, adapter->eims_enable_mask);
1514 		if (adapter->vfs_allocated_count) {
1515 			wr32(E1000_MBVFIMR, 0xFF);
1516 			ims |= E1000_IMS_VMMB;
1517 		}
1518 		wr32(E1000_IMS, ims);
1519 	} else {
1520 		wr32(E1000_IMS, IMS_ENABLE_MASK |
1521 				E1000_IMS_DRSTA);
1522 		wr32(E1000_IAM, IMS_ENABLE_MASK |
1523 				E1000_IMS_DRSTA);
1524 	}
1525 }
1526 
1527 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1528 {
1529 	struct e1000_hw *hw = &adapter->hw;
1530 	u16 pf_id = adapter->vfs_allocated_count;
1531 	u16 vid = adapter->hw.mng_cookie.vlan_id;
1532 	u16 old_vid = adapter->mng_vlan_id;
1533 
1534 	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1535 		/* add VID to filter table */
1536 		igb_vfta_set(hw, vid, pf_id, true, true);
1537 		adapter->mng_vlan_id = vid;
1538 	} else {
1539 		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1540 	}
1541 
1542 	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1543 	    (vid != old_vid) &&
1544 	    !test_bit(old_vid, adapter->active_vlans)) {
1545 		/* remove VID from filter table */
1546 		igb_vfta_set(hw, vid, pf_id, false, true);
1547 	}
1548 }
1549 
1550 /**
1551  *  igb_release_hw_control - release control of the h/w to f/w
1552  *  @adapter: address of board private structure
1553  *
1554  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1555  *  For ASF and Pass Through versions of f/w this means that the
1556  *  driver is no longer loaded.
1557  **/
1558 static void igb_release_hw_control(struct igb_adapter *adapter)
1559 {
1560 	struct e1000_hw *hw = &adapter->hw;
1561 	u32 ctrl_ext;
1562 
1563 	/* Let firmware take over control of h/w */
1564 	ctrl_ext = rd32(E1000_CTRL_EXT);
1565 	wr32(E1000_CTRL_EXT,
1566 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1567 }
1568 
1569 /**
1570  *  igb_get_hw_control - get control of the h/w from f/w
1571  *  @adapter: address of board private structure
1572  *
1573  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1574  *  For ASF and Pass Through versions of f/w this means that
1575  *  the driver is loaded.
1576  **/
1577 static void igb_get_hw_control(struct igb_adapter *adapter)
1578 {
1579 	struct e1000_hw *hw = &adapter->hw;
1580 	u32 ctrl_ext;
1581 
1582 	/* Let firmware know the driver has taken over */
1583 	ctrl_ext = rd32(E1000_CTRL_EXT);
1584 	wr32(E1000_CTRL_EXT,
1585 			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1586 }
1587 
1588 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1589 {
1590 	struct net_device *netdev = adapter->netdev;
1591 	struct e1000_hw *hw = &adapter->hw;
1592 
1593 	WARN_ON(hw->mac.type != e1000_i210);
1594 
1595 	if (enable)
1596 		adapter->flags |= IGB_FLAG_FQTSS;
1597 	else
1598 		adapter->flags &= ~IGB_FLAG_FQTSS;
1599 
1600 	if (netif_running(netdev))
1601 		schedule_work(&adapter->reset_task);
1602 }
1603 
1604 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1605 {
1606 	return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1607 }
1608 
1609 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1610 				   enum tx_queue_prio prio)
1611 {
1612 	u32 val;
1613 
1614 	WARN_ON(hw->mac.type != e1000_i210);
1615 	WARN_ON(queue < 0 || queue > 4);
1616 
1617 	val = rd32(E1000_I210_TXDCTL(queue));
1618 
1619 	if (prio == TX_QUEUE_PRIO_HIGH)
1620 		val |= E1000_TXDCTL_PRIORITY;
1621 	else
1622 		val &= ~E1000_TXDCTL_PRIORITY;
1623 
1624 	wr32(E1000_I210_TXDCTL(queue), val);
1625 }
1626 
1627 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1628 {
1629 	u32 val;
1630 
1631 	WARN_ON(hw->mac.type != e1000_i210);
1632 	WARN_ON(queue < 0 || queue > 1);
1633 
1634 	val = rd32(E1000_I210_TQAVCC(queue));
1635 
1636 	if (mode == QUEUE_MODE_STREAM_RESERVATION)
1637 		val |= E1000_TQAVCC_QUEUEMODE;
1638 	else
1639 		val &= ~E1000_TQAVCC_QUEUEMODE;
1640 
1641 	wr32(E1000_I210_TQAVCC(queue), val);
1642 }
1643 
1644 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1645 {
1646 	int i;
1647 
1648 	for (i = 0; i < adapter->num_tx_queues; i++) {
1649 		if (adapter->tx_ring[i]->cbs_enable)
1650 			return true;
1651 	}
1652 
1653 	return false;
1654 }
1655 
1656 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1657 {
1658 	int i;
1659 
1660 	for (i = 0; i < adapter->num_tx_queues; i++) {
1661 		if (adapter->tx_ring[i]->launchtime_enable)
1662 			return true;
1663 	}
1664 
1665 	return false;
1666 }
1667 
1668 /**
1669  *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1670  *  @adapter: pointer to adapter struct
1671  *  @queue: queue number
1672  *
1673  *  Configure CBS and Launchtime for a given hardware queue.
1674  *  Parameters are retrieved from the correct Tx ring, so
1675  *  igb_save_cbs_params() and igb_save_txtime_params() should be used
1676  *  for setting those correctly prior to this function being called.
1677  **/
1678 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1679 {
1680 	struct igb_ring *ring = adapter->tx_ring[queue];
1681 	struct net_device *netdev = adapter->netdev;
1682 	struct e1000_hw *hw = &adapter->hw;
1683 	u32 tqavcc, tqavctrl;
1684 	u16 value;
1685 
1686 	WARN_ON(hw->mac.type != e1000_i210);
1687 	WARN_ON(queue < 0 || queue > 1);
1688 
1689 	/* If any of the Qav features is enabled, configure queues as SR and
1690 	 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1691 	 * as SP.
1692 	 */
1693 	if (ring->cbs_enable || ring->launchtime_enable) {
1694 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1695 		set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1696 	} else {
1697 		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1698 		set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1699 	}
1700 
1701 	/* If CBS is enabled, set DataTranARB and config its parameters. */
1702 	if (ring->cbs_enable || queue == 0) {
1703 		/* i210 does not allow the queue 0 to be in the Strict
1704 		 * Priority mode while the Qav mode is enabled, so,
1705 		 * instead of disabling strict priority mode, we give
1706 		 * queue 0 the maximum of credits possible.
1707 		 *
1708 		 * See section 8.12.19 of the i210 datasheet, "Note:
1709 		 * Queue0 QueueMode must be set to 1b when
1710 		 * TransmitMode is set to Qav."
1711 		 */
1712 		if (queue == 0 && !ring->cbs_enable) {
1713 			/* max "linkspeed" idleslope in kbps */
1714 			ring->idleslope = 1000000;
1715 			ring->hicredit = ETH_FRAME_LEN;
1716 		}
1717 
1718 		/* Always set data transfer arbitration to credit-based
1719 		 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1720 		 * the queues.
1721 		 */
1722 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1723 		tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1724 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1725 
1726 		/* According to i210 datasheet section 7.2.7.7, we should set
1727 		 * the 'idleSlope' field from TQAVCC register following the
1728 		 * equation:
1729 		 *
1730 		 * For 100 Mbps link speed:
1731 		 *
1732 		 *     value = BW * 0x7735 * 0.2                          (E1)
1733 		 *
1734 		 * For 1000Mbps link speed:
1735 		 *
1736 		 *     value = BW * 0x7735 * 2                            (E2)
1737 		 *
1738 		 * E1 and E2 can be merged into one equation as shown below.
1739 		 * Note that 'link-speed' is in Mbps.
1740 		 *
1741 		 *     value = BW * 0x7735 * 2 * link-speed
1742 		 *                           --------------               (E3)
1743 		 *                                1000
1744 		 *
1745 		 * 'BW' is the percentage bandwidth out of full link speed
1746 		 * which can be found with the following equation. Note that
1747 		 * idleSlope here is the parameter from this function which
1748 		 * is in kbps.
1749 		 *
1750 		 *     BW =     idleSlope
1751 		 *          -----------------                             (E4)
1752 		 *          link-speed * 1000
1753 		 *
1754 		 * That said, we can come up with a generic equation to
1755 		 * calculate the value we should set it TQAVCC register by
1756 		 * replacing 'BW' in E3 by E4. The resulting equation is:
1757 		 *
1758 		 * value =     idleSlope     * 0x7735 * 2 * link-speed
1759 		 *         -----------------            --------------    (E5)
1760 		 *         link-speed * 1000                 1000
1761 		 *
1762 		 * 'link-speed' is present in both sides of the fraction so
1763 		 * it is canceled out. The final equation is the following:
1764 		 *
1765 		 *     value = idleSlope * 61034
1766 		 *             -----------------                          (E6)
1767 		 *                  1000000
1768 		 *
1769 		 * NOTE: For i210, given the above, we can see that idleslope
1770 		 *       is represented in 16.38431 kbps units by the value at
1771 		 *       the TQAVCC register (1Gbps / 61034), which reduces
1772 		 *       the granularity for idleslope increments.
1773 		 *       For instance, if you want to configure a 2576kbps
1774 		 *       idleslope, the value to be written on the register
1775 		 *       would have to be 157.23. If rounded down, you end
1776 		 *       up with less bandwidth available than originally
1777 		 *       required (~2572 kbps). If rounded up, you end up
1778 		 *       with a higher bandwidth (~2589 kbps). Below the
1779 		 *       approach we take is to always round up the
1780 		 *       calculated value, so the resulting bandwidth might
1781 		 *       be slightly higher for some configurations.
1782 		 */
1783 		value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1784 
1785 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1786 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1787 		tqavcc |= value;
1788 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1789 
1790 		wr32(E1000_I210_TQAVHC(queue),
1791 		     0x80000000 + ring->hicredit * 0x7735);
1792 	} else {
1793 
1794 		/* Set idleSlope to zero. */
1795 		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1796 		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1797 		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1798 
1799 		/* Set hiCredit to zero. */
1800 		wr32(E1000_I210_TQAVHC(queue), 0);
1801 
1802 		/* If CBS is not enabled for any queues anymore, then return to
1803 		 * the default state of Data Transmission Arbitration on
1804 		 * TQAVCTRL.
1805 		 */
1806 		if (!is_any_cbs_enabled(adapter)) {
1807 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1808 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1809 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1810 		}
1811 	}
1812 
1813 	/* If LaunchTime is enabled, set DataTranTIM. */
1814 	if (ring->launchtime_enable) {
1815 		/* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1816 		 * for any of the SR queues, and configure fetchtime delta.
1817 		 * XXX NOTE:
1818 		 *     - LaunchTime will be enabled for all SR queues.
1819 		 *     - A fixed offset can be added relative to the launch
1820 		 *       time of all packets if configured at reg LAUNCH_OS0.
1821 		 *       We are keeping it as 0 for now (default value).
1822 		 */
1823 		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1824 		tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1825 		       E1000_TQAVCTRL_FETCHTIME_DELTA;
1826 		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1827 	} else {
1828 		/* If Launchtime is not enabled for any SR queues anymore,
1829 		 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1830 		 * effectively disabling Launchtime.
1831 		 */
1832 		if (!is_any_txtime_enabled(adapter)) {
1833 			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1834 			tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1835 			tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1836 			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1837 		}
1838 	}
1839 
1840 	/* XXX: In i210 controller the sendSlope and loCredit parameters from
1841 	 * CBS are not configurable by software so we don't do any 'controller
1842 	 * configuration' in respect to these parameters.
1843 	 */
1844 
1845 	netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1846 		   ring->cbs_enable ? "enabled" : "disabled",
1847 		   ring->launchtime_enable ? "enabled" : "disabled",
1848 		   queue,
1849 		   ring->idleslope, ring->sendslope,
1850 		   ring->hicredit, ring->locredit);
1851 }
1852 
1853 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1854 				  bool enable)
1855 {
1856 	struct igb_ring *ring;
1857 
1858 	if (queue < 0 || queue > adapter->num_tx_queues)
1859 		return -EINVAL;
1860 
1861 	ring = adapter->tx_ring[queue];
1862 	ring->launchtime_enable = enable;
1863 
1864 	return 0;
1865 }
1866 
1867 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1868 			       bool enable, int idleslope, int sendslope,
1869 			       int hicredit, int locredit)
1870 {
1871 	struct igb_ring *ring;
1872 
1873 	if (queue < 0 || queue > adapter->num_tx_queues)
1874 		return -EINVAL;
1875 
1876 	ring = adapter->tx_ring[queue];
1877 
1878 	ring->cbs_enable = enable;
1879 	ring->idleslope = idleslope;
1880 	ring->sendslope = sendslope;
1881 	ring->hicredit = hicredit;
1882 	ring->locredit = locredit;
1883 
1884 	return 0;
1885 }
1886 
1887 /**
1888  *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1889  *  @adapter: pointer to adapter struct
1890  *
1891  *  Configure TQAVCTRL register switching the controller's Tx mode
1892  *  if FQTSS mode is enabled or disabled. Additionally, will issue
1893  *  a call to igb_config_tx_modes() per queue so any previously saved
1894  *  Tx parameters are applied.
1895  **/
1896 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1897 {
1898 	struct net_device *netdev = adapter->netdev;
1899 	struct e1000_hw *hw = &adapter->hw;
1900 	u32 val;
1901 
1902 	/* Only i210 controller supports changing the transmission mode. */
1903 	if (hw->mac.type != e1000_i210)
1904 		return;
1905 
1906 	if (is_fqtss_enabled(adapter)) {
1907 		int i, max_queue;
1908 
1909 		/* Configure TQAVCTRL register: set transmit mode to 'Qav',
1910 		 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1911 		 * so SP queues wait for SR ones.
1912 		 */
1913 		val = rd32(E1000_I210_TQAVCTRL);
1914 		val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1915 		val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1916 		wr32(E1000_I210_TQAVCTRL, val);
1917 
1918 		/* Configure Tx and Rx packet buffers sizes as described in
1919 		 * i210 datasheet section 7.2.7.7.
1920 		 */
1921 		val = rd32(E1000_TXPBS);
1922 		val &= ~I210_TXPBSIZE_MASK;
1923 		val |= I210_TXPBSIZE_PB0_8KB | I210_TXPBSIZE_PB1_8KB |
1924 			I210_TXPBSIZE_PB2_4KB | I210_TXPBSIZE_PB3_4KB;
1925 		wr32(E1000_TXPBS, val);
1926 
1927 		val = rd32(E1000_RXPBS);
1928 		val &= ~I210_RXPBSIZE_MASK;
1929 		val |= I210_RXPBSIZE_PB_30KB;
1930 		wr32(E1000_RXPBS, val);
1931 
1932 		/* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1933 		 * register should not exceed the buffer size programmed in
1934 		 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1935 		 * so according to the datasheet we should set MAX_TPKT_SIZE to
1936 		 * 4kB / 64.
1937 		 *
1938 		 * However, when we do so, no frame from queue 2 and 3 are
1939 		 * transmitted.  It seems the MAX_TPKT_SIZE should not be great
1940 		 * or _equal_ to the buffer size programmed in TXPBS. For this
1941 		 * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1942 		 */
1943 		val = (4096 - 1) / 64;
1944 		wr32(E1000_I210_DTXMXPKTSZ, val);
1945 
1946 		/* Since FQTSS mode is enabled, apply any CBS configuration
1947 		 * previously set. If no previous CBS configuration has been
1948 		 * done, then the initial configuration is applied, which means
1949 		 * CBS is disabled.
1950 		 */
1951 		max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1952 			    adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1953 
1954 		for (i = 0; i < max_queue; i++) {
1955 			igb_config_tx_modes(adapter, i);
1956 		}
1957 	} else {
1958 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1959 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1960 		wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1961 
1962 		val = rd32(E1000_I210_TQAVCTRL);
1963 		/* According to Section 8.12.21, the other flags we've set when
1964 		 * enabling FQTSS are not relevant when disabling FQTSS so we
1965 		 * don't set they here.
1966 		 */
1967 		val &= ~E1000_TQAVCTRL_XMIT_MODE;
1968 		wr32(E1000_I210_TQAVCTRL, val);
1969 	}
1970 
1971 	netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1972 		   "enabled" : "disabled");
1973 }
1974 
1975 /**
1976  *  igb_configure - configure the hardware for RX and TX
1977  *  @adapter: private board structure
1978  **/
1979 static void igb_configure(struct igb_adapter *adapter)
1980 {
1981 	struct net_device *netdev = adapter->netdev;
1982 	int i;
1983 
1984 	igb_get_hw_control(adapter);
1985 	igb_set_rx_mode(netdev);
1986 	igb_setup_tx_mode(adapter);
1987 
1988 	igb_restore_vlan(adapter);
1989 
1990 	igb_setup_tctl(adapter);
1991 	igb_setup_mrqc(adapter);
1992 	igb_setup_rctl(adapter);
1993 
1994 	igb_nfc_filter_restore(adapter);
1995 	igb_configure_tx(adapter);
1996 	igb_configure_rx(adapter);
1997 
1998 	igb_rx_fifo_flush_82575(&adapter->hw);
1999 
2000 	/* call igb_desc_unused which always leaves
2001 	 * at least 1 descriptor unused to make sure
2002 	 * next_to_use != next_to_clean
2003 	 */
2004 	for (i = 0; i < adapter->num_rx_queues; i++) {
2005 		struct igb_ring *ring = adapter->rx_ring[i];
2006 		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2007 	}
2008 }
2009 
2010 /**
2011  *  igb_power_up_link - Power up the phy/serdes link
2012  *  @adapter: address of board private structure
2013  **/
2014 void igb_power_up_link(struct igb_adapter *adapter)
2015 {
2016 	igb_reset_phy(&adapter->hw);
2017 
2018 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2019 		igb_power_up_phy_copper(&adapter->hw);
2020 	else
2021 		igb_power_up_serdes_link_82575(&adapter->hw);
2022 
2023 	igb_setup_link(&adapter->hw);
2024 }
2025 
2026 /**
2027  *  igb_power_down_link - Power down the phy/serdes link
2028  *  @adapter: address of board private structure
2029  */
2030 static void igb_power_down_link(struct igb_adapter *adapter)
2031 {
2032 	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2033 		igb_power_down_phy_copper_82575(&adapter->hw);
2034 	else
2035 		igb_shutdown_serdes_link_82575(&adapter->hw);
2036 }
2037 
2038 /**
2039  * Detect and switch function for Media Auto Sense
2040  * @adapter: address of the board private structure
2041  **/
2042 static void igb_check_swap_media(struct igb_adapter *adapter)
2043 {
2044 	struct e1000_hw *hw = &adapter->hw;
2045 	u32 ctrl_ext, connsw;
2046 	bool swap_now = false;
2047 
2048 	ctrl_ext = rd32(E1000_CTRL_EXT);
2049 	connsw = rd32(E1000_CONNSW);
2050 
2051 	/* need to live swap if current media is copper and we have fiber/serdes
2052 	 * to go to.
2053 	 */
2054 
2055 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2056 	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2057 		swap_now = true;
2058 	} else if ((hw->phy.media_type != e1000_media_type_copper) &&
2059 		   !(connsw & E1000_CONNSW_SERDESD)) {
2060 		/* copper signal takes time to appear */
2061 		if (adapter->copper_tries < 4) {
2062 			adapter->copper_tries++;
2063 			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2064 			wr32(E1000_CONNSW, connsw);
2065 			return;
2066 		} else {
2067 			adapter->copper_tries = 0;
2068 			if ((connsw & E1000_CONNSW_PHYSD) &&
2069 			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
2070 				swap_now = true;
2071 				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2072 				wr32(E1000_CONNSW, connsw);
2073 			}
2074 		}
2075 	}
2076 
2077 	if (!swap_now)
2078 		return;
2079 
2080 	switch (hw->phy.media_type) {
2081 	case e1000_media_type_copper:
2082 		netdev_info(adapter->netdev,
2083 			"MAS: changing media to fiber/serdes\n");
2084 		ctrl_ext |=
2085 			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2086 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2087 		adapter->copper_tries = 0;
2088 		break;
2089 	case e1000_media_type_internal_serdes:
2090 	case e1000_media_type_fiber:
2091 		netdev_info(adapter->netdev,
2092 			"MAS: changing media to copper\n");
2093 		ctrl_ext &=
2094 			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2095 		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2096 		break;
2097 	default:
2098 		/* shouldn't get here during regular operation */
2099 		netdev_err(adapter->netdev,
2100 			"AMS: Invalid media type found, returning\n");
2101 		break;
2102 	}
2103 	wr32(E1000_CTRL_EXT, ctrl_ext);
2104 }
2105 
2106 /**
2107  *  igb_up - Open the interface and prepare it to handle traffic
2108  *  @adapter: board private structure
2109  **/
2110 int igb_up(struct igb_adapter *adapter)
2111 {
2112 	struct e1000_hw *hw = &adapter->hw;
2113 	int i;
2114 
2115 	/* hardware has been reset, we need to reload some things */
2116 	igb_configure(adapter);
2117 
2118 	clear_bit(__IGB_DOWN, &adapter->state);
2119 
2120 	for (i = 0; i < adapter->num_q_vectors; i++)
2121 		napi_enable(&(adapter->q_vector[i]->napi));
2122 
2123 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
2124 		igb_configure_msix(adapter);
2125 	else
2126 		igb_assign_vector(adapter->q_vector[0], 0);
2127 
2128 	/* Clear any pending interrupts. */
2129 	rd32(E1000_TSICR);
2130 	rd32(E1000_ICR);
2131 	igb_irq_enable(adapter);
2132 
2133 	/* notify VFs that reset has been completed */
2134 	if (adapter->vfs_allocated_count) {
2135 		u32 reg_data = rd32(E1000_CTRL_EXT);
2136 
2137 		reg_data |= E1000_CTRL_EXT_PFRSTD;
2138 		wr32(E1000_CTRL_EXT, reg_data);
2139 	}
2140 
2141 	netif_tx_start_all_queues(adapter->netdev);
2142 
2143 	/* start the watchdog. */
2144 	hw->mac.get_link_status = 1;
2145 	schedule_work(&adapter->watchdog_task);
2146 
2147 	if ((adapter->flags & IGB_FLAG_EEE) &&
2148 	    (!hw->dev_spec._82575.eee_disable))
2149 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2150 
2151 	return 0;
2152 }
2153 
2154 void igb_down(struct igb_adapter *adapter)
2155 {
2156 	struct net_device *netdev = adapter->netdev;
2157 	struct e1000_hw *hw = &adapter->hw;
2158 	u32 tctl, rctl;
2159 	int i;
2160 
2161 	/* signal that we're down so the interrupt handler does not
2162 	 * reschedule our watchdog timer
2163 	 */
2164 	set_bit(__IGB_DOWN, &adapter->state);
2165 
2166 	/* disable receives in the hardware */
2167 	rctl = rd32(E1000_RCTL);
2168 	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2169 	/* flush and sleep below */
2170 
2171 	igb_nfc_filter_exit(adapter);
2172 
2173 	netif_carrier_off(netdev);
2174 	netif_tx_stop_all_queues(netdev);
2175 
2176 	/* disable transmits in the hardware */
2177 	tctl = rd32(E1000_TCTL);
2178 	tctl &= ~E1000_TCTL_EN;
2179 	wr32(E1000_TCTL, tctl);
2180 	/* flush both disables and wait for them to finish */
2181 	wrfl();
2182 	usleep_range(10000, 11000);
2183 
2184 	igb_irq_disable(adapter);
2185 
2186 	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2187 
2188 	for (i = 0; i < adapter->num_q_vectors; i++) {
2189 		if (adapter->q_vector[i]) {
2190 			napi_synchronize(&adapter->q_vector[i]->napi);
2191 			napi_disable(&adapter->q_vector[i]->napi);
2192 		}
2193 	}
2194 
2195 	del_timer_sync(&adapter->watchdog_timer);
2196 	del_timer_sync(&adapter->phy_info_timer);
2197 
2198 	/* record the stats before reset*/
2199 	spin_lock(&adapter->stats64_lock);
2200 	igb_update_stats(adapter);
2201 	spin_unlock(&adapter->stats64_lock);
2202 
2203 	adapter->link_speed = 0;
2204 	adapter->link_duplex = 0;
2205 
2206 	if (!pci_channel_offline(adapter->pdev))
2207 		igb_reset(adapter);
2208 
2209 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
2210 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2211 
2212 	igb_clean_all_tx_rings(adapter);
2213 	igb_clean_all_rx_rings(adapter);
2214 #ifdef CONFIG_IGB_DCA
2215 
2216 	/* since we reset the hardware DCA settings were cleared */
2217 	igb_setup_dca(adapter);
2218 #endif
2219 }
2220 
2221 void igb_reinit_locked(struct igb_adapter *adapter)
2222 {
2223 	WARN_ON(in_interrupt());
2224 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2225 		usleep_range(1000, 2000);
2226 	igb_down(adapter);
2227 	igb_up(adapter);
2228 	clear_bit(__IGB_RESETTING, &adapter->state);
2229 }
2230 
2231 /** igb_enable_mas - Media Autosense re-enable after swap
2232  *
2233  * @adapter: adapter struct
2234  **/
2235 static void igb_enable_mas(struct igb_adapter *adapter)
2236 {
2237 	struct e1000_hw *hw = &adapter->hw;
2238 	u32 connsw = rd32(E1000_CONNSW);
2239 
2240 	/* configure for SerDes media detect */
2241 	if ((hw->phy.media_type == e1000_media_type_copper) &&
2242 	    (!(connsw & E1000_CONNSW_SERDESD))) {
2243 		connsw |= E1000_CONNSW_ENRGSRC;
2244 		connsw |= E1000_CONNSW_AUTOSENSE_EN;
2245 		wr32(E1000_CONNSW, connsw);
2246 		wrfl();
2247 	}
2248 }
2249 
2250 void igb_reset(struct igb_adapter *adapter)
2251 {
2252 	struct pci_dev *pdev = adapter->pdev;
2253 	struct e1000_hw *hw = &adapter->hw;
2254 	struct e1000_mac_info *mac = &hw->mac;
2255 	struct e1000_fc_info *fc = &hw->fc;
2256 	u32 pba, hwm;
2257 
2258 	/* Repartition Pba for greater than 9k mtu
2259 	 * To take effect CTRL.RST is required.
2260 	 */
2261 	switch (mac->type) {
2262 	case e1000_i350:
2263 	case e1000_i354:
2264 	case e1000_82580:
2265 		pba = rd32(E1000_RXPBS);
2266 		pba = igb_rxpbs_adjust_82580(pba);
2267 		break;
2268 	case e1000_82576:
2269 		pba = rd32(E1000_RXPBS);
2270 		pba &= E1000_RXPBS_SIZE_MASK_82576;
2271 		break;
2272 	case e1000_82575:
2273 	case e1000_i210:
2274 	case e1000_i211:
2275 	default:
2276 		pba = E1000_PBA_34K;
2277 		break;
2278 	}
2279 
2280 	if (mac->type == e1000_82575) {
2281 		u32 min_rx_space, min_tx_space, needed_tx_space;
2282 
2283 		/* write Rx PBA so that hardware can report correct Tx PBA */
2284 		wr32(E1000_PBA, pba);
2285 
2286 		/* To maintain wire speed transmits, the Tx FIFO should be
2287 		 * large enough to accommodate two full transmit packets,
2288 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
2289 		 * the Rx FIFO should be large enough to accommodate at least
2290 		 * one full receive packet and is similarly rounded up and
2291 		 * expressed in KB.
2292 		 */
2293 		min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2294 
2295 		/* The Tx FIFO also stores 16 bytes of information about the Tx
2296 		 * but don't include Ethernet FCS because hardware appends it.
2297 		 * We only need to round down to the nearest 512 byte block
2298 		 * count since the value we care about is 2 frames, not 1.
2299 		 */
2300 		min_tx_space = adapter->max_frame_size;
2301 		min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2302 		min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2303 
2304 		/* upper 16 bits has Tx packet buffer allocation size in KB */
2305 		needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2306 
2307 		/* If current Tx allocation is less than the min Tx FIFO size,
2308 		 * and the min Tx FIFO size is less than the current Rx FIFO
2309 		 * allocation, take space away from current Rx allocation.
2310 		 */
2311 		if (needed_tx_space < pba) {
2312 			pba -= needed_tx_space;
2313 
2314 			/* if short on Rx space, Rx wins and must trump Tx
2315 			 * adjustment
2316 			 */
2317 			if (pba < min_rx_space)
2318 				pba = min_rx_space;
2319 		}
2320 
2321 		/* adjust PBA for jumbo frames */
2322 		wr32(E1000_PBA, pba);
2323 	}
2324 
2325 	/* flow control settings
2326 	 * The high water mark must be low enough to fit one full frame
2327 	 * after transmitting the pause frame.  As such we must have enough
2328 	 * space to allow for us to complete our current transmit and then
2329 	 * receive the frame that is in progress from the link partner.
2330 	 * Set it to:
2331 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2332 	 */
2333 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2334 
2335 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
2336 	fc->low_water = fc->high_water - 16;
2337 	fc->pause_time = 0xFFFF;
2338 	fc->send_xon = 1;
2339 	fc->current_mode = fc->requested_mode;
2340 
2341 	/* disable receive for all VFs and wait one second */
2342 	if (adapter->vfs_allocated_count) {
2343 		int i;
2344 
2345 		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2346 			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2347 
2348 		/* ping all the active vfs to let them know we are going down */
2349 		igb_ping_all_vfs(adapter);
2350 
2351 		/* disable transmits and receives */
2352 		wr32(E1000_VFRE, 0);
2353 		wr32(E1000_VFTE, 0);
2354 	}
2355 
2356 	/* Allow time for pending master requests to run */
2357 	hw->mac.ops.reset_hw(hw);
2358 	wr32(E1000_WUC, 0);
2359 
2360 	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2361 		/* need to resetup here after media swap */
2362 		adapter->ei.get_invariants(hw);
2363 		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2364 	}
2365 	if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2366 	    (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2367 		igb_enable_mas(adapter);
2368 	}
2369 	if (hw->mac.ops.init_hw(hw))
2370 		dev_err(&pdev->dev, "Hardware Error\n");
2371 
2372 	/* RAR registers were cleared during init_hw, clear mac table */
2373 	igb_flush_mac_table(adapter);
2374 	__dev_uc_unsync(adapter->netdev, NULL);
2375 
2376 	/* Recover default RAR entry */
2377 	igb_set_default_mac_filter(adapter);
2378 
2379 	/* Flow control settings reset on hardware reset, so guarantee flow
2380 	 * control is off when forcing speed.
2381 	 */
2382 	if (!hw->mac.autoneg)
2383 		igb_force_mac_fc(hw);
2384 
2385 	igb_init_dmac(adapter, pba);
2386 #ifdef CONFIG_IGB_HWMON
2387 	/* Re-initialize the thermal sensor on i350 devices. */
2388 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
2389 		if (mac->type == e1000_i350 && hw->bus.func == 0) {
2390 			/* If present, re-initialize the external thermal sensor
2391 			 * interface.
2392 			 */
2393 			if (adapter->ets)
2394 				mac->ops.init_thermal_sensor_thresh(hw);
2395 		}
2396 	}
2397 #endif
2398 	/* Re-establish EEE setting */
2399 	if (hw->phy.media_type == e1000_media_type_copper) {
2400 		switch (mac->type) {
2401 		case e1000_i350:
2402 		case e1000_i210:
2403 		case e1000_i211:
2404 			igb_set_eee_i350(hw, true, true);
2405 			break;
2406 		case e1000_i354:
2407 			igb_set_eee_i354(hw, true, true);
2408 			break;
2409 		default:
2410 			break;
2411 		}
2412 	}
2413 	if (!netif_running(adapter->netdev))
2414 		igb_power_down_link(adapter);
2415 
2416 	igb_update_mng_vlan(adapter);
2417 
2418 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2419 	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2420 
2421 	/* Re-enable PTP, where applicable. */
2422 	if (adapter->ptp_flags & IGB_PTP_ENABLED)
2423 		igb_ptp_reset(adapter);
2424 
2425 	igb_get_phy_info(hw);
2426 }
2427 
2428 static netdev_features_t igb_fix_features(struct net_device *netdev,
2429 	netdev_features_t features)
2430 {
2431 	/* Since there is no support for separate Rx/Tx vlan accel
2432 	 * enable/disable make sure Tx flag is always in same state as Rx.
2433 	 */
2434 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2435 		features |= NETIF_F_HW_VLAN_CTAG_TX;
2436 	else
2437 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2438 
2439 	return features;
2440 }
2441 
2442 static int igb_set_features(struct net_device *netdev,
2443 	netdev_features_t features)
2444 {
2445 	netdev_features_t changed = netdev->features ^ features;
2446 	struct igb_adapter *adapter = netdev_priv(netdev);
2447 
2448 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2449 		igb_vlan_mode(netdev, features);
2450 
2451 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2452 		return 0;
2453 
2454 	if (!(features & NETIF_F_NTUPLE)) {
2455 		struct hlist_node *node2;
2456 		struct igb_nfc_filter *rule;
2457 
2458 		spin_lock(&adapter->nfc_lock);
2459 		hlist_for_each_entry_safe(rule, node2,
2460 					  &adapter->nfc_filter_list, nfc_node) {
2461 			igb_erase_filter(adapter, rule);
2462 			hlist_del(&rule->nfc_node);
2463 			kfree(rule);
2464 		}
2465 		spin_unlock(&adapter->nfc_lock);
2466 		adapter->nfc_filter_count = 0;
2467 	}
2468 
2469 	netdev->features = features;
2470 
2471 	if (netif_running(netdev))
2472 		igb_reinit_locked(adapter);
2473 	else
2474 		igb_reset(adapter);
2475 
2476 	return 1;
2477 }
2478 
2479 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2480 			   struct net_device *dev,
2481 			   const unsigned char *addr, u16 vid,
2482 			   u16 flags,
2483 			   struct netlink_ext_ack *extack)
2484 {
2485 	/* guarantee we can provide a unique filter for the unicast address */
2486 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2487 		struct igb_adapter *adapter = netdev_priv(dev);
2488 		int vfn = adapter->vfs_allocated_count;
2489 
2490 		if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2491 			return -ENOMEM;
2492 	}
2493 
2494 	return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2495 }
2496 
2497 #define IGB_MAX_MAC_HDR_LEN	127
2498 #define IGB_MAX_NETWORK_HDR_LEN	511
2499 
2500 static netdev_features_t
2501 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2502 		   netdev_features_t features)
2503 {
2504 	unsigned int network_hdr_len, mac_hdr_len;
2505 
2506 	/* Make certain the headers can be described by a context descriptor */
2507 	mac_hdr_len = skb_network_header(skb) - skb->data;
2508 	if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2509 		return features & ~(NETIF_F_HW_CSUM |
2510 				    NETIF_F_SCTP_CRC |
2511 				    NETIF_F_GSO_UDP_L4 |
2512 				    NETIF_F_HW_VLAN_CTAG_TX |
2513 				    NETIF_F_TSO |
2514 				    NETIF_F_TSO6);
2515 
2516 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2517 	if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2518 		return features & ~(NETIF_F_HW_CSUM |
2519 				    NETIF_F_SCTP_CRC |
2520 				    NETIF_F_GSO_UDP_L4 |
2521 				    NETIF_F_TSO |
2522 				    NETIF_F_TSO6);
2523 
2524 	/* We can only support IPV4 TSO in tunnels if we can mangle the
2525 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2526 	 */
2527 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2528 		features &= ~NETIF_F_TSO;
2529 
2530 	return features;
2531 }
2532 
2533 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2534 {
2535 	if (!is_fqtss_enabled(adapter)) {
2536 		enable_fqtss(adapter, true);
2537 		return;
2538 	}
2539 
2540 	igb_config_tx_modes(adapter, queue);
2541 
2542 	if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2543 		enable_fqtss(adapter, false);
2544 }
2545 
2546 static int igb_offload_cbs(struct igb_adapter *adapter,
2547 			   struct tc_cbs_qopt_offload *qopt)
2548 {
2549 	struct e1000_hw *hw = &adapter->hw;
2550 	int err;
2551 
2552 	/* CBS offloading is only supported by i210 controller. */
2553 	if (hw->mac.type != e1000_i210)
2554 		return -EOPNOTSUPP;
2555 
2556 	/* CBS offloading is only supported by queue 0 and queue 1. */
2557 	if (qopt->queue < 0 || qopt->queue > 1)
2558 		return -EINVAL;
2559 
2560 	err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2561 				  qopt->idleslope, qopt->sendslope,
2562 				  qopt->hicredit, qopt->locredit);
2563 	if (err)
2564 		return err;
2565 
2566 	igb_offload_apply(adapter, qopt->queue);
2567 
2568 	return 0;
2569 }
2570 
2571 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2572 #define VLAN_PRIO_FULL_MASK (0x07)
2573 
2574 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2575 				struct flow_cls_offload *f,
2576 				int traffic_class,
2577 				struct igb_nfc_filter *input)
2578 {
2579 	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2580 	struct flow_dissector *dissector = rule->match.dissector;
2581 	struct netlink_ext_ack *extack = f->common.extack;
2582 
2583 	if (dissector->used_keys &
2584 	    ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2585 	      BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2586 	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2587 	      BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2588 		NL_SET_ERR_MSG_MOD(extack,
2589 				   "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2590 		return -EOPNOTSUPP;
2591 	}
2592 
2593 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2594 		struct flow_match_eth_addrs match;
2595 
2596 		flow_rule_match_eth_addrs(rule, &match);
2597 		if (!is_zero_ether_addr(match.mask->dst)) {
2598 			if (!is_broadcast_ether_addr(match.mask->dst)) {
2599 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2600 				return -EINVAL;
2601 			}
2602 
2603 			input->filter.match_flags |=
2604 				IGB_FILTER_FLAG_DST_MAC_ADDR;
2605 			ether_addr_copy(input->filter.dst_addr, match.key->dst);
2606 		}
2607 
2608 		if (!is_zero_ether_addr(match.mask->src)) {
2609 			if (!is_broadcast_ether_addr(match.mask->src)) {
2610 				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2611 				return -EINVAL;
2612 			}
2613 
2614 			input->filter.match_flags |=
2615 				IGB_FILTER_FLAG_SRC_MAC_ADDR;
2616 			ether_addr_copy(input->filter.src_addr, match.key->src);
2617 		}
2618 	}
2619 
2620 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2621 		struct flow_match_basic match;
2622 
2623 		flow_rule_match_basic(rule, &match);
2624 		if (match.mask->n_proto) {
2625 			if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2626 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2627 				return -EINVAL;
2628 			}
2629 
2630 			input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2631 			input->filter.etype = match.key->n_proto;
2632 		}
2633 	}
2634 
2635 	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2636 		struct flow_match_vlan match;
2637 
2638 		flow_rule_match_vlan(rule, &match);
2639 		if (match.mask->vlan_priority) {
2640 			if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2641 				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2642 				return -EINVAL;
2643 			}
2644 
2645 			input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2646 			input->filter.vlan_tci = match.key->vlan_priority;
2647 		}
2648 	}
2649 
2650 	input->action = traffic_class;
2651 	input->cookie = f->cookie;
2652 
2653 	return 0;
2654 }
2655 
2656 static int igb_configure_clsflower(struct igb_adapter *adapter,
2657 				   struct flow_cls_offload *cls_flower)
2658 {
2659 	struct netlink_ext_ack *extack = cls_flower->common.extack;
2660 	struct igb_nfc_filter *filter, *f;
2661 	int err, tc;
2662 
2663 	tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2664 	if (tc < 0) {
2665 		NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2666 		return -EINVAL;
2667 	}
2668 
2669 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2670 	if (!filter)
2671 		return -ENOMEM;
2672 
2673 	err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2674 	if (err < 0)
2675 		goto err_parse;
2676 
2677 	spin_lock(&adapter->nfc_lock);
2678 
2679 	hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2680 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2681 			err = -EEXIST;
2682 			NL_SET_ERR_MSG_MOD(extack,
2683 					   "This filter is already set in ethtool");
2684 			goto err_locked;
2685 		}
2686 	}
2687 
2688 	hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2689 		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2690 			err = -EEXIST;
2691 			NL_SET_ERR_MSG_MOD(extack,
2692 					   "This filter is already set in cls_flower");
2693 			goto err_locked;
2694 		}
2695 	}
2696 
2697 	err = igb_add_filter(adapter, filter);
2698 	if (err < 0) {
2699 		NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2700 		goto err_locked;
2701 	}
2702 
2703 	hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2704 
2705 	spin_unlock(&adapter->nfc_lock);
2706 
2707 	return 0;
2708 
2709 err_locked:
2710 	spin_unlock(&adapter->nfc_lock);
2711 
2712 err_parse:
2713 	kfree(filter);
2714 
2715 	return err;
2716 }
2717 
2718 static int igb_delete_clsflower(struct igb_adapter *adapter,
2719 				struct flow_cls_offload *cls_flower)
2720 {
2721 	struct igb_nfc_filter *filter;
2722 	int err;
2723 
2724 	spin_lock(&adapter->nfc_lock);
2725 
2726 	hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2727 		if (filter->cookie == cls_flower->cookie)
2728 			break;
2729 
2730 	if (!filter) {
2731 		err = -ENOENT;
2732 		goto out;
2733 	}
2734 
2735 	err = igb_erase_filter(adapter, filter);
2736 	if (err < 0)
2737 		goto out;
2738 
2739 	hlist_del(&filter->nfc_node);
2740 	kfree(filter);
2741 
2742 out:
2743 	spin_unlock(&adapter->nfc_lock);
2744 
2745 	return err;
2746 }
2747 
2748 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2749 				   struct flow_cls_offload *cls_flower)
2750 {
2751 	switch (cls_flower->command) {
2752 	case FLOW_CLS_REPLACE:
2753 		return igb_configure_clsflower(adapter, cls_flower);
2754 	case FLOW_CLS_DESTROY:
2755 		return igb_delete_clsflower(adapter, cls_flower);
2756 	case FLOW_CLS_STATS:
2757 		return -EOPNOTSUPP;
2758 	default:
2759 		return -EOPNOTSUPP;
2760 	}
2761 }
2762 
2763 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2764 				 void *cb_priv)
2765 {
2766 	struct igb_adapter *adapter = cb_priv;
2767 
2768 	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2769 		return -EOPNOTSUPP;
2770 
2771 	switch (type) {
2772 	case TC_SETUP_CLSFLOWER:
2773 		return igb_setup_tc_cls_flower(adapter, type_data);
2774 
2775 	default:
2776 		return -EOPNOTSUPP;
2777 	}
2778 }
2779 
2780 static int igb_offload_txtime(struct igb_adapter *adapter,
2781 			      struct tc_etf_qopt_offload *qopt)
2782 {
2783 	struct e1000_hw *hw = &adapter->hw;
2784 	int err;
2785 
2786 	/* Launchtime offloading is only supported by i210 controller. */
2787 	if (hw->mac.type != e1000_i210)
2788 		return -EOPNOTSUPP;
2789 
2790 	/* Launchtime offloading is only supported by queues 0 and 1. */
2791 	if (qopt->queue < 0 || qopt->queue > 1)
2792 		return -EINVAL;
2793 
2794 	err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2795 	if (err)
2796 		return err;
2797 
2798 	igb_offload_apply(adapter, qopt->queue);
2799 
2800 	return 0;
2801 }
2802 
2803 static LIST_HEAD(igb_block_cb_list);
2804 
2805 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2806 			void *type_data)
2807 {
2808 	struct igb_adapter *adapter = netdev_priv(dev);
2809 
2810 	switch (type) {
2811 	case TC_SETUP_QDISC_CBS:
2812 		return igb_offload_cbs(adapter, type_data);
2813 	case TC_SETUP_BLOCK:
2814 		return flow_block_cb_setup_simple(type_data,
2815 						  &igb_block_cb_list,
2816 						  igb_setup_tc_block_cb,
2817 						  adapter, adapter, true);
2818 
2819 	case TC_SETUP_QDISC_ETF:
2820 		return igb_offload_txtime(adapter, type_data);
2821 
2822 	default:
2823 		return -EOPNOTSUPP;
2824 	}
2825 }
2826 
2827 static const struct net_device_ops igb_netdev_ops = {
2828 	.ndo_open		= igb_open,
2829 	.ndo_stop		= igb_close,
2830 	.ndo_start_xmit		= igb_xmit_frame,
2831 	.ndo_get_stats64	= igb_get_stats64,
2832 	.ndo_set_rx_mode	= igb_set_rx_mode,
2833 	.ndo_set_mac_address	= igb_set_mac,
2834 	.ndo_change_mtu		= igb_change_mtu,
2835 	.ndo_do_ioctl		= igb_ioctl,
2836 	.ndo_tx_timeout		= igb_tx_timeout,
2837 	.ndo_validate_addr	= eth_validate_addr,
2838 	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
2839 	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
2840 	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
2841 	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
2842 	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
2843 	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
2844 	.ndo_set_vf_trust	= igb_ndo_set_vf_trust,
2845 	.ndo_get_vf_config	= igb_ndo_get_vf_config,
2846 	.ndo_fix_features	= igb_fix_features,
2847 	.ndo_set_features	= igb_set_features,
2848 	.ndo_fdb_add		= igb_ndo_fdb_add,
2849 	.ndo_features_check	= igb_features_check,
2850 	.ndo_setup_tc		= igb_setup_tc,
2851 };
2852 
2853 /**
2854  * igb_set_fw_version - Configure version string for ethtool
2855  * @adapter: adapter struct
2856  **/
2857 void igb_set_fw_version(struct igb_adapter *adapter)
2858 {
2859 	struct e1000_hw *hw = &adapter->hw;
2860 	struct e1000_fw_version fw;
2861 
2862 	igb_get_fw_version(hw, &fw);
2863 
2864 	switch (hw->mac.type) {
2865 	case e1000_i210:
2866 	case e1000_i211:
2867 		if (!(igb_get_flash_presence_i210(hw))) {
2868 			snprintf(adapter->fw_version,
2869 				 sizeof(adapter->fw_version),
2870 				 "%2d.%2d-%d",
2871 				 fw.invm_major, fw.invm_minor,
2872 				 fw.invm_img_type);
2873 			break;
2874 		}
2875 		fallthrough;
2876 	default:
2877 		/* if option is rom valid, display its version too */
2878 		if (fw.or_valid) {
2879 			snprintf(adapter->fw_version,
2880 				 sizeof(adapter->fw_version),
2881 				 "%d.%d, 0x%08x, %d.%d.%d",
2882 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
2883 				 fw.or_major, fw.or_build, fw.or_patch);
2884 		/* no option rom */
2885 		} else if (fw.etrack_id != 0X0000) {
2886 			snprintf(adapter->fw_version,
2887 			    sizeof(adapter->fw_version),
2888 			    "%d.%d, 0x%08x",
2889 			    fw.eep_major, fw.eep_minor, fw.etrack_id);
2890 		} else {
2891 		snprintf(adapter->fw_version,
2892 		    sizeof(adapter->fw_version),
2893 		    "%d.%d.%d",
2894 		    fw.eep_major, fw.eep_minor, fw.eep_build);
2895 		}
2896 		break;
2897 	}
2898 }
2899 
2900 /**
2901  * igb_init_mas - init Media Autosense feature if enabled in the NVM
2902  *
2903  * @adapter: adapter struct
2904  **/
2905 static void igb_init_mas(struct igb_adapter *adapter)
2906 {
2907 	struct e1000_hw *hw = &adapter->hw;
2908 	u16 eeprom_data;
2909 
2910 	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2911 	switch (hw->bus.func) {
2912 	case E1000_FUNC_0:
2913 		if (eeprom_data & IGB_MAS_ENABLE_0) {
2914 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2915 			netdev_info(adapter->netdev,
2916 				"MAS: Enabling Media Autosense for port %d\n",
2917 				hw->bus.func);
2918 		}
2919 		break;
2920 	case E1000_FUNC_1:
2921 		if (eeprom_data & IGB_MAS_ENABLE_1) {
2922 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2923 			netdev_info(adapter->netdev,
2924 				"MAS: Enabling Media Autosense for port %d\n",
2925 				hw->bus.func);
2926 		}
2927 		break;
2928 	case E1000_FUNC_2:
2929 		if (eeprom_data & IGB_MAS_ENABLE_2) {
2930 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2931 			netdev_info(adapter->netdev,
2932 				"MAS: Enabling Media Autosense for port %d\n",
2933 				hw->bus.func);
2934 		}
2935 		break;
2936 	case E1000_FUNC_3:
2937 		if (eeprom_data & IGB_MAS_ENABLE_3) {
2938 			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2939 			netdev_info(adapter->netdev,
2940 				"MAS: Enabling Media Autosense for port %d\n",
2941 				hw->bus.func);
2942 		}
2943 		break;
2944 	default:
2945 		/* Shouldn't get here */
2946 		netdev_err(adapter->netdev,
2947 			"MAS: Invalid port configuration, returning\n");
2948 		break;
2949 	}
2950 }
2951 
2952 /**
2953  *  igb_init_i2c - Init I2C interface
2954  *  @adapter: pointer to adapter structure
2955  **/
2956 static s32 igb_init_i2c(struct igb_adapter *adapter)
2957 {
2958 	s32 status = 0;
2959 
2960 	/* I2C interface supported on i350 devices */
2961 	if (adapter->hw.mac.type != e1000_i350)
2962 		return 0;
2963 
2964 	/* Initialize the i2c bus which is controlled by the registers.
2965 	 * This bus will use the i2c_algo_bit structue that implements
2966 	 * the protocol through toggling of the 4 bits in the register.
2967 	 */
2968 	adapter->i2c_adap.owner = THIS_MODULE;
2969 	adapter->i2c_algo = igb_i2c_algo;
2970 	adapter->i2c_algo.data = adapter;
2971 	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2972 	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2973 	strlcpy(adapter->i2c_adap.name, "igb BB",
2974 		sizeof(adapter->i2c_adap.name));
2975 	status = i2c_bit_add_bus(&adapter->i2c_adap);
2976 	return status;
2977 }
2978 
2979 /**
2980  *  igb_probe - Device Initialization Routine
2981  *  @pdev: PCI device information struct
2982  *  @ent: entry in igb_pci_tbl
2983  *
2984  *  Returns 0 on success, negative on failure
2985  *
2986  *  igb_probe initializes an adapter identified by a pci_dev structure.
2987  *  The OS initialization, configuring of the adapter private structure,
2988  *  and a hardware reset occur.
2989  **/
2990 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2991 {
2992 	struct net_device *netdev;
2993 	struct igb_adapter *adapter;
2994 	struct e1000_hw *hw;
2995 	u16 eeprom_data = 0;
2996 	s32 ret_val;
2997 	static int global_quad_port_a; /* global quad port a indication */
2998 	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2999 	int err, pci_using_dac;
3000 	u8 part_str[E1000_PBANUM_LENGTH];
3001 
3002 	/* Catch broken hardware that put the wrong VF device ID in
3003 	 * the PCIe SR-IOV capability.
3004 	 */
3005 	if (pdev->is_virtfn) {
3006 		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
3007 			pci_name(pdev), pdev->vendor, pdev->device);
3008 		return -EINVAL;
3009 	}
3010 
3011 	err = pci_enable_device_mem(pdev);
3012 	if (err)
3013 		return err;
3014 
3015 	pci_using_dac = 0;
3016 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3017 	if (!err) {
3018 		pci_using_dac = 1;
3019 	} else {
3020 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3021 		if (err) {
3022 			dev_err(&pdev->dev,
3023 				"No usable DMA configuration, aborting\n");
3024 			goto err_dma;
3025 		}
3026 	}
3027 
3028 	err = pci_request_mem_regions(pdev, igb_driver_name);
3029 	if (err)
3030 		goto err_pci_reg;
3031 
3032 	pci_enable_pcie_error_reporting(pdev);
3033 
3034 	pci_set_master(pdev);
3035 	pci_save_state(pdev);
3036 
3037 	err = -ENOMEM;
3038 	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3039 				   IGB_MAX_TX_QUEUES);
3040 	if (!netdev)
3041 		goto err_alloc_etherdev;
3042 
3043 	SET_NETDEV_DEV(netdev, &pdev->dev);
3044 
3045 	pci_set_drvdata(pdev, netdev);
3046 	adapter = netdev_priv(netdev);
3047 	adapter->netdev = netdev;
3048 	adapter->pdev = pdev;
3049 	hw = &adapter->hw;
3050 	hw->back = adapter;
3051 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3052 
3053 	err = -EIO;
3054 	adapter->io_addr = pci_iomap(pdev, 0, 0);
3055 	if (!adapter->io_addr)
3056 		goto err_ioremap;
3057 	/* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3058 	hw->hw_addr = adapter->io_addr;
3059 
3060 	netdev->netdev_ops = &igb_netdev_ops;
3061 	igb_set_ethtool_ops(netdev);
3062 	netdev->watchdog_timeo = 5 * HZ;
3063 
3064 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3065 
3066 	netdev->mem_start = pci_resource_start(pdev, 0);
3067 	netdev->mem_end = pci_resource_end(pdev, 0);
3068 
3069 	/* PCI config space info */
3070 	hw->vendor_id = pdev->vendor;
3071 	hw->device_id = pdev->device;
3072 	hw->revision_id = pdev->revision;
3073 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3074 	hw->subsystem_device_id = pdev->subsystem_device;
3075 
3076 	/* Copy the default MAC, PHY and NVM function pointers */
3077 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3078 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3079 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3080 	/* Initialize skew-specific constants */
3081 	err = ei->get_invariants(hw);
3082 	if (err)
3083 		goto err_sw_init;
3084 
3085 	/* setup the private structure */
3086 	err = igb_sw_init(adapter);
3087 	if (err)
3088 		goto err_sw_init;
3089 
3090 	igb_get_bus_info_pcie(hw);
3091 
3092 	hw->phy.autoneg_wait_to_complete = false;
3093 
3094 	/* Copper options */
3095 	if (hw->phy.media_type == e1000_media_type_copper) {
3096 		hw->phy.mdix = AUTO_ALL_MODES;
3097 		hw->phy.disable_polarity_correction = false;
3098 		hw->phy.ms_type = e1000_ms_hw_default;
3099 	}
3100 
3101 	if (igb_check_reset_block(hw))
3102 		dev_info(&pdev->dev,
3103 			"PHY reset is blocked due to SOL/IDER session.\n");
3104 
3105 	/* features is initialized to 0 in allocation, it might have bits
3106 	 * set by igb_sw_init so we should use an or instead of an
3107 	 * assignment.
3108 	 */
3109 	netdev->features |= NETIF_F_SG |
3110 			    NETIF_F_TSO |
3111 			    NETIF_F_TSO6 |
3112 			    NETIF_F_RXHASH |
3113 			    NETIF_F_RXCSUM |
3114 			    NETIF_F_HW_CSUM;
3115 
3116 	if (hw->mac.type >= e1000_82576)
3117 		netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3118 
3119 	if (hw->mac.type >= e1000_i350)
3120 		netdev->features |= NETIF_F_HW_TC;
3121 
3122 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3123 				  NETIF_F_GSO_GRE_CSUM | \
3124 				  NETIF_F_GSO_IPXIP4 | \
3125 				  NETIF_F_GSO_IPXIP6 | \
3126 				  NETIF_F_GSO_UDP_TUNNEL | \
3127 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
3128 
3129 	netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3130 	netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3131 
3132 	/* copy netdev features into list of user selectable features */
3133 	netdev->hw_features |= netdev->features |
3134 			       NETIF_F_HW_VLAN_CTAG_RX |
3135 			       NETIF_F_HW_VLAN_CTAG_TX |
3136 			       NETIF_F_RXALL;
3137 
3138 	if (hw->mac.type >= e1000_i350)
3139 		netdev->hw_features |= NETIF_F_NTUPLE;
3140 
3141 	if (pci_using_dac)
3142 		netdev->features |= NETIF_F_HIGHDMA;
3143 
3144 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3145 	netdev->mpls_features |= NETIF_F_HW_CSUM;
3146 	netdev->hw_enc_features |= netdev->vlan_features;
3147 
3148 	/* set this bit last since it cannot be part of vlan_features */
3149 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3150 			    NETIF_F_HW_VLAN_CTAG_RX |
3151 			    NETIF_F_HW_VLAN_CTAG_TX;
3152 
3153 	netdev->priv_flags |= IFF_SUPP_NOFCS;
3154 
3155 	netdev->priv_flags |= IFF_UNICAST_FLT;
3156 
3157 	/* MTU range: 68 - 9216 */
3158 	netdev->min_mtu = ETH_MIN_MTU;
3159 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3160 
3161 	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3162 
3163 	/* before reading the NVM, reset the controller to put the device in a
3164 	 * known good starting state
3165 	 */
3166 	hw->mac.ops.reset_hw(hw);
3167 
3168 	/* make sure the NVM is good , i211/i210 parts can have special NVM
3169 	 * that doesn't contain a checksum
3170 	 */
3171 	switch (hw->mac.type) {
3172 	case e1000_i210:
3173 	case e1000_i211:
3174 		if (igb_get_flash_presence_i210(hw)) {
3175 			if (hw->nvm.ops.validate(hw) < 0) {
3176 				dev_err(&pdev->dev,
3177 					"The NVM Checksum Is Not Valid\n");
3178 				err = -EIO;
3179 				goto err_eeprom;
3180 			}
3181 		}
3182 		break;
3183 	default:
3184 		if (hw->nvm.ops.validate(hw) < 0) {
3185 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3186 			err = -EIO;
3187 			goto err_eeprom;
3188 		}
3189 		break;
3190 	}
3191 
3192 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3193 		/* copy the MAC address out of the NVM */
3194 		if (hw->mac.ops.read_mac_addr(hw))
3195 			dev_err(&pdev->dev, "NVM Read Error\n");
3196 	}
3197 
3198 	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
3199 
3200 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3201 		dev_err(&pdev->dev, "Invalid MAC Address\n");
3202 		err = -EIO;
3203 		goto err_eeprom;
3204 	}
3205 
3206 	igb_set_default_mac_filter(adapter);
3207 
3208 	/* get firmware version for ethtool -i */
3209 	igb_set_fw_version(adapter);
3210 
3211 	/* configure RXPBSIZE and TXPBSIZE */
3212 	if (hw->mac.type == e1000_i210) {
3213 		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3214 		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3215 	}
3216 
3217 	timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3218 	timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3219 
3220 	INIT_WORK(&adapter->reset_task, igb_reset_task);
3221 	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3222 
3223 	/* Initialize link properties that are user-changeable */
3224 	adapter->fc_autoneg = true;
3225 	hw->mac.autoneg = true;
3226 	hw->phy.autoneg_advertised = 0x2f;
3227 
3228 	hw->fc.requested_mode = e1000_fc_default;
3229 	hw->fc.current_mode = e1000_fc_default;
3230 
3231 	igb_validate_mdi_setting(hw);
3232 
3233 	/* By default, support wake on port A */
3234 	if (hw->bus.func == 0)
3235 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3236 
3237 	/* Check the NVM for wake support on non-port A ports */
3238 	if (hw->mac.type >= e1000_82580)
3239 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3240 				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3241 				 &eeprom_data);
3242 	else if (hw->bus.func == 1)
3243 		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3244 
3245 	if (eeprom_data & IGB_EEPROM_APME)
3246 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3247 
3248 	/* now that we have the eeprom settings, apply the special cases where
3249 	 * the eeprom may be wrong or the board simply won't support wake on
3250 	 * lan on a particular port
3251 	 */
3252 	switch (pdev->device) {
3253 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
3254 		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3255 		break;
3256 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
3257 	case E1000_DEV_ID_82576_FIBER:
3258 	case E1000_DEV_ID_82576_SERDES:
3259 		/* Wake events only supported on port A for dual fiber
3260 		 * regardless of eeprom setting
3261 		 */
3262 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3263 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3264 		break;
3265 	case E1000_DEV_ID_82576_QUAD_COPPER:
3266 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3267 		/* if quad port adapter, disable WoL on all but port A */
3268 		if (global_quad_port_a != 0)
3269 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3270 		else
3271 			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3272 		/* Reset for multiple quad port adapters */
3273 		if (++global_quad_port_a == 4)
3274 			global_quad_port_a = 0;
3275 		break;
3276 	default:
3277 		/* If the device can't wake, don't set software support */
3278 		if (!device_can_wakeup(&adapter->pdev->dev))
3279 			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3280 	}
3281 
3282 	/* initialize the wol settings based on the eeprom settings */
3283 	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3284 		adapter->wol |= E1000_WUFC_MAG;
3285 
3286 	/* Some vendors want WoL disabled by default, but still supported */
3287 	if ((hw->mac.type == e1000_i350) &&
3288 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3289 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3290 		adapter->wol = 0;
3291 	}
3292 
3293 	/* Some vendors want the ability to Use the EEPROM setting as
3294 	 * enable/disable only, and not for capability
3295 	 */
3296 	if (((hw->mac.type == e1000_i350) ||
3297 	     (hw->mac.type == e1000_i354)) &&
3298 	    (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3299 		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3300 		adapter->wol = 0;
3301 	}
3302 	if (hw->mac.type == e1000_i350) {
3303 		if (((pdev->subsystem_device == 0x5001) ||
3304 		     (pdev->subsystem_device == 0x5002)) &&
3305 				(hw->bus.func == 0)) {
3306 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3307 			adapter->wol = 0;
3308 		}
3309 		if (pdev->subsystem_device == 0x1F52)
3310 			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3311 	}
3312 
3313 	device_set_wakeup_enable(&adapter->pdev->dev,
3314 				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3315 
3316 	/* reset the hardware with the new settings */
3317 	igb_reset(adapter);
3318 
3319 	/* Init the I2C interface */
3320 	err = igb_init_i2c(adapter);
3321 	if (err) {
3322 		dev_err(&pdev->dev, "failed to init i2c interface\n");
3323 		goto err_eeprom;
3324 	}
3325 
3326 	/* let the f/w know that the h/w is now under the control of the
3327 	 * driver.
3328 	 */
3329 	igb_get_hw_control(adapter);
3330 
3331 	strcpy(netdev->name, "eth%d");
3332 	err = register_netdev(netdev);
3333 	if (err)
3334 		goto err_register;
3335 
3336 	/* carrier off reporting is important to ethtool even BEFORE open */
3337 	netif_carrier_off(netdev);
3338 
3339 #ifdef CONFIG_IGB_DCA
3340 	if (dca_add_requester(&pdev->dev) == 0) {
3341 		adapter->flags |= IGB_FLAG_DCA_ENABLED;
3342 		dev_info(&pdev->dev, "DCA enabled\n");
3343 		igb_setup_dca(adapter);
3344 	}
3345 
3346 #endif
3347 #ifdef CONFIG_IGB_HWMON
3348 	/* Initialize the thermal sensor on i350 devices. */
3349 	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3350 		u16 ets_word;
3351 
3352 		/* Read the NVM to determine if this i350 device supports an
3353 		 * external thermal sensor.
3354 		 */
3355 		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3356 		if (ets_word != 0x0000 && ets_word != 0xFFFF)
3357 			adapter->ets = true;
3358 		else
3359 			adapter->ets = false;
3360 		if (igb_sysfs_init(adapter))
3361 			dev_err(&pdev->dev,
3362 				"failed to allocate sysfs resources\n");
3363 	} else {
3364 		adapter->ets = false;
3365 	}
3366 #endif
3367 	/* Check if Media Autosense is enabled */
3368 	adapter->ei = *ei;
3369 	if (hw->dev_spec._82575.mas_capable)
3370 		igb_init_mas(adapter);
3371 
3372 	/* do hw tstamp init after resetting */
3373 	igb_ptp_init(adapter);
3374 
3375 	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3376 	/* print bus type/speed/width info, not applicable to i354 */
3377 	if (hw->mac.type != e1000_i354) {
3378 		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3379 			 netdev->name,
3380 			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3381 			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3382 			   "unknown"),
3383 			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3384 			  "Width x4" :
3385 			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
3386 			  "Width x2" :
3387 			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
3388 			  "Width x1" : "unknown"), netdev->dev_addr);
3389 	}
3390 
3391 	if ((hw->mac.type >= e1000_i210 ||
3392 	     igb_get_flash_presence_i210(hw))) {
3393 		ret_val = igb_read_part_string(hw, part_str,
3394 					       E1000_PBANUM_LENGTH);
3395 	} else {
3396 		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3397 	}
3398 
3399 	if (ret_val)
3400 		strcpy(part_str, "Unknown");
3401 	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3402 	dev_info(&pdev->dev,
3403 		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3404 		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3405 		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3406 		adapter->num_rx_queues, adapter->num_tx_queues);
3407 	if (hw->phy.media_type == e1000_media_type_copper) {
3408 		switch (hw->mac.type) {
3409 		case e1000_i350:
3410 		case e1000_i210:
3411 		case e1000_i211:
3412 			/* Enable EEE for internal copper PHY devices */
3413 			err = igb_set_eee_i350(hw, true, true);
3414 			if ((!err) &&
3415 			    (!hw->dev_spec._82575.eee_disable)) {
3416 				adapter->eee_advert =
3417 					MDIO_EEE_100TX | MDIO_EEE_1000T;
3418 				adapter->flags |= IGB_FLAG_EEE;
3419 			}
3420 			break;
3421 		case e1000_i354:
3422 			if ((rd32(E1000_CTRL_EXT) &
3423 			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3424 				err = igb_set_eee_i354(hw, true, true);
3425 				if ((!err) &&
3426 					(!hw->dev_spec._82575.eee_disable)) {
3427 					adapter->eee_advert =
3428 					   MDIO_EEE_100TX | MDIO_EEE_1000T;
3429 					adapter->flags |= IGB_FLAG_EEE;
3430 				}
3431 			}
3432 			break;
3433 		default:
3434 			break;
3435 		}
3436 	}
3437 
3438 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3439 
3440 	pm_runtime_put_noidle(&pdev->dev);
3441 	return 0;
3442 
3443 err_register:
3444 	igb_release_hw_control(adapter);
3445 	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3446 err_eeprom:
3447 	if (!igb_check_reset_block(hw))
3448 		igb_reset_phy(hw);
3449 
3450 	if (hw->flash_address)
3451 		iounmap(hw->flash_address);
3452 err_sw_init:
3453 	kfree(adapter->mac_table);
3454 	kfree(adapter->shadow_vfta);
3455 	igb_clear_interrupt_scheme(adapter);
3456 #ifdef CONFIG_PCI_IOV
3457 	igb_disable_sriov(pdev);
3458 #endif
3459 	pci_iounmap(pdev, adapter->io_addr);
3460 err_ioremap:
3461 	free_netdev(netdev);
3462 err_alloc_etherdev:
3463 	pci_release_mem_regions(pdev);
3464 err_pci_reg:
3465 err_dma:
3466 	pci_disable_device(pdev);
3467 	return err;
3468 }
3469 
3470 #ifdef CONFIG_PCI_IOV
3471 static int igb_disable_sriov(struct pci_dev *pdev)
3472 {
3473 	struct net_device *netdev = pci_get_drvdata(pdev);
3474 	struct igb_adapter *adapter = netdev_priv(netdev);
3475 	struct e1000_hw *hw = &adapter->hw;
3476 
3477 	/* reclaim resources allocated to VFs */
3478 	if (adapter->vf_data) {
3479 		/* disable iov and allow time for transactions to clear */
3480 		if (pci_vfs_assigned(pdev)) {
3481 			dev_warn(&pdev->dev,
3482 				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3483 			return -EPERM;
3484 		} else {
3485 			pci_disable_sriov(pdev);
3486 			msleep(500);
3487 		}
3488 
3489 		kfree(adapter->vf_mac_list);
3490 		adapter->vf_mac_list = NULL;
3491 		kfree(adapter->vf_data);
3492 		adapter->vf_data = NULL;
3493 		adapter->vfs_allocated_count = 0;
3494 		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3495 		wrfl();
3496 		msleep(100);
3497 		dev_info(&pdev->dev, "IOV Disabled\n");
3498 
3499 		/* Re-enable DMA Coalescing flag since IOV is turned off */
3500 		adapter->flags |= IGB_FLAG_DMAC;
3501 	}
3502 
3503 	return 0;
3504 }
3505 
3506 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3507 {
3508 	struct net_device *netdev = pci_get_drvdata(pdev);
3509 	struct igb_adapter *adapter = netdev_priv(netdev);
3510 	int old_vfs = pci_num_vf(pdev);
3511 	struct vf_mac_filter *mac_list;
3512 	int err = 0;
3513 	int num_vf_mac_filters, i;
3514 
3515 	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3516 		err = -EPERM;
3517 		goto out;
3518 	}
3519 	if (!num_vfs)
3520 		goto out;
3521 
3522 	if (old_vfs) {
3523 		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3524 			 old_vfs, max_vfs);
3525 		adapter->vfs_allocated_count = old_vfs;
3526 	} else
3527 		adapter->vfs_allocated_count = num_vfs;
3528 
3529 	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3530 				sizeof(struct vf_data_storage), GFP_KERNEL);
3531 
3532 	/* if allocation failed then we do not support SR-IOV */
3533 	if (!adapter->vf_data) {
3534 		adapter->vfs_allocated_count = 0;
3535 		err = -ENOMEM;
3536 		goto out;
3537 	}
3538 
3539 	/* Due to the limited number of RAR entries calculate potential
3540 	 * number of MAC filters available for the VFs. Reserve entries
3541 	 * for PF default MAC, PF MAC filters and at least one RAR entry
3542 	 * for each VF for VF MAC.
3543 	 */
3544 	num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3545 			     (1 + IGB_PF_MAC_FILTERS_RESERVED +
3546 			      adapter->vfs_allocated_count);
3547 
3548 	adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3549 				       sizeof(struct vf_mac_filter),
3550 				       GFP_KERNEL);
3551 
3552 	mac_list = adapter->vf_mac_list;
3553 	INIT_LIST_HEAD(&adapter->vf_macs.l);
3554 
3555 	if (adapter->vf_mac_list) {
3556 		/* Initialize list of VF MAC filters */
3557 		for (i = 0; i < num_vf_mac_filters; i++) {
3558 			mac_list->vf = -1;
3559 			mac_list->free = true;
3560 			list_add(&mac_list->l, &adapter->vf_macs.l);
3561 			mac_list++;
3562 		}
3563 	} else {
3564 		/* If we could not allocate memory for the VF MAC filters
3565 		 * we can continue without this feature but warn user.
3566 		 */
3567 		dev_err(&pdev->dev,
3568 			"Unable to allocate memory for VF MAC filter list\n");
3569 	}
3570 
3571 	/* only call pci_enable_sriov() if no VFs are allocated already */
3572 	if (!old_vfs) {
3573 		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3574 		if (err)
3575 			goto err_out;
3576 	}
3577 	dev_info(&pdev->dev, "%d VFs allocated\n",
3578 		 adapter->vfs_allocated_count);
3579 	for (i = 0; i < adapter->vfs_allocated_count; i++)
3580 		igb_vf_configure(adapter, i);
3581 
3582 	/* DMA Coalescing is not supported in IOV mode. */
3583 	adapter->flags &= ~IGB_FLAG_DMAC;
3584 	goto out;
3585 
3586 err_out:
3587 	kfree(adapter->vf_mac_list);
3588 	adapter->vf_mac_list = NULL;
3589 	kfree(adapter->vf_data);
3590 	adapter->vf_data = NULL;
3591 	adapter->vfs_allocated_count = 0;
3592 out:
3593 	return err;
3594 }
3595 
3596 #endif
3597 /**
3598  *  igb_remove_i2c - Cleanup  I2C interface
3599  *  @adapter: pointer to adapter structure
3600  **/
3601 static void igb_remove_i2c(struct igb_adapter *adapter)
3602 {
3603 	/* free the adapter bus structure */
3604 	i2c_del_adapter(&adapter->i2c_adap);
3605 }
3606 
3607 /**
3608  *  igb_remove - Device Removal Routine
3609  *  @pdev: PCI device information struct
3610  *
3611  *  igb_remove is called by the PCI subsystem to alert the driver
3612  *  that it should release a PCI device.  The could be caused by a
3613  *  Hot-Plug event, or because the driver is going to be removed from
3614  *  memory.
3615  **/
3616 static void igb_remove(struct pci_dev *pdev)
3617 {
3618 	struct net_device *netdev = pci_get_drvdata(pdev);
3619 	struct igb_adapter *adapter = netdev_priv(netdev);
3620 	struct e1000_hw *hw = &adapter->hw;
3621 
3622 	pm_runtime_get_noresume(&pdev->dev);
3623 #ifdef CONFIG_IGB_HWMON
3624 	igb_sysfs_exit(adapter);
3625 #endif
3626 	igb_remove_i2c(adapter);
3627 	igb_ptp_stop(adapter);
3628 	/* The watchdog timer may be rescheduled, so explicitly
3629 	 * disable watchdog from being rescheduled.
3630 	 */
3631 	set_bit(__IGB_DOWN, &adapter->state);
3632 	del_timer_sync(&adapter->watchdog_timer);
3633 	del_timer_sync(&adapter->phy_info_timer);
3634 
3635 	cancel_work_sync(&adapter->reset_task);
3636 	cancel_work_sync(&adapter->watchdog_task);
3637 
3638 #ifdef CONFIG_IGB_DCA
3639 	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3640 		dev_info(&pdev->dev, "DCA disabled\n");
3641 		dca_remove_requester(&pdev->dev);
3642 		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3643 		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3644 	}
3645 #endif
3646 
3647 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
3648 	 * would have already happened in close and is redundant.
3649 	 */
3650 	igb_release_hw_control(adapter);
3651 
3652 #ifdef CONFIG_PCI_IOV
3653 	igb_disable_sriov(pdev);
3654 #endif
3655 
3656 	unregister_netdev(netdev);
3657 
3658 	igb_clear_interrupt_scheme(adapter);
3659 
3660 	pci_iounmap(pdev, adapter->io_addr);
3661 	if (hw->flash_address)
3662 		iounmap(hw->flash_address);
3663 	pci_release_mem_regions(pdev);
3664 
3665 	kfree(adapter->mac_table);
3666 	kfree(adapter->shadow_vfta);
3667 	free_netdev(netdev);
3668 
3669 	pci_disable_pcie_error_reporting(pdev);
3670 
3671 	pci_disable_device(pdev);
3672 }
3673 
3674 /**
3675  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3676  *  @adapter: board private structure to initialize
3677  *
3678  *  This function initializes the vf specific data storage and then attempts to
3679  *  allocate the VFs.  The reason for ordering it this way is because it is much
3680  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
3681  *  the memory for the VFs.
3682  **/
3683 static void igb_probe_vfs(struct igb_adapter *adapter)
3684 {
3685 #ifdef CONFIG_PCI_IOV
3686 	struct pci_dev *pdev = adapter->pdev;
3687 	struct e1000_hw *hw = &adapter->hw;
3688 
3689 	/* Virtualization features not supported on i210 family. */
3690 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3691 		return;
3692 
3693 	/* Of the below we really only want the effect of getting
3694 	 * IGB_FLAG_HAS_MSIX set (if available), without which
3695 	 * igb_enable_sriov() has no effect.
3696 	 */
3697 	igb_set_interrupt_capability(adapter, true);
3698 	igb_reset_interrupt_capability(adapter);
3699 
3700 	pci_sriov_set_totalvfs(pdev, 7);
3701 	igb_enable_sriov(pdev, max_vfs);
3702 
3703 #endif /* CONFIG_PCI_IOV */
3704 }
3705 
3706 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3707 {
3708 	struct e1000_hw *hw = &adapter->hw;
3709 	unsigned int max_rss_queues;
3710 
3711 	/* Determine the maximum number of RSS queues supported. */
3712 	switch (hw->mac.type) {
3713 	case e1000_i211:
3714 		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3715 		break;
3716 	case e1000_82575:
3717 	case e1000_i210:
3718 		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3719 		break;
3720 	case e1000_i350:
3721 		/* I350 cannot do RSS and SR-IOV at the same time */
3722 		if (!!adapter->vfs_allocated_count) {
3723 			max_rss_queues = 1;
3724 			break;
3725 		}
3726 		fallthrough;
3727 	case e1000_82576:
3728 		if (!!adapter->vfs_allocated_count) {
3729 			max_rss_queues = 2;
3730 			break;
3731 		}
3732 		fallthrough;
3733 	case e1000_82580:
3734 	case e1000_i354:
3735 	default:
3736 		max_rss_queues = IGB_MAX_RX_QUEUES;
3737 		break;
3738 	}
3739 
3740 	return max_rss_queues;
3741 }
3742 
3743 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3744 {
3745 	u32 max_rss_queues;
3746 
3747 	max_rss_queues = igb_get_max_rss_queues(adapter);
3748 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3749 
3750 	igb_set_flag_queue_pairs(adapter, max_rss_queues);
3751 }
3752 
3753 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3754 			      const u32 max_rss_queues)
3755 {
3756 	struct e1000_hw *hw = &adapter->hw;
3757 
3758 	/* Determine if we need to pair queues. */
3759 	switch (hw->mac.type) {
3760 	case e1000_82575:
3761 	case e1000_i211:
3762 		/* Device supports enough interrupts without queue pairing. */
3763 		break;
3764 	case e1000_82576:
3765 	case e1000_82580:
3766 	case e1000_i350:
3767 	case e1000_i354:
3768 	case e1000_i210:
3769 	default:
3770 		/* If rss_queues > half of max_rss_queues, pair the queues in
3771 		 * order to conserve interrupts due to limited supply.
3772 		 */
3773 		if (adapter->rss_queues > (max_rss_queues / 2))
3774 			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3775 		else
3776 			adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3777 		break;
3778 	}
3779 }
3780 
3781 /**
3782  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
3783  *  @adapter: board private structure to initialize
3784  *
3785  *  igb_sw_init initializes the Adapter private data structure.
3786  *  Fields are initialized based on PCI device information and
3787  *  OS network device settings (MTU size).
3788  **/
3789 static int igb_sw_init(struct igb_adapter *adapter)
3790 {
3791 	struct e1000_hw *hw = &adapter->hw;
3792 	struct net_device *netdev = adapter->netdev;
3793 	struct pci_dev *pdev = adapter->pdev;
3794 
3795 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3796 
3797 	/* set default ring sizes */
3798 	adapter->tx_ring_count = IGB_DEFAULT_TXD;
3799 	adapter->rx_ring_count = IGB_DEFAULT_RXD;
3800 
3801 	/* set default ITR values */
3802 	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3803 	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3804 
3805 	/* set default work limits */
3806 	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3807 
3808 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3809 				  VLAN_HLEN;
3810 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3811 
3812 	spin_lock_init(&adapter->nfc_lock);
3813 	spin_lock_init(&adapter->stats64_lock);
3814 #ifdef CONFIG_PCI_IOV
3815 	switch (hw->mac.type) {
3816 	case e1000_82576:
3817 	case e1000_i350:
3818 		if (max_vfs > 7) {
3819 			dev_warn(&pdev->dev,
3820 				 "Maximum of 7 VFs per PF, using max\n");
3821 			max_vfs = adapter->vfs_allocated_count = 7;
3822 		} else
3823 			adapter->vfs_allocated_count = max_vfs;
3824 		if (adapter->vfs_allocated_count)
3825 			dev_warn(&pdev->dev,
3826 				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3827 		break;
3828 	default:
3829 		break;
3830 	}
3831 #endif /* CONFIG_PCI_IOV */
3832 
3833 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
3834 	adapter->flags |= IGB_FLAG_HAS_MSIX;
3835 
3836 	adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
3837 				     sizeof(struct igb_mac_addr),
3838 				     GFP_KERNEL);
3839 	if (!adapter->mac_table)
3840 		return -ENOMEM;
3841 
3842 	igb_probe_vfs(adapter);
3843 
3844 	igb_init_queue_configuration(adapter);
3845 
3846 	/* Setup and initialize a copy of the hw vlan table array */
3847 	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3848 				       GFP_KERNEL);
3849 	if (!adapter->shadow_vfta)
3850 		return -ENOMEM;
3851 
3852 	/* This call may decrease the number of queues */
3853 	if (igb_init_interrupt_scheme(adapter, true)) {
3854 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3855 		return -ENOMEM;
3856 	}
3857 
3858 	/* Explicitly disable IRQ since the NIC can be in any state. */
3859 	igb_irq_disable(adapter);
3860 
3861 	if (hw->mac.type >= e1000_i350)
3862 		adapter->flags &= ~IGB_FLAG_DMAC;
3863 
3864 	set_bit(__IGB_DOWN, &adapter->state);
3865 	return 0;
3866 }
3867 
3868 /**
3869  *  igb_open - Called when a network interface is made active
3870  *  @netdev: network interface device structure
3871  *
3872  *  Returns 0 on success, negative value on failure
3873  *
3874  *  The open entry point is called when a network interface is made
3875  *  active by the system (IFF_UP).  At this point all resources needed
3876  *  for transmit and receive operations are allocated, the interrupt
3877  *  handler is registered with the OS, the watchdog timer is started,
3878  *  and the stack is notified that the interface is ready.
3879  **/
3880 static int __igb_open(struct net_device *netdev, bool resuming)
3881 {
3882 	struct igb_adapter *adapter = netdev_priv(netdev);
3883 	struct e1000_hw *hw = &adapter->hw;
3884 	struct pci_dev *pdev = adapter->pdev;
3885 	int err;
3886 	int i;
3887 
3888 	/* disallow open during test */
3889 	if (test_bit(__IGB_TESTING, &adapter->state)) {
3890 		WARN_ON(resuming);
3891 		return -EBUSY;
3892 	}
3893 
3894 	if (!resuming)
3895 		pm_runtime_get_sync(&pdev->dev);
3896 
3897 	netif_carrier_off(netdev);
3898 
3899 	/* allocate transmit descriptors */
3900 	err = igb_setup_all_tx_resources(adapter);
3901 	if (err)
3902 		goto err_setup_tx;
3903 
3904 	/* allocate receive descriptors */
3905 	err = igb_setup_all_rx_resources(adapter);
3906 	if (err)
3907 		goto err_setup_rx;
3908 
3909 	igb_power_up_link(adapter);
3910 
3911 	/* before we allocate an interrupt, we must be ready to handle it.
3912 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3913 	 * as soon as we call pci_request_irq, so we have to setup our
3914 	 * clean_rx handler before we do so.
3915 	 */
3916 	igb_configure(adapter);
3917 
3918 	err = igb_request_irq(adapter);
3919 	if (err)
3920 		goto err_req_irq;
3921 
3922 	/* Notify the stack of the actual queue counts. */
3923 	err = netif_set_real_num_tx_queues(adapter->netdev,
3924 					   adapter->num_tx_queues);
3925 	if (err)
3926 		goto err_set_queues;
3927 
3928 	err = netif_set_real_num_rx_queues(adapter->netdev,
3929 					   adapter->num_rx_queues);
3930 	if (err)
3931 		goto err_set_queues;
3932 
3933 	/* From here on the code is the same as igb_up() */
3934 	clear_bit(__IGB_DOWN, &adapter->state);
3935 
3936 	for (i = 0; i < adapter->num_q_vectors; i++)
3937 		napi_enable(&(adapter->q_vector[i]->napi));
3938 
3939 	/* Clear any pending interrupts. */
3940 	rd32(E1000_TSICR);
3941 	rd32(E1000_ICR);
3942 
3943 	igb_irq_enable(adapter);
3944 
3945 	/* notify VFs that reset has been completed */
3946 	if (adapter->vfs_allocated_count) {
3947 		u32 reg_data = rd32(E1000_CTRL_EXT);
3948 
3949 		reg_data |= E1000_CTRL_EXT_PFRSTD;
3950 		wr32(E1000_CTRL_EXT, reg_data);
3951 	}
3952 
3953 	netif_tx_start_all_queues(netdev);
3954 
3955 	if (!resuming)
3956 		pm_runtime_put(&pdev->dev);
3957 
3958 	/* start the watchdog. */
3959 	hw->mac.get_link_status = 1;
3960 	schedule_work(&adapter->watchdog_task);
3961 
3962 	return 0;
3963 
3964 err_set_queues:
3965 	igb_free_irq(adapter);
3966 err_req_irq:
3967 	igb_release_hw_control(adapter);
3968 	igb_power_down_link(adapter);
3969 	igb_free_all_rx_resources(adapter);
3970 err_setup_rx:
3971 	igb_free_all_tx_resources(adapter);
3972 err_setup_tx:
3973 	igb_reset(adapter);
3974 	if (!resuming)
3975 		pm_runtime_put(&pdev->dev);
3976 
3977 	return err;
3978 }
3979 
3980 int igb_open(struct net_device *netdev)
3981 {
3982 	return __igb_open(netdev, false);
3983 }
3984 
3985 /**
3986  *  igb_close - Disables a network interface
3987  *  @netdev: network interface device structure
3988  *
3989  *  Returns 0, this is not allowed to fail
3990  *
3991  *  The close entry point is called when an interface is de-activated
3992  *  by the OS.  The hardware is still under the driver's control, but
3993  *  needs to be disabled.  A global MAC reset is issued to stop the
3994  *  hardware, and all transmit and receive resources are freed.
3995  **/
3996 static int __igb_close(struct net_device *netdev, bool suspending)
3997 {
3998 	struct igb_adapter *adapter = netdev_priv(netdev);
3999 	struct pci_dev *pdev = adapter->pdev;
4000 
4001 	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4002 
4003 	if (!suspending)
4004 		pm_runtime_get_sync(&pdev->dev);
4005 
4006 	igb_down(adapter);
4007 	igb_free_irq(adapter);
4008 
4009 	igb_free_all_tx_resources(adapter);
4010 	igb_free_all_rx_resources(adapter);
4011 
4012 	if (!suspending)
4013 		pm_runtime_put_sync(&pdev->dev);
4014 	return 0;
4015 }
4016 
4017 int igb_close(struct net_device *netdev)
4018 {
4019 	if (netif_device_present(netdev) || netdev->dismantle)
4020 		return __igb_close(netdev, false);
4021 	return 0;
4022 }
4023 
4024 /**
4025  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
4026  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
4027  *
4028  *  Return 0 on success, negative on failure
4029  **/
4030 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4031 {
4032 	struct device *dev = tx_ring->dev;
4033 	int size;
4034 
4035 	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4036 
4037 	tx_ring->tx_buffer_info = vmalloc(size);
4038 	if (!tx_ring->tx_buffer_info)
4039 		goto err;
4040 
4041 	/* round up to nearest 4K */
4042 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4043 	tx_ring->size = ALIGN(tx_ring->size, 4096);
4044 
4045 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4046 					   &tx_ring->dma, GFP_KERNEL);
4047 	if (!tx_ring->desc)
4048 		goto err;
4049 
4050 	tx_ring->next_to_use = 0;
4051 	tx_ring->next_to_clean = 0;
4052 
4053 	return 0;
4054 
4055 err:
4056 	vfree(tx_ring->tx_buffer_info);
4057 	tx_ring->tx_buffer_info = NULL;
4058 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4059 	return -ENOMEM;
4060 }
4061 
4062 /**
4063  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
4064  *				 (Descriptors) for all queues
4065  *  @adapter: board private structure
4066  *
4067  *  Return 0 on success, negative on failure
4068  **/
4069 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4070 {
4071 	struct pci_dev *pdev = adapter->pdev;
4072 	int i, err = 0;
4073 
4074 	for (i = 0; i < adapter->num_tx_queues; i++) {
4075 		err = igb_setup_tx_resources(adapter->tx_ring[i]);
4076 		if (err) {
4077 			dev_err(&pdev->dev,
4078 				"Allocation for Tx Queue %u failed\n", i);
4079 			for (i--; i >= 0; i--)
4080 				igb_free_tx_resources(adapter->tx_ring[i]);
4081 			break;
4082 		}
4083 	}
4084 
4085 	return err;
4086 }
4087 
4088 /**
4089  *  igb_setup_tctl - configure the transmit control registers
4090  *  @adapter: Board private structure
4091  **/
4092 void igb_setup_tctl(struct igb_adapter *adapter)
4093 {
4094 	struct e1000_hw *hw = &adapter->hw;
4095 	u32 tctl;
4096 
4097 	/* disable queue 0 which is enabled by default on 82575 and 82576 */
4098 	wr32(E1000_TXDCTL(0), 0);
4099 
4100 	/* Program the Transmit Control Register */
4101 	tctl = rd32(E1000_TCTL);
4102 	tctl &= ~E1000_TCTL_CT;
4103 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4104 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4105 
4106 	igb_config_collision_dist(hw);
4107 
4108 	/* Enable transmits */
4109 	tctl |= E1000_TCTL_EN;
4110 
4111 	wr32(E1000_TCTL, tctl);
4112 }
4113 
4114 /**
4115  *  igb_configure_tx_ring - Configure transmit ring after Reset
4116  *  @adapter: board private structure
4117  *  @ring: tx ring to configure
4118  *
4119  *  Configure a transmit ring after a reset.
4120  **/
4121 void igb_configure_tx_ring(struct igb_adapter *adapter,
4122 			   struct igb_ring *ring)
4123 {
4124 	struct e1000_hw *hw = &adapter->hw;
4125 	u32 txdctl = 0;
4126 	u64 tdba = ring->dma;
4127 	int reg_idx = ring->reg_idx;
4128 
4129 	wr32(E1000_TDLEN(reg_idx),
4130 	     ring->count * sizeof(union e1000_adv_tx_desc));
4131 	wr32(E1000_TDBAL(reg_idx),
4132 	     tdba & 0x00000000ffffffffULL);
4133 	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4134 
4135 	ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4136 	wr32(E1000_TDH(reg_idx), 0);
4137 	writel(0, ring->tail);
4138 
4139 	txdctl |= IGB_TX_PTHRESH;
4140 	txdctl |= IGB_TX_HTHRESH << 8;
4141 	txdctl |= IGB_TX_WTHRESH << 16;
4142 
4143 	/* reinitialize tx_buffer_info */
4144 	memset(ring->tx_buffer_info, 0,
4145 	       sizeof(struct igb_tx_buffer) * ring->count);
4146 
4147 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4148 	wr32(E1000_TXDCTL(reg_idx), txdctl);
4149 }
4150 
4151 /**
4152  *  igb_configure_tx - Configure transmit Unit after Reset
4153  *  @adapter: board private structure
4154  *
4155  *  Configure the Tx unit of the MAC after a reset.
4156  **/
4157 static void igb_configure_tx(struct igb_adapter *adapter)
4158 {
4159 	struct e1000_hw *hw = &adapter->hw;
4160 	int i;
4161 
4162 	/* disable the queues */
4163 	for (i = 0; i < adapter->num_tx_queues; i++)
4164 		wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4165 
4166 	wrfl();
4167 	usleep_range(10000, 20000);
4168 
4169 	for (i = 0; i < adapter->num_tx_queues; i++)
4170 		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4171 }
4172 
4173 /**
4174  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
4175  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
4176  *
4177  *  Returns 0 on success, negative on failure
4178  **/
4179 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4180 {
4181 	struct device *dev = rx_ring->dev;
4182 	int size;
4183 
4184 	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4185 
4186 	rx_ring->rx_buffer_info = vmalloc(size);
4187 	if (!rx_ring->rx_buffer_info)
4188 		goto err;
4189 
4190 	/* Round up to nearest 4K */
4191 	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4192 	rx_ring->size = ALIGN(rx_ring->size, 4096);
4193 
4194 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4195 					   &rx_ring->dma, GFP_KERNEL);
4196 	if (!rx_ring->desc)
4197 		goto err;
4198 
4199 	rx_ring->next_to_alloc = 0;
4200 	rx_ring->next_to_clean = 0;
4201 	rx_ring->next_to_use = 0;
4202 
4203 	return 0;
4204 
4205 err:
4206 	vfree(rx_ring->rx_buffer_info);
4207 	rx_ring->rx_buffer_info = NULL;
4208 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4209 	return -ENOMEM;
4210 }
4211 
4212 /**
4213  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
4214  *				 (Descriptors) for all queues
4215  *  @adapter: board private structure
4216  *
4217  *  Return 0 on success, negative on failure
4218  **/
4219 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4220 {
4221 	struct pci_dev *pdev = adapter->pdev;
4222 	int i, err = 0;
4223 
4224 	for (i = 0; i < adapter->num_rx_queues; i++) {
4225 		err = igb_setup_rx_resources(adapter->rx_ring[i]);
4226 		if (err) {
4227 			dev_err(&pdev->dev,
4228 				"Allocation for Rx Queue %u failed\n", i);
4229 			for (i--; i >= 0; i--)
4230 				igb_free_rx_resources(adapter->rx_ring[i]);
4231 			break;
4232 		}
4233 	}
4234 
4235 	return err;
4236 }
4237 
4238 /**
4239  *  igb_setup_mrqc - configure the multiple receive queue control registers
4240  *  @adapter: Board private structure
4241  **/
4242 static void igb_setup_mrqc(struct igb_adapter *adapter)
4243 {
4244 	struct e1000_hw *hw = &adapter->hw;
4245 	u32 mrqc, rxcsum;
4246 	u32 j, num_rx_queues;
4247 	u32 rss_key[10];
4248 
4249 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
4250 	for (j = 0; j < 10; j++)
4251 		wr32(E1000_RSSRK(j), rss_key[j]);
4252 
4253 	num_rx_queues = adapter->rss_queues;
4254 
4255 	switch (hw->mac.type) {
4256 	case e1000_82576:
4257 		/* 82576 supports 2 RSS queues for SR-IOV */
4258 		if (adapter->vfs_allocated_count)
4259 			num_rx_queues = 2;
4260 		break;
4261 	default:
4262 		break;
4263 	}
4264 
4265 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
4266 		for (j = 0; j < IGB_RETA_SIZE; j++)
4267 			adapter->rss_indir_tbl[j] =
4268 			(j * num_rx_queues) / IGB_RETA_SIZE;
4269 		adapter->rss_indir_tbl_init = num_rx_queues;
4270 	}
4271 	igb_write_rss_indir_tbl(adapter);
4272 
4273 	/* Disable raw packet checksumming so that RSS hash is placed in
4274 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
4275 	 * offloads as they are enabled by default
4276 	 */
4277 	rxcsum = rd32(E1000_RXCSUM);
4278 	rxcsum |= E1000_RXCSUM_PCSD;
4279 
4280 	if (adapter->hw.mac.type >= e1000_82576)
4281 		/* Enable Receive Checksum Offload for SCTP */
4282 		rxcsum |= E1000_RXCSUM_CRCOFL;
4283 
4284 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
4285 	wr32(E1000_RXCSUM, rxcsum);
4286 
4287 	/* Generate RSS hash based on packet types, TCP/UDP
4288 	 * port numbers and/or IPv4/v6 src and dst addresses
4289 	 */
4290 	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4291 	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
4292 	       E1000_MRQC_RSS_FIELD_IPV6 |
4293 	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
4294 	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4295 
4296 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4297 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4298 	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4299 		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4300 
4301 	/* If VMDq is enabled then we set the appropriate mode for that, else
4302 	 * we default to RSS so that an RSS hash is calculated per packet even
4303 	 * if we are only using one queue
4304 	 */
4305 	if (adapter->vfs_allocated_count) {
4306 		if (hw->mac.type > e1000_82575) {
4307 			/* Set the default pool for the PF's first queue */
4308 			u32 vtctl = rd32(E1000_VT_CTL);
4309 
4310 			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4311 				   E1000_VT_CTL_DISABLE_DEF_POOL);
4312 			vtctl |= adapter->vfs_allocated_count <<
4313 				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4314 			wr32(E1000_VT_CTL, vtctl);
4315 		}
4316 		if (adapter->rss_queues > 1)
4317 			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4318 		else
4319 			mrqc |= E1000_MRQC_ENABLE_VMDQ;
4320 	} else {
4321 		if (hw->mac.type != e1000_i211)
4322 			mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4323 	}
4324 	igb_vmm_control(adapter);
4325 
4326 	wr32(E1000_MRQC, mrqc);
4327 }
4328 
4329 /**
4330  *  igb_setup_rctl - configure the receive control registers
4331  *  @adapter: Board private structure
4332  **/
4333 void igb_setup_rctl(struct igb_adapter *adapter)
4334 {
4335 	struct e1000_hw *hw = &adapter->hw;
4336 	u32 rctl;
4337 
4338 	rctl = rd32(E1000_RCTL);
4339 
4340 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4341 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4342 
4343 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4344 		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4345 
4346 	/* enable stripping of CRC. It's unlikely this will break BMC
4347 	 * redirection as it did with e1000. Newer features require
4348 	 * that the HW strips the CRC.
4349 	 */
4350 	rctl |= E1000_RCTL_SECRC;
4351 
4352 	/* disable store bad packets and clear size bits. */
4353 	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4354 
4355 	/* enable LPE to allow for reception of jumbo frames */
4356 	rctl |= E1000_RCTL_LPE;
4357 
4358 	/* disable queue 0 to prevent tail write w/o re-config */
4359 	wr32(E1000_RXDCTL(0), 0);
4360 
4361 	/* Attention!!!  For SR-IOV PF driver operations you must enable
4362 	 * queue drop for all VF and PF queues to prevent head of line blocking
4363 	 * if an un-trusted VF does not provide descriptors to hardware.
4364 	 */
4365 	if (adapter->vfs_allocated_count) {
4366 		/* set all queue drop enable bits */
4367 		wr32(E1000_QDE, ALL_QUEUES);
4368 	}
4369 
4370 	/* This is useful for sniffing bad packets. */
4371 	if (adapter->netdev->features & NETIF_F_RXALL) {
4372 		/* UPE and MPE will be handled by normal PROMISC logic
4373 		 * in e1000e_set_rx_mode
4374 		 */
4375 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4376 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4377 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4378 
4379 		rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4380 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4381 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4382 		 * and that breaks VLANs.
4383 		 */
4384 	}
4385 
4386 	wr32(E1000_RCTL, rctl);
4387 }
4388 
4389 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4390 				   int vfn)
4391 {
4392 	struct e1000_hw *hw = &adapter->hw;
4393 	u32 vmolr;
4394 
4395 	if (size > MAX_JUMBO_FRAME_SIZE)
4396 		size = MAX_JUMBO_FRAME_SIZE;
4397 
4398 	vmolr = rd32(E1000_VMOLR(vfn));
4399 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
4400 	vmolr |= size | E1000_VMOLR_LPE;
4401 	wr32(E1000_VMOLR(vfn), vmolr);
4402 
4403 	return 0;
4404 }
4405 
4406 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4407 					 int vfn, bool enable)
4408 {
4409 	struct e1000_hw *hw = &adapter->hw;
4410 	u32 val, reg;
4411 
4412 	if (hw->mac.type < e1000_82576)
4413 		return;
4414 
4415 	if (hw->mac.type == e1000_i350)
4416 		reg = E1000_DVMOLR(vfn);
4417 	else
4418 		reg = E1000_VMOLR(vfn);
4419 
4420 	val = rd32(reg);
4421 	if (enable)
4422 		val |= E1000_VMOLR_STRVLAN;
4423 	else
4424 		val &= ~(E1000_VMOLR_STRVLAN);
4425 	wr32(reg, val);
4426 }
4427 
4428 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4429 				 int vfn, bool aupe)
4430 {
4431 	struct e1000_hw *hw = &adapter->hw;
4432 	u32 vmolr;
4433 
4434 	/* This register exists only on 82576 and newer so if we are older then
4435 	 * we should exit and do nothing
4436 	 */
4437 	if (hw->mac.type < e1000_82576)
4438 		return;
4439 
4440 	vmolr = rd32(E1000_VMOLR(vfn));
4441 	if (aupe)
4442 		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4443 	else
4444 		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4445 
4446 	/* clear all bits that might not be set */
4447 	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4448 
4449 	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4450 		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4451 	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
4452 	 * multicast packets
4453 	 */
4454 	if (vfn <= adapter->vfs_allocated_count)
4455 		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4456 
4457 	wr32(E1000_VMOLR(vfn), vmolr);
4458 }
4459 
4460 /**
4461  *  igb_setup_srrctl - configure the split and replication receive control
4462  *                     registers
4463  *  @adapter: Board private structure
4464  *  @ring: receive ring to be configured
4465  **/
4466 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4467 {
4468 	struct e1000_hw *hw = &adapter->hw;
4469 	int reg_idx = ring->reg_idx;
4470 	u32 srrctl = 0;
4471 
4472 	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4473 	if (ring_uses_large_buffer(ring))
4474 		srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4475 	else
4476 		srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4477 	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4478 	if (hw->mac.type >= e1000_82580)
4479 		srrctl |= E1000_SRRCTL_TIMESTAMP;
4480 	/* Only set Drop Enable if VFs allocated, or we are supporting multiple
4481 	 * queues and rx flow control is disabled
4482 	 */
4483 	if (adapter->vfs_allocated_count ||
4484 	    (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4485 	     adapter->num_rx_queues > 1))
4486 		srrctl |= E1000_SRRCTL_DROP_EN;
4487 
4488 	wr32(E1000_SRRCTL(reg_idx), srrctl);
4489 }
4490 
4491 /**
4492  *  igb_configure_rx_ring - Configure a receive ring after Reset
4493  *  @adapter: board private structure
4494  *  @ring: receive ring to be configured
4495  *
4496  *  Configure the Rx unit of the MAC after a reset.
4497  **/
4498 void igb_configure_rx_ring(struct igb_adapter *adapter,
4499 			   struct igb_ring *ring)
4500 {
4501 	struct e1000_hw *hw = &adapter->hw;
4502 	union e1000_adv_rx_desc *rx_desc;
4503 	u64 rdba = ring->dma;
4504 	int reg_idx = ring->reg_idx;
4505 	u32 rxdctl = 0;
4506 
4507 	/* disable the queue */
4508 	wr32(E1000_RXDCTL(reg_idx), 0);
4509 
4510 	/* Set DMA base address registers */
4511 	wr32(E1000_RDBAL(reg_idx),
4512 	     rdba & 0x00000000ffffffffULL);
4513 	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4514 	wr32(E1000_RDLEN(reg_idx),
4515 	     ring->count * sizeof(union e1000_adv_rx_desc));
4516 
4517 	/* initialize head and tail */
4518 	ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4519 	wr32(E1000_RDH(reg_idx), 0);
4520 	writel(0, ring->tail);
4521 
4522 	/* set descriptor configuration */
4523 	igb_setup_srrctl(adapter, ring);
4524 
4525 	/* set filtering for VMDQ pools */
4526 	igb_set_vmolr(adapter, reg_idx & 0x7, true);
4527 
4528 	rxdctl |= IGB_RX_PTHRESH;
4529 	rxdctl |= IGB_RX_HTHRESH << 8;
4530 	rxdctl |= IGB_RX_WTHRESH << 16;
4531 
4532 	/* initialize rx_buffer_info */
4533 	memset(ring->rx_buffer_info, 0,
4534 	       sizeof(struct igb_rx_buffer) * ring->count);
4535 
4536 	/* initialize Rx descriptor 0 */
4537 	rx_desc = IGB_RX_DESC(ring, 0);
4538 	rx_desc->wb.upper.length = 0;
4539 
4540 	/* enable receive descriptor fetching */
4541 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4542 	wr32(E1000_RXDCTL(reg_idx), rxdctl);
4543 }
4544 
4545 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4546 				  struct igb_ring *rx_ring)
4547 {
4548 	/* set build_skb and buffer size flags */
4549 	clear_ring_build_skb_enabled(rx_ring);
4550 	clear_ring_uses_large_buffer(rx_ring);
4551 
4552 	if (adapter->flags & IGB_FLAG_RX_LEGACY)
4553 		return;
4554 
4555 	set_ring_build_skb_enabled(rx_ring);
4556 
4557 #if (PAGE_SIZE < 8192)
4558 	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4559 		return;
4560 
4561 	set_ring_uses_large_buffer(rx_ring);
4562 #endif
4563 }
4564 
4565 /**
4566  *  igb_configure_rx - Configure receive Unit after Reset
4567  *  @adapter: board private structure
4568  *
4569  *  Configure the Rx unit of the MAC after a reset.
4570  **/
4571 static void igb_configure_rx(struct igb_adapter *adapter)
4572 {
4573 	int i;
4574 
4575 	/* set the correct pool for the PF default MAC address in entry 0 */
4576 	igb_set_default_mac_filter(adapter);
4577 
4578 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
4579 	 * the Base and Length of the Rx Descriptor Ring
4580 	 */
4581 	for (i = 0; i < adapter->num_rx_queues; i++) {
4582 		struct igb_ring *rx_ring = adapter->rx_ring[i];
4583 
4584 		igb_set_rx_buffer_len(adapter, rx_ring);
4585 		igb_configure_rx_ring(adapter, rx_ring);
4586 	}
4587 }
4588 
4589 /**
4590  *  igb_free_tx_resources - Free Tx Resources per Queue
4591  *  @tx_ring: Tx descriptor ring for a specific queue
4592  *
4593  *  Free all transmit software resources
4594  **/
4595 void igb_free_tx_resources(struct igb_ring *tx_ring)
4596 {
4597 	igb_clean_tx_ring(tx_ring);
4598 
4599 	vfree(tx_ring->tx_buffer_info);
4600 	tx_ring->tx_buffer_info = NULL;
4601 
4602 	/* if not set, then don't free */
4603 	if (!tx_ring->desc)
4604 		return;
4605 
4606 	dma_free_coherent(tx_ring->dev, tx_ring->size,
4607 			  tx_ring->desc, tx_ring->dma);
4608 
4609 	tx_ring->desc = NULL;
4610 }
4611 
4612 /**
4613  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
4614  *  @adapter: board private structure
4615  *
4616  *  Free all transmit software resources
4617  **/
4618 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4619 {
4620 	int i;
4621 
4622 	for (i = 0; i < adapter->num_tx_queues; i++)
4623 		if (adapter->tx_ring[i])
4624 			igb_free_tx_resources(adapter->tx_ring[i]);
4625 }
4626 
4627 /**
4628  *  igb_clean_tx_ring - Free Tx Buffers
4629  *  @tx_ring: ring to be cleaned
4630  **/
4631 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4632 {
4633 	u16 i = tx_ring->next_to_clean;
4634 	struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4635 
4636 	while (i != tx_ring->next_to_use) {
4637 		union e1000_adv_tx_desc *eop_desc, *tx_desc;
4638 
4639 		/* Free all the Tx ring sk_buffs */
4640 		dev_kfree_skb_any(tx_buffer->skb);
4641 
4642 		/* unmap skb header data */
4643 		dma_unmap_single(tx_ring->dev,
4644 				 dma_unmap_addr(tx_buffer, dma),
4645 				 dma_unmap_len(tx_buffer, len),
4646 				 DMA_TO_DEVICE);
4647 
4648 		/* check for eop_desc to determine the end of the packet */
4649 		eop_desc = tx_buffer->next_to_watch;
4650 		tx_desc = IGB_TX_DESC(tx_ring, i);
4651 
4652 		/* unmap remaining buffers */
4653 		while (tx_desc != eop_desc) {
4654 			tx_buffer++;
4655 			tx_desc++;
4656 			i++;
4657 			if (unlikely(i == tx_ring->count)) {
4658 				i = 0;
4659 				tx_buffer = tx_ring->tx_buffer_info;
4660 				tx_desc = IGB_TX_DESC(tx_ring, 0);
4661 			}
4662 
4663 			/* unmap any remaining paged data */
4664 			if (dma_unmap_len(tx_buffer, len))
4665 				dma_unmap_page(tx_ring->dev,
4666 					       dma_unmap_addr(tx_buffer, dma),
4667 					       dma_unmap_len(tx_buffer, len),
4668 					       DMA_TO_DEVICE);
4669 		}
4670 
4671 		/* move us one more past the eop_desc for start of next pkt */
4672 		tx_buffer++;
4673 		i++;
4674 		if (unlikely(i == tx_ring->count)) {
4675 			i = 0;
4676 			tx_buffer = tx_ring->tx_buffer_info;
4677 		}
4678 	}
4679 
4680 	/* reset BQL for queue */
4681 	netdev_tx_reset_queue(txring_txq(tx_ring));
4682 
4683 	/* reset next_to_use and next_to_clean */
4684 	tx_ring->next_to_use = 0;
4685 	tx_ring->next_to_clean = 0;
4686 }
4687 
4688 /**
4689  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
4690  *  @adapter: board private structure
4691  **/
4692 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4693 {
4694 	int i;
4695 
4696 	for (i = 0; i < adapter->num_tx_queues; i++)
4697 		if (adapter->tx_ring[i])
4698 			igb_clean_tx_ring(adapter->tx_ring[i]);
4699 }
4700 
4701 /**
4702  *  igb_free_rx_resources - Free Rx Resources
4703  *  @rx_ring: ring to clean the resources from
4704  *
4705  *  Free all receive software resources
4706  **/
4707 void igb_free_rx_resources(struct igb_ring *rx_ring)
4708 {
4709 	igb_clean_rx_ring(rx_ring);
4710 
4711 	vfree(rx_ring->rx_buffer_info);
4712 	rx_ring->rx_buffer_info = NULL;
4713 
4714 	/* if not set, then don't free */
4715 	if (!rx_ring->desc)
4716 		return;
4717 
4718 	dma_free_coherent(rx_ring->dev, rx_ring->size,
4719 			  rx_ring->desc, rx_ring->dma);
4720 
4721 	rx_ring->desc = NULL;
4722 }
4723 
4724 /**
4725  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
4726  *  @adapter: board private structure
4727  *
4728  *  Free all receive software resources
4729  **/
4730 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4731 {
4732 	int i;
4733 
4734 	for (i = 0; i < adapter->num_rx_queues; i++)
4735 		if (adapter->rx_ring[i])
4736 			igb_free_rx_resources(adapter->rx_ring[i]);
4737 }
4738 
4739 /**
4740  *  igb_clean_rx_ring - Free Rx Buffers per Queue
4741  *  @rx_ring: ring to free buffers from
4742  **/
4743 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4744 {
4745 	u16 i = rx_ring->next_to_clean;
4746 
4747 	dev_kfree_skb(rx_ring->skb);
4748 	rx_ring->skb = NULL;
4749 
4750 	/* Free all the Rx ring sk_buffs */
4751 	while (i != rx_ring->next_to_alloc) {
4752 		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4753 
4754 		/* Invalidate cache lines that may have been written to by
4755 		 * device so that we avoid corrupting memory.
4756 		 */
4757 		dma_sync_single_range_for_cpu(rx_ring->dev,
4758 					      buffer_info->dma,
4759 					      buffer_info->page_offset,
4760 					      igb_rx_bufsz(rx_ring),
4761 					      DMA_FROM_DEVICE);
4762 
4763 		/* free resources associated with mapping */
4764 		dma_unmap_page_attrs(rx_ring->dev,
4765 				     buffer_info->dma,
4766 				     igb_rx_pg_size(rx_ring),
4767 				     DMA_FROM_DEVICE,
4768 				     IGB_RX_DMA_ATTR);
4769 		__page_frag_cache_drain(buffer_info->page,
4770 					buffer_info->pagecnt_bias);
4771 
4772 		i++;
4773 		if (i == rx_ring->count)
4774 			i = 0;
4775 	}
4776 
4777 	rx_ring->next_to_alloc = 0;
4778 	rx_ring->next_to_clean = 0;
4779 	rx_ring->next_to_use = 0;
4780 }
4781 
4782 /**
4783  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
4784  *  @adapter: board private structure
4785  **/
4786 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4787 {
4788 	int i;
4789 
4790 	for (i = 0; i < adapter->num_rx_queues; i++)
4791 		if (adapter->rx_ring[i])
4792 			igb_clean_rx_ring(adapter->rx_ring[i]);
4793 }
4794 
4795 /**
4796  *  igb_set_mac - Change the Ethernet Address of the NIC
4797  *  @netdev: network interface device structure
4798  *  @p: pointer to an address structure
4799  *
4800  *  Returns 0 on success, negative on failure
4801  **/
4802 static int igb_set_mac(struct net_device *netdev, void *p)
4803 {
4804 	struct igb_adapter *adapter = netdev_priv(netdev);
4805 	struct e1000_hw *hw = &adapter->hw;
4806 	struct sockaddr *addr = p;
4807 
4808 	if (!is_valid_ether_addr(addr->sa_data))
4809 		return -EADDRNOTAVAIL;
4810 
4811 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4812 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4813 
4814 	/* set the correct pool for the new PF MAC address in entry 0 */
4815 	igb_set_default_mac_filter(adapter);
4816 
4817 	return 0;
4818 }
4819 
4820 /**
4821  *  igb_write_mc_addr_list - write multicast addresses to MTA
4822  *  @netdev: network interface device structure
4823  *
4824  *  Writes multicast address list to the MTA hash table.
4825  *  Returns: -ENOMEM on failure
4826  *           0 on no addresses written
4827  *           X on writing X addresses to MTA
4828  **/
4829 static int igb_write_mc_addr_list(struct net_device *netdev)
4830 {
4831 	struct igb_adapter *adapter = netdev_priv(netdev);
4832 	struct e1000_hw *hw = &adapter->hw;
4833 	struct netdev_hw_addr *ha;
4834 	u8  *mta_list;
4835 	int i;
4836 
4837 	if (netdev_mc_empty(netdev)) {
4838 		/* nothing to program, so clear mc list */
4839 		igb_update_mc_addr_list(hw, NULL, 0);
4840 		igb_restore_vf_multicasts(adapter);
4841 		return 0;
4842 	}
4843 
4844 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
4845 	if (!mta_list)
4846 		return -ENOMEM;
4847 
4848 	/* The shared function expects a packed array of only addresses. */
4849 	i = 0;
4850 	netdev_for_each_mc_addr(ha, netdev)
4851 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4852 
4853 	igb_update_mc_addr_list(hw, mta_list, i);
4854 	kfree(mta_list);
4855 
4856 	return netdev_mc_count(netdev);
4857 }
4858 
4859 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4860 {
4861 	struct e1000_hw *hw = &adapter->hw;
4862 	u32 i, pf_id;
4863 
4864 	switch (hw->mac.type) {
4865 	case e1000_i210:
4866 	case e1000_i211:
4867 	case e1000_i350:
4868 		/* VLAN filtering needed for VLAN prio filter */
4869 		if (adapter->netdev->features & NETIF_F_NTUPLE)
4870 			break;
4871 		fallthrough;
4872 	case e1000_82576:
4873 	case e1000_82580:
4874 	case e1000_i354:
4875 		/* VLAN filtering needed for pool filtering */
4876 		if (adapter->vfs_allocated_count)
4877 			break;
4878 		fallthrough;
4879 	default:
4880 		return 1;
4881 	}
4882 
4883 	/* We are already in VLAN promisc, nothing to do */
4884 	if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4885 		return 0;
4886 
4887 	if (!adapter->vfs_allocated_count)
4888 		goto set_vfta;
4889 
4890 	/* Add PF to all active pools */
4891 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4892 
4893 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4894 		u32 vlvf = rd32(E1000_VLVF(i));
4895 
4896 		vlvf |= BIT(pf_id);
4897 		wr32(E1000_VLVF(i), vlvf);
4898 	}
4899 
4900 set_vfta:
4901 	/* Set all bits in the VLAN filter table array */
4902 	for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4903 		hw->mac.ops.write_vfta(hw, i, ~0U);
4904 
4905 	/* Set flag so we don't redo unnecessary work */
4906 	adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4907 
4908 	return 0;
4909 }
4910 
4911 #define VFTA_BLOCK_SIZE 8
4912 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4913 {
4914 	struct e1000_hw *hw = &adapter->hw;
4915 	u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4916 	u32 vid_start = vfta_offset * 32;
4917 	u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4918 	u32 i, vid, word, bits, pf_id;
4919 
4920 	/* guarantee that we don't scrub out management VLAN */
4921 	vid = adapter->mng_vlan_id;
4922 	if (vid >= vid_start && vid < vid_end)
4923 		vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4924 
4925 	if (!adapter->vfs_allocated_count)
4926 		goto set_vfta;
4927 
4928 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4929 
4930 	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4931 		u32 vlvf = rd32(E1000_VLVF(i));
4932 
4933 		/* pull VLAN ID from VLVF */
4934 		vid = vlvf & VLAN_VID_MASK;
4935 
4936 		/* only concern ourselves with a certain range */
4937 		if (vid < vid_start || vid >= vid_end)
4938 			continue;
4939 
4940 		if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4941 			/* record VLAN ID in VFTA */
4942 			vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4943 
4944 			/* if PF is part of this then continue */
4945 			if (test_bit(vid, adapter->active_vlans))
4946 				continue;
4947 		}
4948 
4949 		/* remove PF from the pool */
4950 		bits = ~BIT(pf_id);
4951 		bits &= rd32(E1000_VLVF(i));
4952 		wr32(E1000_VLVF(i), bits);
4953 	}
4954 
4955 set_vfta:
4956 	/* extract values from active_vlans and write back to VFTA */
4957 	for (i = VFTA_BLOCK_SIZE; i--;) {
4958 		vid = (vfta_offset + i) * 32;
4959 		word = vid / BITS_PER_LONG;
4960 		bits = vid % BITS_PER_LONG;
4961 
4962 		vfta[i] |= adapter->active_vlans[word] >> bits;
4963 
4964 		hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4965 	}
4966 }
4967 
4968 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4969 {
4970 	u32 i;
4971 
4972 	/* We are not in VLAN promisc, nothing to do */
4973 	if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4974 		return;
4975 
4976 	/* Set flag so we don't redo unnecessary work */
4977 	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4978 
4979 	for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4980 		igb_scrub_vfta(adapter, i);
4981 }
4982 
4983 /**
4984  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4985  *  @netdev: network interface device structure
4986  *
4987  *  The set_rx_mode entry point is called whenever the unicast or multicast
4988  *  address lists or the network interface flags are updated.  This routine is
4989  *  responsible for configuring the hardware for proper unicast, multicast,
4990  *  promiscuous mode, and all-multi behavior.
4991  **/
4992 static void igb_set_rx_mode(struct net_device *netdev)
4993 {
4994 	struct igb_adapter *adapter = netdev_priv(netdev);
4995 	struct e1000_hw *hw = &adapter->hw;
4996 	unsigned int vfn = adapter->vfs_allocated_count;
4997 	u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
4998 	int count;
4999 
5000 	/* Check for Promiscuous and All Multicast modes */
5001 	if (netdev->flags & IFF_PROMISC) {
5002 		rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5003 		vmolr |= E1000_VMOLR_MPME;
5004 
5005 		/* enable use of UTA filter to force packets to default pool */
5006 		if (hw->mac.type == e1000_82576)
5007 			vmolr |= E1000_VMOLR_ROPE;
5008 	} else {
5009 		if (netdev->flags & IFF_ALLMULTI) {
5010 			rctl |= E1000_RCTL_MPE;
5011 			vmolr |= E1000_VMOLR_MPME;
5012 		} else {
5013 			/* Write addresses to the MTA, if the attempt fails
5014 			 * then we should just turn on promiscuous mode so
5015 			 * that we can at least receive multicast traffic
5016 			 */
5017 			count = igb_write_mc_addr_list(netdev);
5018 			if (count < 0) {
5019 				rctl |= E1000_RCTL_MPE;
5020 				vmolr |= E1000_VMOLR_MPME;
5021 			} else if (count) {
5022 				vmolr |= E1000_VMOLR_ROMPE;
5023 			}
5024 		}
5025 	}
5026 
5027 	/* Write addresses to available RAR registers, if there is not
5028 	 * sufficient space to store all the addresses then enable
5029 	 * unicast promiscuous mode
5030 	 */
5031 	if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5032 		rctl |= E1000_RCTL_UPE;
5033 		vmolr |= E1000_VMOLR_ROPE;
5034 	}
5035 
5036 	/* enable VLAN filtering by default */
5037 	rctl |= E1000_RCTL_VFE;
5038 
5039 	/* disable VLAN filtering for modes that require it */
5040 	if ((netdev->flags & IFF_PROMISC) ||
5041 	    (netdev->features & NETIF_F_RXALL)) {
5042 		/* if we fail to set all rules then just clear VFE */
5043 		if (igb_vlan_promisc_enable(adapter))
5044 			rctl &= ~E1000_RCTL_VFE;
5045 	} else {
5046 		igb_vlan_promisc_disable(adapter);
5047 	}
5048 
5049 	/* update state of unicast, multicast, and VLAN filtering modes */
5050 	rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5051 				     E1000_RCTL_VFE);
5052 	wr32(E1000_RCTL, rctl);
5053 
5054 #if (PAGE_SIZE < 8192)
5055 	if (!adapter->vfs_allocated_count) {
5056 		if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5057 			rlpml = IGB_MAX_FRAME_BUILD_SKB;
5058 	}
5059 #endif
5060 	wr32(E1000_RLPML, rlpml);
5061 
5062 	/* In order to support SR-IOV and eventually VMDq it is necessary to set
5063 	 * the VMOLR to enable the appropriate modes.  Without this workaround
5064 	 * we will have issues with VLAN tag stripping not being done for frames
5065 	 * that are only arriving because we are the default pool
5066 	 */
5067 	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5068 		return;
5069 
5070 	/* set UTA to appropriate mode */
5071 	igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5072 
5073 	vmolr |= rd32(E1000_VMOLR(vfn)) &
5074 		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5075 
5076 	/* enable Rx jumbo frames, restrict as needed to support build_skb */
5077 	vmolr &= ~E1000_VMOLR_RLPML_MASK;
5078 #if (PAGE_SIZE < 8192)
5079 	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5080 		vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5081 	else
5082 #endif
5083 		vmolr |= MAX_JUMBO_FRAME_SIZE;
5084 	vmolr |= E1000_VMOLR_LPE;
5085 
5086 	wr32(E1000_VMOLR(vfn), vmolr);
5087 
5088 	igb_restore_vf_multicasts(adapter);
5089 }
5090 
5091 static void igb_check_wvbr(struct igb_adapter *adapter)
5092 {
5093 	struct e1000_hw *hw = &adapter->hw;
5094 	u32 wvbr = 0;
5095 
5096 	switch (hw->mac.type) {
5097 	case e1000_82576:
5098 	case e1000_i350:
5099 		wvbr = rd32(E1000_WVBR);
5100 		if (!wvbr)
5101 			return;
5102 		break;
5103 	default:
5104 		break;
5105 	}
5106 
5107 	adapter->wvbr |= wvbr;
5108 }
5109 
5110 #define IGB_STAGGERED_QUEUE_OFFSET 8
5111 
5112 static void igb_spoof_check(struct igb_adapter *adapter)
5113 {
5114 	int j;
5115 
5116 	if (!adapter->wvbr)
5117 		return;
5118 
5119 	for (j = 0; j < adapter->vfs_allocated_count; j++) {
5120 		if (adapter->wvbr & BIT(j) ||
5121 		    adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5122 			dev_warn(&adapter->pdev->dev,
5123 				"Spoof event(s) detected on VF %d\n", j);
5124 			adapter->wvbr &=
5125 				~(BIT(j) |
5126 				  BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5127 		}
5128 	}
5129 }
5130 
5131 /* Need to wait a few seconds after link up to get diagnostic information from
5132  * the phy
5133  */
5134 static void igb_update_phy_info(struct timer_list *t)
5135 {
5136 	struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5137 	igb_get_phy_info(&adapter->hw);
5138 }
5139 
5140 /**
5141  *  igb_has_link - check shared code for link and determine up/down
5142  *  @adapter: pointer to driver private info
5143  **/
5144 bool igb_has_link(struct igb_adapter *adapter)
5145 {
5146 	struct e1000_hw *hw = &adapter->hw;
5147 	bool link_active = false;
5148 
5149 	/* get_link_status is set on LSC (link status) interrupt or
5150 	 * rx sequence error interrupt.  get_link_status will stay
5151 	 * false until the e1000_check_for_link establishes link
5152 	 * for copper adapters ONLY
5153 	 */
5154 	switch (hw->phy.media_type) {
5155 	case e1000_media_type_copper:
5156 		if (!hw->mac.get_link_status)
5157 			return true;
5158 		fallthrough;
5159 	case e1000_media_type_internal_serdes:
5160 		hw->mac.ops.check_for_link(hw);
5161 		link_active = !hw->mac.get_link_status;
5162 		break;
5163 	default:
5164 	case e1000_media_type_unknown:
5165 		break;
5166 	}
5167 
5168 	if (((hw->mac.type == e1000_i210) ||
5169 	     (hw->mac.type == e1000_i211)) &&
5170 	     (hw->phy.id == I210_I_PHY_ID)) {
5171 		if (!netif_carrier_ok(adapter->netdev)) {
5172 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5173 		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5174 			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5175 			adapter->link_check_timeout = jiffies;
5176 		}
5177 	}
5178 
5179 	return link_active;
5180 }
5181 
5182 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5183 {
5184 	bool ret = false;
5185 	u32 ctrl_ext, thstat;
5186 
5187 	/* check for thermal sensor event on i350 copper only */
5188 	if (hw->mac.type == e1000_i350) {
5189 		thstat = rd32(E1000_THSTAT);
5190 		ctrl_ext = rd32(E1000_CTRL_EXT);
5191 
5192 		if ((hw->phy.media_type == e1000_media_type_copper) &&
5193 		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5194 			ret = !!(thstat & event);
5195 	}
5196 
5197 	return ret;
5198 }
5199 
5200 /**
5201  *  igb_check_lvmmc - check for malformed packets received
5202  *  and indicated in LVMMC register
5203  *  @adapter: pointer to adapter
5204  **/
5205 static void igb_check_lvmmc(struct igb_adapter *adapter)
5206 {
5207 	struct e1000_hw *hw = &adapter->hw;
5208 	u32 lvmmc;
5209 
5210 	lvmmc = rd32(E1000_LVMMC);
5211 	if (lvmmc) {
5212 		if (unlikely(net_ratelimit())) {
5213 			netdev_warn(adapter->netdev,
5214 				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5215 				    lvmmc);
5216 		}
5217 	}
5218 }
5219 
5220 /**
5221  *  igb_watchdog - Timer Call-back
5222  *  @data: pointer to adapter cast into an unsigned long
5223  **/
5224 static void igb_watchdog(struct timer_list *t)
5225 {
5226 	struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5227 	/* Do the rest outside of interrupt context */
5228 	schedule_work(&adapter->watchdog_task);
5229 }
5230 
5231 static void igb_watchdog_task(struct work_struct *work)
5232 {
5233 	struct igb_adapter *adapter = container_of(work,
5234 						   struct igb_adapter,
5235 						   watchdog_task);
5236 	struct e1000_hw *hw = &adapter->hw;
5237 	struct e1000_phy_info *phy = &hw->phy;
5238 	struct net_device *netdev = adapter->netdev;
5239 	u32 link;
5240 	int i;
5241 	u32 connsw;
5242 	u16 phy_data, retry_count = 20;
5243 
5244 	link = igb_has_link(adapter);
5245 
5246 	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5247 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5248 			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5249 		else
5250 			link = false;
5251 	}
5252 
5253 	/* Force link down if we have fiber to swap to */
5254 	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5255 		if (hw->phy.media_type == e1000_media_type_copper) {
5256 			connsw = rd32(E1000_CONNSW);
5257 			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5258 				link = 0;
5259 		}
5260 	}
5261 	if (link) {
5262 		/* Perform a reset if the media type changed. */
5263 		if (hw->dev_spec._82575.media_changed) {
5264 			hw->dev_spec._82575.media_changed = false;
5265 			adapter->flags |= IGB_FLAG_MEDIA_RESET;
5266 			igb_reset(adapter);
5267 		}
5268 		/* Cancel scheduled suspend requests. */
5269 		pm_runtime_resume(netdev->dev.parent);
5270 
5271 		if (!netif_carrier_ok(netdev)) {
5272 			u32 ctrl;
5273 
5274 			hw->mac.ops.get_speed_and_duplex(hw,
5275 							 &adapter->link_speed,
5276 							 &adapter->link_duplex);
5277 
5278 			ctrl = rd32(E1000_CTRL);
5279 			/* Links status message must follow this format */
5280 			netdev_info(netdev,
5281 			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5282 			       netdev->name,
5283 			       adapter->link_speed,
5284 			       adapter->link_duplex == FULL_DUPLEX ?
5285 			       "Full" : "Half",
5286 			       (ctrl & E1000_CTRL_TFCE) &&
5287 			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5288 			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
5289 			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
5290 
5291 			/* disable EEE if enabled */
5292 			if ((adapter->flags & IGB_FLAG_EEE) &&
5293 				(adapter->link_duplex == HALF_DUPLEX)) {
5294 				dev_info(&adapter->pdev->dev,
5295 				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5296 				adapter->hw.dev_spec._82575.eee_disable = true;
5297 				adapter->flags &= ~IGB_FLAG_EEE;
5298 			}
5299 
5300 			/* check if SmartSpeed worked */
5301 			igb_check_downshift(hw);
5302 			if (phy->speed_downgraded)
5303 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5304 
5305 			/* check for thermal sensor event */
5306 			if (igb_thermal_sensor_event(hw,
5307 			    E1000_THSTAT_LINK_THROTTLE))
5308 				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5309 
5310 			/* adjust timeout factor according to speed/duplex */
5311 			adapter->tx_timeout_factor = 1;
5312 			switch (adapter->link_speed) {
5313 			case SPEED_10:
5314 				adapter->tx_timeout_factor = 14;
5315 				break;
5316 			case SPEED_100:
5317 				/* maybe add some timeout factor ? */
5318 				break;
5319 			}
5320 
5321 			if (adapter->link_speed != SPEED_1000)
5322 				goto no_wait;
5323 
5324 			/* wait for Remote receiver status OK */
5325 retry_read_status:
5326 			if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5327 					      &phy_data)) {
5328 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5329 				    retry_count) {
5330 					msleep(100);
5331 					retry_count--;
5332 					goto retry_read_status;
5333 				} else if (!retry_count) {
5334 					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5335 				}
5336 			} else {
5337 				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5338 			}
5339 no_wait:
5340 			netif_carrier_on(netdev);
5341 
5342 			igb_ping_all_vfs(adapter);
5343 			igb_check_vf_rate_limit(adapter);
5344 
5345 			/* link state has changed, schedule phy info update */
5346 			if (!test_bit(__IGB_DOWN, &adapter->state))
5347 				mod_timer(&adapter->phy_info_timer,
5348 					  round_jiffies(jiffies + 2 * HZ));
5349 		}
5350 	} else {
5351 		if (netif_carrier_ok(netdev)) {
5352 			adapter->link_speed = 0;
5353 			adapter->link_duplex = 0;
5354 
5355 			/* check for thermal sensor event */
5356 			if (igb_thermal_sensor_event(hw,
5357 			    E1000_THSTAT_PWR_DOWN)) {
5358 				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5359 			}
5360 
5361 			/* Links status message must follow this format */
5362 			netdev_info(netdev, "igb: %s NIC Link is Down\n",
5363 			       netdev->name);
5364 			netif_carrier_off(netdev);
5365 
5366 			igb_ping_all_vfs(adapter);
5367 
5368 			/* link state has changed, schedule phy info update */
5369 			if (!test_bit(__IGB_DOWN, &adapter->state))
5370 				mod_timer(&adapter->phy_info_timer,
5371 					  round_jiffies(jiffies + 2 * HZ));
5372 
5373 			/* link is down, time to check for alternate media */
5374 			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5375 				igb_check_swap_media(adapter);
5376 				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5377 					schedule_work(&adapter->reset_task);
5378 					/* return immediately */
5379 					return;
5380 				}
5381 			}
5382 			pm_schedule_suspend(netdev->dev.parent,
5383 					    MSEC_PER_SEC * 5);
5384 
5385 		/* also check for alternate media here */
5386 		} else if (!netif_carrier_ok(netdev) &&
5387 			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5388 			igb_check_swap_media(adapter);
5389 			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5390 				schedule_work(&adapter->reset_task);
5391 				/* return immediately */
5392 				return;
5393 			}
5394 		}
5395 	}
5396 
5397 	spin_lock(&adapter->stats64_lock);
5398 	igb_update_stats(adapter);
5399 	spin_unlock(&adapter->stats64_lock);
5400 
5401 	for (i = 0; i < adapter->num_tx_queues; i++) {
5402 		struct igb_ring *tx_ring = adapter->tx_ring[i];
5403 		if (!netif_carrier_ok(netdev)) {
5404 			/* We've lost link, so the controller stops DMA,
5405 			 * but we've got queued Tx work that's never going
5406 			 * to get done, so reset controller to flush Tx.
5407 			 * (Do the reset outside of interrupt context).
5408 			 */
5409 			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5410 				adapter->tx_timeout_count++;
5411 				schedule_work(&adapter->reset_task);
5412 				/* return immediately since reset is imminent */
5413 				return;
5414 			}
5415 		}
5416 
5417 		/* Force detection of hung controller every watchdog period */
5418 		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5419 	}
5420 
5421 	/* Cause software interrupt to ensure Rx ring is cleaned */
5422 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5423 		u32 eics = 0;
5424 
5425 		for (i = 0; i < adapter->num_q_vectors; i++)
5426 			eics |= adapter->q_vector[i]->eims_value;
5427 		wr32(E1000_EICS, eics);
5428 	} else {
5429 		wr32(E1000_ICS, E1000_ICS_RXDMT0);
5430 	}
5431 
5432 	igb_spoof_check(adapter);
5433 	igb_ptp_rx_hang(adapter);
5434 	igb_ptp_tx_hang(adapter);
5435 
5436 	/* Check LVMMC register on i350/i354 only */
5437 	if ((adapter->hw.mac.type == e1000_i350) ||
5438 	    (adapter->hw.mac.type == e1000_i354))
5439 		igb_check_lvmmc(adapter);
5440 
5441 	/* Reset the timer */
5442 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5443 		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5444 			mod_timer(&adapter->watchdog_timer,
5445 				  round_jiffies(jiffies +  HZ));
5446 		else
5447 			mod_timer(&adapter->watchdog_timer,
5448 				  round_jiffies(jiffies + 2 * HZ));
5449 	}
5450 }
5451 
5452 enum latency_range {
5453 	lowest_latency = 0,
5454 	low_latency = 1,
5455 	bulk_latency = 2,
5456 	latency_invalid = 255
5457 };
5458 
5459 /**
5460  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
5461  *  @q_vector: pointer to q_vector
5462  *
5463  *  Stores a new ITR value based on strictly on packet size.  This
5464  *  algorithm is less sophisticated than that used in igb_update_itr,
5465  *  due to the difficulty of synchronizing statistics across multiple
5466  *  receive rings.  The divisors and thresholds used by this function
5467  *  were determined based on theoretical maximum wire speed and testing
5468  *  data, in order to minimize response time while increasing bulk
5469  *  throughput.
5470  *  This functionality is controlled by ethtool's coalescing settings.
5471  *  NOTE:  This function is called only when operating in a multiqueue
5472  *         receive environment.
5473  **/
5474 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5475 {
5476 	int new_val = q_vector->itr_val;
5477 	int avg_wire_size = 0;
5478 	struct igb_adapter *adapter = q_vector->adapter;
5479 	unsigned int packets;
5480 
5481 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
5482 	 * ints/sec - ITR timer value of 120 ticks.
5483 	 */
5484 	if (adapter->link_speed != SPEED_1000) {
5485 		new_val = IGB_4K_ITR;
5486 		goto set_itr_val;
5487 	}
5488 
5489 	packets = q_vector->rx.total_packets;
5490 	if (packets)
5491 		avg_wire_size = q_vector->rx.total_bytes / packets;
5492 
5493 	packets = q_vector->tx.total_packets;
5494 	if (packets)
5495 		avg_wire_size = max_t(u32, avg_wire_size,
5496 				      q_vector->tx.total_bytes / packets);
5497 
5498 	/* if avg_wire_size isn't set no work was done */
5499 	if (!avg_wire_size)
5500 		goto clear_counts;
5501 
5502 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
5503 	avg_wire_size += 24;
5504 
5505 	/* Don't starve jumbo frames */
5506 	avg_wire_size = min(avg_wire_size, 3000);
5507 
5508 	/* Give a little boost to mid-size frames */
5509 	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5510 		new_val = avg_wire_size / 3;
5511 	else
5512 		new_val = avg_wire_size / 2;
5513 
5514 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5515 	if (new_val < IGB_20K_ITR &&
5516 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5517 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5518 		new_val = IGB_20K_ITR;
5519 
5520 set_itr_val:
5521 	if (new_val != q_vector->itr_val) {
5522 		q_vector->itr_val = new_val;
5523 		q_vector->set_itr = 1;
5524 	}
5525 clear_counts:
5526 	q_vector->rx.total_bytes = 0;
5527 	q_vector->rx.total_packets = 0;
5528 	q_vector->tx.total_bytes = 0;
5529 	q_vector->tx.total_packets = 0;
5530 }
5531 
5532 /**
5533  *  igb_update_itr - update the dynamic ITR value based on statistics
5534  *  @q_vector: pointer to q_vector
5535  *  @ring_container: ring info to update the itr for
5536  *
5537  *  Stores a new ITR value based on packets and byte
5538  *  counts during the last interrupt.  The advantage of per interrupt
5539  *  computation is faster updates and more accurate ITR for the current
5540  *  traffic pattern.  Constants in this function were computed
5541  *  based on theoretical maximum wire speed and thresholds were set based
5542  *  on testing data as well as attempting to minimize response time
5543  *  while increasing bulk throughput.
5544  *  This functionality is controlled by ethtool's coalescing settings.
5545  *  NOTE:  These calculations are only valid when operating in a single-
5546  *         queue environment.
5547  **/
5548 static void igb_update_itr(struct igb_q_vector *q_vector,
5549 			   struct igb_ring_container *ring_container)
5550 {
5551 	unsigned int packets = ring_container->total_packets;
5552 	unsigned int bytes = ring_container->total_bytes;
5553 	u8 itrval = ring_container->itr;
5554 
5555 	/* no packets, exit with status unchanged */
5556 	if (packets == 0)
5557 		return;
5558 
5559 	switch (itrval) {
5560 	case lowest_latency:
5561 		/* handle TSO and jumbo frames */
5562 		if (bytes/packets > 8000)
5563 			itrval = bulk_latency;
5564 		else if ((packets < 5) && (bytes > 512))
5565 			itrval = low_latency;
5566 		break;
5567 	case low_latency:  /* 50 usec aka 20000 ints/s */
5568 		if (bytes > 10000) {
5569 			/* this if handles the TSO accounting */
5570 			if (bytes/packets > 8000)
5571 				itrval = bulk_latency;
5572 			else if ((packets < 10) || ((bytes/packets) > 1200))
5573 				itrval = bulk_latency;
5574 			else if ((packets > 35))
5575 				itrval = lowest_latency;
5576 		} else if (bytes/packets > 2000) {
5577 			itrval = bulk_latency;
5578 		} else if (packets <= 2 && bytes < 512) {
5579 			itrval = lowest_latency;
5580 		}
5581 		break;
5582 	case bulk_latency: /* 250 usec aka 4000 ints/s */
5583 		if (bytes > 25000) {
5584 			if (packets > 35)
5585 				itrval = low_latency;
5586 		} else if (bytes < 1500) {
5587 			itrval = low_latency;
5588 		}
5589 		break;
5590 	}
5591 
5592 	/* clear work counters since we have the values we need */
5593 	ring_container->total_bytes = 0;
5594 	ring_container->total_packets = 0;
5595 
5596 	/* write updated itr to ring container */
5597 	ring_container->itr = itrval;
5598 }
5599 
5600 static void igb_set_itr(struct igb_q_vector *q_vector)
5601 {
5602 	struct igb_adapter *adapter = q_vector->adapter;
5603 	u32 new_itr = q_vector->itr_val;
5604 	u8 current_itr = 0;
5605 
5606 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5607 	if (adapter->link_speed != SPEED_1000) {
5608 		current_itr = 0;
5609 		new_itr = IGB_4K_ITR;
5610 		goto set_itr_now;
5611 	}
5612 
5613 	igb_update_itr(q_vector, &q_vector->tx);
5614 	igb_update_itr(q_vector, &q_vector->rx);
5615 
5616 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5617 
5618 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5619 	if (current_itr == lowest_latency &&
5620 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5621 	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5622 		current_itr = low_latency;
5623 
5624 	switch (current_itr) {
5625 	/* counts and packets in update_itr are dependent on these numbers */
5626 	case lowest_latency:
5627 		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5628 		break;
5629 	case low_latency:
5630 		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5631 		break;
5632 	case bulk_latency:
5633 		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5634 		break;
5635 	default:
5636 		break;
5637 	}
5638 
5639 set_itr_now:
5640 	if (new_itr != q_vector->itr_val) {
5641 		/* this attempts to bias the interrupt rate towards Bulk
5642 		 * by adding intermediate steps when interrupt rate is
5643 		 * increasing
5644 		 */
5645 		new_itr = new_itr > q_vector->itr_val ?
5646 			  max((new_itr * q_vector->itr_val) /
5647 			  (new_itr + (q_vector->itr_val >> 2)),
5648 			  new_itr) : new_itr;
5649 		/* Don't write the value here; it resets the adapter's
5650 		 * internal timer, and causes us to delay far longer than
5651 		 * we should between interrupts.  Instead, we write the ITR
5652 		 * value at the beginning of the next interrupt so the timing
5653 		 * ends up being correct.
5654 		 */
5655 		q_vector->itr_val = new_itr;
5656 		q_vector->set_itr = 1;
5657 	}
5658 }
5659 
5660 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5661 			    struct igb_tx_buffer *first,
5662 			    u32 vlan_macip_lens, u32 type_tucmd,
5663 			    u32 mss_l4len_idx)
5664 {
5665 	struct e1000_adv_tx_context_desc *context_desc;
5666 	u16 i = tx_ring->next_to_use;
5667 	struct timespec64 ts;
5668 
5669 	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5670 
5671 	i++;
5672 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5673 
5674 	/* set bits to identify this as an advanced context descriptor */
5675 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5676 
5677 	/* For 82575, context index must be unique per ring. */
5678 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5679 		mss_l4len_idx |= tx_ring->reg_idx << 4;
5680 
5681 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
5682 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
5683 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
5684 
5685 	/* We assume there is always a valid tx time available. Invalid times
5686 	 * should have been handled by the upper layers.
5687 	 */
5688 	if (tx_ring->launchtime_enable) {
5689 		ts = ktime_to_timespec64(first->skb->tstamp);
5690 		first->skb->tstamp = ktime_set(0, 0);
5691 		context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5692 	} else {
5693 		context_desc->seqnum_seed = 0;
5694 	}
5695 }
5696 
5697 static int igb_tso(struct igb_ring *tx_ring,
5698 		   struct igb_tx_buffer *first,
5699 		   u8 *hdr_len)
5700 {
5701 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5702 	struct sk_buff *skb = first->skb;
5703 	union {
5704 		struct iphdr *v4;
5705 		struct ipv6hdr *v6;
5706 		unsigned char *hdr;
5707 	} ip;
5708 	union {
5709 		struct tcphdr *tcp;
5710 		struct udphdr *udp;
5711 		unsigned char *hdr;
5712 	} l4;
5713 	u32 paylen, l4_offset;
5714 	int err;
5715 
5716 	if (skb->ip_summed != CHECKSUM_PARTIAL)
5717 		return 0;
5718 
5719 	if (!skb_is_gso(skb))
5720 		return 0;
5721 
5722 	err = skb_cow_head(skb, 0);
5723 	if (err < 0)
5724 		return err;
5725 
5726 	ip.hdr = skb_network_header(skb);
5727 	l4.hdr = skb_checksum_start(skb);
5728 
5729 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5730 	type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
5731 		      E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
5732 
5733 	/* initialize outer IP header fields */
5734 	if (ip.v4->version == 4) {
5735 		unsigned char *csum_start = skb_checksum_start(skb);
5736 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5737 
5738 		/* IP header will have to cancel out any data that
5739 		 * is not a part of the outer IP header
5740 		 */
5741 		ip.v4->check = csum_fold(csum_partial(trans_start,
5742 						      csum_start - trans_start,
5743 						      0));
5744 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5745 
5746 		ip.v4->tot_len = 0;
5747 		first->tx_flags |= IGB_TX_FLAGS_TSO |
5748 				   IGB_TX_FLAGS_CSUM |
5749 				   IGB_TX_FLAGS_IPV4;
5750 	} else {
5751 		ip.v6->payload_len = 0;
5752 		first->tx_flags |= IGB_TX_FLAGS_TSO |
5753 				   IGB_TX_FLAGS_CSUM;
5754 	}
5755 
5756 	/* determine offset of inner transport header */
5757 	l4_offset = l4.hdr - skb->data;
5758 
5759 	/* remove payload length from inner checksum */
5760 	paylen = skb->len - l4_offset;
5761 	if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
5762 		/* compute length of segmentation header */
5763 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
5764 		csum_replace_by_diff(&l4.tcp->check,
5765 			(__force __wsum)htonl(paylen));
5766 	} else {
5767 		/* compute length of segmentation header */
5768 		*hdr_len = sizeof(*l4.udp) + l4_offset;
5769 		csum_replace_by_diff(&l4.udp->check,
5770 				     (__force __wsum)htonl(paylen));
5771 	}
5772 
5773 	/* update gso size and bytecount with header size */
5774 	first->gso_segs = skb_shinfo(skb)->gso_segs;
5775 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
5776 
5777 	/* MSS L4LEN IDX */
5778 	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5779 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5780 
5781 	/* VLAN MACLEN IPLEN */
5782 	vlan_macip_lens = l4.hdr - ip.hdr;
5783 	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5784 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5785 
5786 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
5787 			type_tucmd, mss_l4len_idx);
5788 
5789 	return 1;
5790 }
5791 
5792 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
5793 {
5794 	unsigned int offset = 0;
5795 
5796 	ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
5797 
5798 	return offset == skb_checksum_start_offset(skb);
5799 }
5800 
5801 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5802 {
5803 	struct sk_buff *skb = first->skb;
5804 	u32 vlan_macip_lens = 0;
5805 	u32 type_tucmd = 0;
5806 
5807 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
5808 csum_failed:
5809 		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
5810 		    !tx_ring->launchtime_enable)
5811 			return;
5812 		goto no_csum;
5813 	}
5814 
5815 	switch (skb->csum_offset) {
5816 	case offsetof(struct tcphdr, check):
5817 		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5818 		fallthrough;
5819 	case offsetof(struct udphdr, check):
5820 		break;
5821 	case offsetof(struct sctphdr, checksum):
5822 		/* validate that this is actually an SCTP request */
5823 		if (((first->protocol == htons(ETH_P_IP)) &&
5824 		     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
5825 		    ((first->protocol == htons(ETH_P_IPV6)) &&
5826 		     igb_ipv6_csum_is_sctp(skb))) {
5827 			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
5828 			break;
5829 		}
5830 		fallthrough;
5831 	default:
5832 		skb_checksum_help(skb);
5833 		goto csum_failed;
5834 	}
5835 
5836 	/* update TX checksum flag */
5837 	first->tx_flags |= IGB_TX_FLAGS_CSUM;
5838 	vlan_macip_lens = skb_checksum_start_offset(skb) -
5839 			  skb_network_offset(skb);
5840 no_csum:
5841 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5842 	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5843 
5844 	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
5845 }
5846 
5847 #define IGB_SET_FLAG(_input, _flag, _result) \
5848 	((_flag <= _result) ? \
5849 	 ((u32)(_input & _flag) * (_result / _flag)) : \
5850 	 ((u32)(_input & _flag) / (_flag / _result)))
5851 
5852 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5853 {
5854 	/* set type for advanced descriptor with frame checksum insertion */
5855 	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5856 		       E1000_ADVTXD_DCMD_DEXT |
5857 		       E1000_ADVTXD_DCMD_IFCS;
5858 
5859 	/* set HW vlan bit if vlan is present */
5860 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5861 				 (E1000_ADVTXD_DCMD_VLE));
5862 
5863 	/* set segmentation bits for TSO */
5864 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5865 				 (E1000_ADVTXD_DCMD_TSE));
5866 
5867 	/* set timestamp bit if present */
5868 	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5869 				 (E1000_ADVTXD_MAC_TSTAMP));
5870 
5871 	/* insert frame checksum */
5872 	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5873 
5874 	return cmd_type;
5875 }
5876 
5877 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5878 				 union e1000_adv_tx_desc *tx_desc,
5879 				 u32 tx_flags, unsigned int paylen)
5880 {
5881 	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5882 
5883 	/* 82575 requires a unique index per ring */
5884 	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5885 		olinfo_status |= tx_ring->reg_idx << 4;
5886 
5887 	/* insert L4 checksum */
5888 	olinfo_status |= IGB_SET_FLAG(tx_flags,
5889 				      IGB_TX_FLAGS_CSUM,
5890 				      (E1000_TXD_POPTS_TXSM << 8));
5891 
5892 	/* insert IPv4 checksum */
5893 	olinfo_status |= IGB_SET_FLAG(tx_flags,
5894 				      IGB_TX_FLAGS_IPV4,
5895 				      (E1000_TXD_POPTS_IXSM << 8));
5896 
5897 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5898 }
5899 
5900 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5901 {
5902 	struct net_device *netdev = tx_ring->netdev;
5903 
5904 	netif_stop_subqueue(netdev, tx_ring->queue_index);
5905 
5906 	/* Herbert's original patch had:
5907 	 *  smp_mb__after_netif_stop_queue();
5908 	 * but since that doesn't exist yet, just open code it.
5909 	 */
5910 	smp_mb();
5911 
5912 	/* We need to check again in a case another CPU has just
5913 	 * made room available.
5914 	 */
5915 	if (igb_desc_unused(tx_ring) < size)
5916 		return -EBUSY;
5917 
5918 	/* A reprieve! */
5919 	netif_wake_subqueue(netdev, tx_ring->queue_index);
5920 
5921 	u64_stats_update_begin(&tx_ring->tx_syncp2);
5922 	tx_ring->tx_stats.restart_queue2++;
5923 	u64_stats_update_end(&tx_ring->tx_syncp2);
5924 
5925 	return 0;
5926 }
5927 
5928 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5929 {
5930 	if (igb_desc_unused(tx_ring) >= size)
5931 		return 0;
5932 	return __igb_maybe_stop_tx(tx_ring, size);
5933 }
5934 
5935 static int igb_tx_map(struct igb_ring *tx_ring,
5936 		      struct igb_tx_buffer *first,
5937 		      const u8 hdr_len)
5938 {
5939 	struct sk_buff *skb = first->skb;
5940 	struct igb_tx_buffer *tx_buffer;
5941 	union e1000_adv_tx_desc *tx_desc;
5942 	skb_frag_t *frag;
5943 	dma_addr_t dma;
5944 	unsigned int data_len, size;
5945 	u32 tx_flags = first->tx_flags;
5946 	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5947 	u16 i = tx_ring->next_to_use;
5948 
5949 	tx_desc = IGB_TX_DESC(tx_ring, i);
5950 
5951 	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5952 
5953 	size = skb_headlen(skb);
5954 	data_len = skb->data_len;
5955 
5956 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5957 
5958 	tx_buffer = first;
5959 
5960 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5961 		if (dma_mapping_error(tx_ring->dev, dma))
5962 			goto dma_error;
5963 
5964 		/* record length, and DMA address */
5965 		dma_unmap_len_set(tx_buffer, len, size);
5966 		dma_unmap_addr_set(tx_buffer, dma, dma);
5967 
5968 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
5969 
5970 		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5971 			tx_desc->read.cmd_type_len =
5972 				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5973 
5974 			i++;
5975 			tx_desc++;
5976 			if (i == tx_ring->count) {
5977 				tx_desc = IGB_TX_DESC(tx_ring, 0);
5978 				i = 0;
5979 			}
5980 			tx_desc->read.olinfo_status = 0;
5981 
5982 			dma += IGB_MAX_DATA_PER_TXD;
5983 			size -= IGB_MAX_DATA_PER_TXD;
5984 
5985 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
5986 		}
5987 
5988 		if (likely(!data_len))
5989 			break;
5990 
5991 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5992 
5993 		i++;
5994 		tx_desc++;
5995 		if (i == tx_ring->count) {
5996 			tx_desc = IGB_TX_DESC(tx_ring, 0);
5997 			i = 0;
5998 		}
5999 		tx_desc->read.olinfo_status = 0;
6000 
6001 		size = skb_frag_size(frag);
6002 		data_len -= size;
6003 
6004 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6005 				       size, DMA_TO_DEVICE);
6006 
6007 		tx_buffer = &tx_ring->tx_buffer_info[i];
6008 	}
6009 
6010 	/* write last descriptor with RS and EOP bits */
6011 	cmd_type |= size | IGB_TXD_DCMD;
6012 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6013 
6014 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6015 
6016 	/* set the timestamp */
6017 	first->time_stamp = jiffies;
6018 
6019 	skb_tx_timestamp(skb);
6020 
6021 	/* Force memory writes to complete before letting h/w know there
6022 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
6023 	 * memory model archs, such as IA-64).
6024 	 *
6025 	 * We also need this memory barrier to make certain all of the
6026 	 * status bits have been updated before next_to_watch is written.
6027 	 */
6028 	dma_wmb();
6029 
6030 	/* set next_to_watch value indicating a packet is present */
6031 	first->next_to_watch = tx_desc;
6032 
6033 	i++;
6034 	if (i == tx_ring->count)
6035 		i = 0;
6036 
6037 	tx_ring->next_to_use = i;
6038 
6039 	/* Make sure there is space in the ring for the next send. */
6040 	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6041 
6042 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6043 		writel(i, tx_ring->tail);
6044 	}
6045 	return 0;
6046 
6047 dma_error:
6048 	dev_err(tx_ring->dev, "TX DMA map failed\n");
6049 	tx_buffer = &tx_ring->tx_buffer_info[i];
6050 
6051 	/* clear dma mappings for failed tx_buffer_info map */
6052 	while (tx_buffer != first) {
6053 		if (dma_unmap_len(tx_buffer, len))
6054 			dma_unmap_page(tx_ring->dev,
6055 				       dma_unmap_addr(tx_buffer, dma),
6056 				       dma_unmap_len(tx_buffer, len),
6057 				       DMA_TO_DEVICE);
6058 		dma_unmap_len_set(tx_buffer, len, 0);
6059 
6060 		if (i-- == 0)
6061 			i += tx_ring->count;
6062 		tx_buffer = &tx_ring->tx_buffer_info[i];
6063 	}
6064 
6065 	if (dma_unmap_len(tx_buffer, len))
6066 		dma_unmap_single(tx_ring->dev,
6067 				 dma_unmap_addr(tx_buffer, dma),
6068 				 dma_unmap_len(tx_buffer, len),
6069 				 DMA_TO_DEVICE);
6070 	dma_unmap_len_set(tx_buffer, len, 0);
6071 
6072 	dev_kfree_skb_any(tx_buffer->skb);
6073 	tx_buffer->skb = NULL;
6074 
6075 	tx_ring->next_to_use = i;
6076 
6077 	return -1;
6078 }
6079 
6080 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6081 				struct igb_ring *tx_ring)
6082 {
6083 	struct igb_tx_buffer *first;
6084 	int tso;
6085 	u32 tx_flags = 0;
6086 	unsigned short f;
6087 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
6088 	__be16 protocol = vlan_get_protocol(skb);
6089 	u8 hdr_len = 0;
6090 
6091 	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6092 	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6093 	 *       + 2 desc gap to keep tail from touching head,
6094 	 *       + 1 desc for context descriptor,
6095 	 * otherwise try next time
6096 	 */
6097 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6098 		count += TXD_USE_COUNT(skb_frag_size(
6099 						&skb_shinfo(skb)->frags[f]));
6100 
6101 	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6102 		/* this is a hard error */
6103 		return NETDEV_TX_BUSY;
6104 	}
6105 
6106 	/* record the location of the first descriptor for this packet */
6107 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6108 	first->skb = skb;
6109 	first->bytecount = skb->len;
6110 	first->gso_segs = 1;
6111 
6112 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6113 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6114 
6115 		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6116 		    !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6117 					   &adapter->state)) {
6118 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6119 			tx_flags |= IGB_TX_FLAGS_TSTAMP;
6120 
6121 			adapter->ptp_tx_skb = skb_get(skb);
6122 			adapter->ptp_tx_start = jiffies;
6123 			if (adapter->hw.mac.type == e1000_82576)
6124 				schedule_work(&adapter->ptp_tx_work);
6125 		} else {
6126 			adapter->tx_hwtstamp_skipped++;
6127 		}
6128 	}
6129 
6130 	if (skb_vlan_tag_present(skb)) {
6131 		tx_flags |= IGB_TX_FLAGS_VLAN;
6132 		tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6133 	}
6134 
6135 	/* record initial flags and protocol */
6136 	first->tx_flags = tx_flags;
6137 	first->protocol = protocol;
6138 
6139 	tso = igb_tso(tx_ring, first, &hdr_len);
6140 	if (tso < 0)
6141 		goto out_drop;
6142 	else if (!tso)
6143 		igb_tx_csum(tx_ring, first);
6144 
6145 	if (igb_tx_map(tx_ring, first, hdr_len))
6146 		goto cleanup_tx_tstamp;
6147 
6148 	return NETDEV_TX_OK;
6149 
6150 out_drop:
6151 	dev_kfree_skb_any(first->skb);
6152 	first->skb = NULL;
6153 cleanup_tx_tstamp:
6154 	if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6155 		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6156 
6157 		dev_kfree_skb_any(adapter->ptp_tx_skb);
6158 		adapter->ptp_tx_skb = NULL;
6159 		if (adapter->hw.mac.type == e1000_82576)
6160 			cancel_work_sync(&adapter->ptp_tx_work);
6161 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6162 	}
6163 
6164 	return NETDEV_TX_OK;
6165 }
6166 
6167 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6168 						    struct sk_buff *skb)
6169 {
6170 	unsigned int r_idx = skb->queue_mapping;
6171 
6172 	if (r_idx >= adapter->num_tx_queues)
6173 		r_idx = r_idx % adapter->num_tx_queues;
6174 
6175 	return adapter->tx_ring[r_idx];
6176 }
6177 
6178 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6179 				  struct net_device *netdev)
6180 {
6181 	struct igb_adapter *adapter = netdev_priv(netdev);
6182 
6183 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6184 	 * in order to meet this minimum size requirement.
6185 	 */
6186 	if (skb_put_padto(skb, 17))
6187 		return NETDEV_TX_OK;
6188 
6189 	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6190 }
6191 
6192 /**
6193  *  igb_tx_timeout - Respond to a Tx Hang
6194  *  @netdev: network interface device structure
6195  **/
6196 static void igb_tx_timeout(struct net_device *netdev, unsigned int txqueue)
6197 {
6198 	struct igb_adapter *adapter = netdev_priv(netdev);
6199 	struct e1000_hw *hw = &adapter->hw;
6200 
6201 	/* Do the reset outside of interrupt context */
6202 	adapter->tx_timeout_count++;
6203 
6204 	if (hw->mac.type >= e1000_82580)
6205 		hw->dev_spec._82575.global_device_reset = true;
6206 
6207 	schedule_work(&adapter->reset_task);
6208 	wr32(E1000_EICS,
6209 	     (adapter->eims_enable_mask & ~adapter->eims_other));
6210 }
6211 
6212 static void igb_reset_task(struct work_struct *work)
6213 {
6214 	struct igb_adapter *adapter;
6215 	adapter = container_of(work, struct igb_adapter, reset_task);
6216 
6217 	rtnl_lock();
6218 	/* If we're already down or resetting, just bail */
6219 	if (test_bit(__IGB_DOWN, &adapter->state) ||
6220 	    test_bit(__IGB_RESETTING, &adapter->state)) {
6221 		rtnl_unlock();
6222 		return;
6223 	}
6224 
6225 	igb_dump(adapter);
6226 	netdev_err(adapter->netdev, "Reset adapter\n");
6227 	igb_reinit_locked(adapter);
6228 	rtnl_unlock();
6229 }
6230 
6231 /**
6232  *  igb_get_stats64 - Get System Network Statistics
6233  *  @netdev: network interface device structure
6234  *  @stats: rtnl_link_stats64 pointer
6235  **/
6236 static void igb_get_stats64(struct net_device *netdev,
6237 			    struct rtnl_link_stats64 *stats)
6238 {
6239 	struct igb_adapter *adapter = netdev_priv(netdev);
6240 
6241 	spin_lock(&adapter->stats64_lock);
6242 	igb_update_stats(adapter);
6243 	memcpy(stats, &adapter->stats64, sizeof(*stats));
6244 	spin_unlock(&adapter->stats64_lock);
6245 }
6246 
6247 /**
6248  *  igb_change_mtu - Change the Maximum Transfer Unit
6249  *  @netdev: network interface device structure
6250  *  @new_mtu: new value for maximum frame size
6251  *
6252  *  Returns 0 on success, negative on failure
6253  **/
6254 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6255 {
6256 	struct igb_adapter *adapter = netdev_priv(netdev);
6257 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
6258 
6259 	/* adjust max frame to be at least the size of a standard frame */
6260 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6261 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6262 
6263 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6264 		usleep_range(1000, 2000);
6265 
6266 	/* igb_down has a dependency on max_frame_size */
6267 	adapter->max_frame_size = max_frame;
6268 
6269 	if (netif_running(netdev))
6270 		igb_down(adapter);
6271 
6272 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
6273 		   netdev->mtu, new_mtu);
6274 	netdev->mtu = new_mtu;
6275 
6276 	if (netif_running(netdev))
6277 		igb_up(adapter);
6278 	else
6279 		igb_reset(adapter);
6280 
6281 	clear_bit(__IGB_RESETTING, &adapter->state);
6282 
6283 	return 0;
6284 }
6285 
6286 /**
6287  *  igb_update_stats - Update the board statistics counters
6288  *  @adapter: board private structure
6289  **/
6290 void igb_update_stats(struct igb_adapter *adapter)
6291 {
6292 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6293 	struct e1000_hw *hw = &adapter->hw;
6294 	struct pci_dev *pdev = adapter->pdev;
6295 	u32 reg, mpc;
6296 	int i;
6297 	u64 bytes, packets;
6298 	unsigned int start;
6299 	u64 _bytes, _packets;
6300 
6301 	/* Prevent stats update while adapter is being reset, or if the pci
6302 	 * connection is down.
6303 	 */
6304 	if (adapter->link_speed == 0)
6305 		return;
6306 	if (pci_channel_offline(pdev))
6307 		return;
6308 
6309 	bytes = 0;
6310 	packets = 0;
6311 
6312 	rcu_read_lock();
6313 	for (i = 0; i < adapter->num_rx_queues; i++) {
6314 		struct igb_ring *ring = adapter->rx_ring[i];
6315 		u32 rqdpc = rd32(E1000_RQDPC(i));
6316 		if (hw->mac.type >= e1000_i210)
6317 			wr32(E1000_RQDPC(i), 0);
6318 
6319 		if (rqdpc) {
6320 			ring->rx_stats.drops += rqdpc;
6321 			net_stats->rx_fifo_errors += rqdpc;
6322 		}
6323 
6324 		do {
6325 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
6326 			_bytes = ring->rx_stats.bytes;
6327 			_packets = ring->rx_stats.packets;
6328 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
6329 		bytes += _bytes;
6330 		packets += _packets;
6331 	}
6332 
6333 	net_stats->rx_bytes = bytes;
6334 	net_stats->rx_packets = packets;
6335 
6336 	bytes = 0;
6337 	packets = 0;
6338 	for (i = 0; i < adapter->num_tx_queues; i++) {
6339 		struct igb_ring *ring = adapter->tx_ring[i];
6340 		do {
6341 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
6342 			_bytes = ring->tx_stats.bytes;
6343 			_packets = ring->tx_stats.packets;
6344 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
6345 		bytes += _bytes;
6346 		packets += _packets;
6347 	}
6348 	net_stats->tx_bytes = bytes;
6349 	net_stats->tx_packets = packets;
6350 	rcu_read_unlock();
6351 
6352 	/* read stats registers */
6353 	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6354 	adapter->stats.gprc += rd32(E1000_GPRC);
6355 	adapter->stats.gorc += rd32(E1000_GORCL);
6356 	rd32(E1000_GORCH); /* clear GORCL */
6357 	adapter->stats.bprc += rd32(E1000_BPRC);
6358 	adapter->stats.mprc += rd32(E1000_MPRC);
6359 	adapter->stats.roc += rd32(E1000_ROC);
6360 
6361 	adapter->stats.prc64 += rd32(E1000_PRC64);
6362 	adapter->stats.prc127 += rd32(E1000_PRC127);
6363 	adapter->stats.prc255 += rd32(E1000_PRC255);
6364 	adapter->stats.prc511 += rd32(E1000_PRC511);
6365 	adapter->stats.prc1023 += rd32(E1000_PRC1023);
6366 	adapter->stats.prc1522 += rd32(E1000_PRC1522);
6367 	adapter->stats.symerrs += rd32(E1000_SYMERRS);
6368 	adapter->stats.sec += rd32(E1000_SEC);
6369 
6370 	mpc = rd32(E1000_MPC);
6371 	adapter->stats.mpc += mpc;
6372 	net_stats->rx_fifo_errors += mpc;
6373 	adapter->stats.scc += rd32(E1000_SCC);
6374 	adapter->stats.ecol += rd32(E1000_ECOL);
6375 	adapter->stats.mcc += rd32(E1000_MCC);
6376 	adapter->stats.latecol += rd32(E1000_LATECOL);
6377 	adapter->stats.dc += rd32(E1000_DC);
6378 	adapter->stats.rlec += rd32(E1000_RLEC);
6379 	adapter->stats.xonrxc += rd32(E1000_XONRXC);
6380 	adapter->stats.xontxc += rd32(E1000_XONTXC);
6381 	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6382 	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6383 	adapter->stats.fcruc += rd32(E1000_FCRUC);
6384 	adapter->stats.gptc += rd32(E1000_GPTC);
6385 	adapter->stats.gotc += rd32(E1000_GOTCL);
6386 	rd32(E1000_GOTCH); /* clear GOTCL */
6387 	adapter->stats.rnbc += rd32(E1000_RNBC);
6388 	adapter->stats.ruc += rd32(E1000_RUC);
6389 	adapter->stats.rfc += rd32(E1000_RFC);
6390 	adapter->stats.rjc += rd32(E1000_RJC);
6391 	adapter->stats.tor += rd32(E1000_TORH);
6392 	adapter->stats.tot += rd32(E1000_TOTH);
6393 	adapter->stats.tpr += rd32(E1000_TPR);
6394 
6395 	adapter->stats.ptc64 += rd32(E1000_PTC64);
6396 	adapter->stats.ptc127 += rd32(E1000_PTC127);
6397 	adapter->stats.ptc255 += rd32(E1000_PTC255);
6398 	adapter->stats.ptc511 += rd32(E1000_PTC511);
6399 	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6400 	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6401 
6402 	adapter->stats.mptc += rd32(E1000_MPTC);
6403 	adapter->stats.bptc += rd32(E1000_BPTC);
6404 
6405 	adapter->stats.tpt += rd32(E1000_TPT);
6406 	adapter->stats.colc += rd32(E1000_COLC);
6407 
6408 	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6409 	/* read internal phy specific stats */
6410 	reg = rd32(E1000_CTRL_EXT);
6411 	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6412 		adapter->stats.rxerrc += rd32(E1000_RXERRC);
6413 
6414 		/* this stat has invalid values on i210/i211 */
6415 		if ((hw->mac.type != e1000_i210) &&
6416 		    (hw->mac.type != e1000_i211))
6417 			adapter->stats.tncrs += rd32(E1000_TNCRS);
6418 	}
6419 
6420 	adapter->stats.tsctc += rd32(E1000_TSCTC);
6421 	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6422 
6423 	adapter->stats.iac += rd32(E1000_IAC);
6424 	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6425 	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6426 	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6427 	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6428 	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6429 	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6430 	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6431 	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6432 
6433 	/* Fill out the OS statistics structure */
6434 	net_stats->multicast = adapter->stats.mprc;
6435 	net_stats->collisions = adapter->stats.colc;
6436 
6437 	/* Rx Errors */
6438 
6439 	/* RLEC on some newer hardware can be incorrect so build
6440 	 * our own version based on RUC and ROC
6441 	 */
6442 	net_stats->rx_errors = adapter->stats.rxerrc +
6443 		adapter->stats.crcerrs + adapter->stats.algnerrc +
6444 		adapter->stats.ruc + adapter->stats.roc +
6445 		adapter->stats.cexterr;
6446 	net_stats->rx_length_errors = adapter->stats.ruc +
6447 				      adapter->stats.roc;
6448 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
6449 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
6450 	net_stats->rx_missed_errors = adapter->stats.mpc;
6451 
6452 	/* Tx Errors */
6453 	net_stats->tx_errors = adapter->stats.ecol +
6454 			       adapter->stats.latecol;
6455 	net_stats->tx_aborted_errors = adapter->stats.ecol;
6456 	net_stats->tx_window_errors = adapter->stats.latecol;
6457 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
6458 
6459 	/* Tx Dropped needs to be maintained elsewhere */
6460 
6461 	/* Management Stats */
6462 	adapter->stats.mgptc += rd32(E1000_MGTPTC);
6463 	adapter->stats.mgprc += rd32(E1000_MGTPRC);
6464 	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6465 
6466 	/* OS2BMC Stats */
6467 	reg = rd32(E1000_MANC);
6468 	if (reg & E1000_MANC_EN_BMC2OS) {
6469 		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6470 		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6471 		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6472 		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6473 	}
6474 }
6475 
6476 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6477 {
6478 	struct e1000_hw *hw = &adapter->hw;
6479 	struct ptp_clock_event event;
6480 	struct timespec64 ts;
6481 	u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
6482 
6483 	if (tsicr & TSINTR_SYS_WRAP) {
6484 		event.type = PTP_CLOCK_PPS;
6485 		if (adapter->ptp_caps.pps)
6486 			ptp_clock_event(adapter->ptp_clock, &event);
6487 		ack |= TSINTR_SYS_WRAP;
6488 	}
6489 
6490 	if (tsicr & E1000_TSICR_TXTS) {
6491 		/* retrieve hardware timestamp */
6492 		schedule_work(&adapter->ptp_tx_work);
6493 		ack |= E1000_TSICR_TXTS;
6494 	}
6495 
6496 	if (tsicr & TSINTR_TT0) {
6497 		spin_lock(&adapter->tmreg_lock);
6498 		ts = timespec64_add(adapter->perout[0].start,
6499 				    adapter->perout[0].period);
6500 		/* u32 conversion of tv_sec is safe until y2106 */
6501 		wr32(E1000_TRGTTIML0, ts.tv_nsec);
6502 		wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
6503 		tsauxc = rd32(E1000_TSAUXC);
6504 		tsauxc |= TSAUXC_EN_TT0;
6505 		wr32(E1000_TSAUXC, tsauxc);
6506 		adapter->perout[0].start = ts;
6507 		spin_unlock(&adapter->tmreg_lock);
6508 		ack |= TSINTR_TT0;
6509 	}
6510 
6511 	if (tsicr & TSINTR_TT1) {
6512 		spin_lock(&adapter->tmreg_lock);
6513 		ts = timespec64_add(adapter->perout[1].start,
6514 				    adapter->perout[1].period);
6515 		wr32(E1000_TRGTTIML1, ts.tv_nsec);
6516 		wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
6517 		tsauxc = rd32(E1000_TSAUXC);
6518 		tsauxc |= TSAUXC_EN_TT1;
6519 		wr32(E1000_TSAUXC, tsauxc);
6520 		adapter->perout[1].start = ts;
6521 		spin_unlock(&adapter->tmreg_lock);
6522 		ack |= TSINTR_TT1;
6523 	}
6524 
6525 	if (tsicr & TSINTR_AUTT0) {
6526 		nsec = rd32(E1000_AUXSTMPL0);
6527 		sec  = rd32(E1000_AUXSTMPH0);
6528 		event.type = PTP_CLOCK_EXTTS;
6529 		event.index = 0;
6530 		event.timestamp = sec * 1000000000ULL + nsec;
6531 		ptp_clock_event(adapter->ptp_clock, &event);
6532 		ack |= TSINTR_AUTT0;
6533 	}
6534 
6535 	if (tsicr & TSINTR_AUTT1) {
6536 		nsec = rd32(E1000_AUXSTMPL1);
6537 		sec  = rd32(E1000_AUXSTMPH1);
6538 		event.type = PTP_CLOCK_EXTTS;
6539 		event.index = 1;
6540 		event.timestamp = sec * 1000000000ULL + nsec;
6541 		ptp_clock_event(adapter->ptp_clock, &event);
6542 		ack |= TSINTR_AUTT1;
6543 	}
6544 
6545 	/* acknowledge the interrupts */
6546 	wr32(E1000_TSICR, ack);
6547 }
6548 
6549 static irqreturn_t igb_msix_other(int irq, void *data)
6550 {
6551 	struct igb_adapter *adapter = data;
6552 	struct e1000_hw *hw = &adapter->hw;
6553 	u32 icr = rd32(E1000_ICR);
6554 	/* reading ICR causes bit 31 of EICR to be cleared */
6555 
6556 	if (icr & E1000_ICR_DRSTA)
6557 		schedule_work(&adapter->reset_task);
6558 
6559 	if (icr & E1000_ICR_DOUTSYNC) {
6560 		/* HW is reporting DMA is out of sync */
6561 		adapter->stats.doosync++;
6562 		/* The DMA Out of Sync is also indication of a spoof event
6563 		 * in IOV mode. Check the Wrong VM Behavior register to
6564 		 * see if it is really a spoof event.
6565 		 */
6566 		igb_check_wvbr(adapter);
6567 	}
6568 
6569 	/* Check for a mailbox event */
6570 	if (icr & E1000_ICR_VMMB)
6571 		igb_msg_task(adapter);
6572 
6573 	if (icr & E1000_ICR_LSC) {
6574 		hw->mac.get_link_status = 1;
6575 		/* guard against interrupt when we're going down */
6576 		if (!test_bit(__IGB_DOWN, &adapter->state))
6577 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6578 	}
6579 
6580 	if (icr & E1000_ICR_TS)
6581 		igb_tsync_interrupt(adapter);
6582 
6583 	wr32(E1000_EIMS, adapter->eims_other);
6584 
6585 	return IRQ_HANDLED;
6586 }
6587 
6588 static void igb_write_itr(struct igb_q_vector *q_vector)
6589 {
6590 	struct igb_adapter *adapter = q_vector->adapter;
6591 	u32 itr_val = q_vector->itr_val & 0x7FFC;
6592 
6593 	if (!q_vector->set_itr)
6594 		return;
6595 
6596 	if (!itr_val)
6597 		itr_val = 0x4;
6598 
6599 	if (adapter->hw.mac.type == e1000_82575)
6600 		itr_val |= itr_val << 16;
6601 	else
6602 		itr_val |= E1000_EITR_CNT_IGNR;
6603 
6604 	writel(itr_val, q_vector->itr_register);
6605 	q_vector->set_itr = 0;
6606 }
6607 
6608 static irqreturn_t igb_msix_ring(int irq, void *data)
6609 {
6610 	struct igb_q_vector *q_vector = data;
6611 
6612 	/* Write the ITR value calculated from the previous interrupt. */
6613 	igb_write_itr(q_vector);
6614 
6615 	napi_schedule(&q_vector->napi);
6616 
6617 	return IRQ_HANDLED;
6618 }
6619 
6620 #ifdef CONFIG_IGB_DCA
6621 static void igb_update_tx_dca(struct igb_adapter *adapter,
6622 			      struct igb_ring *tx_ring,
6623 			      int cpu)
6624 {
6625 	struct e1000_hw *hw = &adapter->hw;
6626 	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6627 
6628 	if (hw->mac.type != e1000_82575)
6629 		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
6630 
6631 	/* We can enable relaxed ordering for reads, but not writes when
6632 	 * DCA is enabled.  This is due to a known issue in some chipsets
6633 	 * which will cause the DCA tag to be cleared.
6634 	 */
6635 	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6636 		  E1000_DCA_TXCTRL_DATA_RRO_EN |
6637 		  E1000_DCA_TXCTRL_DESC_DCA_EN;
6638 
6639 	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6640 }
6641 
6642 static void igb_update_rx_dca(struct igb_adapter *adapter,
6643 			      struct igb_ring *rx_ring,
6644 			      int cpu)
6645 {
6646 	struct e1000_hw *hw = &adapter->hw;
6647 	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6648 
6649 	if (hw->mac.type != e1000_82575)
6650 		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
6651 
6652 	/* We can enable relaxed ordering for reads, but not writes when
6653 	 * DCA is enabled.  This is due to a known issue in some chipsets
6654 	 * which will cause the DCA tag to be cleared.
6655 	 */
6656 	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6657 		  E1000_DCA_RXCTRL_DESC_DCA_EN;
6658 
6659 	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6660 }
6661 
6662 static void igb_update_dca(struct igb_q_vector *q_vector)
6663 {
6664 	struct igb_adapter *adapter = q_vector->adapter;
6665 	int cpu = get_cpu();
6666 
6667 	if (q_vector->cpu == cpu)
6668 		goto out_no_update;
6669 
6670 	if (q_vector->tx.ring)
6671 		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6672 
6673 	if (q_vector->rx.ring)
6674 		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6675 
6676 	q_vector->cpu = cpu;
6677 out_no_update:
6678 	put_cpu();
6679 }
6680 
6681 static void igb_setup_dca(struct igb_adapter *adapter)
6682 {
6683 	struct e1000_hw *hw = &adapter->hw;
6684 	int i;
6685 
6686 	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
6687 		return;
6688 
6689 	/* Always use CB2 mode, difference is masked in the CB driver. */
6690 	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6691 
6692 	for (i = 0; i < adapter->num_q_vectors; i++) {
6693 		adapter->q_vector[i]->cpu = -1;
6694 		igb_update_dca(adapter->q_vector[i]);
6695 	}
6696 }
6697 
6698 static int __igb_notify_dca(struct device *dev, void *data)
6699 {
6700 	struct net_device *netdev = dev_get_drvdata(dev);
6701 	struct igb_adapter *adapter = netdev_priv(netdev);
6702 	struct pci_dev *pdev = adapter->pdev;
6703 	struct e1000_hw *hw = &adapter->hw;
6704 	unsigned long event = *(unsigned long *)data;
6705 
6706 	switch (event) {
6707 	case DCA_PROVIDER_ADD:
6708 		/* if already enabled, don't do it again */
6709 		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
6710 			break;
6711 		if (dca_add_requester(dev) == 0) {
6712 			adapter->flags |= IGB_FLAG_DCA_ENABLED;
6713 			dev_info(&pdev->dev, "DCA enabled\n");
6714 			igb_setup_dca(adapter);
6715 			break;
6716 		}
6717 		fallthrough; /* since DCA is disabled. */
6718 	case DCA_PROVIDER_REMOVE:
6719 		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
6720 			/* without this a class_device is left
6721 			 * hanging around in the sysfs model
6722 			 */
6723 			dca_remove_requester(dev);
6724 			dev_info(&pdev->dev, "DCA disabled\n");
6725 			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
6726 			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
6727 		}
6728 		break;
6729 	}
6730 
6731 	return 0;
6732 }
6733 
6734 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
6735 			  void *p)
6736 {
6737 	int ret_val;
6738 
6739 	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
6740 					 __igb_notify_dca);
6741 
6742 	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
6743 }
6744 #endif /* CONFIG_IGB_DCA */
6745 
6746 #ifdef CONFIG_PCI_IOV
6747 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
6748 {
6749 	unsigned char mac_addr[ETH_ALEN];
6750 
6751 	eth_zero_addr(mac_addr);
6752 	igb_set_vf_mac(adapter, vf, mac_addr);
6753 
6754 	/* By default spoof check is enabled for all VFs */
6755 	adapter->vf_data[vf].spoofchk_enabled = true;
6756 
6757 	/* By default VFs are not trusted */
6758 	adapter->vf_data[vf].trusted = false;
6759 
6760 	return 0;
6761 }
6762 
6763 #endif
6764 static void igb_ping_all_vfs(struct igb_adapter *adapter)
6765 {
6766 	struct e1000_hw *hw = &adapter->hw;
6767 	u32 ping;
6768 	int i;
6769 
6770 	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
6771 		ping = E1000_PF_CONTROL_MSG;
6772 		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
6773 			ping |= E1000_VT_MSGTYPE_CTS;
6774 		igb_write_mbx(hw, &ping, 1, i);
6775 	}
6776 }
6777 
6778 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6779 {
6780 	struct e1000_hw *hw = &adapter->hw;
6781 	u32 vmolr = rd32(E1000_VMOLR(vf));
6782 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6783 
6784 	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
6785 			    IGB_VF_FLAG_MULTI_PROMISC);
6786 	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6787 
6788 	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
6789 		vmolr |= E1000_VMOLR_MPME;
6790 		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
6791 		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
6792 	} else {
6793 		/* if we have hashes and we are clearing a multicast promisc
6794 		 * flag we need to write the hashes to the MTA as this step
6795 		 * was previously skipped
6796 		 */
6797 		if (vf_data->num_vf_mc_hashes > 30) {
6798 			vmolr |= E1000_VMOLR_MPME;
6799 		} else if (vf_data->num_vf_mc_hashes) {
6800 			int j;
6801 
6802 			vmolr |= E1000_VMOLR_ROMPE;
6803 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6804 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6805 		}
6806 	}
6807 
6808 	wr32(E1000_VMOLR(vf), vmolr);
6809 
6810 	/* there are flags left unprocessed, likely not supported */
6811 	if (*msgbuf & E1000_VT_MSGINFO_MASK)
6812 		return -EINVAL;
6813 
6814 	return 0;
6815 }
6816 
6817 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
6818 				  u32 *msgbuf, u32 vf)
6819 {
6820 	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6821 	u16 *hash_list = (u16 *)&msgbuf[1];
6822 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6823 	int i;
6824 
6825 	/* salt away the number of multicast addresses assigned
6826 	 * to this VF for later use to restore when the PF multi cast
6827 	 * list changes
6828 	 */
6829 	vf_data->num_vf_mc_hashes = n;
6830 
6831 	/* only up to 30 hash values supported */
6832 	if (n > 30)
6833 		n = 30;
6834 
6835 	/* store the hashes for later use */
6836 	for (i = 0; i < n; i++)
6837 		vf_data->vf_mc_hashes[i] = hash_list[i];
6838 
6839 	/* Flush and reset the mta with the new values */
6840 	igb_set_rx_mode(adapter->netdev);
6841 
6842 	return 0;
6843 }
6844 
6845 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
6846 {
6847 	struct e1000_hw *hw = &adapter->hw;
6848 	struct vf_data_storage *vf_data;
6849 	int i, j;
6850 
6851 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
6852 		u32 vmolr = rd32(E1000_VMOLR(i));
6853 
6854 		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6855 
6856 		vf_data = &adapter->vf_data[i];
6857 
6858 		if ((vf_data->num_vf_mc_hashes > 30) ||
6859 		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6860 			vmolr |= E1000_VMOLR_MPME;
6861 		} else if (vf_data->num_vf_mc_hashes) {
6862 			vmolr |= E1000_VMOLR_ROMPE;
6863 			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6864 				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6865 		}
6866 		wr32(E1000_VMOLR(i), vmolr);
6867 	}
6868 }
6869 
6870 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6871 {
6872 	struct e1000_hw *hw = &adapter->hw;
6873 	u32 pool_mask, vlvf_mask, i;
6874 
6875 	/* create mask for VF and other pools */
6876 	pool_mask = E1000_VLVF_POOLSEL_MASK;
6877 	vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6878 
6879 	/* drop PF from pool bits */
6880 	pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6881 			     adapter->vfs_allocated_count);
6882 
6883 	/* Find the vlan filter for this id */
6884 	for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6885 		u32 vlvf = rd32(E1000_VLVF(i));
6886 		u32 vfta_mask, vid, vfta;
6887 
6888 		/* remove the vf from the pool */
6889 		if (!(vlvf & vlvf_mask))
6890 			continue;
6891 
6892 		/* clear out bit from VLVF */
6893 		vlvf ^= vlvf_mask;
6894 
6895 		/* if other pools are present, just remove ourselves */
6896 		if (vlvf & pool_mask)
6897 			goto update_vlvfb;
6898 
6899 		/* if PF is present, leave VFTA */
6900 		if (vlvf & E1000_VLVF_POOLSEL_MASK)
6901 			goto update_vlvf;
6902 
6903 		vid = vlvf & E1000_VLVF_VLANID_MASK;
6904 		vfta_mask = BIT(vid % 32);
6905 
6906 		/* clear bit from VFTA */
6907 		vfta = adapter->shadow_vfta[vid / 32];
6908 		if (vfta & vfta_mask)
6909 			hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6910 update_vlvf:
6911 		/* clear pool selection enable */
6912 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6913 			vlvf &= E1000_VLVF_POOLSEL_MASK;
6914 		else
6915 			vlvf = 0;
6916 update_vlvfb:
6917 		/* clear pool bits */
6918 		wr32(E1000_VLVF(i), vlvf);
6919 	}
6920 }
6921 
6922 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6923 {
6924 	u32 vlvf;
6925 	int idx;
6926 
6927 	/* short cut the special case */
6928 	if (vlan == 0)
6929 		return 0;
6930 
6931 	/* Search for the VLAN id in the VLVF entries */
6932 	for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6933 		vlvf = rd32(E1000_VLVF(idx));
6934 		if ((vlvf & VLAN_VID_MASK) == vlan)
6935 			break;
6936 	}
6937 
6938 	return idx;
6939 }
6940 
6941 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6942 {
6943 	struct e1000_hw *hw = &adapter->hw;
6944 	u32 bits, pf_id;
6945 	int idx;
6946 
6947 	idx = igb_find_vlvf_entry(hw, vid);
6948 	if (!idx)
6949 		return;
6950 
6951 	/* See if any other pools are set for this VLAN filter
6952 	 * entry other than the PF.
6953 	 */
6954 	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6955 	bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6956 	bits &= rd32(E1000_VLVF(idx));
6957 
6958 	/* Disable the filter so this falls into the default pool. */
6959 	if (!bits) {
6960 		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6961 			wr32(E1000_VLVF(idx), BIT(pf_id));
6962 		else
6963 			wr32(E1000_VLVF(idx), 0);
6964 	}
6965 }
6966 
6967 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6968 			   bool add, u32 vf)
6969 {
6970 	int pf_id = adapter->vfs_allocated_count;
6971 	struct e1000_hw *hw = &adapter->hw;
6972 	int err;
6973 
6974 	/* If VLAN overlaps with one the PF is currently monitoring make
6975 	 * sure that we are able to allocate a VLVF entry.  This may be
6976 	 * redundant but it guarantees PF will maintain visibility to
6977 	 * the VLAN.
6978 	 */
6979 	if (add && test_bit(vid, adapter->active_vlans)) {
6980 		err = igb_vfta_set(hw, vid, pf_id, true, false);
6981 		if (err)
6982 			return err;
6983 	}
6984 
6985 	err = igb_vfta_set(hw, vid, vf, add, false);
6986 
6987 	if (add && !err)
6988 		return err;
6989 
6990 	/* If we failed to add the VF VLAN or we are removing the VF VLAN
6991 	 * we may need to drop the PF pool bit in order to allow us to free
6992 	 * up the VLVF resources.
6993 	 */
6994 	if (test_bit(vid, adapter->active_vlans) ||
6995 	    (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6996 		igb_update_pf_vlvf(adapter, vid);
6997 
6998 	return err;
6999 }
7000 
7001 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7002 {
7003 	struct e1000_hw *hw = &adapter->hw;
7004 
7005 	if (vid)
7006 		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7007 	else
7008 		wr32(E1000_VMVIR(vf), 0);
7009 }
7010 
7011 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7012 				u16 vlan, u8 qos)
7013 {
7014 	int err;
7015 
7016 	err = igb_set_vf_vlan(adapter, vlan, true, vf);
7017 	if (err)
7018 		return err;
7019 
7020 	igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7021 	igb_set_vmolr(adapter, vf, !vlan);
7022 
7023 	/* revoke access to previous VLAN */
7024 	if (vlan != adapter->vf_data[vf].pf_vlan)
7025 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7026 				false, vf);
7027 
7028 	adapter->vf_data[vf].pf_vlan = vlan;
7029 	adapter->vf_data[vf].pf_qos = qos;
7030 	igb_set_vf_vlan_strip(adapter, vf, true);
7031 	dev_info(&adapter->pdev->dev,
7032 		 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7033 	if (test_bit(__IGB_DOWN, &adapter->state)) {
7034 		dev_warn(&adapter->pdev->dev,
7035 			 "The VF VLAN has been set, but the PF device is not up.\n");
7036 		dev_warn(&adapter->pdev->dev,
7037 			 "Bring the PF device up before attempting to use the VF device.\n");
7038 	}
7039 
7040 	return err;
7041 }
7042 
7043 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7044 {
7045 	/* Restore tagless access via VLAN 0 */
7046 	igb_set_vf_vlan(adapter, 0, true, vf);
7047 
7048 	igb_set_vmvir(adapter, 0, vf);
7049 	igb_set_vmolr(adapter, vf, true);
7050 
7051 	/* Remove any PF assigned VLAN */
7052 	if (adapter->vf_data[vf].pf_vlan)
7053 		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7054 				false, vf);
7055 
7056 	adapter->vf_data[vf].pf_vlan = 0;
7057 	adapter->vf_data[vf].pf_qos = 0;
7058 	igb_set_vf_vlan_strip(adapter, vf, false);
7059 
7060 	return 0;
7061 }
7062 
7063 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7064 			       u16 vlan, u8 qos, __be16 vlan_proto)
7065 {
7066 	struct igb_adapter *adapter = netdev_priv(netdev);
7067 
7068 	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7069 		return -EINVAL;
7070 
7071 	if (vlan_proto != htons(ETH_P_8021Q))
7072 		return -EPROTONOSUPPORT;
7073 
7074 	return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7075 			       igb_disable_port_vlan(adapter, vf);
7076 }
7077 
7078 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7079 {
7080 	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7081 	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7082 	int ret;
7083 
7084 	if (adapter->vf_data[vf].pf_vlan)
7085 		return -1;
7086 
7087 	/* VLAN 0 is a special case, don't allow it to be removed */
7088 	if (!vid && !add)
7089 		return 0;
7090 
7091 	ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7092 	if (!ret)
7093 		igb_set_vf_vlan_strip(adapter, vf, !!vid);
7094 	return ret;
7095 }
7096 
7097 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7098 {
7099 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7100 
7101 	/* clear flags - except flag that indicates PF has set the MAC */
7102 	vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7103 	vf_data->last_nack = jiffies;
7104 
7105 	/* reset vlans for device */
7106 	igb_clear_vf_vfta(adapter, vf);
7107 	igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7108 	igb_set_vmvir(adapter, vf_data->pf_vlan |
7109 			       (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7110 	igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7111 	igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7112 
7113 	/* reset multicast table array for vf */
7114 	adapter->vf_data[vf].num_vf_mc_hashes = 0;
7115 
7116 	/* Flush and reset the mta with the new values */
7117 	igb_set_rx_mode(adapter->netdev);
7118 }
7119 
7120 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7121 {
7122 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7123 
7124 	/* clear mac address as we were hotplug removed/added */
7125 	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7126 		eth_zero_addr(vf_mac);
7127 
7128 	/* process remaining reset events */
7129 	igb_vf_reset(adapter, vf);
7130 }
7131 
7132 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7133 {
7134 	struct e1000_hw *hw = &adapter->hw;
7135 	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7136 	u32 reg, msgbuf[3];
7137 	u8 *addr = (u8 *)(&msgbuf[1]);
7138 
7139 	/* process all the same items cleared in a function level reset */
7140 	igb_vf_reset(adapter, vf);
7141 
7142 	/* set vf mac address */
7143 	igb_set_vf_mac(adapter, vf, vf_mac);
7144 
7145 	/* enable transmit and receive for vf */
7146 	reg = rd32(E1000_VFTE);
7147 	wr32(E1000_VFTE, reg | BIT(vf));
7148 	reg = rd32(E1000_VFRE);
7149 	wr32(E1000_VFRE, reg | BIT(vf));
7150 
7151 	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7152 
7153 	/* reply to reset with ack and vf mac address */
7154 	if (!is_zero_ether_addr(vf_mac)) {
7155 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7156 		memcpy(addr, vf_mac, ETH_ALEN);
7157 	} else {
7158 		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7159 	}
7160 	igb_write_mbx(hw, msgbuf, 3, vf);
7161 }
7162 
7163 static void igb_flush_mac_table(struct igb_adapter *adapter)
7164 {
7165 	struct e1000_hw *hw = &adapter->hw;
7166 	int i;
7167 
7168 	for (i = 0; i < hw->mac.rar_entry_count; i++) {
7169 		adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7170 		eth_zero_addr(adapter->mac_table[i].addr);
7171 		adapter->mac_table[i].queue = 0;
7172 		igb_rar_set_index(adapter, i);
7173 	}
7174 }
7175 
7176 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7177 {
7178 	struct e1000_hw *hw = &adapter->hw;
7179 	/* do not count rar entries reserved for VFs MAC addresses */
7180 	int rar_entries = hw->mac.rar_entry_count -
7181 			  adapter->vfs_allocated_count;
7182 	int i, count = 0;
7183 
7184 	for (i = 0; i < rar_entries; i++) {
7185 		/* do not count default entries */
7186 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7187 			continue;
7188 
7189 		/* do not count "in use" entries for different queues */
7190 		if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7191 		    (adapter->mac_table[i].queue != queue))
7192 			continue;
7193 
7194 		count++;
7195 	}
7196 
7197 	return count;
7198 }
7199 
7200 /* Set default MAC address for the PF in the first RAR entry */
7201 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7202 {
7203 	struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7204 
7205 	ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7206 	mac_table->queue = adapter->vfs_allocated_count;
7207 	mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7208 
7209 	igb_rar_set_index(adapter, 0);
7210 }
7211 
7212 /* If the filter to be added and an already existing filter express
7213  * the same address and address type, it should be possible to only
7214  * override the other configurations, for example the queue to steer
7215  * traffic.
7216  */
7217 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7218 				      const u8 *addr, const u8 flags)
7219 {
7220 	if (!(entry->state & IGB_MAC_STATE_IN_USE))
7221 		return true;
7222 
7223 	if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7224 	    (flags & IGB_MAC_STATE_SRC_ADDR))
7225 		return false;
7226 
7227 	if (!ether_addr_equal(addr, entry->addr))
7228 		return false;
7229 
7230 	return true;
7231 }
7232 
7233 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7234  * 'flags' is used to indicate what kind of match is made, match is by
7235  * default for the destination address, if matching by source address
7236  * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7237  */
7238 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7239 				    const u8 *addr, const u8 queue,
7240 				    const u8 flags)
7241 {
7242 	struct e1000_hw *hw = &adapter->hw;
7243 	int rar_entries = hw->mac.rar_entry_count -
7244 			  adapter->vfs_allocated_count;
7245 	int i;
7246 
7247 	if (is_zero_ether_addr(addr))
7248 		return -EINVAL;
7249 
7250 	/* Search for the first empty entry in the MAC table.
7251 	 * Do not touch entries at the end of the table reserved for the VF MAC
7252 	 * addresses.
7253 	 */
7254 	for (i = 0; i < rar_entries; i++) {
7255 		if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7256 					       addr, flags))
7257 			continue;
7258 
7259 		ether_addr_copy(adapter->mac_table[i].addr, addr);
7260 		adapter->mac_table[i].queue = queue;
7261 		adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7262 
7263 		igb_rar_set_index(adapter, i);
7264 		return i;
7265 	}
7266 
7267 	return -ENOSPC;
7268 }
7269 
7270 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7271 			      const u8 queue)
7272 {
7273 	return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7274 }
7275 
7276 /* Remove a MAC filter for 'addr' directing matching traffic to
7277  * 'queue', 'flags' is used to indicate what kind of match need to be
7278  * removed, match is by default for the destination address, if
7279  * matching by source address is to be removed the flag
7280  * IGB_MAC_STATE_SRC_ADDR can be used.
7281  */
7282 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7283 				    const u8 *addr, const u8 queue,
7284 				    const u8 flags)
7285 {
7286 	struct e1000_hw *hw = &adapter->hw;
7287 	int rar_entries = hw->mac.rar_entry_count -
7288 			  adapter->vfs_allocated_count;
7289 	int i;
7290 
7291 	if (is_zero_ether_addr(addr))
7292 		return -EINVAL;
7293 
7294 	/* Search for matching entry in the MAC table based on given address
7295 	 * and queue. Do not touch entries at the end of the table reserved
7296 	 * for the VF MAC addresses.
7297 	 */
7298 	for (i = 0; i < rar_entries; i++) {
7299 		if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7300 			continue;
7301 		if ((adapter->mac_table[i].state & flags) != flags)
7302 			continue;
7303 		if (adapter->mac_table[i].queue != queue)
7304 			continue;
7305 		if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7306 			continue;
7307 
7308 		/* When a filter for the default address is "deleted",
7309 		 * we return it to its initial configuration
7310 		 */
7311 		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7312 			adapter->mac_table[i].state =
7313 				IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7314 			adapter->mac_table[i].queue =
7315 				adapter->vfs_allocated_count;
7316 		} else {
7317 			adapter->mac_table[i].state = 0;
7318 			adapter->mac_table[i].queue = 0;
7319 			eth_zero_addr(adapter->mac_table[i].addr);
7320 		}
7321 
7322 		igb_rar_set_index(adapter, i);
7323 		return 0;
7324 	}
7325 
7326 	return -ENOENT;
7327 }
7328 
7329 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7330 			      const u8 queue)
7331 {
7332 	return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7333 }
7334 
7335 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7336 				const u8 *addr, u8 queue, u8 flags)
7337 {
7338 	struct e1000_hw *hw = &adapter->hw;
7339 
7340 	/* In theory, this should be supported on 82575 as well, but
7341 	 * that part wasn't easily accessible during development.
7342 	 */
7343 	if (hw->mac.type != e1000_i210)
7344 		return -EOPNOTSUPP;
7345 
7346 	return igb_add_mac_filter_flags(adapter, addr, queue,
7347 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7348 }
7349 
7350 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7351 				const u8 *addr, u8 queue, u8 flags)
7352 {
7353 	return igb_del_mac_filter_flags(adapter, addr, queue,
7354 					IGB_MAC_STATE_QUEUE_STEERING | flags);
7355 }
7356 
7357 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7358 {
7359 	struct igb_adapter *adapter = netdev_priv(netdev);
7360 	int ret;
7361 
7362 	ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7363 
7364 	return min_t(int, ret, 0);
7365 }
7366 
7367 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7368 {
7369 	struct igb_adapter *adapter = netdev_priv(netdev);
7370 
7371 	igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7372 
7373 	return 0;
7374 }
7375 
7376 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7377 				 const u32 info, const u8 *addr)
7378 {
7379 	struct pci_dev *pdev = adapter->pdev;
7380 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7381 	struct list_head *pos;
7382 	struct vf_mac_filter *entry = NULL;
7383 	int ret = 0;
7384 
7385 	switch (info) {
7386 	case E1000_VF_MAC_FILTER_CLR:
7387 		/* remove all unicast MAC filters related to the current VF */
7388 		list_for_each(pos, &adapter->vf_macs.l) {
7389 			entry = list_entry(pos, struct vf_mac_filter, l);
7390 			if (entry->vf == vf) {
7391 				entry->vf = -1;
7392 				entry->free = true;
7393 				igb_del_mac_filter(adapter, entry->vf_mac, vf);
7394 			}
7395 		}
7396 		break;
7397 	case E1000_VF_MAC_FILTER_ADD:
7398 		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7399 		    !vf_data->trusted) {
7400 			dev_warn(&pdev->dev,
7401 				 "VF %d requested MAC filter but is administratively denied\n",
7402 				 vf);
7403 			return -EINVAL;
7404 		}
7405 		if (!is_valid_ether_addr(addr)) {
7406 			dev_warn(&pdev->dev,
7407 				 "VF %d attempted to set invalid MAC filter\n",
7408 				 vf);
7409 			return -EINVAL;
7410 		}
7411 
7412 		/* try to find empty slot in the list */
7413 		list_for_each(pos, &adapter->vf_macs.l) {
7414 			entry = list_entry(pos, struct vf_mac_filter, l);
7415 			if (entry->free)
7416 				break;
7417 		}
7418 
7419 		if (entry && entry->free) {
7420 			entry->free = false;
7421 			entry->vf = vf;
7422 			ether_addr_copy(entry->vf_mac, addr);
7423 
7424 			ret = igb_add_mac_filter(adapter, addr, vf);
7425 			ret = min_t(int, ret, 0);
7426 		} else {
7427 			ret = -ENOSPC;
7428 		}
7429 
7430 		if (ret == -ENOSPC)
7431 			dev_warn(&pdev->dev,
7432 				 "VF %d has requested MAC filter but there is no space for it\n",
7433 				 vf);
7434 		break;
7435 	default:
7436 		ret = -EINVAL;
7437 		break;
7438 	}
7439 
7440 	return ret;
7441 }
7442 
7443 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7444 {
7445 	struct pci_dev *pdev = adapter->pdev;
7446 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7447 	u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7448 
7449 	/* The VF MAC Address is stored in a packed array of bytes
7450 	 * starting at the second 32 bit word of the msg array
7451 	 */
7452 	unsigned char *addr = (unsigned char *)&msg[1];
7453 	int ret = 0;
7454 
7455 	if (!info) {
7456 		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7457 		    !vf_data->trusted) {
7458 			dev_warn(&pdev->dev,
7459 				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7460 				 vf);
7461 			return -EINVAL;
7462 		}
7463 
7464 		if (!is_valid_ether_addr(addr)) {
7465 			dev_warn(&pdev->dev,
7466 				 "VF %d attempted to set invalid MAC\n",
7467 				 vf);
7468 			return -EINVAL;
7469 		}
7470 
7471 		ret = igb_set_vf_mac(adapter, vf, addr);
7472 	} else {
7473 		ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7474 	}
7475 
7476 	return ret;
7477 }
7478 
7479 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7480 {
7481 	struct e1000_hw *hw = &adapter->hw;
7482 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7483 	u32 msg = E1000_VT_MSGTYPE_NACK;
7484 
7485 	/* if device isn't clear to send it shouldn't be reading either */
7486 	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7487 	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7488 		igb_write_mbx(hw, &msg, 1, vf);
7489 		vf_data->last_nack = jiffies;
7490 	}
7491 }
7492 
7493 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7494 {
7495 	struct pci_dev *pdev = adapter->pdev;
7496 	u32 msgbuf[E1000_VFMAILBOX_SIZE];
7497 	struct e1000_hw *hw = &adapter->hw;
7498 	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7499 	s32 retval;
7500 
7501 	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7502 
7503 	if (retval) {
7504 		/* if receive failed revoke VF CTS stats and restart init */
7505 		dev_err(&pdev->dev, "Error receiving message from VF\n");
7506 		vf_data->flags &= ~IGB_VF_FLAG_CTS;
7507 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7508 			goto unlock;
7509 		goto out;
7510 	}
7511 
7512 	/* this is a message we already processed, do nothing */
7513 	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7514 		goto unlock;
7515 
7516 	/* until the vf completes a reset it should not be
7517 	 * allowed to start any configuration.
7518 	 */
7519 	if (msgbuf[0] == E1000_VF_RESET) {
7520 		/* unlocks mailbox */
7521 		igb_vf_reset_msg(adapter, vf);
7522 		return;
7523 	}
7524 
7525 	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7526 		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7527 			goto unlock;
7528 		retval = -1;
7529 		goto out;
7530 	}
7531 
7532 	switch ((msgbuf[0] & 0xFFFF)) {
7533 	case E1000_VF_SET_MAC_ADDR:
7534 		retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7535 		break;
7536 	case E1000_VF_SET_PROMISC:
7537 		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7538 		break;
7539 	case E1000_VF_SET_MULTICAST:
7540 		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7541 		break;
7542 	case E1000_VF_SET_LPE:
7543 		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7544 		break;
7545 	case E1000_VF_SET_VLAN:
7546 		retval = -1;
7547 		if (vf_data->pf_vlan)
7548 			dev_warn(&pdev->dev,
7549 				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7550 				 vf);
7551 		else
7552 			retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7553 		break;
7554 	default:
7555 		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7556 		retval = -1;
7557 		break;
7558 	}
7559 
7560 	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7561 out:
7562 	/* notify the VF of the results of what it sent us */
7563 	if (retval)
7564 		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7565 	else
7566 		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7567 
7568 	/* unlocks mailbox */
7569 	igb_write_mbx(hw, msgbuf, 1, vf);
7570 	return;
7571 
7572 unlock:
7573 	igb_unlock_mbx(hw, vf);
7574 }
7575 
7576 static void igb_msg_task(struct igb_adapter *adapter)
7577 {
7578 	struct e1000_hw *hw = &adapter->hw;
7579 	u32 vf;
7580 
7581 	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7582 		/* process any reset requests */
7583 		if (!igb_check_for_rst(hw, vf))
7584 			igb_vf_reset_event(adapter, vf);
7585 
7586 		/* process any messages pending */
7587 		if (!igb_check_for_msg(hw, vf))
7588 			igb_rcv_msg_from_vf(adapter, vf);
7589 
7590 		/* process any acks */
7591 		if (!igb_check_for_ack(hw, vf))
7592 			igb_rcv_ack_from_vf(adapter, vf);
7593 	}
7594 }
7595 
7596 /**
7597  *  igb_set_uta - Set unicast filter table address
7598  *  @adapter: board private structure
7599  *  @set: boolean indicating if we are setting or clearing bits
7600  *
7601  *  The unicast table address is a register array of 32-bit registers.
7602  *  The table is meant to be used in a way similar to how the MTA is used
7603  *  however due to certain limitations in the hardware it is necessary to
7604  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7605  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
7606  **/
7607 static void igb_set_uta(struct igb_adapter *adapter, bool set)
7608 {
7609 	struct e1000_hw *hw = &adapter->hw;
7610 	u32 uta = set ? ~0 : 0;
7611 	int i;
7612 
7613 	/* we only need to do this if VMDq is enabled */
7614 	if (!adapter->vfs_allocated_count)
7615 		return;
7616 
7617 	for (i = hw->mac.uta_reg_count; i--;)
7618 		array_wr32(E1000_UTA, i, uta);
7619 }
7620 
7621 /**
7622  *  igb_intr_msi - Interrupt Handler
7623  *  @irq: interrupt number
7624  *  @data: pointer to a network interface device structure
7625  **/
7626 static irqreturn_t igb_intr_msi(int irq, void *data)
7627 {
7628 	struct igb_adapter *adapter = data;
7629 	struct igb_q_vector *q_vector = adapter->q_vector[0];
7630 	struct e1000_hw *hw = &adapter->hw;
7631 	/* read ICR disables interrupts using IAM */
7632 	u32 icr = rd32(E1000_ICR);
7633 
7634 	igb_write_itr(q_vector);
7635 
7636 	if (icr & E1000_ICR_DRSTA)
7637 		schedule_work(&adapter->reset_task);
7638 
7639 	if (icr & E1000_ICR_DOUTSYNC) {
7640 		/* HW is reporting DMA is out of sync */
7641 		adapter->stats.doosync++;
7642 	}
7643 
7644 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7645 		hw->mac.get_link_status = 1;
7646 		if (!test_bit(__IGB_DOWN, &adapter->state))
7647 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
7648 	}
7649 
7650 	if (icr & E1000_ICR_TS)
7651 		igb_tsync_interrupt(adapter);
7652 
7653 	napi_schedule(&q_vector->napi);
7654 
7655 	return IRQ_HANDLED;
7656 }
7657 
7658 /**
7659  *  igb_intr - Legacy Interrupt Handler
7660  *  @irq: interrupt number
7661  *  @data: pointer to a network interface device structure
7662  **/
7663 static irqreturn_t igb_intr(int irq, void *data)
7664 {
7665 	struct igb_adapter *adapter = data;
7666 	struct igb_q_vector *q_vector = adapter->q_vector[0];
7667 	struct e1000_hw *hw = &adapter->hw;
7668 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
7669 	 * need for the IMC write
7670 	 */
7671 	u32 icr = rd32(E1000_ICR);
7672 
7673 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
7674 	 * not set, then the adapter didn't send an interrupt
7675 	 */
7676 	if (!(icr & E1000_ICR_INT_ASSERTED))
7677 		return IRQ_NONE;
7678 
7679 	igb_write_itr(q_vector);
7680 
7681 	if (icr & E1000_ICR_DRSTA)
7682 		schedule_work(&adapter->reset_task);
7683 
7684 	if (icr & E1000_ICR_DOUTSYNC) {
7685 		/* HW is reporting DMA is out of sync */
7686 		adapter->stats.doosync++;
7687 	}
7688 
7689 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7690 		hw->mac.get_link_status = 1;
7691 		/* guard against interrupt when we're going down */
7692 		if (!test_bit(__IGB_DOWN, &adapter->state))
7693 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
7694 	}
7695 
7696 	if (icr & E1000_ICR_TS)
7697 		igb_tsync_interrupt(adapter);
7698 
7699 	napi_schedule(&q_vector->napi);
7700 
7701 	return IRQ_HANDLED;
7702 }
7703 
7704 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
7705 {
7706 	struct igb_adapter *adapter = q_vector->adapter;
7707 	struct e1000_hw *hw = &adapter->hw;
7708 
7709 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
7710 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
7711 		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
7712 			igb_set_itr(q_vector);
7713 		else
7714 			igb_update_ring_itr(q_vector);
7715 	}
7716 
7717 	if (!test_bit(__IGB_DOWN, &adapter->state)) {
7718 		if (adapter->flags & IGB_FLAG_HAS_MSIX)
7719 			wr32(E1000_EIMS, q_vector->eims_value);
7720 		else
7721 			igb_irq_enable(adapter);
7722 	}
7723 }
7724 
7725 /**
7726  *  igb_poll - NAPI Rx polling callback
7727  *  @napi: napi polling structure
7728  *  @budget: count of how many packets we should handle
7729  **/
7730 static int igb_poll(struct napi_struct *napi, int budget)
7731 {
7732 	struct igb_q_vector *q_vector = container_of(napi,
7733 						     struct igb_q_vector,
7734 						     napi);
7735 	bool clean_complete = true;
7736 	int work_done = 0;
7737 
7738 #ifdef CONFIG_IGB_DCA
7739 	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
7740 		igb_update_dca(q_vector);
7741 #endif
7742 	if (q_vector->tx.ring)
7743 		clean_complete = igb_clean_tx_irq(q_vector, budget);
7744 
7745 	if (q_vector->rx.ring) {
7746 		int cleaned = igb_clean_rx_irq(q_vector, budget);
7747 
7748 		work_done += cleaned;
7749 		if (cleaned >= budget)
7750 			clean_complete = false;
7751 	}
7752 
7753 	/* If all work not completed, return budget and keep polling */
7754 	if (!clean_complete)
7755 		return budget;
7756 
7757 	/* Exit the polling mode, but don't re-enable interrupts if stack might
7758 	 * poll us due to busy-polling
7759 	 */
7760 	if (likely(napi_complete_done(napi, work_done)))
7761 		igb_ring_irq_enable(q_vector);
7762 
7763 	return min(work_done, budget - 1);
7764 }
7765 
7766 /**
7767  *  igb_clean_tx_irq - Reclaim resources after transmit completes
7768  *  @q_vector: pointer to q_vector containing needed info
7769  *  @napi_budget: Used to determine if we are in netpoll
7770  *
7771  *  returns true if ring is completely cleaned
7772  **/
7773 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
7774 {
7775 	struct igb_adapter *adapter = q_vector->adapter;
7776 	struct igb_ring *tx_ring = q_vector->tx.ring;
7777 	struct igb_tx_buffer *tx_buffer;
7778 	union e1000_adv_tx_desc *tx_desc;
7779 	unsigned int total_bytes = 0, total_packets = 0;
7780 	unsigned int budget = q_vector->tx.work_limit;
7781 	unsigned int i = tx_ring->next_to_clean;
7782 
7783 	if (test_bit(__IGB_DOWN, &adapter->state))
7784 		return true;
7785 
7786 	tx_buffer = &tx_ring->tx_buffer_info[i];
7787 	tx_desc = IGB_TX_DESC(tx_ring, i);
7788 	i -= tx_ring->count;
7789 
7790 	do {
7791 		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
7792 
7793 		/* if next_to_watch is not set then there is no work pending */
7794 		if (!eop_desc)
7795 			break;
7796 
7797 		/* prevent any other reads prior to eop_desc */
7798 		smp_rmb();
7799 
7800 		/* if DD is not set pending work has not been completed */
7801 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
7802 			break;
7803 
7804 		/* clear next_to_watch to prevent false hangs */
7805 		tx_buffer->next_to_watch = NULL;
7806 
7807 		/* update the statistics for this packet */
7808 		total_bytes += tx_buffer->bytecount;
7809 		total_packets += tx_buffer->gso_segs;
7810 
7811 		/* free the skb */
7812 		napi_consume_skb(tx_buffer->skb, napi_budget);
7813 
7814 		/* unmap skb header data */
7815 		dma_unmap_single(tx_ring->dev,
7816 				 dma_unmap_addr(tx_buffer, dma),
7817 				 dma_unmap_len(tx_buffer, len),
7818 				 DMA_TO_DEVICE);
7819 
7820 		/* clear tx_buffer data */
7821 		dma_unmap_len_set(tx_buffer, len, 0);
7822 
7823 		/* clear last DMA location and unmap remaining buffers */
7824 		while (tx_desc != eop_desc) {
7825 			tx_buffer++;
7826 			tx_desc++;
7827 			i++;
7828 			if (unlikely(!i)) {
7829 				i -= tx_ring->count;
7830 				tx_buffer = tx_ring->tx_buffer_info;
7831 				tx_desc = IGB_TX_DESC(tx_ring, 0);
7832 			}
7833 
7834 			/* unmap any remaining paged data */
7835 			if (dma_unmap_len(tx_buffer, len)) {
7836 				dma_unmap_page(tx_ring->dev,
7837 					       dma_unmap_addr(tx_buffer, dma),
7838 					       dma_unmap_len(tx_buffer, len),
7839 					       DMA_TO_DEVICE);
7840 				dma_unmap_len_set(tx_buffer, len, 0);
7841 			}
7842 		}
7843 
7844 		/* move us one more past the eop_desc for start of next pkt */
7845 		tx_buffer++;
7846 		tx_desc++;
7847 		i++;
7848 		if (unlikely(!i)) {
7849 			i -= tx_ring->count;
7850 			tx_buffer = tx_ring->tx_buffer_info;
7851 			tx_desc = IGB_TX_DESC(tx_ring, 0);
7852 		}
7853 
7854 		/* issue prefetch for next Tx descriptor */
7855 		prefetch(tx_desc);
7856 
7857 		/* update budget accounting */
7858 		budget--;
7859 	} while (likely(budget));
7860 
7861 	netdev_tx_completed_queue(txring_txq(tx_ring),
7862 				  total_packets, total_bytes);
7863 	i += tx_ring->count;
7864 	tx_ring->next_to_clean = i;
7865 	u64_stats_update_begin(&tx_ring->tx_syncp);
7866 	tx_ring->tx_stats.bytes += total_bytes;
7867 	tx_ring->tx_stats.packets += total_packets;
7868 	u64_stats_update_end(&tx_ring->tx_syncp);
7869 	q_vector->tx.total_bytes += total_bytes;
7870 	q_vector->tx.total_packets += total_packets;
7871 
7872 	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
7873 		struct e1000_hw *hw = &adapter->hw;
7874 
7875 		/* Detect a transmit hang in hardware, this serializes the
7876 		 * check with the clearing of time_stamp and movement of i
7877 		 */
7878 		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
7879 		if (tx_buffer->next_to_watch &&
7880 		    time_after(jiffies, tx_buffer->time_stamp +
7881 			       (adapter->tx_timeout_factor * HZ)) &&
7882 		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
7883 
7884 			/* detected Tx unit hang */
7885 			dev_err(tx_ring->dev,
7886 				"Detected Tx Unit Hang\n"
7887 				"  Tx Queue             <%d>\n"
7888 				"  TDH                  <%x>\n"
7889 				"  TDT                  <%x>\n"
7890 				"  next_to_use          <%x>\n"
7891 				"  next_to_clean        <%x>\n"
7892 				"buffer_info[next_to_clean]\n"
7893 				"  time_stamp           <%lx>\n"
7894 				"  next_to_watch        <%p>\n"
7895 				"  jiffies              <%lx>\n"
7896 				"  desc.status          <%x>\n",
7897 				tx_ring->queue_index,
7898 				rd32(E1000_TDH(tx_ring->reg_idx)),
7899 				readl(tx_ring->tail),
7900 				tx_ring->next_to_use,
7901 				tx_ring->next_to_clean,
7902 				tx_buffer->time_stamp,
7903 				tx_buffer->next_to_watch,
7904 				jiffies,
7905 				tx_buffer->next_to_watch->wb.status);
7906 			netif_stop_subqueue(tx_ring->netdev,
7907 					    tx_ring->queue_index);
7908 
7909 			/* we are about to reset, no point in enabling stuff */
7910 			return true;
7911 		}
7912 	}
7913 
7914 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
7915 	if (unlikely(total_packets &&
7916 	    netif_carrier_ok(tx_ring->netdev) &&
7917 	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
7918 		/* Make sure that anybody stopping the queue after this
7919 		 * sees the new next_to_clean.
7920 		 */
7921 		smp_mb();
7922 		if (__netif_subqueue_stopped(tx_ring->netdev,
7923 					     tx_ring->queue_index) &&
7924 		    !(test_bit(__IGB_DOWN, &adapter->state))) {
7925 			netif_wake_subqueue(tx_ring->netdev,
7926 					    tx_ring->queue_index);
7927 
7928 			u64_stats_update_begin(&tx_ring->tx_syncp);
7929 			tx_ring->tx_stats.restart_queue++;
7930 			u64_stats_update_end(&tx_ring->tx_syncp);
7931 		}
7932 	}
7933 
7934 	return !!budget;
7935 }
7936 
7937 /**
7938  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
7939  *  @rx_ring: rx descriptor ring to store buffers on
7940  *  @old_buff: donor buffer to have page reused
7941  *
7942  *  Synchronizes page for reuse by the adapter
7943  **/
7944 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
7945 			      struct igb_rx_buffer *old_buff)
7946 {
7947 	struct igb_rx_buffer *new_buff;
7948 	u16 nta = rx_ring->next_to_alloc;
7949 
7950 	new_buff = &rx_ring->rx_buffer_info[nta];
7951 
7952 	/* update, and store next to alloc */
7953 	nta++;
7954 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
7955 
7956 	/* Transfer page from old buffer to new buffer.
7957 	 * Move each member individually to avoid possible store
7958 	 * forwarding stalls.
7959 	 */
7960 	new_buff->dma		= old_buff->dma;
7961 	new_buff->page		= old_buff->page;
7962 	new_buff->page_offset	= old_buff->page_offset;
7963 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
7964 }
7965 
7966 static inline bool igb_page_is_reserved(struct page *page)
7967 {
7968 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
7969 }
7970 
7971 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer)
7972 {
7973 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
7974 	struct page *page = rx_buffer->page;
7975 
7976 	/* avoid re-using remote pages */
7977 	if (unlikely(igb_page_is_reserved(page)))
7978 		return false;
7979 
7980 #if (PAGE_SIZE < 8192)
7981 	/* if we are only owner of page we can reuse it */
7982 	if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
7983 		return false;
7984 #else
7985 #define IGB_LAST_OFFSET \
7986 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
7987 
7988 	if (rx_buffer->page_offset > IGB_LAST_OFFSET)
7989 		return false;
7990 #endif
7991 
7992 	/* If we have drained the page fragment pool we need to update
7993 	 * the pagecnt_bias and page count so that we fully restock the
7994 	 * number of references the driver holds.
7995 	 */
7996 	if (unlikely(!pagecnt_bias)) {
7997 		page_ref_add(page, USHRT_MAX);
7998 		rx_buffer->pagecnt_bias = USHRT_MAX;
7999 	}
8000 
8001 	return true;
8002 }
8003 
8004 /**
8005  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8006  *  @rx_ring: rx descriptor ring to transact packets on
8007  *  @rx_buffer: buffer containing page to add
8008  *  @skb: sk_buff to place the data into
8009  *  @size: size of buffer to be added
8010  *
8011  *  This function will add the data contained in rx_buffer->page to the skb.
8012  **/
8013 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8014 			    struct igb_rx_buffer *rx_buffer,
8015 			    struct sk_buff *skb,
8016 			    unsigned int size)
8017 {
8018 #if (PAGE_SIZE < 8192)
8019 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8020 #else
8021 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8022 				SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8023 				SKB_DATA_ALIGN(size);
8024 #endif
8025 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8026 			rx_buffer->page_offset, size, truesize);
8027 #if (PAGE_SIZE < 8192)
8028 	rx_buffer->page_offset ^= truesize;
8029 #else
8030 	rx_buffer->page_offset += truesize;
8031 #endif
8032 }
8033 
8034 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8035 					 struct igb_rx_buffer *rx_buffer,
8036 					 union e1000_adv_rx_desc *rx_desc,
8037 					 unsigned int size)
8038 {
8039 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8040 #if (PAGE_SIZE < 8192)
8041 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8042 #else
8043 	unsigned int truesize = SKB_DATA_ALIGN(size);
8044 #endif
8045 	unsigned int headlen;
8046 	struct sk_buff *skb;
8047 
8048 	/* prefetch first cache line of first page */
8049 	net_prefetch(va);
8050 
8051 	/* allocate a skb to store the frags */
8052 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8053 	if (unlikely(!skb))
8054 		return NULL;
8055 
8056 	if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
8057 		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
8058 		va += IGB_TS_HDR_LEN;
8059 		size -= IGB_TS_HDR_LEN;
8060 	}
8061 
8062 	/* Determine available headroom for copy */
8063 	headlen = size;
8064 	if (headlen > IGB_RX_HDR_LEN)
8065 		headlen = eth_get_headlen(skb->dev, va, IGB_RX_HDR_LEN);
8066 
8067 	/* align pull length to size of long to optimize memcpy performance */
8068 	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
8069 
8070 	/* update all of the pointers */
8071 	size -= headlen;
8072 	if (size) {
8073 		skb_add_rx_frag(skb, 0, rx_buffer->page,
8074 				(va + headlen) - page_address(rx_buffer->page),
8075 				size, truesize);
8076 #if (PAGE_SIZE < 8192)
8077 		rx_buffer->page_offset ^= truesize;
8078 #else
8079 		rx_buffer->page_offset += truesize;
8080 #endif
8081 	} else {
8082 		rx_buffer->pagecnt_bias++;
8083 	}
8084 
8085 	return skb;
8086 }
8087 
8088 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8089 				     struct igb_rx_buffer *rx_buffer,
8090 				     union e1000_adv_rx_desc *rx_desc,
8091 				     unsigned int size)
8092 {
8093 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8094 #if (PAGE_SIZE < 8192)
8095 	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8096 #else
8097 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8098 				SKB_DATA_ALIGN(IGB_SKB_PAD + size);
8099 #endif
8100 	struct sk_buff *skb;
8101 
8102 	/* prefetch first cache line of first page */
8103 	net_prefetch(va);
8104 
8105 	/* build an skb around the page buffer */
8106 	skb = build_skb(va - IGB_SKB_PAD, truesize);
8107 	if (unlikely(!skb))
8108 		return NULL;
8109 
8110 	/* update pointers within the skb to store the data */
8111 	skb_reserve(skb, IGB_SKB_PAD);
8112 	__skb_put(skb, size);
8113 
8114 	/* pull timestamp out of packet data */
8115 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8116 		igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
8117 		__skb_pull(skb, IGB_TS_HDR_LEN);
8118 	}
8119 
8120 	/* update buffer offset */
8121 #if (PAGE_SIZE < 8192)
8122 	rx_buffer->page_offset ^= truesize;
8123 #else
8124 	rx_buffer->page_offset += truesize;
8125 #endif
8126 
8127 	return skb;
8128 }
8129 
8130 static inline void igb_rx_checksum(struct igb_ring *ring,
8131 				   union e1000_adv_rx_desc *rx_desc,
8132 				   struct sk_buff *skb)
8133 {
8134 	skb_checksum_none_assert(skb);
8135 
8136 	/* Ignore Checksum bit is set */
8137 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8138 		return;
8139 
8140 	/* Rx checksum disabled via ethtool */
8141 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
8142 		return;
8143 
8144 	/* TCP/UDP checksum error bit is set */
8145 	if (igb_test_staterr(rx_desc,
8146 			     E1000_RXDEXT_STATERR_TCPE |
8147 			     E1000_RXDEXT_STATERR_IPE)) {
8148 		/* work around errata with sctp packets where the TCPE aka
8149 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8150 		 * packets, (aka let the stack check the crc32c)
8151 		 */
8152 		if (!((skb->len == 60) &&
8153 		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8154 			u64_stats_update_begin(&ring->rx_syncp);
8155 			ring->rx_stats.csum_err++;
8156 			u64_stats_update_end(&ring->rx_syncp);
8157 		}
8158 		/* let the stack verify checksum errors */
8159 		return;
8160 	}
8161 	/* It must be a TCP or UDP packet with a valid checksum */
8162 	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8163 				      E1000_RXD_STAT_UDPCS))
8164 		skb->ip_summed = CHECKSUM_UNNECESSARY;
8165 
8166 	dev_dbg(ring->dev, "cksum success: bits %08X\n",
8167 		le32_to_cpu(rx_desc->wb.upper.status_error));
8168 }
8169 
8170 static inline void igb_rx_hash(struct igb_ring *ring,
8171 			       union e1000_adv_rx_desc *rx_desc,
8172 			       struct sk_buff *skb)
8173 {
8174 	if (ring->netdev->features & NETIF_F_RXHASH)
8175 		skb_set_hash(skb,
8176 			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8177 			     PKT_HASH_TYPE_L3);
8178 }
8179 
8180 /**
8181  *  igb_is_non_eop - process handling of non-EOP buffers
8182  *  @rx_ring: Rx ring being processed
8183  *  @rx_desc: Rx descriptor for current buffer
8184  *  @skb: current socket buffer containing buffer in progress
8185  *
8186  *  This function updates next to clean.  If the buffer is an EOP buffer
8187  *  this function exits returning false, otherwise it will place the
8188  *  sk_buff in the next buffer to be chained and return true indicating
8189  *  that this is in fact a non-EOP buffer.
8190  **/
8191 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8192 			   union e1000_adv_rx_desc *rx_desc)
8193 {
8194 	u32 ntc = rx_ring->next_to_clean + 1;
8195 
8196 	/* fetch, update, and store next to clean */
8197 	ntc = (ntc < rx_ring->count) ? ntc : 0;
8198 	rx_ring->next_to_clean = ntc;
8199 
8200 	prefetch(IGB_RX_DESC(rx_ring, ntc));
8201 
8202 	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8203 		return false;
8204 
8205 	return true;
8206 }
8207 
8208 /**
8209  *  igb_cleanup_headers - Correct corrupted or empty headers
8210  *  @rx_ring: rx descriptor ring packet is being transacted on
8211  *  @rx_desc: pointer to the EOP Rx descriptor
8212  *  @skb: pointer to current skb being fixed
8213  *
8214  *  Address the case where we are pulling data in on pages only
8215  *  and as such no data is present in the skb header.
8216  *
8217  *  In addition if skb is not at least 60 bytes we need to pad it so that
8218  *  it is large enough to qualify as a valid Ethernet frame.
8219  *
8220  *  Returns true if an error was encountered and skb was freed.
8221  **/
8222 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8223 				union e1000_adv_rx_desc *rx_desc,
8224 				struct sk_buff *skb)
8225 {
8226 	if (unlikely((igb_test_staterr(rx_desc,
8227 				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8228 		struct net_device *netdev = rx_ring->netdev;
8229 		if (!(netdev->features & NETIF_F_RXALL)) {
8230 			dev_kfree_skb_any(skb);
8231 			return true;
8232 		}
8233 	}
8234 
8235 	/* if eth_skb_pad returns an error the skb was freed */
8236 	if (eth_skb_pad(skb))
8237 		return true;
8238 
8239 	return false;
8240 }
8241 
8242 /**
8243  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
8244  *  @rx_ring: rx descriptor ring packet is being transacted on
8245  *  @rx_desc: pointer to the EOP Rx descriptor
8246  *  @skb: pointer to current skb being populated
8247  *
8248  *  This function checks the ring, descriptor, and packet information in
8249  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
8250  *  other fields within the skb.
8251  **/
8252 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8253 				   union e1000_adv_rx_desc *rx_desc,
8254 				   struct sk_buff *skb)
8255 {
8256 	struct net_device *dev = rx_ring->netdev;
8257 
8258 	igb_rx_hash(rx_ring, rx_desc, skb);
8259 
8260 	igb_rx_checksum(rx_ring, rx_desc, skb);
8261 
8262 	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8263 	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8264 		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8265 
8266 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8267 	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8268 		u16 vid;
8269 
8270 		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8271 		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8272 			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
8273 		else
8274 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8275 
8276 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8277 	}
8278 
8279 	skb_record_rx_queue(skb, rx_ring->queue_index);
8280 
8281 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8282 }
8283 
8284 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8285 					       const unsigned int size)
8286 {
8287 	struct igb_rx_buffer *rx_buffer;
8288 
8289 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8290 	prefetchw(rx_buffer->page);
8291 
8292 	/* we are reusing so sync this buffer for CPU use */
8293 	dma_sync_single_range_for_cpu(rx_ring->dev,
8294 				      rx_buffer->dma,
8295 				      rx_buffer->page_offset,
8296 				      size,
8297 				      DMA_FROM_DEVICE);
8298 
8299 	rx_buffer->pagecnt_bias--;
8300 
8301 	return rx_buffer;
8302 }
8303 
8304 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8305 			      struct igb_rx_buffer *rx_buffer)
8306 {
8307 	if (igb_can_reuse_rx_page(rx_buffer)) {
8308 		/* hand second half of page back to the ring */
8309 		igb_reuse_rx_page(rx_ring, rx_buffer);
8310 	} else {
8311 		/* We are not reusing the buffer so unmap it and free
8312 		 * any references we are holding to it
8313 		 */
8314 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8315 				     igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8316 				     IGB_RX_DMA_ATTR);
8317 		__page_frag_cache_drain(rx_buffer->page,
8318 					rx_buffer->pagecnt_bias);
8319 	}
8320 
8321 	/* clear contents of rx_buffer */
8322 	rx_buffer->page = NULL;
8323 }
8324 
8325 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8326 {
8327 	struct igb_ring *rx_ring = q_vector->rx.ring;
8328 	struct sk_buff *skb = rx_ring->skb;
8329 	unsigned int total_bytes = 0, total_packets = 0;
8330 	u16 cleaned_count = igb_desc_unused(rx_ring);
8331 
8332 	while (likely(total_packets < budget)) {
8333 		union e1000_adv_rx_desc *rx_desc;
8334 		struct igb_rx_buffer *rx_buffer;
8335 		unsigned int size;
8336 
8337 		/* return some buffers to hardware, one at a time is too slow */
8338 		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8339 			igb_alloc_rx_buffers(rx_ring, cleaned_count);
8340 			cleaned_count = 0;
8341 		}
8342 
8343 		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8344 		size = le16_to_cpu(rx_desc->wb.upper.length);
8345 		if (!size)
8346 			break;
8347 
8348 		/* This memory barrier is needed to keep us from reading
8349 		 * any other fields out of the rx_desc until we know the
8350 		 * descriptor has been written back
8351 		 */
8352 		dma_rmb();
8353 
8354 		rx_buffer = igb_get_rx_buffer(rx_ring, size);
8355 
8356 		/* retrieve a buffer from the ring */
8357 		if (skb)
8358 			igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8359 		else if (ring_uses_build_skb(rx_ring))
8360 			skb = igb_build_skb(rx_ring, rx_buffer, rx_desc, size);
8361 		else
8362 			skb = igb_construct_skb(rx_ring, rx_buffer,
8363 						rx_desc, size);
8364 
8365 		/* exit if we failed to retrieve a buffer */
8366 		if (!skb) {
8367 			rx_ring->rx_stats.alloc_failed++;
8368 			rx_buffer->pagecnt_bias++;
8369 			break;
8370 		}
8371 
8372 		igb_put_rx_buffer(rx_ring, rx_buffer);
8373 		cleaned_count++;
8374 
8375 		/* fetch next buffer in frame if non-eop */
8376 		if (igb_is_non_eop(rx_ring, rx_desc))
8377 			continue;
8378 
8379 		/* verify the packet layout is correct */
8380 		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8381 			skb = NULL;
8382 			continue;
8383 		}
8384 
8385 		/* probably a little skewed due to removing CRC */
8386 		total_bytes += skb->len;
8387 
8388 		/* populate checksum, timestamp, VLAN, and protocol */
8389 		igb_process_skb_fields(rx_ring, rx_desc, skb);
8390 
8391 		napi_gro_receive(&q_vector->napi, skb);
8392 
8393 		/* reset skb pointer */
8394 		skb = NULL;
8395 
8396 		/* update budget accounting */
8397 		total_packets++;
8398 	}
8399 
8400 	/* place incomplete frames back on ring for completion */
8401 	rx_ring->skb = skb;
8402 
8403 	u64_stats_update_begin(&rx_ring->rx_syncp);
8404 	rx_ring->rx_stats.packets += total_packets;
8405 	rx_ring->rx_stats.bytes += total_bytes;
8406 	u64_stats_update_end(&rx_ring->rx_syncp);
8407 	q_vector->rx.total_packets += total_packets;
8408 	q_vector->rx.total_bytes += total_bytes;
8409 
8410 	if (cleaned_count)
8411 		igb_alloc_rx_buffers(rx_ring, cleaned_count);
8412 
8413 	return total_packets;
8414 }
8415 
8416 static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8417 {
8418 	return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8419 }
8420 
8421 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8422 				  struct igb_rx_buffer *bi)
8423 {
8424 	struct page *page = bi->page;
8425 	dma_addr_t dma;
8426 
8427 	/* since we are recycling buffers we should seldom need to alloc */
8428 	if (likely(page))
8429 		return true;
8430 
8431 	/* alloc new page for storage */
8432 	page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8433 	if (unlikely(!page)) {
8434 		rx_ring->rx_stats.alloc_failed++;
8435 		return false;
8436 	}
8437 
8438 	/* map page for use */
8439 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8440 				 igb_rx_pg_size(rx_ring),
8441 				 DMA_FROM_DEVICE,
8442 				 IGB_RX_DMA_ATTR);
8443 
8444 	/* if mapping failed free memory back to system since
8445 	 * there isn't much point in holding memory we can't use
8446 	 */
8447 	if (dma_mapping_error(rx_ring->dev, dma)) {
8448 		__free_pages(page, igb_rx_pg_order(rx_ring));
8449 
8450 		rx_ring->rx_stats.alloc_failed++;
8451 		return false;
8452 	}
8453 
8454 	bi->dma = dma;
8455 	bi->page = page;
8456 	bi->page_offset = igb_rx_offset(rx_ring);
8457 	bi->pagecnt_bias = 1;
8458 
8459 	return true;
8460 }
8461 
8462 /**
8463  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
8464  *  @adapter: address of board private structure
8465  **/
8466 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
8467 {
8468 	union e1000_adv_rx_desc *rx_desc;
8469 	struct igb_rx_buffer *bi;
8470 	u16 i = rx_ring->next_to_use;
8471 	u16 bufsz;
8472 
8473 	/* nothing to do */
8474 	if (!cleaned_count)
8475 		return;
8476 
8477 	rx_desc = IGB_RX_DESC(rx_ring, i);
8478 	bi = &rx_ring->rx_buffer_info[i];
8479 	i -= rx_ring->count;
8480 
8481 	bufsz = igb_rx_bufsz(rx_ring);
8482 
8483 	do {
8484 		if (!igb_alloc_mapped_page(rx_ring, bi))
8485 			break;
8486 
8487 		/* sync the buffer for use by the device */
8488 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
8489 						 bi->page_offset, bufsz,
8490 						 DMA_FROM_DEVICE);
8491 
8492 		/* Refresh the desc even if buffer_addrs didn't change
8493 		 * because each write-back erases this info.
8494 		 */
8495 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8496 
8497 		rx_desc++;
8498 		bi++;
8499 		i++;
8500 		if (unlikely(!i)) {
8501 			rx_desc = IGB_RX_DESC(rx_ring, 0);
8502 			bi = rx_ring->rx_buffer_info;
8503 			i -= rx_ring->count;
8504 		}
8505 
8506 		/* clear the length for the next_to_use descriptor */
8507 		rx_desc->wb.upper.length = 0;
8508 
8509 		cleaned_count--;
8510 	} while (cleaned_count);
8511 
8512 	i += rx_ring->count;
8513 
8514 	if (rx_ring->next_to_use != i) {
8515 		/* record the next descriptor to use */
8516 		rx_ring->next_to_use = i;
8517 
8518 		/* update next to alloc since we have filled the ring */
8519 		rx_ring->next_to_alloc = i;
8520 
8521 		/* Force memory writes to complete before letting h/w
8522 		 * know there are new descriptors to fetch.  (Only
8523 		 * applicable for weak-ordered memory model archs,
8524 		 * such as IA-64).
8525 		 */
8526 		dma_wmb();
8527 		writel(i, rx_ring->tail);
8528 	}
8529 }
8530 
8531 /**
8532  * igb_mii_ioctl -
8533  * @netdev:
8534  * @ifreq:
8535  * @cmd:
8536  **/
8537 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8538 {
8539 	struct igb_adapter *adapter = netdev_priv(netdev);
8540 	struct mii_ioctl_data *data = if_mii(ifr);
8541 
8542 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
8543 		return -EOPNOTSUPP;
8544 
8545 	switch (cmd) {
8546 	case SIOCGMIIPHY:
8547 		data->phy_id = adapter->hw.phy.addr;
8548 		break;
8549 	case SIOCGMIIREG:
8550 		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
8551 				     &data->val_out))
8552 			return -EIO;
8553 		break;
8554 	case SIOCSMIIREG:
8555 	default:
8556 		return -EOPNOTSUPP;
8557 	}
8558 	return 0;
8559 }
8560 
8561 /**
8562  * igb_ioctl -
8563  * @netdev:
8564  * @ifreq:
8565  * @cmd:
8566  **/
8567 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8568 {
8569 	switch (cmd) {
8570 	case SIOCGMIIPHY:
8571 	case SIOCGMIIREG:
8572 	case SIOCSMIIREG:
8573 		return igb_mii_ioctl(netdev, ifr, cmd);
8574 	case SIOCGHWTSTAMP:
8575 		return igb_ptp_get_ts_config(netdev, ifr);
8576 	case SIOCSHWTSTAMP:
8577 		return igb_ptp_set_ts_config(netdev, ifr);
8578 	default:
8579 		return -EOPNOTSUPP;
8580 	}
8581 }
8582 
8583 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8584 {
8585 	struct igb_adapter *adapter = hw->back;
8586 
8587 	pci_read_config_word(adapter->pdev, reg, value);
8588 }
8589 
8590 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8591 {
8592 	struct igb_adapter *adapter = hw->back;
8593 
8594 	pci_write_config_word(adapter->pdev, reg, *value);
8595 }
8596 
8597 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8598 {
8599 	struct igb_adapter *adapter = hw->back;
8600 
8601 	if (pcie_capability_read_word(adapter->pdev, reg, value))
8602 		return -E1000_ERR_CONFIG;
8603 
8604 	return 0;
8605 }
8606 
8607 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8608 {
8609 	struct igb_adapter *adapter = hw->back;
8610 
8611 	if (pcie_capability_write_word(adapter->pdev, reg, *value))
8612 		return -E1000_ERR_CONFIG;
8613 
8614 	return 0;
8615 }
8616 
8617 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
8618 {
8619 	struct igb_adapter *adapter = netdev_priv(netdev);
8620 	struct e1000_hw *hw = &adapter->hw;
8621 	u32 ctrl, rctl;
8622 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
8623 
8624 	if (enable) {
8625 		/* enable VLAN tag insert/strip */
8626 		ctrl = rd32(E1000_CTRL);
8627 		ctrl |= E1000_CTRL_VME;
8628 		wr32(E1000_CTRL, ctrl);
8629 
8630 		/* Disable CFI check */
8631 		rctl = rd32(E1000_RCTL);
8632 		rctl &= ~E1000_RCTL_CFIEN;
8633 		wr32(E1000_RCTL, rctl);
8634 	} else {
8635 		/* disable VLAN tag insert/strip */
8636 		ctrl = rd32(E1000_CTRL);
8637 		ctrl &= ~E1000_CTRL_VME;
8638 		wr32(E1000_CTRL, ctrl);
8639 	}
8640 
8641 	igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
8642 }
8643 
8644 static int igb_vlan_rx_add_vid(struct net_device *netdev,
8645 			       __be16 proto, u16 vid)
8646 {
8647 	struct igb_adapter *adapter = netdev_priv(netdev);
8648 	struct e1000_hw *hw = &adapter->hw;
8649 	int pf_id = adapter->vfs_allocated_count;
8650 
8651 	/* add the filter since PF can receive vlans w/o entry in vlvf */
8652 	if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8653 		igb_vfta_set(hw, vid, pf_id, true, !!vid);
8654 
8655 	set_bit(vid, adapter->active_vlans);
8656 
8657 	return 0;
8658 }
8659 
8660 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
8661 				__be16 proto, u16 vid)
8662 {
8663 	struct igb_adapter *adapter = netdev_priv(netdev);
8664 	int pf_id = adapter->vfs_allocated_count;
8665 	struct e1000_hw *hw = &adapter->hw;
8666 
8667 	/* remove VID from filter table */
8668 	if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8669 		igb_vfta_set(hw, vid, pf_id, false, true);
8670 
8671 	clear_bit(vid, adapter->active_vlans);
8672 
8673 	return 0;
8674 }
8675 
8676 static void igb_restore_vlan(struct igb_adapter *adapter)
8677 {
8678 	u16 vid = 1;
8679 
8680 	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
8681 	igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
8682 
8683 	for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
8684 		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
8685 }
8686 
8687 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
8688 {
8689 	struct pci_dev *pdev = adapter->pdev;
8690 	struct e1000_mac_info *mac = &adapter->hw.mac;
8691 
8692 	mac->autoneg = 0;
8693 
8694 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
8695 	 * for the switch() below to work
8696 	 */
8697 	if ((spd & 1) || (dplx & ~1))
8698 		goto err_inval;
8699 
8700 	/* Fiber NIC's only allow 1000 gbps Full duplex
8701 	 * and 100Mbps Full duplex for 100baseFx sfp
8702 	 */
8703 	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
8704 		switch (spd + dplx) {
8705 		case SPEED_10 + DUPLEX_HALF:
8706 		case SPEED_10 + DUPLEX_FULL:
8707 		case SPEED_100 + DUPLEX_HALF:
8708 			goto err_inval;
8709 		default:
8710 			break;
8711 		}
8712 	}
8713 
8714 	switch (spd + dplx) {
8715 	case SPEED_10 + DUPLEX_HALF:
8716 		mac->forced_speed_duplex = ADVERTISE_10_HALF;
8717 		break;
8718 	case SPEED_10 + DUPLEX_FULL:
8719 		mac->forced_speed_duplex = ADVERTISE_10_FULL;
8720 		break;
8721 	case SPEED_100 + DUPLEX_HALF:
8722 		mac->forced_speed_duplex = ADVERTISE_100_HALF;
8723 		break;
8724 	case SPEED_100 + DUPLEX_FULL:
8725 		mac->forced_speed_duplex = ADVERTISE_100_FULL;
8726 		break;
8727 	case SPEED_1000 + DUPLEX_FULL:
8728 		mac->autoneg = 1;
8729 		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
8730 		break;
8731 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
8732 	default:
8733 		goto err_inval;
8734 	}
8735 
8736 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
8737 	adapter->hw.phy.mdix = AUTO_ALL_MODES;
8738 
8739 	return 0;
8740 
8741 err_inval:
8742 	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
8743 	return -EINVAL;
8744 }
8745 
8746 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
8747 			  bool runtime)
8748 {
8749 	struct net_device *netdev = pci_get_drvdata(pdev);
8750 	struct igb_adapter *adapter = netdev_priv(netdev);
8751 	struct e1000_hw *hw = &adapter->hw;
8752 	u32 ctrl, rctl, status;
8753 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
8754 	bool wake;
8755 
8756 	rtnl_lock();
8757 	netif_device_detach(netdev);
8758 
8759 	if (netif_running(netdev))
8760 		__igb_close(netdev, true);
8761 
8762 	igb_ptp_suspend(adapter);
8763 
8764 	igb_clear_interrupt_scheme(adapter);
8765 	rtnl_unlock();
8766 
8767 	status = rd32(E1000_STATUS);
8768 	if (status & E1000_STATUS_LU)
8769 		wufc &= ~E1000_WUFC_LNKC;
8770 
8771 	if (wufc) {
8772 		igb_setup_rctl(adapter);
8773 		igb_set_rx_mode(netdev);
8774 
8775 		/* turn on all-multi mode if wake on multicast is enabled */
8776 		if (wufc & E1000_WUFC_MC) {
8777 			rctl = rd32(E1000_RCTL);
8778 			rctl |= E1000_RCTL_MPE;
8779 			wr32(E1000_RCTL, rctl);
8780 		}
8781 
8782 		ctrl = rd32(E1000_CTRL);
8783 		ctrl |= E1000_CTRL_ADVD3WUC;
8784 		wr32(E1000_CTRL, ctrl);
8785 
8786 		/* Allow time for pending master requests to run */
8787 		igb_disable_pcie_master(hw);
8788 
8789 		wr32(E1000_WUC, E1000_WUC_PME_EN);
8790 		wr32(E1000_WUFC, wufc);
8791 	} else {
8792 		wr32(E1000_WUC, 0);
8793 		wr32(E1000_WUFC, 0);
8794 	}
8795 
8796 	wake = wufc || adapter->en_mng_pt;
8797 	if (!wake)
8798 		igb_power_down_link(adapter);
8799 	else
8800 		igb_power_up_link(adapter);
8801 
8802 	if (enable_wake)
8803 		*enable_wake = wake;
8804 
8805 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
8806 	 * would have already happened in close and is redundant.
8807 	 */
8808 	igb_release_hw_control(adapter);
8809 
8810 	pci_disable_device(pdev);
8811 
8812 	return 0;
8813 }
8814 
8815 static void igb_deliver_wake_packet(struct net_device *netdev)
8816 {
8817 	struct igb_adapter *adapter = netdev_priv(netdev);
8818 	struct e1000_hw *hw = &adapter->hw;
8819 	struct sk_buff *skb;
8820 	u32 wupl;
8821 
8822 	wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
8823 
8824 	/* WUPM stores only the first 128 bytes of the wake packet.
8825 	 * Read the packet only if we have the whole thing.
8826 	 */
8827 	if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
8828 		return;
8829 
8830 	skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
8831 	if (!skb)
8832 		return;
8833 
8834 	skb_put(skb, wupl);
8835 
8836 	/* Ensure reads are 32-bit aligned */
8837 	wupl = roundup(wupl, 4);
8838 
8839 	memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
8840 
8841 	skb->protocol = eth_type_trans(skb, netdev);
8842 	netif_rx(skb);
8843 }
8844 
8845 static int __maybe_unused igb_suspend(struct device *dev)
8846 {
8847 	return __igb_shutdown(to_pci_dev(dev), NULL, 0);
8848 }
8849 
8850 static int __maybe_unused igb_resume(struct device *dev)
8851 {
8852 	struct pci_dev *pdev = to_pci_dev(dev);
8853 	struct net_device *netdev = pci_get_drvdata(pdev);
8854 	struct igb_adapter *adapter = netdev_priv(netdev);
8855 	struct e1000_hw *hw = &adapter->hw;
8856 	u32 err, val;
8857 
8858 	pci_set_power_state(pdev, PCI_D0);
8859 	pci_restore_state(pdev);
8860 	pci_save_state(pdev);
8861 
8862 	if (!pci_device_is_present(pdev))
8863 		return -ENODEV;
8864 	err = pci_enable_device_mem(pdev);
8865 	if (err) {
8866 		dev_err(&pdev->dev,
8867 			"igb: Cannot enable PCI device from suspend\n");
8868 		return err;
8869 	}
8870 	pci_set_master(pdev);
8871 
8872 	pci_enable_wake(pdev, PCI_D3hot, 0);
8873 	pci_enable_wake(pdev, PCI_D3cold, 0);
8874 
8875 	if (igb_init_interrupt_scheme(adapter, true)) {
8876 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8877 		return -ENOMEM;
8878 	}
8879 
8880 	igb_reset(adapter);
8881 
8882 	/* let the f/w know that the h/w is now under the control of the
8883 	 * driver.
8884 	 */
8885 	igb_get_hw_control(adapter);
8886 
8887 	val = rd32(E1000_WUS);
8888 	if (val & WAKE_PKT_WUS)
8889 		igb_deliver_wake_packet(netdev);
8890 
8891 	wr32(E1000_WUS, ~0);
8892 
8893 	rtnl_lock();
8894 	if (!err && netif_running(netdev))
8895 		err = __igb_open(netdev, true);
8896 
8897 	if (!err)
8898 		netif_device_attach(netdev);
8899 	rtnl_unlock();
8900 
8901 	return err;
8902 }
8903 
8904 static int __maybe_unused igb_runtime_idle(struct device *dev)
8905 {
8906 	struct net_device *netdev = dev_get_drvdata(dev);
8907 	struct igb_adapter *adapter = netdev_priv(netdev);
8908 
8909 	if (!igb_has_link(adapter))
8910 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
8911 
8912 	return -EBUSY;
8913 }
8914 
8915 static int __maybe_unused igb_runtime_suspend(struct device *dev)
8916 {
8917 	return __igb_shutdown(to_pci_dev(dev), NULL, 1);
8918 }
8919 
8920 static int __maybe_unused igb_runtime_resume(struct device *dev)
8921 {
8922 	return igb_resume(dev);
8923 }
8924 
8925 static void igb_shutdown(struct pci_dev *pdev)
8926 {
8927 	bool wake;
8928 
8929 	__igb_shutdown(pdev, &wake, 0);
8930 
8931 	if (system_state == SYSTEM_POWER_OFF) {
8932 		pci_wake_from_d3(pdev, wake);
8933 		pci_set_power_state(pdev, PCI_D3hot);
8934 	}
8935 }
8936 
8937 #ifdef CONFIG_PCI_IOV
8938 static int igb_sriov_reinit(struct pci_dev *dev)
8939 {
8940 	struct net_device *netdev = pci_get_drvdata(dev);
8941 	struct igb_adapter *adapter = netdev_priv(netdev);
8942 	struct pci_dev *pdev = adapter->pdev;
8943 
8944 	rtnl_lock();
8945 
8946 	if (netif_running(netdev))
8947 		igb_close(netdev);
8948 	else
8949 		igb_reset(adapter);
8950 
8951 	igb_clear_interrupt_scheme(adapter);
8952 
8953 	igb_init_queue_configuration(adapter);
8954 
8955 	if (igb_init_interrupt_scheme(adapter, true)) {
8956 		rtnl_unlock();
8957 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8958 		return -ENOMEM;
8959 	}
8960 
8961 	if (netif_running(netdev))
8962 		igb_open(netdev);
8963 
8964 	rtnl_unlock();
8965 
8966 	return 0;
8967 }
8968 
8969 static int igb_pci_disable_sriov(struct pci_dev *dev)
8970 {
8971 	int err = igb_disable_sriov(dev);
8972 
8973 	if (!err)
8974 		err = igb_sriov_reinit(dev);
8975 
8976 	return err;
8977 }
8978 
8979 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
8980 {
8981 	int err = igb_enable_sriov(dev, num_vfs);
8982 
8983 	if (err)
8984 		goto out;
8985 
8986 	err = igb_sriov_reinit(dev);
8987 	if (!err)
8988 		return num_vfs;
8989 
8990 out:
8991 	return err;
8992 }
8993 
8994 #endif
8995 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
8996 {
8997 #ifdef CONFIG_PCI_IOV
8998 	if (num_vfs == 0)
8999 		return igb_pci_disable_sriov(dev);
9000 	else
9001 		return igb_pci_enable_sriov(dev, num_vfs);
9002 #endif
9003 	return 0;
9004 }
9005 
9006 /**
9007  *  igb_io_error_detected - called when PCI error is detected
9008  *  @pdev: Pointer to PCI device
9009  *  @state: The current pci connection state
9010  *
9011  *  This function is called after a PCI bus error affecting
9012  *  this device has been detected.
9013  **/
9014 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9015 					      pci_channel_state_t state)
9016 {
9017 	struct net_device *netdev = pci_get_drvdata(pdev);
9018 	struct igb_adapter *adapter = netdev_priv(netdev);
9019 
9020 	netif_device_detach(netdev);
9021 
9022 	if (state == pci_channel_io_perm_failure)
9023 		return PCI_ERS_RESULT_DISCONNECT;
9024 
9025 	if (netif_running(netdev))
9026 		igb_down(adapter);
9027 	pci_disable_device(pdev);
9028 
9029 	/* Request a slot slot reset. */
9030 	return PCI_ERS_RESULT_NEED_RESET;
9031 }
9032 
9033 /**
9034  *  igb_io_slot_reset - called after the pci bus has been reset.
9035  *  @pdev: Pointer to PCI device
9036  *
9037  *  Restart the card from scratch, as if from a cold-boot. Implementation
9038  *  resembles the first-half of the igb_resume routine.
9039  **/
9040 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9041 {
9042 	struct net_device *netdev = pci_get_drvdata(pdev);
9043 	struct igb_adapter *adapter = netdev_priv(netdev);
9044 	struct e1000_hw *hw = &adapter->hw;
9045 	pci_ers_result_t result;
9046 
9047 	if (pci_enable_device_mem(pdev)) {
9048 		dev_err(&pdev->dev,
9049 			"Cannot re-enable PCI device after reset.\n");
9050 		result = PCI_ERS_RESULT_DISCONNECT;
9051 	} else {
9052 		pci_set_master(pdev);
9053 		pci_restore_state(pdev);
9054 		pci_save_state(pdev);
9055 
9056 		pci_enable_wake(pdev, PCI_D3hot, 0);
9057 		pci_enable_wake(pdev, PCI_D3cold, 0);
9058 
9059 		/* In case of PCI error, adapter lose its HW address
9060 		 * so we should re-assign it here.
9061 		 */
9062 		hw->hw_addr = adapter->io_addr;
9063 
9064 		igb_reset(adapter);
9065 		wr32(E1000_WUS, ~0);
9066 		result = PCI_ERS_RESULT_RECOVERED;
9067 	}
9068 
9069 	return result;
9070 }
9071 
9072 /**
9073  *  igb_io_resume - called when traffic can start flowing again.
9074  *  @pdev: Pointer to PCI device
9075  *
9076  *  This callback is called when the error recovery driver tells us that
9077  *  its OK to resume normal operation. Implementation resembles the
9078  *  second-half of the igb_resume routine.
9079  */
9080 static void igb_io_resume(struct pci_dev *pdev)
9081 {
9082 	struct net_device *netdev = pci_get_drvdata(pdev);
9083 	struct igb_adapter *adapter = netdev_priv(netdev);
9084 
9085 	if (netif_running(netdev)) {
9086 		if (igb_up(adapter)) {
9087 			dev_err(&pdev->dev, "igb_up failed after reset\n");
9088 			return;
9089 		}
9090 	}
9091 
9092 	netif_device_attach(netdev);
9093 
9094 	/* let the f/w know that the h/w is now under the control of the
9095 	 * driver.
9096 	 */
9097 	igb_get_hw_control(adapter);
9098 }
9099 
9100 /**
9101  *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9102  *  @adapter: Pointer to adapter structure
9103  *  @index: Index of the RAR entry which need to be synced with MAC table
9104  **/
9105 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9106 {
9107 	struct e1000_hw *hw = &adapter->hw;
9108 	u32 rar_low, rar_high;
9109 	u8 *addr = adapter->mac_table[index].addr;
9110 
9111 	/* HW expects these to be in network order when they are plugged
9112 	 * into the registers which are little endian.  In order to guarantee
9113 	 * that ordering we need to do an leXX_to_cpup here in order to be
9114 	 * ready for the byteswap that occurs with writel
9115 	 */
9116 	rar_low = le32_to_cpup((__le32 *)(addr));
9117 	rar_high = le16_to_cpup((__le16 *)(addr + 4));
9118 
9119 	/* Indicate to hardware the Address is Valid. */
9120 	if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9121 		if (is_valid_ether_addr(addr))
9122 			rar_high |= E1000_RAH_AV;
9123 
9124 		if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9125 			rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9126 
9127 		switch (hw->mac.type) {
9128 		case e1000_82575:
9129 		case e1000_i210:
9130 			if (adapter->mac_table[index].state &
9131 			    IGB_MAC_STATE_QUEUE_STEERING)
9132 				rar_high |= E1000_RAH_QSEL_ENABLE;
9133 
9134 			rar_high |= E1000_RAH_POOL_1 *
9135 				    adapter->mac_table[index].queue;
9136 			break;
9137 		default:
9138 			rar_high |= E1000_RAH_POOL_1 <<
9139 				    adapter->mac_table[index].queue;
9140 			break;
9141 		}
9142 	}
9143 
9144 	wr32(E1000_RAL(index), rar_low);
9145 	wrfl();
9146 	wr32(E1000_RAH(index), rar_high);
9147 	wrfl();
9148 }
9149 
9150 static int igb_set_vf_mac(struct igb_adapter *adapter,
9151 			  int vf, unsigned char *mac_addr)
9152 {
9153 	struct e1000_hw *hw = &adapter->hw;
9154 	/* VF MAC addresses start at end of receive addresses and moves
9155 	 * towards the first, as a result a collision should not be possible
9156 	 */
9157 	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9158 	unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9159 
9160 	ether_addr_copy(vf_mac_addr, mac_addr);
9161 	ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9162 	adapter->mac_table[rar_entry].queue = vf;
9163 	adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9164 	igb_rar_set_index(adapter, rar_entry);
9165 
9166 	return 0;
9167 }
9168 
9169 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9170 {
9171 	struct igb_adapter *adapter = netdev_priv(netdev);
9172 
9173 	if (vf >= adapter->vfs_allocated_count)
9174 		return -EINVAL;
9175 
9176 	/* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9177 	 * flag and allows to overwrite the MAC via VF netdev.  This
9178 	 * is necessary to allow libvirt a way to restore the original
9179 	 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9180 	 * down a VM.
9181 	 */
9182 	if (is_zero_ether_addr(mac)) {
9183 		adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9184 		dev_info(&adapter->pdev->dev,
9185 			 "remove administratively set MAC on VF %d\n",
9186 			 vf);
9187 	} else if (is_valid_ether_addr(mac)) {
9188 		adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9189 		dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9190 			 mac, vf);
9191 		dev_info(&adapter->pdev->dev,
9192 			 "Reload the VF driver to make this change effective.");
9193 		/* Generate additional warning if PF is down */
9194 		if (test_bit(__IGB_DOWN, &adapter->state)) {
9195 			dev_warn(&adapter->pdev->dev,
9196 				 "The VF MAC address has been set, but the PF device is not up.\n");
9197 			dev_warn(&adapter->pdev->dev,
9198 				 "Bring the PF device up before attempting to use the VF device.\n");
9199 		}
9200 	} else {
9201 		return -EINVAL;
9202 	}
9203 	return igb_set_vf_mac(adapter, vf, mac);
9204 }
9205 
9206 static int igb_link_mbps(int internal_link_speed)
9207 {
9208 	switch (internal_link_speed) {
9209 	case SPEED_100:
9210 		return 100;
9211 	case SPEED_1000:
9212 		return 1000;
9213 	default:
9214 		return 0;
9215 	}
9216 }
9217 
9218 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9219 				  int link_speed)
9220 {
9221 	int rf_dec, rf_int;
9222 	u32 bcnrc_val;
9223 
9224 	if (tx_rate != 0) {
9225 		/* Calculate the rate factor values to set */
9226 		rf_int = link_speed / tx_rate;
9227 		rf_dec = (link_speed - (rf_int * tx_rate));
9228 		rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9229 			 tx_rate;
9230 
9231 		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9232 		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9233 			      E1000_RTTBCNRC_RF_INT_MASK);
9234 		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9235 	} else {
9236 		bcnrc_val = 0;
9237 	}
9238 
9239 	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9240 	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9241 	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9242 	 */
9243 	wr32(E1000_RTTBCNRM, 0x14);
9244 	wr32(E1000_RTTBCNRC, bcnrc_val);
9245 }
9246 
9247 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9248 {
9249 	int actual_link_speed, i;
9250 	bool reset_rate = false;
9251 
9252 	/* VF TX rate limit was not set or not supported */
9253 	if ((adapter->vf_rate_link_speed == 0) ||
9254 	    (adapter->hw.mac.type != e1000_82576))
9255 		return;
9256 
9257 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9258 	if (actual_link_speed != adapter->vf_rate_link_speed) {
9259 		reset_rate = true;
9260 		adapter->vf_rate_link_speed = 0;
9261 		dev_info(&adapter->pdev->dev,
9262 			 "Link speed has been changed. VF Transmit rate is disabled\n");
9263 	}
9264 
9265 	for (i = 0; i < adapter->vfs_allocated_count; i++) {
9266 		if (reset_rate)
9267 			adapter->vf_data[i].tx_rate = 0;
9268 
9269 		igb_set_vf_rate_limit(&adapter->hw, i,
9270 				      adapter->vf_data[i].tx_rate,
9271 				      actual_link_speed);
9272 	}
9273 }
9274 
9275 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9276 			     int min_tx_rate, int max_tx_rate)
9277 {
9278 	struct igb_adapter *adapter = netdev_priv(netdev);
9279 	struct e1000_hw *hw = &adapter->hw;
9280 	int actual_link_speed;
9281 
9282 	if (hw->mac.type != e1000_82576)
9283 		return -EOPNOTSUPP;
9284 
9285 	if (min_tx_rate)
9286 		return -EINVAL;
9287 
9288 	actual_link_speed = igb_link_mbps(adapter->link_speed);
9289 	if ((vf >= adapter->vfs_allocated_count) ||
9290 	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9291 	    (max_tx_rate < 0) ||
9292 	    (max_tx_rate > actual_link_speed))
9293 		return -EINVAL;
9294 
9295 	adapter->vf_rate_link_speed = actual_link_speed;
9296 	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9297 	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9298 
9299 	return 0;
9300 }
9301 
9302 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9303 				   bool setting)
9304 {
9305 	struct igb_adapter *adapter = netdev_priv(netdev);
9306 	struct e1000_hw *hw = &adapter->hw;
9307 	u32 reg_val, reg_offset;
9308 
9309 	if (!adapter->vfs_allocated_count)
9310 		return -EOPNOTSUPP;
9311 
9312 	if (vf >= adapter->vfs_allocated_count)
9313 		return -EINVAL;
9314 
9315 	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9316 	reg_val = rd32(reg_offset);
9317 	if (setting)
9318 		reg_val |= (BIT(vf) |
9319 			    BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9320 	else
9321 		reg_val &= ~(BIT(vf) |
9322 			     BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9323 	wr32(reg_offset, reg_val);
9324 
9325 	adapter->vf_data[vf].spoofchk_enabled = setting;
9326 	return 0;
9327 }
9328 
9329 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9330 {
9331 	struct igb_adapter *adapter = netdev_priv(netdev);
9332 
9333 	if (vf >= adapter->vfs_allocated_count)
9334 		return -EINVAL;
9335 	if (adapter->vf_data[vf].trusted == setting)
9336 		return 0;
9337 
9338 	adapter->vf_data[vf].trusted = setting;
9339 
9340 	dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9341 		 vf, setting ? "" : "not ");
9342 	return 0;
9343 }
9344 
9345 static int igb_ndo_get_vf_config(struct net_device *netdev,
9346 				 int vf, struct ifla_vf_info *ivi)
9347 {
9348 	struct igb_adapter *adapter = netdev_priv(netdev);
9349 	if (vf >= adapter->vfs_allocated_count)
9350 		return -EINVAL;
9351 	ivi->vf = vf;
9352 	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9353 	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9354 	ivi->min_tx_rate = 0;
9355 	ivi->vlan = adapter->vf_data[vf].pf_vlan;
9356 	ivi->qos = adapter->vf_data[vf].pf_qos;
9357 	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9358 	ivi->trusted = adapter->vf_data[vf].trusted;
9359 	return 0;
9360 }
9361 
9362 static void igb_vmm_control(struct igb_adapter *adapter)
9363 {
9364 	struct e1000_hw *hw = &adapter->hw;
9365 	u32 reg;
9366 
9367 	switch (hw->mac.type) {
9368 	case e1000_82575:
9369 	case e1000_i210:
9370 	case e1000_i211:
9371 	case e1000_i354:
9372 	default:
9373 		/* replication is not supported for 82575 */
9374 		return;
9375 	case e1000_82576:
9376 		/* notify HW that the MAC is adding vlan tags */
9377 		reg = rd32(E1000_DTXCTL);
9378 		reg |= E1000_DTXCTL_VLAN_ADDED;
9379 		wr32(E1000_DTXCTL, reg);
9380 		fallthrough;
9381 	case e1000_82580:
9382 		/* enable replication vlan tag stripping */
9383 		reg = rd32(E1000_RPLOLR);
9384 		reg |= E1000_RPLOLR_STRVLAN;
9385 		wr32(E1000_RPLOLR, reg);
9386 		fallthrough;
9387 	case e1000_i350:
9388 		/* none of the above registers are supported by i350 */
9389 		break;
9390 	}
9391 
9392 	if (adapter->vfs_allocated_count) {
9393 		igb_vmdq_set_loopback_pf(hw, true);
9394 		igb_vmdq_set_replication_pf(hw, true);
9395 		igb_vmdq_set_anti_spoofing_pf(hw, true,
9396 					      adapter->vfs_allocated_count);
9397 	} else {
9398 		igb_vmdq_set_loopback_pf(hw, false);
9399 		igb_vmdq_set_replication_pf(hw, false);
9400 	}
9401 }
9402 
9403 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9404 {
9405 	struct e1000_hw *hw = &adapter->hw;
9406 	u32 dmac_thr;
9407 	u16 hwm;
9408 
9409 	if (hw->mac.type > e1000_82580) {
9410 		if (adapter->flags & IGB_FLAG_DMAC) {
9411 			u32 reg;
9412 
9413 			/* force threshold to 0. */
9414 			wr32(E1000_DMCTXTH, 0);
9415 
9416 			/* DMA Coalescing high water mark needs to be greater
9417 			 * than the Rx threshold. Set hwm to PBA - max frame
9418 			 * size in 16B units, capping it at PBA - 6KB.
9419 			 */
9420 			hwm = 64 * (pba - 6);
9421 			reg = rd32(E1000_FCRTC);
9422 			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9423 			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9424 				& E1000_FCRTC_RTH_COAL_MASK);
9425 			wr32(E1000_FCRTC, reg);
9426 
9427 			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9428 			 * frame size, capping it at PBA - 10KB.
9429 			 */
9430 			dmac_thr = pba - 10;
9431 			reg = rd32(E1000_DMACR);
9432 			reg &= ~E1000_DMACR_DMACTHR_MASK;
9433 			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9434 				& E1000_DMACR_DMACTHR_MASK);
9435 
9436 			/* transition to L0x or L1 if available..*/
9437 			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9438 
9439 			/* watchdog timer= +-1000 usec in 32usec intervals */
9440 			reg |= (1000 >> 5);
9441 
9442 			/* Disable BMC-to-OS Watchdog Enable */
9443 			if (hw->mac.type != e1000_i354)
9444 				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9445 
9446 			wr32(E1000_DMACR, reg);
9447 
9448 			/* no lower threshold to disable
9449 			 * coalescing(smart fifb)-UTRESH=0
9450 			 */
9451 			wr32(E1000_DMCRTRH, 0);
9452 
9453 			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9454 
9455 			wr32(E1000_DMCTLX, reg);
9456 
9457 			/* free space in tx packet buffer to wake from
9458 			 * DMA coal
9459 			 */
9460 			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9461 			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9462 
9463 			/* make low power state decision controlled
9464 			 * by DMA coal
9465 			 */
9466 			reg = rd32(E1000_PCIEMISC);
9467 			reg &= ~E1000_PCIEMISC_LX_DECISION;
9468 			wr32(E1000_PCIEMISC, reg);
9469 		} /* endif adapter->dmac is not disabled */
9470 	} else if (hw->mac.type == e1000_82580) {
9471 		u32 reg = rd32(E1000_PCIEMISC);
9472 
9473 		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
9474 		wr32(E1000_DMACR, 0);
9475 	}
9476 }
9477 
9478 /**
9479  *  igb_read_i2c_byte - Reads 8 bit word over I2C
9480  *  @hw: pointer to hardware structure
9481  *  @byte_offset: byte offset to read
9482  *  @dev_addr: device address
9483  *  @data: value read
9484  *
9485  *  Performs byte read operation over I2C interface at
9486  *  a specified device address.
9487  **/
9488 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9489 		      u8 dev_addr, u8 *data)
9490 {
9491 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9492 	struct i2c_client *this_client = adapter->i2c_client;
9493 	s32 status;
9494 	u16 swfw_mask = 0;
9495 
9496 	if (!this_client)
9497 		return E1000_ERR_I2C;
9498 
9499 	swfw_mask = E1000_SWFW_PHY0_SM;
9500 
9501 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9502 		return E1000_ERR_SWFW_SYNC;
9503 
9504 	status = i2c_smbus_read_byte_data(this_client, byte_offset);
9505 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9506 
9507 	if (status < 0)
9508 		return E1000_ERR_I2C;
9509 	else {
9510 		*data = status;
9511 		return 0;
9512 	}
9513 }
9514 
9515 /**
9516  *  igb_write_i2c_byte - Writes 8 bit word over I2C
9517  *  @hw: pointer to hardware structure
9518  *  @byte_offset: byte offset to write
9519  *  @dev_addr: device address
9520  *  @data: value to write
9521  *
9522  *  Performs byte write operation over I2C interface at
9523  *  a specified device address.
9524  **/
9525 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9526 		       u8 dev_addr, u8 data)
9527 {
9528 	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9529 	struct i2c_client *this_client = adapter->i2c_client;
9530 	s32 status;
9531 	u16 swfw_mask = E1000_SWFW_PHY0_SM;
9532 
9533 	if (!this_client)
9534 		return E1000_ERR_I2C;
9535 
9536 	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9537 		return E1000_ERR_SWFW_SYNC;
9538 	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9539 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9540 
9541 	if (status)
9542 		return E1000_ERR_I2C;
9543 	else
9544 		return 0;
9545 
9546 }
9547 
9548 int igb_reinit_queues(struct igb_adapter *adapter)
9549 {
9550 	struct net_device *netdev = adapter->netdev;
9551 	struct pci_dev *pdev = adapter->pdev;
9552 	int err = 0;
9553 
9554 	if (netif_running(netdev))
9555 		igb_close(netdev);
9556 
9557 	igb_reset_interrupt_capability(adapter);
9558 
9559 	if (igb_init_interrupt_scheme(adapter, true)) {
9560 		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9561 		return -ENOMEM;
9562 	}
9563 
9564 	if (netif_running(netdev))
9565 		err = igb_open(netdev);
9566 
9567 	return err;
9568 }
9569 
9570 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
9571 {
9572 	struct igb_nfc_filter *rule;
9573 
9574 	spin_lock(&adapter->nfc_lock);
9575 
9576 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9577 		igb_erase_filter(adapter, rule);
9578 
9579 	hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
9580 		igb_erase_filter(adapter, rule);
9581 
9582 	spin_unlock(&adapter->nfc_lock);
9583 }
9584 
9585 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
9586 {
9587 	struct igb_nfc_filter *rule;
9588 
9589 	spin_lock(&adapter->nfc_lock);
9590 
9591 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9592 		igb_add_filter(adapter, rule);
9593 
9594 	spin_unlock(&adapter->nfc_lock);
9595 }
9596 /* igb_main.c */
9597