1 /******************************************************************************* 2 3 Intel(R) Gigabit Ethernet Linux driver 4 Copyright(c) 2007-2013 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 25 26 *******************************************************************************/ 27 28 /* ethtool support for igb */ 29 30 #include <linux/vmalloc.h> 31 #include <linux/netdevice.h> 32 #include <linux/pci.h> 33 #include <linux/delay.h> 34 #include <linux/interrupt.h> 35 #include <linux/if_ether.h> 36 #include <linux/ethtool.h> 37 #include <linux/sched.h> 38 #include <linux/slab.h> 39 #include <linux/pm_runtime.h> 40 #include <linux/highmem.h> 41 #include <linux/mdio.h> 42 43 #include "igb.h" 44 45 struct igb_stats { 46 char stat_string[ETH_GSTRING_LEN]; 47 int sizeof_stat; 48 int stat_offset; 49 }; 50 51 #define IGB_STAT(_name, _stat) { \ 52 .stat_string = _name, \ 53 .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \ 54 .stat_offset = offsetof(struct igb_adapter, _stat) \ 55 } 56 static const struct igb_stats igb_gstrings_stats[] = { 57 IGB_STAT("rx_packets", stats.gprc), 58 IGB_STAT("tx_packets", stats.gptc), 59 IGB_STAT("rx_bytes", stats.gorc), 60 IGB_STAT("tx_bytes", stats.gotc), 61 IGB_STAT("rx_broadcast", stats.bprc), 62 IGB_STAT("tx_broadcast", stats.bptc), 63 IGB_STAT("rx_multicast", stats.mprc), 64 IGB_STAT("tx_multicast", stats.mptc), 65 IGB_STAT("multicast", stats.mprc), 66 IGB_STAT("collisions", stats.colc), 67 IGB_STAT("rx_crc_errors", stats.crcerrs), 68 IGB_STAT("rx_no_buffer_count", stats.rnbc), 69 IGB_STAT("rx_missed_errors", stats.mpc), 70 IGB_STAT("tx_aborted_errors", stats.ecol), 71 IGB_STAT("tx_carrier_errors", stats.tncrs), 72 IGB_STAT("tx_window_errors", stats.latecol), 73 IGB_STAT("tx_abort_late_coll", stats.latecol), 74 IGB_STAT("tx_deferred_ok", stats.dc), 75 IGB_STAT("tx_single_coll_ok", stats.scc), 76 IGB_STAT("tx_multi_coll_ok", stats.mcc), 77 IGB_STAT("tx_timeout_count", tx_timeout_count), 78 IGB_STAT("rx_long_length_errors", stats.roc), 79 IGB_STAT("rx_short_length_errors", stats.ruc), 80 IGB_STAT("rx_align_errors", stats.algnerrc), 81 IGB_STAT("tx_tcp_seg_good", stats.tsctc), 82 IGB_STAT("tx_tcp_seg_failed", stats.tsctfc), 83 IGB_STAT("rx_flow_control_xon", stats.xonrxc), 84 IGB_STAT("rx_flow_control_xoff", stats.xoffrxc), 85 IGB_STAT("tx_flow_control_xon", stats.xontxc), 86 IGB_STAT("tx_flow_control_xoff", stats.xofftxc), 87 IGB_STAT("rx_long_byte_count", stats.gorc), 88 IGB_STAT("tx_dma_out_of_sync", stats.doosync), 89 IGB_STAT("tx_smbus", stats.mgptc), 90 IGB_STAT("rx_smbus", stats.mgprc), 91 IGB_STAT("dropped_smbus", stats.mgpdc), 92 IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc), 93 IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc), 94 IGB_STAT("os2bmc_tx_by_host", stats.o2bspc), 95 IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc), 96 IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts), 97 IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared), 98 }; 99 100 #define IGB_NETDEV_STAT(_net_stat) { \ 101 .stat_string = __stringify(_net_stat), \ 102 .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \ 103 .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \ 104 } 105 static const struct igb_stats igb_gstrings_net_stats[] = { 106 IGB_NETDEV_STAT(rx_errors), 107 IGB_NETDEV_STAT(tx_errors), 108 IGB_NETDEV_STAT(tx_dropped), 109 IGB_NETDEV_STAT(rx_length_errors), 110 IGB_NETDEV_STAT(rx_over_errors), 111 IGB_NETDEV_STAT(rx_frame_errors), 112 IGB_NETDEV_STAT(rx_fifo_errors), 113 IGB_NETDEV_STAT(tx_fifo_errors), 114 IGB_NETDEV_STAT(tx_heartbeat_errors) 115 }; 116 117 #define IGB_GLOBAL_STATS_LEN \ 118 (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats)) 119 #define IGB_NETDEV_STATS_LEN \ 120 (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats)) 121 #define IGB_RX_QUEUE_STATS_LEN \ 122 (sizeof(struct igb_rx_queue_stats) / sizeof(u64)) 123 124 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */ 125 126 #define IGB_QUEUE_STATS_LEN \ 127 ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \ 128 IGB_RX_QUEUE_STATS_LEN) + \ 129 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \ 130 IGB_TX_QUEUE_STATS_LEN)) 131 #define IGB_STATS_LEN \ 132 (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN) 133 134 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = { 135 "Register test (offline)", "Eeprom test (offline)", 136 "Interrupt test (offline)", "Loopback test (offline)", 137 "Link test (on/offline)" 138 }; 139 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN) 140 141 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) 142 { 143 struct igb_adapter *adapter = netdev_priv(netdev); 144 struct e1000_hw *hw = &adapter->hw; 145 u32 status; 146 147 if (hw->phy.media_type == e1000_media_type_copper) { 148 149 ecmd->supported = (SUPPORTED_10baseT_Half | 150 SUPPORTED_10baseT_Full | 151 SUPPORTED_100baseT_Half | 152 SUPPORTED_100baseT_Full | 153 SUPPORTED_1000baseT_Full| 154 SUPPORTED_Autoneg | 155 SUPPORTED_TP | 156 SUPPORTED_Pause); 157 ecmd->advertising = ADVERTISED_TP; 158 159 if (hw->mac.autoneg == 1) { 160 ecmd->advertising |= ADVERTISED_Autoneg; 161 /* the e1000 autoneg seems to match ethtool nicely */ 162 ecmd->advertising |= hw->phy.autoneg_advertised; 163 } 164 165 if (hw->mac.autoneg != 1) 166 ecmd->advertising &= ~(ADVERTISED_Pause | 167 ADVERTISED_Asym_Pause); 168 169 if (hw->fc.requested_mode == e1000_fc_full) 170 ecmd->advertising |= ADVERTISED_Pause; 171 else if (hw->fc.requested_mode == e1000_fc_rx_pause) 172 ecmd->advertising |= (ADVERTISED_Pause | 173 ADVERTISED_Asym_Pause); 174 else if (hw->fc.requested_mode == e1000_fc_tx_pause) 175 ecmd->advertising |= ADVERTISED_Asym_Pause; 176 else 177 ecmd->advertising &= ~(ADVERTISED_Pause | 178 ADVERTISED_Asym_Pause); 179 180 ecmd->port = PORT_TP; 181 ecmd->phy_address = hw->phy.addr; 182 ecmd->transceiver = XCVR_INTERNAL; 183 } else { 184 ecmd->supported = (SUPPORTED_1000baseT_Full | 185 SUPPORTED_100baseT_Full | 186 SUPPORTED_FIBRE | 187 SUPPORTED_Autoneg | 188 SUPPORTED_Pause); 189 if (hw->mac.type == e1000_i354) 190 ecmd->supported |= SUPPORTED_2500baseX_Full; 191 192 ecmd->advertising = ADVERTISED_FIBRE; 193 194 switch (adapter->link_speed) { 195 case SPEED_2500: 196 ecmd->advertising = ADVERTISED_2500baseX_Full; 197 break; 198 case SPEED_1000: 199 ecmd->advertising = ADVERTISED_1000baseT_Full; 200 break; 201 case SPEED_100: 202 ecmd->advertising = ADVERTISED_100baseT_Full; 203 break; 204 default: 205 break; 206 } 207 208 if (hw->mac.autoneg == 1) 209 ecmd->advertising |= ADVERTISED_Autoneg; 210 211 ecmd->port = PORT_FIBRE; 212 ecmd->transceiver = XCVR_EXTERNAL; 213 } 214 215 status = rd32(E1000_STATUS); 216 217 if (status & E1000_STATUS_LU) { 218 if ((hw->mac.type == e1000_i354) && 219 (status & E1000_STATUS_2P5_SKU) && 220 !(status & E1000_STATUS_2P5_SKU_OVER)) 221 ecmd->speed = SPEED_2500; 222 else if (status & E1000_STATUS_SPEED_1000) 223 ecmd->speed = SPEED_1000; 224 else if (status & E1000_STATUS_SPEED_100) 225 ecmd->speed = SPEED_100; 226 else 227 ecmd->speed = SPEED_10; 228 if ((status & E1000_STATUS_FD) || 229 hw->phy.media_type != e1000_media_type_copper) 230 ecmd->duplex = DUPLEX_FULL; 231 else 232 ecmd->duplex = DUPLEX_HALF; 233 } else { 234 ecmd->speed = -1; 235 ecmd->duplex = -1; 236 } 237 238 if ((hw->phy.media_type == e1000_media_type_fiber) || 239 hw->mac.autoneg) 240 ecmd->autoneg = AUTONEG_ENABLE; 241 else 242 ecmd->autoneg = AUTONEG_DISABLE; 243 244 /* MDI-X => 2; MDI =>1; Invalid =>0 */ 245 if (hw->phy.media_type == e1000_media_type_copper) 246 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : 247 ETH_TP_MDI; 248 else 249 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID; 250 251 if (hw->phy.mdix == AUTO_ALL_MODES) 252 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; 253 else 254 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix; 255 256 return 0; 257 } 258 259 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) 260 { 261 struct igb_adapter *adapter = netdev_priv(netdev); 262 struct e1000_hw *hw = &adapter->hw; 263 264 /* When SoL/IDER sessions are active, autoneg/speed/duplex 265 * cannot be changed 266 */ 267 if (igb_check_reset_block(hw)) { 268 dev_err(&adapter->pdev->dev, 269 "Cannot change link characteristics when SoL/IDER is active.\n"); 270 return -EINVAL; 271 } 272 273 /* MDI setting is only allowed when autoneg enabled because 274 * some hardware doesn't allow MDI setting when speed or 275 * duplex is forced. 276 */ 277 if (ecmd->eth_tp_mdix_ctrl) { 278 if (hw->phy.media_type != e1000_media_type_copper) 279 return -EOPNOTSUPP; 280 281 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && 282 (ecmd->autoneg != AUTONEG_ENABLE)) { 283 dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); 284 return -EINVAL; 285 } 286 } 287 288 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 289 msleep(1); 290 291 if (ecmd->autoneg == AUTONEG_ENABLE) { 292 hw->mac.autoneg = 1; 293 if (hw->phy.media_type == e1000_media_type_fiber) { 294 hw->phy.autoneg_advertised = ecmd->advertising | 295 ADVERTISED_FIBRE | 296 ADVERTISED_Autoneg; 297 switch (adapter->link_speed) { 298 case SPEED_2500: 299 hw->phy.autoneg_advertised = 300 ADVERTISED_2500baseX_Full; 301 break; 302 case SPEED_1000: 303 hw->phy.autoneg_advertised = 304 ADVERTISED_1000baseT_Full; 305 break; 306 case SPEED_100: 307 hw->phy.autoneg_advertised = 308 ADVERTISED_100baseT_Full; 309 break; 310 default: 311 break; 312 } 313 } else { 314 hw->phy.autoneg_advertised = ecmd->advertising | 315 ADVERTISED_TP | 316 ADVERTISED_Autoneg; 317 } 318 ecmd->advertising = hw->phy.autoneg_advertised; 319 if (adapter->fc_autoneg) 320 hw->fc.requested_mode = e1000_fc_default; 321 } else { 322 u32 speed = ethtool_cmd_speed(ecmd); 323 /* calling this overrides forced MDI setting */ 324 if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) { 325 clear_bit(__IGB_RESETTING, &adapter->state); 326 return -EINVAL; 327 } 328 } 329 330 /* MDI-X => 2; MDI => 1; Auto => 3 */ 331 if (ecmd->eth_tp_mdix_ctrl) { 332 /* fix up the value for auto (3 => 0) as zero is mapped 333 * internally to auto 334 */ 335 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) 336 hw->phy.mdix = AUTO_ALL_MODES; 337 else 338 hw->phy.mdix = ecmd->eth_tp_mdix_ctrl; 339 } 340 341 /* reset the link */ 342 if (netif_running(adapter->netdev)) { 343 igb_down(adapter); 344 igb_up(adapter); 345 } else 346 igb_reset(adapter); 347 348 clear_bit(__IGB_RESETTING, &adapter->state); 349 return 0; 350 } 351 352 static u32 igb_get_link(struct net_device *netdev) 353 { 354 struct igb_adapter *adapter = netdev_priv(netdev); 355 struct e1000_mac_info *mac = &adapter->hw.mac; 356 357 /* If the link is not reported up to netdev, interrupts are disabled, 358 * and so the physical link state may have changed since we last 359 * looked. Set get_link_status to make sure that the true link 360 * state is interrogated, rather than pulling a cached and possibly 361 * stale link state from the driver. 362 */ 363 if (!netif_carrier_ok(netdev)) 364 mac->get_link_status = 1; 365 366 return igb_has_link(adapter); 367 } 368 369 static void igb_get_pauseparam(struct net_device *netdev, 370 struct ethtool_pauseparam *pause) 371 { 372 struct igb_adapter *adapter = netdev_priv(netdev); 373 struct e1000_hw *hw = &adapter->hw; 374 375 pause->autoneg = 376 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 377 378 if (hw->fc.current_mode == e1000_fc_rx_pause) 379 pause->rx_pause = 1; 380 else if (hw->fc.current_mode == e1000_fc_tx_pause) 381 pause->tx_pause = 1; 382 else if (hw->fc.current_mode == e1000_fc_full) { 383 pause->rx_pause = 1; 384 pause->tx_pause = 1; 385 } 386 } 387 388 static int igb_set_pauseparam(struct net_device *netdev, 389 struct ethtool_pauseparam *pause) 390 { 391 struct igb_adapter *adapter = netdev_priv(netdev); 392 struct e1000_hw *hw = &adapter->hw; 393 int retval = 0; 394 395 adapter->fc_autoneg = pause->autoneg; 396 397 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 398 msleep(1); 399 400 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 401 hw->fc.requested_mode = e1000_fc_default; 402 if (netif_running(adapter->netdev)) { 403 igb_down(adapter); 404 igb_up(adapter); 405 } else { 406 igb_reset(adapter); 407 } 408 } else { 409 if (pause->rx_pause && pause->tx_pause) 410 hw->fc.requested_mode = e1000_fc_full; 411 else if (pause->rx_pause && !pause->tx_pause) 412 hw->fc.requested_mode = e1000_fc_rx_pause; 413 else if (!pause->rx_pause && pause->tx_pause) 414 hw->fc.requested_mode = e1000_fc_tx_pause; 415 else if (!pause->rx_pause && !pause->tx_pause) 416 hw->fc.requested_mode = e1000_fc_none; 417 418 hw->fc.current_mode = hw->fc.requested_mode; 419 420 retval = ((hw->phy.media_type == e1000_media_type_copper) ? 421 igb_force_mac_fc(hw) : igb_setup_link(hw)); 422 } 423 424 clear_bit(__IGB_RESETTING, &adapter->state); 425 return retval; 426 } 427 428 static u32 igb_get_msglevel(struct net_device *netdev) 429 { 430 struct igb_adapter *adapter = netdev_priv(netdev); 431 return adapter->msg_enable; 432 } 433 434 static void igb_set_msglevel(struct net_device *netdev, u32 data) 435 { 436 struct igb_adapter *adapter = netdev_priv(netdev); 437 adapter->msg_enable = data; 438 } 439 440 static int igb_get_regs_len(struct net_device *netdev) 441 { 442 #define IGB_REGS_LEN 739 443 return IGB_REGS_LEN * sizeof(u32); 444 } 445 446 static void igb_get_regs(struct net_device *netdev, 447 struct ethtool_regs *regs, void *p) 448 { 449 struct igb_adapter *adapter = netdev_priv(netdev); 450 struct e1000_hw *hw = &adapter->hw; 451 u32 *regs_buff = p; 452 u8 i; 453 454 memset(p, 0, IGB_REGS_LEN * sizeof(u32)); 455 456 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id; 457 458 /* General Registers */ 459 regs_buff[0] = rd32(E1000_CTRL); 460 regs_buff[1] = rd32(E1000_STATUS); 461 regs_buff[2] = rd32(E1000_CTRL_EXT); 462 regs_buff[3] = rd32(E1000_MDIC); 463 regs_buff[4] = rd32(E1000_SCTL); 464 regs_buff[5] = rd32(E1000_CONNSW); 465 regs_buff[6] = rd32(E1000_VET); 466 regs_buff[7] = rd32(E1000_LEDCTL); 467 regs_buff[8] = rd32(E1000_PBA); 468 regs_buff[9] = rd32(E1000_PBS); 469 regs_buff[10] = rd32(E1000_FRTIMER); 470 regs_buff[11] = rd32(E1000_TCPTIMER); 471 472 /* NVM Register */ 473 regs_buff[12] = rd32(E1000_EECD); 474 475 /* Interrupt */ 476 /* Reading EICS for EICR because they read the 477 * same but EICS does not clear on read 478 */ 479 regs_buff[13] = rd32(E1000_EICS); 480 regs_buff[14] = rd32(E1000_EICS); 481 regs_buff[15] = rd32(E1000_EIMS); 482 regs_buff[16] = rd32(E1000_EIMC); 483 regs_buff[17] = rd32(E1000_EIAC); 484 regs_buff[18] = rd32(E1000_EIAM); 485 /* Reading ICS for ICR because they read the 486 * same but ICS does not clear on read 487 */ 488 regs_buff[19] = rd32(E1000_ICS); 489 regs_buff[20] = rd32(E1000_ICS); 490 regs_buff[21] = rd32(E1000_IMS); 491 regs_buff[22] = rd32(E1000_IMC); 492 regs_buff[23] = rd32(E1000_IAC); 493 regs_buff[24] = rd32(E1000_IAM); 494 regs_buff[25] = rd32(E1000_IMIRVP); 495 496 /* Flow Control */ 497 regs_buff[26] = rd32(E1000_FCAL); 498 regs_buff[27] = rd32(E1000_FCAH); 499 regs_buff[28] = rd32(E1000_FCTTV); 500 regs_buff[29] = rd32(E1000_FCRTL); 501 regs_buff[30] = rd32(E1000_FCRTH); 502 regs_buff[31] = rd32(E1000_FCRTV); 503 504 /* Receive */ 505 regs_buff[32] = rd32(E1000_RCTL); 506 regs_buff[33] = rd32(E1000_RXCSUM); 507 regs_buff[34] = rd32(E1000_RLPML); 508 regs_buff[35] = rd32(E1000_RFCTL); 509 regs_buff[36] = rd32(E1000_MRQC); 510 regs_buff[37] = rd32(E1000_VT_CTL); 511 512 /* Transmit */ 513 regs_buff[38] = rd32(E1000_TCTL); 514 regs_buff[39] = rd32(E1000_TCTL_EXT); 515 regs_buff[40] = rd32(E1000_TIPG); 516 regs_buff[41] = rd32(E1000_DTXCTL); 517 518 /* Wake Up */ 519 regs_buff[42] = rd32(E1000_WUC); 520 regs_buff[43] = rd32(E1000_WUFC); 521 regs_buff[44] = rd32(E1000_WUS); 522 regs_buff[45] = rd32(E1000_IPAV); 523 regs_buff[46] = rd32(E1000_WUPL); 524 525 /* MAC */ 526 regs_buff[47] = rd32(E1000_PCS_CFG0); 527 regs_buff[48] = rd32(E1000_PCS_LCTL); 528 regs_buff[49] = rd32(E1000_PCS_LSTAT); 529 regs_buff[50] = rd32(E1000_PCS_ANADV); 530 regs_buff[51] = rd32(E1000_PCS_LPAB); 531 regs_buff[52] = rd32(E1000_PCS_NPTX); 532 regs_buff[53] = rd32(E1000_PCS_LPABNP); 533 534 /* Statistics */ 535 regs_buff[54] = adapter->stats.crcerrs; 536 regs_buff[55] = adapter->stats.algnerrc; 537 regs_buff[56] = adapter->stats.symerrs; 538 regs_buff[57] = adapter->stats.rxerrc; 539 regs_buff[58] = adapter->stats.mpc; 540 regs_buff[59] = adapter->stats.scc; 541 regs_buff[60] = adapter->stats.ecol; 542 regs_buff[61] = adapter->stats.mcc; 543 regs_buff[62] = adapter->stats.latecol; 544 regs_buff[63] = adapter->stats.colc; 545 regs_buff[64] = adapter->stats.dc; 546 regs_buff[65] = adapter->stats.tncrs; 547 regs_buff[66] = adapter->stats.sec; 548 regs_buff[67] = adapter->stats.htdpmc; 549 regs_buff[68] = adapter->stats.rlec; 550 regs_buff[69] = adapter->stats.xonrxc; 551 regs_buff[70] = adapter->stats.xontxc; 552 regs_buff[71] = adapter->stats.xoffrxc; 553 regs_buff[72] = adapter->stats.xofftxc; 554 regs_buff[73] = adapter->stats.fcruc; 555 regs_buff[74] = adapter->stats.prc64; 556 regs_buff[75] = adapter->stats.prc127; 557 regs_buff[76] = adapter->stats.prc255; 558 regs_buff[77] = adapter->stats.prc511; 559 regs_buff[78] = adapter->stats.prc1023; 560 regs_buff[79] = adapter->stats.prc1522; 561 regs_buff[80] = adapter->stats.gprc; 562 regs_buff[81] = adapter->stats.bprc; 563 regs_buff[82] = adapter->stats.mprc; 564 regs_buff[83] = adapter->stats.gptc; 565 regs_buff[84] = adapter->stats.gorc; 566 regs_buff[86] = adapter->stats.gotc; 567 regs_buff[88] = adapter->stats.rnbc; 568 regs_buff[89] = adapter->stats.ruc; 569 regs_buff[90] = adapter->stats.rfc; 570 regs_buff[91] = adapter->stats.roc; 571 regs_buff[92] = adapter->stats.rjc; 572 regs_buff[93] = adapter->stats.mgprc; 573 regs_buff[94] = adapter->stats.mgpdc; 574 regs_buff[95] = adapter->stats.mgptc; 575 regs_buff[96] = adapter->stats.tor; 576 regs_buff[98] = adapter->stats.tot; 577 regs_buff[100] = adapter->stats.tpr; 578 regs_buff[101] = adapter->stats.tpt; 579 regs_buff[102] = adapter->stats.ptc64; 580 regs_buff[103] = adapter->stats.ptc127; 581 regs_buff[104] = adapter->stats.ptc255; 582 regs_buff[105] = adapter->stats.ptc511; 583 regs_buff[106] = adapter->stats.ptc1023; 584 regs_buff[107] = adapter->stats.ptc1522; 585 regs_buff[108] = adapter->stats.mptc; 586 regs_buff[109] = adapter->stats.bptc; 587 regs_buff[110] = adapter->stats.tsctc; 588 regs_buff[111] = adapter->stats.iac; 589 regs_buff[112] = adapter->stats.rpthc; 590 regs_buff[113] = adapter->stats.hgptc; 591 regs_buff[114] = adapter->stats.hgorc; 592 regs_buff[116] = adapter->stats.hgotc; 593 regs_buff[118] = adapter->stats.lenerrs; 594 regs_buff[119] = adapter->stats.scvpc; 595 regs_buff[120] = adapter->stats.hrmpc; 596 597 for (i = 0; i < 4; i++) 598 regs_buff[121 + i] = rd32(E1000_SRRCTL(i)); 599 for (i = 0; i < 4; i++) 600 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i)); 601 for (i = 0; i < 4; i++) 602 regs_buff[129 + i] = rd32(E1000_RDBAL(i)); 603 for (i = 0; i < 4; i++) 604 regs_buff[133 + i] = rd32(E1000_RDBAH(i)); 605 for (i = 0; i < 4; i++) 606 regs_buff[137 + i] = rd32(E1000_RDLEN(i)); 607 for (i = 0; i < 4; i++) 608 regs_buff[141 + i] = rd32(E1000_RDH(i)); 609 for (i = 0; i < 4; i++) 610 regs_buff[145 + i] = rd32(E1000_RDT(i)); 611 for (i = 0; i < 4; i++) 612 regs_buff[149 + i] = rd32(E1000_RXDCTL(i)); 613 614 for (i = 0; i < 10; i++) 615 regs_buff[153 + i] = rd32(E1000_EITR(i)); 616 for (i = 0; i < 8; i++) 617 regs_buff[163 + i] = rd32(E1000_IMIR(i)); 618 for (i = 0; i < 8; i++) 619 regs_buff[171 + i] = rd32(E1000_IMIREXT(i)); 620 for (i = 0; i < 16; i++) 621 regs_buff[179 + i] = rd32(E1000_RAL(i)); 622 for (i = 0; i < 16; i++) 623 regs_buff[195 + i] = rd32(E1000_RAH(i)); 624 625 for (i = 0; i < 4; i++) 626 regs_buff[211 + i] = rd32(E1000_TDBAL(i)); 627 for (i = 0; i < 4; i++) 628 regs_buff[215 + i] = rd32(E1000_TDBAH(i)); 629 for (i = 0; i < 4; i++) 630 regs_buff[219 + i] = rd32(E1000_TDLEN(i)); 631 for (i = 0; i < 4; i++) 632 regs_buff[223 + i] = rd32(E1000_TDH(i)); 633 for (i = 0; i < 4; i++) 634 regs_buff[227 + i] = rd32(E1000_TDT(i)); 635 for (i = 0; i < 4; i++) 636 regs_buff[231 + i] = rd32(E1000_TXDCTL(i)); 637 for (i = 0; i < 4; i++) 638 regs_buff[235 + i] = rd32(E1000_TDWBAL(i)); 639 for (i = 0; i < 4; i++) 640 regs_buff[239 + i] = rd32(E1000_TDWBAH(i)); 641 for (i = 0; i < 4; i++) 642 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i)); 643 644 for (i = 0; i < 4; i++) 645 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i)); 646 for (i = 0; i < 4; i++) 647 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i)); 648 for (i = 0; i < 32; i++) 649 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i)); 650 for (i = 0; i < 128; i++) 651 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i)); 652 for (i = 0; i < 128; i++) 653 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i)); 654 for (i = 0; i < 4; i++) 655 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i)); 656 657 regs_buff[547] = rd32(E1000_TDFH); 658 regs_buff[548] = rd32(E1000_TDFT); 659 regs_buff[549] = rd32(E1000_TDFHS); 660 regs_buff[550] = rd32(E1000_TDFPC); 661 662 if (hw->mac.type > e1000_82580) { 663 regs_buff[551] = adapter->stats.o2bgptc; 664 regs_buff[552] = adapter->stats.b2ospc; 665 regs_buff[553] = adapter->stats.o2bspc; 666 regs_buff[554] = adapter->stats.b2ogprc; 667 } 668 669 if (hw->mac.type != e1000_82576) 670 return; 671 for (i = 0; i < 12; i++) 672 regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4)); 673 for (i = 0; i < 4; i++) 674 regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4)); 675 for (i = 0; i < 12; i++) 676 regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4)); 677 for (i = 0; i < 12; i++) 678 regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4)); 679 for (i = 0; i < 12; i++) 680 regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4)); 681 for (i = 0; i < 12; i++) 682 regs_buff[607 + i] = rd32(E1000_RDH(i + 4)); 683 for (i = 0; i < 12; i++) 684 regs_buff[619 + i] = rd32(E1000_RDT(i + 4)); 685 for (i = 0; i < 12; i++) 686 regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4)); 687 688 for (i = 0; i < 12; i++) 689 regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4)); 690 for (i = 0; i < 12; i++) 691 regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4)); 692 for (i = 0; i < 12; i++) 693 regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4)); 694 for (i = 0; i < 12; i++) 695 regs_buff[679 + i] = rd32(E1000_TDH(i + 4)); 696 for (i = 0; i < 12; i++) 697 regs_buff[691 + i] = rd32(E1000_TDT(i + 4)); 698 for (i = 0; i < 12; i++) 699 regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4)); 700 for (i = 0; i < 12; i++) 701 regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4)); 702 for (i = 0; i < 12; i++) 703 regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4)); 704 } 705 706 static int igb_get_eeprom_len(struct net_device *netdev) 707 { 708 struct igb_adapter *adapter = netdev_priv(netdev); 709 return adapter->hw.nvm.word_size * 2; 710 } 711 712 static int igb_get_eeprom(struct net_device *netdev, 713 struct ethtool_eeprom *eeprom, u8 *bytes) 714 { 715 struct igb_adapter *adapter = netdev_priv(netdev); 716 struct e1000_hw *hw = &adapter->hw; 717 u16 *eeprom_buff; 718 int first_word, last_word; 719 int ret_val = 0; 720 u16 i; 721 722 if (eeprom->len == 0) 723 return -EINVAL; 724 725 eeprom->magic = hw->vendor_id | (hw->device_id << 16); 726 727 first_word = eeprom->offset >> 1; 728 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 729 730 eeprom_buff = kmalloc(sizeof(u16) * 731 (last_word - first_word + 1), GFP_KERNEL); 732 if (!eeprom_buff) 733 return -ENOMEM; 734 735 if (hw->nvm.type == e1000_nvm_eeprom_spi) 736 ret_val = hw->nvm.ops.read(hw, first_word, 737 last_word - first_word + 1, 738 eeprom_buff); 739 else { 740 for (i = 0; i < last_word - first_word + 1; i++) { 741 ret_val = hw->nvm.ops.read(hw, first_word + i, 1, 742 &eeprom_buff[i]); 743 if (ret_val) 744 break; 745 } 746 } 747 748 /* Device's eeprom is always little-endian, word addressable */ 749 for (i = 0; i < last_word - first_word + 1; i++) 750 le16_to_cpus(&eeprom_buff[i]); 751 752 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), 753 eeprom->len); 754 kfree(eeprom_buff); 755 756 return ret_val; 757 } 758 759 static int igb_set_eeprom(struct net_device *netdev, 760 struct ethtool_eeprom *eeprom, u8 *bytes) 761 { 762 struct igb_adapter *adapter = netdev_priv(netdev); 763 struct e1000_hw *hw = &adapter->hw; 764 u16 *eeprom_buff; 765 void *ptr; 766 int max_len, first_word, last_word, ret_val = 0; 767 u16 i; 768 769 if (eeprom->len == 0) 770 return -EOPNOTSUPP; 771 772 if (hw->mac.type == e1000_i211) 773 return -EOPNOTSUPP; 774 775 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16))) 776 return -EFAULT; 777 778 max_len = hw->nvm.word_size * 2; 779 780 first_word = eeprom->offset >> 1; 781 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 782 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 783 if (!eeprom_buff) 784 return -ENOMEM; 785 786 ptr = (void *)eeprom_buff; 787 788 if (eeprom->offset & 1) { 789 /* need read/modify/write of first changed EEPROM word 790 * only the second byte of the word is being modified 791 */ 792 ret_val = hw->nvm.ops.read(hw, first_word, 1, 793 &eeprom_buff[0]); 794 ptr++; 795 } 796 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) { 797 /* need read/modify/write of last changed EEPROM word 798 * only the first byte of the word is being modified 799 */ 800 ret_val = hw->nvm.ops.read(hw, last_word, 1, 801 &eeprom_buff[last_word - first_word]); 802 } 803 804 /* Device's eeprom is always little-endian, word addressable */ 805 for (i = 0; i < last_word - first_word + 1; i++) 806 le16_to_cpus(&eeprom_buff[i]); 807 808 memcpy(ptr, bytes, eeprom->len); 809 810 for (i = 0; i < last_word - first_word + 1; i++) 811 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]); 812 813 ret_val = hw->nvm.ops.write(hw, first_word, 814 last_word - first_word + 1, eeprom_buff); 815 816 /* Update the checksum over the first part of the EEPROM if needed 817 * and flush shadow RAM for 82573 controllers 818 */ 819 if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG))) 820 hw->nvm.ops.update(hw); 821 822 igb_set_fw_version(adapter); 823 kfree(eeprom_buff); 824 return ret_val; 825 } 826 827 static void igb_get_drvinfo(struct net_device *netdev, 828 struct ethtool_drvinfo *drvinfo) 829 { 830 struct igb_adapter *adapter = netdev_priv(netdev); 831 832 strlcpy(drvinfo->driver, igb_driver_name, sizeof(drvinfo->driver)); 833 strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version)); 834 835 /* EEPROM image version # is reported as firmware version # for 836 * 82575 controllers 837 */ 838 strlcpy(drvinfo->fw_version, adapter->fw_version, 839 sizeof(drvinfo->fw_version)); 840 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 841 sizeof(drvinfo->bus_info)); 842 drvinfo->n_stats = IGB_STATS_LEN; 843 drvinfo->testinfo_len = IGB_TEST_LEN; 844 drvinfo->regdump_len = igb_get_regs_len(netdev); 845 drvinfo->eedump_len = igb_get_eeprom_len(netdev); 846 } 847 848 static void igb_get_ringparam(struct net_device *netdev, 849 struct ethtool_ringparam *ring) 850 { 851 struct igb_adapter *adapter = netdev_priv(netdev); 852 853 ring->rx_max_pending = IGB_MAX_RXD; 854 ring->tx_max_pending = IGB_MAX_TXD; 855 ring->rx_pending = adapter->rx_ring_count; 856 ring->tx_pending = adapter->tx_ring_count; 857 } 858 859 static int igb_set_ringparam(struct net_device *netdev, 860 struct ethtool_ringparam *ring) 861 { 862 struct igb_adapter *adapter = netdev_priv(netdev); 863 struct igb_ring *temp_ring; 864 int i, err = 0; 865 u16 new_rx_count, new_tx_count; 866 867 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 868 return -EINVAL; 869 870 new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD); 871 new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD); 872 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE); 873 874 new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD); 875 new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD); 876 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE); 877 878 if ((new_tx_count == adapter->tx_ring_count) && 879 (new_rx_count == adapter->rx_ring_count)) { 880 /* nothing to do */ 881 return 0; 882 } 883 884 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 885 msleep(1); 886 887 if (!netif_running(adapter->netdev)) { 888 for (i = 0; i < adapter->num_tx_queues; i++) 889 adapter->tx_ring[i]->count = new_tx_count; 890 for (i = 0; i < adapter->num_rx_queues; i++) 891 adapter->rx_ring[i]->count = new_rx_count; 892 adapter->tx_ring_count = new_tx_count; 893 adapter->rx_ring_count = new_rx_count; 894 goto clear_reset; 895 } 896 897 if (adapter->num_tx_queues > adapter->num_rx_queues) 898 temp_ring = vmalloc(adapter->num_tx_queues * 899 sizeof(struct igb_ring)); 900 else 901 temp_ring = vmalloc(adapter->num_rx_queues * 902 sizeof(struct igb_ring)); 903 904 if (!temp_ring) { 905 err = -ENOMEM; 906 goto clear_reset; 907 } 908 909 igb_down(adapter); 910 911 /* We can't just free everything and then setup again, 912 * because the ISRs in MSI-X mode get passed pointers 913 * to the Tx and Rx ring structs. 914 */ 915 if (new_tx_count != adapter->tx_ring_count) { 916 for (i = 0; i < adapter->num_tx_queues; i++) { 917 memcpy(&temp_ring[i], adapter->tx_ring[i], 918 sizeof(struct igb_ring)); 919 920 temp_ring[i].count = new_tx_count; 921 err = igb_setup_tx_resources(&temp_ring[i]); 922 if (err) { 923 while (i) { 924 i--; 925 igb_free_tx_resources(&temp_ring[i]); 926 } 927 goto err_setup; 928 } 929 } 930 931 for (i = 0; i < adapter->num_tx_queues; i++) { 932 igb_free_tx_resources(adapter->tx_ring[i]); 933 934 memcpy(adapter->tx_ring[i], &temp_ring[i], 935 sizeof(struct igb_ring)); 936 } 937 938 adapter->tx_ring_count = new_tx_count; 939 } 940 941 if (new_rx_count != adapter->rx_ring_count) { 942 for (i = 0; i < adapter->num_rx_queues; i++) { 943 memcpy(&temp_ring[i], adapter->rx_ring[i], 944 sizeof(struct igb_ring)); 945 946 temp_ring[i].count = new_rx_count; 947 err = igb_setup_rx_resources(&temp_ring[i]); 948 if (err) { 949 while (i) { 950 i--; 951 igb_free_rx_resources(&temp_ring[i]); 952 } 953 goto err_setup; 954 } 955 956 } 957 958 for (i = 0; i < adapter->num_rx_queues; i++) { 959 igb_free_rx_resources(adapter->rx_ring[i]); 960 961 memcpy(adapter->rx_ring[i], &temp_ring[i], 962 sizeof(struct igb_ring)); 963 } 964 965 adapter->rx_ring_count = new_rx_count; 966 } 967 err_setup: 968 igb_up(adapter); 969 vfree(temp_ring); 970 clear_reset: 971 clear_bit(__IGB_RESETTING, &adapter->state); 972 return err; 973 } 974 975 /* ethtool register test data */ 976 struct igb_reg_test { 977 u16 reg; 978 u16 reg_offset; 979 u16 array_len; 980 u16 test_type; 981 u32 mask; 982 u32 write; 983 }; 984 985 /* In the hardware, registers are laid out either singly, in arrays 986 * spaced 0x100 bytes apart, or in contiguous tables. We assume 987 * most tests take place on arrays or single registers (handled 988 * as a single-element array) and special-case the tables. 989 * Table tests are always pattern tests. 990 * 991 * We also make provision for some required setup steps by specifying 992 * registers to be written without any read-back testing. 993 */ 994 995 #define PATTERN_TEST 1 996 #define SET_READ_TEST 2 997 #define WRITE_NO_TEST 3 998 #define TABLE32_TEST 4 999 #define TABLE64_TEST_LO 5 1000 #define TABLE64_TEST_HI 6 1001 1002 /* i210 reg test */ 1003 static struct igb_reg_test reg_test_i210[] = { 1004 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1005 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1006 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1007 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1008 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1009 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1010 /* RDH is read-only for i210, only test RDT. */ 1011 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1012 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1013 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1014 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1015 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1016 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1017 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1018 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1019 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1020 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, 1021 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, 1022 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1023 { E1000_RA, 0, 16, TABLE64_TEST_LO, 1024 0xFFFFFFFF, 0xFFFFFFFF }, 1025 { E1000_RA, 0, 16, TABLE64_TEST_HI, 1026 0x900FFFFF, 0xFFFFFFFF }, 1027 { E1000_MTA, 0, 128, TABLE32_TEST, 1028 0xFFFFFFFF, 0xFFFFFFFF }, 1029 { 0, 0, 0, 0, 0 } 1030 }; 1031 1032 /* i350 reg test */ 1033 static struct igb_reg_test reg_test_i350[] = { 1034 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1035 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1036 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1037 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 }, 1038 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1039 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1040 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1041 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1042 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1043 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1044 /* RDH is read-only for i350, only test RDT. */ 1045 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1046 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1047 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1048 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1049 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1050 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1051 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1052 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1053 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1054 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1055 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1056 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1057 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1058 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1059 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, 1060 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, 1061 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1062 { E1000_RA, 0, 16, TABLE64_TEST_LO, 1063 0xFFFFFFFF, 0xFFFFFFFF }, 1064 { E1000_RA, 0, 16, TABLE64_TEST_HI, 1065 0xC3FFFFFF, 0xFFFFFFFF }, 1066 { E1000_RA2, 0, 16, TABLE64_TEST_LO, 1067 0xFFFFFFFF, 0xFFFFFFFF }, 1068 { E1000_RA2, 0, 16, TABLE64_TEST_HI, 1069 0xC3FFFFFF, 0xFFFFFFFF }, 1070 { E1000_MTA, 0, 128, TABLE32_TEST, 1071 0xFFFFFFFF, 0xFFFFFFFF }, 1072 { 0, 0, 0, 0 } 1073 }; 1074 1075 /* 82580 reg test */ 1076 static struct igb_reg_test reg_test_82580[] = { 1077 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1078 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1079 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1080 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1081 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1082 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1083 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1084 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1085 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1086 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1087 /* RDH is read-only for 82580, only test RDT. */ 1088 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1089 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1090 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1091 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1092 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1093 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1094 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1095 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1096 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1097 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1098 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1099 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1100 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1101 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1102 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, 1103 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, 1104 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1105 { E1000_RA, 0, 16, TABLE64_TEST_LO, 1106 0xFFFFFFFF, 0xFFFFFFFF }, 1107 { E1000_RA, 0, 16, TABLE64_TEST_HI, 1108 0x83FFFFFF, 0xFFFFFFFF }, 1109 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 1110 0xFFFFFFFF, 0xFFFFFFFF }, 1111 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 1112 0x83FFFFFF, 0xFFFFFFFF }, 1113 { E1000_MTA, 0, 128, TABLE32_TEST, 1114 0xFFFFFFFF, 0xFFFFFFFF }, 1115 { 0, 0, 0, 0 } 1116 }; 1117 1118 /* 82576 reg test */ 1119 static struct igb_reg_test reg_test_82576[] = { 1120 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1121 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1122 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1123 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1124 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1125 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1126 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1127 { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1128 { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1129 { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1130 /* Enable all RX queues before testing. */ 1131 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE }, 1132 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE }, 1133 /* RDH is read-only for 82576, only test RDT. */ 1134 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1135 { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1136 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 }, 1137 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 }, 1138 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1139 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1140 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1141 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1142 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1143 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1144 { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1145 { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1146 { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1147 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1148 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, 1149 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, 1150 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1151 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, 1152 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF }, 1153 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, 1154 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF }, 1155 { E1000_MTA, 0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1156 { 0, 0, 0, 0 } 1157 }; 1158 1159 /* 82575 register test */ 1160 static struct igb_reg_test reg_test_82575[] = { 1161 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1162 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1163 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1164 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1165 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1166 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1167 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1168 /* Enable all four RX queues before testing. */ 1169 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE }, 1170 /* RDH is read-only for 82575, only test RDT. */ 1171 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1172 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 }, 1173 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1174 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1175 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1176 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1177 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1178 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1179 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1180 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB }, 1181 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF }, 1182 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1183 { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF }, 1184 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, 1185 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF }, 1186 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1187 { 0, 0, 0, 0 } 1188 }; 1189 1190 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data, 1191 int reg, u32 mask, u32 write) 1192 { 1193 struct e1000_hw *hw = &adapter->hw; 1194 u32 pat, val; 1195 static const u32 _test[] = 1196 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; 1197 for (pat = 0; pat < ARRAY_SIZE(_test); pat++) { 1198 wr32(reg, (_test[pat] & write)); 1199 val = rd32(reg) & mask; 1200 if (val != (_test[pat] & write & mask)) { 1201 dev_err(&adapter->pdev->dev, 1202 "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n", 1203 reg, val, (_test[pat] & write & mask)); 1204 *data = reg; 1205 return 1; 1206 } 1207 } 1208 1209 return 0; 1210 } 1211 1212 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data, 1213 int reg, u32 mask, u32 write) 1214 { 1215 struct e1000_hw *hw = &adapter->hw; 1216 u32 val; 1217 wr32(reg, write & mask); 1218 val = rd32(reg); 1219 if ((write & mask) != (val & mask)) { 1220 dev_err(&adapter->pdev->dev, 1221 "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", reg, 1222 (val & mask), (write & mask)); 1223 *data = reg; 1224 return 1; 1225 } 1226 1227 return 0; 1228 } 1229 1230 #define REG_PATTERN_TEST(reg, mask, write) \ 1231 do { \ 1232 if (reg_pattern_test(adapter, data, reg, mask, write)) \ 1233 return 1; \ 1234 } while (0) 1235 1236 #define REG_SET_AND_CHECK(reg, mask, write) \ 1237 do { \ 1238 if (reg_set_and_check(adapter, data, reg, mask, write)) \ 1239 return 1; \ 1240 } while (0) 1241 1242 static int igb_reg_test(struct igb_adapter *adapter, u64 *data) 1243 { 1244 struct e1000_hw *hw = &adapter->hw; 1245 struct igb_reg_test *test; 1246 u32 value, before, after; 1247 u32 i, toggle; 1248 1249 switch (adapter->hw.mac.type) { 1250 case e1000_i350: 1251 case e1000_i354: 1252 test = reg_test_i350; 1253 toggle = 0x7FEFF3FF; 1254 break; 1255 case e1000_i210: 1256 case e1000_i211: 1257 test = reg_test_i210; 1258 toggle = 0x7FEFF3FF; 1259 break; 1260 case e1000_82580: 1261 test = reg_test_82580; 1262 toggle = 0x7FEFF3FF; 1263 break; 1264 case e1000_82576: 1265 test = reg_test_82576; 1266 toggle = 0x7FFFF3FF; 1267 break; 1268 default: 1269 test = reg_test_82575; 1270 toggle = 0x7FFFF3FF; 1271 break; 1272 } 1273 1274 /* Because the status register is such a special case, 1275 * we handle it separately from the rest of the register 1276 * tests. Some bits are read-only, some toggle, and some 1277 * are writable on newer MACs. 1278 */ 1279 before = rd32(E1000_STATUS); 1280 value = (rd32(E1000_STATUS) & toggle); 1281 wr32(E1000_STATUS, toggle); 1282 after = rd32(E1000_STATUS) & toggle; 1283 if (value != after) { 1284 dev_err(&adapter->pdev->dev, 1285 "failed STATUS register test got: 0x%08X expected: 0x%08X\n", 1286 after, value); 1287 *data = 1; 1288 return 1; 1289 } 1290 /* restore previous status */ 1291 wr32(E1000_STATUS, before); 1292 1293 /* Perform the remainder of the register test, looping through 1294 * the test table until we either fail or reach the null entry. 1295 */ 1296 while (test->reg) { 1297 for (i = 0; i < test->array_len; i++) { 1298 switch (test->test_type) { 1299 case PATTERN_TEST: 1300 REG_PATTERN_TEST(test->reg + 1301 (i * test->reg_offset), 1302 test->mask, 1303 test->write); 1304 break; 1305 case SET_READ_TEST: 1306 REG_SET_AND_CHECK(test->reg + 1307 (i * test->reg_offset), 1308 test->mask, 1309 test->write); 1310 break; 1311 case WRITE_NO_TEST: 1312 writel(test->write, 1313 (adapter->hw.hw_addr + test->reg) 1314 + (i * test->reg_offset)); 1315 break; 1316 case TABLE32_TEST: 1317 REG_PATTERN_TEST(test->reg + (i * 4), 1318 test->mask, 1319 test->write); 1320 break; 1321 case TABLE64_TEST_LO: 1322 REG_PATTERN_TEST(test->reg + (i * 8), 1323 test->mask, 1324 test->write); 1325 break; 1326 case TABLE64_TEST_HI: 1327 REG_PATTERN_TEST((test->reg + 4) + (i * 8), 1328 test->mask, 1329 test->write); 1330 break; 1331 } 1332 } 1333 test++; 1334 } 1335 1336 *data = 0; 1337 return 0; 1338 } 1339 1340 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data) 1341 { 1342 *data = 0; 1343 1344 /* Validate eeprom on all parts but i211 */ 1345 if (adapter->hw.mac.type != e1000_i211) { 1346 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0) 1347 *data = 2; 1348 } 1349 1350 return *data; 1351 } 1352 1353 static irqreturn_t igb_test_intr(int irq, void *data) 1354 { 1355 struct igb_adapter *adapter = (struct igb_adapter *) data; 1356 struct e1000_hw *hw = &adapter->hw; 1357 1358 adapter->test_icr |= rd32(E1000_ICR); 1359 1360 return IRQ_HANDLED; 1361 } 1362 1363 static int igb_intr_test(struct igb_adapter *adapter, u64 *data) 1364 { 1365 struct e1000_hw *hw = &adapter->hw; 1366 struct net_device *netdev = adapter->netdev; 1367 u32 mask, ics_mask, i = 0, shared_int = true; 1368 u32 irq = adapter->pdev->irq; 1369 1370 *data = 0; 1371 1372 /* Hook up test interrupt handler just for this test */ 1373 if (adapter->msix_entries) { 1374 if (request_irq(adapter->msix_entries[0].vector, 1375 igb_test_intr, 0, netdev->name, adapter)) { 1376 *data = 1; 1377 return -1; 1378 } 1379 } else if (adapter->flags & IGB_FLAG_HAS_MSI) { 1380 shared_int = false; 1381 if (request_irq(irq, 1382 igb_test_intr, 0, netdev->name, adapter)) { 1383 *data = 1; 1384 return -1; 1385 } 1386 } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED, 1387 netdev->name, adapter)) { 1388 shared_int = false; 1389 } else if (request_irq(irq, igb_test_intr, IRQF_SHARED, 1390 netdev->name, adapter)) { 1391 *data = 1; 1392 return -1; 1393 } 1394 dev_info(&adapter->pdev->dev, "testing %s interrupt\n", 1395 (shared_int ? "shared" : "unshared")); 1396 1397 /* Disable all the interrupts */ 1398 wr32(E1000_IMC, ~0); 1399 wrfl(); 1400 msleep(10); 1401 1402 /* Define all writable bits for ICS */ 1403 switch (hw->mac.type) { 1404 case e1000_82575: 1405 ics_mask = 0x37F47EDD; 1406 break; 1407 case e1000_82576: 1408 ics_mask = 0x77D4FBFD; 1409 break; 1410 case e1000_82580: 1411 ics_mask = 0x77DCFED5; 1412 break; 1413 case e1000_i350: 1414 case e1000_i354: 1415 case e1000_i210: 1416 case e1000_i211: 1417 ics_mask = 0x77DCFED5; 1418 break; 1419 default: 1420 ics_mask = 0x7FFFFFFF; 1421 break; 1422 } 1423 1424 /* Test each interrupt */ 1425 for (; i < 31; i++) { 1426 /* Interrupt to test */ 1427 mask = 1 << i; 1428 1429 if (!(mask & ics_mask)) 1430 continue; 1431 1432 if (!shared_int) { 1433 /* Disable the interrupt to be reported in 1434 * the cause register and then force the same 1435 * interrupt and see if one gets posted. If 1436 * an interrupt was posted to the bus, the 1437 * test failed. 1438 */ 1439 adapter->test_icr = 0; 1440 1441 /* Flush any pending interrupts */ 1442 wr32(E1000_ICR, ~0); 1443 1444 wr32(E1000_IMC, mask); 1445 wr32(E1000_ICS, mask); 1446 wrfl(); 1447 msleep(10); 1448 1449 if (adapter->test_icr & mask) { 1450 *data = 3; 1451 break; 1452 } 1453 } 1454 1455 /* Enable the interrupt to be reported in 1456 * the cause register and then force the same 1457 * interrupt and see if one gets posted. If 1458 * an interrupt was not posted to the bus, the 1459 * test failed. 1460 */ 1461 adapter->test_icr = 0; 1462 1463 /* Flush any pending interrupts */ 1464 wr32(E1000_ICR, ~0); 1465 1466 wr32(E1000_IMS, mask); 1467 wr32(E1000_ICS, mask); 1468 wrfl(); 1469 msleep(10); 1470 1471 if (!(adapter->test_icr & mask)) { 1472 *data = 4; 1473 break; 1474 } 1475 1476 if (!shared_int) { 1477 /* Disable the other interrupts to be reported in 1478 * the cause register and then force the other 1479 * interrupts and see if any get posted. If 1480 * an interrupt was posted to the bus, the 1481 * test failed. 1482 */ 1483 adapter->test_icr = 0; 1484 1485 /* Flush any pending interrupts */ 1486 wr32(E1000_ICR, ~0); 1487 1488 wr32(E1000_IMC, ~mask); 1489 wr32(E1000_ICS, ~mask); 1490 wrfl(); 1491 msleep(10); 1492 1493 if (adapter->test_icr & mask) { 1494 *data = 5; 1495 break; 1496 } 1497 } 1498 } 1499 1500 /* Disable all the interrupts */ 1501 wr32(E1000_IMC, ~0); 1502 wrfl(); 1503 msleep(10); 1504 1505 /* Unhook test interrupt handler */ 1506 if (adapter->msix_entries) 1507 free_irq(adapter->msix_entries[0].vector, adapter); 1508 else 1509 free_irq(irq, adapter); 1510 1511 return *data; 1512 } 1513 1514 static void igb_free_desc_rings(struct igb_adapter *adapter) 1515 { 1516 igb_free_tx_resources(&adapter->test_tx_ring); 1517 igb_free_rx_resources(&adapter->test_rx_ring); 1518 } 1519 1520 static int igb_setup_desc_rings(struct igb_adapter *adapter) 1521 { 1522 struct igb_ring *tx_ring = &adapter->test_tx_ring; 1523 struct igb_ring *rx_ring = &adapter->test_rx_ring; 1524 struct e1000_hw *hw = &adapter->hw; 1525 int ret_val; 1526 1527 /* Setup Tx descriptor ring and Tx buffers */ 1528 tx_ring->count = IGB_DEFAULT_TXD; 1529 tx_ring->dev = &adapter->pdev->dev; 1530 tx_ring->netdev = adapter->netdev; 1531 tx_ring->reg_idx = adapter->vfs_allocated_count; 1532 1533 if (igb_setup_tx_resources(tx_ring)) { 1534 ret_val = 1; 1535 goto err_nomem; 1536 } 1537 1538 igb_setup_tctl(adapter); 1539 igb_configure_tx_ring(adapter, tx_ring); 1540 1541 /* Setup Rx descriptor ring and Rx buffers */ 1542 rx_ring->count = IGB_DEFAULT_RXD; 1543 rx_ring->dev = &adapter->pdev->dev; 1544 rx_ring->netdev = adapter->netdev; 1545 rx_ring->reg_idx = adapter->vfs_allocated_count; 1546 1547 if (igb_setup_rx_resources(rx_ring)) { 1548 ret_val = 3; 1549 goto err_nomem; 1550 } 1551 1552 /* set the default queue to queue 0 of PF */ 1553 wr32(E1000_MRQC, adapter->vfs_allocated_count << 3); 1554 1555 /* enable receive ring */ 1556 igb_setup_rctl(adapter); 1557 igb_configure_rx_ring(adapter, rx_ring); 1558 1559 igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring)); 1560 1561 return 0; 1562 1563 err_nomem: 1564 igb_free_desc_rings(adapter); 1565 return ret_val; 1566 } 1567 1568 static void igb_phy_disable_receiver(struct igb_adapter *adapter) 1569 { 1570 struct e1000_hw *hw = &adapter->hw; 1571 1572 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1573 igb_write_phy_reg(hw, 29, 0x001F); 1574 igb_write_phy_reg(hw, 30, 0x8FFC); 1575 igb_write_phy_reg(hw, 29, 0x001A); 1576 igb_write_phy_reg(hw, 30, 0x8FF0); 1577 } 1578 1579 static int igb_integrated_phy_loopback(struct igb_adapter *adapter) 1580 { 1581 struct e1000_hw *hw = &adapter->hw; 1582 u32 ctrl_reg = 0; 1583 1584 hw->mac.autoneg = false; 1585 1586 if (hw->phy.type == e1000_phy_m88) { 1587 if (hw->phy.id != I210_I_PHY_ID) { 1588 /* Auto-MDI/MDIX Off */ 1589 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); 1590 /* reset to update Auto-MDI/MDIX */ 1591 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140); 1592 /* autoneg off */ 1593 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140); 1594 } else { 1595 /* force 1000, set loopback */ 1596 igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0); 1597 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140); 1598 } 1599 } 1600 1601 /* add small delay to avoid loopback test failure */ 1602 msleep(50); 1603 1604 /* force 1000, set loopback */ 1605 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140); 1606 1607 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1608 ctrl_reg = rd32(E1000_CTRL); 1609 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1610 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1611 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1612 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1613 E1000_CTRL_FD | /* Force Duplex to FULL */ 1614 E1000_CTRL_SLU); /* Set link up enable bit */ 1615 1616 if (hw->phy.type == e1000_phy_m88) 1617 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1618 1619 wr32(E1000_CTRL, ctrl_reg); 1620 1621 /* Disable the receiver on the PHY so when a cable is plugged in, the 1622 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1623 */ 1624 if (hw->phy.type == e1000_phy_m88) 1625 igb_phy_disable_receiver(adapter); 1626 1627 mdelay(500); 1628 return 0; 1629 } 1630 1631 static int igb_set_phy_loopback(struct igb_adapter *adapter) 1632 { 1633 return igb_integrated_phy_loopback(adapter); 1634 } 1635 1636 static int igb_setup_loopback_test(struct igb_adapter *adapter) 1637 { 1638 struct e1000_hw *hw = &adapter->hw; 1639 u32 reg; 1640 1641 reg = rd32(E1000_CTRL_EXT); 1642 1643 /* use CTRL_EXT to identify link type as SGMII can appear as copper */ 1644 if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) { 1645 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) || 1646 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) || 1647 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) || 1648 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) { 1649 1650 /* Enable DH89xxCC MPHY for near end loopback */ 1651 reg = rd32(E1000_MPHY_ADDR_CTL); 1652 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) | 1653 E1000_MPHY_PCS_CLK_REG_OFFSET; 1654 wr32(E1000_MPHY_ADDR_CTL, reg); 1655 1656 reg = rd32(E1000_MPHY_DATA); 1657 reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN; 1658 wr32(E1000_MPHY_DATA, reg); 1659 } 1660 1661 reg = rd32(E1000_RCTL); 1662 reg |= E1000_RCTL_LBM_TCVR; 1663 wr32(E1000_RCTL, reg); 1664 1665 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK); 1666 1667 reg = rd32(E1000_CTRL); 1668 reg &= ~(E1000_CTRL_RFCE | 1669 E1000_CTRL_TFCE | 1670 E1000_CTRL_LRST); 1671 reg |= E1000_CTRL_SLU | 1672 E1000_CTRL_FD; 1673 wr32(E1000_CTRL, reg); 1674 1675 /* Unset switch control to serdes energy detect */ 1676 reg = rd32(E1000_CONNSW); 1677 reg &= ~E1000_CONNSW_ENRGSRC; 1678 wr32(E1000_CONNSW, reg); 1679 1680 /* Unset sigdetect for SERDES loopback on 1681 * 82580 and newer devices. 1682 */ 1683 if (hw->mac.type >= e1000_82580) { 1684 reg = rd32(E1000_PCS_CFG0); 1685 reg |= E1000_PCS_CFG_IGN_SD; 1686 wr32(E1000_PCS_CFG0, reg); 1687 } 1688 1689 /* Set PCS register for forced speed */ 1690 reg = rd32(E1000_PCS_LCTL); 1691 reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/ 1692 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */ 1693 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */ 1694 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */ 1695 E1000_PCS_LCTL_FSD | /* Force Speed */ 1696 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */ 1697 wr32(E1000_PCS_LCTL, reg); 1698 1699 return 0; 1700 } 1701 1702 return igb_set_phy_loopback(adapter); 1703 } 1704 1705 static void igb_loopback_cleanup(struct igb_adapter *adapter) 1706 { 1707 struct e1000_hw *hw = &adapter->hw; 1708 u32 rctl; 1709 u16 phy_reg; 1710 1711 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) || 1712 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) || 1713 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) || 1714 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) { 1715 u32 reg; 1716 1717 /* Disable near end loopback on DH89xxCC */ 1718 reg = rd32(E1000_MPHY_ADDR_CTL); 1719 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) | 1720 E1000_MPHY_PCS_CLK_REG_OFFSET; 1721 wr32(E1000_MPHY_ADDR_CTL, reg); 1722 1723 reg = rd32(E1000_MPHY_DATA); 1724 reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN; 1725 wr32(E1000_MPHY_DATA, reg); 1726 } 1727 1728 rctl = rd32(E1000_RCTL); 1729 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1730 wr32(E1000_RCTL, rctl); 1731 1732 hw->mac.autoneg = true; 1733 igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg); 1734 if (phy_reg & MII_CR_LOOPBACK) { 1735 phy_reg &= ~MII_CR_LOOPBACK; 1736 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg); 1737 igb_phy_sw_reset(hw); 1738 } 1739 } 1740 1741 static void igb_create_lbtest_frame(struct sk_buff *skb, 1742 unsigned int frame_size) 1743 { 1744 memset(skb->data, 0xFF, frame_size); 1745 frame_size /= 2; 1746 memset(&skb->data[frame_size], 0xAA, frame_size - 1); 1747 memset(&skb->data[frame_size + 10], 0xBE, 1); 1748 memset(&skb->data[frame_size + 12], 0xAF, 1); 1749 } 1750 1751 static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer, 1752 unsigned int frame_size) 1753 { 1754 unsigned char *data; 1755 bool match = true; 1756 1757 frame_size >>= 1; 1758 1759 data = kmap(rx_buffer->page); 1760 1761 if (data[3] != 0xFF || 1762 data[frame_size + 10] != 0xBE || 1763 data[frame_size + 12] != 0xAF) 1764 match = false; 1765 1766 kunmap(rx_buffer->page); 1767 1768 return match; 1769 } 1770 1771 static int igb_clean_test_rings(struct igb_ring *rx_ring, 1772 struct igb_ring *tx_ring, 1773 unsigned int size) 1774 { 1775 union e1000_adv_rx_desc *rx_desc; 1776 struct igb_rx_buffer *rx_buffer_info; 1777 struct igb_tx_buffer *tx_buffer_info; 1778 u16 rx_ntc, tx_ntc, count = 0; 1779 1780 /* initialize next to clean and descriptor values */ 1781 rx_ntc = rx_ring->next_to_clean; 1782 tx_ntc = tx_ring->next_to_clean; 1783 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc); 1784 1785 while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) { 1786 /* check Rx buffer */ 1787 rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc]; 1788 1789 /* sync Rx buffer for CPU read */ 1790 dma_sync_single_for_cpu(rx_ring->dev, 1791 rx_buffer_info->dma, 1792 IGB_RX_BUFSZ, 1793 DMA_FROM_DEVICE); 1794 1795 /* verify contents of skb */ 1796 if (igb_check_lbtest_frame(rx_buffer_info, size)) 1797 count++; 1798 1799 /* sync Rx buffer for device write */ 1800 dma_sync_single_for_device(rx_ring->dev, 1801 rx_buffer_info->dma, 1802 IGB_RX_BUFSZ, 1803 DMA_FROM_DEVICE); 1804 1805 /* unmap buffer on Tx side */ 1806 tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc]; 1807 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info); 1808 1809 /* increment Rx/Tx next to clean counters */ 1810 rx_ntc++; 1811 if (rx_ntc == rx_ring->count) 1812 rx_ntc = 0; 1813 tx_ntc++; 1814 if (tx_ntc == tx_ring->count) 1815 tx_ntc = 0; 1816 1817 /* fetch next descriptor */ 1818 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc); 1819 } 1820 1821 netdev_tx_reset_queue(txring_txq(tx_ring)); 1822 1823 /* re-map buffers to ring, store next to clean values */ 1824 igb_alloc_rx_buffers(rx_ring, count); 1825 rx_ring->next_to_clean = rx_ntc; 1826 tx_ring->next_to_clean = tx_ntc; 1827 1828 return count; 1829 } 1830 1831 static int igb_run_loopback_test(struct igb_adapter *adapter) 1832 { 1833 struct igb_ring *tx_ring = &adapter->test_tx_ring; 1834 struct igb_ring *rx_ring = &adapter->test_rx_ring; 1835 u16 i, j, lc, good_cnt; 1836 int ret_val = 0; 1837 unsigned int size = IGB_RX_HDR_LEN; 1838 netdev_tx_t tx_ret_val; 1839 struct sk_buff *skb; 1840 1841 /* allocate test skb */ 1842 skb = alloc_skb(size, GFP_KERNEL); 1843 if (!skb) 1844 return 11; 1845 1846 /* place data into test skb */ 1847 igb_create_lbtest_frame(skb, size); 1848 skb_put(skb, size); 1849 1850 /* Calculate the loop count based on the largest descriptor ring 1851 * The idea is to wrap the largest ring a number of times using 64 1852 * send/receive pairs during each loop 1853 */ 1854 1855 if (rx_ring->count <= tx_ring->count) 1856 lc = ((tx_ring->count / 64) * 2) + 1; 1857 else 1858 lc = ((rx_ring->count / 64) * 2) + 1; 1859 1860 for (j = 0; j <= lc; j++) { /* loop count loop */ 1861 /* reset count of good packets */ 1862 good_cnt = 0; 1863 1864 /* place 64 packets on the transmit queue*/ 1865 for (i = 0; i < 64; i++) { 1866 skb_get(skb); 1867 tx_ret_val = igb_xmit_frame_ring(skb, tx_ring); 1868 if (tx_ret_val == NETDEV_TX_OK) 1869 good_cnt++; 1870 } 1871 1872 if (good_cnt != 64) { 1873 ret_val = 12; 1874 break; 1875 } 1876 1877 /* allow 200 milliseconds for packets to go from Tx to Rx */ 1878 msleep(200); 1879 1880 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size); 1881 if (good_cnt != 64) { 1882 ret_val = 13; 1883 break; 1884 } 1885 } /* end loop count loop */ 1886 1887 /* free the original skb */ 1888 kfree_skb(skb); 1889 1890 return ret_val; 1891 } 1892 1893 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data) 1894 { 1895 /* PHY loopback cannot be performed if SoL/IDER 1896 * sessions are active 1897 */ 1898 if (igb_check_reset_block(&adapter->hw)) { 1899 dev_err(&adapter->pdev->dev, 1900 "Cannot do PHY loopback test when SoL/IDER is active.\n"); 1901 *data = 0; 1902 goto out; 1903 } 1904 1905 if (adapter->hw.mac.type == e1000_i354) { 1906 dev_info(&adapter->pdev->dev, 1907 "Loopback test not supported on i354.\n"); 1908 *data = 0; 1909 goto out; 1910 } 1911 *data = igb_setup_desc_rings(adapter); 1912 if (*data) 1913 goto out; 1914 *data = igb_setup_loopback_test(adapter); 1915 if (*data) 1916 goto err_loopback; 1917 *data = igb_run_loopback_test(adapter); 1918 igb_loopback_cleanup(adapter); 1919 1920 err_loopback: 1921 igb_free_desc_rings(adapter); 1922 out: 1923 return *data; 1924 } 1925 1926 static int igb_link_test(struct igb_adapter *adapter, u64 *data) 1927 { 1928 struct e1000_hw *hw = &adapter->hw; 1929 *data = 0; 1930 if (hw->phy.media_type == e1000_media_type_internal_serdes) { 1931 int i = 0; 1932 hw->mac.serdes_has_link = false; 1933 1934 /* On some blade server designs, link establishment 1935 * could take as long as 2-3 minutes 1936 */ 1937 do { 1938 hw->mac.ops.check_for_link(&adapter->hw); 1939 if (hw->mac.serdes_has_link) 1940 return *data; 1941 msleep(20); 1942 } while (i++ < 3750); 1943 1944 *data = 1; 1945 } else { 1946 hw->mac.ops.check_for_link(&adapter->hw); 1947 if (hw->mac.autoneg) 1948 msleep(5000); 1949 1950 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) 1951 *data = 1; 1952 } 1953 return *data; 1954 } 1955 1956 static void igb_diag_test(struct net_device *netdev, 1957 struct ethtool_test *eth_test, u64 *data) 1958 { 1959 struct igb_adapter *adapter = netdev_priv(netdev); 1960 u16 autoneg_advertised; 1961 u8 forced_speed_duplex, autoneg; 1962 bool if_running = netif_running(netdev); 1963 1964 set_bit(__IGB_TESTING, &adapter->state); 1965 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1966 /* Offline tests */ 1967 1968 /* save speed, duplex, autoneg settings */ 1969 autoneg_advertised = adapter->hw.phy.autoneg_advertised; 1970 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; 1971 autoneg = adapter->hw.mac.autoneg; 1972 1973 dev_info(&adapter->pdev->dev, "offline testing starting\n"); 1974 1975 /* power up link for link test */ 1976 igb_power_up_link(adapter); 1977 1978 /* Link test performed before hardware reset so autoneg doesn't 1979 * interfere with test result 1980 */ 1981 if (igb_link_test(adapter, &data[4])) 1982 eth_test->flags |= ETH_TEST_FL_FAILED; 1983 1984 if (if_running) 1985 /* indicate we're in test mode */ 1986 dev_close(netdev); 1987 else 1988 igb_reset(adapter); 1989 1990 if (igb_reg_test(adapter, &data[0])) 1991 eth_test->flags |= ETH_TEST_FL_FAILED; 1992 1993 igb_reset(adapter); 1994 if (igb_eeprom_test(adapter, &data[1])) 1995 eth_test->flags |= ETH_TEST_FL_FAILED; 1996 1997 igb_reset(adapter); 1998 if (igb_intr_test(adapter, &data[2])) 1999 eth_test->flags |= ETH_TEST_FL_FAILED; 2000 2001 igb_reset(adapter); 2002 /* power up link for loopback test */ 2003 igb_power_up_link(adapter); 2004 if (igb_loopback_test(adapter, &data[3])) 2005 eth_test->flags |= ETH_TEST_FL_FAILED; 2006 2007 /* restore speed, duplex, autoneg settings */ 2008 adapter->hw.phy.autoneg_advertised = autoneg_advertised; 2009 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; 2010 adapter->hw.mac.autoneg = autoneg; 2011 2012 /* force this routine to wait until autoneg complete/timeout */ 2013 adapter->hw.phy.autoneg_wait_to_complete = true; 2014 igb_reset(adapter); 2015 adapter->hw.phy.autoneg_wait_to_complete = false; 2016 2017 clear_bit(__IGB_TESTING, &adapter->state); 2018 if (if_running) 2019 dev_open(netdev); 2020 } else { 2021 dev_info(&adapter->pdev->dev, "online testing starting\n"); 2022 2023 /* PHY is powered down when interface is down */ 2024 if (if_running && igb_link_test(adapter, &data[4])) 2025 eth_test->flags |= ETH_TEST_FL_FAILED; 2026 else 2027 data[4] = 0; 2028 2029 /* Online tests aren't run; pass by default */ 2030 data[0] = 0; 2031 data[1] = 0; 2032 data[2] = 0; 2033 data[3] = 0; 2034 2035 clear_bit(__IGB_TESTING, &adapter->state); 2036 } 2037 msleep_interruptible(4 * 1000); 2038 } 2039 2040 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 2041 { 2042 struct igb_adapter *adapter = netdev_priv(netdev); 2043 2044 wol->supported = WAKE_UCAST | WAKE_MCAST | 2045 WAKE_BCAST | WAKE_MAGIC | 2046 WAKE_PHY; 2047 wol->wolopts = 0; 2048 2049 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED)) 2050 return; 2051 2052 /* apply any specific unsupported masks here */ 2053 switch (adapter->hw.device_id) { 2054 default: 2055 break; 2056 } 2057 2058 if (adapter->wol & E1000_WUFC_EX) 2059 wol->wolopts |= WAKE_UCAST; 2060 if (adapter->wol & E1000_WUFC_MC) 2061 wol->wolopts |= WAKE_MCAST; 2062 if (adapter->wol & E1000_WUFC_BC) 2063 wol->wolopts |= WAKE_BCAST; 2064 if (adapter->wol & E1000_WUFC_MAG) 2065 wol->wolopts |= WAKE_MAGIC; 2066 if (adapter->wol & E1000_WUFC_LNKC) 2067 wol->wolopts |= WAKE_PHY; 2068 } 2069 2070 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 2071 { 2072 struct igb_adapter *adapter = netdev_priv(netdev); 2073 2074 if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE)) 2075 return -EOPNOTSUPP; 2076 2077 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED)) 2078 return wol->wolopts ? -EOPNOTSUPP : 0; 2079 2080 /* these settings will always override what we currently have */ 2081 adapter->wol = 0; 2082 2083 if (wol->wolopts & WAKE_UCAST) 2084 adapter->wol |= E1000_WUFC_EX; 2085 if (wol->wolopts & WAKE_MCAST) 2086 adapter->wol |= E1000_WUFC_MC; 2087 if (wol->wolopts & WAKE_BCAST) 2088 adapter->wol |= E1000_WUFC_BC; 2089 if (wol->wolopts & WAKE_MAGIC) 2090 adapter->wol |= E1000_WUFC_MAG; 2091 if (wol->wolopts & WAKE_PHY) 2092 adapter->wol |= E1000_WUFC_LNKC; 2093 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 2094 2095 return 0; 2096 } 2097 2098 /* bit defines for adapter->led_status */ 2099 #define IGB_LED_ON 0 2100 2101 static int igb_set_phys_id(struct net_device *netdev, 2102 enum ethtool_phys_id_state state) 2103 { 2104 struct igb_adapter *adapter = netdev_priv(netdev); 2105 struct e1000_hw *hw = &adapter->hw; 2106 2107 switch (state) { 2108 case ETHTOOL_ID_ACTIVE: 2109 igb_blink_led(hw); 2110 return 2; 2111 case ETHTOOL_ID_ON: 2112 igb_blink_led(hw); 2113 break; 2114 case ETHTOOL_ID_OFF: 2115 igb_led_off(hw); 2116 break; 2117 case ETHTOOL_ID_INACTIVE: 2118 igb_led_off(hw); 2119 clear_bit(IGB_LED_ON, &adapter->led_status); 2120 igb_cleanup_led(hw); 2121 break; 2122 } 2123 2124 return 0; 2125 } 2126 2127 static int igb_set_coalesce(struct net_device *netdev, 2128 struct ethtool_coalesce *ec) 2129 { 2130 struct igb_adapter *adapter = netdev_priv(netdev); 2131 int i; 2132 2133 if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) || 2134 ((ec->rx_coalesce_usecs > 3) && 2135 (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) || 2136 (ec->rx_coalesce_usecs == 2)) 2137 return -EINVAL; 2138 2139 if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) || 2140 ((ec->tx_coalesce_usecs > 3) && 2141 (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) || 2142 (ec->tx_coalesce_usecs == 2)) 2143 return -EINVAL; 2144 2145 if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs) 2146 return -EINVAL; 2147 2148 /* If ITR is disabled, disable DMAC */ 2149 if (ec->rx_coalesce_usecs == 0) { 2150 if (adapter->flags & IGB_FLAG_DMAC) 2151 adapter->flags &= ~IGB_FLAG_DMAC; 2152 } 2153 2154 /* convert to rate of irq's per second */ 2155 if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3) 2156 adapter->rx_itr_setting = ec->rx_coalesce_usecs; 2157 else 2158 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2; 2159 2160 /* convert to rate of irq's per second */ 2161 if (adapter->flags & IGB_FLAG_QUEUE_PAIRS) 2162 adapter->tx_itr_setting = adapter->rx_itr_setting; 2163 else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3) 2164 adapter->tx_itr_setting = ec->tx_coalesce_usecs; 2165 else 2166 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2; 2167 2168 for (i = 0; i < adapter->num_q_vectors; i++) { 2169 struct igb_q_vector *q_vector = adapter->q_vector[i]; 2170 q_vector->tx.work_limit = adapter->tx_work_limit; 2171 if (q_vector->rx.ring) 2172 q_vector->itr_val = adapter->rx_itr_setting; 2173 else 2174 q_vector->itr_val = adapter->tx_itr_setting; 2175 if (q_vector->itr_val && q_vector->itr_val <= 3) 2176 q_vector->itr_val = IGB_START_ITR; 2177 q_vector->set_itr = 1; 2178 } 2179 2180 return 0; 2181 } 2182 2183 static int igb_get_coalesce(struct net_device *netdev, 2184 struct ethtool_coalesce *ec) 2185 { 2186 struct igb_adapter *adapter = netdev_priv(netdev); 2187 2188 if (adapter->rx_itr_setting <= 3) 2189 ec->rx_coalesce_usecs = adapter->rx_itr_setting; 2190 else 2191 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2; 2192 2193 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) { 2194 if (adapter->tx_itr_setting <= 3) 2195 ec->tx_coalesce_usecs = adapter->tx_itr_setting; 2196 else 2197 ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2; 2198 } 2199 2200 return 0; 2201 } 2202 2203 static int igb_nway_reset(struct net_device *netdev) 2204 { 2205 struct igb_adapter *adapter = netdev_priv(netdev); 2206 if (netif_running(netdev)) 2207 igb_reinit_locked(adapter); 2208 return 0; 2209 } 2210 2211 static int igb_get_sset_count(struct net_device *netdev, int sset) 2212 { 2213 switch (sset) { 2214 case ETH_SS_STATS: 2215 return IGB_STATS_LEN; 2216 case ETH_SS_TEST: 2217 return IGB_TEST_LEN; 2218 default: 2219 return -ENOTSUPP; 2220 } 2221 } 2222 2223 static void igb_get_ethtool_stats(struct net_device *netdev, 2224 struct ethtool_stats *stats, u64 *data) 2225 { 2226 struct igb_adapter *adapter = netdev_priv(netdev); 2227 struct rtnl_link_stats64 *net_stats = &adapter->stats64; 2228 unsigned int start; 2229 struct igb_ring *ring; 2230 int i, j; 2231 char *p; 2232 2233 spin_lock(&adapter->stats64_lock); 2234 igb_update_stats(adapter, net_stats); 2235 2236 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) { 2237 p = (char *)adapter + igb_gstrings_stats[i].stat_offset; 2238 data[i] = (igb_gstrings_stats[i].sizeof_stat == 2239 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 2240 } 2241 for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) { 2242 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset; 2243 data[i] = (igb_gstrings_net_stats[j].sizeof_stat == 2244 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 2245 } 2246 for (j = 0; j < adapter->num_tx_queues; j++) { 2247 u64 restart2; 2248 2249 ring = adapter->tx_ring[j]; 2250 do { 2251 start = u64_stats_fetch_begin_bh(&ring->tx_syncp); 2252 data[i] = ring->tx_stats.packets; 2253 data[i+1] = ring->tx_stats.bytes; 2254 data[i+2] = ring->tx_stats.restart_queue; 2255 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start)); 2256 do { 2257 start = u64_stats_fetch_begin_bh(&ring->tx_syncp2); 2258 restart2 = ring->tx_stats.restart_queue2; 2259 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start)); 2260 data[i+2] += restart2; 2261 2262 i += IGB_TX_QUEUE_STATS_LEN; 2263 } 2264 for (j = 0; j < adapter->num_rx_queues; j++) { 2265 ring = adapter->rx_ring[j]; 2266 do { 2267 start = u64_stats_fetch_begin_bh(&ring->rx_syncp); 2268 data[i] = ring->rx_stats.packets; 2269 data[i+1] = ring->rx_stats.bytes; 2270 data[i+2] = ring->rx_stats.drops; 2271 data[i+3] = ring->rx_stats.csum_err; 2272 data[i+4] = ring->rx_stats.alloc_failed; 2273 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start)); 2274 i += IGB_RX_QUEUE_STATS_LEN; 2275 } 2276 spin_unlock(&adapter->stats64_lock); 2277 } 2278 2279 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data) 2280 { 2281 struct igb_adapter *adapter = netdev_priv(netdev); 2282 u8 *p = data; 2283 int i; 2284 2285 switch (stringset) { 2286 case ETH_SS_TEST: 2287 memcpy(data, *igb_gstrings_test, 2288 IGB_TEST_LEN*ETH_GSTRING_LEN); 2289 break; 2290 case ETH_SS_STATS: 2291 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) { 2292 memcpy(p, igb_gstrings_stats[i].stat_string, 2293 ETH_GSTRING_LEN); 2294 p += ETH_GSTRING_LEN; 2295 } 2296 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) { 2297 memcpy(p, igb_gstrings_net_stats[i].stat_string, 2298 ETH_GSTRING_LEN); 2299 p += ETH_GSTRING_LEN; 2300 } 2301 for (i = 0; i < adapter->num_tx_queues; i++) { 2302 sprintf(p, "tx_queue_%u_packets", i); 2303 p += ETH_GSTRING_LEN; 2304 sprintf(p, "tx_queue_%u_bytes", i); 2305 p += ETH_GSTRING_LEN; 2306 sprintf(p, "tx_queue_%u_restart", i); 2307 p += ETH_GSTRING_LEN; 2308 } 2309 for (i = 0; i < adapter->num_rx_queues; i++) { 2310 sprintf(p, "rx_queue_%u_packets", i); 2311 p += ETH_GSTRING_LEN; 2312 sprintf(p, "rx_queue_%u_bytes", i); 2313 p += ETH_GSTRING_LEN; 2314 sprintf(p, "rx_queue_%u_drops", i); 2315 p += ETH_GSTRING_LEN; 2316 sprintf(p, "rx_queue_%u_csum_err", i); 2317 p += ETH_GSTRING_LEN; 2318 sprintf(p, "rx_queue_%u_alloc_failed", i); 2319 p += ETH_GSTRING_LEN; 2320 } 2321 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */ 2322 break; 2323 } 2324 } 2325 2326 static int igb_get_ts_info(struct net_device *dev, 2327 struct ethtool_ts_info *info) 2328 { 2329 struct igb_adapter *adapter = netdev_priv(dev); 2330 2331 switch (adapter->hw.mac.type) { 2332 case e1000_82575: 2333 info->so_timestamping = 2334 SOF_TIMESTAMPING_TX_SOFTWARE | 2335 SOF_TIMESTAMPING_RX_SOFTWARE | 2336 SOF_TIMESTAMPING_SOFTWARE; 2337 return 0; 2338 case e1000_82576: 2339 case e1000_82580: 2340 case e1000_i350: 2341 case e1000_i354: 2342 case e1000_i210: 2343 case e1000_i211: 2344 info->so_timestamping = 2345 SOF_TIMESTAMPING_TX_SOFTWARE | 2346 SOF_TIMESTAMPING_RX_SOFTWARE | 2347 SOF_TIMESTAMPING_SOFTWARE | 2348 SOF_TIMESTAMPING_TX_HARDWARE | 2349 SOF_TIMESTAMPING_RX_HARDWARE | 2350 SOF_TIMESTAMPING_RAW_HARDWARE; 2351 2352 if (adapter->ptp_clock) 2353 info->phc_index = ptp_clock_index(adapter->ptp_clock); 2354 else 2355 info->phc_index = -1; 2356 2357 info->tx_types = 2358 (1 << HWTSTAMP_TX_OFF) | 2359 (1 << HWTSTAMP_TX_ON); 2360 2361 info->rx_filters = 1 << HWTSTAMP_FILTER_NONE; 2362 2363 /* 82576 does not support timestamping all packets. */ 2364 if (adapter->hw.mac.type >= e1000_82580) 2365 info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL; 2366 else 2367 info->rx_filters |= 2368 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) | 2369 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) | 2370 (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) | 2371 (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) | 2372 (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) | 2373 (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) | 2374 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 2375 2376 return 0; 2377 default: 2378 return -EOPNOTSUPP; 2379 } 2380 } 2381 2382 static int igb_get_rss_hash_opts(struct igb_adapter *adapter, 2383 struct ethtool_rxnfc *cmd) 2384 { 2385 cmd->data = 0; 2386 2387 /* Report default options for RSS on igb */ 2388 switch (cmd->flow_type) { 2389 case TCP_V4_FLOW: 2390 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2391 case UDP_V4_FLOW: 2392 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP) 2393 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2394 case SCTP_V4_FLOW: 2395 case AH_ESP_V4_FLOW: 2396 case AH_V4_FLOW: 2397 case ESP_V4_FLOW: 2398 case IPV4_FLOW: 2399 cmd->data |= RXH_IP_SRC | RXH_IP_DST; 2400 break; 2401 case TCP_V6_FLOW: 2402 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2403 case UDP_V6_FLOW: 2404 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP) 2405 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2406 case SCTP_V6_FLOW: 2407 case AH_ESP_V6_FLOW: 2408 case AH_V6_FLOW: 2409 case ESP_V6_FLOW: 2410 case IPV6_FLOW: 2411 cmd->data |= RXH_IP_SRC | RXH_IP_DST; 2412 break; 2413 default: 2414 return -EINVAL; 2415 } 2416 2417 return 0; 2418 } 2419 2420 static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd, 2421 u32 *rule_locs) 2422 { 2423 struct igb_adapter *adapter = netdev_priv(dev); 2424 int ret = -EOPNOTSUPP; 2425 2426 switch (cmd->cmd) { 2427 case ETHTOOL_GRXRINGS: 2428 cmd->data = adapter->num_rx_queues; 2429 ret = 0; 2430 break; 2431 case ETHTOOL_GRXFH: 2432 ret = igb_get_rss_hash_opts(adapter, cmd); 2433 break; 2434 default: 2435 break; 2436 } 2437 2438 return ret; 2439 } 2440 2441 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \ 2442 IGB_FLAG_RSS_FIELD_IPV6_UDP) 2443 static int igb_set_rss_hash_opt(struct igb_adapter *adapter, 2444 struct ethtool_rxnfc *nfc) 2445 { 2446 u32 flags = adapter->flags; 2447 2448 /* RSS does not support anything other than hashing 2449 * to queues on src and dst IPs and ports 2450 */ 2451 if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST | 2452 RXH_L4_B_0_1 | RXH_L4_B_2_3)) 2453 return -EINVAL; 2454 2455 switch (nfc->flow_type) { 2456 case TCP_V4_FLOW: 2457 case TCP_V6_FLOW: 2458 if (!(nfc->data & RXH_IP_SRC) || 2459 !(nfc->data & RXH_IP_DST) || 2460 !(nfc->data & RXH_L4_B_0_1) || 2461 !(nfc->data & RXH_L4_B_2_3)) 2462 return -EINVAL; 2463 break; 2464 case UDP_V4_FLOW: 2465 if (!(nfc->data & RXH_IP_SRC) || 2466 !(nfc->data & RXH_IP_DST)) 2467 return -EINVAL; 2468 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 2469 case 0: 2470 flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP; 2471 break; 2472 case (RXH_L4_B_0_1 | RXH_L4_B_2_3): 2473 flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP; 2474 break; 2475 default: 2476 return -EINVAL; 2477 } 2478 break; 2479 case UDP_V6_FLOW: 2480 if (!(nfc->data & RXH_IP_SRC) || 2481 !(nfc->data & RXH_IP_DST)) 2482 return -EINVAL; 2483 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 2484 case 0: 2485 flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP; 2486 break; 2487 case (RXH_L4_B_0_1 | RXH_L4_B_2_3): 2488 flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP; 2489 break; 2490 default: 2491 return -EINVAL; 2492 } 2493 break; 2494 case AH_ESP_V4_FLOW: 2495 case AH_V4_FLOW: 2496 case ESP_V4_FLOW: 2497 case SCTP_V4_FLOW: 2498 case AH_ESP_V6_FLOW: 2499 case AH_V6_FLOW: 2500 case ESP_V6_FLOW: 2501 case SCTP_V6_FLOW: 2502 if (!(nfc->data & RXH_IP_SRC) || 2503 !(nfc->data & RXH_IP_DST) || 2504 (nfc->data & RXH_L4_B_0_1) || 2505 (nfc->data & RXH_L4_B_2_3)) 2506 return -EINVAL; 2507 break; 2508 default: 2509 return -EINVAL; 2510 } 2511 2512 /* if we changed something we need to update flags */ 2513 if (flags != adapter->flags) { 2514 struct e1000_hw *hw = &adapter->hw; 2515 u32 mrqc = rd32(E1000_MRQC); 2516 2517 if ((flags & UDP_RSS_FLAGS) && 2518 !(adapter->flags & UDP_RSS_FLAGS)) 2519 dev_err(&adapter->pdev->dev, 2520 "enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n"); 2521 2522 adapter->flags = flags; 2523 2524 /* Perform hash on these packet types */ 2525 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 | 2526 E1000_MRQC_RSS_FIELD_IPV4_TCP | 2527 E1000_MRQC_RSS_FIELD_IPV6 | 2528 E1000_MRQC_RSS_FIELD_IPV6_TCP; 2529 2530 mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP | 2531 E1000_MRQC_RSS_FIELD_IPV6_UDP); 2532 2533 if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP) 2534 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP; 2535 2536 if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP) 2537 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP; 2538 2539 wr32(E1000_MRQC, mrqc); 2540 } 2541 2542 return 0; 2543 } 2544 2545 static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd) 2546 { 2547 struct igb_adapter *adapter = netdev_priv(dev); 2548 int ret = -EOPNOTSUPP; 2549 2550 switch (cmd->cmd) { 2551 case ETHTOOL_SRXFH: 2552 ret = igb_set_rss_hash_opt(adapter, cmd); 2553 break; 2554 default: 2555 break; 2556 } 2557 2558 return ret; 2559 } 2560 2561 static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata) 2562 { 2563 struct igb_adapter *adapter = netdev_priv(netdev); 2564 struct e1000_hw *hw = &adapter->hw; 2565 u32 ipcnfg, eeer, ret_val; 2566 u16 phy_data; 2567 2568 if ((hw->mac.type < e1000_i350) || 2569 (hw->phy.media_type != e1000_media_type_copper)) 2570 return -EOPNOTSUPP; 2571 2572 edata->supported = (SUPPORTED_1000baseT_Full | 2573 SUPPORTED_100baseT_Full); 2574 2575 ipcnfg = rd32(E1000_IPCNFG); 2576 eeer = rd32(E1000_EEER); 2577 2578 /* EEE status on negotiated link */ 2579 if (ipcnfg & E1000_IPCNFG_EEE_1G_AN) 2580 edata->advertised = ADVERTISED_1000baseT_Full; 2581 2582 if (ipcnfg & E1000_IPCNFG_EEE_100M_AN) 2583 edata->advertised |= ADVERTISED_100baseT_Full; 2584 2585 /* EEE Link Partner Advertised */ 2586 switch (hw->mac.type) { 2587 case e1000_i350: 2588 ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350, 2589 &phy_data); 2590 if (ret_val) 2591 return -ENODATA; 2592 2593 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data); 2594 2595 break; 2596 case e1000_i210: 2597 case e1000_i211: 2598 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210, 2599 E1000_EEE_LP_ADV_DEV_I210, 2600 &phy_data); 2601 if (ret_val) 2602 return -ENODATA; 2603 2604 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data); 2605 2606 break; 2607 default: 2608 break; 2609 } 2610 2611 if (eeer & E1000_EEER_EEE_NEG) 2612 edata->eee_active = true; 2613 2614 edata->eee_enabled = !hw->dev_spec._82575.eee_disable; 2615 2616 if (eeer & E1000_EEER_TX_LPI_EN) 2617 edata->tx_lpi_enabled = true; 2618 2619 /* Report correct negotiated EEE status for devices that 2620 * wrongly report EEE at half-duplex 2621 */ 2622 if (adapter->link_duplex == HALF_DUPLEX) { 2623 edata->eee_enabled = false; 2624 edata->eee_active = false; 2625 edata->tx_lpi_enabled = false; 2626 edata->advertised &= ~edata->advertised; 2627 } 2628 2629 return 0; 2630 } 2631 2632 static int igb_set_eee(struct net_device *netdev, 2633 struct ethtool_eee *edata) 2634 { 2635 struct igb_adapter *adapter = netdev_priv(netdev); 2636 struct e1000_hw *hw = &adapter->hw; 2637 struct ethtool_eee eee_curr; 2638 s32 ret_val; 2639 2640 if ((hw->mac.type < e1000_i350) || 2641 (hw->phy.media_type != e1000_media_type_copper)) 2642 return -EOPNOTSUPP; 2643 2644 ret_val = igb_get_eee(netdev, &eee_curr); 2645 if (ret_val) 2646 return ret_val; 2647 2648 if (eee_curr.eee_enabled) { 2649 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) { 2650 dev_err(&adapter->pdev->dev, 2651 "Setting EEE tx-lpi is not supported\n"); 2652 return -EINVAL; 2653 } 2654 2655 /* Tx LPI timer is not implemented currently */ 2656 if (edata->tx_lpi_timer) { 2657 dev_err(&adapter->pdev->dev, 2658 "Setting EEE Tx LPI timer is not supported\n"); 2659 return -EINVAL; 2660 } 2661 2662 if (eee_curr.advertised != edata->advertised) { 2663 dev_err(&adapter->pdev->dev, 2664 "Setting EEE Advertisement is not supported\n"); 2665 return -EINVAL; 2666 } 2667 2668 } else if (!edata->eee_enabled) { 2669 dev_err(&adapter->pdev->dev, 2670 "Setting EEE options are not supported with EEE disabled\n"); 2671 return -EINVAL; 2672 } 2673 2674 if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) { 2675 hw->dev_spec._82575.eee_disable = !edata->eee_enabled; 2676 igb_set_eee_i350(hw); 2677 2678 /* reset link */ 2679 if (!netif_running(netdev)) 2680 igb_reset(adapter); 2681 } 2682 2683 return 0; 2684 } 2685 2686 static int igb_get_module_info(struct net_device *netdev, 2687 struct ethtool_modinfo *modinfo) 2688 { 2689 struct igb_adapter *adapter = netdev_priv(netdev); 2690 struct e1000_hw *hw = &adapter->hw; 2691 u32 status = E1000_SUCCESS; 2692 u16 sff8472_rev, addr_mode; 2693 bool page_swap = false; 2694 2695 if ((hw->phy.media_type == e1000_media_type_copper) || 2696 (hw->phy.media_type == e1000_media_type_unknown)) 2697 return -EOPNOTSUPP; 2698 2699 /* Check whether we support SFF-8472 or not */ 2700 status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev); 2701 if (status != E1000_SUCCESS) 2702 return -EIO; 2703 2704 /* addressing mode is not supported */ 2705 status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode); 2706 if (status != E1000_SUCCESS) 2707 return -EIO; 2708 2709 /* addressing mode is not supported */ 2710 if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) { 2711 hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n"); 2712 page_swap = true; 2713 } 2714 2715 if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) { 2716 /* We have an SFP, but it does not support SFF-8472 */ 2717 modinfo->type = ETH_MODULE_SFF_8079; 2718 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; 2719 } else { 2720 /* We have an SFP which supports a revision of SFF-8472 */ 2721 modinfo->type = ETH_MODULE_SFF_8472; 2722 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; 2723 } 2724 2725 return 0; 2726 } 2727 2728 static int igb_get_module_eeprom(struct net_device *netdev, 2729 struct ethtool_eeprom *ee, u8 *data) 2730 { 2731 struct igb_adapter *adapter = netdev_priv(netdev); 2732 struct e1000_hw *hw = &adapter->hw; 2733 u32 status = E1000_SUCCESS; 2734 u16 *dataword; 2735 u16 first_word, last_word; 2736 int i = 0; 2737 2738 if (ee->len == 0) 2739 return -EINVAL; 2740 2741 first_word = ee->offset >> 1; 2742 last_word = (ee->offset + ee->len - 1) >> 1; 2743 2744 dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1), 2745 GFP_KERNEL); 2746 if (!dataword) 2747 return -ENOMEM; 2748 2749 /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */ 2750 for (i = 0; i < last_word - first_word + 1; i++) { 2751 status = igb_read_phy_reg_i2c(hw, first_word + i, &dataword[i]); 2752 if (status != E1000_SUCCESS) 2753 /* Error occurred while reading module */ 2754 return -EIO; 2755 2756 be16_to_cpus(&dataword[i]); 2757 } 2758 2759 memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len); 2760 kfree(dataword); 2761 2762 return 0; 2763 } 2764 2765 static int igb_ethtool_begin(struct net_device *netdev) 2766 { 2767 struct igb_adapter *adapter = netdev_priv(netdev); 2768 pm_runtime_get_sync(&adapter->pdev->dev); 2769 return 0; 2770 } 2771 2772 static void igb_ethtool_complete(struct net_device *netdev) 2773 { 2774 struct igb_adapter *adapter = netdev_priv(netdev); 2775 pm_runtime_put(&adapter->pdev->dev); 2776 } 2777 2778 static const struct ethtool_ops igb_ethtool_ops = { 2779 .get_settings = igb_get_settings, 2780 .set_settings = igb_set_settings, 2781 .get_drvinfo = igb_get_drvinfo, 2782 .get_regs_len = igb_get_regs_len, 2783 .get_regs = igb_get_regs, 2784 .get_wol = igb_get_wol, 2785 .set_wol = igb_set_wol, 2786 .get_msglevel = igb_get_msglevel, 2787 .set_msglevel = igb_set_msglevel, 2788 .nway_reset = igb_nway_reset, 2789 .get_link = igb_get_link, 2790 .get_eeprom_len = igb_get_eeprom_len, 2791 .get_eeprom = igb_get_eeprom, 2792 .set_eeprom = igb_set_eeprom, 2793 .get_ringparam = igb_get_ringparam, 2794 .set_ringparam = igb_set_ringparam, 2795 .get_pauseparam = igb_get_pauseparam, 2796 .set_pauseparam = igb_set_pauseparam, 2797 .self_test = igb_diag_test, 2798 .get_strings = igb_get_strings, 2799 .set_phys_id = igb_set_phys_id, 2800 .get_sset_count = igb_get_sset_count, 2801 .get_ethtool_stats = igb_get_ethtool_stats, 2802 .get_coalesce = igb_get_coalesce, 2803 .set_coalesce = igb_set_coalesce, 2804 .get_ts_info = igb_get_ts_info, 2805 .get_rxnfc = igb_get_rxnfc, 2806 .set_rxnfc = igb_set_rxnfc, 2807 .get_eee = igb_get_eee, 2808 .set_eee = igb_set_eee, 2809 .get_module_info = igb_get_module_info, 2810 .get_module_eeprom = igb_get_module_eeprom, 2811 .begin = igb_ethtool_begin, 2812 .complete = igb_ethtool_complete, 2813 }; 2814 2815 void igb_set_ethtool_ops(struct net_device *netdev) 2816 { 2817 SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops); 2818 } 2819