1 /*******************************************************************************
2 
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2013 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 /* ethtool support for igb */
29 
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
37 #include <linux/sched.h>
38 #include <linux/slab.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/highmem.h>
41 #include <linux/mdio.h>
42 
43 #include "igb.h"
44 
45 struct igb_stats {
46 	char stat_string[ETH_GSTRING_LEN];
47 	int sizeof_stat;
48 	int stat_offset;
49 };
50 
51 #define IGB_STAT(_name, _stat) { \
52 	.stat_string = _name, \
53 	.sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
54 	.stat_offset = offsetof(struct igb_adapter, _stat) \
55 }
56 static const struct igb_stats igb_gstrings_stats[] = {
57 	IGB_STAT("rx_packets", stats.gprc),
58 	IGB_STAT("tx_packets", stats.gptc),
59 	IGB_STAT("rx_bytes", stats.gorc),
60 	IGB_STAT("tx_bytes", stats.gotc),
61 	IGB_STAT("rx_broadcast", stats.bprc),
62 	IGB_STAT("tx_broadcast", stats.bptc),
63 	IGB_STAT("rx_multicast", stats.mprc),
64 	IGB_STAT("tx_multicast", stats.mptc),
65 	IGB_STAT("multicast", stats.mprc),
66 	IGB_STAT("collisions", stats.colc),
67 	IGB_STAT("rx_crc_errors", stats.crcerrs),
68 	IGB_STAT("rx_no_buffer_count", stats.rnbc),
69 	IGB_STAT("rx_missed_errors", stats.mpc),
70 	IGB_STAT("tx_aborted_errors", stats.ecol),
71 	IGB_STAT("tx_carrier_errors", stats.tncrs),
72 	IGB_STAT("tx_window_errors", stats.latecol),
73 	IGB_STAT("tx_abort_late_coll", stats.latecol),
74 	IGB_STAT("tx_deferred_ok", stats.dc),
75 	IGB_STAT("tx_single_coll_ok", stats.scc),
76 	IGB_STAT("tx_multi_coll_ok", stats.mcc),
77 	IGB_STAT("tx_timeout_count", tx_timeout_count),
78 	IGB_STAT("rx_long_length_errors", stats.roc),
79 	IGB_STAT("rx_short_length_errors", stats.ruc),
80 	IGB_STAT("rx_align_errors", stats.algnerrc),
81 	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
82 	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
83 	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
84 	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
85 	IGB_STAT("tx_flow_control_xon", stats.xontxc),
86 	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
87 	IGB_STAT("rx_long_byte_count", stats.gorc),
88 	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
89 	IGB_STAT("tx_smbus", stats.mgptc),
90 	IGB_STAT("rx_smbus", stats.mgprc),
91 	IGB_STAT("dropped_smbus", stats.mgpdc),
92 	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
93 	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
94 	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
95 	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
96 	IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
97 	IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
98 };
99 
100 #define IGB_NETDEV_STAT(_net_stat) { \
101 	.stat_string = __stringify(_net_stat), \
102 	.sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
103 	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
104 }
105 static const struct igb_stats igb_gstrings_net_stats[] = {
106 	IGB_NETDEV_STAT(rx_errors),
107 	IGB_NETDEV_STAT(tx_errors),
108 	IGB_NETDEV_STAT(tx_dropped),
109 	IGB_NETDEV_STAT(rx_length_errors),
110 	IGB_NETDEV_STAT(rx_over_errors),
111 	IGB_NETDEV_STAT(rx_frame_errors),
112 	IGB_NETDEV_STAT(rx_fifo_errors),
113 	IGB_NETDEV_STAT(tx_fifo_errors),
114 	IGB_NETDEV_STAT(tx_heartbeat_errors)
115 };
116 
117 #define IGB_GLOBAL_STATS_LEN	\
118 	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
119 #define IGB_NETDEV_STATS_LEN	\
120 	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
121 #define IGB_RX_QUEUE_STATS_LEN \
122 	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
123 
124 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
125 
126 #define IGB_QUEUE_STATS_LEN \
127 	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
128 	  IGB_RX_QUEUE_STATS_LEN) + \
129 	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
130 	  IGB_TX_QUEUE_STATS_LEN))
131 #define IGB_STATS_LEN \
132 	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
133 
134 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
135 	"Register test  (offline)", "Eeprom test    (offline)",
136 	"Interrupt test (offline)", "Loopback test  (offline)",
137 	"Link test   (on/offline)"
138 };
139 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
140 
141 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
142 {
143 	struct igb_adapter *adapter = netdev_priv(netdev);
144 	struct e1000_hw *hw = &adapter->hw;
145 	u32 status;
146 
147 	if (hw->phy.media_type == e1000_media_type_copper) {
148 
149 		ecmd->supported = (SUPPORTED_10baseT_Half |
150 				   SUPPORTED_10baseT_Full |
151 				   SUPPORTED_100baseT_Half |
152 				   SUPPORTED_100baseT_Full |
153 				   SUPPORTED_1000baseT_Full|
154 				   SUPPORTED_Autoneg |
155 				   SUPPORTED_TP |
156 				   SUPPORTED_Pause);
157 		ecmd->advertising = ADVERTISED_TP;
158 
159 		if (hw->mac.autoneg == 1) {
160 			ecmd->advertising |= ADVERTISED_Autoneg;
161 			/* the e1000 autoneg seems to match ethtool nicely */
162 			ecmd->advertising |= hw->phy.autoneg_advertised;
163 		}
164 
165 		if (hw->mac.autoneg != 1)
166 			ecmd->advertising &= ~(ADVERTISED_Pause |
167 					       ADVERTISED_Asym_Pause);
168 
169 		if (hw->fc.requested_mode == e1000_fc_full)
170 			ecmd->advertising |= ADVERTISED_Pause;
171 		else if (hw->fc.requested_mode == e1000_fc_rx_pause)
172 			ecmd->advertising |= (ADVERTISED_Pause |
173 					      ADVERTISED_Asym_Pause);
174 		else if (hw->fc.requested_mode == e1000_fc_tx_pause)
175 			ecmd->advertising |=  ADVERTISED_Asym_Pause;
176 		else
177 			ecmd->advertising &= ~(ADVERTISED_Pause |
178 					       ADVERTISED_Asym_Pause);
179 
180 		ecmd->port = PORT_TP;
181 		ecmd->phy_address = hw->phy.addr;
182 		ecmd->transceiver = XCVR_INTERNAL;
183 	} else {
184 		ecmd->supported = (SUPPORTED_1000baseT_Full |
185 				   SUPPORTED_100baseT_Full |
186 				   SUPPORTED_FIBRE |
187 				   SUPPORTED_Autoneg |
188 				   SUPPORTED_Pause);
189 		if (hw->mac.type == e1000_i354)
190 				ecmd->supported |= SUPPORTED_2500baseX_Full;
191 
192 		ecmd->advertising = ADVERTISED_FIBRE;
193 
194 		switch (adapter->link_speed) {
195 		case SPEED_2500:
196 			ecmd->advertising = ADVERTISED_2500baseX_Full;
197 			break;
198 		case SPEED_1000:
199 			ecmd->advertising = ADVERTISED_1000baseT_Full;
200 			break;
201 		case SPEED_100:
202 			ecmd->advertising = ADVERTISED_100baseT_Full;
203 			break;
204 		default:
205 			break;
206 		}
207 
208 		if (hw->mac.autoneg == 1)
209 			ecmd->advertising |= ADVERTISED_Autoneg;
210 
211 		ecmd->port = PORT_FIBRE;
212 		ecmd->transceiver = XCVR_EXTERNAL;
213 	}
214 
215 	status = rd32(E1000_STATUS);
216 
217 	if (status & E1000_STATUS_LU) {
218 		if ((hw->mac.type == e1000_i354) &&
219 		    (status & E1000_STATUS_2P5_SKU) &&
220 		    !(status & E1000_STATUS_2P5_SKU_OVER))
221 			ecmd->speed = SPEED_2500;
222 		else if (status & E1000_STATUS_SPEED_1000)
223 			ecmd->speed = SPEED_1000;
224 		else if (status & E1000_STATUS_SPEED_100)
225 			ecmd->speed = SPEED_100;
226 		else
227 			ecmd->speed = SPEED_10;
228 		if ((status & E1000_STATUS_FD) ||
229 		    hw->phy.media_type != e1000_media_type_copper)
230 			ecmd->duplex = DUPLEX_FULL;
231 		else
232 			ecmd->duplex = DUPLEX_HALF;
233 	} else {
234 		ecmd->speed = -1;
235 		ecmd->duplex = -1;
236 	}
237 
238 	if ((hw->phy.media_type == e1000_media_type_fiber) ||
239 	    hw->mac.autoneg)
240 		ecmd->autoneg = AUTONEG_ENABLE;
241 	else
242 		ecmd->autoneg = AUTONEG_DISABLE;
243 
244 	/* MDI-X => 2; MDI =>1; Invalid =>0 */
245 	if (hw->phy.media_type == e1000_media_type_copper)
246 		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
247 						      ETH_TP_MDI;
248 	else
249 		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
250 
251 	if (hw->phy.mdix == AUTO_ALL_MODES)
252 		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
253 	else
254 		ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
255 
256 	return 0;
257 }
258 
259 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
260 {
261 	struct igb_adapter *adapter = netdev_priv(netdev);
262 	struct e1000_hw *hw = &adapter->hw;
263 
264 	/* When SoL/IDER sessions are active, autoneg/speed/duplex
265 	 * cannot be changed
266 	 */
267 	if (igb_check_reset_block(hw)) {
268 		dev_err(&adapter->pdev->dev,
269 			"Cannot change link characteristics when SoL/IDER is active.\n");
270 		return -EINVAL;
271 	}
272 
273 	/* MDI setting is only allowed when autoneg enabled because
274 	 * some hardware doesn't allow MDI setting when speed or
275 	 * duplex is forced.
276 	 */
277 	if (ecmd->eth_tp_mdix_ctrl) {
278 		if (hw->phy.media_type != e1000_media_type_copper)
279 			return -EOPNOTSUPP;
280 
281 		if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
282 		    (ecmd->autoneg != AUTONEG_ENABLE)) {
283 			dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
284 			return -EINVAL;
285 		}
286 	}
287 
288 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
289 		msleep(1);
290 
291 	if (ecmd->autoneg == AUTONEG_ENABLE) {
292 		hw->mac.autoneg = 1;
293 		if (hw->phy.media_type == e1000_media_type_fiber) {
294 			hw->phy.autoneg_advertised = ecmd->advertising |
295 						     ADVERTISED_FIBRE |
296 						     ADVERTISED_Autoneg;
297 			switch (adapter->link_speed) {
298 			case SPEED_2500:
299 				hw->phy.autoneg_advertised =
300 					ADVERTISED_2500baseX_Full;
301 				break;
302 			case SPEED_1000:
303 				hw->phy.autoneg_advertised =
304 					ADVERTISED_1000baseT_Full;
305 				break;
306 			case SPEED_100:
307 				hw->phy.autoneg_advertised =
308 					ADVERTISED_100baseT_Full;
309 				break;
310 			default:
311 				break;
312 			}
313 		} else {
314 			hw->phy.autoneg_advertised = ecmd->advertising |
315 						     ADVERTISED_TP |
316 						     ADVERTISED_Autoneg;
317 		}
318 		ecmd->advertising = hw->phy.autoneg_advertised;
319 		if (adapter->fc_autoneg)
320 			hw->fc.requested_mode = e1000_fc_default;
321 	} else {
322 		u32 speed = ethtool_cmd_speed(ecmd);
323 		/* calling this overrides forced MDI setting */
324 		if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
325 			clear_bit(__IGB_RESETTING, &adapter->state);
326 			return -EINVAL;
327 		}
328 	}
329 
330 	/* MDI-X => 2; MDI => 1; Auto => 3 */
331 	if (ecmd->eth_tp_mdix_ctrl) {
332 		/* fix up the value for auto (3 => 0) as zero is mapped
333 		 * internally to auto
334 		 */
335 		if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
336 			hw->phy.mdix = AUTO_ALL_MODES;
337 		else
338 			hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
339 	}
340 
341 	/* reset the link */
342 	if (netif_running(adapter->netdev)) {
343 		igb_down(adapter);
344 		igb_up(adapter);
345 	} else
346 		igb_reset(adapter);
347 
348 	clear_bit(__IGB_RESETTING, &adapter->state);
349 	return 0;
350 }
351 
352 static u32 igb_get_link(struct net_device *netdev)
353 {
354 	struct igb_adapter *adapter = netdev_priv(netdev);
355 	struct e1000_mac_info *mac = &adapter->hw.mac;
356 
357 	/* If the link is not reported up to netdev, interrupts are disabled,
358 	 * and so the physical link state may have changed since we last
359 	 * looked. Set get_link_status to make sure that the true link
360 	 * state is interrogated, rather than pulling a cached and possibly
361 	 * stale link state from the driver.
362 	 */
363 	if (!netif_carrier_ok(netdev))
364 		mac->get_link_status = 1;
365 
366 	return igb_has_link(adapter);
367 }
368 
369 static void igb_get_pauseparam(struct net_device *netdev,
370 			       struct ethtool_pauseparam *pause)
371 {
372 	struct igb_adapter *adapter = netdev_priv(netdev);
373 	struct e1000_hw *hw = &adapter->hw;
374 
375 	pause->autoneg =
376 		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
377 
378 	if (hw->fc.current_mode == e1000_fc_rx_pause)
379 		pause->rx_pause = 1;
380 	else if (hw->fc.current_mode == e1000_fc_tx_pause)
381 		pause->tx_pause = 1;
382 	else if (hw->fc.current_mode == e1000_fc_full) {
383 		pause->rx_pause = 1;
384 		pause->tx_pause = 1;
385 	}
386 }
387 
388 static int igb_set_pauseparam(struct net_device *netdev,
389 			      struct ethtool_pauseparam *pause)
390 {
391 	struct igb_adapter *adapter = netdev_priv(netdev);
392 	struct e1000_hw *hw = &adapter->hw;
393 	int retval = 0;
394 
395 	adapter->fc_autoneg = pause->autoneg;
396 
397 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
398 		msleep(1);
399 
400 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
401 		hw->fc.requested_mode = e1000_fc_default;
402 		if (netif_running(adapter->netdev)) {
403 			igb_down(adapter);
404 			igb_up(adapter);
405 		} else {
406 			igb_reset(adapter);
407 		}
408 	} else {
409 		if (pause->rx_pause && pause->tx_pause)
410 			hw->fc.requested_mode = e1000_fc_full;
411 		else if (pause->rx_pause && !pause->tx_pause)
412 			hw->fc.requested_mode = e1000_fc_rx_pause;
413 		else if (!pause->rx_pause && pause->tx_pause)
414 			hw->fc.requested_mode = e1000_fc_tx_pause;
415 		else if (!pause->rx_pause && !pause->tx_pause)
416 			hw->fc.requested_mode = e1000_fc_none;
417 
418 		hw->fc.current_mode = hw->fc.requested_mode;
419 
420 		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
421 			  igb_force_mac_fc(hw) : igb_setup_link(hw));
422 	}
423 
424 	clear_bit(__IGB_RESETTING, &adapter->state);
425 	return retval;
426 }
427 
428 static u32 igb_get_msglevel(struct net_device *netdev)
429 {
430 	struct igb_adapter *adapter = netdev_priv(netdev);
431 	return adapter->msg_enable;
432 }
433 
434 static void igb_set_msglevel(struct net_device *netdev, u32 data)
435 {
436 	struct igb_adapter *adapter = netdev_priv(netdev);
437 	adapter->msg_enable = data;
438 }
439 
440 static int igb_get_regs_len(struct net_device *netdev)
441 {
442 #define IGB_REGS_LEN 739
443 	return IGB_REGS_LEN * sizeof(u32);
444 }
445 
446 static void igb_get_regs(struct net_device *netdev,
447 			 struct ethtool_regs *regs, void *p)
448 {
449 	struct igb_adapter *adapter = netdev_priv(netdev);
450 	struct e1000_hw *hw = &adapter->hw;
451 	u32 *regs_buff = p;
452 	u8 i;
453 
454 	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
455 
456 	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
457 
458 	/* General Registers */
459 	regs_buff[0] = rd32(E1000_CTRL);
460 	regs_buff[1] = rd32(E1000_STATUS);
461 	regs_buff[2] = rd32(E1000_CTRL_EXT);
462 	regs_buff[3] = rd32(E1000_MDIC);
463 	regs_buff[4] = rd32(E1000_SCTL);
464 	regs_buff[5] = rd32(E1000_CONNSW);
465 	regs_buff[6] = rd32(E1000_VET);
466 	regs_buff[7] = rd32(E1000_LEDCTL);
467 	regs_buff[8] = rd32(E1000_PBA);
468 	regs_buff[9] = rd32(E1000_PBS);
469 	regs_buff[10] = rd32(E1000_FRTIMER);
470 	regs_buff[11] = rd32(E1000_TCPTIMER);
471 
472 	/* NVM Register */
473 	regs_buff[12] = rd32(E1000_EECD);
474 
475 	/* Interrupt */
476 	/* Reading EICS for EICR because they read the
477 	 * same but EICS does not clear on read
478 	 */
479 	regs_buff[13] = rd32(E1000_EICS);
480 	regs_buff[14] = rd32(E1000_EICS);
481 	regs_buff[15] = rd32(E1000_EIMS);
482 	regs_buff[16] = rd32(E1000_EIMC);
483 	regs_buff[17] = rd32(E1000_EIAC);
484 	regs_buff[18] = rd32(E1000_EIAM);
485 	/* Reading ICS for ICR because they read the
486 	 * same but ICS does not clear on read
487 	 */
488 	regs_buff[19] = rd32(E1000_ICS);
489 	regs_buff[20] = rd32(E1000_ICS);
490 	regs_buff[21] = rd32(E1000_IMS);
491 	regs_buff[22] = rd32(E1000_IMC);
492 	regs_buff[23] = rd32(E1000_IAC);
493 	regs_buff[24] = rd32(E1000_IAM);
494 	regs_buff[25] = rd32(E1000_IMIRVP);
495 
496 	/* Flow Control */
497 	regs_buff[26] = rd32(E1000_FCAL);
498 	regs_buff[27] = rd32(E1000_FCAH);
499 	regs_buff[28] = rd32(E1000_FCTTV);
500 	regs_buff[29] = rd32(E1000_FCRTL);
501 	regs_buff[30] = rd32(E1000_FCRTH);
502 	regs_buff[31] = rd32(E1000_FCRTV);
503 
504 	/* Receive */
505 	regs_buff[32] = rd32(E1000_RCTL);
506 	regs_buff[33] = rd32(E1000_RXCSUM);
507 	regs_buff[34] = rd32(E1000_RLPML);
508 	regs_buff[35] = rd32(E1000_RFCTL);
509 	regs_buff[36] = rd32(E1000_MRQC);
510 	regs_buff[37] = rd32(E1000_VT_CTL);
511 
512 	/* Transmit */
513 	regs_buff[38] = rd32(E1000_TCTL);
514 	regs_buff[39] = rd32(E1000_TCTL_EXT);
515 	regs_buff[40] = rd32(E1000_TIPG);
516 	regs_buff[41] = rd32(E1000_DTXCTL);
517 
518 	/* Wake Up */
519 	regs_buff[42] = rd32(E1000_WUC);
520 	regs_buff[43] = rd32(E1000_WUFC);
521 	regs_buff[44] = rd32(E1000_WUS);
522 	regs_buff[45] = rd32(E1000_IPAV);
523 	regs_buff[46] = rd32(E1000_WUPL);
524 
525 	/* MAC */
526 	regs_buff[47] = rd32(E1000_PCS_CFG0);
527 	regs_buff[48] = rd32(E1000_PCS_LCTL);
528 	regs_buff[49] = rd32(E1000_PCS_LSTAT);
529 	regs_buff[50] = rd32(E1000_PCS_ANADV);
530 	regs_buff[51] = rd32(E1000_PCS_LPAB);
531 	regs_buff[52] = rd32(E1000_PCS_NPTX);
532 	regs_buff[53] = rd32(E1000_PCS_LPABNP);
533 
534 	/* Statistics */
535 	regs_buff[54] = adapter->stats.crcerrs;
536 	regs_buff[55] = adapter->stats.algnerrc;
537 	regs_buff[56] = adapter->stats.symerrs;
538 	regs_buff[57] = adapter->stats.rxerrc;
539 	regs_buff[58] = adapter->stats.mpc;
540 	regs_buff[59] = adapter->stats.scc;
541 	regs_buff[60] = adapter->stats.ecol;
542 	regs_buff[61] = adapter->stats.mcc;
543 	regs_buff[62] = adapter->stats.latecol;
544 	regs_buff[63] = adapter->stats.colc;
545 	regs_buff[64] = adapter->stats.dc;
546 	regs_buff[65] = adapter->stats.tncrs;
547 	regs_buff[66] = adapter->stats.sec;
548 	regs_buff[67] = adapter->stats.htdpmc;
549 	regs_buff[68] = adapter->stats.rlec;
550 	regs_buff[69] = adapter->stats.xonrxc;
551 	regs_buff[70] = adapter->stats.xontxc;
552 	regs_buff[71] = adapter->stats.xoffrxc;
553 	regs_buff[72] = adapter->stats.xofftxc;
554 	regs_buff[73] = adapter->stats.fcruc;
555 	regs_buff[74] = adapter->stats.prc64;
556 	regs_buff[75] = adapter->stats.prc127;
557 	regs_buff[76] = adapter->stats.prc255;
558 	regs_buff[77] = adapter->stats.prc511;
559 	regs_buff[78] = adapter->stats.prc1023;
560 	regs_buff[79] = adapter->stats.prc1522;
561 	regs_buff[80] = adapter->stats.gprc;
562 	regs_buff[81] = adapter->stats.bprc;
563 	regs_buff[82] = adapter->stats.mprc;
564 	regs_buff[83] = adapter->stats.gptc;
565 	regs_buff[84] = adapter->stats.gorc;
566 	regs_buff[86] = adapter->stats.gotc;
567 	regs_buff[88] = adapter->stats.rnbc;
568 	regs_buff[89] = adapter->stats.ruc;
569 	regs_buff[90] = adapter->stats.rfc;
570 	regs_buff[91] = adapter->stats.roc;
571 	regs_buff[92] = adapter->stats.rjc;
572 	regs_buff[93] = adapter->stats.mgprc;
573 	regs_buff[94] = adapter->stats.mgpdc;
574 	regs_buff[95] = adapter->stats.mgptc;
575 	regs_buff[96] = adapter->stats.tor;
576 	regs_buff[98] = adapter->stats.tot;
577 	regs_buff[100] = adapter->stats.tpr;
578 	regs_buff[101] = adapter->stats.tpt;
579 	regs_buff[102] = adapter->stats.ptc64;
580 	regs_buff[103] = adapter->stats.ptc127;
581 	regs_buff[104] = adapter->stats.ptc255;
582 	regs_buff[105] = adapter->stats.ptc511;
583 	regs_buff[106] = adapter->stats.ptc1023;
584 	regs_buff[107] = adapter->stats.ptc1522;
585 	regs_buff[108] = adapter->stats.mptc;
586 	regs_buff[109] = adapter->stats.bptc;
587 	regs_buff[110] = adapter->stats.tsctc;
588 	regs_buff[111] = adapter->stats.iac;
589 	regs_buff[112] = adapter->stats.rpthc;
590 	regs_buff[113] = adapter->stats.hgptc;
591 	regs_buff[114] = adapter->stats.hgorc;
592 	regs_buff[116] = adapter->stats.hgotc;
593 	regs_buff[118] = adapter->stats.lenerrs;
594 	regs_buff[119] = adapter->stats.scvpc;
595 	regs_buff[120] = adapter->stats.hrmpc;
596 
597 	for (i = 0; i < 4; i++)
598 		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
599 	for (i = 0; i < 4; i++)
600 		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
601 	for (i = 0; i < 4; i++)
602 		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
603 	for (i = 0; i < 4; i++)
604 		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
605 	for (i = 0; i < 4; i++)
606 		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
607 	for (i = 0; i < 4; i++)
608 		regs_buff[141 + i] = rd32(E1000_RDH(i));
609 	for (i = 0; i < 4; i++)
610 		regs_buff[145 + i] = rd32(E1000_RDT(i));
611 	for (i = 0; i < 4; i++)
612 		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
613 
614 	for (i = 0; i < 10; i++)
615 		regs_buff[153 + i] = rd32(E1000_EITR(i));
616 	for (i = 0; i < 8; i++)
617 		regs_buff[163 + i] = rd32(E1000_IMIR(i));
618 	for (i = 0; i < 8; i++)
619 		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
620 	for (i = 0; i < 16; i++)
621 		regs_buff[179 + i] = rd32(E1000_RAL(i));
622 	for (i = 0; i < 16; i++)
623 		regs_buff[195 + i] = rd32(E1000_RAH(i));
624 
625 	for (i = 0; i < 4; i++)
626 		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
627 	for (i = 0; i < 4; i++)
628 		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
629 	for (i = 0; i < 4; i++)
630 		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
631 	for (i = 0; i < 4; i++)
632 		regs_buff[223 + i] = rd32(E1000_TDH(i));
633 	for (i = 0; i < 4; i++)
634 		regs_buff[227 + i] = rd32(E1000_TDT(i));
635 	for (i = 0; i < 4; i++)
636 		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
637 	for (i = 0; i < 4; i++)
638 		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
639 	for (i = 0; i < 4; i++)
640 		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
641 	for (i = 0; i < 4; i++)
642 		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
643 
644 	for (i = 0; i < 4; i++)
645 		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
646 	for (i = 0; i < 4; i++)
647 		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
648 	for (i = 0; i < 32; i++)
649 		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
650 	for (i = 0; i < 128; i++)
651 		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
652 	for (i = 0; i < 128; i++)
653 		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
654 	for (i = 0; i < 4; i++)
655 		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
656 
657 	regs_buff[547] = rd32(E1000_TDFH);
658 	regs_buff[548] = rd32(E1000_TDFT);
659 	regs_buff[549] = rd32(E1000_TDFHS);
660 	regs_buff[550] = rd32(E1000_TDFPC);
661 
662 	if (hw->mac.type > e1000_82580) {
663 		regs_buff[551] = adapter->stats.o2bgptc;
664 		regs_buff[552] = adapter->stats.b2ospc;
665 		regs_buff[553] = adapter->stats.o2bspc;
666 		regs_buff[554] = adapter->stats.b2ogprc;
667 	}
668 
669 	if (hw->mac.type != e1000_82576)
670 		return;
671 	for (i = 0; i < 12; i++)
672 		regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
673 	for (i = 0; i < 4; i++)
674 		regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
675 	for (i = 0; i < 12; i++)
676 		regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
677 	for (i = 0; i < 12; i++)
678 		regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
679 	for (i = 0; i < 12; i++)
680 		regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
681 	for (i = 0; i < 12; i++)
682 		regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
683 	for (i = 0; i < 12; i++)
684 		regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
685 	for (i = 0; i < 12; i++)
686 		regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
687 
688 	for (i = 0; i < 12; i++)
689 		regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
690 	for (i = 0; i < 12; i++)
691 		regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
692 	for (i = 0; i < 12; i++)
693 		regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
694 	for (i = 0; i < 12; i++)
695 		regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
696 	for (i = 0; i < 12; i++)
697 		regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
698 	for (i = 0; i < 12; i++)
699 		regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
700 	for (i = 0; i < 12; i++)
701 		regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
702 	for (i = 0; i < 12; i++)
703 		regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
704 }
705 
706 static int igb_get_eeprom_len(struct net_device *netdev)
707 {
708 	struct igb_adapter *adapter = netdev_priv(netdev);
709 	return adapter->hw.nvm.word_size * 2;
710 }
711 
712 static int igb_get_eeprom(struct net_device *netdev,
713 			  struct ethtool_eeprom *eeprom, u8 *bytes)
714 {
715 	struct igb_adapter *adapter = netdev_priv(netdev);
716 	struct e1000_hw *hw = &adapter->hw;
717 	u16 *eeprom_buff;
718 	int first_word, last_word;
719 	int ret_val = 0;
720 	u16 i;
721 
722 	if (eeprom->len == 0)
723 		return -EINVAL;
724 
725 	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
726 
727 	first_word = eeprom->offset >> 1;
728 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
729 
730 	eeprom_buff = kmalloc(sizeof(u16) *
731 			(last_word - first_word + 1), GFP_KERNEL);
732 	if (!eeprom_buff)
733 		return -ENOMEM;
734 
735 	if (hw->nvm.type == e1000_nvm_eeprom_spi)
736 		ret_val = hw->nvm.ops.read(hw, first_word,
737 					   last_word - first_word + 1,
738 					   eeprom_buff);
739 	else {
740 		for (i = 0; i < last_word - first_word + 1; i++) {
741 			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
742 						   &eeprom_buff[i]);
743 			if (ret_val)
744 				break;
745 		}
746 	}
747 
748 	/* Device's eeprom is always little-endian, word addressable */
749 	for (i = 0; i < last_word - first_word + 1; i++)
750 		le16_to_cpus(&eeprom_buff[i]);
751 
752 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
753 			eeprom->len);
754 	kfree(eeprom_buff);
755 
756 	return ret_val;
757 }
758 
759 static int igb_set_eeprom(struct net_device *netdev,
760 			  struct ethtool_eeprom *eeprom, u8 *bytes)
761 {
762 	struct igb_adapter *adapter = netdev_priv(netdev);
763 	struct e1000_hw *hw = &adapter->hw;
764 	u16 *eeprom_buff;
765 	void *ptr;
766 	int max_len, first_word, last_word, ret_val = 0;
767 	u16 i;
768 
769 	if (eeprom->len == 0)
770 		return -EOPNOTSUPP;
771 
772 	if (hw->mac.type == e1000_i211)
773 		return -EOPNOTSUPP;
774 
775 	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
776 		return -EFAULT;
777 
778 	max_len = hw->nvm.word_size * 2;
779 
780 	first_word = eeprom->offset >> 1;
781 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
782 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
783 	if (!eeprom_buff)
784 		return -ENOMEM;
785 
786 	ptr = (void *)eeprom_buff;
787 
788 	if (eeprom->offset & 1) {
789 		/* need read/modify/write of first changed EEPROM word
790 		 * only the second byte of the word is being modified
791 		 */
792 		ret_val = hw->nvm.ops.read(hw, first_word, 1,
793 					    &eeprom_buff[0]);
794 		ptr++;
795 	}
796 	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
797 		/* need read/modify/write of last changed EEPROM word
798 		 * only the first byte of the word is being modified
799 		 */
800 		ret_val = hw->nvm.ops.read(hw, last_word, 1,
801 				   &eeprom_buff[last_word - first_word]);
802 	}
803 
804 	/* Device's eeprom is always little-endian, word addressable */
805 	for (i = 0; i < last_word - first_word + 1; i++)
806 		le16_to_cpus(&eeprom_buff[i]);
807 
808 	memcpy(ptr, bytes, eeprom->len);
809 
810 	for (i = 0; i < last_word - first_word + 1; i++)
811 		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
812 
813 	ret_val = hw->nvm.ops.write(hw, first_word,
814 				    last_word - first_word + 1, eeprom_buff);
815 
816 	/* Update the checksum over the first part of the EEPROM if needed
817 	 * and flush shadow RAM for 82573 controllers
818 	 */
819 	if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
820 		hw->nvm.ops.update(hw);
821 
822 	igb_set_fw_version(adapter);
823 	kfree(eeprom_buff);
824 	return ret_val;
825 }
826 
827 static void igb_get_drvinfo(struct net_device *netdev,
828 			    struct ethtool_drvinfo *drvinfo)
829 {
830 	struct igb_adapter *adapter = netdev_priv(netdev);
831 
832 	strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
833 	strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
834 
835 	/* EEPROM image version # is reported as firmware version # for
836 	 * 82575 controllers
837 	 */
838 	strlcpy(drvinfo->fw_version, adapter->fw_version,
839 		sizeof(drvinfo->fw_version));
840 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
841 		sizeof(drvinfo->bus_info));
842 	drvinfo->n_stats = IGB_STATS_LEN;
843 	drvinfo->testinfo_len = IGB_TEST_LEN;
844 	drvinfo->regdump_len = igb_get_regs_len(netdev);
845 	drvinfo->eedump_len = igb_get_eeprom_len(netdev);
846 }
847 
848 static void igb_get_ringparam(struct net_device *netdev,
849 			      struct ethtool_ringparam *ring)
850 {
851 	struct igb_adapter *adapter = netdev_priv(netdev);
852 
853 	ring->rx_max_pending = IGB_MAX_RXD;
854 	ring->tx_max_pending = IGB_MAX_TXD;
855 	ring->rx_pending = adapter->rx_ring_count;
856 	ring->tx_pending = adapter->tx_ring_count;
857 }
858 
859 static int igb_set_ringparam(struct net_device *netdev,
860 			     struct ethtool_ringparam *ring)
861 {
862 	struct igb_adapter *adapter = netdev_priv(netdev);
863 	struct igb_ring *temp_ring;
864 	int i, err = 0;
865 	u16 new_rx_count, new_tx_count;
866 
867 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
868 		return -EINVAL;
869 
870 	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
871 	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
872 	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
873 
874 	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
875 	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
876 	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
877 
878 	if ((new_tx_count == adapter->tx_ring_count) &&
879 	    (new_rx_count == adapter->rx_ring_count)) {
880 		/* nothing to do */
881 		return 0;
882 	}
883 
884 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
885 		msleep(1);
886 
887 	if (!netif_running(adapter->netdev)) {
888 		for (i = 0; i < adapter->num_tx_queues; i++)
889 			adapter->tx_ring[i]->count = new_tx_count;
890 		for (i = 0; i < adapter->num_rx_queues; i++)
891 			adapter->rx_ring[i]->count = new_rx_count;
892 		adapter->tx_ring_count = new_tx_count;
893 		adapter->rx_ring_count = new_rx_count;
894 		goto clear_reset;
895 	}
896 
897 	if (adapter->num_tx_queues > adapter->num_rx_queues)
898 		temp_ring = vmalloc(adapter->num_tx_queues *
899 				    sizeof(struct igb_ring));
900 	else
901 		temp_ring = vmalloc(adapter->num_rx_queues *
902 				    sizeof(struct igb_ring));
903 
904 	if (!temp_ring) {
905 		err = -ENOMEM;
906 		goto clear_reset;
907 	}
908 
909 	igb_down(adapter);
910 
911 	/* We can't just free everything and then setup again,
912 	 * because the ISRs in MSI-X mode get passed pointers
913 	 * to the Tx and Rx ring structs.
914 	 */
915 	if (new_tx_count != adapter->tx_ring_count) {
916 		for (i = 0; i < adapter->num_tx_queues; i++) {
917 			memcpy(&temp_ring[i], adapter->tx_ring[i],
918 			       sizeof(struct igb_ring));
919 
920 			temp_ring[i].count = new_tx_count;
921 			err = igb_setup_tx_resources(&temp_ring[i]);
922 			if (err) {
923 				while (i) {
924 					i--;
925 					igb_free_tx_resources(&temp_ring[i]);
926 				}
927 				goto err_setup;
928 			}
929 		}
930 
931 		for (i = 0; i < adapter->num_tx_queues; i++) {
932 			igb_free_tx_resources(adapter->tx_ring[i]);
933 
934 			memcpy(adapter->tx_ring[i], &temp_ring[i],
935 			       sizeof(struct igb_ring));
936 		}
937 
938 		adapter->tx_ring_count = new_tx_count;
939 	}
940 
941 	if (new_rx_count != adapter->rx_ring_count) {
942 		for (i = 0; i < adapter->num_rx_queues; i++) {
943 			memcpy(&temp_ring[i], adapter->rx_ring[i],
944 			       sizeof(struct igb_ring));
945 
946 			temp_ring[i].count = new_rx_count;
947 			err = igb_setup_rx_resources(&temp_ring[i]);
948 			if (err) {
949 				while (i) {
950 					i--;
951 					igb_free_rx_resources(&temp_ring[i]);
952 				}
953 				goto err_setup;
954 			}
955 
956 		}
957 
958 		for (i = 0; i < adapter->num_rx_queues; i++) {
959 			igb_free_rx_resources(adapter->rx_ring[i]);
960 
961 			memcpy(adapter->rx_ring[i], &temp_ring[i],
962 			       sizeof(struct igb_ring));
963 		}
964 
965 		adapter->rx_ring_count = new_rx_count;
966 	}
967 err_setup:
968 	igb_up(adapter);
969 	vfree(temp_ring);
970 clear_reset:
971 	clear_bit(__IGB_RESETTING, &adapter->state);
972 	return err;
973 }
974 
975 /* ethtool register test data */
976 struct igb_reg_test {
977 	u16 reg;
978 	u16 reg_offset;
979 	u16 array_len;
980 	u16 test_type;
981 	u32 mask;
982 	u32 write;
983 };
984 
985 /* In the hardware, registers are laid out either singly, in arrays
986  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
987  * most tests take place on arrays or single registers (handled
988  * as a single-element array) and special-case the tables.
989  * Table tests are always pattern tests.
990  *
991  * We also make provision for some required setup steps by specifying
992  * registers to be written without any read-back testing.
993  */
994 
995 #define PATTERN_TEST	1
996 #define SET_READ_TEST	2
997 #define WRITE_NO_TEST	3
998 #define TABLE32_TEST	4
999 #define TABLE64_TEST_LO	5
1000 #define TABLE64_TEST_HI	6
1001 
1002 /* i210 reg test */
1003 static struct igb_reg_test reg_test_i210[] = {
1004 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1005 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1006 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1007 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1008 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1009 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1010 	/* RDH is read-only for i210, only test RDT. */
1011 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1012 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1013 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1014 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1015 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1016 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1017 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1018 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1019 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1020 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1021 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1022 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1023 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1024 						0xFFFFFFFF, 0xFFFFFFFF },
1025 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1026 						0x900FFFFF, 0xFFFFFFFF },
1027 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1028 						0xFFFFFFFF, 0xFFFFFFFF },
1029 	{ 0, 0, 0, 0, 0 }
1030 };
1031 
1032 /* i350 reg test */
1033 static struct igb_reg_test reg_test_i350[] = {
1034 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1035 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1036 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1037 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1038 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1039 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1040 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1041 	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1042 	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1043 	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1044 	/* RDH is read-only for i350, only test RDT. */
1045 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1046 	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1047 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1048 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1049 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1050 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1051 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1052 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1053 	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1054 	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1055 	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1056 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1057 	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1058 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1059 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1060 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1061 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1062 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1063 						0xFFFFFFFF, 0xFFFFFFFF },
1064 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1065 						0xC3FFFFFF, 0xFFFFFFFF },
1066 	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
1067 						0xFFFFFFFF, 0xFFFFFFFF },
1068 	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
1069 						0xC3FFFFFF, 0xFFFFFFFF },
1070 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1071 						0xFFFFFFFF, 0xFFFFFFFF },
1072 	{ 0, 0, 0, 0 }
1073 };
1074 
1075 /* 82580 reg test */
1076 static struct igb_reg_test reg_test_82580[] = {
1077 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1078 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1079 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1080 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1081 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1082 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1083 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1084 	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1085 	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1086 	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1087 	/* RDH is read-only for 82580, only test RDT. */
1088 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1089 	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1090 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1091 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1092 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1093 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1094 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1095 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1096 	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1097 	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1098 	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1099 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1100 	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1101 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1102 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1103 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1104 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1105 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1106 						0xFFFFFFFF, 0xFFFFFFFF },
1107 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1108 						0x83FFFFFF, 0xFFFFFFFF },
1109 	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
1110 						0xFFFFFFFF, 0xFFFFFFFF },
1111 	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
1112 						0x83FFFFFF, 0xFFFFFFFF },
1113 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1114 						0xFFFFFFFF, 0xFFFFFFFF },
1115 	{ 0, 0, 0, 0 }
1116 };
1117 
1118 /* 82576 reg test */
1119 static struct igb_reg_test reg_test_82576[] = {
1120 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1121 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1122 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1123 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1124 	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1125 	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1126 	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1127 	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1128 	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1129 	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1130 	/* Enable all RX queues before testing. */
1131 	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1132 	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1133 	/* RDH is read-only for 82576, only test RDT. */
1134 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1135 	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1136 	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1137 	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1138 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1139 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1140 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1141 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1142 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1143 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1144 	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1145 	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1146 	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1147 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1148 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1149 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1150 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1151 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1152 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1153 	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1154 	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1155 	{ E1000_MTA,	   0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1156 	{ 0, 0, 0, 0 }
1157 };
1158 
1159 /* 82575 register test */
1160 static struct igb_reg_test reg_test_82575[] = {
1161 	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1162 	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1163 	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1164 	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1165 	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1166 	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1167 	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1168 	/* Enable all four RX queues before testing. */
1169 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1170 	/* RDH is read-only for 82575, only test RDT. */
1171 	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1172 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1173 	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1174 	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1175 	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1176 	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1177 	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1178 	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1179 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1180 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1181 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1182 	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1183 	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1184 	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1185 	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1186 	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1187 	{ 0, 0, 0, 0 }
1188 };
1189 
1190 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1191 			     int reg, u32 mask, u32 write)
1192 {
1193 	struct e1000_hw *hw = &adapter->hw;
1194 	u32 pat, val;
1195 	static const u32 _test[] =
1196 		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1197 	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1198 		wr32(reg, (_test[pat] & write));
1199 		val = rd32(reg) & mask;
1200 		if (val != (_test[pat] & write & mask)) {
1201 			dev_err(&adapter->pdev->dev,
1202 				"pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1203 				reg, val, (_test[pat] & write & mask));
1204 			*data = reg;
1205 			return 1;
1206 		}
1207 	}
1208 
1209 	return 0;
1210 }
1211 
1212 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1213 			      int reg, u32 mask, u32 write)
1214 {
1215 	struct e1000_hw *hw = &adapter->hw;
1216 	u32 val;
1217 	wr32(reg, write & mask);
1218 	val = rd32(reg);
1219 	if ((write & mask) != (val & mask)) {
1220 		dev_err(&adapter->pdev->dev,
1221 			"set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", reg,
1222 			(val & mask), (write & mask));
1223 		*data = reg;
1224 		return 1;
1225 	}
1226 
1227 	return 0;
1228 }
1229 
1230 #define REG_PATTERN_TEST(reg, mask, write) \
1231 	do { \
1232 		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1233 			return 1; \
1234 	} while (0)
1235 
1236 #define REG_SET_AND_CHECK(reg, mask, write) \
1237 	do { \
1238 		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1239 			return 1; \
1240 	} while (0)
1241 
1242 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1243 {
1244 	struct e1000_hw *hw = &adapter->hw;
1245 	struct igb_reg_test *test;
1246 	u32 value, before, after;
1247 	u32 i, toggle;
1248 
1249 	switch (adapter->hw.mac.type) {
1250 	case e1000_i350:
1251 	case e1000_i354:
1252 		test = reg_test_i350;
1253 		toggle = 0x7FEFF3FF;
1254 		break;
1255 	case e1000_i210:
1256 	case e1000_i211:
1257 		test = reg_test_i210;
1258 		toggle = 0x7FEFF3FF;
1259 		break;
1260 	case e1000_82580:
1261 		test = reg_test_82580;
1262 		toggle = 0x7FEFF3FF;
1263 		break;
1264 	case e1000_82576:
1265 		test = reg_test_82576;
1266 		toggle = 0x7FFFF3FF;
1267 		break;
1268 	default:
1269 		test = reg_test_82575;
1270 		toggle = 0x7FFFF3FF;
1271 		break;
1272 	}
1273 
1274 	/* Because the status register is such a special case,
1275 	 * we handle it separately from the rest of the register
1276 	 * tests.  Some bits are read-only, some toggle, and some
1277 	 * are writable on newer MACs.
1278 	 */
1279 	before = rd32(E1000_STATUS);
1280 	value = (rd32(E1000_STATUS) & toggle);
1281 	wr32(E1000_STATUS, toggle);
1282 	after = rd32(E1000_STATUS) & toggle;
1283 	if (value != after) {
1284 		dev_err(&adapter->pdev->dev,
1285 			"failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1286 			after, value);
1287 		*data = 1;
1288 		return 1;
1289 	}
1290 	/* restore previous status */
1291 	wr32(E1000_STATUS, before);
1292 
1293 	/* Perform the remainder of the register test, looping through
1294 	 * the test table until we either fail or reach the null entry.
1295 	 */
1296 	while (test->reg) {
1297 		for (i = 0; i < test->array_len; i++) {
1298 			switch (test->test_type) {
1299 			case PATTERN_TEST:
1300 				REG_PATTERN_TEST(test->reg +
1301 						(i * test->reg_offset),
1302 						test->mask,
1303 						test->write);
1304 				break;
1305 			case SET_READ_TEST:
1306 				REG_SET_AND_CHECK(test->reg +
1307 						(i * test->reg_offset),
1308 						test->mask,
1309 						test->write);
1310 				break;
1311 			case WRITE_NO_TEST:
1312 				writel(test->write,
1313 				    (adapter->hw.hw_addr + test->reg)
1314 					+ (i * test->reg_offset));
1315 				break;
1316 			case TABLE32_TEST:
1317 				REG_PATTERN_TEST(test->reg + (i * 4),
1318 						test->mask,
1319 						test->write);
1320 				break;
1321 			case TABLE64_TEST_LO:
1322 				REG_PATTERN_TEST(test->reg + (i * 8),
1323 						test->mask,
1324 						test->write);
1325 				break;
1326 			case TABLE64_TEST_HI:
1327 				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1328 						test->mask,
1329 						test->write);
1330 				break;
1331 			}
1332 		}
1333 		test++;
1334 	}
1335 
1336 	*data = 0;
1337 	return 0;
1338 }
1339 
1340 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1341 {
1342 	*data = 0;
1343 
1344 	/* Validate eeprom on all parts but i211 */
1345 	if (adapter->hw.mac.type != e1000_i211) {
1346 		if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1347 			*data = 2;
1348 	}
1349 
1350 	return *data;
1351 }
1352 
1353 static irqreturn_t igb_test_intr(int irq, void *data)
1354 {
1355 	struct igb_adapter *adapter = (struct igb_adapter *) data;
1356 	struct e1000_hw *hw = &adapter->hw;
1357 
1358 	adapter->test_icr |= rd32(E1000_ICR);
1359 
1360 	return IRQ_HANDLED;
1361 }
1362 
1363 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1364 {
1365 	struct e1000_hw *hw = &adapter->hw;
1366 	struct net_device *netdev = adapter->netdev;
1367 	u32 mask, ics_mask, i = 0, shared_int = true;
1368 	u32 irq = adapter->pdev->irq;
1369 
1370 	*data = 0;
1371 
1372 	/* Hook up test interrupt handler just for this test */
1373 	if (adapter->msix_entries) {
1374 		if (request_irq(adapter->msix_entries[0].vector,
1375 		                igb_test_intr, 0, netdev->name, adapter)) {
1376 			*data = 1;
1377 			return -1;
1378 		}
1379 	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1380 		shared_int = false;
1381 		if (request_irq(irq,
1382 		                igb_test_intr, 0, netdev->name, adapter)) {
1383 			*data = 1;
1384 			return -1;
1385 		}
1386 	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1387 				netdev->name, adapter)) {
1388 		shared_int = false;
1389 	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1390 		 netdev->name, adapter)) {
1391 		*data = 1;
1392 		return -1;
1393 	}
1394 	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1395 		(shared_int ? "shared" : "unshared"));
1396 
1397 	/* Disable all the interrupts */
1398 	wr32(E1000_IMC, ~0);
1399 	wrfl();
1400 	msleep(10);
1401 
1402 	/* Define all writable bits for ICS */
1403 	switch (hw->mac.type) {
1404 	case e1000_82575:
1405 		ics_mask = 0x37F47EDD;
1406 		break;
1407 	case e1000_82576:
1408 		ics_mask = 0x77D4FBFD;
1409 		break;
1410 	case e1000_82580:
1411 		ics_mask = 0x77DCFED5;
1412 		break;
1413 	case e1000_i350:
1414 	case e1000_i354:
1415 	case e1000_i210:
1416 	case e1000_i211:
1417 		ics_mask = 0x77DCFED5;
1418 		break;
1419 	default:
1420 		ics_mask = 0x7FFFFFFF;
1421 		break;
1422 	}
1423 
1424 	/* Test each interrupt */
1425 	for (; i < 31; i++) {
1426 		/* Interrupt to test */
1427 		mask = 1 << i;
1428 
1429 		if (!(mask & ics_mask))
1430 			continue;
1431 
1432 		if (!shared_int) {
1433 			/* Disable the interrupt to be reported in
1434 			 * the cause register and then force the same
1435 			 * interrupt and see if one gets posted.  If
1436 			 * an interrupt was posted to the bus, the
1437 			 * test failed.
1438 			 */
1439 			adapter->test_icr = 0;
1440 
1441 			/* Flush any pending interrupts */
1442 			wr32(E1000_ICR, ~0);
1443 
1444 			wr32(E1000_IMC, mask);
1445 			wr32(E1000_ICS, mask);
1446 			wrfl();
1447 			msleep(10);
1448 
1449 			if (adapter->test_icr & mask) {
1450 				*data = 3;
1451 				break;
1452 			}
1453 		}
1454 
1455 		/* Enable the interrupt to be reported in
1456 		 * the cause register and then force the same
1457 		 * interrupt and see if one gets posted.  If
1458 		 * an interrupt was not posted to the bus, the
1459 		 * test failed.
1460 		 */
1461 		adapter->test_icr = 0;
1462 
1463 		/* Flush any pending interrupts */
1464 		wr32(E1000_ICR, ~0);
1465 
1466 		wr32(E1000_IMS, mask);
1467 		wr32(E1000_ICS, mask);
1468 		wrfl();
1469 		msleep(10);
1470 
1471 		if (!(adapter->test_icr & mask)) {
1472 			*data = 4;
1473 			break;
1474 		}
1475 
1476 		if (!shared_int) {
1477 			/* Disable the other interrupts to be reported in
1478 			 * the cause register and then force the other
1479 			 * interrupts and see if any get posted.  If
1480 			 * an interrupt was posted to the bus, the
1481 			 * test failed.
1482 			 */
1483 			adapter->test_icr = 0;
1484 
1485 			/* Flush any pending interrupts */
1486 			wr32(E1000_ICR, ~0);
1487 
1488 			wr32(E1000_IMC, ~mask);
1489 			wr32(E1000_ICS, ~mask);
1490 			wrfl();
1491 			msleep(10);
1492 
1493 			if (adapter->test_icr & mask) {
1494 				*data = 5;
1495 				break;
1496 			}
1497 		}
1498 	}
1499 
1500 	/* Disable all the interrupts */
1501 	wr32(E1000_IMC, ~0);
1502 	wrfl();
1503 	msleep(10);
1504 
1505 	/* Unhook test interrupt handler */
1506 	if (adapter->msix_entries)
1507 		free_irq(adapter->msix_entries[0].vector, adapter);
1508 	else
1509 		free_irq(irq, adapter);
1510 
1511 	return *data;
1512 }
1513 
1514 static void igb_free_desc_rings(struct igb_adapter *adapter)
1515 {
1516 	igb_free_tx_resources(&adapter->test_tx_ring);
1517 	igb_free_rx_resources(&adapter->test_rx_ring);
1518 }
1519 
1520 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1521 {
1522 	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1523 	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1524 	struct e1000_hw *hw = &adapter->hw;
1525 	int ret_val;
1526 
1527 	/* Setup Tx descriptor ring and Tx buffers */
1528 	tx_ring->count = IGB_DEFAULT_TXD;
1529 	tx_ring->dev = &adapter->pdev->dev;
1530 	tx_ring->netdev = adapter->netdev;
1531 	tx_ring->reg_idx = adapter->vfs_allocated_count;
1532 
1533 	if (igb_setup_tx_resources(tx_ring)) {
1534 		ret_val = 1;
1535 		goto err_nomem;
1536 	}
1537 
1538 	igb_setup_tctl(adapter);
1539 	igb_configure_tx_ring(adapter, tx_ring);
1540 
1541 	/* Setup Rx descriptor ring and Rx buffers */
1542 	rx_ring->count = IGB_DEFAULT_RXD;
1543 	rx_ring->dev = &adapter->pdev->dev;
1544 	rx_ring->netdev = adapter->netdev;
1545 	rx_ring->reg_idx = adapter->vfs_allocated_count;
1546 
1547 	if (igb_setup_rx_resources(rx_ring)) {
1548 		ret_val = 3;
1549 		goto err_nomem;
1550 	}
1551 
1552 	/* set the default queue to queue 0 of PF */
1553 	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1554 
1555 	/* enable receive ring */
1556 	igb_setup_rctl(adapter);
1557 	igb_configure_rx_ring(adapter, rx_ring);
1558 
1559 	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1560 
1561 	return 0;
1562 
1563 err_nomem:
1564 	igb_free_desc_rings(adapter);
1565 	return ret_val;
1566 }
1567 
1568 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1569 {
1570 	struct e1000_hw *hw = &adapter->hw;
1571 
1572 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1573 	igb_write_phy_reg(hw, 29, 0x001F);
1574 	igb_write_phy_reg(hw, 30, 0x8FFC);
1575 	igb_write_phy_reg(hw, 29, 0x001A);
1576 	igb_write_phy_reg(hw, 30, 0x8FF0);
1577 }
1578 
1579 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1580 {
1581 	struct e1000_hw *hw = &adapter->hw;
1582 	u32 ctrl_reg = 0;
1583 
1584 	hw->mac.autoneg = false;
1585 
1586 	if (hw->phy.type == e1000_phy_m88) {
1587 		if (hw->phy.id != I210_I_PHY_ID) {
1588 			/* Auto-MDI/MDIX Off */
1589 			igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1590 			/* reset to update Auto-MDI/MDIX */
1591 			igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1592 			/* autoneg off */
1593 			igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1594 		} else {
1595 			/* force 1000, set loopback  */
1596 			igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1597 			igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1598 		}
1599 	}
1600 
1601 	/* add small delay to avoid loopback test failure */
1602 	msleep(50);
1603 
1604 	/* force 1000, set loopback */
1605 	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1606 
1607 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1608 	ctrl_reg = rd32(E1000_CTRL);
1609 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1610 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1611 		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1612 		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1613 		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1614 		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1615 
1616 	if (hw->phy.type == e1000_phy_m88)
1617 		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1618 
1619 	wr32(E1000_CTRL, ctrl_reg);
1620 
1621 	/* Disable the receiver on the PHY so when a cable is plugged in, the
1622 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1623 	 */
1624 	if (hw->phy.type == e1000_phy_m88)
1625 		igb_phy_disable_receiver(adapter);
1626 
1627 	mdelay(500);
1628 	return 0;
1629 }
1630 
1631 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1632 {
1633 	return igb_integrated_phy_loopback(adapter);
1634 }
1635 
1636 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1637 {
1638 	struct e1000_hw *hw = &adapter->hw;
1639 	u32 reg;
1640 
1641 	reg = rd32(E1000_CTRL_EXT);
1642 
1643 	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1644 	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1645 		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1646 		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1647 		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1648 		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1649 
1650 			/* Enable DH89xxCC MPHY for near end loopback */
1651 			reg = rd32(E1000_MPHY_ADDR_CTL);
1652 			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1653 			E1000_MPHY_PCS_CLK_REG_OFFSET;
1654 			wr32(E1000_MPHY_ADDR_CTL, reg);
1655 
1656 			reg = rd32(E1000_MPHY_DATA);
1657 			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1658 			wr32(E1000_MPHY_DATA, reg);
1659 		}
1660 
1661 		reg = rd32(E1000_RCTL);
1662 		reg |= E1000_RCTL_LBM_TCVR;
1663 		wr32(E1000_RCTL, reg);
1664 
1665 		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1666 
1667 		reg = rd32(E1000_CTRL);
1668 		reg &= ~(E1000_CTRL_RFCE |
1669 			 E1000_CTRL_TFCE |
1670 			 E1000_CTRL_LRST);
1671 		reg |= E1000_CTRL_SLU |
1672 		       E1000_CTRL_FD;
1673 		wr32(E1000_CTRL, reg);
1674 
1675 		/* Unset switch control to serdes energy detect */
1676 		reg = rd32(E1000_CONNSW);
1677 		reg &= ~E1000_CONNSW_ENRGSRC;
1678 		wr32(E1000_CONNSW, reg);
1679 
1680 		/* Unset sigdetect for SERDES loopback on
1681 		 * 82580 and newer devices.
1682 		 */
1683 		if (hw->mac.type >= e1000_82580) {
1684 			reg = rd32(E1000_PCS_CFG0);
1685 			reg |= E1000_PCS_CFG_IGN_SD;
1686 			wr32(E1000_PCS_CFG0, reg);
1687 		}
1688 
1689 		/* Set PCS register for forced speed */
1690 		reg = rd32(E1000_PCS_LCTL);
1691 		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1692 		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1693 		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1694 		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1695 		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1696 		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1697 		wr32(E1000_PCS_LCTL, reg);
1698 
1699 		return 0;
1700 	}
1701 
1702 	return igb_set_phy_loopback(adapter);
1703 }
1704 
1705 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1706 {
1707 	struct e1000_hw *hw = &adapter->hw;
1708 	u32 rctl;
1709 	u16 phy_reg;
1710 
1711 	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1712 	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1713 	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1714 	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1715 		u32 reg;
1716 
1717 		/* Disable near end loopback on DH89xxCC */
1718 		reg = rd32(E1000_MPHY_ADDR_CTL);
1719 		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1720 		E1000_MPHY_PCS_CLK_REG_OFFSET;
1721 		wr32(E1000_MPHY_ADDR_CTL, reg);
1722 
1723 		reg = rd32(E1000_MPHY_DATA);
1724 		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1725 		wr32(E1000_MPHY_DATA, reg);
1726 	}
1727 
1728 	rctl = rd32(E1000_RCTL);
1729 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1730 	wr32(E1000_RCTL, rctl);
1731 
1732 	hw->mac.autoneg = true;
1733 	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1734 	if (phy_reg & MII_CR_LOOPBACK) {
1735 		phy_reg &= ~MII_CR_LOOPBACK;
1736 		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1737 		igb_phy_sw_reset(hw);
1738 	}
1739 }
1740 
1741 static void igb_create_lbtest_frame(struct sk_buff *skb,
1742 				    unsigned int frame_size)
1743 {
1744 	memset(skb->data, 0xFF, frame_size);
1745 	frame_size /= 2;
1746 	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1747 	memset(&skb->data[frame_size + 10], 0xBE, 1);
1748 	memset(&skb->data[frame_size + 12], 0xAF, 1);
1749 }
1750 
1751 static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1752 				  unsigned int frame_size)
1753 {
1754 	unsigned char *data;
1755 	bool match = true;
1756 
1757 	frame_size >>= 1;
1758 
1759 	data = kmap(rx_buffer->page);
1760 
1761 	if (data[3] != 0xFF ||
1762 	    data[frame_size + 10] != 0xBE ||
1763 	    data[frame_size + 12] != 0xAF)
1764 		match = false;
1765 
1766 	kunmap(rx_buffer->page);
1767 
1768 	return match;
1769 }
1770 
1771 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1772 				struct igb_ring *tx_ring,
1773 				unsigned int size)
1774 {
1775 	union e1000_adv_rx_desc *rx_desc;
1776 	struct igb_rx_buffer *rx_buffer_info;
1777 	struct igb_tx_buffer *tx_buffer_info;
1778 	u16 rx_ntc, tx_ntc, count = 0;
1779 
1780 	/* initialize next to clean and descriptor values */
1781 	rx_ntc = rx_ring->next_to_clean;
1782 	tx_ntc = tx_ring->next_to_clean;
1783 	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1784 
1785 	while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1786 		/* check Rx buffer */
1787 		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1788 
1789 		/* sync Rx buffer for CPU read */
1790 		dma_sync_single_for_cpu(rx_ring->dev,
1791 					rx_buffer_info->dma,
1792 					IGB_RX_BUFSZ,
1793 					DMA_FROM_DEVICE);
1794 
1795 		/* verify contents of skb */
1796 		if (igb_check_lbtest_frame(rx_buffer_info, size))
1797 			count++;
1798 
1799 		/* sync Rx buffer for device write */
1800 		dma_sync_single_for_device(rx_ring->dev,
1801 					   rx_buffer_info->dma,
1802 					   IGB_RX_BUFSZ,
1803 					   DMA_FROM_DEVICE);
1804 
1805 		/* unmap buffer on Tx side */
1806 		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1807 		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1808 
1809 		/* increment Rx/Tx next to clean counters */
1810 		rx_ntc++;
1811 		if (rx_ntc == rx_ring->count)
1812 			rx_ntc = 0;
1813 		tx_ntc++;
1814 		if (tx_ntc == tx_ring->count)
1815 			tx_ntc = 0;
1816 
1817 		/* fetch next descriptor */
1818 		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1819 	}
1820 
1821 	netdev_tx_reset_queue(txring_txq(tx_ring));
1822 
1823 	/* re-map buffers to ring, store next to clean values */
1824 	igb_alloc_rx_buffers(rx_ring, count);
1825 	rx_ring->next_to_clean = rx_ntc;
1826 	tx_ring->next_to_clean = tx_ntc;
1827 
1828 	return count;
1829 }
1830 
1831 static int igb_run_loopback_test(struct igb_adapter *adapter)
1832 {
1833 	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1834 	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1835 	u16 i, j, lc, good_cnt;
1836 	int ret_val = 0;
1837 	unsigned int size = IGB_RX_HDR_LEN;
1838 	netdev_tx_t tx_ret_val;
1839 	struct sk_buff *skb;
1840 
1841 	/* allocate test skb */
1842 	skb = alloc_skb(size, GFP_KERNEL);
1843 	if (!skb)
1844 		return 11;
1845 
1846 	/* place data into test skb */
1847 	igb_create_lbtest_frame(skb, size);
1848 	skb_put(skb, size);
1849 
1850 	/* Calculate the loop count based on the largest descriptor ring
1851 	 * The idea is to wrap the largest ring a number of times using 64
1852 	 * send/receive pairs during each loop
1853 	 */
1854 
1855 	if (rx_ring->count <= tx_ring->count)
1856 		lc = ((tx_ring->count / 64) * 2) + 1;
1857 	else
1858 		lc = ((rx_ring->count / 64) * 2) + 1;
1859 
1860 	for (j = 0; j <= lc; j++) { /* loop count loop */
1861 		/* reset count of good packets */
1862 		good_cnt = 0;
1863 
1864 		/* place 64 packets on the transmit queue*/
1865 		for (i = 0; i < 64; i++) {
1866 			skb_get(skb);
1867 			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1868 			if (tx_ret_val == NETDEV_TX_OK)
1869 				good_cnt++;
1870 		}
1871 
1872 		if (good_cnt != 64) {
1873 			ret_val = 12;
1874 			break;
1875 		}
1876 
1877 		/* allow 200 milliseconds for packets to go from Tx to Rx */
1878 		msleep(200);
1879 
1880 		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1881 		if (good_cnt != 64) {
1882 			ret_val = 13;
1883 			break;
1884 		}
1885 	} /* end loop count loop */
1886 
1887 	/* free the original skb */
1888 	kfree_skb(skb);
1889 
1890 	return ret_val;
1891 }
1892 
1893 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1894 {
1895 	/* PHY loopback cannot be performed if SoL/IDER
1896 	 * sessions are active
1897 	 */
1898 	if (igb_check_reset_block(&adapter->hw)) {
1899 		dev_err(&adapter->pdev->dev,
1900 			"Cannot do PHY loopback test when SoL/IDER is active.\n");
1901 		*data = 0;
1902 		goto out;
1903 	}
1904 
1905 	if (adapter->hw.mac.type == e1000_i354) {
1906 		dev_info(&adapter->pdev->dev,
1907 			"Loopback test not supported on i354.\n");
1908 		*data = 0;
1909 		goto out;
1910 	}
1911 	*data = igb_setup_desc_rings(adapter);
1912 	if (*data)
1913 		goto out;
1914 	*data = igb_setup_loopback_test(adapter);
1915 	if (*data)
1916 		goto err_loopback;
1917 	*data = igb_run_loopback_test(adapter);
1918 	igb_loopback_cleanup(adapter);
1919 
1920 err_loopback:
1921 	igb_free_desc_rings(adapter);
1922 out:
1923 	return *data;
1924 }
1925 
1926 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1927 {
1928 	struct e1000_hw *hw = &adapter->hw;
1929 	*data = 0;
1930 	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1931 		int i = 0;
1932 		hw->mac.serdes_has_link = false;
1933 
1934 		/* On some blade server designs, link establishment
1935 		 * could take as long as 2-3 minutes
1936 		 */
1937 		do {
1938 			hw->mac.ops.check_for_link(&adapter->hw);
1939 			if (hw->mac.serdes_has_link)
1940 				return *data;
1941 			msleep(20);
1942 		} while (i++ < 3750);
1943 
1944 		*data = 1;
1945 	} else {
1946 		hw->mac.ops.check_for_link(&adapter->hw);
1947 		if (hw->mac.autoneg)
1948 			msleep(5000);
1949 
1950 		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1951 			*data = 1;
1952 	}
1953 	return *data;
1954 }
1955 
1956 static void igb_diag_test(struct net_device *netdev,
1957 			  struct ethtool_test *eth_test, u64 *data)
1958 {
1959 	struct igb_adapter *adapter = netdev_priv(netdev);
1960 	u16 autoneg_advertised;
1961 	u8 forced_speed_duplex, autoneg;
1962 	bool if_running = netif_running(netdev);
1963 
1964 	set_bit(__IGB_TESTING, &adapter->state);
1965 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1966 		/* Offline tests */
1967 
1968 		/* save speed, duplex, autoneg settings */
1969 		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1970 		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1971 		autoneg = adapter->hw.mac.autoneg;
1972 
1973 		dev_info(&adapter->pdev->dev, "offline testing starting\n");
1974 
1975 		/* power up link for link test */
1976 		igb_power_up_link(adapter);
1977 
1978 		/* Link test performed before hardware reset so autoneg doesn't
1979 		 * interfere with test result
1980 		 */
1981 		if (igb_link_test(adapter, &data[4]))
1982 			eth_test->flags |= ETH_TEST_FL_FAILED;
1983 
1984 		if (if_running)
1985 			/* indicate we're in test mode */
1986 			dev_close(netdev);
1987 		else
1988 			igb_reset(adapter);
1989 
1990 		if (igb_reg_test(adapter, &data[0]))
1991 			eth_test->flags |= ETH_TEST_FL_FAILED;
1992 
1993 		igb_reset(adapter);
1994 		if (igb_eeprom_test(adapter, &data[1]))
1995 			eth_test->flags |= ETH_TEST_FL_FAILED;
1996 
1997 		igb_reset(adapter);
1998 		if (igb_intr_test(adapter, &data[2]))
1999 			eth_test->flags |= ETH_TEST_FL_FAILED;
2000 
2001 		igb_reset(adapter);
2002 		/* power up link for loopback test */
2003 		igb_power_up_link(adapter);
2004 		if (igb_loopback_test(adapter, &data[3]))
2005 			eth_test->flags |= ETH_TEST_FL_FAILED;
2006 
2007 		/* restore speed, duplex, autoneg settings */
2008 		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2009 		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2010 		adapter->hw.mac.autoneg = autoneg;
2011 
2012 		/* force this routine to wait until autoneg complete/timeout */
2013 		adapter->hw.phy.autoneg_wait_to_complete = true;
2014 		igb_reset(adapter);
2015 		adapter->hw.phy.autoneg_wait_to_complete = false;
2016 
2017 		clear_bit(__IGB_TESTING, &adapter->state);
2018 		if (if_running)
2019 			dev_open(netdev);
2020 	} else {
2021 		dev_info(&adapter->pdev->dev, "online testing starting\n");
2022 
2023 		/* PHY is powered down when interface is down */
2024 		if (if_running && igb_link_test(adapter, &data[4]))
2025 			eth_test->flags |= ETH_TEST_FL_FAILED;
2026 		else
2027 			data[4] = 0;
2028 
2029 		/* Online tests aren't run; pass by default */
2030 		data[0] = 0;
2031 		data[1] = 0;
2032 		data[2] = 0;
2033 		data[3] = 0;
2034 
2035 		clear_bit(__IGB_TESTING, &adapter->state);
2036 	}
2037 	msleep_interruptible(4 * 1000);
2038 }
2039 
2040 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2041 {
2042 	struct igb_adapter *adapter = netdev_priv(netdev);
2043 
2044 	wol->supported = WAKE_UCAST | WAKE_MCAST |
2045 			 WAKE_BCAST | WAKE_MAGIC |
2046 			 WAKE_PHY;
2047 	wol->wolopts = 0;
2048 
2049 	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2050 		return;
2051 
2052 	/* apply any specific unsupported masks here */
2053 	switch (adapter->hw.device_id) {
2054 	default:
2055 		break;
2056 	}
2057 
2058 	if (adapter->wol & E1000_WUFC_EX)
2059 		wol->wolopts |= WAKE_UCAST;
2060 	if (adapter->wol & E1000_WUFC_MC)
2061 		wol->wolopts |= WAKE_MCAST;
2062 	if (adapter->wol & E1000_WUFC_BC)
2063 		wol->wolopts |= WAKE_BCAST;
2064 	if (adapter->wol & E1000_WUFC_MAG)
2065 		wol->wolopts |= WAKE_MAGIC;
2066 	if (adapter->wol & E1000_WUFC_LNKC)
2067 		wol->wolopts |= WAKE_PHY;
2068 }
2069 
2070 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2071 {
2072 	struct igb_adapter *adapter = netdev_priv(netdev);
2073 
2074 	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2075 		return -EOPNOTSUPP;
2076 
2077 	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2078 		return wol->wolopts ? -EOPNOTSUPP : 0;
2079 
2080 	/* these settings will always override what we currently have */
2081 	adapter->wol = 0;
2082 
2083 	if (wol->wolopts & WAKE_UCAST)
2084 		adapter->wol |= E1000_WUFC_EX;
2085 	if (wol->wolopts & WAKE_MCAST)
2086 		adapter->wol |= E1000_WUFC_MC;
2087 	if (wol->wolopts & WAKE_BCAST)
2088 		adapter->wol |= E1000_WUFC_BC;
2089 	if (wol->wolopts & WAKE_MAGIC)
2090 		adapter->wol |= E1000_WUFC_MAG;
2091 	if (wol->wolopts & WAKE_PHY)
2092 		adapter->wol |= E1000_WUFC_LNKC;
2093 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2094 
2095 	return 0;
2096 }
2097 
2098 /* bit defines for adapter->led_status */
2099 #define IGB_LED_ON		0
2100 
2101 static int igb_set_phys_id(struct net_device *netdev,
2102 			   enum ethtool_phys_id_state state)
2103 {
2104 	struct igb_adapter *adapter = netdev_priv(netdev);
2105 	struct e1000_hw *hw = &adapter->hw;
2106 
2107 	switch (state) {
2108 	case ETHTOOL_ID_ACTIVE:
2109 		igb_blink_led(hw);
2110 		return 2;
2111 	case ETHTOOL_ID_ON:
2112 		igb_blink_led(hw);
2113 		break;
2114 	case ETHTOOL_ID_OFF:
2115 		igb_led_off(hw);
2116 		break;
2117 	case ETHTOOL_ID_INACTIVE:
2118 		igb_led_off(hw);
2119 		clear_bit(IGB_LED_ON, &adapter->led_status);
2120 		igb_cleanup_led(hw);
2121 		break;
2122 	}
2123 
2124 	return 0;
2125 }
2126 
2127 static int igb_set_coalesce(struct net_device *netdev,
2128 			    struct ethtool_coalesce *ec)
2129 {
2130 	struct igb_adapter *adapter = netdev_priv(netdev);
2131 	int i;
2132 
2133 	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2134 	    ((ec->rx_coalesce_usecs > 3) &&
2135 	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2136 	    (ec->rx_coalesce_usecs == 2))
2137 		return -EINVAL;
2138 
2139 	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2140 	    ((ec->tx_coalesce_usecs > 3) &&
2141 	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2142 	    (ec->tx_coalesce_usecs == 2))
2143 		return -EINVAL;
2144 
2145 	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2146 		return -EINVAL;
2147 
2148 	/* If ITR is disabled, disable DMAC */
2149 	if (ec->rx_coalesce_usecs == 0) {
2150 		if (adapter->flags & IGB_FLAG_DMAC)
2151 			adapter->flags &= ~IGB_FLAG_DMAC;
2152 	}
2153 
2154 	/* convert to rate of irq's per second */
2155 	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2156 		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2157 	else
2158 		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2159 
2160 	/* convert to rate of irq's per second */
2161 	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2162 		adapter->tx_itr_setting = adapter->rx_itr_setting;
2163 	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2164 		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2165 	else
2166 		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2167 
2168 	for (i = 0; i < adapter->num_q_vectors; i++) {
2169 		struct igb_q_vector *q_vector = adapter->q_vector[i];
2170 		q_vector->tx.work_limit = adapter->tx_work_limit;
2171 		if (q_vector->rx.ring)
2172 			q_vector->itr_val = adapter->rx_itr_setting;
2173 		else
2174 			q_vector->itr_val = adapter->tx_itr_setting;
2175 		if (q_vector->itr_val && q_vector->itr_val <= 3)
2176 			q_vector->itr_val = IGB_START_ITR;
2177 		q_vector->set_itr = 1;
2178 	}
2179 
2180 	return 0;
2181 }
2182 
2183 static int igb_get_coalesce(struct net_device *netdev,
2184 			    struct ethtool_coalesce *ec)
2185 {
2186 	struct igb_adapter *adapter = netdev_priv(netdev);
2187 
2188 	if (adapter->rx_itr_setting <= 3)
2189 		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2190 	else
2191 		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2192 
2193 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2194 		if (adapter->tx_itr_setting <= 3)
2195 			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2196 		else
2197 			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2198 	}
2199 
2200 	return 0;
2201 }
2202 
2203 static int igb_nway_reset(struct net_device *netdev)
2204 {
2205 	struct igb_adapter *adapter = netdev_priv(netdev);
2206 	if (netif_running(netdev))
2207 		igb_reinit_locked(adapter);
2208 	return 0;
2209 }
2210 
2211 static int igb_get_sset_count(struct net_device *netdev, int sset)
2212 {
2213 	switch (sset) {
2214 	case ETH_SS_STATS:
2215 		return IGB_STATS_LEN;
2216 	case ETH_SS_TEST:
2217 		return IGB_TEST_LEN;
2218 	default:
2219 		return -ENOTSUPP;
2220 	}
2221 }
2222 
2223 static void igb_get_ethtool_stats(struct net_device *netdev,
2224 				  struct ethtool_stats *stats, u64 *data)
2225 {
2226 	struct igb_adapter *adapter = netdev_priv(netdev);
2227 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2228 	unsigned int start;
2229 	struct igb_ring *ring;
2230 	int i, j;
2231 	char *p;
2232 
2233 	spin_lock(&adapter->stats64_lock);
2234 	igb_update_stats(adapter, net_stats);
2235 
2236 	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2237 		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2238 		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2239 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2240 	}
2241 	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2242 		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2243 		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2244 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2245 	}
2246 	for (j = 0; j < adapter->num_tx_queues; j++) {
2247 		u64	restart2;
2248 
2249 		ring = adapter->tx_ring[j];
2250 		do {
2251 			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
2252 			data[i]   = ring->tx_stats.packets;
2253 			data[i+1] = ring->tx_stats.bytes;
2254 			data[i+2] = ring->tx_stats.restart_queue;
2255 		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
2256 		do {
2257 			start = u64_stats_fetch_begin_bh(&ring->tx_syncp2);
2258 			restart2  = ring->tx_stats.restart_queue2;
2259 		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start));
2260 		data[i+2] += restart2;
2261 
2262 		i += IGB_TX_QUEUE_STATS_LEN;
2263 	}
2264 	for (j = 0; j < adapter->num_rx_queues; j++) {
2265 		ring = adapter->rx_ring[j];
2266 		do {
2267 			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
2268 			data[i]   = ring->rx_stats.packets;
2269 			data[i+1] = ring->rx_stats.bytes;
2270 			data[i+2] = ring->rx_stats.drops;
2271 			data[i+3] = ring->rx_stats.csum_err;
2272 			data[i+4] = ring->rx_stats.alloc_failed;
2273 		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
2274 		i += IGB_RX_QUEUE_STATS_LEN;
2275 	}
2276 	spin_unlock(&adapter->stats64_lock);
2277 }
2278 
2279 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2280 {
2281 	struct igb_adapter *adapter = netdev_priv(netdev);
2282 	u8 *p = data;
2283 	int i;
2284 
2285 	switch (stringset) {
2286 	case ETH_SS_TEST:
2287 		memcpy(data, *igb_gstrings_test,
2288 			IGB_TEST_LEN*ETH_GSTRING_LEN);
2289 		break;
2290 	case ETH_SS_STATS:
2291 		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2292 			memcpy(p, igb_gstrings_stats[i].stat_string,
2293 			       ETH_GSTRING_LEN);
2294 			p += ETH_GSTRING_LEN;
2295 		}
2296 		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2297 			memcpy(p, igb_gstrings_net_stats[i].stat_string,
2298 			       ETH_GSTRING_LEN);
2299 			p += ETH_GSTRING_LEN;
2300 		}
2301 		for (i = 0; i < adapter->num_tx_queues; i++) {
2302 			sprintf(p, "tx_queue_%u_packets", i);
2303 			p += ETH_GSTRING_LEN;
2304 			sprintf(p, "tx_queue_%u_bytes", i);
2305 			p += ETH_GSTRING_LEN;
2306 			sprintf(p, "tx_queue_%u_restart", i);
2307 			p += ETH_GSTRING_LEN;
2308 		}
2309 		for (i = 0; i < adapter->num_rx_queues; i++) {
2310 			sprintf(p, "rx_queue_%u_packets", i);
2311 			p += ETH_GSTRING_LEN;
2312 			sprintf(p, "rx_queue_%u_bytes", i);
2313 			p += ETH_GSTRING_LEN;
2314 			sprintf(p, "rx_queue_%u_drops", i);
2315 			p += ETH_GSTRING_LEN;
2316 			sprintf(p, "rx_queue_%u_csum_err", i);
2317 			p += ETH_GSTRING_LEN;
2318 			sprintf(p, "rx_queue_%u_alloc_failed", i);
2319 			p += ETH_GSTRING_LEN;
2320 		}
2321 		/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2322 		break;
2323 	}
2324 }
2325 
2326 static int igb_get_ts_info(struct net_device *dev,
2327 			   struct ethtool_ts_info *info)
2328 {
2329 	struct igb_adapter *adapter = netdev_priv(dev);
2330 
2331 	switch (adapter->hw.mac.type) {
2332 	case e1000_82575:
2333 		info->so_timestamping =
2334 			SOF_TIMESTAMPING_TX_SOFTWARE |
2335 			SOF_TIMESTAMPING_RX_SOFTWARE |
2336 			SOF_TIMESTAMPING_SOFTWARE;
2337 		return 0;
2338 	case e1000_82576:
2339 	case e1000_82580:
2340 	case e1000_i350:
2341 	case e1000_i354:
2342 	case e1000_i210:
2343 	case e1000_i211:
2344 		info->so_timestamping =
2345 			SOF_TIMESTAMPING_TX_SOFTWARE |
2346 			SOF_TIMESTAMPING_RX_SOFTWARE |
2347 			SOF_TIMESTAMPING_SOFTWARE |
2348 			SOF_TIMESTAMPING_TX_HARDWARE |
2349 			SOF_TIMESTAMPING_RX_HARDWARE |
2350 			SOF_TIMESTAMPING_RAW_HARDWARE;
2351 
2352 		if (adapter->ptp_clock)
2353 			info->phc_index = ptp_clock_index(adapter->ptp_clock);
2354 		else
2355 			info->phc_index = -1;
2356 
2357 		info->tx_types =
2358 			(1 << HWTSTAMP_TX_OFF) |
2359 			(1 << HWTSTAMP_TX_ON);
2360 
2361 		info->rx_filters = 1 << HWTSTAMP_FILTER_NONE;
2362 
2363 		/* 82576 does not support timestamping all packets. */
2364 		if (adapter->hw.mac.type >= e1000_82580)
2365 			info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL;
2366 		else
2367 			info->rx_filters |=
2368 				(1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2369 				(1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2370 				(1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2371 				(1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2372 				(1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2373 				(1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2374 				(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2375 
2376 		return 0;
2377 	default:
2378 		return -EOPNOTSUPP;
2379 	}
2380 }
2381 
2382 static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2383 				 struct ethtool_rxnfc *cmd)
2384 {
2385 	cmd->data = 0;
2386 
2387 	/* Report default options for RSS on igb */
2388 	switch (cmd->flow_type) {
2389 	case TCP_V4_FLOW:
2390 		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2391 	case UDP_V4_FLOW:
2392 		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2393 			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2394 	case SCTP_V4_FLOW:
2395 	case AH_ESP_V4_FLOW:
2396 	case AH_V4_FLOW:
2397 	case ESP_V4_FLOW:
2398 	case IPV4_FLOW:
2399 		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2400 		break;
2401 	case TCP_V6_FLOW:
2402 		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2403 	case UDP_V6_FLOW:
2404 		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2405 			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2406 	case SCTP_V6_FLOW:
2407 	case AH_ESP_V6_FLOW:
2408 	case AH_V6_FLOW:
2409 	case ESP_V6_FLOW:
2410 	case IPV6_FLOW:
2411 		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2412 		break;
2413 	default:
2414 		return -EINVAL;
2415 	}
2416 
2417 	return 0;
2418 }
2419 
2420 static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2421 			 u32 *rule_locs)
2422 {
2423 	struct igb_adapter *adapter = netdev_priv(dev);
2424 	int ret = -EOPNOTSUPP;
2425 
2426 	switch (cmd->cmd) {
2427 	case ETHTOOL_GRXRINGS:
2428 		cmd->data = adapter->num_rx_queues;
2429 		ret = 0;
2430 		break;
2431 	case ETHTOOL_GRXFH:
2432 		ret = igb_get_rss_hash_opts(adapter, cmd);
2433 		break;
2434 	default:
2435 		break;
2436 	}
2437 
2438 	return ret;
2439 }
2440 
2441 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2442 		       IGB_FLAG_RSS_FIELD_IPV6_UDP)
2443 static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2444 				struct ethtool_rxnfc *nfc)
2445 {
2446 	u32 flags = adapter->flags;
2447 
2448 	/* RSS does not support anything other than hashing
2449 	 * to queues on src and dst IPs and ports
2450 	 */
2451 	if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2452 			  RXH_L4_B_0_1 | RXH_L4_B_2_3))
2453 		return -EINVAL;
2454 
2455 	switch (nfc->flow_type) {
2456 	case TCP_V4_FLOW:
2457 	case TCP_V6_FLOW:
2458 		if (!(nfc->data & RXH_IP_SRC) ||
2459 		    !(nfc->data & RXH_IP_DST) ||
2460 		    !(nfc->data & RXH_L4_B_0_1) ||
2461 		    !(nfc->data & RXH_L4_B_2_3))
2462 			return -EINVAL;
2463 		break;
2464 	case UDP_V4_FLOW:
2465 		if (!(nfc->data & RXH_IP_SRC) ||
2466 		    !(nfc->data & RXH_IP_DST))
2467 			return -EINVAL;
2468 		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2469 		case 0:
2470 			flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2471 			break;
2472 		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2473 			flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2474 			break;
2475 		default:
2476 			return -EINVAL;
2477 		}
2478 		break;
2479 	case UDP_V6_FLOW:
2480 		if (!(nfc->data & RXH_IP_SRC) ||
2481 		    !(nfc->data & RXH_IP_DST))
2482 			return -EINVAL;
2483 		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2484 		case 0:
2485 			flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2486 			break;
2487 		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2488 			flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2489 			break;
2490 		default:
2491 			return -EINVAL;
2492 		}
2493 		break;
2494 	case AH_ESP_V4_FLOW:
2495 	case AH_V4_FLOW:
2496 	case ESP_V4_FLOW:
2497 	case SCTP_V4_FLOW:
2498 	case AH_ESP_V6_FLOW:
2499 	case AH_V6_FLOW:
2500 	case ESP_V6_FLOW:
2501 	case SCTP_V6_FLOW:
2502 		if (!(nfc->data & RXH_IP_SRC) ||
2503 		    !(nfc->data & RXH_IP_DST) ||
2504 		    (nfc->data & RXH_L4_B_0_1) ||
2505 		    (nfc->data & RXH_L4_B_2_3))
2506 			return -EINVAL;
2507 		break;
2508 	default:
2509 		return -EINVAL;
2510 	}
2511 
2512 	/* if we changed something we need to update flags */
2513 	if (flags != adapter->flags) {
2514 		struct e1000_hw *hw = &adapter->hw;
2515 		u32 mrqc = rd32(E1000_MRQC);
2516 
2517 		if ((flags & UDP_RSS_FLAGS) &&
2518 		    !(adapter->flags & UDP_RSS_FLAGS))
2519 			dev_err(&adapter->pdev->dev,
2520 				"enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2521 
2522 		adapter->flags = flags;
2523 
2524 		/* Perform hash on these packet types */
2525 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2526 			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2527 			E1000_MRQC_RSS_FIELD_IPV6 |
2528 			E1000_MRQC_RSS_FIELD_IPV6_TCP;
2529 
2530 		mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2531 			  E1000_MRQC_RSS_FIELD_IPV6_UDP);
2532 
2533 		if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2534 			mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2535 
2536 		if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2537 			mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2538 
2539 		wr32(E1000_MRQC, mrqc);
2540 	}
2541 
2542 	return 0;
2543 }
2544 
2545 static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
2546 {
2547 	struct igb_adapter *adapter = netdev_priv(dev);
2548 	int ret = -EOPNOTSUPP;
2549 
2550 	switch (cmd->cmd) {
2551 	case ETHTOOL_SRXFH:
2552 		ret = igb_set_rss_hash_opt(adapter, cmd);
2553 		break;
2554 	default:
2555 		break;
2556 	}
2557 
2558 	return ret;
2559 }
2560 
2561 static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2562 {
2563 	struct igb_adapter *adapter = netdev_priv(netdev);
2564 	struct e1000_hw *hw = &adapter->hw;
2565 	u32 ipcnfg, eeer, ret_val;
2566 	u16 phy_data;
2567 
2568 	if ((hw->mac.type < e1000_i350) ||
2569 	    (hw->phy.media_type != e1000_media_type_copper))
2570 		return -EOPNOTSUPP;
2571 
2572 	edata->supported = (SUPPORTED_1000baseT_Full |
2573 			    SUPPORTED_100baseT_Full);
2574 
2575 	ipcnfg = rd32(E1000_IPCNFG);
2576 	eeer = rd32(E1000_EEER);
2577 
2578 	/* EEE status on negotiated link */
2579 	if (ipcnfg & E1000_IPCNFG_EEE_1G_AN)
2580 		edata->advertised = ADVERTISED_1000baseT_Full;
2581 
2582 	if (ipcnfg & E1000_IPCNFG_EEE_100M_AN)
2583 		edata->advertised |= ADVERTISED_100baseT_Full;
2584 
2585 	/* EEE Link Partner Advertised */
2586 	switch (hw->mac.type) {
2587 	case e1000_i350:
2588 		ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
2589 					   &phy_data);
2590 		if (ret_val)
2591 			return -ENODATA;
2592 
2593 		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2594 
2595 		break;
2596 	case e1000_i210:
2597 	case e1000_i211:
2598 		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
2599 					     E1000_EEE_LP_ADV_DEV_I210,
2600 					     &phy_data);
2601 		if (ret_val)
2602 			return -ENODATA;
2603 
2604 		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2605 
2606 		break;
2607 	default:
2608 		break;
2609 	}
2610 
2611 	if (eeer & E1000_EEER_EEE_NEG)
2612 		edata->eee_active = true;
2613 
2614 	edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
2615 
2616 	if (eeer & E1000_EEER_TX_LPI_EN)
2617 		edata->tx_lpi_enabled = true;
2618 
2619 	/* Report correct negotiated EEE status for devices that
2620 	 * wrongly report EEE at half-duplex
2621 	 */
2622 	if (adapter->link_duplex == HALF_DUPLEX) {
2623 		edata->eee_enabled = false;
2624 		edata->eee_active = false;
2625 		edata->tx_lpi_enabled = false;
2626 		edata->advertised &= ~edata->advertised;
2627 	}
2628 
2629 	return 0;
2630 }
2631 
2632 static int igb_set_eee(struct net_device *netdev,
2633 		       struct ethtool_eee *edata)
2634 {
2635 	struct igb_adapter *adapter = netdev_priv(netdev);
2636 	struct e1000_hw *hw = &adapter->hw;
2637 	struct ethtool_eee eee_curr;
2638 	s32 ret_val;
2639 
2640 	if ((hw->mac.type < e1000_i350) ||
2641 	    (hw->phy.media_type != e1000_media_type_copper))
2642 		return -EOPNOTSUPP;
2643 
2644 	ret_val = igb_get_eee(netdev, &eee_curr);
2645 	if (ret_val)
2646 		return ret_val;
2647 
2648 	if (eee_curr.eee_enabled) {
2649 		if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2650 			dev_err(&adapter->pdev->dev,
2651 				"Setting EEE tx-lpi is not supported\n");
2652 			return -EINVAL;
2653 		}
2654 
2655 		/* Tx LPI timer is not implemented currently */
2656 		if (edata->tx_lpi_timer) {
2657 			dev_err(&adapter->pdev->dev,
2658 				"Setting EEE Tx LPI timer is not supported\n");
2659 			return -EINVAL;
2660 		}
2661 
2662 		if (eee_curr.advertised != edata->advertised) {
2663 			dev_err(&adapter->pdev->dev,
2664 				"Setting EEE Advertisement is not supported\n");
2665 			return -EINVAL;
2666 		}
2667 
2668 	} else if (!edata->eee_enabled) {
2669 		dev_err(&adapter->pdev->dev,
2670 			"Setting EEE options are not supported with EEE disabled\n");
2671 			return -EINVAL;
2672 		}
2673 
2674 	if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
2675 		hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
2676 		igb_set_eee_i350(hw);
2677 
2678 		/* reset link */
2679 		if (!netif_running(netdev))
2680 			igb_reset(adapter);
2681 	}
2682 
2683 	return 0;
2684 }
2685 
2686 static int igb_get_module_info(struct net_device *netdev,
2687 			       struct ethtool_modinfo *modinfo)
2688 {
2689 	struct igb_adapter *adapter = netdev_priv(netdev);
2690 	struct e1000_hw *hw = &adapter->hw;
2691 	u32 status = E1000_SUCCESS;
2692 	u16 sff8472_rev, addr_mode;
2693 	bool page_swap = false;
2694 
2695 	if ((hw->phy.media_type == e1000_media_type_copper) ||
2696 	    (hw->phy.media_type == e1000_media_type_unknown))
2697 		return -EOPNOTSUPP;
2698 
2699 	/* Check whether we support SFF-8472 or not */
2700 	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
2701 	if (status != E1000_SUCCESS)
2702 		return -EIO;
2703 
2704 	/* addressing mode is not supported */
2705 	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
2706 	if (status != E1000_SUCCESS)
2707 		return -EIO;
2708 
2709 	/* addressing mode is not supported */
2710 	if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
2711 		hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
2712 		page_swap = true;
2713 	}
2714 
2715 	if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
2716 		/* We have an SFP, but it does not support SFF-8472 */
2717 		modinfo->type = ETH_MODULE_SFF_8079;
2718 		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2719 	} else {
2720 		/* We have an SFP which supports a revision of SFF-8472 */
2721 		modinfo->type = ETH_MODULE_SFF_8472;
2722 		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2723 	}
2724 
2725 	return 0;
2726 }
2727 
2728 static int igb_get_module_eeprom(struct net_device *netdev,
2729 				 struct ethtool_eeprom *ee, u8 *data)
2730 {
2731 	struct igb_adapter *adapter = netdev_priv(netdev);
2732 	struct e1000_hw *hw = &adapter->hw;
2733 	u32 status = E1000_SUCCESS;
2734 	u16 *dataword;
2735 	u16 first_word, last_word;
2736 	int i = 0;
2737 
2738 	if (ee->len == 0)
2739 		return -EINVAL;
2740 
2741 	first_word = ee->offset >> 1;
2742 	last_word = (ee->offset + ee->len - 1) >> 1;
2743 
2744 	dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1),
2745 			   GFP_KERNEL);
2746 	if (!dataword)
2747 		return -ENOMEM;
2748 
2749 	/* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
2750 	for (i = 0; i < last_word - first_word + 1; i++) {
2751 		status = igb_read_phy_reg_i2c(hw, first_word + i, &dataword[i]);
2752 		if (status != E1000_SUCCESS)
2753 			/* Error occurred while reading module */
2754 			return -EIO;
2755 
2756 		be16_to_cpus(&dataword[i]);
2757 	}
2758 
2759 	memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
2760 	kfree(dataword);
2761 
2762 	return 0;
2763 }
2764 
2765 static int igb_ethtool_begin(struct net_device *netdev)
2766 {
2767 	struct igb_adapter *adapter = netdev_priv(netdev);
2768 	pm_runtime_get_sync(&adapter->pdev->dev);
2769 	return 0;
2770 }
2771 
2772 static void igb_ethtool_complete(struct net_device *netdev)
2773 {
2774 	struct igb_adapter *adapter = netdev_priv(netdev);
2775 	pm_runtime_put(&adapter->pdev->dev);
2776 }
2777 
2778 static const struct ethtool_ops igb_ethtool_ops = {
2779 	.get_settings		= igb_get_settings,
2780 	.set_settings		= igb_set_settings,
2781 	.get_drvinfo		= igb_get_drvinfo,
2782 	.get_regs_len		= igb_get_regs_len,
2783 	.get_regs		= igb_get_regs,
2784 	.get_wol		= igb_get_wol,
2785 	.set_wol		= igb_set_wol,
2786 	.get_msglevel		= igb_get_msglevel,
2787 	.set_msglevel		= igb_set_msglevel,
2788 	.nway_reset		= igb_nway_reset,
2789 	.get_link		= igb_get_link,
2790 	.get_eeprom_len		= igb_get_eeprom_len,
2791 	.get_eeprom		= igb_get_eeprom,
2792 	.set_eeprom		= igb_set_eeprom,
2793 	.get_ringparam		= igb_get_ringparam,
2794 	.set_ringparam		= igb_set_ringparam,
2795 	.get_pauseparam		= igb_get_pauseparam,
2796 	.set_pauseparam		= igb_set_pauseparam,
2797 	.self_test		= igb_diag_test,
2798 	.get_strings		= igb_get_strings,
2799 	.set_phys_id		= igb_set_phys_id,
2800 	.get_sset_count		= igb_get_sset_count,
2801 	.get_ethtool_stats	= igb_get_ethtool_stats,
2802 	.get_coalesce		= igb_get_coalesce,
2803 	.set_coalesce		= igb_set_coalesce,
2804 	.get_ts_info		= igb_get_ts_info,
2805 	.get_rxnfc		= igb_get_rxnfc,
2806 	.set_rxnfc		= igb_set_rxnfc,
2807 	.get_eee		= igb_get_eee,
2808 	.set_eee		= igb_set_eee,
2809 	.get_module_info	= igb_get_module_info,
2810 	.get_module_eeprom	= igb_get_module_eeprom,
2811 	.begin			= igb_ethtool_begin,
2812 	.complete		= igb_ethtool_complete,
2813 };
2814 
2815 void igb_set_ethtool_ops(struct net_device *netdev)
2816 {
2817 	SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2818 }
2819