1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3 
4 /* ethtool support for igb */
5 
6 #include <linux/vmalloc.h>
7 #include <linux/netdevice.h>
8 #include <linux/pci.h>
9 #include <linux/delay.h>
10 #include <linux/interrupt.h>
11 #include <linux/if_ether.h>
12 #include <linux/ethtool.h>
13 #include <linux/sched.h>
14 #include <linux/slab.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/highmem.h>
17 #include <linux/mdio.h>
18 
19 #include "igb.h"
20 
21 struct igb_stats {
22 	char stat_string[ETH_GSTRING_LEN];
23 	int sizeof_stat;
24 	int stat_offset;
25 };
26 
27 #define IGB_STAT(_name, _stat) { \
28 	.stat_string = _name, \
29 	.sizeof_stat = sizeof_field(struct igb_adapter, _stat), \
30 	.stat_offset = offsetof(struct igb_adapter, _stat) \
31 }
32 static const struct igb_stats igb_gstrings_stats[] = {
33 	IGB_STAT("rx_packets", stats.gprc),
34 	IGB_STAT("tx_packets", stats.gptc),
35 	IGB_STAT("rx_bytes", stats.gorc),
36 	IGB_STAT("tx_bytes", stats.gotc),
37 	IGB_STAT("rx_broadcast", stats.bprc),
38 	IGB_STAT("tx_broadcast", stats.bptc),
39 	IGB_STAT("rx_multicast", stats.mprc),
40 	IGB_STAT("tx_multicast", stats.mptc),
41 	IGB_STAT("multicast", stats.mprc),
42 	IGB_STAT("collisions", stats.colc),
43 	IGB_STAT("rx_crc_errors", stats.crcerrs),
44 	IGB_STAT("rx_no_buffer_count", stats.rnbc),
45 	IGB_STAT("rx_missed_errors", stats.mpc),
46 	IGB_STAT("tx_aborted_errors", stats.ecol),
47 	IGB_STAT("tx_carrier_errors", stats.tncrs),
48 	IGB_STAT("tx_window_errors", stats.latecol),
49 	IGB_STAT("tx_abort_late_coll", stats.latecol),
50 	IGB_STAT("tx_deferred_ok", stats.dc),
51 	IGB_STAT("tx_single_coll_ok", stats.scc),
52 	IGB_STAT("tx_multi_coll_ok", stats.mcc),
53 	IGB_STAT("tx_timeout_count", tx_timeout_count),
54 	IGB_STAT("rx_long_length_errors", stats.roc),
55 	IGB_STAT("rx_short_length_errors", stats.ruc),
56 	IGB_STAT("rx_align_errors", stats.algnerrc),
57 	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
58 	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
59 	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
60 	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
61 	IGB_STAT("tx_flow_control_xon", stats.xontxc),
62 	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
63 	IGB_STAT("rx_long_byte_count", stats.gorc),
64 	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
65 	IGB_STAT("tx_smbus", stats.mgptc),
66 	IGB_STAT("rx_smbus", stats.mgprc),
67 	IGB_STAT("dropped_smbus", stats.mgpdc),
68 	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
69 	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
70 	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
71 	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
72 	IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
73 	IGB_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
74 	IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
75 };
76 
77 #define IGB_NETDEV_STAT(_net_stat) { \
78 	.stat_string = __stringify(_net_stat), \
79 	.sizeof_stat = sizeof_field(struct rtnl_link_stats64, _net_stat), \
80 	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
81 }
82 static const struct igb_stats igb_gstrings_net_stats[] = {
83 	IGB_NETDEV_STAT(rx_errors),
84 	IGB_NETDEV_STAT(tx_errors),
85 	IGB_NETDEV_STAT(tx_dropped),
86 	IGB_NETDEV_STAT(rx_length_errors),
87 	IGB_NETDEV_STAT(rx_over_errors),
88 	IGB_NETDEV_STAT(rx_frame_errors),
89 	IGB_NETDEV_STAT(rx_fifo_errors),
90 	IGB_NETDEV_STAT(tx_fifo_errors),
91 	IGB_NETDEV_STAT(tx_heartbeat_errors)
92 };
93 
94 #define IGB_GLOBAL_STATS_LEN	\
95 	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
96 #define IGB_NETDEV_STATS_LEN	\
97 	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
98 #define IGB_RX_QUEUE_STATS_LEN \
99 	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
100 
101 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
102 
103 #define IGB_QUEUE_STATS_LEN \
104 	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
105 	  IGB_RX_QUEUE_STATS_LEN) + \
106 	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
107 	  IGB_TX_QUEUE_STATS_LEN))
108 #define IGB_STATS_LEN \
109 	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
110 
111 enum igb_diagnostics_results {
112 	TEST_REG = 0,
113 	TEST_EEP,
114 	TEST_IRQ,
115 	TEST_LOOP,
116 	TEST_LINK
117 };
118 
119 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
120 	[TEST_REG]  = "Register test  (offline)",
121 	[TEST_EEP]  = "Eeprom test    (offline)",
122 	[TEST_IRQ]  = "Interrupt test (offline)",
123 	[TEST_LOOP] = "Loopback test  (offline)",
124 	[TEST_LINK] = "Link test   (on/offline)"
125 };
126 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
127 
128 static const char igb_priv_flags_strings[][ETH_GSTRING_LEN] = {
129 #define IGB_PRIV_FLAGS_LEGACY_RX	BIT(0)
130 	"legacy-rx",
131 };
132 
133 #define IGB_PRIV_FLAGS_STR_LEN ARRAY_SIZE(igb_priv_flags_strings)
134 
135 static int igb_get_link_ksettings(struct net_device *netdev,
136 				  struct ethtool_link_ksettings *cmd)
137 {
138 	struct igb_adapter *adapter = netdev_priv(netdev);
139 	struct e1000_hw *hw = &adapter->hw;
140 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
141 	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
142 	u32 status;
143 	u32 speed;
144 	u32 supported, advertising;
145 
146 	status = pm_runtime_suspended(&adapter->pdev->dev) ?
147 		 0 : rd32(E1000_STATUS);
148 	if (hw->phy.media_type == e1000_media_type_copper) {
149 
150 		supported = (SUPPORTED_10baseT_Half |
151 			     SUPPORTED_10baseT_Full |
152 			     SUPPORTED_100baseT_Half |
153 			     SUPPORTED_100baseT_Full |
154 			     SUPPORTED_1000baseT_Full|
155 			     SUPPORTED_Autoneg |
156 			     SUPPORTED_TP |
157 			     SUPPORTED_Pause);
158 		advertising = ADVERTISED_TP;
159 
160 		if (hw->mac.autoneg == 1) {
161 			advertising |= ADVERTISED_Autoneg;
162 			/* the e1000 autoneg seems to match ethtool nicely */
163 			advertising |= hw->phy.autoneg_advertised;
164 		}
165 
166 		cmd->base.port = PORT_TP;
167 		cmd->base.phy_address = hw->phy.addr;
168 	} else {
169 		supported = (SUPPORTED_FIBRE |
170 			     SUPPORTED_1000baseKX_Full |
171 			     SUPPORTED_Autoneg |
172 			     SUPPORTED_Pause);
173 		advertising = (ADVERTISED_FIBRE |
174 			       ADVERTISED_1000baseKX_Full);
175 		if (hw->mac.type == e1000_i354) {
176 			if ((hw->device_id ==
177 			     E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
178 			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
179 				supported |= SUPPORTED_2500baseX_Full;
180 				supported &= ~SUPPORTED_1000baseKX_Full;
181 				advertising |= ADVERTISED_2500baseX_Full;
182 				advertising &= ~ADVERTISED_1000baseKX_Full;
183 			}
184 		}
185 		if (eth_flags->e100_base_fx || eth_flags->e100_base_lx) {
186 			supported |= SUPPORTED_100baseT_Full;
187 			advertising |= ADVERTISED_100baseT_Full;
188 		}
189 		if (hw->mac.autoneg == 1)
190 			advertising |= ADVERTISED_Autoneg;
191 
192 		cmd->base.port = PORT_FIBRE;
193 	}
194 	if (hw->mac.autoneg != 1)
195 		advertising &= ~(ADVERTISED_Pause |
196 				 ADVERTISED_Asym_Pause);
197 
198 	switch (hw->fc.requested_mode) {
199 	case e1000_fc_full:
200 		advertising |= ADVERTISED_Pause;
201 		break;
202 	case e1000_fc_rx_pause:
203 		advertising |= (ADVERTISED_Pause |
204 				ADVERTISED_Asym_Pause);
205 		break;
206 	case e1000_fc_tx_pause:
207 		advertising |=  ADVERTISED_Asym_Pause;
208 		break;
209 	default:
210 		advertising &= ~(ADVERTISED_Pause |
211 				 ADVERTISED_Asym_Pause);
212 	}
213 	if (status & E1000_STATUS_LU) {
214 		if ((status & E1000_STATUS_2P5_SKU) &&
215 		    !(status & E1000_STATUS_2P5_SKU_OVER)) {
216 			speed = SPEED_2500;
217 		} else if (status & E1000_STATUS_SPEED_1000) {
218 			speed = SPEED_1000;
219 		} else if (status & E1000_STATUS_SPEED_100) {
220 			speed = SPEED_100;
221 		} else {
222 			speed = SPEED_10;
223 		}
224 		if ((status & E1000_STATUS_FD) ||
225 		    hw->phy.media_type != e1000_media_type_copper)
226 			cmd->base.duplex = DUPLEX_FULL;
227 		else
228 			cmd->base.duplex = DUPLEX_HALF;
229 	} else {
230 		speed = SPEED_UNKNOWN;
231 		cmd->base.duplex = DUPLEX_UNKNOWN;
232 	}
233 	cmd->base.speed = speed;
234 	if ((hw->phy.media_type == e1000_media_type_fiber) ||
235 	    hw->mac.autoneg)
236 		cmd->base.autoneg = AUTONEG_ENABLE;
237 	else
238 		cmd->base.autoneg = AUTONEG_DISABLE;
239 
240 	/* MDI-X => 2; MDI =>1; Invalid =>0 */
241 	if (hw->phy.media_type == e1000_media_type_copper)
242 		cmd->base.eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
243 						      ETH_TP_MDI;
244 	else
245 		cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
246 
247 	if (hw->phy.mdix == AUTO_ALL_MODES)
248 		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
249 	else
250 		cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
251 
252 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
253 						supported);
254 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
255 						advertising);
256 
257 	return 0;
258 }
259 
260 static int igb_set_link_ksettings(struct net_device *netdev,
261 				  const struct ethtool_link_ksettings *cmd)
262 {
263 	struct igb_adapter *adapter = netdev_priv(netdev);
264 	struct e1000_hw *hw = &adapter->hw;
265 	u32 advertising;
266 
267 	/* When SoL/IDER sessions are active, autoneg/speed/duplex
268 	 * cannot be changed
269 	 */
270 	if (igb_check_reset_block(hw)) {
271 		dev_err(&adapter->pdev->dev,
272 			"Cannot change link characteristics when SoL/IDER is active.\n");
273 		return -EINVAL;
274 	}
275 
276 	/* MDI setting is only allowed when autoneg enabled because
277 	 * some hardware doesn't allow MDI setting when speed or
278 	 * duplex is forced.
279 	 */
280 	if (cmd->base.eth_tp_mdix_ctrl) {
281 		if (hw->phy.media_type != e1000_media_type_copper)
282 			return -EOPNOTSUPP;
283 
284 		if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
285 		    (cmd->base.autoneg != AUTONEG_ENABLE)) {
286 			dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
287 			return -EINVAL;
288 		}
289 	}
290 
291 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
292 		usleep_range(1000, 2000);
293 
294 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
295 						cmd->link_modes.advertising);
296 
297 	if (cmd->base.autoneg == AUTONEG_ENABLE) {
298 		hw->mac.autoneg = 1;
299 		if (hw->phy.media_type == e1000_media_type_fiber) {
300 			hw->phy.autoneg_advertised = advertising |
301 						     ADVERTISED_FIBRE |
302 						     ADVERTISED_Autoneg;
303 			switch (adapter->link_speed) {
304 			case SPEED_2500:
305 				hw->phy.autoneg_advertised =
306 					ADVERTISED_2500baseX_Full;
307 				break;
308 			case SPEED_1000:
309 				hw->phy.autoneg_advertised =
310 					ADVERTISED_1000baseT_Full;
311 				break;
312 			case SPEED_100:
313 				hw->phy.autoneg_advertised =
314 					ADVERTISED_100baseT_Full;
315 				break;
316 			default:
317 				break;
318 			}
319 		} else {
320 			hw->phy.autoneg_advertised = advertising |
321 						     ADVERTISED_TP |
322 						     ADVERTISED_Autoneg;
323 		}
324 		advertising = hw->phy.autoneg_advertised;
325 		if (adapter->fc_autoneg)
326 			hw->fc.requested_mode = e1000_fc_default;
327 	} else {
328 		u32 speed = cmd->base.speed;
329 		/* calling this overrides forced MDI setting */
330 		if (igb_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
331 			clear_bit(__IGB_RESETTING, &adapter->state);
332 			return -EINVAL;
333 		}
334 	}
335 
336 	/* MDI-X => 2; MDI => 1; Auto => 3 */
337 	if (cmd->base.eth_tp_mdix_ctrl) {
338 		/* fix up the value for auto (3 => 0) as zero is mapped
339 		 * internally to auto
340 		 */
341 		if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
342 			hw->phy.mdix = AUTO_ALL_MODES;
343 		else
344 			hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
345 	}
346 
347 	/* reset the link */
348 	if (netif_running(adapter->netdev)) {
349 		igb_down(adapter);
350 		igb_up(adapter);
351 	} else
352 		igb_reset(adapter);
353 
354 	clear_bit(__IGB_RESETTING, &adapter->state);
355 	return 0;
356 }
357 
358 static u32 igb_get_link(struct net_device *netdev)
359 {
360 	struct igb_adapter *adapter = netdev_priv(netdev);
361 	struct e1000_mac_info *mac = &adapter->hw.mac;
362 
363 	/* If the link is not reported up to netdev, interrupts are disabled,
364 	 * and so the physical link state may have changed since we last
365 	 * looked. Set get_link_status to make sure that the true link
366 	 * state is interrogated, rather than pulling a cached and possibly
367 	 * stale link state from the driver.
368 	 */
369 	if (!netif_carrier_ok(netdev))
370 		mac->get_link_status = 1;
371 
372 	return igb_has_link(adapter);
373 }
374 
375 static void igb_get_pauseparam(struct net_device *netdev,
376 			       struct ethtool_pauseparam *pause)
377 {
378 	struct igb_adapter *adapter = netdev_priv(netdev);
379 	struct e1000_hw *hw = &adapter->hw;
380 
381 	pause->autoneg =
382 		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
383 
384 	if (hw->fc.current_mode == e1000_fc_rx_pause)
385 		pause->rx_pause = 1;
386 	else if (hw->fc.current_mode == e1000_fc_tx_pause)
387 		pause->tx_pause = 1;
388 	else if (hw->fc.current_mode == e1000_fc_full) {
389 		pause->rx_pause = 1;
390 		pause->tx_pause = 1;
391 	}
392 }
393 
394 static int igb_set_pauseparam(struct net_device *netdev,
395 			      struct ethtool_pauseparam *pause)
396 {
397 	struct igb_adapter *adapter = netdev_priv(netdev);
398 	struct e1000_hw *hw = &adapter->hw;
399 	int retval = 0;
400 	int i;
401 
402 	/* 100basefx does not support setting link flow control */
403 	if (hw->dev_spec._82575.eth_flags.e100_base_fx)
404 		return -EINVAL;
405 
406 	adapter->fc_autoneg = pause->autoneg;
407 
408 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
409 		usleep_range(1000, 2000);
410 
411 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
412 		hw->fc.requested_mode = e1000_fc_default;
413 		if (netif_running(adapter->netdev)) {
414 			igb_down(adapter);
415 			igb_up(adapter);
416 		} else {
417 			igb_reset(adapter);
418 		}
419 	} else {
420 		if (pause->rx_pause && pause->tx_pause)
421 			hw->fc.requested_mode = e1000_fc_full;
422 		else if (pause->rx_pause && !pause->tx_pause)
423 			hw->fc.requested_mode = e1000_fc_rx_pause;
424 		else if (!pause->rx_pause && pause->tx_pause)
425 			hw->fc.requested_mode = e1000_fc_tx_pause;
426 		else if (!pause->rx_pause && !pause->tx_pause)
427 			hw->fc.requested_mode = e1000_fc_none;
428 
429 		hw->fc.current_mode = hw->fc.requested_mode;
430 
431 		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
432 			  igb_force_mac_fc(hw) : igb_setup_link(hw));
433 
434 		/* Make sure SRRCTL considers new fc settings for each ring */
435 		for (i = 0; i < adapter->num_rx_queues; i++) {
436 			struct igb_ring *ring = adapter->rx_ring[i];
437 
438 			igb_setup_srrctl(adapter, ring);
439 		}
440 	}
441 
442 	clear_bit(__IGB_RESETTING, &adapter->state);
443 	return retval;
444 }
445 
446 static u32 igb_get_msglevel(struct net_device *netdev)
447 {
448 	struct igb_adapter *adapter = netdev_priv(netdev);
449 	return adapter->msg_enable;
450 }
451 
452 static void igb_set_msglevel(struct net_device *netdev, u32 data)
453 {
454 	struct igb_adapter *adapter = netdev_priv(netdev);
455 	adapter->msg_enable = data;
456 }
457 
458 static int igb_get_regs_len(struct net_device *netdev)
459 {
460 #define IGB_REGS_LEN 740
461 	return IGB_REGS_LEN * sizeof(u32);
462 }
463 
464 static void igb_get_regs(struct net_device *netdev,
465 			 struct ethtool_regs *regs, void *p)
466 {
467 	struct igb_adapter *adapter = netdev_priv(netdev);
468 	struct e1000_hw *hw = &adapter->hw;
469 	u32 *regs_buff = p;
470 	u8 i;
471 
472 	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
473 
474 	regs->version = (1u << 24) | (hw->revision_id << 16) | hw->device_id;
475 
476 	/* General Registers */
477 	regs_buff[0] = rd32(E1000_CTRL);
478 	regs_buff[1] = rd32(E1000_STATUS);
479 	regs_buff[2] = rd32(E1000_CTRL_EXT);
480 	regs_buff[3] = rd32(E1000_MDIC);
481 	regs_buff[4] = rd32(E1000_SCTL);
482 	regs_buff[5] = rd32(E1000_CONNSW);
483 	regs_buff[6] = rd32(E1000_VET);
484 	regs_buff[7] = rd32(E1000_LEDCTL);
485 	regs_buff[8] = rd32(E1000_PBA);
486 	regs_buff[9] = rd32(E1000_PBS);
487 	regs_buff[10] = rd32(E1000_FRTIMER);
488 	regs_buff[11] = rd32(E1000_TCPTIMER);
489 
490 	/* NVM Register */
491 	regs_buff[12] = rd32(E1000_EECD);
492 
493 	/* Interrupt */
494 	/* Reading EICS for EICR because they read the
495 	 * same but EICS does not clear on read
496 	 */
497 	regs_buff[13] = rd32(E1000_EICS);
498 	regs_buff[14] = rd32(E1000_EICS);
499 	regs_buff[15] = rd32(E1000_EIMS);
500 	regs_buff[16] = rd32(E1000_EIMC);
501 	regs_buff[17] = rd32(E1000_EIAC);
502 	regs_buff[18] = rd32(E1000_EIAM);
503 	/* Reading ICS for ICR because they read the
504 	 * same but ICS does not clear on read
505 	 */
506 	regs_buff[19] = rd32(E1000_ICS);
507 	regs_buff[20] = rd32(E1000_ICS);
508 	regs_buff[21] = rd32(E1000_IMS);
509 	regs_buff[22] = rd32(E1000_IMC);
510 	regs_buff[23] = rd32(E1000_IAC);
511 	regs_buff[24] = rd32(E1000_IAM);
512 	regs_buff[25] = rd32(E1000_IMIRVP);
513 
514 	/* Flow Control */
515 	regs_buff[26] = rd32(E1000_FCAL);
516 	regs_buff[27] = rd32(E1000_FCAH);
517 	regs_buff[28] = rd32(E1000_FCTTV);
518 	regs_buff[29] = rd32(E1000_FCRTL);
519 	regs_buff[30] = rd32(E1000_FCRTH);
520 	regs_buff[31] = rd32(E1000_FCRTV);
521 
522 	/* Receive */
523 	regs_buff[32] = rd32(E1000_RCTL);
524 	regs_buff[33] = rd32(E1000_RXCSUM);
525 	regs_buff[34] = rd32(E1000_RLPML);
526 	regs_buff[35] = rd32(E1000_RFCTL);
527 	regs_buff[36] = rd32(E1000_MRQC);
528 	regs_buff[37] = rd32(E1000_VT_CTL);
529 
530 	/* Transmit */
531 	regs_buff[38] = rd32(E1000_TCTL);
532 	regs_buff[39] = rd32(E1000_TCTL_EXT);
533 	regs_buff[40] = rd32(E1000_TIPG);
534 	regs_buff[41] = rd32(E1000_DTXCTL);
535 
536 	/* Wake Up */
537 	regs_buff[42] = rd32(E1000_WUC);
538 	regs_buff[43] = rd32(E1000_WUFC);
539 	regs_buff[44] = rd32(E1000_WUS);
540 	regs_buff[45] = rd32(E1000_IPAV);
541 	regs_buff[46] = rd32(E1000_WUPL);
542 
543 	/* MAC */
544 	regs_buff[47] = rd32(E1000_PCS_CFG0);
545 	regs_buff[48] = rd32(E1000_PCS_LCTL);
546 	regs_buff[49] = rd32(E1000_PCS_LSTAT);
547 	regs_buff[50] = rd32(E1000_PCS_ANADV);
548 	regs_buff[51] = rd32(E1000_PCS_LPAB);
549 	regs_buff[52] = rd32(E1000_PCS_NPTX);
550 	regs_buff[53] = rd32(E1000_PCS_LPABNP);
551 
552 	/* Statistics */
553 	regs_buff[54] = adapter->stats.crcerrs;
554 	regs_buff[55] = adapter->stats.algnerrc;
555 	regs_buff[56] = adapter->stats.symerrs;
556 	regs_buff[57] = adapter->stats.rxerrc;
557 	regs_buff[58] = adapter->stats.mpc;
558 	regs_buff[59] = adapter->stats.scc;
559 	regs_buff[60] = adapter->stats.ecol;
560 	regs_buff[61] = adapter->stats.mcc;
561 	regs_buff[62] = adapter->stats.latecol;
562 	regs_buff[63] = adapter->stats.colc;
563 	regs_buff[64] = adapter->stats.dc;
564 	regs_buff[65] = adapter->stats.tncrs;
565 	regs_buff[66] = adapter->stats.sec;
566 	regs_buff[67] = adapter->stats.htdpmc;
567 	regs_buff[68] = adapter->stats.rlec;
568 	regs_buff[69] = adapter->stats.xonrxc;
569 	regs_buff[70] = adapter->stats.xontxc;
570 	regs_buff[71] = adapter->stats.xoffrxc;
571 	regs_buff[72] = adapter->stats.xofftxc;
572 	regs_buff[73] = adapter->stats.fcruc;
573 	regs_buff[74] = adapter->stats.prc64;
574 	regs_buff[75] = adapter->stats.prc127;
575 	regs_buff[76] = adapter->stats.prc255;
576 	regs_buff[77] = adapter->stats.prc511;
577 	regs_buff[78] = adapter->stats.prc1023;
578 	regs_buff[79] = adapter->stats.prc1522;
579 	regs_buff[80] = adapter->stats.gprc;
580 	regs_buff[81] = adapter->stats.bprc;
581 	regs_buff[82] = adapter->stats.mprc;
582 	regs_buff[83] = adapter->stats.gptc;
583 	regs_buff[84] = adapter->stats.gorc;
584 	regs_buff[86] = adapter->stats.gotc;
585 	regs_buff[88] = adapter->stats.rnbc;
586 	regs_buff[89] = adapter->stats.ruc;
587 	regs_buff[90] = adapter->stats.rfc;
588 	regs_buff[91] = adapter->stats.roc;
589 	regs_buff[92] = adapter->stats.rjc;
590 	regs_buff[93] = adapter->stats.mgprc;
591 	regs_buff[94] = adapter->stats.mgpdc;
592 	regs_buff[95] = adapter->stats.mgptc;
593 	regs_buff[96] = adapter->stats.tor;
594 	regs_buff[98] = adapter->stats.tot;
595 	regs_buff[100] = adapter->stats.tpr;
596 	regs_buff[101] = adapter->stats.tpt;
597 	regs_buff[102] = adapter->stats.ptc64;
598 	regs_buff[103] = adapter->stats.ptc127;
599 	regs_buff[104] = adapter->stats.ptc255;
600 	regs_buff[105] = adapter->stats.ptc511;
601 	regs_buff[106] = adapter->stats.ptc1023;
602 	regs_buff[107] = adapter->stats.ptc1522;
603 	regs_buff[108] = adapter->stats.mptc;
604 	regs_buff[109] = adapter->stats.bptc;
605 	regs_buff[110] = adapter->stats.tsctc;
606 	regs_buff[111] = adapter->stats.iac;
607 	regs_buff[112] = adapter->stats.rpthc;
608 	regs_buff[113] = adapter->stats.hgptc;
609 	regs_buff[114] = adapter->stats.hgorc;
610 	regs_buff[116] = adapter->stats.hgotc;
611 	regs_buff[118] = adapter->stats.lenerrs;
612 	regs_buff[119] = adapter->stats.scvpc;
613 	regs_buff[120] = adapter->stats.hrmpc;
614 
615 	for (i = 0; i < 4; i++)
616 		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
617 	for (i = 0; i < 4; i++)
618 		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
619 	for (i = 0; i < 4; i++)
620 		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
621 	for (i = 0; i < 4; i++)
622 		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
623 	for (i = 0; i < 4; i++)
624 		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
625 	for (i = 0; i < 4; i++)
626 		regs_buff[141 + i] = rd32(E1000_RDH(i));
627 	for (i = 0; i < 4; i++)
628 		regs_buff[145 + i] = rd32(E1000_RDT(i));
629 	for (i = 0; i < 4; i++)
630 		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
631 
632 	for (i = 0; i < 10; i++)
633 		regs_buff[153 + i] = rd32(E1000_EITR(i));
634 	for (i = 0; i < 8; i++)
635 		regs_buff[163 + i] = rd32(E1000_IMIR(i));
636 	for (i = 0; i < 8; i++)
637 		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
638 	for (i = 0; i < 16; i++)
639 		regs_buff[179 + i] = rd32(E1000_RAL(i));
640 	for (i = 0; i < 16; i++)
641 		regs_buff[195 + i] = rd32(E1000_RAH(i));
642 
643 	for (i = 0; i < 4; i++)
644 		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
645 	for (i = 0; i < 4; i++)
646 		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
647 	for (i = 0; i < 4; i++)
648 		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
649 	for (i = 0; i < 4; i++)
650 		regs_buff[223 + i] = rd32(E1000_TDH(i));
651 	for (i = 0; i < 4; i++)
652 		regs_buff[227 + i] = rd32(E1000_TDT(i));
653 	for (i = 0; i < 4; i++)
654 		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
655 	for (i = 0; i < 4; i++)
656 		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
657 	for (i = 0; i < 4; i++)
658 		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
659 	for (i = 0; i < 4; i++)
660 		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
661 
662 	for (i = 0; i < 4; i++)
663 		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
664 	for (i = 0; i < 4; i++)
665 		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
666 	for (i = 0; i < 32; i++)
667 		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
668 	for (i = 0; i < 128; i++)
669 		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
670 	for (i = 0; i < 128; i++)
671 		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
672 	for (i = 0; i < 4; i++)
673 		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
674 
675 	regs_buff[547] = rd32(E1000_TDFH);
676 	regs_buff[548] = rd32(E1000_TDFT);
677 	regs_buff[549] = rd32(E1000_TDFHS);
678 	regs_buff[550] = rd32(E1000_TDFPC);
679 
680 	if (hw->mac.type > e1000_82580) {
681 		regs_buff[551] = adapter->stats.o2bgptc;
682 		regs_buff[552] = adapter->stats.b2ospc;
683 		regs_buff[553] = adapter->stats.o2bspc;
684 		regs_buff[554] = adapter->stats.b2ogprc;
685 	}
686 
687 	if (hw->mac.type == e1000_82576) {
688 		for (i = 0; i < 12; i++)
689 			regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
690 		for (i = 0; i < 4; i++)
691 			regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
692 		for (i = 0; i < 12; i++)
693 			regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
694 		for (i = 0; i < 12; i++)
695 			regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
696 		for (i = 0; i < 12; i++)
697 			regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
698 		for (i = 0; i < 12; i++)
699 			regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
700 		for (i = 0; i < 12; i++)
701 			regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
702 		for (i = 0; i < 12; i++)
703 			regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
704 
705 		for (i = 0; i < 12; i++)
706 			regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
707 		for (i = 0; i < 12; i++)
708 			regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
709 		for (i = 0; i < 12; i++)
710 			regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
711 		for (i = 0; i < 12; i++)
712 			regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
713 		for (i = 0; i < 12; i++)
714 			regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
715 		for (i = 0; i < 12; i++)
716 			regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
717 		for (i = 0; i < 12; i++)
718 			regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
719 		for (i = 0; i < 12; i++)
720 			regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
721 	}
722 
723 	if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211)
724 		regs_buff[739] = rd32(E1000_I210_RR2DCDELAY);
725 }
726 
727 static int igb_get_eeprom_len(struct net_device *netdev)
728 {
729 	struct igb_adapter *adapter = netdev_priv(netdev);
730 	return adapter->hw.nvm.word_size * 2;
731 }
732 
733 static int igb_get_eeprom(struct net_device *netdev,
734 			  struct ethtool_eeprom *eeprom, u8 *bytes)
735 {
736 	struct igb_adapter *adapter = netdev_priv(netdev);
737 	struct e1000_hw *hw = &adapter->hw;
738 	u16 *eeprom_buff;
739 	int first_word, last_word;
740 	int ret_val = 0;
741 	u16 i;
742 
743 	if (eeprom->len == 0)
744 		return -EINVAL;
745 
746 	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
747 
748 	first_word = eeprom->offset >> 1;
749 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
750 
751 	eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
752 				    GFP_KERNEL);
753 	if (!eeprom_buff)
754 		return -ENOMEM;
755 
756 	if (hw->nvm.type == e1000_nvm_eeprom_spi)
757 		ret_val = hw->nvm.ops.read(hw, first_word,
758 					   last_word - first_word + 1,
759 					   eeprom_buff);
760 	else {
761 		for (i = 0; i < last_word - first_word + 1; i++) {
762 			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
763 						   &eeprom_buff[i]);
764 			if (ret_val)
765 				break;
766 		}
767 	}
768 
769 	/* Device's eeprom is always little-endian, word addressable */
770 	for (i = 0; i < last_word - first_word + 1; i++)
771 		le16_to_cpus(&eeprom_buff[i]);
772 
773 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
774 			eeprom->len);
775 	kfree(eeprom_buff);
776 
777 	return ret_val;
778 }
779 
780 static int igb_set_eeprom(struct net_device *netdev,
781 			  struct ethtool_eeprom *eeprom, u8 *bytes)
782 {
783 	struct igb_adapter *adapter = netdev_priv(netdev);
784 	struct e1000_hw *hw = &adapter->hw;
785 	u16 *eeprom_buff;
786 	void *ptr;
787 	int max_len, first_word, last_word, ret_val = 0;
788 	u16 i;
789 
790 	if (eeprom->len == 0)
791 		return -EOPNOTSUPP;
792 
793 	if ((hw->mac.type >= e1000_i210) &&
794 	    !igb_get_flash_presence_i210(hw)) {
795 		return -EOPNOTSUPP;
796 	}
797 
798 	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
799 		return -EFAULT;
800 
801 	max_len = hw->nvm.word_size * 2;
802 
803 	first_word = eeprom->offset >> 1;
804 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
805 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
806 	if (!eeprom_buff)
807 		return -ENOMEM;
808 
809 	ptr = (void *)eeprom_buff;
810 
811 	if (eeprom->offset & 1) {
812 		/* need read/modify/write of first changed EEPROM word
813 		 * only the second byte of the word is being modified
814 		 */
815 		ret_val = hw->nvm.ops.read(hw, first_word, 1,
816 					    &eeprom_buff[0]);
817 		ptr++;
818 	}
819 	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
820 		/* need read/modify/write of last changed EEPROM word
821 		 * only the first byte of the word is being modified
822 		 */
823 		ret_val = hw->nvm.ops.read(hw, last_word, 1,
824 				   &eeprom_buff[last_word - first_word]);
825 		if (ret_val)
826 			goto out;
827 	}
828 
829 	/* Device's eeprom is always little-endian, word addressable */
830 	for (i = 0; i < last_word - first_word + 1; i++)
831 		le16_to_cpus(&eeprom_buff[i]);
832 
833 	memcpy(ptr, bytes, eeprom->len);
834 
835 	for (i = 0; i < last_word - first_word + 1; i++)
836 		cpu_to_le16s(&eeprom_buff[i]);
837 
838 	ret_val = hw->nvm.ops.write(hw, first_word,
839 				    last_word - first_word + 1, eeprom_buff);
840 
841 	/* Update the checksum if nvm write succeeded */
842 	if (ret_val == 0)
843 		hw->nvm.ops.update(hw);
844 
845 	igb_set_fw_version(adapter);
846 out:
847 	kfree(eeprom_buff);
848 	return ret_val;
849 }
850 
851 static void igb_get_drvinfo(struct net_device *netdev,
852 			    struct ethtool_drvinfo *drvinfo)
853 {
854 	struct igb_adapter *adapter = netdev_priv(netdev);
855 
856 	strscpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
857 
858 	/* EEPROM image version # is reported as firmware version # for
859 	 * 82575 controllers
860 	 */
861 	strscpy(drvinfo->fw_version, adapter->fw_version,
862 		sizeof(drvinfo->fw_version));
863 	strscpy(drvinfo->bus_info, pci_name(adapter->pdev),
864 		sizeof(drvinfo->bus_info));
865 
866 	drvinfo->n_priv_flags = IGB_PRIV_FLAGS_STR_LEN;
867 }
868 
869 static void igb_get_ringparam(struct net_device *netdev,
870 			      struct ethtool_ringparam *ring,
871 			      struct kernel_ethtool_ringparam *kernel_ring,
872 			      struct netlink_ext_ack *extack)
873 {
874 	struct igb_adapter *adapter = netdev_priv(netdev);
875 
876 	ring->rx_max_pending = IGB_MAX_RXD;
877 	ring->tx_max_pending = IGB_MAX_TXD;
878 	ring->rx_pending = adapter->rx_ring_count;
879 	ring->tx_pending = adapter->tx_ring_count;
880 }
881 
882 static int igb_set_ringparam(struct net_device *netdev,
883 			     struct ethtool_ringparam *ring,
884 			     struct kernel_ethtool_ringparam *kernel_ring,
885 			     struct netlink_ext_ack *extack)
886 {
887 	struct igb_adapter *adapter = netdev_priv(netdev);
888 	struct igb_ring *temp_ring;
889 	int i, err = 0;
890 	u16 new_rx_count, new_tx_count;
891 
892 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
893 		return -EINVAL;
894 
895 	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
896 	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
897 	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
898 
899 	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
900 	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
901 	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
902 
903 	if ((new_tx_count == adapter->tx_ring_count) &&
904 	    (new_rx_count == adapter->rx_ring_count)) {
905 		/* nothing to do */
906 		return 0;
907 	}
908 
909 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
910 		usleep_range(1000, 2000);
911 
912 	if (!netif_running(adapter->netdev)) {
913 		for (i = 0; i < adapter->num_tx_queues; i++)
914 			adapter->tx_ring[i]->count = new_tx_count;
915 		for (i = 0; i < adapter->num_rx_queues; i++)
916 			adapter->rx_ring[i]->count = new_rx_count;
917 		adapter->tx_ring_count = new_tx_count;
918 		adapter->rx_ring_count = new_rx_count;
919 		goto clear_reset;
920 	}
921 
922 	if (adapter->num_tx_queues > adapter->num_rx_queues)
923 		temp_ring = vmalloc(array_size(sizeof(struct igb_ring),
924 					       adapter->num_tx_queues));
925 	else
926 		temp_ring = vmalloc(array_size(sizeof(struct igb_ring),
927 					       adapter->num_rx_queues));
928 
929 	if (!temp_ring) {
930 		err = -ENOMEM;
931 		goto clear_reset;
932 	}
933 
934 	igb_down(adapter);
935 
936 	/* We can't just free everything and then setup again,
937 	 * because the ISRs in MSI-X mode get passed pointers
938 	 * to the Tx and Rx ring structs.
939 	 */
940 	if (new_tx_count != adapter->tx_ring_count) {
941 		for (i = 0; i < adapter->num_tx_queues; i++) {
942 			memcpy(&temp_ring[i], adapter->tx_ring[i],
943 			       sizeof(struct igb_ring));
944 
945 			temp_ring[i].count = new_tx_count;
946 			err = igb_setup_tx_resources(&temp_ring[i]);
947 			if (err) {
948 				while (i) {
949 					i--;
950 					igb_free_tx_resources(&temp_ring[i]);
951 				}
952 				goto err_setup;
953 			}
954 		}
955 
956 		for (i = 0; i < adapter->num_tx_queues; i++) {
957 			igb_free_tx_resources(adapter->tx_ring[i]);
958 
959 			memcpy(adapter->tx_ring[i], &temp_ring[i],
960 			       sizeof(struct igb_ring));
961 		}
962 
963 		adapter->tx_ring_count = new_tx_count;
964 	}
965 
966 	if (new_rx_count != adapter->rx_ring_count) {
967 		for (i = 0; i < adapter->num_rx_queues; i++) {
968 			memcpy(&temp_ring[i], adapter->rx_ring[i],
969 			       sizeof(struct igb_ring));
970 
971 			temp_ring[i].count = new_rx_count;
972 			err = igb_setup_rx_resources(&temp_ring[i]);
973 			if (err) {
974 				while (i) {
975 					i--;
976 					igb_free_rx_resources(&temp_ring[i]);
977 				}
978 				goto err_setup;
979 			}
980 
981 		}
982 
983 		for (i = 0; i < adapter->num_rx_queues; i++) {
984 			igb_free_rx_resources(adapter->rx_ring[i]);
985 
986 			memcpy(adapter->rx_ring[i], &temp_ring[i],
987 			       sizeof(struct igb_ring));
988 		}
989 
990 		adapter->rx_ring_count = new_rx_count;
991 	}
992 err_setup:
993 	igb_up(adapter);
994 	vfree(temp_ring);
995 clear_reset:
996 	clear_bit(__IGB_RESETTING, &adapter->state);
997 	return err;
998 }
999 
1000 /* ethtool register test data */
1001 struct igb_reg_test {
1002 	u16 reg;
1003 	u16 reg_offset;
1004 	u16 array_len;
1005 	u16 test_type;
1006 	u32 mask;
1007 	u32 write;
1008 };
1009 
1010 /* In the hardware, registers are laid out either singly, in arrays
1011  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
1012  * most tests take place on arrays or single registers (handled
1013  * as a single-element array) and special-case the tables.
1014  * Table tests are always pattern tests.
1015  *
1016  * We also make provision for some required setup steps by specifying
1017  * registers to be written without any read-back testing.
1018  */
1019 
1020 #define PATTERN_TEST	1
1021 #define SET_READ_TEST	2
1022 #define WRITE_NO_TEST	3
1023 #define TABLE32_TEST	4
1024 #define TABLE64_TEST_LO	5
1025 #define TABLE64_TEST_HI	6
1026 
1027 /* i210 reg test */
1028 static struct igb_reg_test reg_test_i210[] = {
1029 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1030 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1031 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1032 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1033 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1034 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1035 	/* RDH is read-only for i210, only test RDT. */
1036 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1037 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1038 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1039 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1040 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1041 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1042 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1043 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1044 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1045 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1046 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1047 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1048 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1049 						0xFFFFFFFF, 0xFFFFFFFF },
1050 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1051 						0x900FFFFF, 0xFFFFFFFF },
1052 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1053 						0xFFFFFFFF, 0xFFFFFFFF },
1054 	{ 0, 0, 0, 0, 0 }
1055 };
1056 
1057 /* i350 reg test */
1058 static struct igb_reg_test reg_test_i350[] = {
1059 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1060 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1061 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1062 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1063 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1064 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1065 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1066 	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1067 	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1068 	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1069 	/* RDH is read-only for i350, only test RDT. */
1070 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1071 	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1072 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1073 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1074 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1075 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1076 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1077 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1078 	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1079 	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1080 	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1081 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1082 	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1083 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1084 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1085 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1086 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1087 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1088 						0xFFFFFFFF, 0xFFFFFFFF },
1089 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1090 						0xC3FFFFFF, 0xFFFFFFFF },
1091 	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
1092 						0xFFFFFFFF, 0xFFFFFFFF },
1093 	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
1094 						0xC3FFFFFF, 0xFFFFFFFF },
1095 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1096 						0xFFFFFFFF, 0xFFFFFFFF },
1097 	{ 0, 0, 0, 0 }
1098 };
1099 
1100 /* 82580 reg test */
1101 static struct igb_reg_test reg_test_82580[] = {
1102 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1103 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1104 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1105 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1106 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1107 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1108 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1109 	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1110 	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1111 	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1112 	/* RDH is read-only for 82580, only test RDT. */
1113 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1114 	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1115 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1116 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1117 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1118 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1119 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1120 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1121 	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1122 	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1123 	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1124 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1125 	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1126 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1127 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1128 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1129 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1130 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1131 						0xFFFFFFFF, 0xFFFFFFFF },
1132 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1133 						0x83FFFFFF, 0xFFFFFFFF },
1134 	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
1135 						0xFFFFFFFF, 0xFFFFFFFF },
1136 	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
1137 						0x83FFFFFF, 0xFFFFFFFF },
1138 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1139 						0xFFFFFFFF, 0xFFFFFFFF },
1140 	{ 0, 0, 0, 0 }
1141 };
1142 
1143 /* 82576 reg test */
1144 static struct igb_reg_test reg_test_82576[] = {
1145 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1146 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1147 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1148 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1149 	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1150 	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1151 	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1152 	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1153 	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1154 	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1155 	/* Enable all RX queues before testing. */
1156 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1157 	  E1000_RXDCTL_QUEUE_ENABLE },
1158 	{ E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0,
1159 	  E1000_RXDCTL_QUEUE_ENABLE },
1160 	/* RDH is read-only for 82576, only test RDT. */
1161 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1162 	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1163 	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1164 	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1165 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1166 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1167 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1168 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1169 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1170 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1171 	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1172 	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1173 	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1174 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1175 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1176 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1177 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1178 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1179 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1180 	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1181 	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1182 	{ E1000_MTA,	   0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1183 	{ 0, 0, 0, 0 }
1184 };
1185 
1186 /* 82575 register test */
1187 static struct igb_reg_test reg_test_82575[] = {
1188 	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1189 	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1190 	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1191 	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1192 	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1193 	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1194 	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1195 	/* Enable all four RX queues before testing. */
1196 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1197 	  E1000_RXDCTL_QUEUE_ENABLE },
1198 	/* RDH is read-only for 82575, only test RDT. */
1199 	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1200 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1201 	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1202 	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1203 	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1204 	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1205 	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1206 	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1207 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1208 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1209 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1210 	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1211 	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1212 	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1213 	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1214 	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1215 	{ 0, 0, 0, 0 }
1216 };
1217 
1218 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1219 			     int reg, u32 mask, u32 write)
1220 {
1221 	struct e1000_hw *hw = &adapter->hw;
1222 	u32 pat, val;
1223 	static const u32 _test[] = {
1224 		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1225 	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1226 		wr32(reg, (_test[pat] & write));
1227 		val = rd32(reg) & mask;
1228 		if (val != (_test[pat] & write & mask)) {
1229 			dev_err(&adapter->pdev->dev,
1230 				"pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1231 				reg, val, (_test[pat] & write & mask));
1232 			*data = reg;
1233 			return true;
1234 		}
1235 	}
1236 
1237 	return false;
1238 }
1239 
1240 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1241 			      int reg, u32 mask, u32 write)
1242 {
1243 	struct e1000_hw *hw = &adapter->hw;
1244 	u32 val;
1245 
1246 	wr32(reg, write & mask);
1247 	val = rd32(reg);
1248 	if ((write & mask) != (val & mask)) {
1249 		dev_err(&adapter->pdev->dev,
1250 			"set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
1251 			reg, (val & mask), (write & mask));
1252 		*data = reg;
1253 		return true;
1254 	}
1255 
1256 	return false;
1257 }
1258 
1259 #define REG_PATTERN_TEST(reg, mask, write) \
1260 	do { \
1261 		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1262 			return 1; \
1263 	} while (0)
1264 
1265 #define REG_SET_AND_CHECK(reg, mask, write) \
1266 	do { \
1267 		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1268 			return 1; \
1269 	} while (0)
1270 
1271 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1272 {
1273 	struct e1000_hw *hw = &adapter->hw;
1274 	struct igb_reg_test *test;
1275 	u32 value, before, after;
1276 	u32 i, toggle;
1277 
1278 	switch (adapter->hw.mac.type) {
1279 	case e1000_i350:
1280 	case e1000_i354:
1281 		test = reg_test_i350;
1282 		toggle = 0x7FEFF3FF;
1283 		break;
1284 	case e1000_i210:
1285 	case e1000_i211:
1286 		test = reg_test_i210;
1287 		toggle = 0x7FEFF3FF;
1288 		break;
1289 	case e1000_82580:
1290 		test = reg_test_82580;
1291 		toggle = 0x7FEFF3FF;
1292 		break;
1293 	case e1000_82576:
1294 		test = reg_test_82576;
1295 		toggle = 0x7FFFF3FF;
1296 		break;
1297 	default:
1298 		test = reg_test_82575;
1299 		toggle = 0x7FFFF3FF;
1300 		break;
1301 	}
1302 
1303 	/* Because the status register is such a special case,
1304 	 * we handle it separately from the rest of the register
1305 	 * tests.  Some bits are read-only, some toggle, and some
1306 	 * are writable on newer MACs.
1307 	 */
1308 	before = rd32(E1000_STATUS);
1309 	value = (rd32(E1000_STATUS) & toggle);
1310 	wr32(E1000_STATUS, toggle);
1311 	after = rd32(E1000_STATUS) & toggle;
1312 	if (value != after) {
1313 		dev_err(&adapter->pdev->dev,
1314 			"failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1315 			after, value);
1316 		*data = 1;
1317 		return 1;
1318 	}
1319 	/* restore previous status */
1320 	wr32(E1000_STATUS, before);
1321 
1322 	/* Perform the remainder of the register test, looping through
1323 	 * the test table until we either fail or reach the null entry.
1324 	 */
1325 	while (test->reg) {
1326 		for (i = 0; i < test->array_len; i++) {
1327 			switch (test->test_type) {
1328 			case PATTERN_TEST:
1329 				REG_PATTERN_TEST(test->reg +
1330 						(i * test->reg_offset),
1331 						test->mask,
1332 						test->write);
1333 				break;
1334 			case SET_READ_TEST:
1335 				REG_SET_AND_CHECK(test->reg +
1336 						(i * test->reg_offset),
1337 						test->mask,
1338 						test->write);
1339 				break;
1340 			case WRITE_NO_TEST:
1341 				writel(test->write,
1342 				    (adapter->hw.hw_addr + test->reg)
1343 					+ (i * test->reg_offset));
1344 				break;
1345 			case TABLE32_TEST:
1346 				REG_PATTERN_TEST(test->reg + (i * 4),
1347 						test->mask,
1348 						test->write);
1349 				break;
1350 			case TABLE64_TEST_LO:
1351 				REG_PATTERN_TEST(test->reg + (i * 8),
1352 						test->mask,
1353 						test->write);
1354 				break;
1355 			case TABLE64_TEST_HI:
1356 				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1357 						test->mask,
1358 						test->write);
1359 				break;
1360 			}
1361 		}
1362 		test++;
1363 	}
1364 
1365 	*data = 0;
1366 	return 0;
1367 }
1368 
1369 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1370 {
1371 	struct e1000_hw *hw = &adapter->hw;
1372 
1373 	*data = 0;
1374 
1375 	/* Validate eeprom on all parts but flashless */
1376 	switch (hw->mac.type) {
1377 	case e1000_i210:
1378 	case e1000_i211:
1379 		if (igb_get_flash_presence_i210(hw)) {
1380 			if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1381 				*data = 2;
1382 		}
1383 		break;
1384 	default:
1385 		if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1386 			*data = 2;
1387 		break;
1388 	}
1389 
1390 	return *data;
1391 }
1392 
1393 static irqreturn_t igb_test_intr(int irq, void *data)
1394 {
1395 	struct igb_adapter *adapter = (struct igb_adapter *) data;
1396 	struct e1000_hw *hw = &adapter->hw;
1397 
1398 	adapter->test_icr |= rd32(E1000_ICR);
1399 
1400 	return IRQ_HANDLED;
1401 }
1402 
1403 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1404 {
1405 	struct e1000_hw *hw = &adapter->hw;
1406 	struct net_device *netdev = adapter->netdev;
1407 	u32 mask, ics_mask, i = 0, shared_int = true;
1408 	u32 irq = adapter->pdev->irq;
1409 
1410 	*data = 0;
1411 
1412 	/* Hook up test interrupt handler just for this test */
1413 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1414 		if (request_irq(adapter->msix_entries[0].vector,
1415 				igb_test_intr, 0, netdev->name, adapter)) {
1416 			*data = 1;
1417 			return -1;
1418 		}
1419 		wr32(E1000_IVAR_MISC, E1000_IVAR_VALID << 8);
1420 		wr32(E1000_EIMS, BIT(0));
1421 	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1422 		shared_int = false;
1423 		if (request_irq(irq,
1424 				igb_test_intr, 0, netdev->name, adapter)) {
1425 			*data = 1;
1426 			return -1;
1427 		}
1428 	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1429 				netdev->name, adapter)) {
1430 		shared_int = false;
1431 	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1432 		 netdev->name, adapter)) {
1433 		*data = 1;
1434 		return -1;
1435 	}
1436 	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1437 		(shared_int ? "shared" : "unshared"));
1438 
1439 	/* Disable all the interrupts */
1440 	wr32(E1000_IMC, ~0);
1441 	wrfl();
1442 	usleep_range(10000, 11000);
1443 
1444 	/* Define all writable bits for ICS */
1445 	switch (hw->mac.type) {
1446 	case e1000_82575:
1447 		ics_mask = 0x37F47EDD;
1448 		break;
1449 	case e1000_82576:
1450 		ics_mask = 0x77D4FBFD;
1451 		break;
1452 	case e1000_82580:
1453 		ics_mask = 0x77DCFED5;
1454 		break;
1455 	case e1000_i350:
1456 	case e1000_i354:
1457 	case e1000_i210:
1458 	case e1000_i211:
1459 		ics_mask = 0x77DCFED5;
1460 		break;
1461 	default:
1462 		ics_mask = 0x7FFFFFFF;
1463 		break;
1464 	}
1465 
1466 	/* Test each interrupt */
1467 	for (; i < 31; i++) {
1468 		/* Interrupt to test */
1469 		mask = BIT(i);
1470 
1471 		if (!(mask & ics_mask))
1472 			continue;
1473 
1474 		if (!shared_int) {
1475 			/* Disable the interrupt to be reported in
1476 			 * the cause register and then force the same
1477 			 * interrupt and see if one gets posted.  If
1478 			 * an interrupt was posted to the bus, the
1479 			 * test failed.
1480 			 */
1481 			adapter->test_icr = 0;
1482 
1483 			/* Flush any pending interrupts */
1484 			wr32(E1000_ICR, ~0);
1485 
1486 			wr32(E1000_IMC, mask);
1487 			wr32(E1000_ICS, mask);
1488 			wrfl();
1489 			usleep_range(10000, 11000);
1490 
1491 			if (adapter->test_icr & mask) {
1492 				*data = 3;
1493 				break;
1494 			}
1495 		}
1496 
1497 		/* Enable the interrupt to be reported in
1498 		 * the cause register and then force the same
1499 		 * interrupt and see if one gets posted.  If
1500 		 * an interrupt was not posted to the bus, the
1501 		 * test failed.
1502 		 */
1503 		adapter->test_icr = 0;
1504 
1505 		/* Flush any pending interrupts */
1506 		wr32(E1000_ICR, ~0);
1507 
1508 		wr32(E1000_IMS, mask);
1509 		wr32(E1000_ICS, mask);
1510 		wrfl();
1511 		usleep_range(10000, 11000);
1512 
1513 		if (!(adapter->test_icr & mask)) {
1514 			*data = 4;
1515 			break;
1516 		}
1517 
1518 		if (!shared_int) {
1519 			/* Disable the other interrupts to be reported in
1520 			 * the cause register and then force the other
1521 			 * interrupts and see if any get posted.  If
1522 			 * an interrupt was posted to the bus, the
1523 			 * test failed.
1524 			 */
1525 			adapter->test_icr = 0;
1526 
1527 			/* Flush any pending interrupts */
1528 			wr32(E1000_ICR, ~0);
1529 
1530 			wr32(E1000_IMC, ~mask);
1531 			wr32(E1000_ICS, ~mask);
1532 			wrfl();
1533 			usleep_range(10000, 11000);
1534 
1535 			if (adapter->test_icr & mask) {
1536 				*data = 5;
1537 				break;
1538 			}
1539 		}
1540 	}
1541 
1542 	/* Disable all the interrupts */
1543 	wr32(E1000_IMC, ~0);
1544 	wrfl();
1545 	usleep_range(10000, 11000);
1546 
1547 	/* Unhook test interrupt handler */
1548 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1549 		free_irq(adapter->msix_entries[0].vector, adapter);
1550 	else
1551 		free_irq(irq, adapter);
1552 
1553 	return *data;
1554 }
1555 
1556 static void igb_free_desc_rings(struct igb_adapter *adapter)
1557 {
1558 	igb_free_tx_resources(&adapter->test_tx_ring);
1559 	igb_free_rx_resources(&adapter->test_rx_ring);
1560 }
1561 
1562 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1563 {
1564 	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1565 	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1566 	struct e1000_hw *hw = &adapter->hw;
1567 	int ret_val;
1568 
1569 	/* Setup Tx descriptor ring and Tx buffers */
1570 	tx_ring->count = IGB_DEFAULT_TXD;
1571 	tx_ring->dev = &adapter->pdev->dev;
1572 	tx_ring->netdev = adapter->netdev;
1573 	tx_ring->reg_idx = adapter->vfs_allocated_count;
1574 
1575 	if (igb_setup_tx_resources(tx_ring)) {
1576 		ret_val = 1;
1577 		goto err_nomem;
1578 	}
1579 
1580 	igb_setup_tctl(adapter);
1581 	igb_configure_tx_ring(adapter, tx_ring);
1582 
1583 	/* Setup Rx descriptor ring and Rx buffers */
1584 	rx_ring->count = IGB_DEFAULT_RXD;
1585 	rx_ring->dev = &adapter->pdev->dev;
1586 	rx_ring->netdev = adapter->netdev;
1587 	rx_ring->reg_idx = adapter->vfs_allocated_count;
1588 
1589 	if (igb_setup_rx_resources(rx_ring)) {
1590 		ret_val = 3;
1591 		goto err_nomem;
1592 	}
1593 
1594 	/* set the default queue to queue 0 of PF */
1595 	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1596 
1597 	/* enable receive ring */
1598 	igb_setup_rctl(adapter);
1599 	igb_configure_rx_ring(adapter, rx_ring);
1600 
1601 	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1602 
1603 	return 0;
1604 
1605 err_nomem:
1606 	igb_free_desc_rings(adapter);
1607 	return ret_val;
1608 }
1609 
1610 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1611 {
1612 	struct e1000_hw *hw = &adapter->hw;
1613 
1614 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1615 	igb_write_phy_reg(hw, 29, 0x001F);
1616 	igb_write_phy_reg(hw, 30, 0x8FFC);
1617 	igb_write_phy_reg(hw, 29, 0x001A);
1618 	igb_write_phy_reg(hw, 30, 0x8FF0);
1619 }
1620 
1621 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1622 {
1623 	struct e1000_hw *hw = &adapter->hw;
1624 	u32 ctrl_reg = 0;
1625 
1626 	hw->mac.autoneg = false;
1627 
1628 	if (hw->phy.type == e1000_phy_m88) {
1629 		if (hw->phy.id != I210_I_PHY_ID) {
1630 			/* Auto-MDI/MDIX Off */
1631 			igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1632 			/* reset to update Auto-MDI/MDIX */
1633 			igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1634 			/* autoneg off */
1635 			igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1636 		} else {
1637 			/* force 1000, set loopback  */
1638 			igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1639 			igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1640 		}
1641 	} else if (hw->phy.type == e1000_phy_82580) {
1642 		/* enable MII loopback */
1643 		igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1644 	}
1645 
1646 	/* add small delay to avoid loopback test failure */
1647 	msleep(50);
1648 
1649 	/* force 1000, set loopback */
1650 	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1651 
1652 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1653 	ctrl_reg = rd32(E1000_CTRL);
1654 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1655 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1656 		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1657 		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1658 		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1659 		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1660 
1661 	if (hw->phy.type == e1000_phy_m88)
1662 		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1663 
1664 	wr32(E1000_CTRL, ctrl_reg);
1665 
1666 	/* Disable the receiver on the PHY so when a cable is plugged in, the
1667 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1668 	 */
1669 	if (hw->phy.type == e1000_phy_m88)
1670 		igb_phy_disable_receiver(adapter);
1671 
1672 	msleep(500);
1673 	return 0;
1674 }
1675 
1676 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1677 {
1678 	return igb_integrated_phy_loopback(adapter);
1679 }
1680 
1681 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1682 {
1683 	struct e1000_hw *hw = &adapter->hw;
1684 	u32 reg;
1685 
1686 	reg = rd32(E1000_CTRL_EXT);
1687 
1688 	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1689 	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1690 		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1691 		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1692 		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1693 		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1694 		(hw->device_id == E1000_DEV_ID_I354_SGMII) ||
1695 		(hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) {
1696 			/* Enable DH89xxCC MPHY for near end loopback */
1697 			reg = rd32(E1000_MPHY_ADDR_CTL);
1698 			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1699 			E1000_MPHY_PCS_CLK_REG_OFFSET;
1700 			wr32(E1000_MPHY_ADDR_CTL, reg);
1701 
1702 			reg = rd32(E1000_MPHY_DATA);
1703 			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1704 			wr32(E1000_MPHY_DATA, reg);
1705 		}
1706 
1707 		reg = rd32(E1000_RCTL);
1708 		reg |= E1000_RCTL_LBM_TCVR;
1709 		wr32(E1000_RCTL, reg);
1710 
1711 		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1712 
1713 		reg = rd32(E1000_CTRL);
1714 		reg &= ~(E1000_CTRL_RFCE |
1715 			 E1000_CTRL_TFCE |
1716 			 E1000_CTRL_LRST);
1717 		reg |= E1000_CTRL_SLU |
1718 		       E1000_CTRL_FD;
1719 		wr32(E1000_CTRL, reg);
1720 
1721 		/* Unset switch control to serdes energy detect */
1722 		reg = rd32(E1000_CONNSW);
1723 		reg &= ~E1000_CONNSW_ENRGSRC;
1724 		wr32(E1000_CONNSW, reg);
1725 
1726 		/* Unset sigdetect for SERDES loopback on
1727 		 * 82580 and newer devices.
1728 		 */
1729 		if (hw->mac.type >= e1000_82580) {
1730 			reg = rd32(E1000_PCS_CFG0);
1731 			reg |= E1000_PCS_CFG_IGN_SD;
1732 			wr32(E1000_PCS_CFG0, reg);
1733 		}
1734 
1735 		/* Set PCS register for forced speed */
1736 		reg = rd32(E1000_PCS_LCTL);
1737 		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1738 		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1739 		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1740 		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1741 		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1742 		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1743 		wr32(E1000_PCS_LCTL, reg);
1744 
1745 		return 0;
1746 	}
1747 
1748 	return igb_set_phy_loopback(adapter);
1749 }
1750 
1751 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1752 {
1753 	struct e1000_hw *hw = &adapter->hw;
1754 	u32 rctl;
1755 	u16 phy_reg;
1756 
1757 	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1758 	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1759 	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1760 	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1761 	(hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1762 		u32 reg;
1763 
1764 		/* Disable near end loopback on DH89xxCC */
1765 		reg = rd32(E1000_MPHY_ADDR_CTL);
1766 		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1767 		E1000_MPHY_PCS_CLK_REG_OFFSET;
1768 		wr32(E1000_MPHY_ADDR_CTL, reg);
1769 
1770 		reg = rd32(E1000_MPHY_DATA);
1771 		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1772 		wr32(E1000_MPHY_DATA, reg);
1773 	}
1774 
1775 	rctl = rd32(E1000_RCTL);
1776 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1777 	wr32(E1000_RCTL, rctl);
1778 
1779 	hw->mac.autoneg = true;
1780 	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1781 	if (phy_reg & MII_CR_LOOPBACK) {
1782 		phy_reg &= ~MII_CR_LOOPBACK;
1783 		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1784 		igb_phy_sw_reset(hw);
1785 	}
1786 }
1787 
1788 static void igb_create_lbtest_frame(struct sk_buff *skb,
1789 				    unsigned int frame_size)
1790 {
1791 	memset(skb->data, 0xFF, frame_size);
1792 	frame_size /= 2;
1793 	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1794 	skb->data[frame_size + 10] = 0xBE;
1795 	skb->data[frame_size + 12] = 0xAF;
1796 }
1797 
1798 static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1799 				  unsigned int frame_size)
1800 {
1801 	unsigned char *data;
1802 	bool match = true;
1803 
1804 	frame_size >>= 1;
1805 
1806 	data = kmap_local_page(rx_buffer->page);
1807 
1808 	if (data[3] != 0xFF ||
1809 	    data[frame_size + 10] != 0xBE ||
1810 	    data[frame_size + 12] != 0xAF)
1811 		match = false;
1812 
1813 	kunmap_local(data);
1814 
1815 	return match;
1816 }
1817 
1818 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1819 				struct igb_ring *tx_ring,
1820 				unsigned int size)
1821 {
1822 	union e1000_adv_rx_desc *rx_desc;
1823 	struct igb_rx_buffer *rx_buffer_info;
1824 	struct igb_tx_buffer *tx_buffer_info;
1825 	u16 rx_ntc, tx_ntc, count = 0;
1826 
1827 	/* initialize next to clean and descriptor values */
1828 	rx_ntc = rx_ring->next_to_clean;
1829 	tx_ntc = tx_ring->next_to_clean;
1830 	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1831 
1832 	while (rx_desc->wb.upper.length) {
1833 		/* check Rx buffer */
1834 		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1835 
1836 		/* sync Rx buffer for CPU read */
1837 		dma_sync_single_for_cpu(rx_ring->dev,
1838 					rx_buffer_info->dma,
1839 					size,
1840 					DMA_FROM_DEVICE);
1841 
1842 		/* verify contents of skb */
1843 		if (igb_check_lbtest_frame(rx_buffer_info, size))
1844 			count++;
1845 
1846 		/* sync Rx buffer for device write */
1847 		dma_sync_single_for_device(rx_ring->dev,
1848 					   rx_buffer_info->dma,
1849 					   size,
1850 					   DMA_FROM_DEVICE);
1851 
1852 		/* unmap buffer on Tx side */
1853 		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1854 
1855 		/* Free all the Tx ring sk_buffs */
1856 		dev_kfree_skb_any(tx_buffer_info->skb);
1857 
1858 		/* unmap skb header data */
1859 		dma_unmap_single(tx_ring->dev,
1860 				 dma_unmap_addr(tx_buffer_info, dma),
1861 				 dma_unmap_len(tx_buffer_info, len),
1862 				 DMA_TO_DEVICE);
1863 		dma_unmap_len_set(tx_buffer_info, len, 0);
1864 
1865 		/* increment Rx/Tx next to clean counters */
1866 		rx_ntc++;
1867 		if (rx_ntc == rx_ring->count)
1868 			rx_ntc = 0;
1869 		tx_ntc++;
1870 		if (tx_ntc == tx_ring->count)
1871 			tx_ntc = 0;
1872 
1873 		/* fetch next descriptor */
1874 		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1875 	}
1876 
1877 	netdev_tx_reset_queue(txring_txq(tx_ring));
1878 
1879 	/* re-map buffers to ring, store next to clean values */
1880 	igb_alloc_rx_buffers(rx_ring, count);
1881 	rx_ring->next_to_clean = rx_ntc;
1882 	tx_ring->next_to_clean = tx_ntc;
1883 
1884 	return count;
1885 }
1886 
1887 static int igb_run_loopback_test(struct igb_adapter *adapter)
1888 {
1889 	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1890 	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1891 	u16 i, j, lc, good_cnt;
1892 	int ret_val = 0;
1893 	unsigned int size = IGB_RX_HDR_LEN;
1894 	netdev_tx_t tx_ret_val;
1895 	struct sk_buff *skb;
1896 
1897 	/* allocate test skb */
1898 	skb = alloc_skb(size, GFP_KERNEL);
1899 	if (!skb)
1900 		return 11;
1901 
1902 	/* place data into test skb */
1903 	igb_create_lbtest_frame(skb, size);
1904 	skb_put(skb, size);
1905 
1906 	/* Calculate the loop count based on the largest descriptor ring
1907 	 * The idea is to wrap the largest ring a number of times using 64
1908 	 * send/receive pairs during each loop
1909 	 */
1910 
1911 	if (rx_ring->count <= tx_ring->count)
1912 		lc = ((tx_ring->count / 64) * 2) + 1;
1913 	else
1914 		lc = ((rx_ring->count / 64) * 2) + 1;
1915 
1916 	for (j = 0; j <= lc; j++) { /* loop count loop */
1917 		/* reset count of good packets */
1918 		good_cnt = 0;
1919 
1920 		/* place 64 packets on the transmit queue*/
1921 		for (i = 0; i < 64; i++) {
1922 			skb_get(skb);
1923 			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1924 			if (tx_ret_val == NETDEV_TX_OK)
1925 				good_cnt++;
1926 		}
1927 
1928 		if (good_cnt != 64) {
1929 			ret_val = 12;
1930 			break;
1931 		}
1932 
1933 		/* allow 200 milliseconds for packets to go from Tx to Rx */
1934 		msleep(200);
1935 
1936 		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1937 		if (good_cnt != 64) {
1938 			ret_val = 13;
1939 			break;
1940 		}
1941 	} /* end loop count loop */
1942 
1943 	/* free the original skb */
1944 	kfree_skb(skb);
1945 
1946 	return ret_val;
1947 }
1948 
1949 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1950 {
1951 	/* PHY loopback cannot be performed if SoL/IDER
1952 	 * sessions are active
1953 	 */
1954 	if (igb_check_reset_block(&adapter->hw)) {
1955 		dev_err(&adapter->pdev->dev,
1956 			"Cannot do PHY loopback test when SoL/IDER is active.\n");
1957 		*data = 0;
1958 		goto out;
1959 	}
1960 
1961 	if (adapter->hw.mac.type == e1000_i354) {
1962 		dev_info(&adapter->pdev->dev,
1963 			"Loopback test not supported on i354.\n");
1964 		*data = 0;
1965 		goto out;
1966 	}
1967 	*data = igb_setup_desc_rings(adapter);
1968 	if (*data)
1969 		goto out;
1970 	*data = igb_setup_loopback_test(adapter);
1971 	if (*data)
1972 		goto err_loopback;
1973 	*data = igb_run_loopback_test(adapter);
1974 	igb_loopback_cleanup(adapter);
1975 
1976 err_loopback:
1977 	igb_free_desc_rings(adapter);
1978 out:
1979 	return *data;
1980 }
1981 
1982 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1983 {
1984 	struct e1000_hw *hw = &adapter->hw;
1985 	*data = 0;
1986 	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1987 		int i = 0;
1988 
1989 		hw->mac.serdes_has_link = false;
1990 
1991 		/* On some blade server designs, link establishment
1992 		 * could take as long as 2-3 minutes
1993 		 */
1994 		do {
1995 			hw->mac.ops.check_for_link(&adapter->hw);
1996 			if (hw->mac.serdes_has_link)
1997 				return *data;
1998 			msleep(20);
1999 		} while (i++ < 3750);
2000 
2001 		*data = 1;
2002 	} else {
2003 		hw->mac.ops.check_for_link(&adapter->hw);
2004 		if (hw->mac.autoneg)
2005 			msleep(5000);
2006 
2007 		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
2008 			*data = 1;
2009 	}
2010 	return *data;
2011 }
2012 
2013 static void igb_diag_test(struct net_device *netdev,
2014 			  struct ethtool_test *eth_test, u64 *data)
2015 {
2016 	struct igb_adapter *adapter = netdev_priv(netdev);
2017 	u16 autoneg_advertised;
2018 	u8 forced_speed_duplex, autoneg;
2019 	bool if_running = netif_running(netdev);
2020 
2021 	set_bit(__IGB_TESTING, &adapter->state);
2022 
2023 	/* can't do offline tests on media switching devices */
2024 	if (adapter->hw.dev_spec._82575.mas_capable)
2025 		eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
2026 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
2027 		/* Offline tests */
2028 
2029 		/* save speed, duplex, autoneg settings */
2030 		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
2031 		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
2032 		autoneg = adapter->hw.mac.autoneg;
2033 
2034 		dev_info(&adapter->pdev->dev, "offline testing starting\n");
2035 
2036 		/* power up link for link test */
2037 		igb_power_up_link(adapter);
2038 
2039 		/* Link test performed before hardware reset so autoneg doesn't
2040 		 * interfere with test result
2041 		 */
2042 		if (igb_link_test(adapter, &data[TEST_LINK]))
2043 			eth_test->flags |= ETH_TEST_FL_FAILED;
2044 
2045 		if (if_running)
2046 			/* indicate we're in test mode */
2047 			igb_close(netdev);
2048 		else
2049 			igb_reset(adapter);
2050 
2051 		if (igb_reg_test(adapter, &data[TEST_REG]))
2052 			eth_test->flags |= ETH_TEST_FL_FAILED;
2053 
2054 		igb_reset(adapter);
2055 		if (igb_eeprom_test(adapter, &data[TEST_EEP]))
2056 			eth_test->flags |= ETH_TEST_FL_FAILED;
2057 
2058 		igb_reset(adapter);
2059 		if (igb_intr_test(adapter, &data[TEST_IRQ]))
2060 			eth_test->flags |= ETH_TEST_FL_FAILED;
2061 
2062 		igb_reset(adapter);
2063 		/* power up link for loopback test */
2064 		igb_power_up_link(adapter);
2065 		if (igb_loopback_test(adapter, &data[TEST_LOOP]))
2066 			eth_test->flags |= ETH_TEST_FL_FAILED;
2067 
2068 		/* restore speed, duplex, autoneg settings */
2069 		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2070 		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2071 		adapter->hw.mac.autoneg = autoneg;
2072 
2073 		/* force this routine to wait until autoneg complete/timeout */
2074 		adapter->hw.phy.autoneg_wait_to_complete = true;
2075 		igb_reset(adapter);
2076 		adapter->hw.phy.autoneg_wait_to_complete = false;
2077 
2078 		clear_bit(__IGB_TESTING, &adapter->state);
2079 		if (if_running)
2080 			igb_open(netdev);
2081 	} else {
2082 		dev_info(&adapter->pdev->dev, "online testing starting\n");
2083 
2084 		/* PHY is powered down when interface is down */
2085 		if (if_running && igb_link_test(adapter, &data[TEST_LINK]))
2086 			eth_test->flags |= ETH_TEST_FL_FAILED;
2087 		else
2088 			data[TEST_LINK] = 0;
2089 
2090 		/* Online tests aren't run; pass by default */
2091 		data[TEST_REG] = 0;
2092 		data[TEST_EEP] = 0;
2093 		data[TEST_IRQ] = 0;
2094 		data[TEST_LOOP] = 0;
2095 
2096 		clear_bit(__IGB_TESTING, &adapter->state);
2097 	}
2098 	msleep_interruptible(4 * 1000);
2099 }
2100 
2101 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2102 {
2103 	struct igb_adapter *adapter = netdev_priv(netdev);
2104 
2105 	wol->wolopts = 0;
2106 
2107 	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2108 		return;
2109 
2110 	wol->supported = WAKE_UCAST | WAKE_MCAST |
2111 			 WAKE_BCAST | WAKE_MAGIC |
2112 			 WAKE_PHY;
2113 
2114 	/* apply any specific unsupported masks here */
2115 	switch (adapter->hw.device_id) {
2116 	default:
2117 		break;
2118 	}
2119 
2120 	if (adapter->wol & E1000_WUFC_EX)
2121 		wol->wolopts |= WAKE_UCAST;
2122 	if (adapter->wol & E1000_WUFC_MC)
2123 		wol->wolopts |= WAKE_MCAST;
2124 	if (adapter->wol & E1000_WUFC_BC)
2125 		wol->wolopts |= WAKE_BCAST;
2126 	if (adapter->wol & E1000_WUFC_MAG)
2127 		wol->wolopts |= WAKE_MAGIC;
2128 	if (adapter->wol & E1000_WUFC_LNKC)
2129 		wol->wolopts |= WAKE_PHY;
2130 }
2131 
2132 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2133 {
2134 	struct igb_adapter *adapter = netdev_priv(netdev);
2135 
2136 	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_FILTER))
2137 		return -EOPNOTSUPP;
2138 
2139 	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2140 		return wol->wolopts ? -EOPNOTSUPP : 0;
2141 
2142 	/* these settings will always override what we currently have */
2143 	adapter->wol = 0;
2144 
2145 	if (wol->wolopts & WAKE_UCAST)
2146 		adapter->wol |= E1000_WUFC_EX;
2147 	if (wol->wolopts & WAKE_MCAST)
2148 		adapter->wol |= E1000_WUFC_MC;
2149 	if (wol->wolopts & WAKE_BCAST)
2150 		adapter->wol |= E1000_WUFC_BC;
2151 	if (wol->wolopts & WAKE_MAGIC)
2152 		adapter->wol |= E1000_WUFC_MAG;
2153 	if (wol->wolopts & WAKE_PHY)
2154 		adapter->wol |= E1000_WUFC_LNKC;
2155 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2156 
2157 	return 0;
2158 }
2159 
2160 /* bit defines for adapter->led_status */
2161 #define IGB_LED_ON		0
2162 
2163 static int igb_set_phys_id(struct net_device *netdev,
2164 			   enum ethtool_phys_id_state state)
2165 {
2166 	struct igb_adapter *adapter = netdev_priv(netdev);
2167 	struct e1000_hw *hw = &adapter->hw;
2168 
2169 	switch (state) {
2170 	case ETHTOOL_ID_ACTIVE:
2171 		igb_blink_led(hw);
2172 		return 2;
2173 	case ETHTOOL_ID_ON:
2174 		igb_blink_led(hw);
2175 		break;
2176 	case ETHTOOL_ID_OFF:
2177 		igb_led_off(hw);
2178 		break;
2179 	case ETHTOOL_ID_INACTIVE:
2180 		igb_led_off(hw);
2181 		clear_bit(IGB_LED_ON, &adapter->led_status);
2182 		igb_cleanup_led(hw);
2183 		break;
2184 	}
2185 
2186 	return 0;
2187 }
2188 
2189 static int igb_set_coalesce(struct net_device *netdev,
2190 			    struct ethtool_coalesce *ec,
2191 			    struct kernel_ethtool_coalesce *kernel_coal,
2192 			    struct netlink_ext_ack *extack)
2193 {
2194 	struct igb_adapter *adapter = netdev_priv(netdev);
2195 	int i;
2196 
2197 	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2198 	    ((ec->rx_coalesce_usecs > 3) &&
2199 	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2200 	    (ec->rx_coalesce_usecs == 2))
2201 		return -EINVAL;
2202 
2203 	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2204 	    ((ec->tx_coalesce_usecs > 3) &&
2205 	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2206 	    (ec->tx_coalesce_usecs == 2))
2207 		return -EINVAL;
2208 
2209 	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2210 		return -EINVAL;
2211 
2212 	/* If ITR is disabled, disable DMAC */
2213 	if (ec->rx_coalesce_usecs == 0) {
2214 		if (adapter->flags & IGB_FLAG_DMAC)
2215 			adapter->flags &= ~IGB_FLAG_DMAC;
2216 	}
2217 
2218 	/* convert to rate of irq's per second */
2219 	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2220 		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2221 	else
2222 		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2223 
2224 	/* convert to rate of irq's per second */
2225 	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2226 		adapter->tx_itr_setting = adapter->rx_itr_setting;
2227 	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2228 		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2229 	else
2230 		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2231 
2232 	for (i = 0; i < adapter->num_q_vectors; i++) {
2233 		struct igb_q_vector *q_vector = adapter->q_vector[i];
2234 		q_vector->tx.work_limit = adapter->tx_work_limit;
2235 		if (q_vector->rx.ring)
2236 			q_vector->itr_val = adapter->rx_itr_setting;
2237 		else
2238 			q_vector->itr_val = adapter->tx_itr_setting;
2239 		if (q_vector->itr_val && q_vector->itr_val <= 3)
2240 			q_vector->itr_val = IGB_START_ITR;
2241 		q_vector->set_itr = 1;
2242 	}
2243 
2244 	return 0;
2245 }
2246 
2247 static int igb_get_coalesce(struct net_device *netdev,
2248 			    struct ethtool_coalesce *ec,
2249 			    struct kernel_ethtool_coalesce *kernel_coal,
2250 			    struct netlink_ext_ack *extack)
2251 {
2252 	struct igb_adapter *adapter = netdev_priv(netdev);
2253 
2254 	if (adapter->rx_itr_setting <= 3)
2255 		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2256 	else
2257 		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2258 
2259 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2260 		if (adapter->tx_itr_setting <= 3)
2261 			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2262 		else
2263 			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2264 	}
2265 
2266 	return 0;
2267 }
2268 
2269 static int igb_nway_reset(struct net_device *netdev)
2270 {
2271 	struct igb_adapter *adapter = netdev_priv(netdev);
2272 	if (netif_running(netdev))
2273 		igb_reinit_locked(adapter);
2274 	return 0;
2275 }
2276 
2277 static int igb_get_sset_count(struct net_device *netdev, int sset)
2278 {
2279 	switch (sset) {
2280 	case ETH_SS_STATS:
2281 		return IGB_STATS_LEN;
2282 	case ETH_SS_TEST:
2283 		return IGB_TEST_LEN;
2284 	case ETH_SS_PRIV_FLAGS:
2285 		return IGB_PRIV_FLAGS_STR_LEN;
2286 	default:
2287 		return -ENOTSUPP;
2288 	}
2289 }
2290 
2291 static void igb_get_ethtool_stats(struct net_device *netdev,
2292 				  struct ethtool_stats *stats, u64 *data)
2293 {
2294 	struct igb_adapter *adapter = netdev_priv(netdev);
2295 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2296 	unsigned int start;
2297 	struct igb_ring *ring;
2298 	int i, j;
2299 	char *p;
2300 
2301 	spin_lock(&adapter->stats64_lock);
2302 	igb_update_stats(adapter);
2303 
2304 	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2305 		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2306 		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2307 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2308 	}
2309 	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2310 		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2311 		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2312 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2313 	}
2314 	for (j = 0; j < adapter->num_tx_queues; j++) {
2315 		u64	restart2;
2316 
2317 		ring = adapter->tx_ring[j];
2318 		do {
2319 			start = u64_stats_fetch_begin(&ring->tx_syncp);
2320 			data[i]   = ring->tx_stats.packets;
2321 			data[i+1] = ring->tx_stats.bytes;
2322 			data[i+2] = ring->tx_stats.restart_queue;
2323 		} while (u64_stats_fetch_retry(&ring->tx_syncp, start));
2324 		do {
2325 			start = u64_stats_fetch_begin(&ring->tx_syncp2);
2326 			restart2  = ring->tx_stats.restart_queue2;
2327 		} while (u64_stats_fetch_retry(&ring->tx_syncp2, start));
2328 		data[i+2] += restart2;
2329 
2330 		i += IGB_TX_QUEUE_STATS_LEN;
2331 	}
2332 	for (j = 0; j < adapter->num_rx_queues; j++) {
2333 		ring = adapter->rx_ring[j];
2334 		do {
2335 			start = u64_stats_fetch_begin(&ring->rx_syncp);
2336 			data[i]   = ring->rx_stats.packets;
2337 			data[i+1] = ring->rx_stats.bytes;
2338 			data[i+2] = ring->rx_stats.drops;
2339 			data[i+3] = ring->rx_stats.csum_err;
2340 			data[i+4] = ring->rx_stats.alloc_failed;
2341 		} while (u64_stats_fetch_retry(&ring->rx_syncp, start));
2342 		i += IGB_RX_QUEUE_STATS_LEN;
2343 	}
2344 	spin_unlock(&adapter->stats64_lock);
2345 }
2346 
2347 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2348 {
2349 	struct igb_adapter *adapter = netdev_priv(netdev);
2350 	u8 *p = data;
2351 	int i;
2352 
2353 	switch (stringset) {
2354 	case ETH_SS_TEST:
2355 		memcpy(data, igb_gstrings_test, sizeof(igb_gstrings_test));
2356 		break;
2357 	case ETH_SS_STATS:
2358 		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++)
2359 			ethtool_sprintf(&p,
2360 					igb_gstrings_stats[i].stat_string);
2361 		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++)
2362 			ethtool_sprintf(&p,
2363 					igb_gstrings_net_stats[i].stat_string);
2364 		for (i = 0; i < adapter->num_tx_queues; i++) {
2365 			ethtool_sprintf(&p, "tx_queue_%u_packets", i);
2366 			ethtool_sprintf(&p, "tx_queue_%u_bytes", i);
2367 			ethtool_sprintf(&p, "tx_queue_%u_restart", i);
2368 		}
2369 		for (i = 0; i < adapter->num_rx_queues; i++) {
2370 			ethtool_sprintf(&p, "rx_queue_%u_packets", i);
2371 			ethtool_sprintf(&p, "rx_queue_%u_bytes", i);
2372 			ethtool_sprintf(&p, "rx_queue_%u_drops", i);
2373 			ethtool_sprintf(&p, "rx_queue_%u_csum_err", i);
2374 			ethtool_sprintf(&p, "rx_queue_%u_alloc_failed", i);
2375 		}
2376 		/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2377 		break;
2378 	case ETH_SS_PRIV_FLAGS:
2379 		memcpy(data, igb_priv_flags_strings,
2380 		       IGB_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN);
2381 		break;
2382 	}
2383 }
2384 
2385 static int igb_get_ts_info(struct net_device *dev,
2386 			   struct ethtool_ts_info *info)
2387 {
2388 	struct igb_adapter *adapter = netdev_priv(dev);
2389 
2390 	if (adapter->ptp_clock)
2391 		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2392 	else
2393 		info->phc_index = -1;
2394 
2395 	switch (adapter->hw.mac.type) {
2396 	case e1000_82575:
2397 		info->so_timestamping =
2398 			SOF_TIMESTAMPING_TX_SOFTWARE |
2399 			SOF_TIMESTAMPING_RX_SOFTWARE |
2400 			SOF_TIMESTAMPING_SOFTWARE;
2401 		return 0;
2402 	case e1000_82576:
2403 	case e1000_82580:
2404 	case e1000_i350:
2405 	case e1000_i354:
2406 	case e1000_i210:
2407 	case e1000_i211:
2408 		info->so_timestamping =
2409 			SOF_TIMESTAMPING_TX_SOFTWARE |
2410 			SOF_TIMESTAMPING_RX_SOFTWARE |
2411 			SOF_TIMESTAMPING_SOFTWARE |
2412 			SOF_TIMESTAMPING_TX_HARDWARE |
2413 			SOF_TIMESTAMPING_RX_HARDWARE |
2414 			SOF_TIMESTAMPING_RAW_HARDWARE;
2415 
2416 		info->tx_types =
2417 			BIT(HWTSTAMP_TX_OFF) |
2418 			BIT(HWTSTAMP_TX_ON);
2419 
2420 		info->rx_filters = BIT(HWTSTAMP_FILTER_NONE);
2421 
2422 		/* 82576 does not support timestamping all packets. */
2423 		if (adapter->hw.mac.type >= e1000_82580)
2424 			info->rx_filters |= BIT(HWTSTAMP_FILTER_ALL);
2425 		else
2426 			info->rx_filters |=
2427 				BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2428 				BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2429 				BIT(HWTSTAMP_FILTER_PTP_V2_EVENT);
2430 
2431 		return 0;
2432 	default:
2433 		return -EOPNOTSUPP;
2434 	}
2435 }
2436 
2437 #define ETHER_TYPE_FULL_MASK cpu_to_be16(FIELD_MAX(U16_MAX))
2438 static int igb_get_ethtool_nfc_entry(struct igb_adapter *adapter,
2439 				     struct ethtool_rxnfc *cmd)
2440 {
2441 	struct ethtool_rx_flow_spec *fsp = &cmd->fs;
2442 	struct igb_nfc_filter *rule = NULL;
2443 
2444 	/* report total rule count */
2445 	cmd->data = IGB_MAX_RXNFC_FILTERS;
2446 
2447 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2448 		if (fsp->location <= rule->sw_idx)
2449 			break;
2450 	}
2451 
2452 	if (!rule || fsp->location != rule->sw_idx)
2453 		return -EINVAL;
2454 
2455 	if (rule->filter.match_flags) {
2456 		fsp->flow_type = ETHER_FLOW;
2457 		fsp->ring_cookie = rule->action;
2458 		if (rule->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2459 			fsp->h_u.ether_spec.h_proto = rule->filter.etype;
2460 			fsp->m_u.ether_spec.h_proto = ETHER_TYPE_FULL_MASK;
2461 		}
2462 		if (rule->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI) {
2463 			fsp->flow_type |= FLOW_EXT;
2464 			fsp->h_ext.vlan_tci = rule->filter.vlan_tci;
2465 			fsp->m_ext.vlan_tci = htons(VLAN_PRIO_MASK);
2466 		}
2467 		if (rule->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) {
2468 			ether_addr_copy(fsp->h_u.ether_spec.h_dest,
2469 					rule->filter.dst_addr);
2470 			/* As we only support matching by the full
2471 			 * mask, return the mask to userspace
2472 			 */
2473 			eth_broadcast_addr(fsp->m_u.ether_spec.h_dest);
2474 		}
2475 		if (rule->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) {
2476 			ether_addr_copy(fsp->h_u.ether_spec.h_source,
2477 					rule->filter.src_addr);
2478 			/* As we only support matching by the full
2479 			 * mask, return the mask to userspace
2480 			 */
2481 			eth_broadcast_addr(fsp->m_u.ether_spec.h_source);
2482 		}
2483 
2484 		return 0;
2485 	}
2486 	return -EINVAL;
2487 }
2488 
2489 static int igb_get_ethtool_nfc_all(struct igb_adapter *adapter,
2490 				   struct ethtool_rxnfc *cmd,
2491 				   u32 *rule_locs)
2492 {
2493 	struct igb_nfc_filter *rule;
2494 	int cnt = 0;
2495 
2496 	/* report total rule count */
2497 	cmd->data = IGB_MAX_RXNFC_FILTERS;
2498 
2499 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2500 		if (cnt == cmd->rule_cnt)
2501 			return -EMSGSIZE;
2502 		rule_locs[cnt] = rule->sw_idx;
2503 		cnt++;
2504 	}
2505 
2506 	cmd->rule_cnt = cnt;
2507 
2508 	return 0;
2509 }
2510 
2511 static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2512 				 struct ethtool_rxnfc *cmd)
2513 {
2514 	cmd->data = 0;
2515 
2516 	/* Report default options for RSS on igb */
2517 	switch (cmd->flow_type) {
2518 	case TCP_V4_FLOW:
2519 		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2520 		fallthrough;
2521 	case UDP_V4_FLOW:
2522 		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2523 			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2524 		fallthrough;
2525 	case SCTP_V4_FLOW:
2526 	case AH_ESP_V4_FLOW:
2527 	case AH_V4_FLOW:
2528 	case ESP_V4_FLOW:
2529 	case IPV4_FLOW:
2530 		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2531 		break;
2532 	case TCP_V6_FLOW:
2533 		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2534 		fallthrough;
2535 	case UDP_V6_FLOW:
2536 		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2537 			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2538 		fallthrough;
2539 	case SCTP_V6_FLOW:
2540 	case AH_ESP_V6_FLOW:
2541 	case AH_V6_FLOW:
2542 	case ESP_V6_FLOW:
2543 	case IPV6_FLOW:
2544 		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2545 		break;
2546 	default:
2547 		return -EINVAL;
2548 	}
2549 
2550 	return 0;
2551 }
2552 
2553 static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2554 			 u32 *rule_locs)
2555 {
2556 	struct igb_adapter *adapter = netdev_priv(dev);
2557 	int ret = -EOPNOTSUPP;
2558 
2559 	switch (cmd->cmd) {
2560 	case ETHTOOL_GRXRINGS:
2561 		cmd->data = adapter->num_rx_queues;
2562 		ret = 0;
2563 		break;
2564 	case ETHTOOL_GRXCLSRLCNT:
2565 		cmd->rule_cnt = adapter->nfc_filter_count;
2566 		ret = 0;
2567 		break;
2568 	case ETHTOOL_GRXCLSRULE:
2569 		ret = igb_get_ethtool_nfc_entry(adapter, cmd);
2570 		break;
2571 	case ETHTOOL_GRXCLSRLALL:
2572 		ret = igb_get_ethtool_nfc_all(adapter, cmd, rule_locs);
2573 		break;
2574 	case ETHTOOL_GRXFH:
2575 		ret = igb_get_rss_hash_opts(adapter, cmd);
2576 		break;
2577 	default:
2578 		break;
2579 	}
2580 
2581 	return ret;
2582 }
2583 
2584 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2585 		       IGB_FLAG_RSS_FIELD_IPV6_UDP)
2586 static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2587 				struct ethtool_rxnfc *nfc)
2588 {
2589 	u32 flags = adapter->flags;
2590 
2591 	/* RSS does not support anything other than hashing
2592 	 * to queues on src and dst IPs and ports
2593 	 */
2594 	if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2595 			  RXH_L4_B_0_1 | RXH_L4_B_2_3))
2596 		return -EINVAL;
2597 
2598 	switch (nfc->flow_type) {
2599 	case TCP_V4_FLOW:
2600 	case TCP_V6_FLOW:
2601 		if (!(nfc->data & RXH_IP_SRC) ||
2602 		    !(nfc->data & RXH_IP_DST) ||
2603 		    !(nfc->data & RXH_L4_B_0_1) ||
2604 		    !(nfc->data & RXH_L4_B_2_3))
2605 			return -EINVAL;
2606 		break;
2607 	case UDP_V4_FLOW:
2608 		if (!(nfc->data & RXH_IP_SRC) ||
2609 		    !(nfc->data & RXH_IP_DST))
2610 			return -EINVAL;
2611 		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2612 		case 0:
2613 			flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2614 			break;
2615 		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2616 			flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2617 			break;
2618 		default:
2619 			return -EINVAL;
2620 		}
2621 		break;
2622 	case UDP_V6_FLOW:
2623 		if (!(nfc->data & RXH_IP_SRC) ||
2624 		    !(nfc->data & RXH_IP_DST))
2625 			return -EINVAL;
2626 		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2627 		case 0:
2628 			flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2629 			break;
2630 		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2631 			flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2632 			break;
2633 		default:
2634 			return -EINVAL;
2635 		}
2636 		break;
2637 	case AH_ESP_V4_FLOW:
2638 	case AH_V4_FLOW:
2639 	case ESP_V4_FLOW:
2640 	case SCTP_V4_FLOW:
2641 	case AH_ESP_V6_FLOW:
2642 	case AH_V6_FLOW:
2643 	case ESP_V6_FLOW:
2644 	case SCTP_V6_FLOW:
2645 		if (!(nfc->data & RXH_IP_SRC) ||
2646 		    !(nfc->data & RXH_IP_DST) ||
2647 		    (nfc->data & RXH_L4_B_0_1) ||
2648 		    (nfc->data & RXH_L4_B_2_3))
2649 			return -EINVAL;
2650 		break;
2651 	default:
2652 		return -EINVAL;
2653 	}
2654 
2655 	/* if we changed something we need to update flags */
2656 	if (flags != adapter->flags) {
2657 		struct e1000_hw *hw = &adapter->hw;
2658 		u32 mrqc = rd32(E1000_MRQC);
2659 
2660 		if ((flags & UDP_RSS_FLAGS) &&
2661 		    !(adapter->flags & UDP_RSS_FLAGS))
2662 			dev_err(&adapter->pdev->dev,
2663 				"enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2664 
2665 		adapter->flags = flags;
2666 
2667 		/* Perform hash on these packet types */
2668 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2669 			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2670 			E1000_MRQC_RSS_FIELD_IPV6 |
2671 			E1000_MRQC_RSS_FIELD_IPV6_TCP;
2672 
2673 		mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2674 			  E1000_MRQC_RSS_FIELD_IPV6_UDP);
2675 
2676 		if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2677 			mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2678 
2679 		if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2680 			mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2681 
2682 		wr32(E1000_MRQC, mrqc);
2683 	}
2684 
2685 	return 0;
2686 }
2687 
2688 static int igb_rxnfc_write_etype_filter(struct igb_adapter *adapter,
2689 					struct igb_nfc_filter *input)
2690 {
2691 	struct e1000_hw *hw = &adapter->hw;
2692 	u8 i;
2693 	u32 etqf;
2694 	u16 etype;
2695 
2696 	/* find an empty etype filter register */
2697 	for (i = 0; i < MAX_ETYPE_FILTER; ++i) {
2698 		if (!adapter->etype_bitmap[i])
2699 			break;
2700 	}
2701 	if (i == MAX_ETYPE_FILTER) {
2702 		dev_err(&adapter->pdev->dev, "ethtool -N: etype filters are all used.\n");
2703 		return -EINVAL;
2704 	}
2705 
2706 	adapter->etype_bitmap[i] = true;
2707 
2708 	etqf = rd32(E1000_ETQF(i));
2709 	etype = ntohs(input->filter.etype & ETHER_TYPE_FULL_MASK);
2710 
2711 	etqf |= E1000_ETQF_FILTER_ENABLE;
2712 	etqf &= ~E1000_ETQF_ETYPE_MASK;
2713 	etqf |= (etype & E1000_ETQF_ETYPE_MASK);
2714 
2715 	etqf &= ~E1000_ETQF_QUEUE_MASK;
2716 	etqf |= ((input->action << E1000_ETQF_QUEUE_SHIFT)
2717 		& E1000_ETQF_QUEUE_MASK);
2718 	etqf |= E1000_ETQF_QUEUE_ENABLE;
2719 
2720 	wr32(E1000_ETQF(i), etqf);
2721 
2722 	input->etype_reg_index = i;
2723 
2724 	return 0;
2725 }
2726 
2727 static int igb_rxnfc_write_vlan_prio_filter(struct igb_adapter *adapter,
2728 					    struct igb_nfc_filter *input)
2729 {
2730 	struct e1000_hw *hw = &adapter->hw;
2731 	u8 vlan_priority;
2732 	u16 queue_index;
2733 	u32 vlapqf;
2734 
2735 	vlapqf = rd32(E1000_VLAPQF);
2736 	vlan_priority = FIELD_GET(VLAN_PRIO_MASK,
2737 				  ntohs(input->filter.vlan_tci));
2738 	queue_index = (vlapqf >> (vlan_priority * 4)) & E1000_VLAPQF_QUEUE_MASK;
2739 
2740 	/* check whether this vlan prio is already set */
2741 	if ((vlapqf & E1000_VLAPQF_P_VALID(vlan_priority)) &&
2742 	    (queue_index != input->action)) {
2743 		dev_err(&adapter->pdev->dev, "ethtool rxnfc set vlan prio filter failed.\n");
2744 		return -EEXIST;
2745 	}
2746 
2747 	vlapqf |= E1000_VLAPQF_P_VALID(vlan_priority);
2748 	vlapqf |= E1000_VLAPQF_QUEUE_SEL(vlan_priority, input->action);
2749 
2750 	wr32(E1000_VLAPQF, vlapqf);
2751 
2752 	return 0;
2753 }
2754 
2755 int igb_add_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2756 {
2757 	struct e1000_hw *hw = &adapter->hw;
2758 	int err = -EINVAL;
2759 
2760 	if (hw->mac.type == e1000_i210 &&
2761 	    !(input->filter.match_flags & ~IGB_FILTER_FLAG_SRC_MAC_ADDR)) {
2762 		dev_err(&adapter->pdev->dev,
2763 			"i210 doesn't support flow classification rules specifying only source addresses.\n");
2764 		return -EOPNOTSUPP;
2765 	}
2766 
2767 	if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2768 		err = igb_rxnfc_write_etype_filter(adapter, input);
2769 		if (err)
2770 			return err;
2771 	}
2772 
2773 	if (input->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) {
2774 		err = igb_add_mac_steering_filter(adapter,
2775 						  input->filter.dst_addr,
2776 						  input->action, 0);
2777 		err = min_t(int, err, 0);
2778 		if (err)
2779 			return err;
2780 	}
2781 
2782 	if (input->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) {
2783 		err = igb_add_mac_steering_filter(adapter,
2784 						  input->filter.src_addr,
2785 						  input->action,
2786 						  IGB_MAC_STATE_SRC_ADDR);
2787 		err = min_t(int, err, 0);
2788 		if (err)
2789 			return err;
2790 	}
2791 
2792 	if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2793 		err = igb_rxnfc_write_vlan_prio_filter(adapter, input);
2794 
2795 	return err;
2796 }
2797 
2798 static void igb_clear_etype_filter_regs(struct igb_adapter *adapter,
2799 					u16 reg_index)
2800 {
2801 	struct e1000_hw *hw = &adapter->hw;
2802 	u32 etqf = rd32(E1000_ETQF(reg_index));
2803 
2804 	etqf &= ~E1000_ETQF_QUEUE_ENABLE;
2805 	etqf &= ~E1000_ETQF_QUEUE_MASK;
2806 	etqf &= ~E1000_ETQF_FILTER_ENABLE;
2807 
2808 	wr32(E1000_ETQF(reg_index), etqf);
2809 
2810 	adapter->etype_bitmap[reg_index] = false;
2811 }
2812 
2813 static void igb_clear_vlan_prio_filter(struct igb_adapter *adapter,
2814 				       u16 vlan_tci)
2815 {
2816 	struct e1000_hw *hw = &adapter->hw;
2817 	u8 vlan_priority;
2818 	u32 vlapqf;
2819 
2820 	vlan_priority = FIELD_GET(VLAN_PRIO_MASK, vlan_tci);
2821 
2822 	vlapqf = rd32(E1000_VLAPQF);
2823 	vlapqf &= ~E1000_VLAPQF_P_VALID(vlan_priority);
2824 	vlapqf &= ~E1000_VLAPQF_QUEUE_SEL(vlan_priority,
2825 						E1000_VLAPQF_QUEUE_MASK);
2826 
2827 	wr32(E1000_VLAPQF, vlapqf);
2828 }
2829 
2830 int igb_erase_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2831 {
2832 	if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE)
2833 		igb_clear_etype_filter_regs(adapter,
2834 					    input->etype_reg_index);
2835 
2836 	if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2837 		igb_clear_vlan_prio_filter(adapter,
2838 					   ntohs(input->filter.vlan_tci));
2839 
2840 	if (input->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR)
2841 		igb_del_mac_steering_filter(adapter, input->filter.src_addr,
2842 					    input->action,
2843 					    IGB_MAC_STATE_SRC_ADDR);
2844 
2845 	if (input->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR)
2846 		igb_del_mac_steering_filter(adapter, input->filter.dst_addr,
2847 					    input->action, 0);
2848 
2849 	return 0;
2850 }
2851 
2852 static int igb_update_ethtool_nfc_entry(struct igb_adapter *adapter,
2853 					struct igb_nfc_filter *input,
2854 					u16 sw_idx)
2855 {
2856 	struct igb_nfc_filter *rule, *parent;
2857 	int err = -EINVAL;
2858 
2859 	parent = NULL;
2860 	rule = NULL;
2861 
2862 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2863 		/* hash found, or no matching entry */
2864 		if (rule->sw_idx >= sw_idx)
2865 			break;
2866 		parent = rule;
2867 	}
2868 
2869 	/* if there is an old rule occupying our place remove it */
2870 	if (rule && (rule->sw_idx == sw_idx)) {
2871 		if (!input)
2872 			err = igb_erase_filter(adapter, rule);
2873 
2874 		hlist_del(&rule->nfc_node);
2875 		kfree(rule);
2876 		adapter->nfc_filter_count--;
2877 	}
2878 
2879 	/* If no input this was a delete, err should be 0 if a rule was
2880 	 * successfully found and removed from the list else -EINVAL
2881 	 */
2882 	if (!input)
2883 		return err;
2884 
2885 	/* initialize node */
2886 	INIT_HLIST_NODE(&input->nfc_node);
2887 
2888 	/* add filter to the list */
2889 	if (parent)
2890 		hlist_add_behind(&input->nfc_node, &parent->nfc_node);
2891 	else
2892 		hlist_add_head(&input->nfc_node, &adapter->nfc_filter_list);
2893 
2894 	/* update counts */
2895 	adapter->nfc_filter_count++;
2896 
2897 	return 0;
2898 }
2899 
2900 static int igb_add_ethtool_nfc_entry(struct igb_adapter *adapter,
2901 				     struct ethtool_rxnfc *cmd)
2902 {
2903 	struct net_device *netdev = adapter->netdev;
2904 	struct ethtool_rx_flow_spec *fsp =
2905 		(struct ethtool_rx_flow_spec *)&cmd->fs;
2906 	struct igb_nfc_filter *input, *rule;
2907 	int err = 0;
2908 
2909 	if (!(netdev->hw_features & NETIF_F_NTUPLE))
2910 		return -EOPNOTSUPP;
2911 
2912 	/* Don't allow programming if the action is a queue greater than
2913 	 * the number of online Rx queues.
2914 	 */
2915 	if ((fsp->ring_cookie == RX_CLS_FLOW_DISC) ||
2916 	    (fsp->ring_cookie >= adapter->num_rx_queues)) {
2917 		dev_err(&adapter->pdev->dev, "ethtool -N: The specified action is invalid\n");
2918 		return -EINVAL;
2919 	}
2920 
2921 	/* Don't allow indexes to exist outside of available space */
2922 	if (fsp->location >= IGB_MAX_RXNFC_FILTERS) {
2923 		dev_err(&adapter->pdev->dev, "Location out of range\n");
2924 		return -EINVAL;
2925 	}
2926 
2927 	if ((fsp->flow_type & ~FLOW_EXT) != ETHER_FLOW)
2928 		return -EINVAL;
2929 
2930 	input = kzalloc(sizeof(*input), GFP_KERNEL);
2931 	if (!input)
2932 		return -ENOMEM;
2933 
2934 	if (fsp->m_u.ether_spec.h_proto == ETHER_TYPE_FULL_MASK) {
2935 		input->filter.etype = fsp->h_u.ether_spec.h_proto;
2936 		input->filter.match_flags = IGB_FILTER_FLAG_ETHER_TYPE;
2937 	}
2938 
2939 	/* Only support matching addresses by the full mask */
2940 	if (is_broadcast_ether_addr(fsp->m_u.ether_spec.h_source)) {
2941 		input->filter.match_flags |= IGB_FILTER_FLAG_SRC_MAC_ADDR;
2942 		ether_addr_copy(input->filter.src_addr,
2943 				fsp->h_u.ether_spec.h_source);
2944 	}
2945 
2946 	/* Only support matching addresses by the full mask */
2947 	if (is_broadcast_ether_addr(fsp->m_u.ether_spec.h_dest)) {
2948 		input->filter.match_flags |= IGB_FILTER_FLAG_DST_MAC_ADDR;
2949 		ether_addr_copy(input->filter.dst_addr,
2950 				fsp->h_u.ether_spec.h_dest);
2951 	}
2952 
2953 	if ((fsp->flow_type & FLOW_EXT) && fsp->m_ext.vlan_tci) {
2954 		if (fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK)) {
2955 			err = -EINVAL;
2956 			goto err_out;
2957 		}
2958 		input->filter.vlan_tci = fsp->h_ext.vlan_tci;
2959 		input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2960 	}
2961 
2962 	input->action = fsp->ring_cookie;
2963 	input->sw_idx = fsp->location;
2964 
2965 	spin_lock(&adapter->nfc_lock);
2966 
2967 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2968 		if (!memcmp(&input->filter, &rule->filter,
2969 			    sizeof(input->filter))) {
2970 			err = -EEXIST;
2971 			dev_err(&adapter->pdev->dev,
2972 				"ethtool: this filter is already set\n");
2973 			goto err_out_w_lock;
2974 		}
2975 	}
2976 
2977 	err = igb_add_filter(adapter, input);
2978 	if (err)
2979 		goto err_out_w_lock;
2980 
2981 	err = igb_update_ethtool_nfc_entry(adapter, input, input->sw_idx);
2982 	if (err)
2983 		goto err_out_input_filter;
2984 
2985 	spin_unlock(&adapter->nfc_lock);
2986 	return 0;
2987 
2988 err_out_input_filter:
2989 	igb_erase_filter(adapter, input);
2990 err_out_w_lock:
2991 	spin_unlock(&adapter->nfc_lock);
2992 err_out:
2993 	kfree(input);
2994 	return err;
2995 }
2996 
2997 static int igb_del_ethtool_nfc_entry(struct igb_adapter *adapter,
2998 				     struct ethtool_rxnfc *cmd)
2999 {
3000 	struct ethtool_rx_flow_spec *fsp =
3001 		(struct ethtool_rx_flow_spec *)&cmd->fs;
3002 	int err;
3003 
3004 	spin_lock(&adapter->nfc_lock);
3005 	err = igb_update_ethtool_nfc_entry(adapter, NULL, fsp->location);
3006 	spin_unlock(&adapter->nfc_lock);
3007 
3008 	return err;
3009 }
3010 
3011 static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
3012 {
3013 	struct igb_adapter *adapter = netdev_priv(dev);
3014 	int ret = -EOPNOTSUPP;
3015 
3016 	switch (cmd->cmd) {
3017 	case ETHTOOL_SRXFH:
3018 		ret = igb_set_rss_hash_opt(adapter, cmd);
3019 		break;
3020 	case ETHTOOL_SRXCLSRLINS:
3021 		ret = igb_add_ethtool_nfc_entry(adapter, cmd);
3022 		break;
3023 	case ETHTOOL_SRXCLSRLDEL:
3024 		ret = igb_del_ethtool_nfc_entry(adapter, cmd);
3025 		break;
3026 	default:
3027 		break;
3028 	}
3029 
3030 	return ret;
3031 }
3032 
3033 static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
3034 {
3035 	struct igb_adapter *adapter = netdev_priv(netdev);
3036 	struct e1000_hw *hw = &adapter->hw;
3037 	u32 ret_val;
3038 	u16 phy_data;
3039 
3040 	if ((hw->mac.type < e1000_i350) ||
3041 	    (hw->phy.media_type != e1000_media_type_copper))
3042 		return -EOPNOTSUPP;
3043 
3044 	edata->supported = (SUPPORTED_1000baseT_Full |
3045 			    SUPPORTED_100baseT_Full);
3046 	if (!hw->dev_spec._82575.eee_disable)
3047 		edata->advertised =
3048 			mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
3049 
3050 	/* The IPCNFG and EEER registers are not supported on I354. */
3051 	if (hw->mac.type == e1000_i354) {
3052 		igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
3053 	} else {
3054 		u32 eeer;
3055 
3056 		eeer = rd32(E1000_EEER);
3057 
3058 		/* EEE status on negotiated link */
3059 		if (eeer & E1000_EEER_EEE_NEG)
3060 			edata->eee_active = true;
3061 
3062 		if (eeer & E1000_EEER_TX_LPI_EN)
3063 			edata->tx_lpi_enabled = true;
3064 	}
3065 
3066 	/* EEE Link Partner Advertised */
3067 	switch (hw->mac.type) {
3068 	case e1000_i350:
3069 		ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
3070 					   &phy_data);
3071 		if (ret_val)
3072 			return -ENODATA;
3073 
3074 		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
3075 		break;
3076 	case e1000_i354:
3077 	case e1000_i210:
3078 	case e1000_i211:
3079 		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
3080 					     E1000_EEE_LP_ADV_DEV_I210,
3081 					     &phy_data);
3082 		if (ret_val)
3083 			return -ENODATA;
3084 
3085 		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
3086 
3087 		break;
3088 	default:
3089 		break;
3090 	}
3091 
3092 	edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
3093 
3094 	if ((hw->mac.type == e1000_i354) &&
3095 	    (edata->eee_enabled))
3096 		edata->tx_lpi_enabled = true;
3097 
3098 	/* Report correct negotiated EEE status for devices that
3099 	 * wrongly report EEE at half-duplex
3100 	 */
3101 	if (adapter->link_duplex == HALF_DUPLEX) {
3102 		edata->eee_enabled = false;
3103 		edata->eee_active = false;
3104 		edata->tx_lpi_enabled = false;
3105 		edata->advertised &= ~edata->advertised;
3106 	}
3107 
3108 	return 0;
3109 }
3110 
3111 static int igb_set_eee(struct net_device *netdev,
3112 		       struct ethtool_eee *edata)
3113 {
3114 	struct igb_adapter *adapter = netdev_priv(netdev);
3115 	struct e1000_hw *hw = &adapter->hw;
3116 	struct ethtool_eee eee_curr;
3117 	bool adv1g_eee = true, adv100m_eee = true;
3118 	s32 ret_val;
3119 
3120 	if ((hw->mac.type < e1000_i350) ||
3121 	    (hw->phy.media_type != e1000_media_type_copper))
3122 		return -EOPNOTSUPP;
3123 
3124 	memset(&eee_curr, 0, sizeof(struct ethtool_eee));
3125 
3126 	ret_val = igb_get_eee(netdev, &eee_curr);
3127 	if (ret_val)
3128 		return ret_val;
3129 
3130 	if (eee_curr.eee_enabled) {
3131 		if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
3132 			dev_err(&adapter->pdev->dev,
3133 				"Setting EEE tx-lpi is not supported\n");
3134 			return -EINVAL;
3135 		}
3136 
3137 		/* Tx LPI timer is not implemented currently */
3138 		if (edata->tx_lpi_timer) {
3139 			dev_err(&adapter->pdev->dev,
3140 				"Setting EEE Tx LPI timer is not supported\n");
3141 			return -EINVAL;
3142 		}
3143 
3144 		if (!edata->advertised || (edata->advertised &
3145 		    ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL))) {
3146 			dev_err(&adapter->pdev->dev,
3147 				"EEE Advertisement supports only 100Tx and/or 100T full duplex\n");
3148 			return -EINVAL;
3149 		}
3150 		adv100m_eee = !!(edata->advertised & ADVERTISE_100_FULL);
3151 		adv1g_eee = !!(edata->advertised & ADVERTISE_1000_FULL);
3152 
3153 	} else if (!edata->eee_enabled) {
3154 		dev_err(&adapter->pdev->dev,
3155 			"Setting EEE options are not supported with EEE disabled\n");
3156 		return -EINVAL;
3157 	}
3158 
3159 	adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
3160 	if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
3161 		hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
3162 		adapter->flags |= IGB_FLAG_EEE;
3163 
3164 		/* reset link */
3165 		if (netif_running(netdev))
3166 			igb_reinit_locked(adapter);
3167 		else
3168 			igb_reset(adapter);
3169 	}
3170 
3171 	if (hw->mac.type == e1000_i354)
3172 		ret_val = igb_set_eee_i354(hw, adv1g_eee, adv100m_eee);
3173 	else
3174 		ret_val = igb_set_eee_i350(hw, adv1g_eee, adv100m_eee);
3175 
3176 	if (ret_val) {
3177 		dev_err(&adapter->pdev->dev,
3178 			"Problem setting EEE advertisement options\n");
3179 		return -EINVAL;
3180 	}
3181 
3182 	return 0;
3183 }
3184 
3185 static int igb_get_module_info(struct net_device *netdev,
3186 			       struct ethtool_modinfo *modinfo)
3187 {
3188 	struct igb_adapter *adapter = netdev_priv(netdev);
3189 	struct e1000_hw *hw = &adapter->hw;
3190 	u32 status = 0;
3191 	u16 sff8472_rev, addr_mode;
3192 	bool page_swap = false;
3193 
3194 	if ((hw->phy.media_type == e1000_media_type_copper) ||
3195 	    (hw->phy.media_type == e1000_media_type_unknown))
3196 		return -EOPNOTSUPP;
3197 
3198 	/* Check whether we support SFF-8472 or not */
3199 	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
3200 	if (status)
3201 		return -EIO;
3202 
3203 	/* addressing mode is not supported */
3204 	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
3205 	if (status)
3206 		return -EIO;
3207 
3208 	/* addressing mode is not supported */
3209 	if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
3210 		hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
3211 		page_swap = true;
3212 	}
3213 
3214 	if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
3215 		/* We have an SFP, but it does not support SFF-8472 */
3216 		modinfo->type = ETH_MODULE_SFF_8079;
3217 		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
3218 	} else {
3219 		/* We have an SFP which supports a revision of SFF-8472 */
3220 		modinfo->type = ETH_MODULE_SFF_8472;
3221 		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
3222 	}
3223 
3224 	return 0;
3225 }
3226 
3227 static int igb_get_module_eeprom(struct net_device *netdev,
3228 				 struct ethtool_eeprom *ee, u8 *data)
3229 {
3230 	struct igb_adapter *adapter = netdev_priv(netdev);
3231 	struct e1000_hw *hw = &adapter->hw;
3232 	u32 status = 0;
3233 	u16 *dataword;
3234 	u16 first_word, last_word;
3235 	int i = 0;
3236 
3237 	if (ee->len == 0)
3238 		return -EINVAL;
3239 
3240 	first_word = ee->offset >> 1;
3241 	last_word = (ee->offset + ee->len - 1) >> 1;
3242 
3243 	dataword = kmalloc_array(last_word - first_word + 1, sizeof(u16),
3244 				 GFP_KERNEL);
3245 	if (!dataword)
3246 		return -ENOMEM;
3247 
3248 	/* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
3249 	for (i = 0; i < last_word - first_word + 1; i++) {
3250 		status = igb_read_phy_reg_i2c(hw, (first_word + i) * 2,
3251 					      &dataword[i]);
3252 		if (status) {
3253 			/* Error occurred while reading module */
3254 			kfree(dataword);
3255 			return -EIO;
3256 		}
3257 
3258 		be16_to_cpus(&dataword[i]);
3259 	}
3260 
3261 	memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
3262 	kfree(dataword);
3263 
3264 	return 0;
3265 }
3266 
3267 static int igb_ethtool_begin(struct net_device *netdev)
3268 {
3269 	struct igb_adapter *adapter = netdev_priv(netdev);
3270 	pm_runtime_get_sync(&adapter->pdev->dev);
3271 	return 0;
3272 }
3273 
3274 static void igb_ethtool_complete(struct net_device *netdev)
3275 {
3276 	struct igb_adapter *adapter = netdev_priv(netdev);
3277 	pm_runtime_put(&adapter->pdev->dev);
3278 }
3279 
3280 static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
3281 {
3282 	return IGB_RETA_SIZE;
3283 }
3284 
3285 static int igb_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key,
3286 			u8 *hfunc)
3287 {
3288 	struct igb_adapter *adapter = netdev_priv(netdev);
3289 	int i;
3290 
3291 	if (hfunc)
3292 		*hfunc = ETH_RSS_HASH_TOP;
3293 	if (!indir)
3294 		return 0;
3295 	for (i = 0; i < IGB_RETA_SIZE; i++)
3296 		indir[i] = adapter->rss_indir_tbl[i];
3297 
3298 	return 0;
3299 }
3300 
3301 void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
3302 {
3303 	struct e1000_hw *hw = &adapter->hw;
3304 	u32 reg = E1000_RETA(0);
3305 	u32 shift = 0;
3306 	int i = 0;
3307 
3308 	switch (hw->mac.type) {
3309 	case e1000_82575:
3310 		shift = 6;
3311 		break;
3312 	case e1000_82576:
3313 		/* 82576 supports 2 RSS queues for SR-IOV */
3314 		if (adapter->vfs_allocated_count)
3315 			shift = 3;
3316 		break;
3317 	default:
3318 		break;
3319 	}
3320 
3321 	while (i < IGB_RETA_SIZE) {
3322 		u32 val = 0;
3323 		int j;
3324 
3325 		for (j = 3; j >= 0; j--) {
3326 			val <<= 8;
3327 			val |= adapter->rss_indir_tbl[i + j];
3328 		}
3329 
3330 		wr32(reg, val << shift);
3331 		reg += 4;
3332 		i += 4;
3333 	}
3334 }
3335 
3336 static int igb_set_rxfh(struct net_device *netdev, const u32 *indir,
3337 			const u8 *key, const u8 hfunc)
3338 {
3339 	struct igb_adapter *adapter = netdev_priv(netdev);
3340 	struct e1000_hw *hw = &adapter->hw;
3341 	int i;
3342 	u32 num_queues;
3343 
3344 	/* We do not allow change in unsupported parameters */
3345 	if (key ||
3346 	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
3347 		return -EOPNOTSUPP;
3348 	if (!indir)
3349 		return 0;
3350 
3351 	num_queues = adapter->rss_queues;
3352 
3353 	switch (hw->mac.type) {
3354 	case e1000_82576:
3355 		/* 82576 supports 2 RSS queues for SR-IOV */
3356 		if (adapter->vfs_allocated_count)
3357 			num_queues = 2;
3358 		break;
3359 	default:
3360 		break;
3361 	}
3362 
3363 	/* Verify user input. */
3364 	for (i = 0; i < IGB_RETA_SIZE; i++)
3365 		if (indir[i] >= num_queues)
3366 			return -EINVAL;
3367 
3368 
3369 	for (i = 0; i < IGB_RETA_SIZE; i++)
3370 		adapter->rss_indir_tbl[i] = indir[i];
3371 
3372 	igb_write_rss_indir_tbl(adapter);
3373 
3374 	return 0;
3375 }
3376 
3377 static unsigned int igb_max_channels(struct igb_adapter *adapter)
3378 {
3379 	return igb_get_max_rss_queues(adapter);
3380 }
3381 
3382 static void igb_get_channels(struct net_device *netdev,
3383 			     struct ethtool_channels *ch)
3384 {
3385 	struct igb_adapter *adapter = netdev_priv(netdev);
3386 
3387 	/* Report maximum channels */
3388 	ch->max_combined = igb_max_channels(adapter);
3389 
3390 	/* Report info for other vector */
3391 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
3392 		ch->max_other = NON_Q_VECTORS;
3393 		ch->other_count = NON_Q_VECTORS;
3394 	}
3395 
3396 	ch->combined_count = adapter->rss_queues;
3397 }
3398 
3399 static int igb_set_channels(struct net_device *netdev,
3400 			    struct ethtool_channels *ch)
3401 {
3402 	struct igb_adapter *adapter = netdev_priv(netdev);
3403 	unsigned int count = ch->combined_count;
3404 	unsigned int max_combined = 0;
3405 
3406 	/* Verify they are not requesting separate vectors */
3407 	if (!count || ch->rx_count || ch->tx_count)
3408 		return -EINVAL;
3409 
3410 	/* Verify other_count is valid and has not been changed */
3411 	if (ch->other_count != NON_Q_VECTORS)
3412 		return -EINVAL;
3413 
3414 	/* Verify the number of channels doesn't exceed hw limits */
3415 	max_combined = igb_max_channels(adapter);
3416 	if (count > max_combined)
3417 		return -EINVAL;
3418 
3419 	if (count != adapter->rss_queues) {
3420 		adapter->rss_queues = count;
3421 		igb_set_flag_queue_pairs(adapter, max_combined);
3422 
3423 		/* Hardware has to reinitialize queues and interrupts to
3424 		 * match the new configuration.
3425 		 */
3426 		return igb_reinit_queues(adapter);
3427 	}
3428 
3429 	return 0;
3430 }
3431 
3432 static u32 igb_get_priv_flags(struct net_device *netdev)
3433 {
3434 	struct igb_adapter *adapter = netdev_priv(netdev);
3435 	u32 priv_flags = 0;
3436 
3437 	if (adapter->flags & IGB_FLAG_RX_LEGACY)
3438 		priv_flags |= IGB_PRIV_FLAGS_LEGACY_RX;
3439 
3440 	return priv_flags;
3441 }
3442 
3443 static int igb_set_priv_flags(struct net_device *netdev, u32 priv_flags)
3444 {
3445 	struct igb_adapter *adapter = netdev_priv(netdev);
3446 	unsigned int flags = adapter->flags;
3447 
3448 	flags &= ~IGB_FLAG_RX_LEGACY;
3449 	if (priv_flags & IGB_PRIV_FLAGS_LEGACY_RX)
3450 		flags |= IGB_FLAG_RX_LEGACY;
3451 
3452 	if (flags != adapter->flags) {
3453 		adapter->flags = flags;
3454 
3455 		/* reset interface to repopulate queues */
3456 		if (netif_running(netdev))
3457 			igb_reinit_locked(adapter);
3458 	}
3459 
3460 	return 0;
3461 }
3462 
3463 static const struct ethtool_ops igb_ethtool_ops = {
3464 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS,
3465 	.get_drvinfo		= igb_get_drvinfo,
3466 	.get_regs_len		= igb_get_regs_len,
3467 	.get_regs		= igb_get_regs,
3468 	.get_wol		= igb_get_wol,
3469 	.set_wol		= igb_set_wol,
3470 	.get_msglevel		= igb_get_msglevel,
3471 	.set_msglevel		= igb_set_msglevel,
3472 	.nway_reset		= igb_nway_reset,
3473 	.get_link		= igb_get_link,
3474 	.get_eeprom_len		= igb_get_eeprom_len,
3475 	.get_eeprom		= igb_get_eeprom,
3476 	.set_eeprom		= igb_set_eeprom,
3477 	.get_ringparam		= igb_get_ringparam,
3478 	.set_ringparam		= igb_set_ringparam,
3479 	.get_pauseparam		= igb_get_pauseparam,
3480 	.set_pauseparam		= igb_set_pauseparam,
3481 	.self_test		= igb_diag_test,
3482 	.get_strings		= igb_get_strings,
3483 	.set_phys_id		= igb_set_phys_id,
3484 	.get_sset_count		= igb_get_sset_count,
3485 	.get_ethtool_stats	= igb_get_ethtool_stats,
3486 	.get_coalesce		= igb_get_coalesce,
3487 	.set_coalesce		= igb_set_coalesce,
3488 	.get_ts_info		= igb_get_ts_info,
3489 	.get_rxnfc		= igb_get_rxnfc,
3490 	.set_rxnfc		= igb_set_rxnfc,
3491 	.get_eee		= igb_get_eee,
3492 	.set_eee		= igb_set_eee,
3493 	.get_module_info	= igb_get_module_info,
3494 	.get_module_eeprom	= igb_get_module_eeprom,
3495 	.get_rxfh_indir_size	= igb_get_rxfh_indir_size,
3496 	.get_rxfh		= igb_get_rxfh,
3497 	.set_rxfh		= igb_set_rxfh,
3498 	.get_channels		= igb_get_channels,
3499 	.set_channels		= igb_set_channels,
3500 	.get_priv_flags		= igb_get_priv_flags,
3501 	.set_priv_flags		= igb_set_priv_flags,
3502 	.begin			= igb_ethtool_begin,
3503 	.complete		= igb_ethtool_complete,
3504 	.get_link_ksettings	= igb_get_link_ksettings,
3505 	.set_link_ksettings	= igb_set_link_ksettings,
3506 };
3507 
3508 void igb_set_ethtool_ops(struct net_device *netdev)
3509 {
3510 	netdev->ethtool_ops = &igb_ethtool_ops;
3511 }
3512