1 /******************************************************************************* 2 3 Intel(R) Gigabit Ethernet Linux driver 4 Copyright(c) 2007-2013 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 25 26 *******************************************************************************/ 27 28 /* ethtool support for igb */ 29 30 #include <linux/vmalloc.h> 31 #include <linux/netdevice.h> 32 #include <linux/pci.h> 33 #include <linux/delay.h> 34 #include <linux/interrupt.h> 35 #include <linux/if_ether.h> 36 #include <linux/ethtool.h> 37 #include <linux/sched.h> 38 #include <linux/slab.h> 39 #include <linux/pm_runtime.h> 40 #include <linux/highmem.h> 41 #include <linux/mdio.h> 42 43 #include "igb.h" 44 45 struct igb_stats { 46 char stat_string[ETH_GSTRING_LEN]; 47 int sizeof_stat; 48 int stat_offset; 49 }; 50 51 #define IGB_STAT(_name, _stat) { \ 52 .stat_string = _name, \ 53 .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \ 54 .stat_offset = offsetof(struct igb_adapter, _stat) \ 55 } 56 static const struct igb_stats igb_gstrings_stats[] = { 57 IGB_STAT("rx_packets", stats.gprc), 58 IGB_STAT("tx_packets", stats.gptc), 59 IGB_STAT("rx_bytes", stats.gorc), 60 IGB_STAT("tx_bytes", stats.gotc), 61 IGB_STAT("rx_broadcast", stats.bprc), 62 IGB_STAT("tx_broadcast", stats.bptc), 63 IGB_STAT("rx_multicast", stats.mprc), 64 IGB_STAT("tx_multicast", stats.mptc), 65 IGB_STAT("multicast", stats.mprc), 66 IGB_STAT("collisions", stats.colc), 67 IGB_STAT("rx_crc_errors", stats.crcerrs), 68 IGB_STAT("rx_no_buffer_count", stats.rnbc), 69 IGB_STAT("rx_missed_errors", stats.mpc), 70 IGB_STAT("tx_aborted_errors", stats.ecol), 71 IGB_STAT("tx_carrier_errors", stats.tncrs), 72 IGB_STAT("tx_window_errors", stats.latecol), 73 IGB_STAT("tx_abort_late_coll", stats.latecol), 74 IGB_STAT("tx_deferred_ok", stats.dc), 75 IGB_STAT("tx_single_coll_ok", stats.scc), 76 IGB_STAT("tx_multi_coll_ok", stats.mcc), 77 IGB_STAT("tx_timeout_count", tx_timeout_count), 78 IGB_STAT("rx_long_length_errors", stats.roc), 79 IGB_STAT("rx_short_length_errors", stats.ruc), 80 IGB_STAT("rx_align_errors", stats.algnerrc), 81 IGB_STAT("tx_tcp_seg_good", stats.tsctc), 82 IGB_STAT("tx_tcp_seg_failed", stats.tsctfc), 83 IGB_STAT("rx_flow_control_xon", stats.xonrxc), 84 IGB_STAT("rx_flow_control_xoff", stats.xoffrxc), 85 IGB_STAT("tx_flow_control_xon", stats.xontxc), 86 IGB_STAT("tx_flow_control_xoff", stats.xofftxc), 87 IGB_STAT("rx_long_byte_count", stats.gorc), 88 IGB_STAT("tx_dma_out_of_sync", stats.doosync), 89 IGB_STAT("tx_smbus", stats.mgptc), 90 IGB_STAT("rx_smbus", stats.mgprc), 91 IGB_STAT("dropped_smbus", stats.mgpdc), 92 IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc), 93 IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc), 94 IGB_STAT("os2bmc_tx_by_host", stats.o2bspc), 95 IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc), 96 IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts), 97 IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared), 98 }; 99 100 #define IGB_NETDEV_STAT(_net_stat) { \ 101 .stat_string = __stringify(_net_stat), \ 102 .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \ 103 .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \ 104 } 105 static const struct igb_stats igb_gstrings_net_stats[] = { 106 IGB_NETDEV_STAT(rx_errors), 107 IGB_NETDEV_STAT(tx_errors), 108 IGB_NETDEV_STAT(tx_dropped), 109 IGB_NETDEV_STAT(rx_length_errors), 110 IGB_NETDEV_STAT(rx_over_errors), 111 IGB_NETDEV_STAT(rx_frame_errors), 112 IGB_NETDEV_STAT(rx_fifo_errors), 113 IGB_NETDEV_STAT(tx_fifo_errors), 114 IGB_NETDEV_STAT(tx_heartbeat_errors) 115 }; 116 117 #define IGB_GLOBAL_STATS_LEN \ 118 (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats)) 119 #define IGB_NETDEV_STATS_LEN \ 120 (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats)) 121 #define IGB_RX_QUEUE_STATS_LEN \ 122 (sizeof(struct igb_rx_queue_stats) / sizeof(u64)) 123 124 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */ 125 126 #define IGB_QUEUE_STATS_LEN \ 127 ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \ 128 IGB_RX_QUEUE_STATS_LEN) + \ 129 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \ 130 IGB_TX_QUEUE_STATS_LEN)) 131 #define IGB_STATS_LEN \ 132 (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN) 133 134 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = { 135 "Register test (offline)", "Eeprom test (offline)", 136 "Interrupt test (offline)", "Loopback test (offline)", 137 "Link test (on/offline)" 138 }; 139 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN) 140 141 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) 142 { 143 struct igb_adapter *adapter = netdev_priv(netdev); 144 struct e1000_hw *hw = &adapter->hw; 145 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; 146 struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags; 147 u32 status; 148 149 if (hw->phy.media_type == e1000_media_type_copper) { 150 151 ecmd->supported = (SUPPORTED_10baseT_Half | 152 SUPPORTED_10baseT_Full | 153 SUPPORTED_100baseT_Half | 154 SUPPORTED_100baseT_Full | 155 SUPPORTED_1000baseT_Full| 156 SUPPORTED_Autoneg | 157 SUPPORTED_TP | 158 SUPPORTED_Pause); 159 ecmd->advertising = ADVERTISED_TP; 160 161 if (hw->mac.autoneg == 1) { 162 ecmd->advertising |= ADVERTISED_Autoneg; 163 /* the e1000 autoneg seems to match ethtool nicely */ 164 ecmd->advertising |= hw->phy.autoneg_advertised; 165 } 166 167 ecmd->port = PORT_TP; 168 ecmd->phy_address = hw->phy.addr; 169 ecmd->transceiver = XCVR_INTERNAL; 170 } else { 171 ecmd->supported = (SUPPORTED_FIBRE | 172 SUPPORTED_Autoneg | 173 SUPPORTED_Pause); 174 ecmd->advertising = ADVERTISED_FIBRE; 175 if (hw->mac.type == e1000_i354) { 176 ecmd->supported |= SUPPORTED_2500baseX_Full; 177 ecmd->advertising |= ADVERTISED_2500baseX_Full; 178 } 179 if ((eth_flags->e1000_base_lx) || (eth_flags->e1000_base_sx)) { 180 ecmd->supported |= SUPPORTED_1000baseT_Full; 181 ecmd->advertising |= ADVERTISED_1000baseT_Full; 182 } 183 if (eth_flags->e100_base_fx) { 184 ecmd->supported |= SUPPORTED_100baseT_Full; 185 ecmd->advertising |= ADVERTISED_100baseT_Full; 186 } 187 if (hw->mac.autoneg == 1) 188 ecmd->advertising |= ADVERTISED_Autoneg; 189 190 ecmd->port = PORT_FIBRE; 191 ecmd->transceiver = XCVR_EXTERNAL; 192 } 193 194 if (hw->mac.autoneg != 1) 195 ecmd->advertising &= ~(ADVERTISED_Pause | 196 ADVERTISED_Asym_Pause); 197 198 if (hw->fc.requested_mode == e1000_fc_full) 199 ecmd->advertising |= ADVERTISED_Pause; 200 else if (hw->fc.requested_mode == e1000_fc_rx_pause) 201 ecmd->advertising |= (ADVERTISED_Pause | 202 ADVERTISED_Asym_Pause); 203 else if (hw->fc.requested_mode == e1000_fc_tx_pause) 204 ecmd->advertising |= ADVERTISED_Asym_Pause; 205 else 206 ecmd->advertising &= ~(ADVERTISED_Pause | 207 ADVERTISED_Asym_Pause); 208 209 status = rd32(E1000_STATUS); 210 211 if (status & E1000_STATUS_LU) { 212 if ((hw->mac.type == e1000_i354) && 213 (status & E1000_STATUS_2P5_SKU) && 214 !(status & E1000_STATUS_2P5_SKU_OVER)) 215 ecmd->speed = SPEED_2500; 216 else if (status & E1000_STATUS_SPEED_1000) 217 ecmd->speed = SPEED_1000; 218 else if (status & E1000_STATUS_SPEED_100) 219 ecmd->speed = SPEED_100; 220 else 221 ecmd->speed = SPEED_10; 222 if ((status & E1000_STATUS_FD) || 223 hw->phy.media_type != e1000_media_type_copper) 224 ecmd->duplex = DUPLEX_FULL; 225 else 226 ecmd->duplex = DUPLEX_HALF; 227 } else { 228 ecmd->speed = -1; 229 ecmd->duplex = -1; 230 } 231 232 if ((hw->phy.media_type == e1000_media_type_fiber) || 233 hw->mac.autoneg) 234 ecmd->autoneg = AUTONEG_ENABLE; 235 else 236 ecmd->autoneg = AUTONEG_DISABLE; 237 238 /* MDI-X => 2; MDI =>1; Invalid =>0 */ 239 if (hw->phy.media_type == e1000_media_type_copper) 240 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : 241 ETH_TP_MDI; 242 else 243 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID; 244 245 if (hw->phy.mdix == AUTO_ALL_MODES) 246 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; 247 else 248 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix; 249 250 return 0; 251 } 252 253 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) 254 { 255 struct igb_adapter *adapter = netdev_priv(netdev); 256 struct e1000_hw *hw = &adapter->hw; 257 258 /* When SoL/IDER sessions are active, autoneg/speed/duplex 259 * cannot be changed 260 */ 261 if (igb_check_reset_block(hw)) { 262 dev_err(&adapter->pdev->dev, 263 "Cannot change link characteristics when SoL/IDER is active.\n"); 264 return -EINVAL; 265 } 266 267 /* MDI setting is only allowed when autoneg enabled because 268 * some hardware doesn't allow MDI setting when speed or 269 * duplex is forced. 270 */ 271 if (ecmd->eth_tp_mdix_ctrl) { 272 if (hw->phy.media_type != e1000_media_type_copper) 273 return -EOPNOTSUPP; 274 275 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && 276 (ecmd->autoneg != AUTONEG_ENABLE)) { 277 dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); 278 return -EINVAL; 279 } 280 } 281 282 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 283 msleep(1); 284 285 if (ecmd->autoneg == AUTONEG_ENABLE) { 286 hw->mac.autoneg = 1; 287 if (hw->phy.media_type == e1000_media_type_fiber) { 288 hw->phy.autoneg_advertised = ecmd->advertising | 289 ADVERTISED_FIBRE | 290 ADVERTISED_Autoneg; 291 switch (adapter->link_speed) { 292 case SPEED_2500: 293 hw->phy.autoneg_advertised = 294 ADVERTISED_2500baseX_Full; 295 break; 296 case SPEED_1000: 297 hw->phy.autoneg_advertised = 298 ADVERTISED_1000baseT_Full; 299 break; 300 case SPEED_100: 301 hw->phy.autoneg_advertised = 302 ADVERTISED_100baseT_Full; 303 break; 304 default: 305 break; 306 } 307 } else { 308 hw->phy.autoneg_advertised = ecmd->advertising | 309 ADVERTISED_TP | 310 ADVERTISED_Autoneg; 311 } 312 ecmd->advertising = hw->phy.autoneg_advertised; 313 if (adapter->fc_autoneg) 314 hw->fc.requested_mode = e1000_fc_default; 315 } else { 316 u32 speed = ethtool_cmd_speed(ecmd); 317 /* calling this overrides forced MDI setting */ 318 if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) { 319 clear_bit(__IGB_RESETTING, &adapter->state); 320 return -EINVAL; 321 } 322 } 323 324 /* MDI-X => 2; MDI => 1; Auto => 3 */ 325 if (ecmd->eth_tp_mdix_ctrl) { 326 /* fix up the value for auto (3 => 0) as zero is mapped 327 * internally to auto 328 */ 329 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) 330 hw->phy.mdix = AUTO_ALL_MODES; 331 else 332 hw->phy.mdix = ecmd->eth_tp_mdix_ctrl; 333 } 334 335 /* reset the link */ 336 if (netif_running(adapter->netdev)) { 337 igb_down(adapter); 338 igb_up(adapter); 339 } else 340 igb_reset(adapter); 341 342 clear_bit(__IGB_RESETTING, &adapter->state); 343 return 0; 344 } 345 346 static u32 igb_get_link(struct net_device *netdev) 347 { 348 struct igb_adapter *adapter = netdev_priv(netdev); 349 struct e1000_mac_info *mac = &adapter->hw.mac; 350 351 /* If the link is not reported up to netdev, interrupts are disabled, 352 * and so the physical link state may have changed since we last 353 * looked. Set get_link_status to make sure that the true link 354 * state is interrogated, rather than pulling a cached and possibly 355 * stale link state from the driver. 356 */ 357 if (!netif_carrier_ok(netdev)) 358 mac->get_link_status = 1; 359 360 return igb_has_link(adapter); 361 } 362 363 static void igb_get_pauseparam(struct net_device *netdev, 364 struct ethtool_pauseparam *pause) 365 { 366 struct igb_adapter *adapter = netdev_priv(netdev); 367 struct e1000_hw *hw = &adapter->hw; 368 369 pause->autoneg = 370 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 371 372 if (hw->fc.current_mode == e1000_fc_rx_pause) 373 pause->rx_pause = 1; 374 else if (hw->fc.current_mode == e1000_fc_tx_pause) 375 pause->tx_pause = 1; 376 else if (hw->fc.current_mode == e1000_fc_full) { 377 pause->rx_pause = 1; 378 pause->tx_pause = 1; 379 } 380 } 381 382 static int igb_set_pauseparam(struct net_device *netdev, 383 struct ethtool_pauseparam *pause) 384 { 385 struct igb_adapter *adapter = netdev_priv(netdev); 386 struct e1000_hw *hw = &adapter->hw; 387 int retval = 0; 388 389 /* 100basefx does not support setting link flow control */ 390 if (hw->dev_spec._82575.eth_flags.e100_base_fx) 391 return -EINVAL; 392 393 adapter->fc_autoneg = pause->autoneg; 394 395 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 396 msleep(1); 397 398 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 399 hw->fc.requested_mode = e1000_fc_default; 400 if (netif_running(adapter->netdev)) { 401 igb_down(adapter); 402 igb_up(adapter); 403 } else { 404 igb_reset(adapter); 405 } 406 } else { 407 if (pause->rx_pause && pause->tx_pause) 408 hw->fc.requested_mode = e1000_fc_full; 409 else if (pause->rx_pause && !pause->tx_pause) 410 hw->fc.requested_mode = e1000_fc_rx_pause; 411 else if (!pause->rx_pause && pause->tx_pause) 412 hw->fc.requested_mode = e1000_fc_tx_pause; 413 else if (!pause->rx_pause && !pause->tx_pause) 414 hw->fc.requested_mode = e1000_fc_none; 415 416 hw->fc.current_mode = hw->fc.requested_mode; 417 418 retval = ((hw->phy.media_type == e1000_media_type_copper) ? 419 igb_force_mac_fc(hw) : igb_setup_link(hw)); 420 } 421 422 clear_bit(__IGB_RESETTING, &adapter->state); 423 return retval; 424 } 425 426 static u32 igb_get_msglevel(struct net_device *netdev) 427 { 428 struct igb_adapter *adapter = netdev_priv(netdev); 429 return adapter->msg_enable; 430 } 431 432 static void igb_set_msglevel(struct net_device *netdev, u32 data) 433 { 434 struct igb_adapter *adapter = netdev_priv(netdev); 435 adapter->msg_enable = data; 436 } 437 438 static int igb_get_regs_len(struct net_device *netdev) 439 { 440 #define IGB_REGS_LEN 739 441 return IGB_REGS_LEN * sizeof(u32); 442 } 443 444 static void igb_get_regs(struct net_device *netdev, 445 struct ethtool_regs *regs, void *p) 446 { 447 struct igb_adapter *adapter = netdev_priv(netdev); 448 struct e1000_hw *hw = &adapter->hw; 449 u32 *regs_buff = p; 450 u8 i; 451 452 memset(p, 0, IGB_REGS_LEN * sizeof(u32)); 453 454 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id; 455 456 /* General Registers */ 457 regs_buff[0] = rd32(E1000_CTRL); 458 regs_buff[1] = rd32(E1000_STATUS); 459 regs_buff[2] = rd32(E1000_CTRL_EXT); 460 regs_buff[3] = rd32(E1000_MDIC); 461 regs_buff[4] = rd32(E1000_SCTL); 462 regs_buff[5] = rd32(E1000_CONNSW); 463 regs_buff[6] = rd32(E1000_VET); 464 regs_buff[7] = rd32(E1000_LEDCTL); 465 regs_buff[8] = rd32(E1000_PBA); 466 regs_buff[9] = rd32(E1000_PBS); 467 regs_buff[10] = rd32(E1000_FRTIMER); 468 regs_buff[11] = rd32(E1000_TCPTIMER); 469 470 /* NVM Register */ 471 regs_buff[12] = rd32(E1000_EECD); 472 473 /* Interrupt */ 474 /* Reading EICS for EICR because they read the 475 * same but EICS does not clear on read 476 */ 477 regs_buff[13] = rd32(E1000_EICS); 478 regs_buff[14] = rd32(E1000_EICS); 479 regs_buff[15] = rd32(E1000_EIMS); 480 regs_buff[16] = rd32(E1000_EIMC); 481 regs_buff[17] = rd32(E1000_EIAC); 482 regs_buff[18] = rd32(E1000_EIAM); 483 /* Reading ICS for ICR because they read the 484 * same but ICS does not clear on read 485 */ 486 regs_buff[19] = rd32(E1000_ICS); 487 regs_buff[20] = rd32(E1000_ICS); 488 regs_buff[21] = rd32(E1000_IMS); 489 regs_buff[22] = rd32(E1000_IMC); 490 regs_buff[23] = rd32(E1000_IAC); 491 regs_buff[24] = rd32(E1000_IAM); 492 regs_buff[25] = rd32(E1000_IMIRVP); 493 494 /* Flow Control */ 495 regs_buff[26] = rd32(E1000_FCAL); 496 regs_buff[27] = rd32(E1000_FCAH); 497 regs_buff[28] = rd32(E1000_FCTTV); 498 regs_buff[29] = rd32(E1000_FCRTL); 499 regs_buff[30] = rd32(E1000_FCRTH); 500 regs_buff[31] = rd32(E1000_FCRTV); 501 502 /* Receive */ 503 regs_buff[32] = rd32(E1000_RCTL); 504 regs_buff[33] = rd32(E1000_RXCSUM); 505 regs_buff[34] = rd32(E1000_RLPML); 506 regs_buff[35] = rd32(E1000_RFCTL); 507 regs_buff[36] = rd32(E1000_MRQC); 508 regs_buff[37] = rd32(E1000_VT_CTL); 509 510 /* Transmit */ 511 regs_buff[38] = rd32(E1000_TCTL); 512 regs_buff[39] = rd32(E1000_TCTL_EXT); 513 regs_buff[40] = rd32(E1000_TIPG); 514 regs_buff[41] = rd32(E1000_DTXCTL); 515 516 /* Wake Up */ 517 regs_buff[42] = rd32(E1000_WUC); 518 regs_buff[43] = rd32(E1000_WUFC); 519 regs_buff[44] = rd32(E1000_WUS); 520 regs_buff[45] = rd32(E1000_IPAV); 521 regs_buff[46] = rd32(E1000_WUPL); 522 523 /* MAC */ 524 regs_buff[47] = rd32(E1000_PCS_CFG0); 525 regs_buff[48] = rd32(E1000_PCS_LCTL); 526 regs_buff[49] = rd32(E1000_PCS_LSTAT); 527 regs_buff[50] = rd32(E1000_PCS_ANADV); 528 regs_buff[51] = rd32(E1000_PCS_LPAB); 529 regs_buff[52] = rd32(E1000_PCS_NPTX); 530 regs_buff[53] = rd32(E1000_PCS_LPABNP); 531 532 /* Statistics */ 533 regs_buff[54] = adapter->stats.crcerrs; 534 regs_buff[55] = adapter->stats.algnerrc; 535 regs_buff[56] = adapter->stats.symerrs; 536 regs_buff[57] = adapter->stats.rxerrc; 537 regs_buff[58] = adapter->stats.mpc; 538 regs_buff[59] = adapter->stats.scc; 539 regs_buff[60] = adapter->stats.ecol; 540 regs_buff[61] = adapter->stats.mcc; 541 regs_buff[62] = adapter->stats.latecol; 542 regs_buff[63] = adapter->stats.colc; 543 regs_buff[64] = adapter->stats.dc; 544 regs_buff[65] = adapter->stats.tncrs; 545 regs_buff[66] = adapter->stats.sec; 546 regs_buff[67] = adapter->stats.htdpmc; 547 regs_buff[68] = adapter->stats.rlec; 548 regs_buff[69] = adapter->stats.xonrxc; 549 regs_buff[70] = adapter->stats.xontxc; 550 regs_buff[71] = adapter->stats.xoffrxc; 551 regs_buff[72] = adapter->stats.xofftxc; 552 regs_buff[73] = adapter->stats.fcruc; 553 regs_buff[74] = adapter->stats.prc64; 554 regs_buff[75] = adapter->stats.prc127; 555 regs_buff[76] = adapter->stats.prc255; 556 regs_buff[77] = adapter->stats.prc511; 557 regs_buff[78] = adapter->stats.prc1023; 558 regs_buff[79] = adapter->stats.prc1522; 559 regs_buff[80] = adapter->stats.gprc; 560 regs_buff[81] = adapter->stats.bprc; 561 regs_buff[82] = adapter->stats.mprc; 562 regs_buff[83] = adapter->stats.gptc; 563 regs_buff[84] = adapter->stats.gorc; 564 regs_buff[86] = adapter->stats.gotc; 565 regs_buff[88] = adapter->stats.rnbc; 566 regs_buff[89] = adapter->stats.ruc; 567 regs_buff[90] = adapter->stats.rfc; 568 regs_buff[91] = adapter->stats.roc; 569 regs_buff[92] = adapter->stats.rjc; 570 regs_buff[93] = adapter->stats.mgprc; 571 regs_buff[94] = adapter->stats.mgpdc; 572 regs_buff[95] = adapter->stats.mgptc; 573 regs_buff[96] = adapter->stats.tor; 574 regs_buff[98] = adapter->stats.tot; 575 regs_buff[100] = adapter->stats.tpr; 576 regs_buff[101] = adapter->stats.tpt; 577 regs_buff[102] = adapter->stats.ptc64; 578 regs_buff[103] = adapter->stats.ptc127; 579 regs_buff[104] = adapter->stats.ptc255; 580 regs_buff[105] = adapter->stats.ptc511; 581 regs_buff[106] = adapter->stats.ptc1023; 582 regs_buff[107] = adapter->stats.ptc1522; 583 regs_buff[108] = adapter->stats.mptc; 584 regs_buff[109] = adapter->stats.bptc; 585 regs_buff[110] = adapter->stats.tsctc; 586 regs_buff[111] = adapter->stats.iac; 587 regs_buff[112] = adapter->stats.rpthc; 588 regs_buff[113] = adapter->stats.hgptc; 589 regs_buff[114] = adapter->stats.hgorc; 590 regs_buff[116] = adapter->stats.hgotc; 591 regs_buff[118] = adapter->stats.lenerrs; 592 regs_buff[119] = adapter->stats.scvpc; 593 regs_buff[120] = adapter->stats.hrmpc; 594 595 for (i = 0; i < 4; i++) 596 regs_buff[121 + i] = rd32(E1000_SRRCTL(i)); 597 for (i = 0; i < 4; i++) 598 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i)); 599 for (i = 0; i < 4; i++) 600 regs_buff[129 + i] = rd32(E1000_RDBAL(i)); 601 for (i = 0; i < 4; i++) 602 regs_buff[133 + i] = rd32(E1000_RDBAH(i)); 603 for (i = 0; i < 4; i++) 604 regs_buff[137 + i] = rd32(E1000_RDLEN(i)); 605 for (i = 0; i < 4; i++) 606 regs_buff[141 + i] = rd32(E1000_RDH(i)); 607 for (i = 0; i < 4; i++) 608 regs_buff[145 + i] = rd32(E1000_RDT(i)); 609 for (i = 0; i < 4; i++) 610 regs_buff[149 + i] = rd32(E1000_RXDCTL(i)); 611 612 for (i = 0; i < 10; i++) 613 regs_buff[153 + i] = rd32(E1000_EITR(i)); 614 for (i = 0; i < 8; i++) 615 regs_buff[163 + i] = rd32(E1000_IMIR(i)); 616 for (i = 0; i < 8; i++) 617 regs_buff[171 + i] = rd32(E1000_IMIREXT(i)); 618 for (i = 0; i < 16; i++) 619 regs_buff[179 + i] = rd32(E1000_RAL(i)); 620 for (i = 0; i < 16; i++) 621 regs_buff[195 + i] = rd32(E1000_RAH(i)); 622 623 for (i = 0; i < 4; i++) 624 regs_buff[211 + i] = rd32(E1000_TDBAL(i)); 625 for (i = 0; i < 4; i++) 626 regs_buff[215 + i] = rd32(E1000_TDBAH(i)); 627 for (i = 0; i < 4; i++) 628 regs_buff[219 + i] = rd32(E1000_TDLEN(i)); 629 for (i = 0; i < 4; i++) 630 regs_buff[223 + i] = rd32(E1000_TDH(i)); 631 for (i = 0; i < 4; i++) 632 regs_buff[227 + i] = rd32(E1000_TDT(i)); 633 for (i = 0; i < 4; i++) 634 regs_buff[231 + i] = rd32(E1000_TXDCTL(i)); 635 for (i = 0; i < 4; i++) 636 regs_buff[235 + i] = rd32(E1000_TDWBAL(i)); 637 for (i = 0; i < 4; i++) 638 regs_buff[239 + i] = rd32(E1000_TDWBAH(i)); 639 for (i = 0; i < 4; i++) 640 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i)); 641 642 for (i = 0; i < 4; i++) 643 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i)); 644 for (i = 0; i < 4; i++) 645 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i)); 646 for (i = 0; i < 32; i++) 647 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i)); 648 for (i = 0; i < 128; i++) 649 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i)); 650 for (i = 0; i < 128; i++) 651 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i)); 652 for (i = 0; i < 4; i++) 653 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i)); 654 655 regs_buff[547] = rd32(E1000_TDFH); 656 regs_buff[548] = rd32(E1000_TDFT); 657 regs_buff[549] = rd32(E1000_TDFHS); 658 regs_buff[550] = rd32(E1000_TDFPC); 659 660 if (hw->mac.type > e1000_82580) { 661 regs_buff[551] = adapter->stats.o2bgptc; 662 regs_buff[552] = adapter->stats.b2ospc; 663 regs_buff[553] = adapter->stats.o2bspc; 664 regs_buff[554] = adapter->stats.b2ogprc; 665 } 666 667 if (hw->mac.type != e1000_82576) 668 return; 669 for (i = 0; i < 12; i++) 670 regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4)); 671 for (i = 0; i < 4; i++) 672 regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4)); 673 for (i = 0; i < 12; i++) 674 regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4)); 675 for (i = 0; i < 12; i++) 676 regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4)); 677 for (i = 0; i < 12; i++) 678 regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4)); 679 for (i = 0; i < 12; i++) 680 regs_buff[607 + i] = rd32(E1000_RDH(i + 4)); 681 for (i = 0; i < 12; i++) 682 regs_buff[619 + i] = rd32(E1000_RDT(i + 4)); 683 for (i = 0; i < 12; i++) 684 regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4)); 685 686 for (i = 0; i < 12; i++) 687 regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4)); 688 for (i = 0; i < 12; i++) 689 regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4)); 690 for (i = 0; i < 12; i++) 691 regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4)); 692 for (i = 0; i < 12; i++) 693 regs_buff[679 + i] = rd32(E1000_TDH(i + 4)); 694 for (i = 0; i < 12; i++) 695 regs_buff[691 + i] = rd32(E1000_TDT(i + 4)); 696 for (i = 0; i < 12; i++) 697 regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4)); 698 for (i = 0; i < 12; i++) 699 regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4)); 700 for (i = 0; i < 12; i++) 701 regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4)); 702 } 703 704 static int igb_get_eeprom_len(struct net_device *netdev) 705 { 706 struct igb_adapter *adapter = netdev_priv(netdev); 707 return adapter->hw.nvm.word_size * 2; 708 } 709 710 static int igb_get_eeprom(struct net_device *netdev, 711 struct ethtool_eeprom *eeprom, u8 *bytes) 712 { 713 struct igb_adapter *adapter = netdev_priv(netdev); 714 struct e1000_hw *hw = &adapter->hw; 715 u16 *eeprom_buff; 716 int first_word, last_word; 717 int ret_val = 0; 718 u16 i; 719 720 if (eeprom->len == 0) 721 return -EINVAL; 722 723 eeprom->magic = hw->vendor_id | (hw->device_id << 16); 724 725 first_word = eeprom->offset >> 1; 726 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 727 728 eeprom_buff = kmalloc(sizeof(u16) * 729 (last_word - first_word + 1), GFP_KERNEL); 730 if (!eeprom_buff) 731 return -ENOMEM; 732 733 if (hw->nvm.type == e1000_nvm_eeprom_spi) 734 ret_val = hw->nvm.ops.read(hw, first_word, 735 last_word - first_word + 1, 736 eeprom_buff); 737 else { 738 for (i = 0; i < last_word - first_word + 1; i++) { 739 ret_val = hw->nvm.ops.read(hw, first_word + i, 1, 740 &eeprom_buff[i]); 741 if (ret_val) 742 break; 743 } 744 } 745 746 /* Device's eeprom is always little-endian, word addressable */ 747 for (i = 0; i < last_word - first_word + 1; i++) 748 le16_to_cpus(&eeprom_buff[i]); 749 750 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), 751 eeprom->len); 752 kfree(eeprom_buff); 753 754 return ret_val; 755 } 756 757 static int igb_set_eeprom(struct net_device *netdev, 758 struct ethtool_eeprom *eeprom, u8 *bytes) 759 { 760 struct igb_adapter *adapter = netdev_priv(netdev); 761 struct e1000_hw *hw = &adapter->hw; 762 u16 *eeprom_buff; 763 void *ptr; 764 int max_len, first_word, last_word, ret_val = 0; 765 u16 i; 766 767 if (eeprom->len == 0) 768 return -EOPNOTSUPP; 769 770 if (hw->mac.type == e1000_i211) 771 return -EOPNOTSUPP; 772 773 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16))) 774 return -EFAULT; 775 776 max_len = hw->nvm.word_size * 2; 777 778 first_word = eeprom->offset >> 1; 779 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 780 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 781 if (!eeprom_buff) 782 return -ENOMEM; 783 784 ptr = (void *)eeprom_buff; 785 786 if (eeprom->offset & 1) { 787 /* need read/modify/write of first changed EEPROM word 788 * only the second byte of the word is being modified 789 */ 790 ret_val = hw->nvm.ops.read(hw, first_word, 1, 791 &eeprom_buff[0]); 792 ptr++; 793 } 794 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) { 795 /* need read/modify/write of last changed EEPROM word 796 * only the first byte of the word is being modified 797 */ 798 ret_val = hw->nvm.ops.read(hw, last_word, 1, 799 &eeprom_buff[last_word - first_word]); 800 } 801 802 /* Device's eeprom is always little-endian, word addressable */ 803 for (i = 0; i < last_word - first_word + 1; i++) 804 le16_to_cpus(&eeprom_buff[i]); 805 806 memcpy(ptr, bytes, eeprom->len); 807 808 for (i = 0; i < last_word - first_word + 1; i++) 809 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]); 810 811 ret_val = hw->nvm.ops.write(hw, first_word, 812 last_word - first_word + 1, eeprom_buff); 813 814 /* Update the checksum if nvm write succeeded */ 815 if (ret_val == 0) 816 hw->nvm.ops.update(hw); 817 818 igb_set_fw_version(adapter); 819 kfree(eeprom_buff); 820 return ret_val; 821 } 822 823 static void igb_get_drvinfo(struct net_device *netdev, 824 struct ethtool_drvinfo *drvinfo) 825 { 826 struct igb_adapter *adapter = netdev_priv(netdev); 827 828 strlcpy(drvinfo->driver, igb_driver_name, sizeof(drvinfo->driver)); 829 strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version)); 830 831 /* EEPROM image version # is reported as firmware version # for 832 * 82575 controllers 833 */ 834 strlcpy(drvinfo->fw_version, adapter->fw_version, 835 sizeof(drvinfo->fw_version)); 836 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 837 sizeof(drvinfo->bus_info)); 838 drvinfo->n_stats = IGB_STATS_LEN; 839 drvinfo->testinfo_len = IGB_TEST_LEN; 840 drvinfo->regdump_len = igb_get_regs_len(netdev); 841 drvinfo->eedump_len = igb_get_eeprom_len(netdev); 842 } 843 844 static void igb_get_ringparam(struct net_device *netdev, 845 struct ethtool_ringparam *ring) 846 { 847 struct igb_adapter *adapter = netdev_priv(netdev); 848 849 ring->rx_max_pending = IGB_MAX_RXD; 850 ring->tx_max_pending = IGB_MAX_TXD; 851 ring->rx_pending = adapter->rx_ring_count; 852 ring->tx_pending = adapter->tx_ring_count; 853 } 854 855 static int igb_set_ringparam(struct net_device *netdev, 856 struct ethtool_ringparam *ring) 857 { 858 struct igb_adapter *adapter = netdev_priv(netdev); 859 struct igb_ring *temp_ring; 860 int i, err = 0; 861 u16 new_rx_count, new_tx_count; 862 863 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 864 return -EINVAL; 865 866 new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD); 867 new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD); 868 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE); 869 870 new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD); 871 new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD); 872 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE); 873 874 if ((new_tx_count == adapter->tx_ring_count) && 875 (new_rx_count == adapter->rx_ring_count)) { 876 /* nothing to do */ 877 return 0; 878 } 879 880 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 881 msleep(1); 882 883 if (!netif_running(adapter->netdev)) { 884 for (i = 0; i < adapter->num_tx_queues; i++) 885 adapter->tx_ring[i]->count = new_tx_count; 886 for (i = 0; i < adapter->num_rx_queues; i++) 887 adapter->rx_ring[i]->count = new_rx_count; 888 adapter->tx_ring_count = new_tx_count; 889 adapter->rx_ring_count = new_rx_count; 890 goto clear_reset; 891 } 892 893 if (adapter->num_tx_queues > adapter->num_rx_queues) 894 temp_ring = vmalloc(adapter->num_tx_queues * 895 sizeof(struct igb_ring)); 896 else 897 temp_ring = vmalloc(adapter->num_rx_queues * 898 sizeof(struct igb_ring)); 899 900 if (!temp_ring) { 901 err = -ENOMEM; 902 goto clear_reset; 903 } 904 905 igb_down(adapter); 906 907 /* We can't just free everything and then setup again, 908 * because the ISRs in MSI-X mode get passed pointers 909 * to the Tx and Rx ring structs. 910 */ 911 if (new_tx_count != adapter->tx_ring_count) { 912 for (i = 0; i < adapter->num_tx_queues; i++) { 913 memcpy(&temp_ring[i], adapter->tx_ring[i], 914 sizeof(struct igb_ring)); 915 916 temp_ring[i].count = new_tx_count; 917 err = igb_setup_tx_resources(&temp_ring[i]); 918 if (err) { 919 while (i) { 920 i--; 921 igb_free_tx_resources(&temp_ring[i]); 922 } 923 goto err_setup; 924 } 925 } 926 927 for (i = 0; i < adapter->num_tx_queues; i++) { 928 igb_free_tx_resources(adapter->tx_ring[i]); 929 930 memcpy(adapter->tx_ring[i], &temp_ring[i], 931 sizeof(struct igb_ring)); 932 } 933 934 adapter->tx_ring_count = new_tx_count; 935 } 936 937 if (new_rx_count != adapter->rx_ring_count) { 938 for (i = 0; i < adapter->num_rx_queues; i++) { 939 memcpy(&temp_ring[i], adapter->rx_ring[i], 940 sizeof(struct igb_ring)); 941 942 temp_ring[i].count = new_rx_count; 943 err = igb_setup_rx_resources(&temp_ring[i]); 944 if (err) { 945 while (i) { 946 i--; 947 igb_free_rx_resources(&temp_ring[i]); 948 } 949 goto err_setup; 950 } 951 952 } 953 954 for (i = 0; i < adapter->num_rx_queues; i++) { 955 igb_free_rx_resources(adapter->rx_ring[i]); 956 957 memcpy(adapter->rx_ring[i], &temp_ring[i], 958 sizeof(struct igb_ring)); 959 } 960 961 adapter->rx_ring_count = new_rx_count; 962 } 963 err_setup: 964 igb_up(adapter); 965 vfree(temp_ring); 966 clear_reset: 967 clear_bit(__IGB_RESETTING, &adapter->state); 968 return err; 969 } 970 971 /* ethtool register test data */ 972 struct igb_reg_test { 973 u16 reg; 974 u16 reg_offset; 975 u16 array_len; 976 u16 test_type; 977 u32 mask; 978 u32 write; 979 }; 980 981 /* In the hardware, registers are laid out either singly, in arrays 982 * spaced 0x100 bytes apart, or in contiguous tables. We assume 983 * most tests take place on arrays or single registers (handled 984 * as a single-element array) and special-case the tables. 985 * Table tests are always pattern tests. 986 * 987 * We also make provision for some required setup steps by specifying 988 * registers to be written without any read-back testing. 989 */ 990 991 #define PATTERN_TEST 1 992 #define SET_READ_TEST 2 993 #define WRITE_NO_TEST 3 994 #define TABLE32_TEST 4 995 #define TABLE64_TEST_LO 5 996 #define TABLE64_TEST_HI 6 997 998 /* i210 reg test */ 999 static struct igb_reg_test reg_test_i210[] = { 1000 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1001 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1002 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1003 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1004 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1005 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1006 /* RDH is read-only for i210, only test RDT. */ 1007 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1008 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1009 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1010 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1011 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1012 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1013 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1014 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1015 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1016 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, 1017 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, 1018 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1019 { E1000_RA, 0, 16, TABLE64_TEST_LO, 1020 0xFFFFFFFF, 0xFFFFFFFF }, 1021 { E1000_RA, 0, 16, TABLE64_TEST_HI, 1022 0x900FFFFF, 0xFFFFFFFF }, 1023 { E1000_MTA, 0, 128, TABLE32_TEST, 1024 0xFFFFFFFF, 0xFFFFFFFF }, 1025 { 0, 0, 0, 0, 0 } 1026 }; 1027 1028 /* i350 reg test */ 1029 static struct igb_reg_test reg_test_i350[] = { 1030 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1031 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1032 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1033 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 }, 1034 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1035 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1036 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1037 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1038 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1039 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1040 /* RDH is read-only for i350, only test RDT. */ 1041 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1042 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1043 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1044 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1045 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1046 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1047 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1048 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1049 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1050 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1051 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1052 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1053 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1054 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1055 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, 1056 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, 1057 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1058 { E1000_RA, 0, 16, TABLE64_TEST_LO, 1059 0xFFFFFFFF, 0xFFFFFFFF }, 1060 { E1000_RA, 0, 16, TABLE64_TEST_HI, 1061 0xC3FFFFFF, 0xFFFFFFFF }, 1062 { E1000_RA2, 0, 16, TABLE64_TEST_LO, 1063 0xFFFFFFFF, 0xFFFFFFFF }, 1064 { E1000_RA2, 0, 16, TABLE64_TEST_HI, 1065 0xC3FFFFFF, 0xFFFFFFFF }, 1066 { E1000_MTA, 0, 128, TABLE32_TEST, 1067 0xFFFFFFFF, 0xFFFFFFFF }, 1068 { 0, 0, 0, 0 } 1069 }; 1070 1071 /* 82580 reg test */ 1072 static struct igb_reg_test reg_test_82580[] = { 1073 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1074 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1075 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1076 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1077 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1078 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1079 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1080 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1081 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1082 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1083 /* RDH is read-only for 82580, only test RDT. */ 1084 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1085 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1086 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1087 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1088 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1089 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1090 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1091 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1092 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1093 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1094 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1095 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1096 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1097 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1098 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, 1099 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, 1100 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1101 { E1000_RA, 0, 16, TABLE64_TEST_LO, 1102 0xFFFFFFFF, 0xFFFFFFFF }, 1103 { E1000_RA, 0, 16, TABLE64_TEST_HI, 1104 0x83FFFFFF, 0xFFFFFFFF }, 1105 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 1106 0xFFFFFFFF, 0xFFFFFFFF }, 1107 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 1108 0x83FFFFFF, 0xFFFFFFFF }, 1109 { E1000_MTA, 0, 128, TABLE32_TEST, 1110 0xFFFFFFFF, 0xFFFFFFFF }, 1111 { 0, 0, 0, 0 } 1112 }; 1113 1114 /* 82576 reg test */ 1115 static struct igb_reg_test reg_test_82576[] = { 1116 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1117 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1118 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1119 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1120 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1121 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1122 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1123 { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1124 { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1125 { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1126 /* Enable all RX queues before testing. */ 1127 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE }, 1128 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE }, 1129 /* RDH is read-only for 82576, only test RDT. */ 1130 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1131 { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1132 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 }, 1133 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 }, 1134 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1135 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1136 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1137 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1138 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1139 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1140 { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1141 { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1142 { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1143 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1144 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, 1145 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, 1146 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1147 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, 1148 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF }, 1149 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, 1150 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF }, 1151 { E1000_MTA, 0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1152 { 0, 0, 0, 0 } 1153 }; 1154 1155 /* 82575 register test */ 1156 static struct igb_reg_test reg_test_82575[] = { 1157 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1158 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1159 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1160 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1161 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1162 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1163 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1164 /* Enable all four RX queues before testing. */ 1165 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE }, 1166 /* RDH is read-only for 82575, only test RDT. */ 1167 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1168 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 }, 1169 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1170 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1171 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1172 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1173 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1174 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1175 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1176 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB }, 1177 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF }, 1178 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1179 { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF }, 1180 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, 1181 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF }, 1182 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1183 { 0, 0, 0, 0 } 1184 }; 1185 1186 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data, 1187 int reg, u32 mask, u32 write) 1188 { 1189 struct e1000_hw *hw = &adapter->hw; 1190 u32 pat, val; 1191 static const u32 _test[] = 1192 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; 1193 for (pat = 0; pat < ARRAY_SIZE(_test); pat++) { 1194 wr32(reg, (_test[pat] & write)); 1195 val = rd32(reg) & mask; 1196 if (val != (_test[pat] & write & mask)) { 1197 dev_err(&adapter->pdev->dev, 1198 "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n", 1199 reg, val, (_test[pat] & write & mask)); 1200 *data = reg; 1201 return 1; 1202 } 1203 } 1204 1205 return 0; 1206 } 1207 1208 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data, 1209 int reg, u32 mask, u32 write) 1210 { 1211 struct e1000_hw *hw = &adapter->hw; 1212 u32 val; 1213 wr32(reg, write & mask); 1214 val = rd32(reg); 1215 if ((write & mask) != (val & mask)) { 1216 dev_err(&adapter->pdev->dev, 1217 "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", reg, 1218 (val & mask), (write & mask)); 1219 *data = reg; 1220 return 1; 1221 } 1222 1223 return 0; 1224 } 1225 1226 #define REG_PATTERN_TEST(reg, mask, write) \ 1227 do { \ 1228 if (reg_pattern_test(adapter, data, reg, mask, write)) \ 1229 return 1; \ 1230 } while (0) 1231 1232 #define REG_SET_AND_CHECK(reg, mask, write) \ 1233 do { \ 1234 if (reg_set_and_check(adapter, data, reg, mask, write)) \ 1235 return 1; \ 1236 } while (0) 1237 1238 static int igb_reg_test(struct igb_adapter *adapter, u64 *data) 1239 { 1240 struct e1000_hw *hw = &adapter->hw; 1241 struct igb_reg_test *test; 1242 u32 value, before, after; 1243 u32 i, toggle; 1244 1245 switch (adapter->hw.mac.type) { 1246 case e1000_i350: 1247 case e1000_i354: 1248 test = reg_test_i350; 1249 toggle = 0x7FEFF3FF; 1250 break; 1251 case e1000_i210: 1252 case e1000_i211: 1253 test = reg_test_i210; 1254 toggle = 0x7FEFF3FF; 1255 break; 1256 case e1000_82580: 1257 test = reg_test_82580; 1258 toggle = 0x7FEFF3FF; 1259 break; 1260 case e1000_82576: 1261 test = reg_test_82576; 1262 toggle = 0x7FFFF3FF; 1263 break; 1264 default: 1265 test = reg_test_82575; 1266 toggle = 0x7FFFF3FF; 1267 break; 1268 } 1269 1270 /* Because the status register is such a special case, 1271 * we handle it separately from the rest of the register 1272 * tests. Some bits are read-only, some toggle, and some 1273 * are writable on newer MACs. 1274 */ 1275 before = rd32(E1000_STATUS); 1276 value = (rd32(E1000_STATUS) & toggle); 1277 wr32(E1000_STATUS, toggle); 1278 after = rd32(E1000_STATUS) & toggle; 1279 if (value != after) { 1280 dev_err(&adapter->pdev->dev, 1281 "failed STATUS register test got: 0x%08X expected: 0x%08X\n", 1282 after, value); 1283 *data = 1; 1284 return 1; 1285 } 1286 /* restore previous status */ 1287 wr32(E1000_STATUS, before); 1288 1289 /* Perform the remainder of the register test, looping through 1290 * the test table until we either fail or reach the null entry. 1291 */ 1292 while (test->reg) { 1293 for (i = 0; i < test->array_len; i++) { 1294 switch (test->test_type) { 1295 case PATTERN_TEST: 1296 REG_PATTERN_TEST(test->reg + 1297 (i * test->reg_offset), 1298 test->mask, 1299 test->write); 1300 break; 1301 case SET_READ_TEST: 1302 REG_SET_AND_CHECK(test->reg + 1303 (i * test->reg_offset), 1304 test->mask, 1305 test->write); 1306 break; 1307 case WRITE_NO_TEST: 1308 writel(test->write, 1309 (adapter->hw.hw_addr + test->reg) 1310 + (i * test->reg_offset)); 1311 break; 1312 case TABLE32_TEST: 1313 REG_PATTERN_TEST(test->reg + (i * 4), 1314 test->mask, 1315 test->write); 1316 break; 1317 case TABLE64_TEST_LO: 1318 REG_PATTERN_TEST(test->reg + (i * 8), 1319 test->mask, 1320 test->write); 1321 break; 1322 case TABLE64_TEST_HI: 1323 REG_PATTERN_TEST((test->reg + 4) + (i * 8), 1324 test->mask, 1325 test->write); 1326 break; 1327 } 1328 } 1329 test++; 1330 } 1331 1332 *data = 0; 1333 return 0; 1334 } 1335 1336 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data) 1337 { 1338 *data = 0; 1339 1340 /* Validate eeprom on all parts but i211 */ 1341 if (adapter->hw.mac.type != e1000_i211) { 1342 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0) 1343 *data = 2; 1344 } 1345 1346 return *data; 1347 } 1348 1349 static irqreturn_t igb_test_intr(int irq, void *data) 1350 { 1351 struct igb_adapter *adapter = (struct igb_adapter *) data; 1352 struct e1000_hw *hw = &adapter->hw; 1353 1354 adapter->test_icr |= rd32(E1000_ICR); 1355 1356 return IRQ_HANDLED; 1357 } 1358 1359 static int igb_intr_test(struct igb_adapter *adapter, u64 *data) 1360 { 1361 struct e1000_hw *hw = &adapter->hw; 1362 struct net_device *netdev = adapter->netdev; 1363 u32 mask, ics_mask, i = 0, shared_int = true; 1364 u32 irq = adapter->pdev->irq; 1365 1366 *data = 0; 1367 1368 /* Hook up test interrupt handler just for this test */ 1369 if (adapter->msix_entries) { 1370 if (request_irq(adapter->msix_entries[0].vector, 1371 igb_test_intr, 0, netdev->name, adapter)) { 1372 *data = 1; 1373 return -1; 1374 } 1375 } else if (adapter->flags & IGB_FLAG_HAS_MSI) { 1376 shared_int = false; 1377 if (request_irq(irq, 1378 igb_test_intr, 0, netdev->name, adapter)) { 1379 *data = 1; 1380 return -1; 1381 } 1382 } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED, 1383 netdev->name, adapter)) { 1384 shared_int = false; 1385 } else if (request_irq(irq, igb_test_intr, IRQF_SHARED, 1386 netdev->name, adapter)) { 1387 *data = 1; 1388 return -1; 1389 } 1390 dev_info(&adapter->pdev->dev, "testing %s interrupt\n", 1391 (shared_int ? "shared" : "unshared")); 1392 1393 /* Disable all the interrupts */ 1394 wr32(E1000_IMC, ~0); 1395 wrfl(); 1396 msleep(10); 1397 1398 /* Define all writable bits for ICS */ 1399 switch (hw->mac.type) { 1400 case e1000_82575: 1401 ics_mask = 0x37F47EDD; 1402 break; 1403 case e1000_82576: 1404 ics_mask = 0x77D4FBFD; 1405 break; 1406 case e1000_82580: 1407 ics_mask = 0x77DCFED5; 1408 break; 1409 case e1000_i350: 1410 case e1000_i354: 1411 case e1000_i210: 1412 case e1000_i211: 1413 ics_mask = 0x77DCFED5; 1414 break; 1415 default: 1416 ics_mask = 0x7FFFFFFF; 1417 break; 1418 } 1419 1420 /* Test each interrupt */ 1421 for (; i < 31; i++) { 1422 /* Interrupt to test */ 1423 mask = 1 << i; 1424 1425 if (!(mask & ics_mask)) 1426 continue; 1427 1428 if (!shared_int) { 1429 /* Disable the interrupt to be reported in 1430 * the cause register and then force the same 1431 * interrupt and see if one gets posted. If 1432 * an interrupt was posted to the bus, the 1433 * test failed. 1434 */ 1435 adapter->test_icr = 0; 1436 1437 /* Flush any pending interrupts */ 1438 wr32(E1000_ICR, ~0); 1439 1440 wr32(E1000_IMC, mask); 1441 wr32(E1000_ICS, mask); 1442 wrfl(); 1443 msleep(10); 1444 1445 if (adapter->test_icr & mask) { 1446 *data = 3; 1447 break; 1448 } 1449 } 1450 1451 /* Enable the interrupt to be reported in 1452 * the cause register and then force the same 1453 * interrupt and see if one gets posted. If 1454 * an interrupt was not posted to the bus, the 1455 * test failed. 1456 */ 1457 adapter->test_icr = 0; 1458 1459 /* Flush any pending interrupts */ 1460 wr32(E1000_ICR, ~0); 1461 1462 wr32(E1000_IMS, mask); 1463 wr32(E1000_ICS, mask); 1464 wrfl(); 1465 msleep(10); 1466 1467 if (!(adapter->test_icr & mask)) { 1468 *data = 4; 1469 break; 1470 } 1471 1472 if (!shared_int) { 1473 /* Disable the other interrupts to be reported in 1474 * the cause register and then force the other 1475 * interrupts and see if any get posted. If 1476 * an interrupt was posted to the bus, the 1477 * test failed. 1478 */ 1479 adapter->test_icr = 0; 1480 1481 /* Flush any pending interrupts */ 1482 wr32(E1000_ICR, ~0); 1483 1484 wr32(E1000_IMC, ~mask); 1485 wr32(E1000_ICS, ~mask); 1486 wrfl(); 1487 msleep(10); 1488 1489 if (adapter->test_icr & mask) { 1490 *data = 5; 1491 break; 1492 } 1493 } 1494 } 1495 1496 /* Disable all the interrupts */ 1497 wr32(E1000_IMC, ~0); 1498 wrfl(); 1499 msleep(10); 1500 1501 /* Unhook test interrupt handler */ 1502 if (adapter->msix_entries) 1503 free_irq(adapter->msix_entries[0].vector, adapter); 1504 else 1505 free_irq(irq, adapter); 1506 1507 return *data; 1508 } 1509 1510 static void igb_free_desc_rings(struct igb_adapter *adapter) 1511 { 1512 igb_free_tx_resources(&adapter->test_tx_ring); 1513 igb_free_rx_resources(&adapter->test_rx_ring); 1514 } 1515 1516 static int igb_setup_desc_rings(struct igb_adapter *adapter) 1517 { 1518 struct igb_ring *tx_ring = &adapter->test_tx_ring; 1519 struct igb_ring *rx_ring = &adapter->test_rx_ring; 1520 struct e1000_hw *hw = &adapter->hw; 1521 int ret_val; 1522 1523 /* Setup Tx descriptor ring and Tx buffers */ 1524 tx_ring->count = IGB_DEFAULT_TXD; 1525 tx_ring->dev = &adapter->pdev->dev; 1526 tx_ring->netdev = adapter->netdev; 1527 tx_ring->reg_idx = adapter->vfs_allocated_count; 1528 1529 if (igb_setup_tx_resources(tx_ring)) { 1530 ret_val = 1; 1531 goto err_nomem; 1532 } 1533 1534 igb_setup_tctl(adapter); 1535 igb_configure_tx_ring(adapter, tx_ring); 1536 1537 /* Setup Rx descriptor ring and Rx buffers */ 1538 rx_ring->count = IGB_DEFAULT_RXD; 1539 rx_ring->dev = &adapter->pdev->dev; 1540 rx_ring->netdev = adapter->netdev; 1541 rx_ring->reg_idx = adapter->vfs_allocated_count; 1542 1543 if (igb_setup_rx_resources(rx_ring)) { 1544 ret_val = 3; 1545 goto err_nomem; 1546 } 1547 1548 /* set the default queue to queue 0 of PF */ 1549 wr32(E1000_MRQC, adapter->vfs_allocated_count << 3); 1550 1551 /* enable receive ring */ 1552 igb_setup_rctl(adapter); 1553 igb_configure_rx_ring(adapter, rx_ring); 1554 1555 igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring)); 1556 1557 return 0; 1558 1559 err_nomem: 1560 igb_free_desc_rings(adapter); 1561 return ret_val; 1562 } 1563 1564 static void igb_phy_disable_receiver(struct igb_adapter *adapter) 1565 { 1566 struct e1000_hw *hw = &adapter->hw; 1567 1568 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1569 igb_write_phy_reg(hw, 29, 0x001F); 1570 igb_write_phy_reg(hw, 30, 0x8FFC); 1571 igb_write_phy_reg(hw, 29, 0x001A); 1572 igb_write_phy_reg(hw, 30, 0x8FF0); 1573 } 1574 1575 static int igb_integrated_phy_loopback(struct igb_adapter *adapter) 1576 { 1577 struct e1000_hw *hw = &adapter->hw; 1578 u32 ctrl_reg = 0; 1579 1580 hw->mac.autoneg = false; 1581 1582 if (hw->phy.type == e1000_phy_m88) { 1583 if (hw->phy.id != I210_I_PHY_ID) { 1584 /* Auto-MDI/MDIX Off */ 1585 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); 1586 /* reset to update Auto-MDI/MDIX */ 1587 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140); 1588 /* autoneg off */ 1589 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140); 1590 } else { 1591 /* force 1000, set loopback */ 1592 igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0); 1593 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140); 1594 } 1595 } 1596 1597 /* add small delay to avoid loopback test failure */ 1598 msleep(50); 1599 1600 /* force 1000, set loopback */ 1601 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140); 1602 1603 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1604 ctrl_reg = rd32(E1000_CTRL); 1605 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1606 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1607 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1608 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1609 E1000_CTRL_FD | /* Force Duplex to FULL */ 1610 E1000_CTRL_SLU); /* Set link up enable bit */ 1611 1612 if (hw->phy.type == e1000_phy_m88) 1613 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1614 1615 wr32(E1000_CTRL, ctrl_reg); 1616 1617 /* Disable the receiver on the PHY so when a cable is plugged in, the 1618 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1619 */ 1620 if (hw->phy.type == e1000_phy_m88) 1621 igb_phy_disable_receiver(adapter); 1622 1623 mdelay(500); 1624 return 0; 1625 } 1626 1627 static int igb_set_phy_loopback(struct igb_adapter *adapter) 1628 { 1629 return igb_integrated_phy_loopback(adapter); 1630 } 1631 1632 static int igb_setup_loopback_test(struct igb_adapter *adapter) 1633 { 1634 struct e1000_hw *hw = &adapter->hw; 1635 u32 reg; 1636 1637 reg = rd32(E1000_CTRL_EXT); 1638 1639 /* use CTRL_EXT to identify link type as SGMII can appear as copper */ 1640 if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) { 1641 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) || 1642 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) || 1643 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) || 1644 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) { 1645 1646 /* Enable DH89xxCC MPHY for near end loopback */ 1647 reg = rd32(E1000_MPHY_ADDR_CTL); 1648 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) | 1649 E1000_MPHY_PCS_CLK_REG_OFFSET; 1650 wr32(E1000_MPHY_ADDR_CTL, reg); 1651 1652 reg = rd32(E1000_MPHY_DATA); 1653 reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN; 1654 wr32(E1000_MPHY_DATA, reg); 1655 } 1656 1657 reg = rd32(E1000_RCTL); 1658 reg |= E1000_RCTL_LBM_TCVR; 1659 wr32(E1000_RCTL, reg); 1660 1661 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK); 1662 1663 reg = rd32(E1000_CTRL); 1664 reg &= ~(E1000_CTRL_RFCE | 1665 E1000_CTRL_TFCE | 1666 E1000_CTRL_LRST); 1667 reg |= E1000_CTRL_SLU | 1668 E1000_CTRL_FD; 1669 wr32(E1000_CTRL, reg); 1670 1671 /* Unset switch control to serdes energy detect */ 1672 reg = rd32(E1000_CONNSW); 1673 reg &= ~E1000_CONNSW_ENRGSRC; 1674 wr32(E1000_CONNSW, reg); 1675 1676 /* Unset sigdetect for SERDES loopback on 1677 * 82580 and newer devices. 1678 */ 1679 if (hw->mac.type >= e1000_82580) { 1680 reg = rd32(E1000_PCS_CFG0); 1681 reg |= E1000_PCS_CFG_IGN_SD; 1682 wr32(E1000_PCS_CFG0, reg); 1683 } 1684 1685 /* Set PCS register for forced speed */ 1686 reg = rd32(E1000_PCS_LCTL); 1687 reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/ 1688 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */ 1689 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */ 1690 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */ 1691 E1000_PCS_LCTL_FSD | /* Force Speed */ 1692 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */ 1693 wr32(E1000_PCS_LCTL, reg); 1694 1695 return 0; 1696 } 1697 1698 return igb_set_phy_loopback(adapter); 1699 } 1700 1701 static void igb_loopback_cleanup(struct igb_adapter *adapter) 1702 { 1703 struct e1000_hw *hw = &adapter->hw; 1704 u32 rctl; 1705 u16 phy_reg; 1706 1707 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) || 1708 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) || 1709 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) || 1710 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) { 1711 u32 reg; 1712 1713 /* Disable near end loopback on DH89xxCC */ 1714 reg = rd32(E1000_MPHY_ADDR_CTL); 1715 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) | 1716 E1000_MPHY_PCS_CLK_REG_OFFSET; 1717 wr32(E1000_MPHY_ADDR_CTL, reg); 1718 1719 reg = rd32(E1000_MPHY_DATA); 1720 reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN; 1721 wr32(E1000_MPHY_DATA, reg); 1722 } 1723 1724 rctl = rd32(E1000_RCTL); 1725 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1726 wr32(E1000_RCTL, rctl); 1727 1728 hw->mac.autoneg = true; 1729 igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg); 1730 if (phy_reg & MII_CR_LOOPBACK) { 1731 phy_reg &= ~MII_CR_LOOPBACK; 1732 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg); 1733 igb_phy_sw_reset(hw); 1734 } 1735 } 1736 1737 static void igb_create_lbtest_frame(struct sk_buff *skb, 1738 unsigned int frame_size) 1739 { 1740 memset(skb->data, 0xFF, frame_size); 1741 frame_size /= 2; 1742 memset(&skb->data[frame_size], 0xAA, frame_size - 1); 1743 memset(&skb->data[frame_size + 10], 0xBE, 1); 1744 memset(&skb->data[frame_size + 12], 0xAF, 1); 1745 } 1746 1747 static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer, 1748 unsigned int frame_size) 1749 { 1750 unsigned char *data; 1751 bool match = true; 1752 1753 frame_size >>= 1; 1754 1755 data = kmap(rx_buffer->page); 1756 1757 if (data[3] != 0xFF || 1758 data[frame_size + 10] != 0xBE || 1759 data[frame_size + 12] != 0xAF) 1760 match = false; 1761 1762 kunmap(rx_buffer->page); 1763 1764 return match; 1765 } 1766 1767 static int igb_clean_test_rings(struct igb_ring *rx_ring, 1768 struct igb_ring *tx_ring, 1769 unsigned int size) 1770 { 1771 union e1000_adv_rx_desc *rx_desc; 1772 struct igb_rx_buffer *rx_buffer_info; 1773 struct igb_tx_buffer *tx_buffer_info; 1774 u16 rx_ntc, tx_ntc, count = 0; 1775 1776 /* initialize next to clean and descriptor values */ 1777 rx_ntc = rx_ring->next_to_clean; 1778 tx_ntc = tx_ring->next_to_clean; 1779 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc); 1780 1781 while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) { 1782 /* check Rx buffer */ 1783 rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc]; 1784 1785 /* sync Rx buffer for CPU read */ 1786 dma_sync_single_for_cpu(rx_ring->dev, 1787 rx_buffer_info->dma, 1788 IGB_RX_BUFSZ, 1789 DMA_FROM_DEVICE); 1790 1791 /* verify contents of skb */ 1792 if (igb_check_lbtest_frame(rx_buffer_info, size)) 1793 count++; 1794 1795 /* sync Rx buffer for device write */ 1796 dma_sync_single_for_device(rx_ring->dev, 1797 rx_buffer_info->dma, 1798 IGB_RX_BUFSZ, 1799 DMA_FROM_DEVICE); 1800 1801 /* unmap buffer on Tx side */ 1802 tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc]; 1803 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info); 1804 1805 /* increment Rx/Tx next to clean counters */ 1806 rx_ntc++; 1807 if (rx_ntc == rx_ring->count) 1808 rx_ntc = 0; 1809 tx_ntc++; 1810 if (tx_ntc == tx_ring->count) 1811 tx_ntc = 0; 1812 1813 /* fetch next descriptor */ 1814 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc); 1815 } 1816 1817 netdev_tx_reset_queue(txring_txq(tx_ring)); 1818 1819 /* re-map buffers to ring, store next to clean values */ 1820 igb_alloc_rx_buffers(rx_ring, count); 1821 rx_ring->next_to_clean = rx_ntc; 1822 tx_ring->next_to_clean = tx_ntc; 1823 1824 return count; 1825 } 1826 1827 static int igb_run_loopback_test(struct igb_adapter *adapter) 1828 { 1829 struct igb_ring *tx_ring = &adapter->test_tx_ring; 1830 struct igb_ring *rx_ring = &adapter->test_rx_ring; 1831 u16 i, j, lc, good_cnt; 1832 int ret_val = 0; 1833 unsigned int size = IGB_RX_HDR_LEN; 1834 netdev_tx_t tx_ret_val; 1835 struct sk_buff *skb; 1836 1837 /* allocate test skb */ 1838 skb = alloc_skb(size, GFP_KERNEL); 1839 if (!skb) 1840 return 11; 1841 1842 /* place data into test skb */ 1843 igb_create_lbtest_frame(skb, size); 1844 skb_put(skb, size); 1845 1846 /* Calculate the loop count based on the largest descriptor ring 1847 * The idea is to wrap the largest ring a number of times using 64 1848 * send/receive pairs during each loop 1849 */ 1850 1851 if (rx_ring->count <= tx_ring->count) 1852 lc = ((tx_ring->count / 64) * 2) + 1; 1853 else 1854 lc = ((rx_ring->count / 64) * 2) + 1; 1855 1856 for (j = 0; j <= lc; j++) { /* loop count loop */ 1857 /* reset count of good packets */ 1858 good_cnt = 0; 1859 1860 /* place 64 packets on the transmit queue*/ 1861 for (i = 0; i < 64; i++) { 1862 skb_get(skb); 1863 tx_ret_val = igb_xmit_frame_ring(skb, tx_ring); 1864 if (tx_ret_val == NETDEV_TX_OK) 1865 good_cnt++; 1866 } 1867 1868 if (good_cnt != 64) { 1869 ret_val = 12; 1870 break; 1871 } 1872 1873 /* allow 200 milliseconds for packets to go from Tx to Rx */ 1874 msleep(200); 1875 1876 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size); 1877 if (good_cnt != 64) { 1878 ret_val = 13; 1879 break; 1880 } 1881 } /* end loop count loop */ 1882 1883 /* free the original skb */ 1884 kfree_skb(skb); 1885 1886 return ret_val; 1887 } 1888 1889 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data) 1890 { 1891 /* PHY loopback cannot be performed if SoL/IDER 1892 * sessions are active 1893 */ 1894 if (igb_check_reset_block(&adapter->hw)) { 1895 dev_err(&adapter->pdev->dev, 1896 "Cannot do PHY loopback test when SoL/IDER is active.\n"); 1897 *data = 0; 1898 goto out; 1899 } 1900 1901 if (adapter->hw.mac.type == e1000_i354) { 1902 dev_info(&adapter->pdev->dev, 1903 "Loopback test not supported on i354.\n"); 1904 *data = 0; 1905 goto out; 1906 } 1907 *data = igb_setup_desc_rings(adapter); 1908 if (*data) 1909 goto out; 1910 *data = igb_setup_loopback_test(adapter); 1911 if (*data) 1912 goto err_loopback; 1913 *data = igb_run_loopback_test(adapter); 1914 igb_loopback_cleanup(adapter); 1915 1916 err_loopback: 1917 igb_free_desc_rings(adapter); 1918 out: 1919 return *data; 1920 } 1921 1922 static int igb_link_test(struct igb_adapter *adapter, u64 *data) 1923 { 1924 struct e1000_hw *hw = &adapter->hw; 1925 *data = 0; 1926 if (hw->phy.media_type == e1000_media_type_internal_serdes) { 1927 int i = 0; 1928 hw->mac.serdes_has_link = false; 1929 1930 /* On some blade server designs, link establishment 1931 * could take as long as 2-3 minutes 1932 */ 1933 do { 1934 hw->mac.ops.check_for_link(&adapter->hw); 1935 if (hw->mac.serdes_has_link) 1936 return *data; 1937 msleep(20); 1938 } while (i++ < 3750); 1939 1940 *data = 1; 1941 } else { 1942 hw->mac.ops.check_for_link(&adapter->hw); 1943 if (hw->mac.autoneg) 1944 msleep(5000); 1945 1946 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) 1947 *data = 1; 1948 } 1949 return *data; 1950 } 1951 1952 static void igb_diag_test(struct net_device *netdev, 1953 struct ethtool_test *eth_test, u64 *data) 1954 { 1955 struct igb_adapter *adapter = netdev_priv(netdev); 1956 u16 autoneg_advertised; 1957 u8 forced_speed_duplex, autoneg; 1958 bool if_running = netif_running(netdev); 1959 1960 set_bit(__IGB_TESTING, &adapter->state); 1961 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1962 /* Offline tests */ 1963 1964 /* save speed, duplex, autoneg settings */ 1965 autoneg_advertised = adapter->hw.phy.autoneg_advertised; 1966 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; 1967 autoneg = adapter->hw.mac.autoneg; 1968 1969 dev_info(&adapter->pdev->dev, "offline testing starting\n"); 1970 1971 /* power up link for link test */ 1972 igb_power_up_link(adapter); 1973 1974 /* Link test performed before hardware reset so autoneg doesn't 1975 * interfere with test result 1976 */ 1977 if (igb_link_test(adapter, &data[4])) 1978 eth_test->flags |= ETH_TEST_FL_FAILED; 1979 1980 if (if_running) 1981 /* indicate we're in test mode */ 1982 dev_close(netdev); 1983 else 1984 igb_reset(adapter); 1985 1986 if (igb_reg_test(adapter, &data[0])) 1987 eth_test->flags |= ETH_TEST_FL_FAILED; 1988 1989 igb_reset(adapter); 1990 if (igb_eeprom_test(adapter, &data[1])) 1991 eth_test->flags |= ETH_TEST_FL_FAILED; 1992 1993 igb_reset(adapter); 1994 if (igb_intr_test(adapter, &data[2])) 1995 eth_test->flags |= ETH_TEST_FL_FAILED; 1996 1997 igb_reset(adapter); 1998 /* power up link for loopback test */ 1999 igb_power_up_link(adapter); 2000 if (igb_loopback_test(adapter, &data[3])) 2001 eth_test->flags |= ETH_TEST_FL_FAILED; 2002 2003 /* restore speed, duplex, autoneg settings */ 2004 adapter->hw.phy.autoneg_advertised = autoneg_advertised; 2005 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; 2006 adapter->hw.mac.autoneg = autoneg; 2007 2008 /* force this routine to wait until autoneg complete/timeout */ 2009 adapter->hw.phy.autoneg_wait_to_complete = true; 2010 igb_reset(adapter); 2011 adapter->hw.phy.autoneg_wait_to_complete = false; 2012 2013 clear_bit(__IGB_TESTING, &adapter->state); 2014 if (if_running) 2015 dev_open(netdev); 2016 } else { 2017 dev_info(&adapter->pdev->dev, "online testing starting\n"); 2018 2019 /* PHY is powered down when interface is down */ 2020 if (if_running && igb_link_test(adapter, &data[4])) 2021 eth_test->flags |= ETH_TEST_FL_FAILED; 2022 else 2023 data[4] = 0; 2024 2025 /* Online tests aren't run; pass by default */ 2026 data[0] = 0; 2027 data[1] = 0; 2028 data[2] = 0; 2029 data[3] = 0; 2030 2031 clear_bit(__IGB_TESTING, &adapter->state); 2032 } 2033 msleep_interruptible(4 * 1000); 2034 } 2035 2036 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 2037 { 2038 struct igb_adapter *adapter = netdev_priv(netdev); 2039 2040 wol->supported = WAKE_UCAST | WAKE_MCAST | 2041 WAKE_BCAST | WAKE_MAGIC | 2042 WAKE_PHY; 2043 wol->wolopts = 0; 2044 2045 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED)) 2046 return; 2047 2048 /* apply any specific unsupported masks here */ 2049 switch (adapter->hw.device_id) { 2050 default: 2051 break; 2052 } 2053 2054 if (adapter->wol & E1000_WUFC_EX) 2055 wol->wolopts |= WAKE_UCAST; 2056 if (adapter->wol & E1000_WUFC_MC) 2057 wol->wolopts |= WAKE_MCAST; 2058 if (adapter->wol & E1000_WUFC_BC) 2059 wol->wolopts |= WAKE_BCAST; 2060 if (adapter->wol & E1000_WUFC_MAG) 2061 wol->wolopts |= WAKE_MAGIC; 2062 if (adapter->wol & E1000_WUFC_LNKC) 2063 wol->wolopts |= WAKE_PHY; 2064 } 2065 2066 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 2067 { 2068 struct igb_adapter *adapter = netdev_priv(netdev); 2069 2070 if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE)) 2071 return -EOPNOTSUPP; 2072 2073 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED)) 2074 return wol->wolopts ? -EOPNOTSUPP : 0; 2075 2076 /* these settings will always override what we currently have */ 2077 adapter->wol = 0; 2078 2079 if (wol->wolopts & WAKE_UCAST) 2080 adapter->wol |= E1000_WUFC_EX; 2081 if (wol->wolopts & WAKE_MCAST) 2082 adapter->wol |= E1000_WUFC_MC; 2083 if (wol->wolopts & WAKE_BCAST) 2084 adapter->wol |= E1000_WUFC_BC; 2085 if (wol->wolopts & WAKE_MAGIC) 2086 adapter->wol |= E1000_WUFC_MAG; 2087 if (wol->wolopts & WAKE_PHY) 2088 adapter->wol |= E1000_WUFC_LNKC; 2089 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 2090 2091 return 0; 2092 } 2093 2094 /* bit defines for adapter->led_status */ 2095 #define IGB_LED_ON 0 2096 2097 static int igb_set_phys_id(struct net_device *netdev, 2098 enum ethtool_phys_id_state state) 2099 { 2100 struct igb_adapter *adapter = netdev_priv(netdev); 2101 struct e1000_hw *hw = &adapter->hw; 2102 2103 switch (state) { 2104 case ETHTOOL_ID_ACTIVE: 2105 igb_blink_led(hw); 2106 return 2; 2107 case ETHTOOL_ID_ON: 2108 igb_blink_led(hw); 2109 break; 2110 case ETHTOOL_ID_OFF: 2111 igb_led_off(hw); 2112 break; 2113 case ETHTOOL_ID_INACTIVE: 2114 igb_led_off(hw); 2115 clear_bit(IGB_LED_ON, &adapter->led_status); 2116 igb_cleanup_led(hw); 2117 break; 2118 } 2119 2120 return 0; 2121 } 2122 2123 static int igb_set_coalesce(struct net_device *netdev, 2124 struct ethtool_coalesce *ec) 2125 { 2126 struct igb_adapter *adapter = netdev_priv(netdev); 2127 int i; 2128 2129 if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) || 2130 ((ec->rx_coalesce_usecs > 3) && 2131 (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) || 2132 (ec->rx_coalesce_usecs == 2)) 2133 return -EINVAL; 2134 2135 if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) || 2136 ((ec->tx_coalesce_usecs > 3) && 2137 (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) || 2138 (ec->tx_coalesce_usecs == 2)) 2139 return -EINVAL; 2140 2141 if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs) 2142 return -EINVAL; 2143 2144 /* If ITR is disabled, disable DMAC */ 2145 if (ec->rx_coalesce_usecs == 0) { 2146 if (adapter->flags & IGB_FLAG_DMAC) 2147 adapter->flags &= ~IGB_FLAG_DMAC; 2148 } 2149 2150 /* convert to rate of irq's per second */ 2151 if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3) 2152 adapter->rx_itr_setting = ec->rx_coalesce_usecs; 2153 else 2154 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2; 2155 2156 /* convert to rate of irq's per second */ 2157 if (adapter->flags & IGB_FLAG_QUEUE_PAIRS) 2158 adapter->tx_itr_setting = adapter->rx_itr_setting; 2159 else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3) 2160 adapter->tx_itr_setting = ec->tx_coalesce_usecs; 2161 else 2162 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2; 2163 2164 for (i = 0; i < adapter->num_q_vectors; i++) { 2165 struct igb_q_vector *q_vector = adapter->q_vector[i]; 2166 q_vector->tx.work_limit = adapter->tx_work_limit; 2167 if (q_vector->rx.ring) 2168 q_vector->itr_val = adapter->rx_itr_setting; 2169 else 2170 q_vector->itr_val = adapter->tx_itr_setting; 2171 if (q_vector->itr_val && q_vector->itr_val <= 3) 2172 q_vector->itr_val = IGB_START_ITR; 2173 q_vector->set_itr = 1; 2174 } 2175 2176 return 0; 2177 } 2178 2179 static int igb_get_coalesce(struct net_device *netdev, 2180 struct ethtool_coalesce *ec) 2181 { 2182 struct igb_adapter *adapter = netdev_priv(netdev); 2183 2184 if (adapter->rx_itr_setting <= 3) 2185 ec->rx_coalesce_usecs = adapter->rx_itr_setting; 2186 else 2187 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2; 2188 2189 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) { 2190 if (adapter->tx_itr_setting <= 3) 2191 ec->tx_coalesce_usecs = adapter->tx_itr_setting; 2192 else 2193 ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2; 2194 } 2195 2196 return 0; 2197 } 2198 2199 static int igb_nway_reset(struct net_device *netdev) 2200 { 2201 struct igb_adapter *adapter = netdev_priv(netdev); 2202 if (netif_running(netdev)) 2203 igb_reinit_locked(adapter); 2204 return 0; 2205 } 2206 2207 static int igb_get_sset_count(struct net_device *netdev, int sset) 2208 { 2209 switch (sset) { 2210 case ETH_SS_STATS: 2211 return IGB_STATS_LEN; 2212 case ETH_SS_TEST: 2213 return IGB_TEST_LEN; 2214 default: 2215 return -ENOTSUPP; 2216 } 2217 } 2218 2219 static void igb_get_ethtool_stats(struct net_device *netdev, 2220 struct ethtool_stats *stats, u64 *data) 2221 { 2222 struct igb_adapter *adapter = netdev_priv(netdev); 2223 struct rtnl_link_stats64 *net_stats = &adapter->stats64; 2224 unsigned int start; 2225 struct igb_ring *ring; 2226 int i, j; 2227 char *p; 2228 2229 spin_lock(&adapter->stats64_lock); 2230 igb_update_stats(adapter, net_stats); 2231 2232 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) { 2233 p = (char *)adapter + igb_gstrings_stats[i].stat_offset; 2234 data[i] = (igb_gstrings_stats[i].sizeof_stat == 2235 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 2236 } 2237 for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) { 2238 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset; 2239 data[i] = (igb_gstrings_net_stats[j].sizeof_stat == 2240 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 2241 } 2242 for (j = 0; j < adapter->num_tx_queues; j++) { 2243 u64 restart2; 2244 2245 ring = adapter->tx_ring[j]; 2246 do { 2247 start = u64_stats_fetch_begin_bh(&ring->tx_syncp); 2248 data[i] = ring->tx_stats.packets; 2249 data[i+1] = ring->tx_stats.bytes; 2250 data[i+2] = ring->tx_stats.restart_queue; 2251 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start)); 2252 do { 2253 start = u64_stats_fetch_begin_bh(&ring->tx_syncp2); 2254 restart2 = ring->tx_stats.restart_queue2; 2255 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start)); 2256 data[i+2] += restart2; 2257 2258 i += IGB_TX_QUEUE_STATS_LEN; 2259 } 2260 for (j = 0; j < adapter->num_rx_queues; j++) { 2261 ring = adapter->rx_ring[j]; 2262 do { 2263 start = u64_stats_fetch_begin_bh(&ring->rx_syncp); 2264 data[i] = ring->rx_stats.packets; 2265 data[i+1] = ring->rx_stats.bytes; 2266 data[i+2] = ring->rx_stats.drops; 2267 data[i+3] = ring->rx_stats.csum_err; 2268 data[i+4] = ring->rx_stats.alloc_failed; 2269 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start)); 2270 i += IGB_RX_QUEUE_STATS_LEN; 2271 } 2272 spin_unlock(&adapter->stats64_lock); 2273 } 2274 2275 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data) 2276 { 2277 struct igb_adapter *adapter = netdev_priv(netdev); 2278 u8 *p = data; 2279 int i; 2280 2281 switch (stringset) { 2282 case ETH_SS_TEST: 2283 memcpy(data, *igb_gstrings_test, 2284 IGB_TEST_LEN*ETH_GSTRING_LEN); 2285 break; 2286 case ETH_SS_STATS: 2287 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) { 2288 memcpy(p, igb_gstrings_stats[i].stat_string, 2289 ETH_GSTRING_LEN); 2290 p += ETH_GSTRING_LEN; 2291 } 2292 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) { 2293 memcpy(p, igb_gstrings_net_stats[i].stat_string, 2294 ETH_GSTRING_LEN); 2295 p += ETH_GSTRING_LEN; 2296 } 2297 for (i = 0; i < adapter->num_tx_queues; i++) { 2298 sprintf(p, "tx_queue_%u_packets", i); 2299 p += ETH_GSTRING_LEN; 2300 sprintf(p, "tx_queue_%u_bytes", i); 2301 p += ETH_GSTRING_LEN; 2302 sprintf(p, "tx_queue_%u_restart", i); 2303 p += ETH_GSTRING_LEN; 2304 } 2305 for (i = 0; i < adapter->num_rx_queues; i++) { 2306 sprintf(p, "rx_queue_%u_packets", i); 2307 p += ETH_GSTRING_LEN; 2308 sprintf(p, "rx_queue_%u_bytes", i); 2309 p += ETH_GSTRING_LEN; 2310 sprintf(p, "rx_queue_%u_drops", i); 2311 p += ETH_GSTRING_LEN; 2312 sprintf(p, "rx_queue_%u_csum_err", i); 2313 p += ETH_GSTRING_LEN; 2314 sprintf(p, "rx_queue_%u_alloc_failed", i); 2315 p += ETH_GSTRING_LEN; 2316 } 2317 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */ 2318 break; 2319 } 2320 } 2321 2322 static int igb_get_ts_info(struct net_device *dev, 2323 struct ethtool_ts_info *info) 2324 { 2325 struct igb_adapter *adapter = netdev_priv(dev); 2326 2327 switch (adapter->hw.mac.type) { 2328 case e1000_82575: 2329 info->so_timestamping = 2330 SOF_TIMESTAMPING_TX_SOFTWARE | 2331 SOF_TIMESTAMPING_RX_SOFTWARE | 2332 SOF_TIMESTAMPING_SOFTWARE; 2333 return 0; 2334 case e1000_82576: 2335 case e1000_82580: 2336 case e1000_i350: 2337 case e1000_i354: 2338 case e1000_i210: 2339 case e1000_i211: 2340 info->so_timestamping = 2341 SOF_TIMESTAMPING_TX_SOFTWARE | 2342 SOF_TIMESTAMPING_RX_SOFTWARE | 2343 SOF_TIMESTAMPING_SOFTWARE | 2344 SOF_TIMESTAMPING_TX_HARDWARE | 2345 SOF_TIMESTAMPING_RX_HARDWARE | 2346 SOF_TIMESTAMPING_RAW_HARDWARE; 2347 2348 if (adapter->ptp_clock) 2349 info->phc_index = ptp_clock_index(adapter->ptp_clock); 2350 else 2351 info->phc_index = -1; 2352 2353 info->tx_types = 2354 (1 << HWTSTAMP_TX_OFF) | 2355 (1 << HWTSTAMP_TX_ON); 2356 2357 info->rx_filters = 1 << HWTSTAMP_FILTER_NONE; 2358 2359 /* 82576 does not support timestamping all packets. */ 2360 if (adapter->hw.mac.type >= e1000_82580) 2361 info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL; 2362 else 2363 info->rx_filters |= 2364 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) | 2365 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) | 2366 (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) | 2367 (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) | 2368 (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) | 2369 (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) | 2370 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 2371 2372 return 0; 2373 default: 2374 return -EOPNOTSUPP; 2375 } 2376 } 2377 2378 static int igb_get_rss_hash_opts(struct igb_adapter *adapter, 2379 struct ethtool_rxnfc *cmd) 2380 { 2381 cmd->data = 0; 2382 2383 /* Report default options for RSS on igb */ 2384 switch (cmd->flow_type) { 2385 case TCP_V4_FLOW: 2386 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2387 case UDP_V4_FLOW: 2388 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP) 2389 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2390 case SCTP_V4_FLOW: 2391 case AH_ESP_V4_FLOW: 2392 case AH_V4_FLOW: 2393 case ESP_V4_FLOW: 2394 case IPV4_FLOW: 2395 cmd->data |= RXH_IP_SRC | RXH_IP_DST; 2396 break; 2397 case TCP_V6_FLOW: 2398 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2399 case UDP_V6_FLOW: 2400 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP) 2401 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2402 case SCTP_V6_FLOW: 2403 case AH_ESP_V6_FLOW: 2404 case AH_V6_FLOW: 2405 case ESP_V6_FLOW: 2406 case IPV6_FLOW: 2407 cmd->data |= RXH_IP_SRC | RXH_IP_DST; 2408 break; 2409 default: 2410 return -EINVAL; 2411 } 2412 2413 return 0; 2414 } 2415 2416 static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd, 2417 u32 *rule_locs) 2418 { 2419 struct igb_adapter *adapter = netdev_priv(dev); 2420 int ret = -EOPNOTSUPP; 2421 2422 switch (cmd->cmd) { 2423 case ETHTOOL_GRXRINGS: 2424 cmd->data = adapter->num_rx_queues; 2425 ret = 0; 2426 break; 2427 case ETHTOOL_GRXFH: 2428 ret = igb_get_rss_hash_opts(adapter, cmd); 2429 break; 2430 default: 2431 break; 2432 } 2433 2434 return ret; 2435 } 2436 2437 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \ 2438 IGB_FLAG_RSS_FIELD_IPV6_UDP) 2439 static int igb_set_rss_hash_opt(struct igb_adapter *adapter, 2440 struct ethtool_rxnfc *nfc) 2441 { 2442 u32 flags = adapter->flags; 2443 2444 /* RSS does not support anything other than hashing 2445 * to queues on src and dst IPs and ports 2446 */ 2447 if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST | 2448 RXH_L4_B_0_1 | RXH_L4_B_2_3)) 2449 return -EINVAL; 2450 2451 switch (nfc->flow_type) { 2452 case TCP_V4_FLOW: 2453 case TCP_V6_FLOW: 2454 if (!(nfc->data & RXH_IP_SRC) || 2455 !(nfc->data & RXH_IP_DST) || 2456 !(nfc->data & RXH_L4_B_0_1) || 2457 !(nfc->data & RXH_L4_B_2_3)) 2458 return -EINVAL; 2459 break; 2460 case UDP_V4_FLOW: 2461 if (!(nfc->data & RXH_IP_SRC) || 2462 !(nfc->data & RXH_IP_DST)) 2463 return -EINVAL; 2464 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 2465 case 0: 2466 flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP; 2467 break; 2468 case (RXH_L4_B_0_1 | RXH_L4_B_2_3): 2469 flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP; 2470 break; 2471 default: 2472 return -EINVAL; 2473 } 2474 break; 2475 case UDP_V6_FLOW: 2476 if (!(nfc->data & RXH_IP_SRC) || 2477 !(nfc->data & RXH_IP_DST)) 2478 return -EINVAL; 2479 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 2480 case 0: 2481 flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP; 2482 break; 2483 case (RXH_L4_B_0_1 | RXH_L4_B_2_3): 2484 flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP; 2485 break; 2486 default: 2487 return -EINVAL; 2488 } 2489 break; 2490 case AH_ESP_V4_FLOW: 2491 case AH_V4_FLOW: 2492 case ESP_V4_FLOW: 2493 case SCTP_V4_FLOW: 2494 case AH_ESP_V6_FLOW: 2495 case AH_V6_FLOW: 2496 case ESP_V6_FLOW: 2497 case SCTP_V6_FLOW: 2498 if (!(nfc->data & RXH_IP_SRC) || 2499 !(nfc->data & RXH_IP_DST) || 2500 (nfc->data & RXH_L4_B_0_1) || 2501 (nfc->data & RXH_L4_B_2_3)) 2502 return -EINVAL; 2503 break; 2504 default: 2505 return -EINVAL; 2506 } 2507 2508 /* if we changed something we need to update flags */ 2509 if (flags != adapter->flags) { 2510 struct e1000_hw *hw = &adapter->hw; 2511 u32 mrqc = rd32(E1000_MRQC); 2512 2513 if ((flags & UDP_RSS_FLAGS) && 2514 !(adapter->flags & UDP_RSS_FLAGS)) 2515 dev_err(&adapter->pdev->dev, 2516 "enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n"); 2517 2518 adapter->flags = flags; 2519 2520 /* Perform hash on these packet types */ 2521 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 | 2522 E1000_MRQC_RSS_FIELD_IPV4_TCP | 2523 E1000_MRQC_RSS_FIELD_IPV6 | 2524 E1000_MRQC_RSS_FIELD_IPV6_TCP; 2525 2526 mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP | 2527 E1000_MRQC_RSS_FIELD_IPV6_UDP); 2528 2529 if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP) 2530 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP; 2531 2532 if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP) 2533 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP; 2534 2535 wr32(E1000_MRQC, mrqc); 2536 } 2537 2538 return 0; 2539 } 2540 2541 static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd) 2542 { 2543 struct igb_adapter *adapter = netdev_priv(dev); 2544 int ret = -EOPNOTSUPP; 2545 2546 switch (cmd->cmd) { 2547 case ETHTOOL_SRXFH: 2548 ret = igb_set_rss_hash_opt(adapter, cmd); 2549 break; 2550 default: 2551 break; 2552 } 2553 2554 return ret; 2555 } 2556 2557 static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata) 2558 { 2559 struct igb_adapter *adapter = netdev_priv(netdev); 2560 struct e1000_hw *hw = &adapter->hw; 2561 u32 ipcnfg, eeer, ret_val; 2562 u16 phy_data; 2563 2564 if ((hw->mac.type < e1000_i350) || 2565 (hw->phy.media_type != e1000_media_type_copper)) 2566 return -EOPNOTSUPP; 2567 2568 edata->supported = (SUPPORTED_1000baseT_Full | 2569 SUPPORTED_100baseT_Full); 2570 2571 ipcnfg = rd32(E1000_IPCNFG); 2572 eeer = rd32(E1000_EEER); 2573 2574 /* EEE status on negotiated link */ 2575 if (ipcnfg & E1000_IPCNFG_EEE_1G_AN) 2576 edata->advertised = ADVERTISED_1000baseT_Full; 2577 2578 if (ipcnfg & E1000_IPCNFG_EEE_100M_AN) 2579 edata->advertised |= ADVERTISED_100baseT_Full; 2580 2581 /* EEE Link Partner Advertised */ 2582 switch (hw->mac.type) { 2583 case e1000_i350: 2584 ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350, 2585 &phy_data); 2586 if (ret_val) 2587 return -ENODATA; 2588 2589 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data); 2590 2591 break; 2592 case e1000_i210: 2593 case e1000_i211: 2594 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210, 2595 E1000_EEE_LP_ADV_DEV_I210, 2596 &phy_data); 2597 if (ret_val) 2598 return -ENODATA; 2599 2600 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data); 2601 2602 break; 2603 default: 2604 break; 2605 } 2606 2607 if (eeer & E1000_EEER_EEE_NEG) 2608 edata->eee_active = true; 2609 2610 edata->eee_enabled = !hw->dev_spec._82575.eee_disable; 2611 2612 if (eeer & E1000_EEER_TX_LPI_EN) 2613 edata->tx_lpi_enabled = true; 2614 2615 /* Report correct negotiated EEE status for devices that 2616 * wrongly report EEE at half-duplex 2617 */ 2618 if (adapter->link_duplex == HALF_DUPLEX) { 2619 edata->eee_enabled = false; 2620 edata->eee_active = false; 2621 edata->tx_lpi_enabled = false; 2622 edata->advertised &= ~edata->advertised; 2623 } 2624 2625 return 0; 2626 } 2627 2628 static int igb_set_eee(struct net_device *netdev, 2629 struct ethtool_eee *edata) 2630 { 2631 struct igb_adapter *adapter = netdev_priv(netdev); 2632 struct e1000_hw *hw = &adapter->hw; 2633 struct ethtool_eee eee_curr; 2634 s32 ret_val; 2635 2636 if ((hw->mac.type < e1000_i350) || 2637 (hw->phy.media_type != e1000_media_type_copper)) 2638 return -EOPNOTSUPP; 2639 2640 ret_val = igb_get_eee(netdev, &eee_curr); 2641 if (ret_val) 2642 return ret_val; 2643 2644 if (eee_curr.eee_enabled) { 2645 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) { 2646 dev_err(&adapter->pdev->dev, 2647 "Setting EEE tx-lpi is not supported\n"); 2648 return -EINVAL; 2649 } 2650 2651 /* Tx LPI timer is not implemented currently */ 2652 if (edata->tx_lpi_timer) { 2653 dev_err(&adapter->pdev->dev, 2654 "Setting EEE Tx LPI timer is not supported\n"); 2655 return -EINVAL; 2656 } 2657 2658 if (eee_curr.advertised != edata->advertised) { 2659 dev_err(&adapter->pdev->dev, 2660 "Setting EEE Advertisement is not supported\n"); 2661 return -EINVAL; 2662 } 2663 2664 } else if (!edata->eee_enabled) { 2665 dev_err(&adapter->pdev->dev, 2666 "Setting EEE options are not supported with EEE disabled\n"); 2667 return -EINVAL; 2668 } 2669 2670 if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) { 2671 hw->dev_spec._82575.eee_disable = !edata->eee_enabled; 2672 igb_set_eee_i350(hw); 2673 2674 /* reset link */ 2675 if (!netif_running(netdev)) 2676 igb_reset(adapter); 2677 } 2678 2679 return 0; 2680 } 2681 2682 static int igb_get_module_info(struct net_device *netdev, 2683 struct ethtool_modinfo *modinfo) 2684 { 2685 struct igb_adapter *adapter = netdev_priv(netdev); 2686 struct e1000_hw *hw = &adapter->hw; 2687 u32 status = E1000_SUCCESS; 2688 u16 sff8472_rev, addr_mode; 2689 bool page_swap = false; 2690 2691 if ((hw->phy.media_type == e1000_media_type_copper) || 2692 (hw->phy.media_type == e1000_media_type_unknown)) 2693 return -EOPNOTSUPP; 2694 2695 /* Check whether we support SFF-8472 or not */ 2696 status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev); 2697 if (status != E1000_SUCCESS) 2698 return -EIO; 2699 2700 /* addressing mode is not supported */ 2701 status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode); 2702 if (status != E1000_SUCCESS) 2703 return -EIO; 2704 2705 /* addressing mode is not supported */ 2706 if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) { 2707 hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n"); 2708 page_swap = true; 2709 } 2710 2711 if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) { 2712 /* We have an SFP, but it does not support SFF-8472 */ 2713 modinfo->type = ETH_MODULE_SFF_8079; 2714 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; 2715 } else { 2716 /* We have an SFP which supports a revision of SFF-8472 */ 2717 modinfo->type = ETH_MODULE_SFF_8472; 2718 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; 2719 } 2720 2721 return 0; 2722 } 2723 2724 static int igb_get_module_eeprom(struct net_device *netdev, 2725 struct ethtool_eeprom *ee, u8 *data) 2726 { 2727 struct igb_adapter *adapter = netdev_priv(netdev); 2728 struct e1000_hw *hw = &adapter->hw; 2729 u32 status = E1000_SUCCESS; 2730 u16 *dataword; 2731 u16 first_word, last_word; 2732 int i = 0; 2733 2734 if (ee->len == 0) 2735 return -EINVAL; 2736 2737 first_word = ee->offset >> 1; 2738 last_word = (ee->offset + ee->len - 1) >> 1; 2739 2740 dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1), 2741 GFP_KERNEL); 2742 if (!dataword) 2743 return -ENOMEM; 2744 2745 /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */ 2746 for (i = 0; i < last_word - first_word + 1; i++) { 2747 status = igb_read_phy_reg_i2c(hw, first_word + i, &dataword[i]); 2748 if (status != E1000_SUCCESS) 2749 /* Error occurred while reading module */ 2750 return -EIO; 2751 2752 be16_to_cpus(&dataword[i]); 2753 } 2754 2755 memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len); 2756 kfree(dataword); 2757 2758 return 0; 2759 } 2760 2761 static int igb_ethtool_begin(struct net_device *netdev) 2762 { 2763 struct igb_adapter *adapter = netdev_priv(netdev); 2764 pm_runtime_get_sync(&adapter->pdev->dev); 2765 return 0; 2766 } 2767 2768 static void igb_ethtool_complete(struct net_device *netdev) 2769 { 2770 struct igb_adapter *adapter = netdev_priv(netdev); 2771 pm_runtime_put(&adapter->pdev->dev); 2772 } 2773 2774 static const struct ethtool_ops igb_ethtool_ops = { 2775 .get_settings = igb_get_settings, 2776 .set_settings = igb_set_settings, 2777 .get_drvinfo = igb_get_drvinfo, 2778 .get_regs_len = igb_get_regs_len, 2779 .get_regs = igb_get_regs, 2780 .get_wol = igb_get_wol, 2781 .set_wol = igb_set_wol, 2782 .get_msglevel = igb_get_msglevel, 2783 .set_msglevel = igb_set_msglevel, 2784 .nway_reset = igb_nway_reset, 2785 .get_link = igb_get_link, 2786 .get_eeprom_len = igb_get_eeprom_len, 2787 .get_eeprom = igb_get_eeprom, 2788 .set_eeprom = igb_set_eeprom, 2789 .get_ringparam = igb_get_ringparam, 2790 .set_ringparam = igb_set_ringparam, 2791 .get_pauseparam = igb_get_pauseparam, 2792 .set_pauseparam = igb_set_pauseparam, 2793 .self_test = igb_diag_test, 2794 .get_strings = igb_get_strings, 2795 .set_phys_id = igb_set_phys_id, 2796 .get_sset_count = igb_get_sset_count, 2797 .get_ethtool_stats = igb_get_ethtool_stats, 2798 .get_coalesce = igb_get_coalesce, 2799 .set_coalesce = igb_set_coalesce, 2800 .get_ts_info = igb_get_ts_info, 2801 .get_rxnfc = igb_get_rxnfc, 2802 .set_rxnfc = igb_set_rxnfc, 2803 .get_eee = igb_get_eee, 2804 .set_eee = igb_set_eee, 2805 .get_module_info = igb_get_module_info, 2806 .get_module_eeprom = igb_get_module_eeprom, 2807 .begin = igb_ethtool_begin, 2808 .complete = igb_ethtool_complete, 2809 }; 2810 2811 void igb_set_ethtool_ops(struct net_device *netdev) 2812 { 2813 SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops); 2814 } 2815