1 /*******************************************************************************
2 
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2013 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 /* ethtool support for igb */
29 
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
37 #include <linux/sched.h>
38 #include <linux/slab.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/highmem.h>
41 #include <linux/mdio.h>
42 
43 #include "igb.h"
44 
45 struct igb_stats {
46 	char stat_string[ETH_GSTRING_LEN];
47 	int sizeof_stat;
48 	int stat_offset;
49 };
50 
51 #define IGB_STAT(_name, _stat) { \
52 	.stat_string = _name, \
53 	.sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
54 	.stat_offset = offsetof(struct igb_adapter, _stat) \
55 }
56 static const struct igb_stats igb_gstrings_stats[] = {
57 	IGB_STAT("rx_packets", stats.gprc),
58 	IGB_STAT("tx_packets", stats.gptc),
59 	IGB_STAT("rx_bytes", stats.gorc),
60 	IGB_STAT("tx_bytes", stats.gotc),
61 	IGB_STAT("rx_broadcast", stats.bprc),
62 	IGB_STAT("tx_broadcast", stats.bptc),
63 	IGB_STAT("rx_multicast", stats.mprc),
64 	IGB_STAT("tx_multicast", stats.mptc),
65 	IGB_STAT("multicast", stats.mprc),
66 	IGB_STAT("collisions", stats.colc),
67 	IGB_STAT("rx_crc_errors", stats.crcerrs),
68 	IGB_STAT("rx_no_buffer_count", stats.rnbc),
69 	IGB_STAT("rx_missed_errors", stats.mpc),
70 	IGB_STAT("tx_aborted_errors", stats.ecol),
71 	IGB_STAT("tx_carrier_errors", stats.tncrs),
72 	IGB_STAT("tx_window_errors", stats.latecol),
73 	IGB_STAT("tx_abort_late_coll", stats.latecol),
74 	IGB_STAT("tx_deferred_ok", stats.dc),
75 	IGB_STAT("tx_single_coll_ok", stats.scc),
76 	IGB_STAT("tx_multi_coll_ok", stats.mcc),
77 	IGB_STAT("tx_timeout_count", tx_timeout_count),
78 	IGB_STAT("rx_long_length_errors", stats.roc),
79 	IGB_STAT("rx_short_length_errors", stats.ruc),
80 	IGB_STAT("rx_align_errors", stats.algnerrc),
81 	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
82 	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
83 	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
84 	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
85 	IGB_STAT("tx_flow_control_xon", stats.xontxc),
86 	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
87 	IGB_STAT("rx_long_byte_count", stats.gorc),
88 	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
89 	IGB_STAT("tx_smbus", stats.mgptc),
90 	IGB_STAT("rx_smbus", stats.mgprc),
91 	IGB_STAT("dropped_smbus", stats.mgpdc),
92 	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
93 	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
94 	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
95 	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
96 	IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
97 	IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
98 };
99 
100 #define IGB_NETDEV_STAT(_net_stat) { \
101 	.stat_string = __stringify(_net_stat), \
102 	.sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
103 	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
104 }
105 static const struct igb_stats igb_gstrings_net_stats[] = {
106 	IGB_NETDEV_STAT(rx_errors),
107 	IGB_NETDEV_STAT(tx_errors),
108 	IGB_NETDEV_STAT(tx_dropped),
109 	IGB_NETDEV_STAT(rx_length_errors),
110 	IGB_NETDEV_STAT(rx_over_errors),
111 	IGB_NETDEV_STAT(rx_frame_errors),
112 	IGB_NETDEV_STAT(rx_fifo_errors),
113 	IGB_NETDEV_STAT(tx_fifo_errors),
114 	IGB_NETDEV_STAT(tx_heartbeat_errors)
115 };
116 
117 #define IGB_GLOBAL_STATS_LEN	\
118 	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
119 #define IGB_NETDEV_STATS_LEN	\
120 	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
121 #define IGB_RX_QUEUE_STATS_LEN \
122 	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
123 
124 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
125 
126 #define IGB_QUEUE_STATS_LEN \
127 	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
128 	  IGB_RX_QUEUE_STATS_LEN) + \
129 	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
130 	  IGB_TX_QUEUE_STATS_LEN))
131 #define IGB_STATS_LEN \
132 	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
133 
134 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
135 	"Register test  (offline)", "Eeprom test    (offline)",
136 	"Interrupt test (offline)", "Loopback test  (offline)",
137 	"Link test   (on/offline)"
138 };
139 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
140 
141 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
142 {
143 	struct igb_adapter *adapter = netdev_priv(netdev);
144 	struct e1000_hw *hw = &adapter->hw;
145 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
146 	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
147 	u32 status;
148 
149 	if (hw->phy.media_type == e1000_media_type_copper) {
150 
151 		ecmd->supported = (SUPPORTED_10baseT_Half |
152 				   SUPPORTED_10baseT_Full |
153 				   SUPPORTED_100baseT_Half |
154 				   SUPPORTED_100baseT_Full |
155 				   SUPPORTED_1000baseT_Full|
156 				   SUPPORTED_Autoneg |
157 				   SUPPORTED_TP |
158 				   SUPPORTED_Pause);
159 		ecmd->advertising = ADVERTISED_TP;
160 
161 		if (hw->mac.autoneg == 1) {
162 			ecmd->advertising |= ADVERTISED_Autoneg;
163 			/* the e1000 autoneg seems to match ethtool nicely */
164 			ecmd->advertising |= hw->phy.autoneg_advertised;
165 		}
166 
167 		ecmd->port = PORT_TP;
168 		ecmd->phy_address = hw->phy.addr;
169 		ecmd->transceiver = XCVR_INTERNAL;
170 	} else {
171 		ecmd->supported = (SUPPORTED_FIBRE |
172 				   SUPPORTED_Autoneg |
173 				   SUPPORTED_Pause);
174 		ecmd->advertising = ADVERTISED_FIBRE;
175 		if (hw->mac.type == e1000_i354) {
176 			ecmd->supported |= SUPPORTED_2500baseX_Full;
177 			ecmd->advertising |= ADVERTISED_2500baseX_Full;
178 		}
179 		if ((eth_flags->e1000_base_lx) || (eth_flags->e1000_base_sx)) {
180 			ecmd->supported |= SUPPORTED_1000baseT_Full;
181 			ecmd->advertising |= ADVERTISED_1000baseT_Full;
182 		}
183 		if (eth_flags->e100_base_fx) {
184 			ecmd->supported |= SUPPORTED_100baseT_Full;
185 			ecmd->advertising |= ADVERTISED_100baseT_Full;
186 		}
187 		if (hw->mac.autoneg == 1)
188 			ecmd->advertising |= ADVERTISED_Autoneg;
189 
190 		ecmd->port = PORT_FIBRE;
191 		ecmd->transceiver = XCVR_EXTERNAL;
192 	}
193 
194 	if (hw->mac.autoneg != 1)
195 		ecmd->advertising &= ~(ADVERTISED_Pause |
196 				       ADVERTISED_Asym_Pause);
197 
198 	if (hw->fc.requested_mode == e1000_fc_full)
199 		ecmd->advertising |= ADVERTISED_Pause;
200 	else if (hw->fc.requested_mode == e1000_fc_rx_pause)
201 		ecmd->advertising |= (ADVERTISED_Pause |
202 				      ADVERTISED_Asym_Pause);
203 	else if (hw->fc.requested_mode == e1000_fc_tx_pause)
204 		ecmd->advertising |=  ADVERTISED_Asym_Pause;
205 	else
206 		ecmd->advertising &= ~(ADVERTISED_Pause |
207 				       ADVERTISED_Asym_Pause);
208 
209 	status = rd32(E1000_STATUS);
210 
211 	if (status & E1000_STATUS_LU) {
212 		if ((hw->mac.type == e1000_i354) &&
213 		    (status & E1000_STATUS_2P5_SKU) &&
214 		    !(status & E1000_STATUS_2P5_SKU_OVER))
215 			ecmd->speed = SPEED_2500;
216 		else if (status & E1000_STATUS_SPEED_1000)
217 			ecmd->speed = SPEED_1000;
218 		else if (status & E1000_STATUS_SPEED_100)
219 			ecmd->speed = SPEED_100;
220 		else
221 			ecmd->speed = SPEED_10;
222 		if ((status & E1000_STATUS_FD) ||
223 		    hw->phy.media_type != e1000_media_type_copper)
224 			ecmd->duplex = DUPLEX_FULL;
225 		else
226 			ecmd->duplex = DUPLEX_HALF;
227 	} else {
228 		ecmd->speed = -1;
229 		ecmd->duplex = -1;
230 	}
231 
232 	if ((hw->phy.media_type == e1000_media_type_fiber) ||
233 	    hw->mac.autoneg)
234 		ecmd->autoneg = AUTONEG_ENABLE;
235 	else
236 		ecmd->autoneg = AUTONEG_DISABLE;
237 
238 	/* MDI-X => 2; MDI =>1; Invalid =>0 */
239 	if (hw->phy.media_type == e1000_media_type_copper)
240 		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
241 						      ETH_TP_MDI;
242 	else
243 		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
244 
245 	if (hw->phy.mdix == AUTO_ALL_MODES)
246 		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
247 	else
248 		ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
249 
250 	return 0;
251 }
252 
253 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
254 {
255 	struct igb_adapter *adapter = netdev_priv(netdev);
256 	struct e1000_hw *hw = &adapter->hw;
257 
258 	/* When SoL/IDER sessions are active, autoneg/speed/duplex
259 	 * cannot be changed
260 	 */
261 	if (igb_check_reset_block(hw)) {
262 		dev_err(&adapter->pdev->dev,
263 			"Cannot change link characteristics when SoL/IDER is active.\n");
264 		return -EINVAL;
265 	}
266 
267 	/* MDI setting is only allowed when autoneg enabled because
268 	 * some hardware doesn't allow MDI setting when speed or
269 	 * duplex is forced.
270 	 */
271 	if (ecmd->eth_tp_mdix_ctrl) {
272 		if (hw->phy.media_type != e1000_media_type_copper)
273 			return -EOPNOTSUPP;
274 
275 		if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
276 		    (ecmd->autoneg != AUTONEG_ENABLE)) {
277 			dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
278 			return -EINVAL;
279 		}
280 	}
281 
282 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
283 		msleep(1);
284 
285 	if (ecmd->autoneg == AUTONEG_ENABLE) {
286 		hw->mac.autoneg = 1;
287 		if (hw->phy.media_type == e1000_media_type_fiber) {
288 			hw->phy.autoneg_advertised = ecmd->advertising |
289 						     ADVERTISED_FIBRE |
290 						     ADVERTISED_Autoneg;
291 			switch (adapter->link_speed) {
292 			case SPEED_2500:
293 				hw->phy.autoneg_advertised =
294 					ADVERTISED_2500baseX_Full;
295 				break;
296 			case SPEED_1000:
297 				hw->phy.autoneg_advertised =
298 					ADVERTISED_1000baseT_Full;
299 				break;
300 			case SPEED_100:
301 				hw->phy.autoneg_advertised =
302 					ADVERTISED_100baseT_Full;
303 				break;
304 			default:
305 				break;
306 			}
307 		} else {
308 			hw->phy.autoneg_advertised = ecmd->advertising |
309 						     ADVERTISED_TP |
310 						     ADVERTISED_Autoneg;
311 		}
312 		ecmd->advertising = hw->phy.autoneg_advertised;
313 		if (adapter->fc_autoneg)
314 			hw->fc.requested_mode = e1000_fc_default;
315 	} else {
316 		u32 speed = ethtool_cmd_speed(ecmd);
317 		/* calling this overrides forced MDI setting */
318 		if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
319 			clear_bit(__IGB_RESETTING, &adapter->state);
320 			return -EINVAL;
321 		}
322 	}
323 
324 	/* MDI-X => 2; MDI => 1; Auto => 3 */
325 	if (ecmd->eth_tp_mdix_ctrl) {
326 		/* fix up the value for auto (3 => 0) as zero is mapped
327 		 * internally to auto
328 		 */
329 		if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
330 			hw->phy.mdix = AUTO_ALL_MODES;
331 		else
332 			hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
333 	}
334 
335 	/* reset the link */
336 	if (netif_running(adapter->netdev)) {
337 		igb_down(adapter);
338 		igb_up(adapter);
339 	} else
340 		igb_reset(adapter);
341 
342 	clear_bit(__IGB_RESETTING, &adapter->state);
343 	return 0;
344 }
345 
346 static u32 igb_get_link(struct net_device *netdev)
347 {
348 	struct igb_adapter *adapter = netdev_priv(netdev);
349 	struct e1000_mac_info *mac = &adapter->hw.mac;
350 
351 	/* If the link is not reported up to netdev, interrupts are disabled,
352 	 * and so the physical link state may have changed since we last
353 	 * looked. Set get_link_status to make sure that the true link
354 	 * state is interrogated, rather than pulling a cached and possibly
355 	 * stale link state from the driver.
356 	 */
357 	if (!netif_carrier_ok(netdev))
358 		mac->get_link_status = 1;
359 
360 	return igb_has_link(adapter);
361 }
362 
363 static void igb_get_pauseparam(struct net_device *netdev,
364 			       struct ethtool_pauseparam *pause)
365 {
366 	struct igb_adapter *adapter = netdev_priv(netdev);
367 	struct e1000_hw *hw = &adapter->hw;
368 
369 	pause->autoneg =
370 		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
371 
372 	if (hw->fc.current_mode == e1000_fc_rx_pause)
373 		pause->rx_pause = 1;
374 	else if (hw->fc.current_mode == e1000_fc_tx_pause)
375 		pause->tx_pause = 1;
376 	else if (hw->fc.current_mode == e1000_fc_full) {
377 		pause->rx_pause = 1;
378 		pause->tx_pause = 1;
379 	}
380 }
381 
382 static int igb_set_pauseparam(struct net_device *netdev,
383 			      struct ethtool_pauseparam *pause)
384 {
385 	struct igb_adapter *adapter = netdev_priv(netdev);
386 	struct e1000_hw *hw = &adapter->hw;
387 	int retval = 0;
388 
389 	/* 100basefx does not support setting link flow control */
390 	if (hw->dev_spec._82575.eth_flags.e100_base_fx)
391 		return -EINVAL;
392 
393 	adapter->fc_autoneg = pause->autoneg;
394 
395 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
396 		msleep(1);
397 
398 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
399 		hw->fc.requested_mode = e1000_fc_default;
400 		if (netif_running(adapter->netdev)) {
401 			igb_down(adapter);
402 			igb_up(adapter);
403 		} else {
404 			igb_reset(adapter);
405 		}
406 	} else {
407 		if (pause->rx_pause && pause->tx_pause)
408 			hw->fc.requested_mode = e1000_fc_full;
409 		else if (pause->rx_pause && !pause->tx_pause)
410 			hw->fc.requested_mode = e1000_fc_rx_pause;
411 		else if (!pause->rx_pause && pause->tx_pause)
412 			hw->fc.requested_mode = e1000_fc_tx_pause;
413 		else if (!pause->rx_pause && !pause->tx_pause)
414 			hw->fc.requested_mode = e1000_fc_none;
415 
416 		hw->fc.current_mode = hw->fc.requested_mode;
417 
418 		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
419 			  igb_force_mac_fc(hw) : igb_setup_link(hw));
420 	}
421 
422 	clear_bit(__IGB_RESETTING, &adapter->state);
423 	return retval;
424 }
425 
426 static u32 igb_get_msglevel(struct net_device *netdev)
427 {
428 	struct igb_adapter *adapter = netdev_priv(netdev);
429 	return adapter->msg_enable;
430 }
431 
432 static void igb_set_msglevel(struct net_device *netdev, u32 data)
433 {
434 	struct igb_adapter *adapter = netdev_priv(netdev);
435 	adapter->msg_enable = data;
436 }
437 
438 static int igb_get_regs_len(struct net_device *netdev)
439 {
440 #define IGB_REGS_LEN 739
441 	return IGB_REGS_LEN * sizeof(u32);
442 }
443 
444 static void igb_get_regs(struct net_device *netdev,
445 			 struct ethtool_regs *regs, void *p)
446 {
447 	struct igb_adapter *adapter = netdev_priv(netdev);
448 	struct e1000_hw *hw = &adapter->hw;
449 	u32 *regs_buff = p;
450 	u8 i;
451 
452 	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
453 
454 	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
455 
456 	/* General Registers */
457 	regs_buff[0] = rd32(E1000_CTRL);
458 	regs_buff[1] = rd32(E1000_STATUS);
459 	regs_buff[2] = rd32(E1000_CTRL_EXT);
460 	regs_buff[3] = rd32(E1000_MDIC);
461 	regs_buff[4] = rd32(E1000_SCTL);
462 	regs_buff[5] = rd32(E1000_CONNSW);
463 	regs_buff[6] = rd32(E1000_VET);
464 	regs_buff[7] = rd32(E1000_LEDCTL);
465 	regs_buff[8] = rd32(E1000_PBA);
466 	regs_buff[9] = rd32(E1000_PBS);
467 	regs_buff[10] = rd32(E1000_FRTIMER);
468 	regs_buff[11] = rd32(E1000_TCPTIMER);
469 
470 	/* NVM Register */
471 	regs_buff[12] = rd32(E1000_EECD);
472 
473 	/* Interrupt */
474 	/* Reading EICS for EICR because they read the
475 	 * same but EICS does not clear on read
476 	 */
477 	regs_buff[13] = rd32(E1000_EICS);
478 	regs_buff[14] = rd32(E1000_EICS);
479 	regs_buff[15] = rd32(E1000_EIMS);
480 	regs_buff[16] = rd32(E1000_EIMC);
481 	regs_buff[17] = rd32(E1000_EIAC);
482 	regs_buff[18] = rd32(E1000_EIAM);
483 	/* Reading ICS for ICR because they read the
484 	 * same but ICS does not clear on read
485 	 */
486 	regs_buff[19] = rd32(E1000_ICS);
487 	regs_buff[20] = rd32(E1000_ICS);
488 	regs_buff[21] = rd32(E1000_IMS);
489 	regs_buff[22] = rd32(E1000_IMC);
490 	regs_buff[23] = rd32(E1000_IAC);
491 	regs_buff[24] = rd32(E1000_IAM);
492 	regs_buff[25] = rd32(E1000_IMIRVP);
493 
494 	/* Flow Control */
495 	regs_buff[26] = rd32(E1000_FCAL);
496 	regs_buff[27] = rd32(E1000_FCAH);
497 	regs_buff[28] = rd32(E1000_FCTTV);
498 	regs_buff[29] = rd32(E1000_FCRTL);
499 	regs_buff[30] = rd32(E1000_FCRTH);
500 	regs_buff[31] = rd32(E1000_FCRTV);
501 
502 	/* Receive */
503 	regs_buff[32] = rd32(E1000_RCTL);
504 	regs_buff[33] = rd32(E1000_RXCSUM);
505 	regs_buff[34] = rd32(E1000_RLPML);
506 	regs_buff[35] = rd32(E1000_RFCTL);
507 	regs_buff[36] = rd32(E1000_MRQC);
508 	regs_buff[37] = rd32(E1000_VT_CTL);
509 
510 	/* Transmit */
511 	regs_buff[38] = rd32(E1000_TCTL);
512 	regs_buff[39] = rd32(E1000_TCTL_EXT);
513 	regs_buff[40] = rd32(E1000_TIPG);
514 	regs_buff[41] = rd32(E1000_DTXCTL);
515 
516 	/* Wake Up */
517 	regs_buff[42] = rd32(E1000_WUC);
518 	regs_buff[43] = rd32(E1000_WUFC);
519 	regs_buff[44] = rd32(E1000_WUS);
520 	regs_buff[45] = rd32(E1000_IPAV);
521 	regs_buff[46] = rd32(E1000_WUPL);
522 
523 	/* MAC */
524 	regs_buff[47] = rd32(E1000_PCS_CFG0);
525 	regs_buff[48] = rd32(E1000_PCS_LCTL);
526 	regs_buff[49] = rd32(E1000_PCS_LSTAT);
527 	regs_buff[50] = rd32(E1000_PCS_ANADV);
528 	regs_buff[51] = rd32(E1000_PCS_LPAB);
529 	regs_buff[52] = rd32(E1000_PCS_NPTX);
530 	regs_buff[53] = rd32(E1000_PCS_LPABNP);
531 
532 	/* Statistics */
533 	regs_buff[54] = adapter->stats.crcerrs;
534 	regs_buff[55] = adapter->stats.algnerrc;
535 	regs_buff[56] = adapter->stats.symerrs;
536 	regs_buff[57] = adapter->stats.rxerrc;
537 	regs_buff[58] = adapter->stats.mpc;
538 	regs_buff[59] = adapter->stats.scc;
539 	regs_buff[60] = adapter->stats.ecol;
540 	regs_buff[61] = adapter->stats.mcc;
541 	regs_buff[62] = adapter->stats.latecol;
542 	regs_buff[63] = adapter->stats.colc;
543 	regs_buff[64] = adapter->stats.dc;
544 	regs_buff[65] = adapter->stats.tncrs;
545 	regs_buff[66] = adapter->stats.sec;
546 	regs_buff[67] = adapter->stats.htdpmc;
547 	regs_buff[68] = adapter->stats.rlec;
548 	regs_buff[69] = adapter->stats.xonrxc;
549 	regs_buff[70] = adapter->stats.xontxc;
550 	regs_buff[71] = adapter->stats.xoffrxc;
551 	regs_buff[72] = adapter->stats.xofftxc;
552 	regs_buff[73] = adapter->stats.fcruc;
553 	regs_buff[74] = adapter->stats.prc64;
554 	regs_buff[75] = adapter->stats.prc127;
555 	regs_buff[76] = adapter->stats.prc255;
556 	regs_buff[77] = adapter->stats.prc511;
557 	regs_buff[78] = adapter->stats.prc1023;
558 	regs_buff[79] = adapter->stats.prc1522;
559 	regs_buff[80] = adapter->stats.gprc;
560 	regs_buff[81] = adapter->stats.bprc;
561 	regs_buff[82] = adapter->stats.mprc;
562 	regs_buff[83] = adapter->stats.gptc;
563 	regs_buff[84] = adapter->stats.gorc;
564 	regs_buff[86] = adapter->stats.gotc;
565 	regs_buff[88] = adapter->stats.rnbc;
566 	regs_buff[89] = adapter->stats.ruc;
567 	regs_buff[90] = adapter->stats.rfc;
568 	regs_buff[91] = adapter->stats.roc;
569 	regs_buff[92] = adapter->stats.rjc;
570 	regs_buff[93] = adapter->stats.mgprc;
571 	regs_buff[94] = adapter->stats.mgpdc;
572 	regs_buff[95] = adapter->stats.mgptc;
573 	regs_buff[96] = adapter->stats.tor;
574 	regs_buff[98] = adapter->stats.tot;
575 	regs_buff[100] = adapter->stats.tpr;
576 	regs_buff[101] = adapter->stats.tpt;
577 	regs_buff[102] = adapter->stats.ptc64;
578 	regs_buff[103] = adapter->stats.ptc127;
579 	regs_buff[104] = adapter->stats.ptc255;
580 	regs_buff[105] = adapter->stats.ptc511;
581 	regs_buff[106] = adapter->stats.ptc1023;
582 	regs_buff[107] = adapter->stats.ptc1522;
583 	regs_buff[108] = adapter->stats.mptc;
584 	regs_buff[109] = adapter->stats.bptc;
585 	regs_buff[110] = adapter->stats.tsctc;
586 	regs_buff[111] = adapter->stats.iac;
587 	regs_buff[112] = adapter->stats.rpthc;
588 	regs_buff[113] = adapter->stats.hgptc;
589 	regs_buff[114] = adapter->stats.hgorc;
590 	regs_buff[116] = adapter->stats.hgotc;
591 	regs_buff[118] = adapter->stats.lenerrs;
592 	regs_buff[119] = adapter->stats.scvpc;
593 	regs_buff[120] = adapter->stats.hrmpc;
594 
595 	for (i = 0; i < 4; i++)
596 		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
597 	for (i = 0; i < 4; i++)
598 		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
599 	for (i = 0; i < 4; i++)
600 		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
601 	for (i = 0; i < 4; i++)
602 		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
603 	for (i = 0; i < 4; i++)
604 		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
605 	for (i = 0; i < 4; i++)
606 		regs_buff[141 + i] = rd32(E1000_RDH(i));
607 	for (i = 0; i < 4; i++)
608 		regs_buff[145 + i] = rd32(E1000_RDT(i));
609 	for (i = 0; i < 4; i++)
610 		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
611 
612 	for (i = 0; i < 10; i++)
613 		regs_buff[153 + i] = rd32(E1000_EITR(i));
614 	for (i = 0; i < 8; i++)
615 		regs_buff[163 + i] = rd32(E1000_IMIR(i));
616 	for (i = 0; i < 8; i++)
617 		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
618 	for (i = 0; i < 16; i++)
619 		regs_buff[179 + i] = rd32(E1000_RAL(i));
620 	for (i = 0; i < 16; i++)
621 		regs_buff[195 + i] = rd32(E1000_RAH(i));
622 
623 	for (i = 0; i < 4; i++)
624 		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
625 	for (i = 0; i < 4; i++)
626 		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
627 	for (i = 0; i < 4; i++)
628 		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
629 	for (i = 0; i < 4; i++)
630 		regs_buff[223 + i] = rd32(E1000_TDH(i));
631 	for (i = 0; i < 4; i++)
632 		regs_buff[227 + i] = rd32(E1000_TDT(i));
633 	for (i = 0; i < 4; i++)
634 		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
635 	for (i = 0; i < 4; i++)
636 		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
637 	for (i = 0; i < 4; i++)
638 		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
639 	for (i = 0; i < 4; i++)
640 		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
641 
642 	for (i = 0; i < 4; i++)
643 		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
644 	for (i = 0; i < 4; i++)
645 		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
646 	for (i = 0; i < 32; i++)
647 		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
648 	for (i = 0; i < 128; i++)
649 		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
650 	for (i = 0; i < 128; i++)
651 		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
652 	for (i = 0; i < 4; i++)
653 		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
654 
655 	regs_buff[547] = rd32(E1000_TDFH);
656 	regs_buff[548] = rd32(E1000_TDFT);
657 	regs_buff[549] = rd32(E1000_TDFHS);
658 	regs_buff[550] = rd32(E1000_TDFPC);
659 
660 	if (hw->mac.type > e1000_82580) {
661 		regs_buff[551] = adapter->stats.o2bgptc;
662 		regs_buff[552] = adapter->stats.b2ospc;
663 		regs_buff[553] = adapter->stats.o2bspc;
664 		regs_buff[554] = adapter->stats.b2ogprc;
665 	}
666 
667 	if (hw->mac.type != e1000_82576)
668 		return;
669 	for (i = 0; i < 12; i++)
670 		regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
671 	for (i = 0; i < 4; i++)
672 		regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
673 	for (i = 0; i < 12; i++)
674 		regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
675 	for (i = 0; i < 12; i++)
676 		regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
677 	for (i = 0; i < 12; i++)
678 		regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
679 	for (i = 0; i < 12; i++)
680 		regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
681 	for (i = 0; i < 12; i++)
682 		regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
683 	for (i = 0; i < 12; i++)
684 		regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
685 
686 	for (i = 0; i < 12; i++)
687 		regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
688 	for (i = 0; i < 12; i++)
689 		regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
690 	for (i = 0; i < 12; i++)
691 		regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
692 	for (i = 0; i < 12; i++)
693 		regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
694 	for (i = 0; i < 12; i++)
695 		regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
696 	for (i = 0; i < 12; i++)
697 		regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
698 	for (i = 0; i < 12; i++)
699 		regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
700 	for (i = 0; i < 12; i++)
701 		regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
702 }
703 
704 static int igb_get_eeprom_len(struct net_device *netdev)
705 {
706 	struct igb_adapter *adapter = netdev_priv(netdev);
707 	return adapter->hw.nvm.word_size * 2;
708 }
709 
710 static int igb_get_eeprom(struct net_device *netdev,
711 			  struct ethtool_eeprom *eeprom, u8 *bytes)
712 {
713 	struct igb_adapter *adapter = netdev_priv(netdev);
714 	struct e1000_hw *hw = &adapter->hw;
715 	u16 *eeprom_buff;
716 	int first_word, last_word;
717 	int ret_val = 0;
718 	u16 i;
719 
720 	if (eeprom->len == 0)
721 		return -EINVAL;
722 
723 	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
724 
725 	first_word = eeprom->offset >> 1;
726 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
727 
728 	eeprom_buff = kmalloc(sizeof(u16) *
729 			(last_word - first_word + 1), GFP_KERNEL);
730 	if (!eeprom_buff)
731 		return -ENOMEM;
732 
733 	if (hw->nvm.type == e1000_nvm_eeprom_spi)
734 		ret_val = hw->nvm.ops.read(hw, first_word,
735 					   last_word - first_word + 1,
736 					   eeprom_buff);
737 	else {
738 		for (i = 0; i < last_word - first_word + 1; i++) {
739 			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
740 						   &eeprom_buff[i]);
741 			if (ret_val)
742 				break;
743 		}
744 	}
745 
746 	/* Device's eeprom is always little-endian, word addressable */
747 	for (i = 0; i < last_word - first_word + 1; i++)
748 		le16_to_cpus(&eeprom_buff[i]);
749 
750 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
751 			eeprom->len);
752 	kfree(eeprom_buff);
753 
754 	return ret_val;
755 }
756 
757 static int igb_set_eeprom(struct net_device *netdev,
758 			  struct ethtool_eeprom *eeprom, u8 *bytes)
759 {
760 	struct igb_adapter *adapter = netdev_priv(netdev);
761 	struct e1000_hw *hw = &adapter->hw;
762 	u16 *eeprom_buff;
763 	void *ptr;
764 	int max_len, first_word, last_word, ret_val = 0;
765 	u16 i;
766 
767 	if (eeprom->len == 0)
768 		return -EOPNOTSUPP;
769 
770 	if (hw->mac.type == e1000_i211)
771 		return -EOPNOTSUPP;
772 
773 	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
774 		return -EFAULT;
775 
776 	max_len = hw->nvm.word_size * 2;
777 
778 	first_word = eeprom->offset >> 1;
779 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
780 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
781 	if (!eeprom_buff)
782 		return -ENOMEM;
783 
784 	ptr = (void *)eeprom_buff;
785 
786 	if (eeprom->offset & 1) {
787 		/* need read/modify/write of first changed EEPROM word
788 		 * only the second byte of the word is being modified
789 		 */
790 		ret_val = hw->nvm.ops.read(hw, first_word, 1,
791 					    &eeprom_buff[0]);
792 		ptr++;
793 	}
794 	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
795 		/* need read/modify/write of last changed EEPROM word
796 		 * only the first byte of the word is being modified
797 		 */
798 		ret_val = hw->nvm.ops.read(hw, last_word, 1,
799 				   &eeprom_buff[last_word - first_word]);
800 	}
801 
802 	/* Device's eeprom is always little-endian, word addressable */
803 	for (i = 0; i < last_word - first_word + 1; i++)
804 		le16_to_cpus(&eeprom_buff[i]);
805 
806 	memcpy(ptr, bytes, eeprom->len);
807 
808 	for (i = 0; i < last_word - first_word + 1; i++)
809 		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
810 
811 	ret_val = hw->nvm.ops.write(hw, first_word,
812 				    last_word - first_word + 1, eeprom_buff);
813 
814 	/* Update the checksum if nvm write succeeded */
815 	if (ret_val == 0)
816 		hw->nvm.ops.update(hw);
817 
818 	igb_set_fw_version(adapter);
819 	kfree(eeprom_buff);
820 	return ret_val;
821 }
822 
823 static void igb_get_drvinfo(struct net_device *netdev,
824 			    struct ethtool_drvinfo *drvinfo)
825 {
826 	struct igb_adapter *adapter = netdev_priv(netdev);
827 
828 	strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
829 	strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
830 
831 	/* EEPROM image version # is reported as firmware version # for
832 	 * 82575 controllers
833 	 */
834 	strlcpy(drvinfo->fw_version, adapter->fw_version,
835 		sizeof(drvinfo->fw_version));
836 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
837 		sizeof(drvinfo->bus_info));
838 	drvinfo->n_stats = IGB_STATS_LEN;
839 	drvinfo->testinfo_len = IGB_TEST_LEN;
840 	drvinfo->regdump_len = igb_get_regs_len(netdev);
841 	drvinfo->eedump_len = igb_get_eeprom_len(netdev);
842 }
843 
844 static void igb_get_ringparam(struct net_device *netdev,
845 			      struct ethtool_ringparam *ring)
846 {
847 	struct igb_adapter *adapter = netdev_priv(netdev);
848 
849 	ring->rx_max_pending = IGB_MAX_RXD;
850 	ring->tx_max_pending = IGB_MAX_TXD;
851 	ring->rx_pending = adapter->rx_ring_count;
852 	ring->tx_pending = adapter->tx_ring_count;
853 }
854 
855 static int igb_set_ringparam(struct net_device *netdev,
856 			     struct ethtool_ringparam *ring)
857 {
858 	struct igb_adapter *adapter = netdev_priv(netdev);
859 	struct igb_ring *temp_ring;
860 	int i, err = 0;
861 	u16 new_rx_count, new_tx_count;
862 
863 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
864 		return -EINVAL;
865 
866 	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
867 	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
868 	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
869 
870 	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
871 	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
872 	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
873 
874 	if ((new_tx_count == adapter->tx_ring_count) &&
875 	    (new_rx_count == adapter->rx_ring_count)) {
876 		/* nothing to do */
877 		return 0;
878 	}
879 
880 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
881 		msleep(1);
882 
883 	if (!netif_running(adapter->netdev)) {
884 		for (i = 0; i < adapter->num_tx_queues; i++)
885 			adapter->tx_ring[i]->count = new_tx_count;
886 		for (i = 0; i < adapter->num_rx_queues; i++)
887 			adapter->rx_ring[i]->count = new_rx_count;
888 		adapter->tx_ring_count = new_tx_count;
889 		adapter->rx_ring_count = new_rx_count;
890 		goto clear_reset;
891 	}
892 
893 	if (adapter->num_tx_queues > adapter->num_rx_queues)
894 		temp_ring = vmalloc(adapter->num_tx_queues *
895 				    sizeof(struct igb_ring));
896 	else
897 		temp_ring = vmalloc(adapter->num_rx_queues *
898 				    sizeof(struct igb_ring));
899 
900 	if (!temp_ring) {
901 		err = -ENOMEM;
902 		goto clear_reset;
903 	}
904 
905 	igb_down(adapter);
906 
907 	/* We can't just free everything and then setup again,
908 	 * because the ISRs in MSI-X mode get passed pointers
909 	 * to the Tx and Rx ring structs.
910 	 */
911 	if (new_tx_count != adapter->tx_ring_count) {
912 		for (i = 0; i < adapter->num_tx_queues; i++) {
913 			memcpy(&temp_ring[i], adapter->tx_ring[i],
914 			       sizeof(struct igb_ring));
915 
916 			temp_ring[i].count = new_tx_count;
917 			err = igb_setup_tx_resources(&temp_ring[i]);
918 			if (err) {
919 				while (i) {
920 					i--;
921 					igb_free_tx_resources(&temp_ring[i]);
922 				}
923 				goto err_setup;
924 			}
925 		}
926 
927 		for (i = 0; i < adapter->num_tx_queues; i++) {
928 			igb_free_tx_resources(adapter->tx_ring[i]);
929 
930 			memcpy(adapter->tx_ring[i], &temp_ring[i],
931 			       sizeof(struct igb_ring));
932 		}
933 
934 		adapter->tx_ring_count = new_tx_count;
935 	}
936 
937 	if (new_rx_count != adapter->rx_ring_count) {
938 		for (i = 0; i < adapter->num_rx_queues; i++) {
939 			memcpy(&temp_ring[i], adapter->rx_ring[i],
940 			       sizeof(struct igb_ring));
941 
942 			temp_ring[i].count = new_rx_count;
943 			err = igb_setup_rx_resources(&temp_ring[i]);
944 			if (err) {
945 				while (i) {
946 					i--;
947 					igb_free_rx_resources(&temp_ring[i]);
948 				}
949 				goto err_setup;
950 			}
951 
952 		}
953 
954 		for (i = 0; i < adapter->num_rx_queues; i++) {
955 			igb_free_rx_resources(adapter->rx_ring[i]);
956 
957 			memcpy(adapter->rx_ring[i], &temp_ring[i],
958 			       sizeof(struct igb_ring));
959 		}
960 
961 		adapter->rx_ring_count = new_rx_count;
962 	}
963 err_setup:
964 	igb_up(adapter);
965 	vfree(temp_ring);
966 clear_reset:
967 	clear_bit(__IGB_RESETTING, &adapter->state);
968 	return err;
969 }
970 
971 /* ethtool register test data */
972 struct igb_reg_test {
973 	u16 reg;
974 	u16 reg_offset;
975 	u16 array_len;
976 	u16 test_type;
977 	u32 mask;
978 	u32 write;
979 };
980 
981 /* In the hardware, registers are laid out either singly, in arrays
982  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
983  * most tests take place on arrays or single registers (handled
984  * as a single-element array) and special-case the tables.
985  * Table tests are always pattern tests.
986  *
987  * We also make provision for some required setup steps by specifying
988  * registers to be written without any read-back testing.
989  */
990 
991 #define PATTERN_TEST	1
992 #define SET_READ_TEST	2
993 #define WRITE_NO_TEST	3
994 #define TABLE32_TEST	4
995 #define TABLE64_TEST_LO	5
996 #define TABLE64_TEST_HI	6
997 
998 /* i210 reg test */
999 static struct igb_reg_test reg_test_i210[] = {
1000 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1001 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1002 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1003 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1004 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1005 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1006 	/* RDH is read-only for i210, only test RDT. */
1007 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1008 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1009 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1010 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1011 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1012 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1013 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1014 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1015 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1016 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1017 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1018 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1019 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1020 						0xFFFFFFFF, 0xFFFFFFFF },
1021 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1022 						0x900FFFFF, 0xFFFFFFFF },
1023 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1024 						0xFFFFFFFF, 0xFFFFFFFF },
1025 	{ 0, 0, 0, 0, 0 }
1026 };
1027 
1028 /* i350 reg test */
1029 static struct igb_reg_test reg_test_i350[] = {
1030 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1031 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1032 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1033 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1034 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1035 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1036 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1037 	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1038 	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1039 	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1040 	/* RDH is read-only for i350, only test RDT. */
1041 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1042 	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1043 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1044 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1045 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1046 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1047 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1048 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1049 	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1050 	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1051 	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1052 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1053 	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1054 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1055 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1056 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1057 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1058 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1059 						0xFFFFFFFF, 0xFFFFFFFF },
1060 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1061 						0xC3FFFFFF, 0xFFFFFFFF },
1062 	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
1063 						0xFFFFFFFF, 0xFFFFFFFF },
1064 	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
1065 						0xC3FFFFFF, 0xFFFFFFFF },
1066 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1067 						0xFFFFFFFF, 0xFFFFFFFF },
1068 	{ 0, 0, 0, 0 }
1069 };
1070 
1071 /* 82580 reg test */
1072 static struct igb_reg_test reg_test_82580[] = {
1073 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1074 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1075 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1076 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1077 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1078 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1079 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1080 	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1081 	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1082 	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1083 	/* RDH is read-only for 82580, only test RDT. */
1084 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1085 	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1086 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1087 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1088 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1089 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1090 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1091 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1092 	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1093 	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1094 	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1095 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1096 	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1097 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1098 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1099 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1100 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1101 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1102 						0xFFFFFFFF, 0xFFFFFFFF },
1103 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1104 						0x83FFFFFF, 0xFFFFFFFF },
1105 	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
1106 						0xFFFFFFFF, 0xFFFFFFFF },
1107 	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
1108 						0x83FFFFFF, 0xFFFFFFFF },
1109 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1110 						0xFFFFFFFF, 0xFFFFFFFF },
1111 	{ 0, 0, 0, 0 }
1112 };
1113 
1114 /* 82576 reg test */
1115 static struct igb_reg_test reg_test_82576[] = {
1116 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1117 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1118 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1119 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1120 	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1121 	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1122 	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1123 	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1124 	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1125 	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1126 	/* Enable all RX queues before testing. */
1127 	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1128 	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1129 	/* RDH is read-only for 82576, only test RDT. */
1130 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1131 	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1132 	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1133 	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1134 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1135 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1136 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1137 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1138 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1139 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1140 	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1141 	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1142 	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1143 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1144 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1145 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1146 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1147 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1148 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1149 	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1150 	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1151 	{ E1000_MTA,	   0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1152 	{ 0, 0, 0, 0 }
1153 };
1154 
1155 /* 82575 register test */
1156 static struct igb_reg_test reg_test_82575[] = {
1157 	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1158 	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1159 	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1160 	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1161 	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1162 	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1163 	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1164 	/* Enable all four RX queues before testing. */
1165 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1166 	/* RDH is read-only for 82575, only test RDT. */
1167 	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1168 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1169 	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1170 	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1171 	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1172 	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1173 	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1174 	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1175 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1176 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1177 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1178 	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1179 	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1180 	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1181 	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1182 	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1183 	{ 0, 0, 0, 0 }
1184 };
1185 
1186 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1187 			     int reg, u32 mask, u32 write)
1188 {
1189 	struct e1000_hw *hw = &adapter->hw;
1190 	u32 pat, val;
1191 	static const u32 _test[] =
1192 		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1193 	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1194 		wr32(reg, (_test[pat] & write));
1195 		val = rd32(reg) & mask;
1196 		if (val != (_test[pat] & write & mask)) {
1197 			dev_err(&adapter->pdev->dev,
1198 				"pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1199 				reg, val, (_test[pat] & write & mask));
1200 			*data = reg;
1201 			return 1;
1202 		}
1203 	}
1204 
1205 	return 0;
1206 }
1207 
1208 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1209 			      int reg, u32 mask, u32 write)
1210 {
1211 	struct e1000_hw *hw = &adapter->hw;
1212 	u32 val;
1213 	wr32(reg, write & mask);
1214 	val = rd32(reg);
1215 	if ((write & mask) != (val & mask)) {
1216 		dev_err(&adapter->pdev->dev,
1217 			"set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", reg,
1218 			(val & mask), (write & mask));
1219 		*data = reg;
1220 		return 1;
1221 	}
1222 
1223 	return 0;
1224 }
1225 
1226 #define REG_PATTERN_TEST(reg, mask, write) \
1227 	do { \
1228 		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1229 			return 1; \
1230 	} while (0)
1231 
1232 #define REG_SET_AND_CHECK(reg, mask, write) \
1233 	do { \
1234 		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1235 			return 1; \
1236 	} while (0)
1237 
1238 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1239 {
1240 	struct e1000_hw *hw = &adapter->hw;
1241 	struct igb_reg_test *test;
1242 	u32 value, before, after;
1243 	u32 i, toggle;
1244 
1245 	switch (adapter->hw.mac.type) {
1246 	case e1000_i350:
1247 	case e1000_i354:
1248 		test = reg_test_i350;
1249 		toggle = 0x7FEFF3FF;
1250 		break;
1251 	case e1000_i210:
1252 	case e1000_i211:
1253 		test = reg_test_i210;
1254 		toggle = 0x7FEFF3FF;
1255 		break;
1256 	case e1000_82580:
1257 		test = reg_test_82580;
1258 		toggle = 0x7FEFF3FF;
1259 		break;
1260 	case e1000_82576:
1261 		test = reg_test_82576;
1262 		toggle = 0x7FFFF3FF;
1263 		break;
1264 	default:
1265 		test = reg_test_82575;
1266 		toggle = 0x7FFFF3FF;
1267 		break;
1268 	}
1269 
1270 	/* Because the status register is such a special case,
1271 	 * we handle it separately from the rest of the register
1272 	 * tests.  Some bits are read-only, some toggle, and some
1273 	 * are writable on newer MACs.
1274 	 */
1275 	before = rd32(E1000_STATUS);
1276 	value = (rd32(E1000_STATUS) & toggle);
1277 	wr32(E1000_STATUS, toggle);
1278 	after = rd32(E1000_STATUS) & toggle;
1279 	if (value != after) {
1280 		dev_err(&adapter->pdev->dev,
1281 			"failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1282 			after, value);
1283 		*data = 1;
1284 		return 1;
1285 	}
1286 	/* restore previous status */
1287 	wr32(E1000_STATUS, before);
1288 
1289 	/* Perform the remainder of the register test, looping through
1290 	 * the test table until we either fail or reach the null entry.
1291 	 */
1292 	while (test->reg) {
1293 		for (i = 0; i < test->array_len; i++) {
1294 			switch (test->test_type) {
1295 			case PATTERN_TEST:
1296 				REG_PATTERN_TEST(test->reg +
1297 						(i * test->reg_offset),
1298 						test->mask,
1299 						test->write);
1300 				break;
1301 			case SET_READ_TEST:
1302 				REG_SET_AND_CHECK(test->reg +
1303 						(i * test->reg_offset),
1304 						test->mask,
1305 						test->write);
1306 				break;
1307 			case WRITE_NO_TEST:
1308 				writel(test->write,
1309 				    (adapter->hw.hw_addr + test->reg)
1310 					+ (i * test->reg_offset));
1311 				break;
1312 			case TABLE32_TEST:
1313 				REG_PATTERN_TEST(test->reg + (i * 4),
1314 						test->mask,
1315 						test->write);
1316 				break;
1317 			case TABLE64_TEST_LO:
1318 				REG_PATTERN_TEST(test->reg + (i * 8),
1319 						test->mask,
1320 						test->write);
1321 				break;
1322 			case TABLE64_TEST_HI:
1323 				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1324 						test->mask,
1325 						test->write);
1326 				break;
1327 			}
1328 		}
1329 		test++;
1330 	}
1331 
1332 	*data = 0;
1333 	return 0;
1334 }
1335 
1336 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1337 {
1338 	*data = 0;
1339 
1340 	/* Validate eeprom on all parts but i211 */
1341 	if (adapter->hw.mac.type != e1000_i211) {
1342 		if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1343 			*data = 2;
1344 	}
1345 
1346 	return *data;
1347 }
1348 
1349 static irqreturn_t igb_test_intr(int irq, void *data)
1350 {
1351 	struct igb_adapter *adapter = (struct igb_adapter *) data;
1352 	struct e1000_hw *hw = &adapter->hw;
1353 
1354 	adapter->test_icr |= rd32(E1000_ICR);
1355 
1356 	return IRQ_HANDLED;
1357 }
1358 
1359 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1360 {
1361 	struct e1000_hw *hw = &adapter->hw;
1362 	struct net_device *netdev = adapter->netdev;
1363 	u32 mask, ics_mask, i = 0, shared_int = true;
1364 	u32 irq = adapter->pdev->irq;
1365 
1366 	*data = 0;
1367 
1368 	/* Hook up test interrupt handler just for this test */
1369 	if (adapter->msix_entries) {
1370 		if (request_irq(adapter->msix_entries[0].vector,
1371 		                igb_test_intr, 0, netdev->name, adapter)) {
1372 			*data = 1;
1373 			return -1;
1374 		}
1375 	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1376 		shared_int = false;
1377 		if (request_irq(irq,
1378 		                igb_test_intr, 0, netdev->name, adapter)) {
1379 			*data = 1;
1380 			return -1;
1381 		}
1382 	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1383 				netdev->name, adapter)) {
1384 		shared_int = false;
1385 	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1386 		 netdev->name, adapter)) {
1387 		*data = 1;
1388 		return -1;
1389 	}
1390 	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1391 		(shared_int ? "shared" : "unshared"));
1392 
1393 	/* Disable all the interrupts */
1394 	wr32(E1000_IMC, ~0);
1395 	wrfl();
1396 	msleep(10);
1397 
1398 	/* Define all writable bits for ICS */
1399 	switch (hw->mac.type) {
1400 	case e1000_82575:
1401 		ics_mask = 0x37F47EDD;
1402 		break;
1403 	case e1000_82576:
1404 		ics_mask = 0x77D4FBFD;
1405 		break;
1406 	case e1000_82580:
1407 		ics_mask = 0x77DCFED5;
1408 		break;
1409 	case e1000_i350:
1410 	case e1000_i354:
1411 	case e1000_i210:
1412 	case e1000_i211:
1413 		ics_mask = 0x77DCFED5;
1414 		break;
1415 	default:
1416 		ics_mask = 0x7FFFFFFF;
1417 		break;
1418 	}
1419 
1420 	/* Test each interrupt */
1421 	for (; i < 31; i++) {
1422 		/* Interrupt to test */
1423 		mask = 1 << i;
1424 
1425 		if (!(mask & ics_mask))
1426 			continue;
1427 
1428 		if (!shared_int) {
1429 			/* Disable the interrupt to be reported in
1430 			 * the cause register and then force the same
1431 			 * interrupt and see if one gets posted.  If
1432 			 * an interrupt was posted to the bus, the
1433 			 * test failed.
1434 			 */
1435 			adapter->test_icr = 0;
1436 
1437 			/* Flush any pending interrupts */
1438 			wr32(E1000_ICR, ~0);
1439 
1440 			wr32(E1000_IMC, mask);
1441 			wr32(E1000_ICS, mask);
1442 			wrfl();
1443 			msleep(10);
1444 
1445 			if (adapter->test_icr & mask) {
1446 				*data = 3;
1447 				break;
1448 			}
1449 		}
1450 
1451 		/* Enable the interrupt to be reported in
1452 		 * the cause register and then force the same
1453 		 * interrupt and see if one gets posted.  If
1454 		 * an interrupt was not posted to the bus, the
1455 		 * test failed.
1456 		 */
1457 		adapter->test_icr = 0;
1458 
1459 		/* Flush any pending interrupts */
1460 		wr32(E1000_ICR, ~0);
1461 
1462 		wr32(E1000_IMS, mask);
1463 		wr32(E1000_ICS, mask);
1464 		wrfl();
1465 		msleep(10);
1466 
1467 		if (!(adapter->test_icr & mask)) {
1468 			*data = 4;
1469 			break;
1470 		}
1471 
1472 		if (!shared_int) {
1473 			/* Disable the other interrupts to be reported in
1474 			 * the cause register and then force the other
1475 			 * interrupts and see if any get posted.  If
1476 			 * an interrupt was posted to the bus, the
1477 			 * test failed.
1478 			 */
1479 			adapter->test_icr = 0;
1480 
1481 			/* Flush any pending interrupts */
1482 			wr32(E1000_ICR, ~0);
1483 
1484 			wr32(E1000_IMC, ~mask);
1485 			wr32(E1000_ICS, ~mask);
1486 			wrfl();
1487 			msleep(10);
1488 
1489 			if (adapter->test_icr & mask) {
1490 				*data = 5;
1491 				break;
1492 			}
1493 		}
1494 	}
1495 
1496 	/* Disable all the interrupts */
1497 	wr32(E1000_IMC, ~0);
1498 	wrfl();
1499 	msleep(10);
1500 
1501 	/* Unhook test interrupt handler */
1502 	if (adapter->msix_entries)
1503 		free_irq(adapter->msix_entries[0].vector, adapter);
1504 	else
1505 		free_irq(irq, adapter);
1506 
1507 	return *data;
1508 }
1509 
1510 static void igb_free_desc_rings(struct igb_adapter *adapter)
1511 {
1512 	igb_free_tx_resources(&adapter->test_tx_ring);
1513 	igb_free_rx_resources(&adapter->test_rx_ring);
1514 }
1515 
1516 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1517 {
1518 	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1519 	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1520 	struct e1000_hw *hw = &adapter->hw;
1521 	int ret_val;
1522 
1523 	/* Setup Tx descriptor ring and Tx buffers */
1524 	tx_ring->count = IGB_DEFAULT_TXD;
1525 	tx_ring->dev = &adapter->pdev->dev;
1526 	tx_ring->netdev = adapter->netdev;
1527 	tx_ring->reg_idx = adapter->vfs_allocated_count;
1528 
1529 	if (igb_setup_tx_resources(tx_ring)) {
1530 		ret_val = 1;
1531 		goto err_nomem;
1532 	}
1533 
1534 	igb_setup_tctl(adapter);
1535 	igb_configure_tx_ring(adapter, tx_ring);
1536 
1537 	/* Setup Rx descriptor ring and Rx buffers */
1538 	rx_ring->count = IGB_DEFAULT_RXD;
1539 	rx_ring->dev = &adapter->pdev->dev;
1540 	rx_ring->netdev = adapter->netdev;
1541 	rx_ring->reg_idx = adapter->vfs_allocated_count;
1542 
1543 	if (igb_setup_rx_resources(rx_ring)) {
1544 		ret_val = 3;
1545 		goto err_nomem;
1546 	}
1547 
1548 	/* set the default queue to queue 0 of PF */
1549 	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1550 
1551 	/* enable receive ring */
1552 	igb_setup_rctl(adapter);
1553 	igb_configure_rx_ring(adapter, rx_ring);
1554 
1555 	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1556 
1557 	return 0;
1558 
1559 err_nomem:
1560 	igb_free_desc_rings(adapter);
1561 	return ret_val;
1562 }
1563 
1564 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1565 {
1566 	struct e1000_hw *hw = &adapter->hw;
1567 
1568 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1569 	igb_write_phy_reg(hw, 29, 0x001F);
1570 	igb_write_phy_reg(hw, 30, 0x8FFC);
1571 	igb_write_phy_reg(hw, 29, 0x001A);
1572 	igb_write_phy_reg(hw, 30, 0x8FF0);
1573 }
1574 
1575 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1576 {
1577 	struct e1000_hw *hw = &adapter->hw;
1578 	u32 ctrl_reg = 0;
1579 
1580 	hw->mac.autoneg = false;
1581 
1582 	if (hw->phy.type == e1000_phy_m88) {
1583 		if (hw->phy.id != I210_I_PHY_ID) {
1584 			/* Auto-MDI/MDIX Off */
1585 			igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1586 			/* reset to update Auto-MDI/MDIX */
1587 			igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1588 			/* autoneg off */
1589 			igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1590 		} else {
1591 			/* force 1000, set loopback  */
1592 			igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1593 			igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1594 		}
1595 	}
1596 
1597 	/* add small delay to avoid loopback test failure */
1598 	msleep(50);
1599 
1600 	/* force 1000, set loopback */
1601 	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1602 
1603 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1604 	ctrl_reg = rd32(E1000_CTRL);
1605 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1606 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1607 		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1608 		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1609 		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1610 		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1611 
1612 	if (hw->phy.type == e1000_phy_m88)
1613 		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1614 
1615 	wr32(E1000_CTRL, ctrl_reg);
1616 
1617 	/* Disable the receiver on the PHY so when a cable is plugged in, the
1618 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1619 	 */
1620 	if (hw->phy.type == e1000_phy_m88)
1621 		igb_phy_disable_receiver(adapter);
1622 
1623 	mdelay(500);
1624 	return 0;
1625 }
1626 
1627 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1628 {
1629 	return igb_integrated_phy_loopback(adapter);
1630 }
1631 
1632 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1633 {
1634 	struct e1000_hw *hw = &adapter->hw;
1635 	u32 reg;
1636 
1637 	reg = rd32(E1000_CTRL_EXT);
1638 
1639 	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1640 	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1641 		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1642 		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1643 		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1644 		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1645 
1646 			/* Enable DH89xxCC MPHY for near end loopback */
1647 			reg = rd32(E1000_MPHY_ADDR_CTL);
1648 			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1649 			E1000_MPHY_PCS_CLK_REG_OFFSET;
1650 			wr32(E1000_MPHY_ADDR_CTL, reg);
1651 
1652 			reg = rd32(E1000_MPHY_DATA);
1653 			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1654 			wr32(E1000_MPHY_DATA, reg);
1655 		}
1656 
1657 		reg = rd32(E1000_RCTL);
1658 		reg |= E1000_RCTL_LBM_TCVR;
1659 		wr32(E1000_RCTL, reg);
1660 
1661 		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1662 
1663 		reg = rd32(E1000_CTRL);
1664 		reg &= ~(E1000_CTRL_RFCE |
1665 			 E1000_CTRL_TFCE |
1666 			 E1000_CTRL_LRST);
1667 		reg |= E1000_CTRL_SLU |
1668 		       E1000_CTRL_FD;
1669 		wr32(E1000_CTRL, reg);
1670 
1671 		/* Unset switch control to serdes energy detect */
1672 		reg = rd32(E1000_CONNSW);
1673 		reg &= ~E1000_CONNSW_ENRGSRC;
1674 		wr32(E1000_CONNSW, reg);
1675 
1676 		/* Unset sigdetect for SERDES loopback on
1677 		 * 82580 and newer devices.
1678 		 */
1679 		if (hw->mac.type >= e1000_82580) {
1680 			reg = rd32(E1000_PCS_CFG0);
1681 			reg |= E1000_PCS_CFG_IGN_SD;
1682 			wr32(E1000_PCS_CFG0, reg);
1683 		}
1684 
1685 		/* Set PCS register for forced speed */
1686 		reg = rd32(E1000_PCS_LCTL);
1687 		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1688 		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1689 		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1690 		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1691 		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1692 		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1693 		wr32(E1000_PCS_LCTL, reg);
1694 
1695 		return 0;
1696 	}
1697 
1698 	return igb_set_phy_loopback(adapter);
1699 }
1700 
1701 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1702 {
1703 	struct e1000_hw *hw = &adapter->hw;
1704 	u32 rctl;
1705 	u16 phy_reg;
1706 
1707 	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1708 	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1709 	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1710 	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1711 		u32 reg;
1712 
1713 		/* Disable near end loopback on DH89xxCC */
1714 		reg = rd32(E1000_MPHY_ADDR_CTL);
1715 		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1716 		E1000_MPHY_PCS_CLK_REG_OFFSET;
1717 		wr32(E1000_MPHY_ADDR_CTL, reg);
1718 
1719 		reg = rd32(E1000_MPHY_DATA);
1720 		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1721 		wr32(E1000_MPHY_DATA, reg);
1722 	}
1723 
1724 	rctl = rd32(E1000_RCTL);
1725 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1726 	wr32(E1000_RCTL, rctl);
1727 
1728 	hw->mac.autoneg = true;
1729 	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1730 	if (phy_reg & MII_CR_LOOPBACK) {
1731 		phy_reg &= ~MII_CR_LOOPBACK;
1732 		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1733 		igb_phy_sw_reset(hw);
1734 	}
1735 }
1736 
1737 static void igb_create_lbtest_frame(struct sk_buff *skb,
1738 				    unsigned int frame_size)
1739 {
1740 	memset(skb->data, 0xFF, frame_size);
1741 	frame_size /= 2;
1742 	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1743 	memset(&skb->data[frame_size + 10], 0xBE, 1);
1744 	memset(&skb->data[frame_size + 12], 0xAF, 1);
1745 }
1746 
1747 static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1748 				  unsigned int frame_size)
1749 {
1750 	unsigned char *data;
1751 	bool match = true;
1752 
1753 	frame_size >>= 1;
1754 
1755 	data = kmap(rx_buffer->page);
1756 
1757 	if (data[3] != 0xFF ||
1758 	    data[frame_size + 10] != 0xBE ||
1759 	    data[frame_size + 12] != 0xAF)
1760 		match = false;
1761 
1762 	kunmap(rx_buffer->page);
1763 
1764 	return match;
1765 }
1766 
1767 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1768 				struct igb_ring *tx_ring,
1769 				unsigned int size)
1770 {
1771 	union e1000_adv_rx_desc *rx_desc;
1772 	struct igb_rx_buffer *rx_buffer_info;
1773 	struct igb_tx_buffer *tx_buffer_info;
1774 	u16 rx_ntc, tx_ntc, count = 0;
1775 
1776 	/* initialize next to clean and descriptor values */
1777 	rx_ntc = rx_ring->next_to_clean;
1778 	tx_ntc = tx_ring->next_to_clean;
1779 	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1780 
1781 	while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1782 		/* check Rx buffer */
1783 		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1784 
1785 		/* sync Rx buffer for CPU read */
1786 		dma_sync_single_for_cpu(rx_ring->dev,
1787 					rx_buffer_info->dma,
1788 					IGB_RX_BUFSZ,
1789 					DMA_FROM_DEVICE);
1790 
1791 		/* verify contents of skb */
1792 		if (igb_check_lbtest_frame(rx_buffer_info, size))
1793 			count++;
1794 
1795 		/* sync Rx buffer for device write */
1796 		dma_sync_single_for_device(rx_ring->dev,
1797 					   rx_buffer_info->dma,
1798 					   IGB_RX_BUFSZ,
1799 					   DMA_FROM_DEVICE);
1800 
1801 		/* unmap buffer on Tx side */
1802 		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1803 		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1804 
1805 		/* increment Rx/Tx next to clean counters */
1806 		rx_ntc++;
1807 		if (rx_ntc == rx_ring->count)
1808 			rx_ntc = 0;
1809 		tx_ntc++;
1810 		if (tx_ntc == tx_ring->count)
1811 			tx_ntc = 0;
1812 
1813 		/* fetch next descriptor */
1814 		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1815 	}
1816 
1817 	netdev_tx_reset_queue(txring_txq(tx_ring));
1818 
1819 	/* re-map buffers to ring, store next to clean values */
1820 	igb_alloc_rx_buffers(rx_ring, count);
1821 	rx_ring->next_to_clean = rx_ntc;
1822 	tx_ring->next_to_clean = tx_ntc;
1823 
1824 	return count;
1825 }
1826 
1827 static int igb_run_loopback_test(struct igb_adapter *adapter)
1828 {
1829 	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1830 	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1831 	u16 i, j, lc, good_cnt;
1832 	int ret_val = 0;
1833 	unsigned int size = IGB_RX_HDR_LEN;
1834 	netdev_tx_t tx_ret_val;
1835 	struct sk_buff *skb;
1836 
1837 	/* allocate test skb */
1838 	skb = alloc_skb(size, GFP_KERNEL);
1839 	if (!skb)
1840 		return 11;
1841 
1842 	/* place data into test skb */
1843 	igb_create_lbtest_frame(skb, size);
1844 	skb_put(skb, size);
1845 
1846 	/* Calculate the loop count based on the largest descriptor ring
1847 	 * The idea is to wrap the largest ring a number of times using 64
1848 	 * send/receive pairs during each loop
1849 	 */
1850 
1851 	if (rx_ring->count <= tx_ring->count)
1852 		lc = ((tx_ring->count / 64) * 2) + 1;
1853 	else
1854 		lc = ((rx_ring->count / 64) * 2) + 1;
1855 
1856 	for (j = 0; j <= lc; j++) { /* loop count loop */
1857 		/* reset count of good packets */
1858 		good_cnt = 0;
1859 
1860 		/* place 64 packets on the transmit queue*/
1861 		for (i = 0; i < 64; i++) {
1862 			skb_get(skb);
1863 			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1864 			if (tx_ret_val == NETDEV_TX_OK)
1865 				good_cnt++;
1866 		}
1867 
1868 		if (good_cnt != 64) {
1869 			ret_val = 12;
1870 			break;
1871 		}
1872 
1873 		/* allow 200 milliseconds for packets to go from Tx to Rx */
1874 		msleep(200);
1875 
1876 		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1877 		if (good_cnt != 64) {
1878 			ret_val = 13;
1879 			break;
1880 		}
1881 	} /* end loop count loop */
1882 
1883 	/* free the original skb */
1884 	kfree_skb(skb);
1885 
1886 	return ret_val;
1887 }
1888 
1889 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1890 {
1891 	/* PHY loopback cannot be performed if SoL/IDER
1892 	 * sessions are active
1893 	 */
1894 	if (igb_check_reset_block(&adapter->hw)) {
1895 		dev_err(&adapter->pdev->dev,
1896 			"Cannot do PHY loopback test when SoL/IDER is active.\n");
1897 		*data = 0;
1898 		goto out;
1899 	}
1900 
1901 	if (adapter->hw.mac.type == e1000_i354) {
1902 		dev_info(&adapter->pdev->dev,
1903 			"Loopback test not supported on i354.\n");
1904 		*data = 0;
1905 		goto out;
1906 	}
1907 	*data = igb_setup_desc_rings(adapter);
1908 	if (*data)
1909 		goto out;
1910 	*data = igb_setup_loopback_test(adapter);
1911 	if (*data)
1912 		goto err_loopback;
1913 	*data = igb_run_loopback_test(adapter);
1914 	igb_loopback_cleanup(adapter);
1915 
1916 err_loopback:
1917 	igb_free_desc_rings(adapter);
1918 out:
1919 	return *data;
1920 }
1921 
1922 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1923 {
1924 	struct e1000_hw *hw = &adapter->hw;
1925 	*data = 0;
1926 	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1927 		int i = 0;
1928 		hw->mac.serdes_has_link = false;
1929 
1930 		/* On some blade server designs, link establishment
1931 		 * could take as long as 2-3 minutes
1932 		 */
1933 		do {
1934 			hw->mac.ops.check_for_link(&adapter->hw);
1935 			if (hw->mac.serdes_has_link)
1936 				return *data;
1937 			msleep(20);
1938 		} while (i++ < 3750);
1939 
1940 		*data = 1;
1941 	} else {
1942 		hw->mac.ops.check_for_link(&adapter->hw);
1943 		if (hw->mac.autoneg)
1944 			msleep(5000);
1945 
1946 		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1947 			*data = 1;
1948 	}
1949 	return *data;
1950 }
1951 
1952 static void igb_diag_test(struct net_device *netdev,
1953 			  struct ethtool_test *eth_test, u64 *data)
1954 {
1955 	struct igb_adapter *adapter = netdev_priv(netdev);
1956 	u16 autoneg_advertised;
1957 	u8 forced_speed_duplex, autoneg;
1958 	bool if_running = netif_running(netdev);
1959 
1960 	set_bit(__IGB_TESTING, &adapter->state);
1961 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1962 		/* Offline tests */
1963 
1964 		/* save speed, duplex, autoneg settings */
1965 		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1966 		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1967 		autoneg = adapter->hw.mac.autoneg;
1968 
1969 		dev_info(&adapter->pdev->dev, "offline testing starting\n");
1970 
1971 		/* power up link for link test */
1972 		igb_power_up_link(adapter);
1973 
1974 		/* Link test performed before hardware reset so autoneg doesn't
1975 		 * interfere with test result
1976 		 */
1977 		if (igb_link_test(adapter, &data[4]))
1978 			eth_test->flags |= ETH_TEST_FL_FAILED;
1979 
1980 		if (if_running)
1981 			/* indicate we're in test mode */
1982 			dev_close(netdev);
1983 		else
1984 			igb_reset(adapter);
1985 
1986 		if (igb_reg_test(adapter, &data[0]))
1987 			eth_test->flags |= ETH_TEST_FL_FAILED;
1988 
1989 		igb_reset(adapter);
1990 		if (igb_eeprom_test(adapter, &data[1]))
1991 			eth_test->flags |= ETH_TEST_FL_FAILED;
1992 
1993 		igb_reset(adapter);
1994 		if (igb_intr_test(adapter, &data[2]))
1995 			eth_test->flags |= ETH_TEST_FL_FAILED;
1996 
1997 		igb_reset(adapter);
1998 		/* power up link for loopback test */
1999 		igb_power_up_link(adapter);
2000 		if (igb_loopback_test(adapter, &data[3]))
2001 			eth_test->flags |= ETH_TEST_FL_FAILED;
2002 
2003 		/* restore speed, duplex, autoneg settings */
2004 		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2005 		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2006 		adapter->hw.mac.autoneg = autoneg;
2007 
2008 		/* force this routine to wait until autoneg complete/timeout */
2009 		adapter->hw.phy.autoneg_wait_to_complete = true;
2010 		igb_reset(adapter);
2011 		adapter->hw.phy.autoneg_wait_to_complete = false;
2012 
2013 		clear_bit(__IGB_TESTING, &adapter->state);
2014 		if (if_running)
2015 			dev_open(netdev);
2016 	} else {
2017 		dev_info(&adapter->pdev->dev, "online testing starting\n");
2018 
2019 		/* PHY is powered down when interface is down */
2020 		if (if_running && igb_link_test(adapter, &data[4]))
2021 			eth_test->flags |= ETH_TEST_FL_FAILED;
2022 		else
2023 			data[4] = 0;
2024 
2025 		/* Online tests aren't run; pass by default */
2026 		data[0] = 0;
2027 		data[1] = 0;
2028 		data[2] = 0;
2029 		data[3] = 0;
2030 
2031 		clear_bit(__IGB_TESTING, &adapter->state);
2032 	}
2033 	msleep_interruptible(4 * 1000);
2034 }
2035 
2036 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2037 {
2038 	struct igb_adapter *adapter = netdev_priv(netdev);
2039 
2040 	wol->supported = WAKE_UCAST | WAKE_MCAST |
2041 			 WAKE_BCAST | WAKE_MAGIC |
2042 			 WAKE_PHY;
2043 	wol->wolopts = 0;
2044 
2045 	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2046 		return;
2047 
2048 	/* apply any specific unsupported masks here */
2049 	switch (adapter->hw.device_id) {
2050 	default:
2051 		break;
2052 	}
2053 
2054 	if (adapter->wol & E1000_WUFC_EX)
2055 		wol->wolopts |= WAKE_UCAST;
2056 	if (adapter->wol & E1000_WUFC_MC)
2057 		wol->wolopts |= WAKE_MCAST;
2058 	if (adapter->wol & E1000_WUFC_BC)
2059 		wol->wolopts |= WAKE_BCAST;
2060 	if (adapter->wol & E1000_WUFC_MAG)
2061 		wol->wolopts |= WAKE_MAGIC;
2062 	if (adapter->wol & E1000_WUFC_LNKC)
2063 		wol->wolopts |= WAKE_PHY;
2064 }
2065 
2066 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2067 {
2068 	struct igb_adapter *adapter = netdev_priv(netdev);
2069 
2070 	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2071 		return -EOPNOTSUPP;
2072 
2073 	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2074 		return wol->wolopts ? -EOPNOTSUPP : 0;
2075 
2076 	/* these settings will always override what we currently have */
2077 	adapter->wol = 0;
2078 
2079 	if (wol->wolopts & WAKE_UCAST)
2080 		adapter->wol |= E1000_WUFC_EX;
2081 	if (wol->wolopts & WAKE_MCAST)
2082 		adapter->wol |= E1000_WUFC_MC;
2083 	if (wol->wolopts & WAKE_BCAST)
2084 		adapter->wol |= E1000_WUFC_BC;
2085 	if (wol->wolopts & WAKE_MAGIC)
2086 		adapter->wol |= E1000_WUFC_MAG;
2087 	if (wol->wolopts & WAKE_PHY)
2088 		adapter->wol |= E1000_WUFC_LNKC;
2089 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2090 
2091 	return 0;
2092 }
2093 
2094 /* bit defines for adapter->led_status */
2095 #define IGB_LED_ON		0
2096 
2097 static int igb_set_phys_id(struct net_device *netdev,
2098 			   enum ethtool_phys_id_state state)
2099 {
2100 	struct igb_adapter *adapter = netdev_priv(netdev);
2101 	struct e1000_hw *hw = &adapter->hw;
2102 
2103 	switch (state) {
2104 	case ETHTOOL_ID_ACTIVE:
2105 		igb_blink_led(hw);
2106 		return 2;
2107 	case ETHTOOL_ID_ON:
2108 		igb_blink_led(hw);
2109 		break;
2110 	case ETHTOOL_ID_OFF:
2111 		igb_led_off(hw);
2112 		break;
2113 	case ETHTOOL_ID_INACTIVE:
2114 		igb_led_off(hw);
2115 		clear_bit(IGB_LED_ON, &adapter->led_status);
2116 		igb_cleanup_led(hw);
2117 		break;
2118 	}
2119 
2120 	return 0;
2121 }
2122 
2123 static int igb_set_coalesce(struct net_device *netdev,
2124 			    struct ethtool_coalesce *ec)
2125 {
2126 	struct igb_adapter *adapter = netdev_priv(netdev);
2127 	int i;
2128 
2129 	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2130 	    ((ec->rx_coalesce_usecs > 3) &&
2131 	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2132 	    (ec->rx_coalesce_usecs == 2))
2133 		return -EINVAL;
2134 
2135 	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2136 	    ((ec->tx_coalesce_usecs > 3) &&
2137 	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2138 	    (ec->tx_coalesce_usecs == 2))
2139 		return -EINVAL;
2140 
2141 	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2142 		return -EINVAL;
2143 
2144 	/* If ITR is disabled, disable DMAC */
2145 	if (ec->rx_coalesce_usecs == 0) {
2146 		if (adapter->flags & IGB_FLAG_DMAC)
2147 			adapter->flags &= ~IGB_FLAG_DMAC;
2148 	}
2149 
2150 	/* convert to rate of irq's per second */
2151 	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2152 		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2153 	else
2154 		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2155 
2156 	/* convert to rate of irq's per second */
2157 	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2158 		adapter->tx_itr_setting = adapter->rx_itr_setting;
2159 	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2160 		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2161 	else
2162 		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2163 
2164 	for (i = 0; i < adapter->num_q_vectors; i++) {
2165 		struct igb_q_vector *q_vector = adapter->q_vector[i];
2166 		q_vector->tx.work_limit = adapter->tx_work_limit;
2167 		if (q_vector->rx.ring)
2168 			q_vector->itr_val = adapter->rx_itr_setting;
2169 		else
2170 			q_vector->itr_val = adapter->tx_itr_setting;
2171 		if (q_vector->itr_val && q_vector->itr_val <= 3)
2172 			q_vector->itr_val = IGB_START_ITR;
2173 		q_vector->set_itr = 1;
2174 	}
2175 
2176 	return 0;
2177 }
2178 
2179 static int igb_get_coalesce(struct net_device *netdev,
2180 			    struct ethtool_coalesce *ec)
2181 {
2182 	struct igb_adapter *adapter = netdev_priv(netdev);
2183 
2184 	if (adapter->rx_itr_setting <= 3)
2185 		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2186 	else
2187 		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2188 
2189 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2190 		if (adapter->tx_itr_setting <= 3)
2191 			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2192 		else
2193 			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2194 	}
2195 
2196 	return 0;
2197 }
2198 
2199 static int igb_nway_reset(struct net_device *netdev)
2200 {
2201 	struct igb_adapter *adapter = netdev_priv(netdev);
2202 	if (netif_running(netdev))
2203 		igb_reinit_locked(adapter);
2204 	return 0;
2205 }
2206 
2207 static int igb_get_sset_count(struct net_device *netdev, int sset)
2208 {
2209 	switch (sset) {
2210 	case ETH_SS_STATS:
2211 		return IGB_STATS_LEN;
2212 	case ETH_SS_TEST:
2213 		return IGB_TEST_LEN;
2214 	default:
2215 		return -ENOTSUPP;
2216 	}
2217 }
2218 
2219 static void igb_get_ethtool_stats(struct net_device *netdev,
2220 				  struct ethtool_stats *stats, u64 *data)
2221 {
2222 	struct igb_adapter *adapter = netdev_priv(netdev);
2223 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2224 	unsigned int start;
2225 	struct igb_ring *ring;
2226 	int i, j;
2227 	char *p;
2228 
2229 	spin_lock(&adapter->stats64_lock);
2230 	igb_update_stats(adapter, net_stats);
2231 
2232 	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2233 		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2234 		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2235 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2236 	}
2237 	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2238 		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2239 		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2240 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2241 	}
2242 	for (j = 0; j < adapter->num_tx_queues; j++) {
2243 		u64	restart2;
2244 
2245 		ring = adapter->tx_ring[j];
2246 		do {
2247 			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
2248 			data[i]   = ring->tx_stats.packets;
2249 			data[i+1] = ring->tx_stats.bytes;
2250 			data[i+2] = ring->tx_stats.restart_queue;
2251 		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
2252 		do {
2253 			start = u64_stats_fetch_begin_bh(&ring->tx_syncp2);
2254 			restart2  = ring->tx_stats.restart_queue2;
2255 		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start));
2256 		data[i+2] += restart2;
2257 
2258 		i += IGB_TX_QUEUE_STATS_LEN;
2259 	}
2260 	for (j = 0; j < adapter->num_rx_queues; j++) {
2261 		ring = adapter->rx_ring[j];
2262 		do {
2263 			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
2264 			data[i]   = ring->rx_stats.packets;
2265 			data[i+1] = ring->rx_stats.bytes;
2266 			data[i+2] = ring->rx_stats.drops;
2267 			data[i+3] = ring->rx_stats.csum_err;
2268 			data[i+4] = ring->rx_stats.alloc_failed;
2269 		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
2270 		i += IGB_RX_QUEUE_STATS_LEN;
2271 	}
2272 	spin_unlock(&adapter->stats64_lock);
2273 }
2274 
2275 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2276 {
2277 	struct igb_adapter *adapter = netdev_priv(netdev);
2278 	u8 *p = data;
2279 	int i;
2280 
2281 	switch (stringset) {
2282 	case ETH_SS_TEST:
2283 		memcpy(data, *igb_gstrings_test,
2284 			IGB_TEST_LEN*ETH_GSTRING_LEN);
2285 		break;
2286 	case ETH_SS_STATS:
2287 		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2288 			memcpy(p, igb_gstrings_stats[i].stat_string,
2289 			       ETH_GSTRING_LEN);
2290 			p += ETH_GSTRING_LEN;
2291 		}
2292 		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2293 			memcpy(p, igb_gstrings_net_stats[i].stat_string,
2294 			       ETH_GSTRING_LEN);
2295 			p += ETH_GSTRING_LEN;
2296 		}
2297 		for (i = 0; i < adapter->num_tx_queues; i++) {
2298 			sprintf(p, "tx_queue_%u_packets", i);
2299 			p += ETH_GSTRING_LEN;
2300 			sprintf(p, "tx_queue_%u_bytes", i);
2301 			p += ETH_GSTRING_LEN;
2302 			sprintf(p, "tx_queue_%u_restart", i);
2303 			p += ETH_GSTRING_LEN;
2304 		}
2305 		for (i = 0; i < adapter->num_rx_queues; i++) {
2306 			sprintf(p, "rx_queue_%u_packets", i);
2307 			p += ETH_GSTRING_LEN;
2308 			sprintf(p, "rx_queue_%u_bytes", i);
2309 			p += ETH_GSTRING_LEN;
2310 			sprintf(p, "rx_queue_%u_drops", i);
2311 			p += ETH_GSTRING_LEN;
2312 			sprintf(p, "rx_queue_%u_csum_err", i);
2313 			p += ETH_GSTRING_LEN;
2314 			sprintf(p, "rx_queue_%u_alloc_failed", i);
2315 			p += ETH_GSTRING_LEN;
2316 		}
2317 		/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2318 		break;
2319 	}
2320 }
2321 
2322 static int igb_get_ts_info(struct net_device *dev,
2323 			   struct ethtool_ts_info *info)
2324 {
2325 	struct igb_adapter *adapter = netdev_priv(dev);
2326 
2327 	switch (adapter->hw.mac.type) {
2328 	case e1000_82575:
2329 		info->so_timestamping =
2330 			SOF_TIMESTAMPING_TX_SOFTWARE |
2331 			SOF_TIMESTAMPING_RX_SOFTWARE |
2332 			SOF_TIMESTAMPING_SOFTWARE;
2333 		return 0;
2334 	case e1000_82576:
2335 	case e1000_82580:
2336 	case e1000_i350:
2337 	case e1000_i354:
2338 	case e1000_i210:
2339 	case e1000_i211:
2340 		info->so_timestamping =
2341 			SOF_TIMESTAMPING_TX_SOFTWARE |
2342 			SOF_TIMESTAMPING_RX_SOFTWARE |
2343 			SOF_TIMESTAMPING_SOFTWARE |
2344 			SOF_TIMESTAMPING_TX_HARDWARE |
2345 			SOF_TIMESTAMPING_RX_HARDWARE |
2346 			SOF_TIMESTAMPING_RAW_HARDWARE;
2347 
2348 		if (adapter->ptp_clock)
2349 			info->phc_index = ptp_clock_index(adapter->ptp_clock);
2350 		else
2351 			info->phc_index = -1;
2352 
2353 		info->tx_types =
2354 			(1 << HWTSTAMP_TX_OFF) |
2355 			(1 << HWTSTAMP_TX_ON);
2356 
2357 		info->rx_filters = 1 << HWTSTAMP_FILTER_NONE;
2358 
2359 		/* 82576 does not support timestamping all packets. */
2360 		if (adapter->hw.mac.type >= e1000_82580)
2361 			info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL;
2362 		else
2363 			info->rx_filters |=
2364 				(1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2365 				(1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2366 				(1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2367 				(1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2368 				(1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2369 				(1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2370 				(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2371 
2372 		return 0;
2373 	default:
2374 		return -EOPNOTSUPP;
2375 	}
2376 }
2377 
2378 static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2379 				 struct ethtool_rxnfc *cmd)
2380 {
2381 	cmd->data = 0;
2382 
2383 	/* Report default options for RSS on igb */
2384 	switch (cmd->flow_type) {
2385 	case TCP_V4_FLOW:
2386 		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2387 	case UDP_V4_FLOW:
2388 		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2389 			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2390 	case SCTP_V4_FLOW:
2391 	case AH_ESP_V4_FLOW:
2392 	case AH_V4_FLOW:
2393 	case ESP_V4_FLOW:
2394 	case IPV4_FLOW:
2395 		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2396 		break;
2397 	case TCP_V6_FLOW:
2398 		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2399 	case UDP_V6_FLOW:
2400 		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2401 			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2402 	case SCTP_V6_FLOW:
2403 	case AH_ESP_V6_FLOW:
2404 	case AH_V6_FLOW:
2405 	case ESP_V6_FLOW:
2406 	case IPV6_FLOW:
2407 		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2408 		break;
2409 	default:
2410 		return -EINVAL;
2411 	}
2412 
2413 	return 0;
2414 }
2415 
2416 static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2417 			 u32 *rule_locs)
2418 {
2419 	struct igb_adapter *adapter = netdev_priv(dev);
2420 	int ret = -EOPNOTSUPP;
2421 
2422 	switch (cmd->cmd) {
2423 	case ETHTOOL_GRXRINGS:
2424 		cmd->data = adapter->num_rx_queues;
2425 		ret = 0;
2426 		break;
2427 	case ETHTOOL_GRXFH:
2428 		ret = igb_get_rss_hash_opts(adapter, cmd);
2429 		break;
2430 	default:
2431 		break;
2432 	}
2433 
2434 	return ret;
2435 }
2436 
2437 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2438 		       IGB_FLAG_RSS_FIELD_IPV6_UDP)
2439 static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2440 				struct ethtool_rxnfc *nfc)
2441 {
2442 	u32 flags = adapter->flags;
2443 
2444 	/* RSS does not support anything other than hashing
2445 	 * to queues on src and dst IPs and ports
2446 	 */
2447 	if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2448 			  RXH_L4_B_0_1 | RXH_L4_B_2_3))
2449 		return -EINVAL;
2450 
2451 	switch (nfc->flow_type) {
2452 	case TCP_V4_FLOW:
2453 	case TCP_V6_FLOW:
2454 		if (!(nfc->data & RXH_IP_SRC) ||
2455 		    !(nfc->data & RXH_IP_DST) ||
2456 		    !(nfc->data & RXH_L4_B_0_1) ||
2457 		    !(nfc->data & RXH_L4_B_2_3))
2458 			return -EINVAL;
2459 		break;
2460 	case UDP_V4_FLOW:
2461 		if (!(nfc->data & RXH_IP_SRC) ||
2462 		    !(nfc->data & RXH_IP_DST))
2463 			return -EINVAL;
2464 		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2465 		case 0:
2466 			flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2467 			break;
2468 		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2469 			flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2470 			break;
2471 		default:
2472 			return -EINVAL;
2473 		}
2474 		break;
2475 	case UDP_V6_FLOW:
2476 		if (!(nfc->data & RXH_IP_SRC) ||
2477 		    !(nfc->data & RXH_IP_DST))
2478 			return -EINVAL;
2479 		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2480 		case 0:
2481 			flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2482 			break;
2483 		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2484 			flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2485 			break;
2486 		default:
2487 			return -EINVAL;
2488 		}
2489 		break;
2490 	case AH_ESP_V4_FLOW:
2491 	case AH_V4_FLOW:
2492 	case ESP_V4_FLOW:
2493 	case SCTP_V4_FLOW:
2494 	case AH_ESP_V6_FLOW:
2495 	case AH_V6_FLOW:
2496 	case ESP_V6_FLOW:
2497 	case SCTP_V6_FLOW:
2498 		if (!(nfc->data & RXH_IP_SRC) ||
2499 		    !(nfc->data & RXH_IP_DST) ||
2500 		    (nfc->data & RXH_L4_B_0_1) ||
2501 		    (nfc->data & RXH_L4_B_2_3))
2502 			return -EINVAL;
2503 		break;
2504 	default:
2505 		return -EINVAL;
2506 	}
2507 
2508 	/* if we changed something we need to update flags */
2509 	if (flags != adapter->flags) {
2510 		struct e1000_hw *hw = &adapter->hw;
2511 		u32 mrqc = rd32(E1000_MRQC);
2512 
2513 		if ((flags & UDP_RSS_FLAGS) &&
2514 		    !(adapter->flags & UDP_RSS_FLAGS))
2515 			dev_err(&adapter->pdev->dev,
2516 				"enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2517 
2518 		adapter->flags = flags;
2519 
2520 		/* Perform hash on these packet types */
2521 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2522 			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2523 			E1000_MRQC_RSS_FIELD_IPV6 |
2524 			E1000_MRQC_RSS_FIELD_IPV6_TCP;
2525 
2526 		mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2527 			  E1000_MRQC_RSS_FIELD_IPV6_UDP);
2528 
2529 		if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2530 			mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2531 
2532 		if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2533 			mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2534 
2535 		wr32(E1000_MRQC, mrqc);
2536 	}
2537 
2538 	return 0;
2539 }
2540 
2541 static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
2542 {
2543 	struct igb_adapter *adapter = netdev_priv(dev);
2544 	int ret = -EOPNOTSUPP;
2545 
2546 	switch (cmd->cmd) {
2547 	case ETHTOOL_SRXFH:
2548 		ret = igb_set_rss_hash_opt(adapter, cmd);
2549 		break;
2550 	default:
2551 		break;
2552 	}
2553 
2554 	return ret;
2555 }
2556 
2557 static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2558 {
2559 	struct igb_adapter *adapter = netdev_priv(netdev);
2560 	struct e1000_hw *hw = &adapter->hw;
2561 	u32 ipcnfg, eeer, ret_val;
2562 	u16 phy_data;
2563 
2564 	if ((hw->mac.type < e1000_i350) ||
2565 	    (hw->phy.media_type != e1000_media_type_copper))
2566 		return -EOPNOTSUPP;
2567 
2568 	edata->supported = (SUPPORTED_1000baseT_Full |
2569 			    SUPPORTED_100baseT_Full);
2570 
2571 	ipcnfg = rd32(E1000_IPCNFG);
2572 	eeer = rd32(E1000_EEER);
2573 
2574 	/* EEE status on negotiated link */
2575 	if (ipcnfg & E1000_IPCNFG_EEE_1G_AN)
2576 		edata->advertised = ADVERTISED_1000baseT_Full;
2577 
2578 	if (ipcnfg & E1000_IPCNFG_EEE_100M_AN)
2579 		edata->advertised |= ADVERTISED_100baseT_Full;
2580 
2581 	/* EEE Link Partner Advertised */
2582 	switch (hw->mac.type) {
2583 	case e1000_i350:
2584 		ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
2585 					   &phy_data);
2586 		if (ret_val)
2587 			return -ENODATA;
2588 
2589 		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2590 
2591 		break;
2592 	case e1000_i210:
2593 	case e1000_i211:
2594 		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
2595 					     E1000_EEE_LP_ADV_DEV_I210,
2596 					     &phy_data);
2597 		if (ret_val)
2598 			return -ENODATA;
2599 
2600 		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2601 
2602 		break;
2603 	default:
2604 		break;
2605 	}
2606 
2607 	if (eeer & E1000_EEER_EEE_NEG)
2608 		edata->eee_active = true;
2609 
2610 	edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
2611 
2612 	if (eeer & E1000_EEER_TX_LPI_EN)
2613 		edata->tx_lpi_enabled = true;
2614 
2615 	/* Report correct negotiated EEE status for devices that
2616 	 * wrongly report EEE at half-duplex
2617 	 */
2618 	if (adapter->link_duplex == HALF_DUPLEX) {
2619 		edata->eee_enabled = false;
2620 		edata->eee_active = false;
2621 		edata->tx_lpi_enabled = false;
2622 		edata->advertised &= ~edata->advertised;
2623 	}
2624 
2625 	return 0;
2626 }
2627 
2628 static int igb_set_eee(struct net_device *netdev,
2629 		       struct ethtool_eee *edata)
2630 {
2631 	struct igb_adapter *adapter = netdev_priv(netdev);
2632 	struct e1000_hw *hw = &adapter->hw;
2633 	struct ethtool_eee eee_curr;
2634 	s32 ret_val;
2635 
2636 	if ((hw->mac.type < e1000_i350) ||
2637 	    (hw->phy.media_type != e1000_media_type_copper))
2638 		return -EOPNOTSUPP;
2639 
2640 	ret_val = igb_get_eee(netdev, &eee_curr);
2641 	if (ret_val)
2642 		return ret_val;
2643 
2644 	if (eee_curr.eee_enabled) {
2645 		if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2646 			dev_err(&adapter->pdev->dev,
2647 				"Setting EEE tx-lpi is not supported\n");
2648 			return -EINVAL;
2649 		}
2650 
2651 		/* Tx LPI timer is not implemented currently */
2652 		if (edata->tx_lpi_timer) {
2653 			dev_err(&adapter->pdev->dev,
2654 				"Setting EEE Tx LPI timer is not supported\n");
2655 			return -EINVAL;
2656 		}
2657 
2658 		if (eee_curr.advertised != edata->advertised) {
2659 			dev_err(&adapter->pdev->dev,
2660 				"Setting EEE Advertisement is not supported\n");
2661 			return -EINVAL;
2662 		}
2663 
2664 	} else if (!edata->eee_enabled) {
2665 		dev_err(&adapter->pdev->dev,
2666 			"Setting EEE options are not supported with EEE disabled\n");
2667 			return -EINVAL;
2668 		}
2669 
2670 	if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
2671 		hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
2672 		igb_set_eee_i350(hw);
2673 
2674 		/* reset link */
2675 		if (!netif_running(netdev))
2676 			igb_reset(adapter);
2677 	}
2678 
2679 	return 0;
2680 }
2681 
2682 static int igb_get_module_info(struct net_device *netdev,
2683 			       struct ethtool_modinfo *modinfo)
2684 {
2685 	struct igb_adapter *adapter = netdev_priv(netdev);
2686 	struct e1000_hw *hw = &adapter->hw;
2687 	u32 status = E1000_SUCCESS;
2688 	u16 sff8472_rev, addr_mode;
2689 	bool page_swap = false;
2690 
2691 	if ((hw->phy.media_type == e1000_media_type_copper) ||
2692 	    (hw->phy.media_type == e1000_media_type_unknown))
2693 		return -EOPNOTSUPP;
2694 
2695 	/* Check whether we support SFF-8472 or not */
2696 	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
2697 	if (status != E1000_SUCCESS)
2698 		return -EIO;
2699 
2700 	/* addressing mode is not supported */
2701 	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
2702 	if (status != E1000_SUCCESS)
2703 		return -EIO;
2704 
2705 	/* addressing mode is not supported */
2706 	if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
2707 		hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
2708 		page_swap = true;
2709 	}
2710 
2711 	if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
2712 		/* We have an SFP, but it does not support SFF-8472 */
2713 		modinfo->type = ETH_MODULE_SFF_8079;
2714 		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2715 	} else {
2716 		/* We have an SFP which supports a revision of SFF-8472 */
2717 		modinfo->type = ETH_MODULE_SFF_8472;
2718 		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2719 	}
2720 
2721 	return 0;
2722 }
2723 
2724 static int igb_get_module_eeprom(struct net_device *netdev,
2725 				 struct ethtool_eeprom *ee, u8 *data)
2726 {
2727 	struct igb_adapter *adapter = netdev_priv(netdev);
2728 	struct e1000_hw *hw = &adapter->hw;
2729 	u32 status = E1000_SUCCESS;
2730 	u16 *dataword;
2731 	u16 first_word, last_word;
2732 	int i = 0;
2733 
2734 	if (ee->len == 0)
2735 		return -EINVAL;
2736 
2737 	first_word = ee->offset >> 1;
2738 	last_word = (ee->offset + ee->len - 1) >> 1;
2739 
2740 	dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1),
2741 			   GFP_KERNEL);
2742 	if (!dataword)
2743 		return -ENOMEM;
2744 
2745 	/* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
2746 	for (i = 0; i < last_word - first_word + 1; i++) {
2747 		status = igb_read_phy_reg_i2c(hw, first_word + i, &dataword[i]);
2748 		if (status != E1000_SUCCESS)
2749 			/* Error occurred while reading module */
2750 			return -EIO;
2751 
2752 		be16_to_cpus(&dataword[i]);
2753 	}
2754 
2755 	memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
2756 	kfree(dataword);
2757 
2758 	return 0;
2759 }
2760 
2761 static int igb_ethtool_begin(struct net_device *netdev)
2762 {
2763 	struct igb_adapter *adapter = netdev_priv(netdev);
2764 	pm_runtime_get_sync(&adapter->pdev->dev);
2765 	return 0;
2766 }
2767 
2768 static void igb_ethtool_complete(struct net_device *netdev)
2769 {
2770 	struct igb_adapter *adapter = netdev_priv(netdev);
2771 	pm_runtime_put(&adapter->pdev->dev);
2772 }
2773 
2774 static const struct ethtool_ops igb_ethtool_ops = {
2775 	.get_settings		= igb_get_settings,
2776 	.set_settings		= igb_set_settings,
2777 	.get_drvinfo		= igb_get_drvinfo,
2778 	.get_regs_len		= igb_get_regs_len,
2779 	.get_regs		= igb_get_regs,
2780 	.get_wol		= igb_get_wol,
2781 	.set_wol		= igb_set_wol,
2782 	.get_msglevel		= igb_get_msglevel,
2783 	.set_msglevel		= igb_set_msglevel,
2784 	.nway_reset		= igb_nway_reset,
2785 	.get_link		= igb_get_link,
2786 	.get_eeprom_len		= igb_get_eeprom_len,
2787 	.get_eeprom		= igb_get_eeprom,
2788 	.set_eeprom		= igb_set_eeprom,
2789 	.get_ringparam		= igb_get_ringparam,
2790 	.set_ringparam		= igb_set_ringparam,
2791 	.get_pauseparam		= igb_get_pauseparam,
2792 	.set_pauseparam		= igb_set_pauseparam,
2793 	.self_test		= igb_diag_test,
2794 	.get_strings		= igb_get_strings,
2795 	.set_phys_id		= igb_set_phys_id,
2796 	.get_sset_count		= igb_get_sset_count,
2797 	.get_ethtool_stats	= igb_get_ethtool_stats,
2798 	.get_coalesce		= igb_get_coalesce,
2799 	.set_coalesce		= igb_set_coalesce,
2800 	.get_ts_info		= igb_get_ts_info,
2801 	.get_rxnfc		= igb_get_rxnfc,
2802 	.set_rxnfc		= igb_set_rxnfc,
2803 	.get_eee		= igb_get_eee,
2804 	.set_eee		= igb_set_eee,
2805 	.get_module_info	= igb_get_module_info,
2806 	.get_module_eeprom	= igb_get_module_eeprom,
2807 	.begin			= igb_ethtool_begin,
2808 	.complete		= igb_ethtool_complete,
2809 };
2810 
2811 void igb_set_ethtool_ops(struct net_device *netdev)
2812 {
2813 	SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2814 }
2815