1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3 
4 /* ethtool support for igb */
5 
6 #include <linux/vmalloc.h>
7 #include <linux/netdevice.h>
8 #include <linux/pci.h>
9 #include <linux/delay.h>
10 #include <linux/interrupt.h>
11 #include <linux/if_ether.h>
12 #include <linux/ethtool.h>
13 #include <linux/sched.h>
14 #include <linux/slab.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/highmem.h>
17 #include <linux/mdio.h>
18 
19 #include "igb.h"
20 
21 struct igb_stats {
22 	char stat_string[ETH_GSTRING_LEN];
23 	int sizeof_stat;
24 	int stat_offset;
25 };
26 
27 #define IGB_STAT(_name, _stat) { \
28 	.stat_string = _name, \
29 	.sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
30 	.stat_offset = offsetof(struct igb_adapter, _stat) \
31 }
32 static const struct igb_stats igb_gstrings_stats[] = {
33 	IGB_STAT("rx_packets", stats.gprc),
34 	IGB_STAT("tx_packets", stats.gptc),
35 	IGB_STAT("rx_bytes", stats.gorc),
36 	IGB_STAT("tx_bytes", stats.gotc),
37 	IGB_STAT("rx_broadcast", stats.bprc),
38 	IGB_STAT("tx_broadcast", stats.bptc),
39 	IGB_STAT("rx_multicast", stats.mprc),
40 	IGB_STAT("tx_multicast", stats.mptc),
41 	IGB_STAT("multicast", stats.mprc),
42 	IGB_STAT("collisions", stats.colc),
43 	IGB_STAT("rx_crc_errors", stats.crcerrs),
44 	IGB_STAT("rx_no_buffer_count", stats.rnbc),
45 	IGB_STAT("rx_missed_errors", stats.mpc),
46 	IGB_STAT("tx_aborted_errors", stats.ecol),
47 	IGB_STAT("tx_carrier_errors", stats.tncrs),
48 	IGB_STAT("tx_window_errors", stats.latecol),
49 	IGB_STAT("tx_abort_late_coll", stats.latecol),
50 	IGB_STAT("tx_deferred_ok", stats.dc),
51 	IGB_STAT("tx_single_coll_ok", stats.scc),
52 	IGB_STAT("tx_multi_coll_ok", stats.mcc),
53 	IGB_STAT("tx_timeout_count", tx_timeout_count),
54 	IGB_STAT("rx_long_length_errors", stats.roc),
55 	IGB_STAT("rx_short_length_errors", stats.ruc),
56 	IGB_STAT("rx_align_errors", stats.algnerrc),
57 	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
58 	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
59 	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
60 	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
61 	IGB_STAT("tx_flow_control_xon", stats.xontxc),
62 	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
63 	IGB_STAT("rx_long_byte_count", stats.gorc),
64 	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
65 	IGB_STAT("tx_smbus", stats.mgptc),
66 	IGB_STAT("rx_smbus", stats.mgprc),
67 	IGB_STAT("dropped_smbus", stats.mgpdc),
68 	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
69 	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
70 	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
71 	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
72 	IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
73 	IGB_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
74 	IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
75 };
76 
77 #define IGB_NETDEV_STAT(_net_stat) { \
78 	.stat_string = __stringify(_net_stat), \
79 	.sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
80 	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
81 }
82 static const struct igb_stats igb_gstrings_net_stats[] = {
83 	IGB_NETDEV_STAT(rx_errors),
84 	IGB_NETDEV_STAT(tx_errors),
85 	IGB_NETDEV_STAT(tx_dropped),
86 	IGB_NETDEV_STAT(rx_length_errors),
87 	IGB_NETDEV_STAT(rx_over_errors),
88 	IGB_NETDEV_STAT(rx_frame_errors),
89 	IGB_NETDEV_STAT(rx_fifo_errors),
90 	IGB_NETDEV_STAT(tx_fifo_errors),
91 	IGB_NETDEV_STAT(tx_heartbeat_errors)
92 };
93 
94 #define IGB_GLOBAL_STATS_LEN	\
95 	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
96 #define IGB_NETDEV_STATS_LEN	\
97 	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
98 #define IGB_RX_QUEUE_STATS_LEN \
99 	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
100 
101 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
102 
103 #define IGB_QUEUE_STATS_LEN \
104 	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
105 	  IGB_RX_QUEUE_STATS_LEN) + \
106 	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
107 	  IGB_TX_QUEUE_STATS_LEN))
108 #define IGB_STATS_LEN \
109 	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
110 
111 enum igb_diagnostics_results {
112 	TEST_REG = 0,
113 	TEST_EEP,
114 	TEST_IRQ,
115 	TEST_LOOP,
116 	TEST_LINK
117 };
118 
119 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
120 	[TEST_REG]  = "Register test  (offline)",
121 	[TEST_EEP]  = "Eeprom test    (offline)",
122 	[TEST_IRQ]  = "Interrupt test (offline)",
123 	[TEST_LOOP] = "Loopback test  (offline)",
124 	[TEST_LINK] = "Link test   (on/offline)"
125 };
126 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
127 
128 static const char igb_priv_flags_strings[][ETH_GSTRING_LEN] = {
129 #define IGB_PRIV_FLAGS_LEGACY_RX	BIT(0)
130 	"legacy-rx",
131 };
132 
133 #define IGB_PRIV_FLAGS_STR_LEN ARRAY_SIZE(igb_priv_flags_strings)
134 
135 static int igb_get_link_ksettings(struct net_device *netdev,
136 				  struct ethtool_link_ksettings *cmd)
137 {
138 	struct igb_adapter *adapter = netdev_priv(netdev);
139 	struct e1000_hw *hw = &adapter->hw;
140 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
141 	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
142 	u32 status;
143 	u32 speed;
144 	u32 supported, advertising;
145 
146 	status = rd32(E1000_STATUS);
147 	if (hw->phy.media_type == e1000_media_type_copper) {
148 
149 		supported = (SUPPORTED_10baseT_Half |
150 			     SUPPORTED_10baseT_Full |
151 			     SUPPORTED_100baseT_Half |
152 			     SUPPORTED_100baseT_Full |
153 			     SUPPORTED_1000baseT_Full|
154 			     SUPPORTED_Autoneg |
155 			     SUPPORTED_TP |
156 			     SUPPORTED_Pause);
157 		advertising = ADVERTISED_TP;
158 
159 		if (hw->mac.autoneg == 1) {
160 			advertising |= ADVERTISED_Autoneg;
161 			/* the e1000 autoneg seems to match ethtool nicely */
162 			advertising |= hw->phy.autoneg_advertised;
163 		}
164 
165 		cmd->base.port = PORT_TP;
166 		cmd->base.phy_address = hw->phy.addr;
167 	} else {
168 		supported = (SUPPORTED_FIBRE |
169 			     SUPPORTED_1000baseKX_Full |
170 			     SUPPORTED_Autoneg |
171 			     SUPPORTED_Pause);
172 		advertising = (ADVERTISED_FIBRE |
173 			       ADVERTISED_1000baseKX_Full);
174 		if (hw->mac.type == e1000_i354) {
175 			if ((hw->device_id ==
176 			     E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
177 			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
178 				supported |= SUPPORTED_2500baseX_Full;
179 				supported &= ~SUPPORTED_1000baseKX_Full;
180 				advertising |= ADVERTISED_2500baseX_Full;
181 				advertising &= ~ADVERTISED_1000baseKX_Full;
182 			}
183 		}
184 		if (eth_flags->e100_base_fx) {
185 			supported |= SUPPORTED_100baseT_Full;
186 			advertising |= ADVERTISED_100baseT_Full;
187 		}
188 		if (hw->mac.autoneg == 1)
189 			advertising |= ADVERTISED_Autoneg;
190 
191 		cmd->base.port = PORT_FIBRE;
192 	}
193 	if (hw->mac.autoneg != 1)
194 		advertising &= ~(ADVERTISED_Pause |
195 				 ADVERTISED_Asym_Pause);
196 
197 	switch (hw->fc.requested_mode) {
198 	case e1000_fc_full:
199 		advertising |= ADVERTISED_Pause;
200 		break;
201 	case e1000_fc_rx_pause:
202 		advertising |= (ADVERTISED_Pause |
203 				ADVERTISED_Asym_Pause);
204 		break;
205 	case e1000_fc_tx_pause:
206 		advertising |=  ADVERTISED_Asym_Pause;
207 		break;
208 	default:
209 		advertising &= ~(ADVERTISED_Pause |
210 				 ADVERTISED_Asym_Pause);
211 	}
212 	if (status & E1000_STATUS_LU) {
213 		if ((status & E1000_STATUS_2P5_SKU) &&
214 		    !(status & E1000_STATUS_2P5_SKU_OVER)) {
215 			speed = SPEED_2500;
216 		} else if (status & E1000_STATUS_SPEED_1000) {
217 			speed = SPEED_1000;
218 		} else if (status & E1000_STATUS_SPEED_100) {
219 			speed = SPEED_100;
220 		} else {
221 			speed = SPEED_10;
222 		}
223 		if ((status & E1000_STATUS_FD) ||
224 		    hw->phy.media_type != e1000_media_type_copper)
225 			cmd->base.duplex = DUPLEX_FULL;
226 		else
227 			cmd->base.duplex = DUPLEX_HALF;
228 	} else {
229 		speed = SPEED_UNKNOWN;
230 		cmd->base.duplex = DUPLEX_UNKNOWN;
231 	}
232 	cmd->base.speed = speed;
233 	if ((hw->phy.media_type == e1000_media_type_fiber) ||
234 	    hw->mac.autoneg)
235 		cmd->base.autoneg = AUTONEG_ENABLE;
236 	else
237 		cmd->base.autoneg = AUTONEG_DISABLE;
238 
239 	/* MDI-X => 2; MDI =>1; Invalid =>0 */
240 	if (hw->phy.media_type == e1000_media_type_copper)
241 		cmd->base.eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
242 						      ETH_TP_MDI;
243 	else
244 		cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
245 
246 	if (hw->phy.mdix == AUTO_ALL_MODES)
247 		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
248 	else
249 		cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
250 
251 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
252 						supported);
253 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
254 						advertising);
255 
256 	return 0;
257 }
258 
259 static int igb_set_link_ksettings(struct net_device *netdev,
260 				  const struct ethtool_link_ksettings *cmd)
261 {
262 	struct igb_adapter *adapter = netdev_priv(netdev);
263 	struct e1000_hw *hw = &adapter->hw;
264 	u32 advertising;
265 
266 	/* When SoL/IDER sessions are active, autoneg/speed/duplex
267 	 * cannot be changed
268 	 */
269 	if (igb_check_reset_block(hw)) {
270 		dev_err(&adapter->pdev->dev,
271 			"Cannot change link characteristics when SoL/IDER is active.\n");
272 		return -EINVAL;
273 	}
274 
275 	/* MDI setting is only allowed when autoneg enabled because
276 	 * some hardware doesn't allow MDI setting when speed or
277 	 * duplex is forced.
278 	 */
279 	if (cmd->base.eth_tp_mdix_ctrl) {
280 		if (hw->phy.media_type != e1000_media_type_copper)
281 			return -EOPNOTSUPP;
282 
283 		if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
284 		    (cmd->base.autoneg != AUTONEG_ENABLE)) {
285 			dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
286 			return -EINVAL;
287 		}
288 	}
289 
290 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
291 		usleep_range(1000, 2000);
292 
293 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
294 						cmd->link_modes.advertising);
295 
296 	if (cmd->base.autoneg == AUTONEG_ENABLE) {
297 		hw->mac.autoneg = 1;
298 		if (hw->phy.media_type == e1000_media_type_fiber) {
299 			hw->phy.autoneg_advertised = advertising |
300 						     ADVERTISED_FIBRE |
301 						     ADVERTISED_Autoneg;
302 			switch (adapter->link_speed) {
303 			case SPEED_2500:
304 				hw->phy.autoneg_advertised =
305 					ADVERTISED_2500baseX_Full;
306 				break;
307 			case SPEED_1000:
308 				hw->phy.autoneg_advertised =
309 					ADVERTISED_1000baseT_Full;
310 				break;
311 			case SPEED_100:
312 				hw->phy.autoneg_advertised =
313 					ADVERTISED_100baseT_Full;
314 				break;
315 			default:
316 				break;
317 			}
318 		} else {
319 			hw->phy.autoneg_advertised = advertising |
320 						     ADVERTISED_TP |
321 						     ADVERTISED_Autoneg;
322 		}
323 		advertising = hw->phy.autoneg_advertised;
324 		if (adapter->fc_autoneg)
325 			hw->fc.requested_mode = e1000_fc_default;
326 	} else {
327 		u32 speed = cmd->base.speed;
328 		/* calling this overrides forced MDI setting */
329 		if (igb_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
330 			clear_bit(__IGB_RESETTING, &adapter->state);
331 			return -EINVAL;
332 		}
333 	}
334 
335 	/* MDI-X => 2; MDI => 1; Auto => 3 */
336 	if (cmd->base.eth_tp_mdix_ctrl) {
337 		/* fix up the value for auto (3 => 0) as zero is mapped
338 		 * internally to auto
339 		 */
340 		if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
341 			hw->phy.mdix = AUTO_ALL_MODES;
342 		else
343 			hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
344 	}
345 
346 	/* reset the link */
347 	if (netif_running(adapter->netdev)) {
348 		igb_down(adapter);
349 		igb_up(adapter);
350 	} else
351 		igb_reset(adapter);
352 
353 	clear_bit(__IGB_RESETTING, &adapter->state);
354 	return 0;
355 }
356 
357 static u32 igb_get_link(struct net_device *netdev)
358 {
359 	struct igb_adapter *adapter = netdev_priv(netdev);
360 	struct e1000_mac_info *mac = &adapter->hw.mac;
361 
362 	/* If the link is not reported up to netdev, interrupts are disabled,
363 	 * and so the physical link state may have changed since we last
364 	 * looked. Set get_link_status to make sure that the true link
365 	 * state is interrogated, rather than pulling a cached and possibly
366 	 * stale link state from the driver.
367 	 */
368 	if (!netif_carrier_ok(netdev))
369 		mac->get_link_status = 1;
370 
371 	return igb_has_link(adapter);
372 }
373 
374 static void igb_get_pauseparam(struct net_device *netdev,
375 			       struct ethtool_pauseparam *pause)
376 {
377 	struct igb_adapter *adapter = netdev_priv(netdev);
378 	struct e1000_hw *hw = &adapter->hw;
379 
380 	pause->autoneg =
381 		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
382 
383 	if (hw->fc.current_mode == e1000_fc_rx_pause)
384 		pause->rx_pause = 1;
385 	else if (hw->fc.current_mode == e1000_fc_tx_pause)
386 		pause->tx_pause = 1;
387 	else if (hw->fc.current_mode == e1000_fc_full) {
388 		pause->rx_pause = 1;
389 		pause->tx_pause = 1;
390 	}
391 }
392 
393 static int igb_set_pauseparam(struct net_device *netdev,
394 			      struct ethtool_pauseparam *pause)
395 {
396 	struct igb_adapter *adapter = netdev_priv(netdev);
397 	struct e1000_hw *hw = &adapter->hw;
398 	int retval = 0;
399 
400 	/* 100basefx does not support setting link flow control */
401 	if (hw->dev_spec._82575.eth_flags.e100_base_fx)
402 		return -EINVAL;
403 
404 	adapter->fc_autoneg = pause->autoneg;
405 
406 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
407 		usleep_range(1000, 2000);
408 
409 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
410 		hw->fc.requested_mode = e1000_fc_default;
411 		if (netif_running(adapter->netdev)) {
412 			igb_down(adapter);
413 			igb_up(adapter);
414 		} else {
415 			igb_reset(adapter);
416 		}
417 	} else {
418 		if (pause->rx_pause && pause->tx_pause)
419 			hw->fc.requested_mode = e1000_fc_full;
420 		else if (pause->rx_pause && !pause->tx_pause)
421 			hw->fc.requested_mode = e1000_fc_rx_pause;
422 		else if (!pause->rx_pause && pause->tx_pause)
423 			hw->fc.requested_mode = e1000_fc_tx_pause;
424 		else if (!pause->rx_pause && !pause->tx_pause)
425 			hw->fc.requested_mode = e1000_fc_none;
426 
427 		hw->fc.current_mode = hw->fc.requested_mode;
428 
429 		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
430 			  igb_force_mac_fc(hw) : igb_setup_link(hw));
431 	}
432 
433 	clear_bit(__IGB_RESETTING, &adapter->state);
434 	return retval;
435 }
436 
437 static u32 igb_get_msglevel(struct net_device *netdev)
438 {
439 	struct igb_adapter *adapter = netdev_priv(netdev);
440 	return adapter->msg_enable;
441 }
442 
443 static void igb_set_msglevel(struct net_device *netdev, u32 data)
444 {
445 	struct igb_adapter *adapter = netdev_priv(netdev);
446 	adapter->msg_enable = data;
447 }
448 
449 static int igb_get_regs_len(struct net_device *netdev)
450 {
451 #define IGB_REGS_LEN 739
452 	return IGB_REGS_LEN * sizeof(u32);
453 }
454 
455 static void igb_get_regs(struct net_device *netdev,
456 			 struct ethtool_regs *regs, void *p)
457 {
458 	struct igb_adapter *adapter = netdev_priv(netdev);
459 	struct e1000_hw *hw = &adapter->hw;
460 	u32 *regs_buff = p;
461 	u8 i;
462 
463 	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
464 
465 	regs->version = (1u << 24) | (hw->revision_id << 16) | hw->device_id;
466 
467 	/* General Registers */
468 	regs_buff[0] = rd32(E1000_CTRL);
469 	regs_buff[1] = rd32(E1000_STATUS);
470 	regs_buff[2] = rd32(E1000_CTRL_EXT);
471 	regs_buff[3] = rd32(E1000_MDIC);
472 	regs_buff[4] = rd32(E1000_SCTL);
473 	regs_buff[5] = rd32(E1000_CONNSW);
474 	regs_buff[6] = rd32(E1000_VET);
475 	regs_buff[7] = rd32(E1000_LEDCTL);
476 	regs_buff[8] = rd32(E1000_PBA);
477 	regs_buff[9] = rd32(E1000_PBS);
478 	regs_buff[10] = rd32(E1000_FRTIMER);
479 	regs_buff[11] = rd32(E1000_TCPTIMER);
480 
481 	/* NVM Register */
482 	regs_buff[12] = rd32(E1000_EECD);
483 
484 	/* Interrupt */
485 	/* Reading EICS for EICR because they read the
486 	 * same but EICS does not clear on read
487 	 */
488 	regs_buff[13] = rd32(E1000_EICS);
489 	regs_buff[14] = rd32(E1000_EICS);
490 	regs_buff[15] = rd32(E1000_EIMS);
491 	regs_buff[16] = rd32(E1000_EIMC);
492 	regs_buff[17] = rd32(E1000_EIAC);
493 	regs_buff[18] = rd32(E1000_EIAM);
494 	/* Reading ICS for ICR because they read the
495 	 * same but ICS does not clear on read
496 	 */
497 	regs_buff[19] = rd32(E1000_ICS);
498 	regs_buff[20] = rd32(E1000_ICS);
499 	regs_buff[21] = rd32(E1000_IMS);
500 	regs_buff[22] = rd32(E1000_IMC);
501 	regs_buff[23] = rd32(E1000_IAC);
502 	regs_buff[24] = rd32(E1000_IAM);
503 	regs_buff[25] = rd32(E1000_IMIRVP);
504 
505 	/* Flow Control */
506 	regs_buff[26] = rd32(E1000_FCAL);
507 	regs_buff[27] = rd32(E1000_FCAH);
508 	regs_buff[28] = rd32(E1000_FCTTV);
509 	regs_buff[29] = rd32(E1000_FCRTL);
510 	regs_buff[30] = rd32(E1000_FCRTH);
511 	regs_buff[31] = rd32(E1000_FCRTV);
512 
513 	/* Receive */
514 	regs_buff[32] = rd32(E1000_RCTL);
515 	regs_buff[33] = rd32(E1000_RXCSUM);
516 	regs_buff[34] = rd32(E1000_RLPML);
517 	regs_buff[35] = rd32(E1000_RFCTL);
518 	regs_buff[36] = rd32(E1000_MRQC);
519 	regs_buff[37] = rd32(E1000_VT_CTL);
520 
521 	/* Transmit */
522 	regs_buff[38] = rd32(E1000_TCTL);
523 	regs_buff[39] = rd32(E1000_TCTL_EXT);
524 	regs_buff[40] = rd32(E1000_TIPG);
525 	regs_buff[41] = rd32(E1000_DTXCTL);
526 
527 	/* Wake Up */
528 	regs_buff[42] = rd32(E1000_WUC);
529 	regs_buff[43] = rd32(E1000_WUFC);
530 	regs_buff[44] = rd32(E1000_WUS);
531 	regs_buff[45] = rd32(E1000_IPAV);
532 	regs_buff[46] = rd32(E1000_WUPL);
533 
534 	/* MAC */
535 	regs_buff[47] = rd32(E1000_PCS_CFG0);
536 	regs_buff[48] = rd32(E1000_PCS_LCTL);
537 	regs_buff[49] = rd32(E1000_PCS_LSTAT);
538 	regs_buff[50] = rd32(E1000_PCS_ANADV);
539 	regs_buff[51] = rd32(E1000_PCS_LPAB);
540 	regs_buff[52] = rd32(E1000_PCS_NPTX);
541 	regs_buff[53] = rd32(E1000_PCS_LPABNP);
542 
543 	/* Statistics */
544 	regs_buff[54] = adapter->stats.crcerrs;
545 	regs_buff[55] = adapter->stats.algnerrc;
546 	regs_buff[56] = adapter->stats.symerrs;
547 	regs_buff[57] = adapter->stats.rxerrc;
548 	regs_buff[58] = adapter->stats.mpc;
549 	regs_buff[59] = adapter->stats.scc;
550 	regs_buff[60] = adapter->stats.ecol;
551 	regs_buff[61] = adapter->stats.mcc;
552 	regs_buff[62] = adapter->stats.latecol;
553 	regs_buff[63] = adapter->stats.colc;
554 	regs_buff[64] = adapter->stats.dc;
555 	regs_buff[65] = adapter->stats.tncrs;
556 	regs_buff[66] = adapter->stats.sec;
557 	regs_buff[67] = adapter->stats.htdpmc;
558 	regs_buff[68] = adapter->stats.rlec;
559 	regs_buff[69] = adapter->stats.xonrxc;
560 	regs_buff[70] = adapter->stats.xontxc;
561 	regs_buff[71] = adapter->stats.xoffrxc;
562 	regs_buff[72] = adapter->stats.xofftxc;
563 	regs_buff[73] = adapter->stats.fcruc;
564 	regs_buff[74] = adapter->stats.prc64;
565 	regs_buff[75] = adapter->stats.prc127;
566 	regs_buff[76] = adapter->stats.prc255;
567 	regs_buff[77] = adapter->stats.prc511;
568 	regs_buff[78] = adapter->stats.prc1023;
569 	regs_buff[79] = adapter->stats.prc1522;
570 	regs_buff[80] = adapter->stats.gprc;
571 	regs_buff[81] = adapter->stats.bprc;
572 	regs_buff[82] = adapter->stats.mprc;
573 	regs_buff[83] = adapter->stats.gptc;
574 	regs_buff[84] = adapter->stats.gorc;
575 	regs_buff[86] = adapter->stats.gotc;
576 	regs_buff[88] = adapter->stats.rnbc;
577 	regs_buff[89] = adapter->stats.ruc;
578 	regs_buff[90] = adapter->stats.rfc;
579 	regs_buff[91] = adapter->stats.roc;
580 	regs_buff[92] = adapter->stats.rjc;
581 	regs_buff[93] = adapter->stats.mgprc;
582 	regs_buff[94] = adapter->stats.mgpdc;
583 	regs_buff[95] = adapter->stats.mgptc;
584 	regs_buff[96] = adapter->stats.tor;
585 	regs_buff[98] = adapter->stats.tot;
586 	regs_buff[100] = adapter->stats.tpr;
587 	regs_buff[101] = adapter->stats.tpt;
588 	regs_buff[102] = adapter->stats.ptc64;
589 	regs_buff[103] = adapter->stats.ptc127;
590 	regs_buff[104] = adapter->stats.ptc255;
591 	regs_buff[105] = adapter->stats.ptc511;
592 	regs_buff[106] = adapter->stats.ptc1023;
593 	regs_buff[107] = adapter->stats.ptc1522;
594 	regs_buff[108] = adapter->stats.mptc;
595 	regs_buff[109] = adapter->stats.bptc;
596 	regs_buff[110] = adapter->stats.tsctc;
597 	regs_buff[111] = adapter->stats.iac;
598 	regs_buff[112] = adapter->stats.rpthc;
599 	regs_buff[113] = adapter->stats.hgptc;
600 	regs_buff[114] = adapter->stats.hgorc;
601 	regs_buff[116] = adapter->stats.hgotc;
602 	regs_buff[118] = adapter->stats.lenerrs;
603 	regs_buff[119] = adapter->stats.scvpc;
604 	regs_buff[120] = adapter->stats.hrmpc;
605 
606 	for (i = 0; i < 4; i++)
607 		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
608 	for (i = 0; i < 4; i++)
609 		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
610 	for (i = 0; i < 4; i++)
611 		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
612 	for (i = 0; i < 4; i++)
613 		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
614 	for (i = 0; i < 4; i++)
615 		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
616 	for (i = 0; i < 4; i++)
617 		regs_buff[141 + i] = rd32(E1000_RDH(i));
618 	for (i = 0; i < 4; i++)
619 		regs_buff[145 + i] = rd32(E1000_RDT(i));
620 	for (i = 0; i < 4; i++)
621 		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
622 
623 	for (i = 0; i < 10; i++)
624 		regs_buff[153 + i] = rd32(E1000_EITR(i));
625 	for (i = 0; i < 8; i++)
626 		regs_buff[163 + i] = rd32(E1000_IMIR(i));
627 	for (i = 0; i < 8; i++)
628 		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
629 	for (i = 0; i < 16; i++)
630 		regs_buff[179 + i] = rd32(E1000_RAL(i));
631 	for (i = 0; i < 16; i++)
632 		regs_buff[195 + i] = rd32(E1000_RAH(i));
633 
634 	for (i = 0; i < 4; i++)
635 		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
636 	for (i = 0; i < 4; i++)
637 		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
638 	for (i = 0; i < 4; i++)
639 		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
640 	for (i = 0; i < 4; i++)
641 		regs_buff[223 + i] = rd32(E1000_TDH(i));
642 	for (i = 0; i < 4; i++)
643 		regs_buff[227 + i] = rd32(E1000_TDT(i));
644 	for (i = 0; i < 4; i++)
645 		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
646 	for (i = 0; i < 4; i++)
647 		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
648 	for (i = 0; i < 4; i++)
649 		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
650 	for (i = 0; i < 4; i++)
651 		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
652 
653 	for (i = 0; i < 4; i++)
654 		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
655 	for (i = 0; i < 4; i++)
656 		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
657 	for (i = 0; i < 32; i++)
658 		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
659 	for (i = 0; i < 128; i++)
660 		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
661 	for (i = 0; i < 128; i++)
662 		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
663 	for (i = 0; i < 4; i++)
664 		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
665 
666 	regs_buff[547] = rd32(E1000_TDFH);
667 	regs_buff[548] = rd32(E1000_TDFT);
668 	regs_buff[549] = rd32(E1000_TDFHS);
669 	regs_buff[550] = rd32(E1000_TDFPC);
670 
671 	if (hw->mac.type > e1000_82580) {
672 		regs_buff[551] = adapter->stats.o2bgptc;
673 		regs_buff[552] = adapter->stats.b2ospc;
674 		regs_buff[553] = adapter->stats.o2bspc;
675 		regs_buff[554] = adapter->stats.b2ogprc;
676 	}
677 
678 	if (hw->mac.type != e1000_82576)
679 		return;
680 	for (i = 0; i < 12; i++)
681 		regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
682 	for (i = 0; i < 4; i++)
683 		regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
684 	for (i = 0; i < 12; i++)
685 		regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
686 	for (i = 0; i < 12; i++)
687 		regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
688 	for (i = 0; i < 12; i++)
689 		regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
690 	for (i = 0; i < 12; i++)
691 		regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
692 	for (i = 0; i < 12; i++)
693 		regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
694 	for (i = 0; i < 12; i++)
695 		regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
696 
697 	for (i = 0; i < 12; i++)
698 		regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
699 	for (i = 0; i < 12; i++)
700 		regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
701 	for (i = 0; i < 12; i++)
702 		regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
703 	for (i = 0; i < 12; i++)
704 		regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
705 	for (i = 0; i < 12; i++)
706 		regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
707 	for (i = 0; i < 12; i++)
708 		regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
709 	for (i = 0; i < 12; i++)
710 		regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
711 	for (i = 0; i < 12; i++)
712 		regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
713 }
714 
715 static int igb_get_eeprom_len(struct net_device *netdev)
716 {
717 	struct igb_adapter *adapter = netdev_priv(netdev);
718 	return adapter->hw.nvm.word_size * 2;
719 }
720 
721 static int igb_get_eeprom(struct net_device *netdev,
722 			  struct ethtool_eeprom *eeprom, u8 *bytes)
723 {
724 	struct igb_adapter *adapter = netdev_priv(netdev);
725 	struct e1000_hw *hw = &adapter->hw;
726 	u16 *eeprom_buff;
727 	int first_word, last_word;
728 	int ret_val = 0;
729 	u16 i;
730 
731 	if (eeprom->len == 0)
732 		return -EINVAL;
733 
734 	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
735 
736 	first_word = eeprom->offset >> 1;
737 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
738 
739 	eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
740 				    GFP_KERNEL);
741 	if (!eeprom_buff)
742 		return -ENOMEM;
743 
744 	if (hw->nvm.type == e1000_nvm_eeprom_spi)
745 		ret_val = hw->nvm.ops.read(hw, first_word,
746 					   last_word - first_word + 1,
747 					   eeprom_buff);
748 	else {
749 		for (i = 0; i < last_word - first_word + 1; i++) {
750 			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
751 						   &eeprom_buff[i]);
752 			if (ret_val)
753 				break;
754 		}
755 	}
756 
757 	/* Device's eeprom is always little-endian, word addressable */
758 	for (i = 0; i < last_word - first_word + 1; i++)
759 		le16_to_cpus(&eeprom_buff[i]);
760 
761 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
762 			eeprom->len);
763 	kfree(eeprom_buff);
764 
765 	return ret_val;
766 }
767 
768 static int igb_set_eeprom(struct net_device *netdev,
769 			  struct ethtool_eeprom *eeprom, u8 *bytes)
770 {
771 	struct igb_adapter *adapter = netdev_priv(netdev);
772 	struct e1000_hw *hw = &adapter->hw;
773 	u16 *eeprom_buff;
774 	void *ptr;
775 	int max_len, first_word, last_word, ret_val = 0;
776 	u16 i;
777 
778 	if (eeprom->len == 0)
779 		return -EOPNOTSUPP;
780 
781 	if ((hw->mac.type >= e1000_i210) &&
782 	    !igb_get_flash_presence_i210(hw)) {
783 		return -EOPNOTSUPP;
784 	}
785 
786 	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
787 		return -EFAULT;
788 
789 	max_len = hw->nvm.word_size * 2;
790 
791 	first_word = eeprom->offset >> 1;
792 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
793 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
794 	if (!eeprom_buff)
795 		return -ENOMEM;
796 
797 	ptr = (void *)eeprom_buff;
798 
799 	if (eeprom->offset & 1) {
800 		/* need read/modify/write of first changed EEPROM word
801 		 * only the second byte of the word is being modified
802 		 */
803 		ret_val = hw->nvm.ops.read(hw, first_word, 1,
804 					    &eeprom_buff[0]);
805 		ptr++;
806 	}
807 	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
808 		/* need read/modify/write of last changed EEPROM word
809 		 * only the first byte of the word is being modified
810 		 */
811 		ret_val = hw->nvm.ops.read(hw, last_word, 1,
812 				   &eeprom_buff[last_word - first_word]);
813 	}
814 
815 	/* Device's eeprom is always little-endian, word addressable */
816 	for (i = 0; i < last_word - first_word + 1; i++)
817 		le16_to_cpus(&eeprom_buff[i]);
818 
819 	memcpy(ptr, bytes, eeprom->len);
820 
821 	for (i = 0; i < last_word - first_word + 1; i++)
822 		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
823 
824 	ret_val = hw->nvm.ops.write(hw, first_word,
825 				    last_word - first_word + 1, eeprom_buff);
826 
827 	/* Update the checksum if nvm write succeeded */
828 	if (ret_val == 0)
829 		hw->nvm.ops.update(hw);
830 
831 	igb_set_fw_version(adapter);
832 	kfree(eeprom_buff);
833 	return ret_val;
834 }
835 
836 static void igb_get_drvinfo(struct net_device *netdev,
837 			    struct ethtool_drvinfo *drvinfo)
838 {
839 	struct igb_adapter *adapter = netdev_priv(netdev);
840 
841 	strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
842 	strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
843 
844 	/* EEPROM image version # is reported as firmware version # for
845 	 * 82575 controllers
846 	 */
847 	strlcpy(drvinfo->fw_version, adapter->fw_version,
848 		sizeof(drvinfo->fw_version));
849 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
850 		sizeof(drvinfo->bus_info));
851 
852 	drvinfo->n_priv_flags = IGB_PRIV_FLAGS_STR_LEN;
853 }
854 
855 static void igb_get_ringparam(struct net_device *netdev,
856 			      struct ethtool_ringparam *ring)
857 {
858 	struct igb_adapter *adapter = netdev_priv(netdev);
859 
860 	ring->rx_max_pending = IGB_MAX_RXD;
861 	ring->tx_max_pending = IGB_MAX_TXD;
862 	ring->rx_pending = adapter->rx_ring_count;
863 	ring->tx_pending = adapter->tx_ring_count;
864 }
865 
866 static int igb_set_ringparam(struct net_device *netdev,
867 			     struct ethtool_ringparam *ring)
868 {
869 	struct igb_adapter *adapter = netdev_priv(netdev);
870 	struct igb_ring *temp_ring;
871 	int i, err = 0;
872 	u16 new_rx_count, new_tx_count;
873 
874 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
875 		return -EINVAL;
876 
877 	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
878 	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
879 	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
880 
881 	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
882 	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
883 	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
884 
885 	if ((new_tx_count == adapter->tx_ring_count) &&
886 	    (new_rx_count == adapter->rx_ring_count)) {
887 		/* nothing to do */
888 		return 0;
889 	}
890 
891 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
892 		usleep_range(1000, 2000);
893 
894 	if (!netif_running(adapter->netdev)) {
895 		for (i = 0; i < adapter->num_tx_queues; i++)
896 			adapter->tx_ring[i]->count = new_tx_count;
897 		for (i = 0; i < adapter->num_rx_queues; i++)
898 			adapter->rx_ring[i]->count = new_rx_count;
899 		adapter->tx_ring_count = new_tx_count;
900 		adapter->rx_ring_count = new_rx_count;
901 		goto clear_reset;
902 	}
903 
904 	if (adapter->num_tx_queues > adapter->num_rx_queues)
905 		temp_ring = vmalloc(array_size(sizeof(struct igb_ring),
906 					       adapter->num_tx_queues));
907 	else
908 		temp_ring = vmalloc(array_size(sizeof(struct igb_ring),
909 					       adapter->num_rx_queues));
910 
911 	if (!temp_ring) {
912 		err = -ENOMEM;
913 		goto clear_reset;
914 	}
915 
916 	igb_down(adapter);
917 
918 	/* We can't just free everything and then setup again,
919 	 * because the ISRs in MSI-X mode get passed pointers
920 	 * to the Tx and Rx ring structs.
921 	 */
922 	if (new_tx_count != adapter->tx_ring_count) {
923 		for (i = 0; i < adapter->num_tx_queues; i++) {
924 			memcpy(&temp_ring[i], adapter->tx_ring[i],
925 			       sizeof(struct igb_ring));
926 
927 			temp_ring[i].count = new_tx_count;
928 			err = igb_setup_tx_resources(&temp_ring[i]);
929 			if (err) {
930 				while (i) {
931 					i--;
932 					igb_free_tx_resources(&temp_ring[i]);
933 				}
934 				goto err_setup;
935 			}
936 		}
937 
938 		for (i = 0; i < adapter->num_tx_queues; i++) {
939 			igb_free_tx_resources(adapter->tx_ring[i]);
940 
941 			memcpy(adapter->tx_ring[i], &temp_ring[i],
942 			       sizeof(struct igb_ring));
943 		}
944 
945 		adapter->tx_ring_count = new_tx_count;
946 	}
947 
948 	if (new_rx_count != adapter->rx_ring_count) {
949 		for (i = 0; i < adapter->num_rx_queues; i++) {
950 			memcpy(&temp_ring[i], adapter->rx_ring[i],
951 			       sizeof(struct igb_ring));
952 
953 			temp_ring[i].count = new_rx_count;
954 			err = igb_setup_rx_resources(&temp_ring[i]);
955 			if (err) {
956 				while (i) {
957 					i--;
958 					igb_free_rx_resources(&temp_ring[i]);
959 				}
960 				goto err_setup;
961 			}
962 
963 		}
964 
965 		for (i = 0; i < adapter->num_rx_queues; i++) {
966 			igb_free_rx_resources(adapter->rx_ring[i]);
967 
968 			memcpy(adapter->rx_ring[i], &temp_ring[i],
969 			       sizeof(struct igb_ring));
970 		}
971 
972 		adapter->rx_ring_count = new_rx_count;
973 	}
974 err_setup:
975 	igb_up(adapter);
976 	vfree(temp_ring);
977 clear_reset:
978 	clear_bit(__IGB_RESETTING, &adapter->state);
979 	return err;
980 }
981 
982 /* ethtool register test data */
983 struct igb_reg_test {
984 	u16 reg;
985 	u16 reg_offset;
986 	u16 array_len;
987 	u16 test_type;
988 	u32 mask;
989 	u32 write;
990 };
991 
992 /* In the hardware, registers are laid out either singly, in arrays
993  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
994  * most tests take place on arrays or single registers (handled
995  * as a single-element array) and special-case the tables.
996  * Table tests are always pattern tests.
997  *
998  * We also make provision for some required setup steps by specifying
999  * registers to be written without any read-back testing.
1000  */
1001 
1002 #define PATTERN_TEST	1
1003 #define SET_READ_TEST	2
1004 #define WRITE_NO_TEST	3
1005 #define TABLE32_TEST	4
1006 #define TABLE64_TEST_LO	5
1007 #define TABLE64_TEST_HI	6
1008 
1009 /* i210 reg test */
1010 static struct igb_reg_test reg_test_i210[] = {
1011 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1012 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1013 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1014 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1015 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1016 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1017 	/* RDH is read-only for i210, only test RDT. */
1018 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1019 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1020 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1021 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1022 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1023 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1024 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1025 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1026 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1027 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1028 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1029 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1030 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1031 						0xFFFFFFFF, 0xFFFFFFFF },
1032 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1033 						0x900FFFFF, 0xFFFFFFFF },
1034 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1035 						0xFFFFFFFF, 0xFFFFFFFF },
1036 	{ 0, 0, 0, 0, 0 }
1037 };
1038 
1039 /* i350 reg test */
1040 static struct igb_reg_test reg_test_i350[] = {
1041 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1042 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1043 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1044 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1045 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1046 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1047 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1048 	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1049 	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1050 	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1051 	/* RDH is read-only for i350, only test RDT. */
1052 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1053 	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1054 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1055 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1056 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1057 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1058 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1059 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1060 	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1061 	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1062 	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1063 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1064 	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1065 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1066 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1067 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1068 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1069 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1070 						0xFFFFFFFF, 0xFFFFFFFF },
1071 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1072 						0xC3FFFFFF, 0xFFFFFFFF },
1073 	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
1074 						0xFFFFFFFF, 0xFFFFFFFF },
1075 	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
1076 						0xC3FFFFFF, 0xFFFFFFFF },
1077 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1078 						0xFFFFFFFF, 0xFFFFFFFF },
1079 	{ 0, 0, 0, 0 }
1080 };
1081 
1082 /* 82580 reg test */
1083 static struct igb_reg_test reg_test_82580[] = {
1084 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1085 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1086 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1087 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1088 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1089 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1090 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1091 	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1092 	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1093 	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1094 	/* RDH is read-only for 82580, only test RDT. */
1095 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1096 	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1097 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1098 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1099 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1100 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1101 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1102 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1103 	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1104 	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1105 	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1106 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1107 	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1108 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1109 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1110 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1111 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1112 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1113 						0xFFFFFFFF, 0xFFFFFFFF },
1114 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1115 						0x83FFFFFF, 0xFFFFFFFF },
1116 	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
1117 						0xFFFFFFFF, 0xFFFFFFFF },
1118 	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
1119 						0x83FFFFFF, 0xFFFFFFFF },
1120 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1121 						0xFFFFFFFF, 0xFFFFFFFF },
1122 	{ 0, 0, 0, 0 }
1123 };
1124 
1125 /* 82576 reg test */
1126 static struct igb_reg_test reg_test_82576[] = {
1127 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1128 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1129 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1130 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1131 	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1132 	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1133 	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1134 	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1135 	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1136 	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1137 	/* Enable all RX queues before testing. */
1138 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1139 	  E1000_RXDCTL_QUEUE_ENABLE },
1140 	{ E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0,
1141 	  E1000_RXDCTL_QUEUE_ENABLE },
1142 	/* RDH is read-only for 82576, only test RDT. */
1143 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1144 	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1145 	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1146 	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1147 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1148 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1149 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1150 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1151 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1152 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1153 	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1154 	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1155 	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1156 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1157 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1158 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1159 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1160 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1161 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1162 	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1163 	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1164 	{ E1000_MTA,	   0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1165 	{ 0, 0, 0, 0 }
1166 };
1167 
1168 /* 82575 register test */
1169 static struct igb_reg_test reg_test_82575[] = {
1170 	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1171 	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1172 	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1173 	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1174 	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1175 	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1176 	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1177 	/* Enable all four RX queues before testing. */
1178 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1179 	  E1000_RXDCTL_QUEUE_ENABLE },
1180 	/* RDH is read-only for 82575, only test RDT. */
1181 	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1182 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1183 	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1184 	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1185 	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1186 	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1187 	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1188 	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1189 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1190 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1191 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1192 	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1193 	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1194 	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1195 	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1196 	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1197 	{ 0, 0, 0, 0 }
1198 };
1199 
1200 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1201 			     int reg, u32 mask, u32 write)
1202 {
1203 	struct e1000_hw *hw = &adapter->hw;
1204 	u32 pat, val;
1205 	static const u32 _test[] = {
1206 		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1207 	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1208 		wr32(reg, (_test[pat] & write));
1209 		val = rd32(reg) & mask;
1210 		if (val != (_test[pat] & write & mask)) {
1211 			dev_err(&adapter->pdev->dev,
1212 				"pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1213 				reg, val, (_test[pat] & write & mask));
1214 			*data = reg;
1215 			return true;
1216 		}
1217 	}
1218 
1219 	return false;
1220 }
1221 
1222 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1223 			      int reg, u32 mask, u32 write)
1224 {
1225 	struct e1000_hw *hw = &adapter->hw;
1226 	u32 val;
1227 
1228 	wr32(reg, write & mask);
1229 	val = rd32(reg);
1230 	if ((write & mask) != (val & mask)) {
1231 		dev_err(&adapter->pdev->dev,
1232 			"set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
1233 			reg, (val & mask), (write & mask));
1234 		*data = reg;
1235 		return true;
1236 	}
1237 
1238 	return false;
1239 }
1240 
1241 #define REG_PATTERN_TEST(reg, mask, write) \
1242 	do { \
1243 		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1244 			return 1; \
1245 	} while (0)
1246 
1247 #define REG_SET_AND_CHECK(reg, mask, write) \
1248 	do { \
1249 		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1250 			return 1; \
1251 	} while (0)
1252 
1253 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1254 {
1255 	struct e1000_hw *hw = &adapter->hw;
1256 	struct igb_reg_test *test;
1257 	u32 value, before, after;
1258 	u32 i, toggle;
1259 
1260 	switch (adapter->hw.mac.type) {
1261 	case e1000_i350:
1262 	case e1000_i354:
1263 		test = reg_test_i350;
1264 		toggle = 0x7FEFF3FF;
1265 		break;
1266 	case e1000_i210:
1267 	case e1000_i211:
1268 		test = reg_test_i210;
1269 		toggle = 0x7FEFF3FF;
1270 		break;
1271 	case e1000_82580:
1272 		test = reg_test_82580;
1273 		toggle = 0x7FEFF3FF;
1274 		break;
1275 	case e1000_82576:
1276 		test = reg_test_82576;
1277 		toggle = 0x7FFFF3FF;
1278 		break;
1279 	default:
1280 		test = reg_test_82575;
1281 		toggle = 0x7FFFF3FF;
1282 		break;
1283 	}
1284 
1285 	/* Because the status register is such a special case,
1286 	 * we handle it separately from the rest of the register
1287 	 * tests.  Some bits are read-only, some toggle, and some
1288 	 * are writable on newer MACs.
1289 	 */
1290 	before = rd32(E1000_STATUS);
1291 	value = (rd32(E1000_STATUS) & toggle);
1292 	wr32(E1000_STATUS, toggle);
1293 	after = rd32(E1000_STATUS) & toggle;
1294 	if (value != after) {
1295 		dev_err(&adapter->pdev->dev,
1296 			"failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1297 			after, value);
1298 		*data = 1;
1299 		return 1;
1300 	}
1301 	/* restore previous status */
1302 	wr32(E1000_STATUS, before);
1303 
1304 	/* Perform the remainder of the register test, looping through
1305 	 * the test table until we either fail or reach the null entry.
1306 	 */
1307 	while (test->reg) {
1308 		for (i = 0; i < test->array_len; i++) {
1309 			switch (test->test_type) {
1310 			case PATTERN_TEST:
1311 				REG_PATTERN_TEST(test->reg +
1312 						(i * test->reg_offset),
1313 						test->mask,
1314 						test->write);
1315 				break;
1316 			case SET_READ_TEST:
1317 				REG_SET_AND_CHECK(test->reg +
1318 						(i * test->reg_offset),
1319 						test->mask,
1320 						test->write);
1321 				break;
1322 			case WRITE_NO_TEST:
1323 				writel(test->write,
1324 				    (adapter->hw.hw_addr + test->reg)
1325 					+ (i * test->reg_offset));
1326 				break;
1327 			case TABLE32_TEST:
1328 				REG_PATTERN_TEST(test->reg + (i * 4),
1329 						test->mask,
1330 						test->write);
1331 				break;
1332 			case TABLE64_TEST_LO:
1333 				REG_PATTERN_TEST(test->reg + (i * 8),
1334 						test->mask,
1335 						test->write);
1336 				break;
1337 			case TABLE64_TEST_HI:
1338 				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1339 						test->mask,
1340 						test->write);
1341 				break;
1342 			}
1343 		}
1344 		test++;
1345 	}
1346 
1347 	*data = 0;
1348 	return 0;
1349 }
1350 
1351 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1352 {
1353 	struct e1000_hw *hw = &adapter->hw;
1354 
1355 	*data = 0;
1356 
1357 	/* Validate eeprom on all parts but flashless */
1358 	switch (hw->mac.type) {
1359 	case e1000_i210:
1360 	case e1000_i211:
1361 		if (igb_get_flash_presence_i210(hw)) {
1362 			if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1363 				*data = 2;
1364 		}
1365 		break;
1366 	default:
1367 		if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1368 			*data = 2;
1369 		break;
1370 	}
1371 
1372 	return *data;
1373 }
1374 
1375 static irqreturn_t igb_test_intr(int irq, void *data)
1376 {
1377 	struct igb_adapter *adapter = (struct igb_adapter *) data;
1378 	struct e1000_hw *hw = &adapter->hw;
1379 
1380 	adapter->test_icr |= rd32(E1000_ICR);
1381 
1382 	return IRQ_HANDLED;
1383 }
1384 
1385 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1386 {
1387 	struct e1000_hw *hw = &adapter->hw;
1388 	struct net_device *netdev = adapter->netdev;
1389 	u32 mask, ics_mask, i = 0, shared_int = true;
1390 	u32 irq = adapter->pdev->irq;
1391 
1392 	*data = 0;
1393 
1394 	/* Hook up test interrupt handler just for this test */
1395 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1396 		if (request_irq(adapter->msix_entries[0].vector,
1397 				igb_test_intr, 0, netdev->name, adapter)) {
1398 			*data = 1;
1399 			return -1;
1400 		}
1401 	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1402 		shared_int = false;
1403 		if (request_irq(irq,
1404 				igb_test_intr, 0, netdev->name, adapter)) {
1405 			*data = 1;
1406 			return -1;
1407 		}
1408 	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1409 				netdev->name, adapter)) {
1410 		shared_int = false;
1411 	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1412 		 netdev->name, adapter)) {
1413 		*data = 1;
1414 		return -1;
1415 	}
1416 	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1417 		(shared_int ? "shared" : "unshared"));
1418 
1419 	/* Disable all the interrupts */
1420 	wr32(E1000_IMC, ~0);
1421 	wrfl();
1422 	usleep_range(10000, 11000);
1423 
1424 	/* Define all writable bits for ICS */
1425 	switch (hw->mac.type) {
1426 	case e1000_82575:
1427 		ics_mask = 0x37F47EDD;
1428 		break;
1429 	case e1000_82576:
1430 		ics_mask = 0x77D4FBFD;
1431 		break;
1432 	case e1000_82580:
1433 		ics_mask = 0x77DCFED5;
1434 		break;
1435 	case e1000_i350:
1436 	case e1000_i354:
1437 	case e1000_i210:
1438 	case e1000_i211:
1439 		ics_mask = 0x77DCFED5;
1440 		break;
1441 	default:
1442 		ics_mask = 0x7FFFFFFF;
1443 		break;
1444 	}
1445 
1446 	/* Test each interrupt */
1447 	for (; i < 31; i++) {
1448 		/* Interrupt to test */
1449 		mask = BIT(i);
1450 
1451 		if (!(mask & ics_mask))
1452 			continue;
1453 
1454 		if (!shared_int) {
1455 			/* Disable the interrupt to be reported in
1456 			 * the cause register and then force the same
1457 			 * interrupt and see if one gets posted.  If
1458 			 * an interrupt was posted to the bus, the
1459 			 * test failed.
1460 			 */
1461 			adapter->test_icr = 0;
1462 
1463 			/* Flush any pending interrupts */
1464 			wr32(E1000_ICR, ~0);
1465 
1466 			wr32(E1000_IMC, mask);
1467 			wr32(E1000_ICS, mask);
1468 			wrfl();
1469 			usleep_range(10000, 11000);
1470 
1471 			if (adapter->test_icr & mask) {
1472 				*data = 3;
1473 				break;
1474 			}
1475 		}
1476 
1477 		/* Enable the interrupt to be reported in
1478 		 * the cause register and then force the same
1479 		 * interrupt and see if one gets posted.  If
1480 		 * an interrupt was not posted to the bus, the
1481 		 * test failed.
1482 		 */
1483 		adapter->test_icr = 0;
1484 
1485 		/* Flush any pending interrupts */
1486 		wr32(E1000_ICR, ~0);
1487 
1488 		wr32(E1000_IMS, mask);
1489 		wr32(E1000_ICS, mask);
1490 		wrfl();
1491 		usleep_range(10000, 11000);
1492 
1493 		if (!(adapter->test_icr & mask)) {
1494 			*data = 4;
1495 			break;
1496 		}
1497 
1498 		if (!shared_int) {
1499 			/* Disable the other interrupts to be reported in
1500 			 * the cause register and then force the other
1501 			 * interrupts and see if any get posted.  If
1502 			 * an interrupt was posted to the bus, the
1503 			 * test failed.
1504 			 */
1505 			adapter->test_icr = 0;
1506 
1507 			/* Flush any pending interrupts */
1508 			wr32(E1000_ICR, ~0);
1509 
1510 			wr32(E1000_IMC, ~mask);
1511 			wr32(E1000_ICS, ~mask);
1512 			wrfl();
1513 			usleep_range(10000, 11000);
1514 
1515 			if (adapter->test_icr & mask) {
1516 				*data = 5;
1517 				break;
1518 			}
1519 		}
1520 	}
1521 
1522 	/* Disable all the interrupts */
1523 	wr32(E1000_IMC, ~0);
1524 	wrfl();
1525 	usleep_range(10000, 11000);
1526 
1527 	/* Unhook test interrupt handler */
1528 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1529 		free_irq(adapter->msix_entries[0].vector, adapter);
1530 	else
1531 		free_irq(irq, adapter);
1532 
1533 	return *data;
1534 }
1535 
1536 static void igb_free_desc_rings(struct igb_adapter *adapter)
1537 {
1538 	igb_free_tx_resources(&adapter->test_tx_ring);
1539 	igb_free_rx_resources(&adapter->test_rx_ring);
1540 }
1541 
1542 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1543 {
1544 	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1545 	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1546 	struct e1000_hw *hw = &adapter->hw;
1547 	int ret_val;
1548 
1549 	/* Setup Tx descriptor ring and Tx buffers */
1550 	tx_ring->count = IGB_DEFAULT_TXD;
1551 	tx_ring->dev = &adapter->pdev->dev;
1552 	tx_ring->netdev = adapter->netdev;
1553 	tx_ring->reg_idx = adapter->vfs_allocated_count;
1554 
1555 	if (igb_setup_tx_resources(tx_ring)) {
1556 		ret_val = 1;
1557 		goto err_nomem;
1558 	}
1559 
1560 	igb_setup_tctl(adapter);
1561 	igb_configure_tx_ring(adapter, tx_ring);
1562 
1563 	/* Setup Rx descriptor ring and Rx buffers */
1564 	rx_ring->count = IGB_DEFAULT_RXD;
1565 	rx_ring->dev = &adapter->pdev->dev;
1566 	rx_ring->netdev = adapter->netdev;
1567 	rx_ring->reg_idx = adapter->vfs_allocated_count;
1568 
1569 	if (igb_setup_rx_resources(rx_ring)) {
1570 		ret_val = 3;
1571 		goto err_nomem;
1572 	}
1573 
1574 	/* set the default queue to queue 0 of PF */
1575 	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1576 
1577 	/* enable receive ring */
1578 	igb_setup_rctl(adapter);
1579 	igb_configure_rx_ring(adapter, rx_ring);
1580 
1581 	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1582 
1583 	return 0;
1584 
1585 err_nomem:
1586 	igb_free_desc_rings(adapter);
1587 	return ret_val;
1588 }
1589 
1590 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1591 {
1592 	struct e1000_hw *hw = &adapter->hw;
1593 
1594 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1595 	igb_write_phy_reg(hw, 29, 0x001F);
1596 	igb_write_phy_reg(hw, 30, 0x8FFC);
1597 	igb_write_phy_reg(hw, 29, 0x001A);
1598 	igb_write_phy_reg(hw, 30, 0x8FF0);
1599 }
1600 
1601 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1602 {
1603 	struct e1000_hw *hw = &adapter->hw;
1604 	u32 ctrl_reg = 0;
1605 
1606 	hw->mac.autoneg = false;
1607 
1608 	if (hw->phy.type == e1000_phy_m88) {
1609 		if (hw->phy.id != I210_I_PHY_ID) {
1610 			/* Auto-MDI/MDIX Off */
1611 			igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1612 			/* reset to update Auto-MDI/MDIX */
1613 			igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1614 			/* autoneg off */
1615 			igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1616 		} else {
1617 			/* force 1000, set loopback  */
1618 			igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1619 			igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1620 		}
1621 	} else if (hw->phy.type == e1000_phy_82580) {
1622 		/* enable MII loopback */
1623 		igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1624 	}
1625 
1626 	/* add small delay to avoid loopback test failure */
1627 	msleep(50);
1628 
1629 	/* force 1000, set loopback */
1630 	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1631 
1632 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1633 	ctrl_reg = rd32(E1000_CTRL);
1634 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1635 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1636 		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1637 		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1638 		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1639 		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1640 
1641 	if (hw->phy.type == e1000_phy_m88)
1642 		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1643 
1644 	wr32(E1000_CTRL, ctrl_reg);
1645 
1646 	/* Disable the receiver on the PHY so when a cable is plugged in, the
1647 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1648 	 */
1649 	if (hw->phy.type == e1000_phy_m88)
1650 		igb_phy_disable_receiver(adapter);
1651 
1652 	msleep(500);
1653 	return 0;
1654 }
1655 
1656 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1657 {
1658 	return igb_integrated_phy_loopback(adapter);
1659 }
1660 
1661 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1662 {
1663 	struct e1000_hw *hw = &adapter->hw;
1664 	u32 reg;
1665 
1666 	reg = rd32(E1000_CTRL_EXT);
1667 
1668 	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1669 	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1670 		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1671 		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1672 		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1673 		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1674 		(hw->device_id == E1000_DEV_ID_I354_SGMII) ||
1675 		(hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) {
1676 			/* Enable DH89xxCC MPHY for near end loopback */
1677 			reg = rd32(E1000_MPHY_ADDR_CTL);
1678 			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1679 			E1000_MPHY_PCS_CLK_REG_OFFSET;
1680 			wr32(E1000_MPHY_ADDR_CTL, reg);
1681 
1682 			reg = rd32(E1000_MPHY_DATA);
1683 			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1684 			wr32(E1000_MPHY_DATA, reg);
1685 		}
1686 
1687 		reg = rd32(E1000_RCTL);
1688 		reg |= E1000_RCTL_LBM_TCVR;
1689 		wr32(E1000_RCTL, reg);
1690 
1691 		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1692 
1693 		reg = rd32(E1000_CTRL);
1694 		reg &= ~(E1000_CTRL_RFCE |
1695 			 E1000_CTRL_TFCE |
1696 			 E1000_CTRL_LRST);
1697 		reg |= E1000_CTRL_SLU |
1698 		       E1000_CTRL_FD;
1699 		wr32(E1000_CTRL, reg);
1700 
1701 		/* Unset switch control to serdes energy detect */
1702 		reg = rd32(E1000_CONNSW);
1703 		reg &= ~E1000_CONNSW_ENRGSRC;
1704 		wr32(E1000_CONNSW, reg);
1705 
1706 		/* Unset sigdetect for SERDES loopback on
1707 		 * 82580 and newer devices.
1708 		 */
1709 		if (hw->mac.type >= e1000_82580) {
1710 			reg = rd32(E1000_PCS_CFG0);
1711 			reg |= E1000_PCS_CFG_IGN_SD;
1712 			wr32(E1000_PCS_CFG0, reg);
1713 		}
1714 
1715 		/* Set PCS register for forced speed */
1716 		reg = rd32(E1000_PCS_LCTL);
1717 		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1718 		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1719 		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1720 		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1721 		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1722 		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1723 		wr32(E1000_PCS_LCTL, reg);
1724 
1725 		return 0;
1726 	}
1727 
1728 	return igb_set_phy_loopback(adapter);
1729 }
1730 
1731 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1732 {
1733 	struct e1000_hw *hw = &adapter->hw;
1734 	u32 rctl;
1735 	u16 phy_reg;
1736 
1737 	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1738 	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1739 	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1740 	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1741 	(hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1742 		u32 reg;
1743 
1744 		/* Disable near end loopback on DH89xxCC */
1745 		reg = rd32(E1000_MPHY_ADDR_CTL);
1746 		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1747 		E1000_MPHY_PCS_CLK_REG_OFFSET;
1748 		wr32(E1000_MPHY_ADDR_CTL, reg);
1749 
1750 		reg = rd32(E1000_MPHY_DATA);
1751 		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1752 		wr32(E1000_MPHY_DATA, reg);
1753 	}
1754 
1755 	rctl = rd32(E1000_RCTL);
1756 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1757 	wr32(E1000_RCTL, rctl);
1758 
1759 	hw->mac.autoneg = true;
1760 	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1761 	if (phy_reg & MII_CR_LOOPBACK) {
1762 		phy_reg &= ~MII_CR_LOOPBACK;
1763 		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1764 		igb_phy_sw_reset(hw);
1765 	}
1766 }
1767 
1768 static void igb_create_lbtest_frame(struct sk_buff *skb,
1769 				    unsigned int frame_size)
1770 {
1771 	memset(skb->data, 0xFF, frame_size);
1772 	frame_size /= 2;
1773 	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1774 	memset(&skb->data[frame_size + 10], 0xBE, 1);
1775 	memset(&skb->data[frame_size + 12], 0xAF, 1);
1776 }
1777 
1778 static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1779 				  unsigned int frame_size)
1780 {
1781 	unsigned char *data;
1782 	bool match = true;
1783 
1784 	frame_size >>= 1;
1785 
1786 	data = kmap(rx_buffer->page);
1787 
1788 	if (data[3] != 0xFF ||
1789 	    data[frame_size + 10] != 0xBE ||
1790 	    data[frame_size + 12] != 0xAF)
1791 		match = false;
1792 
1793 	kunmap(rx_buffer->page);
1794 
1795 	return match;
1796 }
1797 
1798 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1799 				struct igb_ring *tx_ring,
1800 				unsigned int size)
1801 {
1802 	union e1000_adv_rx_desc *rx_desc;
1803 	struct igb_rx_buffer *rx_buffer_info;
1804 	struct igb_tx_buffer *tx_buffer_info;
1805 	u16 rx_ntc, tx_ntc, count = 0;
1806 
1807 	/* initialize next to clean and descriptor values */
1808 	rx_ntc = rx_ring->next_to_clean;
1809 	tx_ntc = tx_ring->next_to_clean;
1810 	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1811 
1812 	while (rx_desc->wb.upper.length) {
1813 		/* check Rx buffer */
1814 		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1815 
1816 		/* sync Rx buffer for CPU read */
1817 		dma_sync_single_for_cpu(rx_ring->dev,
1818 					rx_buffer_info->dma,
1819 					size,
1820 					DMA_FROM_DEVICE);
1821 
1822 		/* verify contents of skb */
1823 		if (igb_check_lbtest_frame(rx_buffer_info, size))
1824 			count++;
1825 
1826 		/* sync Rx buffer for device write */
1827 		dma_sync_single_for_device(rx_ring->dev,
1828 					   rx_buffer_info->dma,
1829 					   size,
1830 					   DMA_FROM_DEVICE);
1831 
1832 		/* unmap buffer on Tx side */
1833 		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1834 
1835 		/* Free all the Tx ring sk_buffs */
1836 		dev_kfree_skb_any(tx_buffer_info->skb);
1837 
1838 		/* unmap skb header data */
1839 		dma_unmap_single(tx_ring->dev,
1840 				 dma_unmap_addr(tx_buffer_info, dma),
1841 				 dma_unmap_len(tx_buffer_info, len),
1842 				 DMA_TO_DEVICE);
1843 		dma_unmap_len_set(tx_buffer_info, len, 0);
1844 
1845 		/* increment Rx/Tx next to clean counters */
1846 		rx_ntc++;
1847 		if (rx_ntc == rx_ring->count)
1848 			rx_ntc = 0;
1849 		tx_ntc++;
1850 		if (tx_ntc == tx_ring->count)
1851 			tx_ntc = 0;
1852 
1853 		/* fetch next descriptor */
1854 		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1855 	}
1856 
1857 	netdev_tx_reset_queue(txring_txq(tx_ring));
1858 
1859 	/* re-map buffers to ring, store next to clean values */
1860 	igb_alloc_rx_buffers(rx_ring, count);
1861 	rx_ring->next_to_clean = rx_ntc;
1862 	tx_ring->next_to_clean = tx_ntc;
1863 
1864 	return count;
1865 }
1866 
1867 static int igb_run_loopback_test(struct igb_adapter *adapter)
1868 {
1869 	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1870 	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1871 	u16 i, j, lc, good_cnt;
1872 	int ret_val = 0;
1873 	unsigned int size = IGB_RX_HDR_LEN;
1874 	netdev_tx_t tx_ret_val;
1875 	struct sk_buff *skb;
1876 
1877 	/* allocate test skb */
1878 	skb = alloc_skb(size, GFP_KERNEL);
1879 	if (!skb)
1880 		return 11;
1881 
1882 	/* place data into test skb */
1883 	igb_create_lbtest_frame(skb, size);
1884 	skb_put(skb, size);
1885 
1886 	/* Calculate the loop count based on the largest descriptor ring
1887 	 * The idea is to wrap the largest ring a number of times using 64
1888 	 * send/receive pairs during each loop
1889 	 */
1890 
1891 	if (rx_ring->count <= tx_ring->count)
1892 		lc = ((tx_ring->count / 64) * 2) + 1;
1893 	else
1894 		lc = ((rx_ring->count / 64) * 2) + 1;
1895 
1896 	for (j = 0; j <= lc; j++) { /* loop count loop */
1897 		/* reset count of good packets */
1898 		good_cnt = 0;
1899 
1900 		/* place 64 packets on the transmit queue*/
1901 		for (i = 0; i < 64; i++) {
1902 			skb_get(skb);
1903 			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1904 			if (tx_ret_val == NETDEV_TX_OK)
1905 				good_cnt++;
1906 		}
1907 
1908 		if (good_cnt != 64) {
1909 			ret_val = 12;
1910 			break;
1911 		}
1912 
1913 		/* allow 200 milliseconds for packets to go from Tx to Rx */
1914 		msleep(200);
1915 
1916 		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1917 		if (good_cnt != 64) {
1918 			ret_val = 13;
1919 			break;
1920 		}
1921 	} /* end loop count loop */
1922 
1923 	/* free the original skb */
1924 	kfree_skb(skb);
1925 
1926 	return ret_val;
1927 }
1928 
1929 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1930 {
1931 	/* PHY loopback cannot be performed if SoL/IDER
1932 	 * sessions are active
1933 	 */
1934 	if (igb_check_reset_block(&adapter->hw)) {
1935 		dev_err(&adapter->pdev->dev,
1936 			"Cannot do PHY loopback test when SoL/IDER is active.\n");
1937 		*data = 0;
1938 		goto out;
1939 	}
1940 
1941 	if (adapter->hw.mac.type == e1000_i354) {
1942 		dev_info(&adapter->pdev->dev,
1943 			"Loopback test not supported on i354.\n");
1944 		*data = 0;
1945 		goto out;
1946 	}
1947 	*data = igb_setup_desc_rings(adapter);
1948 	if (*data)
1949 		goto out;
1950 	*data = igb_setup_loopback_test(adapter);
1951 	if (*data)
1952 		goto err_loopback;
1953 	*data = igb_run_loopback_test(adapter);
1954 	igb_loopback_cleanup(adapter);
1955 
1956 err_loopback:
1957 	igb_free_desc_rings(adapter);
1958 out:
1959 	return *data;
1960 }
1961 
1962 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1963 {
1964 	struct e1000_hw *hw = &adapter->hw;
1965 	*data = 0;
1966 	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1967 		int i = 0;
1968 
1969 		hw->mac.serdes_has_link = false;
1970 
1971 		/* On some blade server designs, link establishment
1972 		 * could take as long as 2-3 minutes
1973 		 */
1974 		do {
1975 			hw->mac.ops.check_for_link(&adapter->hw);
1976 			if (hw->mac.serdes_has_link)
1977 				return *data;
1978 			msleep(20);
1979 		} while (i++ < 3750);
1980 
1981 		*data = 1;
1982 	} else {
1983 		hw->mac.ops.check_for_link(&adapter->hw);
1984 		if (hw->mac.autoneg)
1985 			msleep(5000);
1986 
1987 		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1988 			*data = 1;
1989 	}
1990 	return *data;
1991 }
1992 
1993 static void igb_diag_test(struct net_device *netdev,
1994 			  struct ethtool_test *eth_test, u64 *data)
1995 {
1996 	struct igb_adapter *adapter = netdev_priv(netdev);
1997 	u16 autoneg_advertised;
1998 	u8 forced_speed_duplex, autoneg;
1999 	bool if_running = netif_running(netdev);
2000 
2001 	set_bit(__IGB_TESTING, &adapter->state);
2002 
2003 	/* can't do offline tests on media switching devices */
2004 	if (adapter->hw.dev_spec._82575.mas_capable)
2005 		eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
2006 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
2007 		/* Offline tests */
2008 
2009 		/* save speed, duplex, autoneg settings */
2010 		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
2011 		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
2012 		autoneg = adapter->hw.mac.autoneg;
2013 
2014 		dev_info(&adapter->pdev->dev, "offline testing starting\n");
2015 
2016 		/* power up link for link test */
2017 		igb_power_up_link(adapter);
2018 
2019 		/* Link test performed before hardware reset so autoneg doesn't
2020 		 * interfere with test result
2021 		 */
2022 		if (igb_link_test(adapter, &data[TEST_LINK]))
2023 			eth_test->flags |= ETH_TEST_FL_FAILED;
2024 
2025 		if (if_running)
2026 			/* indicate we're in test mode */
2027 			igb_close(netdev);
2028 		else
2029 			igb_reset(adapter);
2030 
2031 		if (igb_reg_test(adapter, &data[TEST_REG]))
2032 			eth_test->flags |= ETH_TEST_FL_FAILED;
2033 
2034 		igb_reset(adapter);
2035 		if (igb_eeprom_test(adapter, &data[TEST_EEP]))
2036 			eth_test->flags |= ETH_TEST_FL_FAILED;
2037 
2038 		igb_reset(adapter);
2039 		if (igb_intr_test(adapter, &data[TEST_IRQ]))
2040 			eth_test->flags |= ETH_TEST_FL_FAILED;
2041 
2042 		igb_reset(adapter);
2043 		/* power up link for loopback test */
2044 		igb_power_up_link(adapter);
2045 		if (igb_loopback_test(adapter, &data[TEST_LOOP]))
2046 			eth_test->flags |= ETH_TEST_FL_FAILED;
2047 
2048 		/* restore speed, duplex, autoneg settings */
2049 		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2050 		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2051 		adapter->hw.mac.autoneg = autoneg;
2052 
2053 		/* force this routine to wait until autoneg complete/timeout */
2054 		adapter->hw.phy.autoneg_wait_to_complete = true;
2055 		igb_reset(adapter);
2056 		adapter->hw.phy.autoneg_wait_to_complete = false;
2057 
2058 		clear_bit(__IGB_TESTING, &adapter->state);
2059 		if (if_running)
2060 			igb_open(netdev);
2061 	} else {
2062 		dev_info(&adapter->pdev->dev, "online testing starting\n");
2063 
2064 		/* PHY is powered down when interface is down */
2065 		if (if_running && igb_link_test(adapter, &data[TEST_LINK]))
2066 			eth_test->flags |= ETH_TEST_FL_FAILED;
2067 		else
2068 			data[TEST_LINK] = 0;
2069 
2070 		/* Online tests aren't run; pass by default */
2071 		data[TEST_REG] = 0;
2072 		data[TEST_EEP] = 0;
2073 		data[TEST_IRQ] = 0;
2074 		data[TEST_LOOP] = 0;
2075 
2076 		clear_bit(__IGB_TESTING, &adapter->state);
2077 	}
2078 	msleep_interruptible(4 * 1000);
2079 }
2080 
2081 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2082 {
2083 	struct igb_adapter *adapter = netdev_priv(netdev);
2084 
2085 	wol->wolopts = 0;
2086 
2087 	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2088 		return;
2089 
2090 	wol->supported = WAKE_UCAST | WAKE_MCAST |
2091 			 WAKE_BCAST | WAKE_MAGIC |
2092 			 WAKE_PHY;
2093 
2094 	/* apply any specific unsupported masks here */
2095 	switch (adapter->hw.device_id) {
2096 	default:
2097 		break;
2098 	}
2099 
2100 	if (adapter->wol & E1000_WUFC_EX)
2101 		wol->wolopts |= WAKE_UCAST;
2102 	if (adapter->wol & E1000_WUFC_MC)
2103 		wol->wolopts |= WAKE_MCAST;
2104 	if (adapter->wol & E1000_WUFC_BC)
2105 		wol->wolopts |= WAKE_BCAST;
2106 	if (adapter->wol & E1000_WUFC_MAG)
2107 		wol->wolopts |= WAKE_MAGIC;
2108 	if (adapter->wol & E1000_WUFC_LNKC)
2109 		wol->wolopts |= WAKE_PHY;
2110 }
2111 
2112 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2113 {
2114 	struct igb_adapter *adapter = netdev_priv(netdev);
2115 
2116 	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_FILTER))
2117 		return -EOPNOTSUPP;
2118 
2119 	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2120 		return wol->wolopts ? -EOPNOTSUPP : 0;
2121 
2122 	/* these settings will always override what we currently have */
2123 	adapter->wol = 0;
2124 
2125 	if (wol->wolopts & WAKE_UCAST)
2126 		adapter->wol |= E1000_WUFC_EX;
2127 	if (wol->wolopts & WAKE_MCAST)
2128 		adapter->wol |= E1000_WUFC_MC;
2129 	if (wol->wolopts & WAKE_BCAST)
2130 		adapter->wol |= E1000_WUFC_BC;
2131 	if (wol->wolopts & WAKE_MAGIC)
2132 		adapter->wol |= E1000_WUFC_MAG;
2133 	if (wol->wolopts & WAKE_PHY)
2134 		adapter->wol |= E1000_WUFC_LNKC;
2135 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2136 
2137 	return 0;
2138 }
2139 
2140 /* bit defines for adapter->led_status */
2141 #define IGB_LED_ON		0
2142 
2143 static int igb_set_phys_id(struct net_device *netdev,
2144 			   enum ethtool_phys_id_state state)
2145 {
2146 	struct igb_adapter *adapter = netdev_priv(netdev);
2147 	struct e1000_hw *hw = &adapter->hw;
2148 
2149 	switch (state) {
2150 	case ETHTOOL_ID_ACTIVE:
2151 		igb_blink_led(hw);
2152 		return 2;
2153 	case ETHTOOL_ID_ON:
2154 		igb_blink_led(hw);
2155 		break;
2156 	case ETHTOOL_ID_OFF:
2157 		igb_led_off(hw);
2158 		break;
2159 	case ETHTOOL_ID_INACTIVE:
2160 		igb_led_off(hw);
2161 		clear_bit(IGB_LED_ON, &adapter->led_status);
2162 		igb_cleanup_led(hw);
2163 		break;
2164 	}
2165 
2166 	return 0;
2167 }
2168 
2169 static int igb_set_coalesce(struct net_device *netdev,
2170 			    struct ethtool_coalesce *ec)
2171 {
2172 	struct igb_adapter *adapter = netdev_priv(netdev);
2173 	int i;
2174 
2175 	if (ec->rx_max_coalesced_frames ||
2176 	    ec->rx_coalesce_usecs_irq ||
2177 	    ec->rx_max_coalesced_frames_irq ||
2178 	    ec->tx_max_coalesced_frames ||
2179 	    ec->tx_coalesce_usecs_irq ||
2180 	    ec->stats_block_coalesce_usecs ||
2181 	    ec->use_adaptive_rx_coalesce ||
2182 	    ec->use_adaptive_tx_coalesce ||
2183 	    ec->pkt_rate_low ||
2184 	    ec->rx_coalesce_usecs_low ||
2185 	    ec->rx_max_coalesced_frames_low ||
2186 	    ec->tx_coalesce_usecs_low ||
2187 	    ec->tx_max_coalesced_frames_low ||
2188 	    ec->pkt_rate_high ||
2189 	    ec->rx_coalesce_usecs_high ||
2190 	    ec->rx_max_coalesced_frames_high ||
2191 	    ec->tx_coalesce_usecs_high ||
2192 	    ec->tx_max_coalesced_frames_high ||
2193 	    ec->rate_sample_interval)
2194 		return -ENOTSUPP;
2195 
2196 	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2197 	    ((ec->rx_coalesce_usecs > 3) &&
2198 	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2199 	    (ec->rx_coalesce_usecs == 2))
2200 		return -EINVAL;
2201 
2202 	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2203 	    ((ec->tx_coalesce_usecs > 3) &&
2204 	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2205 	    (ec->tx_coalesce_usecs == 2))
2206 		return -EINVAL;
2207 
2208 	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2209 		return -EINVAL;
2210 
2211 	/* If ITR is disabled, disable DMAC */
2212 	if (ec->rx_coalesce_usecs == 0) {
2213 		if (adapter->flags & IGB_FLAG_DMAC)
2214 			adapter->flags &= ~IGB_FLAG_DMAC;
2215 	}
2216 
2217 	/* convert to rate of irq's per second */
2218 	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2219 		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2220 	else
2221 		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2222 
2223 	/* convert to rate of irq's per second */
2224 	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2225 		adapter->tx_itr_setting = adapter->rx_itr_setting;
2226 	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2227 		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2228 	else
2229 		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2230 
2231 	for (i = 0; i < adapter->num_q_vectors; i++) {
2232 		struct igb_q_vector *q_vector = adapter->q_vector[i];
2233 		q_vector->tx.work_limit = adapter->tx_work_limit;
2234 		if (q_vector->rx.ring)
2235 			q_vector->itr_val = adapter->rx_itr_setting;
2236 		else
2237 			q_vector->itr_val = adapter->tx_itr_setting;
2238 		if (q_vector->itr_val && q_vector->itr_val <= 3)
2239 			q_vector->itr_val = IGB_START_ITR;
2240 		q_vector->set_itr = 1;
2241 	}
2242 
2243 	return 0;
2244 }
2245 
2246 static int igb_get_coalesce(struct net_device *netdev,
2247 			    struct ethtool_coalesce *ec)
2248 {
2249 	struct igb_adapter *adapter = netdev_priv(netdev);
2250 
2251 	if (adapter->rx_itr_setting <= 3)
2252 		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2253 	else
2254 		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2255 
2256 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2257 		if (adapter->tx_itr_setting <= 3)
2258 			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2259 		else
2260 			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2261 	}
2262 
2263 	return 0;
2264 }
2265 
2266 static int igb_nway_reset(struct net_device *netdev)
2267 {
2268 	struct igb_adapter *adapter = netdev_priv(netdev);
2269 	if (netif_running(netdev))
2270 		igb_reinit_locked(adapter);
2271 	return 0;
2272 }
2273 
2274 static int igb_get_sset_count(struct net_device *netdev, int sset)
2275 {
2276 	switch (sset) {
2277 	case ETH_SS_STATS:
2278 		return IGB_STATS_LEN;
2279 	case ETH_SS_TEST:
2280 		return IGB_TEST_LEN;
2281 	case ETH_SS_PRIV_FLAGS:
2282 		return IGB_PRIV_FLAGS_STR_LEN;
2283 	default:
2284 		return -ENOTSUPP;
2285 	}
2286 }
2287 
2288 static void igb_get_ethtool_stats(struct net_device *netdev,
2289 				  struct ethtool_stats *stats, u64 *data)
2290 {
2291 	struct igb_adapter *adapter = netdev_priv(netdev);
2292 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2293 	unsigned int start;
2294 	struct igb_ring *ring;
2295 	int i, j;
2296 	char *p;
2297 
2298 	spin_lock(&adapter->stats64_lock);
2299 	igb_update_stats(adapter);
2300 
2301 	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2302 		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2303 		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2304 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2305 	}
2306 	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2307 		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2308 		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2309 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2310 	}
2311 	for (j = 0; j < adapter->num_tx_queues; j++) {
2312 		u64	restart2;
2313 
2314 		ring = adapter->tx_ring[j];
2315 		do {
2316 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
2317 			data[i]   = ring->tx_stats.packets;
2318 			data[i+1] = ring->tx_stats.bytes;
2319 			data[i+2] = ring->tx_stats.restart_queue;
2320 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
2321 		do {
2322 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp2);
2323 			restart2  = ring->tx_stats.restart_queue2;
2324 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start));
2325 		data[i+2] += restart2;
2326 
2327 		i += IGB_TX_QUEUE_STATS_LEN;
2328 	}
2329 	for (j = 0; j < adapter->num_rx_queues; j++) {
2330 		ring = adapter->rx_ring[j];
2331 		do {
2332 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
2333 			data[i]   = ring->rx_stats.packets;
2334 			data[i+1] = ring->rx_stats.bytes;
2335 			data[i+2] = ring->rx_stats.drops;
2336 			data[i+3] = ring->rx_stats.csum_err;
2337 			data[i+4] = ring->rx_stats.alloc_failed;
2338 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
2339 		i += IGB_RX_QUEUE_STATS_LEN;
2340 	}
2341 	spin_unlock(&adapter->stats64_lock);
2342 }
2343 
2344 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2345 {
2346 	struct igb_adapter *adapter = netdev_priv(netdev);
2347 	u8 *p = data;
2348 	int i;
2349 
2350 	switch (stringset) {
2351 	case ETH_SS_TEST:
2352 		memcpy(data, *igb_gstrings_test,
2353 			IGB_TEST_LEN*ETH_GSTRING_LEN);
2354 		break;
2355 	case ETH_SS_STATS:
2356 		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2357 			memcpy(p, igb_gstrings_stats[i].stat_string,
2358 			       ETH_GSTRING_LEN);
2359 			p += ETH_GSTRING_LEN;
2360 		}
2361 		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2362 			memcpy(p, igb_gstrings_net_stats[i].stat_string,
2363 			       ETH_GSTRING_LEN);
2364 			p += ETH_GSTRING_LEN;
2365 		}
2366 		for (i = 0; i < adapter->num_tx_queues; i++) {
2367 			sprintf(p, "tx_queue_%u_packets", i);
2368 			p += ETH_GSTRING_LEN;
2369 			sprintf(p, "tx_queue_%u_bytes", i);
2370 			p += ETH_GSTRING_LEN;
2371 			sprintf(p, "tx_queue_%u_restart", i);
2372 			p += ETH_GSTRING_LEN;
2373 		}
2374 		for (i = 0; i < adapter->num_rx_queues; i++) {
2375 			sprintf(p, "rx_queue_%u_packets", i);
2376 			p += ETH_GSTRING_LEN;
2377 			sprintf(p, "rx_queue_%u_bytes", i);
2378 			p += ETH_GSTRING_LEN;
2379 			sprintf(p, "rx_queue_%u_drops", i);
2380 			p += ETH_GSTRING_LEN;
2381 			sprintf(p, "rx_queue_%u_csum_err", i);
2382 			p += ETH_GSTRING_LEN;
2383 			sprintf(p, "rx_queue_%u_alloc_failed", i);
2384 			p += ETH_GSTRING_LEN;
2385 		}
2386 		/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2387 		break;
2388 	case ETH_SS_PRIV_FLAGS:
2389 		memcpy(data, igb_priv_flags_strings,
2390 		       IGB_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN);
2391 		break;
2392 	}
2393 }
2394 
2395 static int igb_get_ts_info(struct net_device *dev,
2396 			   struct ethtool_ts_info *info)
2397 {
2398 	struct igb_adapter *adapter = netdev_priv(dev);
2399 
2400 	if (adapter->ptp_clock)
2401 		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2402 	else
2403 		info->phc_index = -1;
2404 
2405 	switch (adapter->hw.mac.type) {
2406 	case e1000_82575:
2407 		info->so_timestamping =
2408 			SOF_TIMESTAMPING_TX_SOFTWARE |
2409 			SOF_TIMESTAMPING_RX_SOFTWARE |
2410 			SOF_TIMESTAMPING_SOFTWARE;
2411 		return 0;
2412 	case e1000_82576:
2413 	case e1000_82580:
2414 	case e1000_i350:
2415 	case e1000_i354:
2416 	case e1000_i210:
2417 	case e1000_i211:
2418 		info->so_timestamping =
2419 			SOF_TIMESTAMPING_TX_SOFTWARE |
2420 			SOF_TIMESTAMPING_RX_SOFTWARE |
2421 			SOF_TIMESTAMPING_SOFTWARE |
2422 			SOF_TIMESTAMPING_TX_HARDWARE |
2423 			SOF_TIMESTAMPING_RX_HARDWARE |
2424 			SOF_TIMESTAMPING_RAW_HARDWARE;
2425 
2426 		info->tx_types =
2427 			BIT(HWTSTAMP_TX_OFF) |
2428 			BIT(HWTSTAMP_TX_ON);
2429 
2430 		info->rx_filters = BIT(HWTSTAMP_FILTER_NONE);
2431 
2432 		/* 82576 does not support timestamping all packets. */
2433 		if (adapter->hw.mac.type >= e1000_82580)
2434 			info->rx_filters |= BIT(HWTSTAMP_FILTER_ALL);
2435 		else
2436 			info->rx_filters |=
2437 				BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2438 				BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2439 				BIT(HWTSTAMP_FILTER_PTP_V2_EVENT);
2440 
2441 		return 0;
2442 	default:
2443 		return -EOPNOTSUPP;
2444 	}
2445 }
2446 
2447 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2448 static int igb_get_ethtool_nfc_entry(struct igb_adapter *adapter,
2449 				     struct ethtool_rxnfc *cmd)
2450 {
2451 	struct ethtool_rx_flow_spec *fsp = &cmd->fs;
2452 	struct igb_nfc_filter *rule = NULL;
2453 
2454 	/* report total rule count */
2455 	cmd->data = IGB_MAX_RXNFC_FILTERS;
2456 
2457 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2458 		if (fsp->location <= rule->sw_idx)
2459 			break;
2460 	}
2461 
2462 	if (!rule || fsp->location != rule->sw_idx)
2463 		return -EINVAL;
2464 
2465 	if (rule->filter.match_flags) {
2466 		fsp->flow_type = ETHER_FLOW;
2467 		fsp->ring_cookie = rule->action;
2468 		if (rule->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2469 			fsp->h_u.ether_spec.h_proto = rule->filter.etype;
2470 			fsp->m_u.ether_spec.h_proto = ETHER_TYPE_FULL_MASK;
2471 		}
2472 		if (rule->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI) {
2473 			fsp->flow_type |= FLOW_EXT;
2474 			fsp->h_ext.vlan_tci = rule->filter.vlan_tci;
2475 			fsp->m_ext.vlan_tci = htons(VLAN_PRIO_MASK);
2476 		}
2477 		if (rule->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) {
2478 			ether_addr_copy(fsp->h_u.ether_spec.h_dest,
2479 					rule->filter.dst_addr);
2480 			/* As we only support matching by the full
2481 			 * mask, return the mask to userspace
2482 			 */
2483 			eth_broadcast_addr(fsp->m_u.ether_spec.h_dest);
2484 		}
2485 		if (rule->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) {
2486 			ether_addr_copy(fsp->h_u.ether_spec.h_source,
2487 					rule->filter.src_addr);
2488 			/* As we only support matching by the full
2489 			 * mask, return the mask to userspace
2490 			 */
2491 			eth_broadcast_addr(fsp->m_u.ether_spec.h_source);
2492 		}
2493 
2494 		return 0;
2495 	}
2496 	return -EINVAL;
2497 }
2498 
2499 static int igb_get_ethtool_nfc_all(struct igb_adapter *adapter,
2500 				   struct ethtool_rxnfc *cmd,
2501 				   u32 *rule_locs)
2502 {
2503 	struct igb_nfc_filter *rule;
2504 	int cnt = 0;
2505 
2506 	/* report total rule count */
2507 	cmd->data = IGB_MAX_RXNFC_FILTERS;
2508 
2509 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2510 		if (cnt == cmd->rule_cnt)
2511 			return -EMSGSIZE;
2512 		rule_locs[cnt] = rule->sw_idx;
2513 		cnt++;
2514 	}
2515 
2516 	cmd->rule_cnt = cnt;
2517 
2518 	return 0;
2519 }
2520 
2521 static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2522 				 struct ethtool_rxnfc *cmd)
2523 {
2524 	cmd->data = 0;
2525 
2526 	/* Report default options for RSS on igb */
2527 	switch (cmd->flow_type) {
2528 	case TCP_V4_FLOW:
2529 		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2530 		/* Fall through */
2531 	case UDP_V4_FLOW:
2532 		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2533 			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2534 		/* Fall through */
2535 	case SCTP_V4_FLOW:
2536 	case AH_ESP_V4_FLOW:
2537 	case AH_V4_FLOW:
2538 	case ESP_V4_FLOW:
2539 	case IPV4_FLOW:
2540 		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2541 		break;
2542 	case TCP_V6_FLOW:
2543 		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2544 		/* Fall through */
2545 	case UDP_V6_FLOW:
2546 		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2547 			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2548 		/* Fall through */
2549 	case SCTP_V6_FLOW:
2550 	case AH_ESP_V6_FLOW:
2551 	case AH_V6_FLOW:
2552 	case ESP_V6_FLOW:
2553 	case IPV6_FLOW:
2554 		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2555 		break;
2556 	default:
2557 		return -EINVAL;
2558 	}
2559 
2560 	return 0;
2561 }
2562 
2563 static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2564 			 u32 *rule_locs)
2565 {
2566 	struct igb_adapter *adapter = netdev_priv(dev);
2567 	int ret = -EOPNOTSUPP;
2568 
2569 	switch (cmd->cmd) {
2570 	case ETHTOOL_GRXRINGS:
2571 		cmd->data = adapter->num_rx_queues;
2572 		ret = 0;
2573 		break;
2574 	case ETHTOOL_GRXCLSRLCNT:
2575 		cmd->rule_cnt = adapter->nfc_filter_count;
2576 		ret = 0;
2577 		break;
2578 	case ETHTOOL_GRXCLSRULE:
2579 		ret = igb_get_ethtool_nfc_entry(adapter, cmd);
2580 		break;
2581 	case ETHTOOL_GRXCLSRLALL:
2582 		ret = igb_get_ethtool_nfc_all(adapter, cmd, rule_locs);
2583 		break;
2584 	case ETHTOOL_GRXFH:
2585 		ret = igb_get_rss_hash_opts(adapter, cmd);
2586 		break;
2587 	default:
2588 		break;
2589 	}
2590 
2591 	return ret;
2592 }
2593 
2594 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2595 		       IGB_FLAG_RSS_FIELD_IPV6_UDP)
2596 static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2597 				struct ethtool_rxnfc *nfc)
2598 {
2599 	u32 flags = adapter->flags;
2600 
2601 	/* RSS does not support anything other than hashing
2602 	 * to queues on src and dst IPs and ports
2603 	 */
2604 	if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2605 			  RXH_L4_B_0_1 | RXH_L4_B_2_3))
2606 		return -EINVAL;
2607 
2608 	switch (nfc->flow_type) {
2609 	case TCP_V4_FLOW:
2610 	case TCP_V6_FLOW:
2611 		if (!(nfc->data & RXH_IP_SRC) ||
2612 		    !(nfc->data & RXH_IP_DST) ||
2613 		    !(nfc->data & RXH_L4_B_0_1) ||
2614 		    !(nfc->data & RXH_L4_B_2_3))
2615 			return -EINVAL;
2616 		break;
2617 	case UDP_V4_FLOW:
2618 		if (!(nfc->data & RXH_IP_SRC) ||
2619 		    !(nfc->data & RXH_IP_DST))
2620 			return -EINVAL;
2621 		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2622 		case 0:
2623 			flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2624 			break;
2625 		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2626 			flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2627 			break;
2628 		default:
2629 			return -EINVAL;
2630 		}
2631 		break;
2632 	case UDP_V6_FLOW:
2633 		if (!(nfc->data & RXH_IP_SRC) ||
2634 		    !(nfc->data & RXH_IP_DST))
2635 			return -EINVAL;
2636 		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2637 		case 0:
2638 			flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2639 			break;
2640 		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2641 			flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2642 			break;
2643 		default:
2644 			return -EINVAL;
2645 		}
2646 		break;
2647 	case AH_ESP_V4_FLOW:
2648 	case AH_V4_FLOW:
2649 	case ESP_V4_FLOW:
2650 	case SCTP_V4_FLOW:
2651 	case AH_ESP_V6_FLOW:
2652 	case AH_V6_FLOW:
2653 	case ESP_V6_FLOW:
2654 	case SCTP_V6_FLOW:
2655 		if (!(nfc->data & RXH_IP_SRC) ||
2656 		    !(nfc->data & RXH_IP_DST) ||
2657 		    (nfc->data & RXH_L4_B_0_1) ||
2658 		    (nfc->data & RXH_L4_B_2_3))
2659 			return -EINVAL;
2660 		break;
2661 	default:
2662 		return -EINVAL;
2663 	}
2664 
2665 	/* if we changed something we need to update flags */
2666 	if (flags != adapter->flags) {
2667 		struct e1000_hw *hw = &adapter->hw;
2668 		u32 mrqc = rd32(E1000_MRQC);
2669 
2670 		if ((flags & UDP_RSS_FLAGS) &&
2671 		    !(adapter->flags & UDP_RSS_FLAGS))
2672 			dev_err(&adapter->pdev->dev,
2673 				"enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2674 
2675 		adapter->flags = flags;
2676 
2677 		/* Perform hash on these packet types */
2678 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2679 			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2680 			E1000_MRQC_RSS_FIELD_IPV6 |
2681 			E1000_MRQC_RSS_FIELD_IPV6_TCP;
2682 
2683 		mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2684 			  E1000_MRQC_RSS_FIELD_IPV6_UDP);
2685 
2686 		if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2687 			mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2688 
2689 		if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2690 			mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2691 
2692 		wr32(E1000_MRQC, mrqc);
2693 	}
2694 
2695 	return 0;
2696 }
2697 
2698 static int igb_rxnfc_write_etype_filter(struct igb_adapter *adapter,
2699 					struct igb_nfc_filter *input)
2700 {
2701 	struct e1000_hw *hw = &adapter->hw;
2702 	u8 i;
2703 	u32 etqf;
2704 	u16 etype;
2705 
2706 	/* find an empty etype filter register */
2707 	for (i = 0; i < MAX_ETYPE_FILTER; ++i) {
2708 		if (!adapter->etype_bitmap[i])
2709 			break;
2710 	}
2711 	if (i == MAX_ETYPE_FILTER) {
2712 		dev_err(&adapter->pdev->dev, "ethtool -N: etype filters are all used.\n");
2713 		return -EINVAL;
2714 	}
2715 
2716 	adapter->etype_bitmap[i] = true;
2717 
2718 	etqf = rd32(E1000_ETQF(i));
2719 	etype = ntohs(input->filter.etype & ETHER_TYPE_FULL_MASK);
2720 
2721 	etqf |= E1000_ETQF_FILTER_ENABLE;
2722 	etqf &= ~E1000_ETQF_ETYPE_MASK;
2723 	etqf |= (etype & E1000_ETQF_ETYPE_MASK);
2724 
2725 	etqf &= ~E1000_ETQF_QUEUE_MASK;
2726 	etqf |= ((input->action << E1000_ETQF_QUEUE_SHIFT)
2727 		& E1000_ETQF_QUEUE_MASK);
2728 	etqf |= E1000_ETQF_QUEUE_ENABLE;
2729 
2730 	wr32(E1000_ETQF(i), etqf);
2731 
2732 	input->etype_reg_index = i;
2733 
2734 	return 0;
2735 }
2736 
2737 static int igb_rxnfc_write_vlan_prio_filter(struct igb_adapter *adapter,
2738 					    struct igb_nfc_filter *input)
2739 {
2740 	struct e1000_hw *hw = &adapter->hw;
2741 	u8 vlan_priority;
2742 	u16 queue_index;
2743 	u32 vlapqf;
2744 
2745 	vlapqf = rd32(E1000_VLAPQF);
2746 	vlan_priority = (ntohs(input->filter.vlan_tci) & VLAN_PRIO_MASK)
2747 				>> VLAN_PRIO_SHIFT;
2748 	queue_index = (vlapqf >> (vlan_priority * 4)) & E1000_VLAPQF_QUEUE_MASK;
2749 
2750 	/* check whether this vlan prio is already set */
2751 	if ((vlapqf & E1000_VLAPQF_P_VALID(vlan_priority)) &&
2752 	    (queue_index != input->action)) {
2753 		dev_err(&adapter->pdev->dev, "ethtool rxnfc set vlan prio filter failed.\n");
2754 		return -EEXIST;
2755 	}
2756 
2757 	vlapqf |= E1000_VLAPQF_P_VALID(vlan_priority);
2758 	vlapqf |= E1000_VLAPQF_QUEUE_SEL(vlan_priority, input->action);
2759 
2760 	wr32(E1000_VLAPQF, vlapqf);
2761 
2762 	return 0;
2763 }
2764 
2765 int igb_add_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2766 {
2767 	struct e1000_hw *hw = &adapter->hw;
2768 	int err = -EINVAL;
2769 
2770 	if (hw->mac.type == e1000_i210 &&
2771 	    !(input->filter.match_flags & ~IGB_FILTER_FLAG_SRC_MAC_ADDR)) {
2772 		dev_err(&adapter->pdev->dev,
2773 			"i210 doesn't support flow classification rules specifying only source addresses.\n");
2774 		return -EOPNOTSUPP;
2775 	}
2776 
2777 	if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2778 		err = igb_rxnfc_write_etype_filter(adapter, input);
2779 		if (err)
2780 			return err;
2781 	}
2782 
2783 	if (input->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) {
2784 		err = igb_add_mac_steering_filter(adapter,
2785 						  input->filter.dst_addr,
2786 						  input->action, 0);
2787 		err = min_t(int, err, 0);
2788 		if (err)
2789 			return err;
2790 	}
2791 
2792 	if (input->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) {
2793 		err = igb_add_mac_steering_filter(adapter,
2794 						  input->filter.src_addr,
2795 						  input->action,
2796 						  IGB_MAC_STATE_SRC_ADDR);
2797 		err = min_t(int, err, 0);
2798 		if (err)
2799 			return err;
2800 	}
2801 
2802 	if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2803 		err = igb_rxnfc_write_vlan_prio_filter(adapter, input);
2804 
2805 	return err;
2806 }
2807 
2808 static void igb_clear_etype_filter_regs(struct igb_adapter *adapter,
2809 					u16 reg_index)
2810 {
2811 	struct e1000_hw *hw = &adapter->hw;
2812 	u32 etqf = rd32(E1000_ETQF(reg_index));
2813 
2814 	etqf &= ~E1000_ETQF_QUEUE_ENABLE;
2815 	etqf &= ~E1000_ETQF_QUEUE_MASK;
2816 	etqf &= ~E1000_ETQF_FILTER_ENABLE;
2817 
2818 	wr32(E1000_ETQF(reg_index), etqf);
2819 
2820 	adapter->etype_bitmap[reg_index] = false;
2821 }
2822 
2823 static void igb_clear_vlan_prio_filter(struct igb_adapter *adapter,
2824 				       u16 vlan_tci)
2825 {
2826 	struct e1000_hw *hw = &adapter->hw;
2827 	u8 vlan_priority;
2828 	u32 vlapqf;
2829 
2830 	vlan_priority = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
2831 
2832 	vlapqf = rd32(E1000_VLAPQF);
2833 	vlapqf &= ~E1000_VLAPQF_P_VALID(vlan_priority);
2834 	vlapqf &= ~E1000_VLAPQF_QUEUE_SEL(vlan_priority,
2835 						E1000_VLAPQF_QUEUE_MASK);
2836 
2837 	wr32(E1000_VLAPQF, vlapqf);
2838 }
2839 
2840 int igb_erase_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2841 {
2842 	if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE)
2843 		igb_clear_etype_filter_regs(adapter,
2844 					    input->etype_reg_index);
2845 
2846 	if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2847 		igb_clear_vlan_prio_filter(adapter,
2848 					   ntohs(input->filter.vlan_tci));
2849 
2850 	if (input->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR)
2851 		igb_del_mac_steering_filter(adapter, input->filter.src_addr,
2852 					    input->action,
2853 					    IGB_MAC_STATE_SRC_ADDR);
2854 
2855 	if (input->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR)
2856 		igb_del_mac_steering_filter(adapter, input->filter.dst_addr,
2857 					    input->action, 0);
2858 
2859 	return 0;
2860 }
2861 
2862 static int igb_update_ethtool_nfc_entry(struct igb_adapter *adapter,
2863 					struct igb_nfc_filter *input,
2864 					u16 sw_idx)
2865 {
2866 	struct igb_nfc_filter *rule, *parent;
2867 	int err = -EINVAL;
2868 
2869 	parent = NULL;
2870 	rule = NULL;
2871 
2872 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2873 		/* hash found, or no matching entry */
2874 		if (rule->sw_idx >= sw_idx)
2875 			break;
2876 		parent = rule;
2877 	}
2878 
2879 	/* if there is an old rule occupying our place remove it */
2880 	if (rule && (rule->sw_idx == sw_idx)) {
2881 		if (!input)
2882 			err = igb_erase_filter(adapter, rule);
2883 
2884 		hlist_del(&rule->nfc_node);
2885 		kfree(rule);
2886 		adapter->nfc_filter_count--;
2887 	}
2888 
2889 	/* If no input this was a delete, err should be 0 if a rule was
2890 	 * successfully found and removed from the list else -EINVAL
2891 	 */
2892 	if (!input)
2893 		return err;
2894 
2895 	/* initialize node */
2896 	INIT_HLIST_NODE(&input->nfc_node);
2897 
2898 	/* add filter to the list */
2899 	if (parent)
2900 		hlist_add_behind(&input->nfc_node, &parent->nfc_node);
2901 	else
2902 		hlist_add_head(&input->nfc_node, &adapter->nfc_filter_list);
2903 
2904 	/* update counts */
2905 	adapter->nfc_filter_count++;
2906 
2907 	return 0;
2908 }
2909 
2910 static int igb_add_ethtool_nfc_entry(struct igb_adapter *adapter,
2911 				     struct ethtool_rxnfc *cmd)
2912 {
2913 	struct net_device *netdev = adapter->netdev;
2914 	struct ethtool_rx_flow_spec *fsp =
2915 		(struct ethtool_rx_flow_spec *)&cmd->fs;
2916 	struct igb_nfc_filter *input, *rule;
2917 	int err = 0;
2918 
2919 	if (!(netdev->hw_features & NETIF_F_NTUPLE))
2920 		return -EOPNOTSUPP;
2921 
2922 	/* Don't allow programming if the action is a queue greater than
2923 	 * the number of online Rx queues.
2924 	 */
2925 	if ((fsp->ring_cookie == RX_CLS_FLOW_DISC) ||
2926 	    (fsp->ring_cookie >= adapter->num_rx_queues)) {
2927 		dev_err(&adapter->pdev->dev, "ethtool -N: The specified action is invalid\n");
2928 		return -EINVAL;
2929 	}
2930 
2931 	/* Don't allow indexes to exist outside of available space */
2932 	if (fsp->location >= IGB_MAX_RXNFC_FILTERS) {
2933 		dev_err(&adapter->pdev->dev, "Location out of range\n");
2934 		return -EINVAL;
2935 	}
2936 
2937 	if ((fsp->flow_type & ~FLOW_EXT) != ETHER_FLOW)
2938 		return -EINVAL;
2939 
2940 	input = kzalloc(sizeof(*input), GFP_KERNEL);
2941 	if (!input)
2942 		return -ENOMEM;
2943 
2944 	if (fsp->m_u.ether_spec.h_proto == ETHER_TYPE_FULL_MASK) {
2945 		input->filter.etype = fsp->h_u.ether_spec.h_proto;
2946 		input->filter.match_flags = IGB_FILTER_FLAG_ETHER_TYPE;
2947 	}
2948 
2949 	/* Only support matching addresses by the full mask */
2950 	if (is_broadcast_ether_addr(fsp->m_u.ether_spec.h_source)) {
2951 		input->filter.match_flags |= IGB_FILTER_FLAG_SRC_MAC_ADDR;
2952 		ether_addr_copy(input->filter.src_addr,
2953 				fsp->h_u.ether_spec.h_source);
2954 	}
2955 
2956 	/* Only support matching addresses by the full mask */
2957 	if (is_broadcast_ether_addr(fsp->m_u.ether_spec.h_dest)) {
2958 		input->filter.match_flags |= IGB_FILTER_FLAG_DST_MAC_ADDR;
2959 		ether_addr_copy(input->filter.dst_addr,
2960 				fsp->h_u.ether_spec.h_dest);
2961 	}
2962 
2963 	if ((fsp->flow_type & FLOW_EXT) && fsp->m_ext.vlan_tci) {
2964 		if (fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK)) {
2965 			err = -EINVAL;
2966 			goto err_out;
2967 		}
2968 		input->filter.vlan_tci = fsp->h_ext.vlan_tci;
2969 		input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2970 	}
2971 
2972 	input->action = fsp->ring_cookie;
2973 	input->sw_idx = fsp->location;
2974 
2975 	spin_lock(&adapter->nfc_lock);
2976 
2977 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2978 		if (!memcmp(&input->filter, &rule->filter,
2979 			    sizeof(input->filter))) {
2980 			err = -EEXIST;
2981 			dev_err(&adapter->pdev->dev,
2982 				"ethtool: this filter is already set\n");
2983 			goto err_out_w_lock;
2984 		}
2985 	}
2986 
2987 	err = igb_add_filter(adapter, input);
2988 	if (err)
2989 		goto err_out_w_lock;
2990 
2991 	igb_update_ethtool_nfc_entry(adapter, input, input->sw_idx);
2992 
2993 	spin_unlock(&adapter->nfc_lock);
2994 	return 0;
2995 
2996 err_out_w_lock:
2997 	spin_unlock(&adapter->nfc_lock);
2998 err_out:
2999 	kfree(input);
3000 	return err;
3001 }
3002 
3003 static int igb_del_ethtool_nfc_entry(struct igb_adapter *adapter,
3004 				     struct ethtool_rxnfc *cmd)
3005 {
3006 	struct ethtool_rx_flow_spec *fsp =
3007 		(struct ethtool_rx_flow_spec *)&cmd->fs;
3008 	int err;
3009 
3010 	spin_lock(&adapter->nfc_lock);
3011 	err = igb_update_ethtool_nfc_entry(adapter, NULL, fsp->location);
3012 	spin_unlock(&adapter->nfc_lock);
3013 
3014 	return err;
3015 }
3016 
3017 static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
3018 {
3019 	struct igb_adapter *adapter = netdev_priv(dev);
3020 	int ret = -EOPNOTSUPP;
3021 
3022 	switch (cmd->cmd) {
3023 	case ETHTOOL_SRXFH:
3024 		ret = igb_set_rss_hash_opt(adapter, cmd);
3025 		break;
3026 	case ETHTOOL_SRXCLSRLINS:
3027 		ret = igb_add_ethtool_nfc_entry(adapter, cmd);
3028 		break;
3029 	case ETHTOOL_SRXCLSRLDEL:
3030 		ret = igb_del_ethtool_nfc_entry(adapter, cmd);
3031 	default:
3032 		break;
3033 	}
3034 
3035 	return ret;
3036 }
3037 
3038 static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
3039 {
3040 	struct igb_adapter *adapter = netdev_priv(netdev);
3041 	struct e1000_hw *hw = &adapter->hw;
3042 	u32 ret_val;
3043 	u16 phy_data;
3044 
3045 	if ((hw->mac.type < e1000_i350) ||
3046 	    (hw->phy.media_type != e1000_media_type_copper))
3047 		return -EOPNOTSUPP;
3048 
3049 	edata->supported = (SUPPORTED_1000baseT_Full |
3050 			    SUPPORTED_100baseT_Full);
3051 	if (!hw->dev_spec._82575.eee_disable)
3052 		edata->advertised =
3053 			mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
3054 
3055 	/* The IPCNFG and EEER registers are not supported on I354. */
3056 	if (hw->mac.type == e1000_i354) {
3057 		igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
3058 	} else {
3059 		u32 eeer;
3060 
3061 		eeer = rd32(E1000_EEER);
3062 
3063 		/* EEE status on negotiated link */
3064 		if (eeer & E1000_EEER_EEE_NEG)
3065 			edata->eee_active = true;
3066 
3067 		if (eeer & E1000_EEER_TX_LPI_EN)
3068 			edata->tx_lpi_enabled = true;
3069 	}
3070 
3071 	/* EEE Link Partner Advertised */
3072 	switch (hw->mac.type) {
3073 	case e1000_i350:
3074 		ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
3075 					   &phy_data);
3076 		if (ret_val)
3077 			return -ENODATA;
3078 
3079 		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
3080 		break;
3081 	case e1000_i354:
3082 	case e1000_i210:
3083 	case e1000_i211:
3084 		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
3085 					     E1000_EEE_LP_ADV_DEV_I210,
3086 					     &phy_data);
3087 		if (ret_val)
3088 			return -ENODATA;
3089 
3090 		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
3091 
3092 		break;
3093 	default:
3094 		break;
3095 	}
3096 
3097 	edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
3098 
3099 	if ((hw->mac.type == e1000_i354) &&
3100 	    (edata->eee_enabled))
3101 		edata->tx_lpi_enabled = true;
3102 
3103 	/* Report correct negotiated EEE status for devices that
3104 	 * wrongly report EEE at half-duplex
3105 	 */
3106 	if (adapter->link_duplex == HALF_DUPLEX) {
3107 		edata->eee_enabled = false;
3108 		edata->eee_active = false;
3109 		edata->tx_lpi_enabled = false;
3110 		edata->advertised &= ~edata->advertised;
3111 	}
3112 
3113 	return 0;
3114 }
3115 
3116 static int igb_set_eee(struct net_device *netdev,
3117 		       struct ethtool_eee *edata)
3118 {
3119 	struct igb_adapter *adapter = netdev_priv(netdev);
3120 	struct e1000_hw *hw = &adapter->hw;
3121 	struct ethtool_eee eee_curr;
3122 	bool adv1g_eee = true, adv100m_eee = true;
3123 	s32 ret_val;
3124 
3125 	if ((hw->mac.type < e1000_i350) ||
3126 	    (hw->phy.media_type != e1000_media_type_copper))
3127 		return -EOPNOTSUPP;
3128 
3129 	memset(&eee_curr, 0, sizeof(struct ethtool_eee));
3130 
3131 	ret_val = igb_get_eee(netdev, &eee_curr);
3132 	if (ret_val)
3133 		return ret_val;
3134 
3135 	if (eee_curr.eee_enabled) {
3136 		if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
3137 			dev_err(&adapter->pdev->dev,
3138 				"Setting EEE tx-lpi is not supported\n");
3139 			return -EINVAL;
3140 		}
3141 
3142 		/* Tx LPI timer is not implemented currently */
3143 		if (edata->tx_lpi_timer) {
3144 			dev_err(&adapter->pdev->dev,
3145 				"Setting EEE Tx LPI timer is not supported\n");
3146 			return -EINVAL;
3147 		}
3148 
3149 		if (!edata->advertised || (edata->advertised &
3150 		    ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL))) {
3151 			dev_err(&adapter->pdev->dev,
3152 				"EEE Advertisement supports only 100Tx and/or 100T full duplex\n");
3153 			return -EINVAL;
3154 		}
3155 		adv100m_eee = !!(edata->advertised & ADVERTISE_100_FULL);
3156 		adv1g_eee = !!(edata->advertised & ADVERTISE_1000_FULL);
3157 
3158 	} else if (!edata->eee_enabled) {
3159 		dev_err(&adapter->pdev->dev,
3160 			"Setting EEE options are not supported with EEE disabled\n");
3161 			return -EINVAL;
3162 		}
3163 
3164 	adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
3165 	if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
3166 		hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
3167 		adapter->flags |= IGB_FLAG_EEE;
3168 
3169 		/* reset link */
3170 		if (netif_running(netdev))
3171 			igb_reinit_locked(adapter);
3172 		else
3173 			igb_reset(adapter);
3174 	}
3175 
3176 	if (hw->mac.type == e1000_i354)
3177 		ret_val = igb_set_eee_i354(hw, adv1g_eee, adv100m_eee);
3178 	else
3179 		ret_val = igb_set_eee_i350(hw, adv1g_eee, adv100m_eee);
3180 
3181 	if (ret_val) {
3182 		dev_err(&adapter->pdev->dev,
3183 			"Problem setting EEE advertisement options\n");
3184 		return -EINVAL;
3185 	}
3186 
3187 	return 0;
3188 }
3189 
3190 static int igb_get_module_info(struct net_device *netdev,
3191 			       struct ethtool_modinfo *modinfo)
3192 {
3193 	struct igb_adapter *adapter = netdev_priv(netdev);
3194 	struct e1000_hw *hw = &adapter->hw;
3195 	u32 status = 0;
3196 	u16 sff8472_rev, addr_mode;
3197 	bool page_swap = false;
3198 
3199 	if ((hw->phy.media_type == e1000_media_type_copper) ||
3200 	    (hw->phy.media_type == e1000_media_type_unknown))
3201 		return -EOPNOTSUPP;
3202 
3203 	/* Check whether we support SFF-8472 or not */
3204 	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
3205 	if (status)
3206 		return -EIO;
3207 
3208 	/* addressing mode is not supported */
3209 	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
3210 	if (status)
3211 		return -EIO;
3212 
3213 	/* addressing mode is not supported */
3214 	if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
3215 		hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
3216 		page_swap = true;
3217 	}
3218 
3219 	if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
3220 		/* We have an SFP, but it does not support SFF-8472 */
3221 		modinfo->type = ETH_MODULE_SFF_8079;
3222 		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
3223 	} else {
3224 		/* We have an SFP which supports a revision of SFF-8472 */
3225 		modinfo->type = ETH_MODULE_SFF_8472;
3226 		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
3227 	}
3228 
3229 	return 0;
3230 }
3231 
3232 static int igb_get_module_eeprom(struct net_device *netdev,
3233 				 struct ethtool_eeprom *ee, u8 *data)
3234 {
3235 	struct igb_adapter *adapter = netdev_priv(netdev);
3236 	struct e1000_hw *hw = &adapter->hw;
3237 	u32 status = 0;
3238 	u16 *dataword;
3239 	u16 first_word, last_word;
3240 	int i = 0;
3241 
3242 	if (ee->len == 0)
3243 		return -EINVAL;
3244 
3245 	first_word = ee->offset >> 1;
3246 	last_word = (ee->offset + ee->len - 1) >> 1;
3247 
3248 	dataword = kmalloc_array(last_word - first_word + 1, sizeof(u16),
3249 				 GFP_KERNEL);
3250 	if (!dataword)
3251 		return -ENOMEM;
3252 
3253 	/* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
3254 	for (i = 0; i < last_word - first_word + 1; i++) {
3255 		status = igb_read_phy_reg_i2c(hw, (first_word + i) * 2,
3256 					      &dataword[i]);
3257 		if (status) {
3258 			/* Error occurred while reading module */
3259 			kfree(dataword);
3260 			return -EIO;
3261 		}
3262 
3263 		be16_to_cpus(&dataword[i]);
3264 	}
3265 
3266 	memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
3267 	kfree(dataword);
3268 
3269 	return 0;
3270 }
3271 
3272 static int igb_ethtool_begin(struct net_device *netdev)
3273 {
3274 	struct igb_adapter *adapter = netdev_priv(netdev);
3275 	pm_runtime_get_sync(&adapter->pdev->dev);
3276 	return 0;
3277 }
3278 
3279 static void igb_ethtool_complete(struct net_device *netdev)
3280 {
3281 	struct igb_adapter *adapter = netdev_priv(netdev);
3282 	pm_runtime_put(&adapter->pdev->dev);
3283 }
3284 
3285 static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
3286 {
3287 	return IGB_RETA_SIZE;
3288 }
3289 
3290 static int igb_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key,
3291 			u8 *hfunc)
3292 {
3293 	struct igb_adapter *adapter = netdev_priv(netdev);
3294 	int i;
3295 
3296 	if (hfunc)
3297 		*hfunc = ETH_RSS_HASH_TOP;
3298 	if (!indir)
3299 		return 0;
3300 	for (i = 0; i < IGB_RETA_SIZE; i++)
3301 		indir[i] = adapter->rss_indir_tbl[i];
3302 
3303 	return 0;
3304 }
3305 
3306 void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
3307 {
3308 	struct e1000_hw *hw = &adapter->hw;
3309 	u32 reg = E1000_RETA(0);
3310 	u32 shift = 0;
3311 	int i = 0;
3312 
3313 	switch (hw->mac.type) {
3314 	case e1000_82575:
3315 		shift = 6;
3316 		break;
3317 	case e1000_82576:
3318 		/* 82576 supports 2 RSS queues for SR-IOV */
3319 		if (adapter->vfs_allocated_count)
3320 			shift = 3;
3321 		break;
3322 	default:
3323 		break;
3324 	}
3325 
3326 	while (i < IGB_RETA_SIZE) {
3327 		u32 val = 0;
3328 		int j;
3329 
3330 		for (j = 3; j >= 0; j--) {
3331 			val <<= 8;
3332 			val |= adapter->rss_indir_tbl[i + j];
3333 		}
3334 
3335 		wr32(reg, val << shift);
3336 		reg += 4;
3337 		i += 4;
3338 	}
3339 }
3340 
3341 static int igb_set_rxfh(struct net_device *netdev, const u32 *indir,
3342 			const u8 *key, const u8 hfunc)
3343 {
3344 	struct igb_adapter *adapter = netdev_priv(netdev);
3345 	struct e1000_hw *hw = &adapter->hw;
3346 	int i;
3347 	u32 num_queues;
3348 
3349 	/* We do not allow change in unsupported parameters */
3350 	if (key ||
3351 	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
3352 		return -EOPNOTSUPP;
3353 	if (!indir)
3354 		return 0;
3355 
3356 	num_queues = adapter->rss_queues;
3357 
3358 	switch (hw->mac.type) {
3359 	case e1000_82576:
3360 		/* 82576 supports 2 RSS queues for SR-IOV */
3361 		if (adapter->vfs_allocated_count)
3362 			num_queues = 2;
3363 		break;
3364 	default:
3365 		break;
3366 	}
3367 
3368 	/* Verify user input. */
3369 	for (i = 0; i < IGB_RETA_SIZE; i++)
3370 		if (indir[i] >= num_queues)
3371 			return -EINVAL;
3372 
3373 
3374 	for (i = 0; i < IGB_RETA_SIZE; i++)
3375 		adapter->rss_indir_tbl[i] = indir[i];
3376 
3377 	igb_write_rss_indir_tbl(adapter);
3378 
3379 	return 0;
3380 }
3381 
3382 static unsigned int igb_max_channels(struct igb_adapter *adapter)
3383 {
3384 	return igb_get_max_rss_queues(adapter);
3385 }
3386 
3387 static void igb_get_channels(struct net_device *netdev,
3388 			     struct ethtool_channels *ch)
3389 {
3390 	struct igb_adapter *adapter = netdev_priv(netdev);
3391 
3392 	/* Report maximum channels */
3393 	ch->max_combined = igb_max_channels(adapter);
3394 
3395 	/* Report info for other vector */
3396 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
3397 		ch->max_other = NON_Q_VECTORS;
3398 		ch->other_count = NON_Q_VECTORS;
3399 	}
3400 
3401 	ch->combined_count = adapter->rss_queues;
3402 }
3403 
3404 static int igb_set_channels(struct net_device *netdev,
3405 			    struct ethtool_channels *ch)
3406 {
3407 	struct igb_adapter *adapter = netdev_priv(netdev);
3408 	unsigned int count = ch->combined_count;
3409 	unsigned int max_combined = 0;
3410 
3411 	/* Verify they are not requesting separate vectors */
3412 	if (!count || ch->rx_count || ch->tx_count)
3413 		return -EINVAL;
3414 
3415 	/* Verify other_count is valid and has not been changed */
3416 	if (ch->other_count != NON_Q_VECTORS)
3417 		return -EINVAL;
3418 
3419 	/* Verify the number of channels doesn't exceed hw limits */
3420 	max_combined = igb_max_channels(adapter);
3421 	if (count > max_combined)
3422 		return -EINVAL;
3423 
3424 	if (count != adapter->rss_queues) {
3425 		adapter->rss_queues = count;
3426 		igb_set_flag_queue_pairs(adapter, max_combined);
3427 
3428 		/* Hardware has to reinitialize queues and interrupts to
3429 		 * match the new configuration.
3430 		 */
3431 		return igb_reinit_queues(adapter);
3432 	}
3433 
3434 	return 0;
3435 }
3436 
3437 static u32 igb_get_priv_flags(struct net_device *netdev)
3438 {
3439 	struct igb_adapter *adapter = netdev_priv(netdev);
3440 	u32 priv_flags = 0;
3441 
3442 	if (adapter->flags & IGB_FLAG_RX_LEGACY)
3443 		priv_flags |= IGB_PRIV_FLAGS_LEGACY_RX;
3444 
3445 	return priv_flags;
3446 }
3447 
3448 static int igb_set_priv_flags(struct net_device *netdev, u32 priv_flags)
3449 {
3450 	struct igb_adapter *adapter = netdev_priv(netdev);
3451 	unsigned int flags = adapter->flags;
3452 
3453 	flags &= ~IGB_FLAG_RX_LEGACY;
3454 	if (priv_flags & IGB_PRIV_FLAGS_LEGACY_RX)
3455 		flags |= IGB_FLAG_RX_LEGACY;
3456 
3457 	if (flags != adapter->flags) {
3458 		adapter->flags = flags;
3459 
3460 		/* reset interface to repopulate queues */
3461 		if (netif_running(netdev))
3462 			igb_reinit_locked(adapter);
3463 	}
3464 
3465 	return 0;
3466 }
3467 
3468 static const struct ethtool_ops igb_ethtool_ops = {
3469 	.get_drvinfo		= igb_get_drvinfo,
3470 	.get_regs_len		= igb_get_regs_len,
3471 	.get_regs		= igb_get_regs,
3472 	.get_wol		= igb_get_wol,
3473 	.set_wol		= igb_set_wol,
3474 	.get_msglevel		= igb_get_msglevel,
3475 	.set_msglevel		= igb_set_msglevel,
3476 	.nway_reset		= igb_nway_reset,
3477 	.get_link		= igb_get_link,
3478 	.get_eeprom_len		= igb_get_eeprom_len,
3479 	.get_eeprom		= igb_get_eeprom,
3480 	.set_eeprom		= igb_set_eeprom,
3481 	.get_ringparam		= igb_get_ringparam,
3482 	.set_ringparam		= igb_set_ringparam,
3483 	.get_pauseparam		= igb_get_pauseparam,
3484 	.set_pauseparam		= igb_set_pauseparam,
3485 	.self_test		= igb_diag_test,
3486 	.get_strings		= igb_get_strings,
3487 	.set_phys_id		= igb_set_phys_id,
3488 	.get_sset_count		= igb_get_sset_count,
3489 	.get_ethtool_stats	= igb_get_ethtool_stats,
3490 	.get_coalesce		= igb_get_coalesce,
3491 	.set_coalesce		= igb_set_coalesce,
3492 	.get_ts_info		= igb_get_ts_info,
3493 	.get_rxnfc		= igb_get_rxnfc,
3494 	.set_rxnfc		= igb_set_rxnfc,
3495 	.get_eee		= igb_get_eee,
3496 	.set_eee		= igb_set_eee,
3497 	.get_module_info	= igb_get_module_info,
3498 	.get_module_eeprom	= igb_get_module_eeprom,
3499 	.get_rxfh_indir_size	= igb_get_rxfh_indir_size,
3500 	.get_rxfh		= igb_get_rxfh,
3501 	.set_rxfh		= igb_set_rxfh,
3502 	.get_channels		= igb_get_channels,
3503 	.set_channels		= igb_set_channels,
3504 	.get_priv_flags		= igb_get_priv_flags,
3505 	.set_priv_flags		= igb_set_priv_flags,
3506 	.begin			= igb_ethtool_begin,
3507 	.complete		= igb_ethtool_complete,
3508 	.get_link_ksettings	= igb_get_link_ksettings,
3509 	.set_link_ksettings	= igb_set_link_ksettings,
3510 };
3511 
3512 void igb_set_ethtool_ops(struct net_device *netdev)
3513 {
3514 	netdev->ethtool_ops = &igb_ethtool_ops;
3515 }
3516