xref: /openbmc/linux/drivers/net/ethernet/intel/igb/igb_ethtool.c (revision c83eeec79ff64f777cbd59a8bd15d0a3fe1f92c0)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3 
4 /* ethtool support for igb */
5 
6 #include <linux/vmalloc.h>
7 #include <linux/netdevice.h>
8 #include <linux/pci.h>
9 #include <linux/delay.h>
10 #include <linux/interrupt.h>
11 #include <linux/if_ether.h>
12 #include <linux/ethtool.h>
13 #include <linux/sched.h>
14 #include <linux/slab.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/highmem.h>
17 #include <linux/mdio.h>
18 
19 #include "igb.h"
20 
21 struct igb_stats {
22 	char stat_string[ETH_GSTRING_LEN];
23 	int sizeof_stat;
24 	int stat_offset;
25 };
26 
27 #define IGB_STAT(_name, _stat) { \
28 	.stat_string = _name, \
29 	.sizeof_stat = sizeof_field(struct igb_adapter, _stat), \
30 	.stat_offset = offsetof(struct igb_adapter, _stat) \
31 }
32 static const struct igb_stats igb_gstrings_stats[] = {
33 	IGB_STAT("rx_packets", stats.gprc),
34 	IGB_STAT("tx_packets", stats.gptc),
35 	IGB_STAT("rx_bytes", stats.gorc),
36 	IGB_STAT("tx_bytes", stats.gotc),
37 	IGB_STAT("rx_broadcast", stats.bprc),
38 	IGB_STAT("tx_broadcast", stats.bptc),
39 	IGB_STAT("rx_multicast", stats.mprc),
40 	IGB_STAT("tx_multicast", stats.mptc),
41 	IGB_STAT("multicast", stats.mprc),
42 	IGB_STAT("collisions", stats.colc),
43 	IGB_STAT("rx_crc_errors", stats.crcerrs),
44 	IGB_STAT("rx_no_buffer_count", stats.rnbc),
45 	IGB_STAT("rx_missed_errors", stats.mpc),
46 	IGB_STAT("tx_aborted_errors", stats.ecol),
47 	IGB_STAT("tx_carrier_errors", stats.tncrs),
48 	IGB_STAT("tx_window_errors", stats.latecol),
49 	IGB_STAT("tx_abort_late_coll", stats.latecol),
50 	IGB_STAT("tx_deferred_ok", stats.dc),
51 	IGB_STAT("tx_single_coll_ok", stats.scc),
52 	IGB_STAT("tx_multi_coll_ok", stats.mcc),
53 	IGB_STAT("tx_timeout_count", tx_timeout_count),
54 	IGB_STAT("rx_long_length_errors", stats.roc),
55 	IGB_STAT("rx_short_length_errors", stats.ruc),
56 	IGB_STAT("rx_align_errors", stats.algnerrc),
57 	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
58 	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
59 	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
60 	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
61 	IGB_STAT("tx_flow_control_xon", stats.xontxc),
62 	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
63 	IGB_STAT("rx_long_byte_count", stats.gorc),
64 	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
65 	IGB_STAT("tx_smbus", stats.mgptc),
66 	IGB_STAT("rx_smbus", stats.mgprc),
67 	IGB_STAT("dropped_smbus", stats.mgpdc),
68 	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
69 	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
70 	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
71 	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
72 	IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
73 	IGB_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
74 	IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
75 };
76 
77 #define IGB_NETDEV_STAT(_net_stat) { \
78 	.stat_string = __stringify(_net_stat), \
79 	.sizeof_stat = sizeof_field(struct rtnl_link_stats64, _net_stat), \
80 	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
81 }
82 static const struct igb_stats igb_gstrings_net_stats[] = {
83 	IGB_NETDEV_STAT(rx_errors),
84 	IGB_NETDEV_STAT(tx_errors),
85 	IGB_NETDEV_STAT(tx_dropped),
86 	IGB_NETDEV_STAT(rx_length_errors),
87 	IGB_NETDEV_STAT(rx_over_errors),
88 	IGB_NETDEV_STAT(rx_frame_errors),
89 	IGB_NETDEV_STAT(rx_fifo_errors),
90 	IGB_NETDEV_STAT(tx_fifo_errors),
91 	IGB_NETDEV_STAT(tx_heartbeat_errors)
92 };
93 
94 #define IGB_GLOBAL_STATS_LEN	\
95 	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
96 #define IGB_NETDEV_STATS_LEN	\
97 	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
98 #define IGB_RX_QUEUE_STATS_LEN \
99 	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
100 
101 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
102 
103 #define IGB_QUEUE_STATS_LEN \
104 	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
105 	  IGB_RX_QUEUE_STATS_LEN) + \
106 	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
107 	  IGB_TX_QUEUE_STATS_LEN))
108 #define IGB_STATS_LEN \
109 	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
110 
111 enum igb_diagnostics_results {
112 	TEST_REG = 0,
113 	TEST_EEP,
114 	TEST_IRQ,
115 	TEST_LOOP,
116 	TEST_LINK
117 };
118 
119 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
120 	[TEST_REG]  = "Register test  (offline)",
121 	[TEST_EEP]  = "Eeprom test    (offline)",
122 	[TEST_IRQ]  = "Interrupt test (offline)",
123 	[TEST_LOOP] = "Loopback test  (offline)",
124 	[TEST_LINK] = "Link test   (on/offline)"
125 };
126 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
127 
128 static const char igb_priv_flags_strings[][ETH_GSTRING_LEN] = {
129 #define IGB_PRIV_FLAGS_LEGACY_RX	BIT(0)
130 	"legacy-rx",
131 };
132 
133 #define IGB_PRIV_FLAGS_STR_LEN ARRAY_SIZE(igb_priv_flags_strings)
134 
135 static int igb_get_link_ksettings(struct net_device *netdev,
136 				  struct ethtool_link_ksettings *cmd)
137 {
138 	struct igb_adapter *adapter = netdev_priv(netdev);
139 	struct e1000_hw *hw = &adapter->hw;
140 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
141 	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
142 	u32 status;
143 	u32 speed;
144 	u32 supported, advertising;
145 
146 	status = pm_runtime_suspended(&adapter->pdev->dev) ?
147 		 0 : rd32(E1000_STATUS);
148 	if (hw->phy.media_type == e1000_media_type_copper) {
149 
150 		supported = (SUPPORTED_10baseT_Half |
151 			     SUPPORTED_10baseT_Full |
152 			     SUPPORTED_100baseT_Half |
153 			     SUPPORTED_100baseT_Full |
154 			     SUPPORTED_1000baseT_Full|
155 			     SUPPORTED_Autoneg |
156 			     SUPPORTED_TP |
157 			     SUPPORTED_Pause);
158 		advertising = ADVERTISED_TP;
159 
160 		if (hw->mac.autoneg == 1) {
161 			advertising |= ADVERTISED_Autoneg;
162 			/* the e1000 autoneg seems to match ethtool nicely */
163 			advertising |= hw->phy.autoneg_advertised;
164 		}
165 
166 		cmd->base.port = PORT_TP;
167 		cmd->base.phy_address = hw->phy.addr;
168 	} else {
169 		supported = (SUPPORTED_FIBRE |
170 			     SUPPORTED_1000baseKX_Full |
171 			     SUPPORTED_Autoneg |
172 			     SUPPORTED_Pause);
173 		advertising = (ADVERTISED_FIBRE |
174 			       ADVERTISED_1000baseKX_Full);
175 		if (hw->mac.type == e1000_i354) {
176 			if ((hw->device_id ==
177 			     E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
178 			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
179 				supported |= SUPPORTED_2500baseX_Full;
180 				supported &= ~SUPPORTED_1000baseKX_Full;
181 				advertising |= ADVERTISED_2500baseX_Full;
182 				advertising &= ~ADVERTISED_1000baseKX_Full;
183 			}
184 		}
185 		if (eth_flags->e100_base_fx || eth_flags->e100_base_lx) {
186 			supported |= SUPPORTED_100baseT_Full;
187 			advertising |= ADVERTISED_100baseT_Full;
188 		}
189 		if (hw->mac.autoneg == 1)
190 			advertising |= ADVERTISED_Autoneg;
191 
192 		cmd->base.port = PORT_FIBRE;
193 	}
194 	if (hw->mac.autoneg != 1)
195 		advertising &= ~(ADVERTISED_Pause |
196 				 ADVERTISED_Asym_Pause);
197 
198 	switch (hw->fc.requested_mode) {
199 	case e1000_fc_full:
200 		advertising |= ADVERTISED_Pause;
201 		break;
202 	case e1000_fc_rx_pause:
203 		advertising |= (ADVERTISED_Pause |
204 				ADVERTISED_Asym_Pause);
205 		break;
206 	case e1000_fc_tx_pause:
207 		advertising |=  ADVERTISED_Asym_Pause;
208 		break;
209 	default:
210 		advertising &= ~(ADVERTISED_Pause |
211 				 ADVERTISED_Asym_Pause);
212 	}
213 	if (status & E1000_STATUS_LU) {
214 		if ((status & E1000_STATUS_2P5_SKU) &&
215 		    !(status & E1000_STATUS_2P5_SKU_OVER)) {
216 			speed = SPEED_2500;
217 		} else if (status & E1000_STATUS_SPEED_1000) {
218 			speed = SPEED_1000;
219 		} else if (status & E1000_STATUS_SPEED_100) {
220 			speed = SPEED_100;
221 		} else {
222 			speed = SPEED_10;
223 		}
224 		if ((status & E1000_STATUS_FD) ||
225 		    hw->phy.media_type != e1000_media_type_copper)
226 			cmd->base.duplex = DUPLEX_FULL;
227 		else
228 			cmd->base.duplex = DUPLEX_HALF;
229 	} else {
230 		speed = SPEED_UNKNOWN;
231 		cmd->base.duplex = DUPLEX_UNKNOWN;
232 	}
233 	cmd->base.speed = speed;
234 	if ((hw->phy.media_type == e1000_media_type_fiber) ||
235 	    hw->mac.autoneg)
236 		cmd->base.autoneg = AUTONEG_ENABLE;
237 	else
238 		cmd->base.autoneg = AUTONEG_DISABLE;
239 
240 	/* MDI-X => 2; MDI =>1; Invalid =>0 */
241 	if (hw->phy.media_type == e1000_media_type_copper)
242 		cmd->base.eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
243 						      ETH_TP_MDI;
244 	else
245 		cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
246 
247 	if (hw->phy.mdix == AUTO_ALL_MODES)
248 		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
249 	else
250 		cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
251 
252 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
253 						supported);
254 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
255 						advertising);
256 
257 	return 0;
258 }
259 
260 static int igb_set_link_ksettings(struct net_device *netdev,
261 				  const struct ethtool_link_ksettings *cmd)
262 {
263 	struct igb_adapter *adapter = netdev_priv(netdev);
264 	struct e1000_hw *hw = &adapter->hw;
265 	u32 advertising;
266 
267 	/* When SoL/IDER sessions are active, autoneg/speed/duplex
268 	 * cannot be changed
269 	 */
270 	if (igb_check_reset_block(hw)) {
271 		dev_err(&adapter->pdev->dev,
272 			"Cannot change link characteristics when SoL/IDER is active.\n");
273 		return -EINVAL;
274 	}
275 
276 	/* MDI setting is only allowed when autoneg enabled because
277 	 * some hardware doesn't allow MDI setting when speed or
278 	 * duplex is forced.
279 	 */
280 	if (cmd->base.eth_tp_mdix_ctrl) {
281 		if (hw->phy.media_type != e1000_media_type_copper)
282 			return -EOPNOTSUPP;
283 
284 		if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
285 		    (cmd->base.autoneg != AUTONEG_ENABLE)) {
286 			dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
287 			return -EINVAL;
288 		}
289 	}
290 
291 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
292 		usleep_range(1000, 2000);
293 
294 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
295 						cmd->link_modes.advertising);
296 
297 	if (cmd->base.autoneg == AUTONEG_ENABLE) {
298 		hw->mac.autoneg = 1;
299 		if (hw->phy.media_type == e1000_media_type_fiber) {
300 			hw->phy.autoneg_advertised = advertising |
301 						     ADVERTISED_FIBRE |
302 						     ADVERTISED_Autoneg;
303 			switch (adapter->link_speed) {
304 			case SPEED_2500:
305 				hw->phy.autoneg_advertised =
306 					ADVERTISED_2500baseX_Full;
307 				break;
308 			case SPEED_1000:
309 				hw->phy.autoneg_advertised =
310 					ADVERTISED_1000baseT_Full;
311 				break;
312 			case SPEED_100:
313 				hw->phy.autoneg_advertised =
314 					ADVERTISED_100baseT_Full;
315 				break;
316 			default:
317 				break;
318 			}
319 		} else {
320 			hw->phy.autoneg_advertised = advertising |
321 						     ADVERTISED_TP |
322 						     ADVERTISED_Autoneg;
323 		}
324 		advertising = hw->phy.autoneg_advertised;
325 		if (adapter->fc_autoneg)
326 			hw->fc.requested_mode = e1000_fc_default;
327 	} else {
328 		u32 speed = cmd->base.speed;
329 		/* calling this overrides forced MDI setting */
330 		if (igb_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
331 			clear_bit(__IGB_RESETTING, &adapter->state);
332 			return -EINVAL;
333 		}
334 	}
335 
336 	/* MDI-X => 2; MDI => 1; Auto => 3 */
337 	if (cmd->base.eth_tp_mdix_ctrl) {
338 		/* fix up the value for auto (3 => 0) as zero is mapped
339 		 * internally to auto
340 		 */
341 		if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
342 			hw->phy.mdix = AUTO_ALL_MODES;
343 		else
344 			hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
345 	}
346 
347 	/* reset the link */
348 	if (netif_running(adapter->netdev)) {
349 		igb_down(adapter);
350 		igb_up(adapter);
351 	} else
352 		igb_reset(adapter);
353 
354 	clear_bit(__IGB_RESETTING, &adapter->state);
355 	return 0;
356 }
357 
358 static u32 igb_get_link(struct net_device *netdev)
359 {
360 	struct igb_adapter *adapter = netdev_priv(netdev);
361 	struct e1000_mac_info *mac = &adapter->hw.mac;
362 
363 	/* If the link is not reported up to netdev, interrupts are disabled,
364 	 * and so the physical link state may have changed since we last
365 	 * looked. Set get_link_status to make sure that the true link
366 	 * state is interrogated, rather than pulling a cached and possibly
367 	 * stale link state from the driver.
368 	 */
369 	if (!netif_carrier_ok(netdev))
370 		mac->get_link_status = 1;
371 
372 	return igb_has_link(adapter);
373 }
374 
375 static void igb_get_pauseparam(struct net_device *netdev,
376 			       struct ethtool_pauseparam *pause)
377 {
378 	struct igb_adapter *adapter = netdev_priv(netdev);
379 	struct e1000_hw *hw = &adapter->hw;
380 
381 	pause->autoneg =
382 		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
383 
384 	if (hw->fc.current_mode == e1000_fc_rx_pause)
385 		pause->rx_pause = 1;
386 	else if (hw->fc.current_mode == e1000_fc_tx_pause)
387 		pause->tx_pause = 1;
388 	else if (hw->fc.current_mode == e1000_fc_full) {
389 		pause->rx_pause = 1;
390 		pause->tx_pause = 1;
391 	}
392 }
393 
394 static int igb_set_pauseparam(struct net_device *netdev,
395 			      struct ethtool_pauseparam *pause)
396 {
397 	struct igb_adapter *adapter = netdev_priv(netdev);
398 	struct e1000_hw *hw = &adapter->hw;
399 	int retval = 0;
400 	int i;
401 
402 	/* 100basefx does not support setting link flow control */
403 	if (hw->dev_spec._82575.eth_flags.e100_base_fx)
404 		return -EINVAL;
405 
406 	adapter->fc_autoneg = pause->autoneg;
407 
408 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
409 		usleep_range(1000, 2000);
410 
411 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
412 		hw->fc.requested_mode = e1000_fc_default;
413 		if (netif_running(adapter->netdev)) {
414 			igb_down(adapter);
415 			igb_up(adapter);
416 		} else {
417 			igb_reset(adapter);
418 		}
419 	} else {
420 		if (pause->rx_pause && pause->tx_pause)
421 			hw->fc.requested_mode = e1000_fc_full;
422 		else if (pause->rx_pause && !pause->tx_pause)
423 			hw->fc.requested_mode = e1000_fc_rx_pause;
424 		else if (!pause->rx_pause && pause->tx_pause)
425 			hw->fc.requested_mode = e1000_fc_tx_pause;
426 		else if (!pause->rx_pause && !pause->tx_pause)
427 			hw->fc.requested_mode = e1000_fc_none;
428 
429 		hw->fc.current_mode = hw->fc.requested_mode;
430 
431 		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
432 			  igb_force_mac_fc(hw) : igb_setup_link(hw));
433 
434 		/* Make sure SRRCTL considers new fc settings for each ring */
435 		for (i = 0; i < adapter->num_rx_queues; i++) {
436 			struct igb_ring *ring = adapter->rx_ring[i];
437 
438 			igb_setup_srrctl(adapter, ring);
439 		}
440 	}
441 
442 	clear_bit(__IGB_RESETTING, &adapter->state);
443 	return retval;
444 }
445 
446 static u32 igb_get_msglevel(struct net_device *netdev)
447 {
448 	struct igb_adapter *adapter = netdev_priv(netdev);
449 	return adapter->msg_enable;
450 }
451 
452 static void igb_set_msglevel(struct net_device *netdev, u32 data)
453 {
454 	struct igb_adapter *adapter = netdev_priv(netdev);
455 	adapter->msg_enable = data;
456 }
457 
458 static int igb_get_regs_len(struct net_device *netdev)
459 {
460 #define IGB_REGS_LEN 740
461 	return IGB_REGS_LEN * sizeof(u32);
462 }
463 
464 static void igb_get_regs(struct net_device *netdev,
465 			 struct ethtool_regs *regs, void *p)
466 {
467 	struct igb_adapter *adapter = netdev_priv(netdev);
468 	struct e1000_hw *hw = &adapter->hw;
469 	u32 *regs_buff = p;
470 	u8 i;
471 
472 	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
473 
474 	regs->version = (1u << 24) | (hw->revision_id << 16) | hw->device_id;
475 
476 	/* General Registers */
477 	regs_buff[0] = rd32(E1000_CTRL);
478 	regs_buff[1] = rd32(E1000_STATUS);
479 	regs_buff[2] = rd32(E1000_CTRL_EXT);
480 	regs_buff[3] = rd32(E1000_MDIC);
481 	regs_buff[4] = rd32(E1000_SCTL);
482 	regs_buff[5] = rd32(E1000_CONNSW);
483 	regs_buff[6] = rd32(E1000_VET);
484 	regs_buff[7] = rd32(E1000_LEDCTL);
485 	regs_buff[8] = rd32(E1000_PBA);
486 	regs_buff[9] = rd32(E1000_PBS);
487 	regs_buff[10] = rd32(E1000_FRTIMER);
488 	regs_buff[11] = rd32(E1000_TCPTIMER);
489 
490 	/* NVM Register */
491 	regs_buff[12] = rd32(E1000_EECD);
492 
493 	/* Interrupt */
494 	/* Reading EICS for EICR because they read the
495 	 * same but EICS does not clear on read
496 	 */
497 	regs_buff[13] = rd32(E1000_EICS);
498 	regs_buff[14] = rd32(E1000_EICS);
499 	regs_buff[15] = rd32(E1000_EIMS);
500 	regs_buff[16] = rd32(E1000_EIMC);
501 	regs_buff[17] = rd32(E1000_EIAC);
502 	regs_buff[18] = rd32(E1000_EIAM);
503 	/* Reading ICS for ICR because they read the
504 	 * same but ICS does not clear on read
505 	 */
506 	regs_buff[19] = rd32(E1000_ICS);
507 	regs_buff[20] = rd32(E1000_ICS);
508 	regs_buff[21] = rd32(E1000_IMS);
509 	regs_buff[22] = rd32(E1000_IMC);
510 	regs_buff[23] = rd32(E1000_IAC);
511 	regs_buff[24] = rd32(E1000_IAM);
512 	regs_buff[25] = rd32(E1000_IMIRVP);
513 
514 	/* Flow Control */
515 	regs_buff[26] = rd32(E1000_FCAL);
516 	regs_buff[27] = rd32(E1000_FCAH);
517 	regs_buff[28] = rd32(E1000_FCTTV);
518 	regs_buff[29] = rd32(E1000_FCRTL);
519 	regs_buff[30] = rd32(E1000_FCRTH);
520 	regs_buff[31] = rd32(E1000_FCRTV);
521 
522 	/* Receive */
523 	regs_buff[32] = rd32(E1000_RCTL);
524 	regs_buff[33] = rd32(E1000_RXCSUM);
525 	regs_buff[34] = rd32(E1000_RLPML);
526 	regs_buff[35] = rd32(E1000_RFCTL);
527 	regs_buff[36] = rd32(E1000_MRQC);
528 	regs_buff[37] = rd32(E1000_VT_CTL);
529 
530 	/* Transmit */
531 	regs_buff[38] = rd32(E1000_TCTL);
532 	regs_buff[39] = rd32(E1000_TCTL_EXT);
533 	regs_buff[40] = rd32(E1000_TIPG);
534 	regs_buff[41] = rd32(E1000_DTXCTL);
535 
536 	/* Wake Up */
537 	regs_buff[42] = rd32(E1000_WUC);
538 	regs_buff[43] = rd32(E1000_WUFC);
539 	regs_buff[44] = rd32(E1000_WUS);
540 	regs_buff[45] = rd32(E1000_IPAV);
541 	regs_buff[46] = rd32(E1000_WUPL);
542 
543 	/* MAC */
544 	regs_buff[47] = rd32(E1000_PCS_CFG0);
545 	regs_buff[48] = rd32(E1000_PCS_LCTL);
546 	regs_buff[49] = rd32(E1000_PCS_LSTAT);
547 	regs_buff[50] = rd32(E1000_PCS_ANADV);
548 	regs_buff[51] = rd32(E1000_PCS_LPAB);
549 	regs_buff[52] = rd32(E1000_PCS_NPTX);
550 	regs_buff[53] = rd32(E1000_PCS_LPABNP);
551 
552 	/* Statistics */
553 	regs_buff[54] = adapter->stats.crcerrs;
554 	regs_buff[55] = adapter->stats.algnerrc;
555 	regs_buff[56] = adapter->stats.symerrs;
556 	regs_buff[57] = adapter->stats.rxerrc;
557 	regs_buff[58] = adapter->stats.mpc;
558 	regs_buff[59] = adapter->stats.scc;
559 	regs_buff[60] = adapter->stats.ecol;
560 	regs_buff[61] = adapter->stats.mcc;
561 	regs_buff[62] = adapter->stats.latecol;
562 	regs_buff[63] = adapter->stats.colc;
563 	regs_buff[64] = adapter->stats.dc;
564 	regs_buff[65] = adapter->stats.tncrs;
565 	regs_buff[66] = adapter->stats.sec;
566 	regs_buff[67] = adapter->stats.htdpmc;
567 	regs_buff[68] = adapter->stats.rlec;
568 	regs_buff[69] = adapter->stats.xonrxc;
569 	regs_buff[70] = adapter->stats.xontxc;
570 	regs_buff[71] = adapter->stats.xoffrxc;
571 	regs_buff[72] = adapter->stats.xofftxc;
572 	regs_buff[73] = adapter->stats.fcruc;
573 	regs_buff[74] = adapter->stats.prc64;
574 	regs_buff[75] = adapter->stats.prc127;
575 	regs_buff[76] = adapter->stats.prc255;
576 	regs_buff[77] = adapter->stats.prc511;
577 	regs_buff[78] = adapter->stats.prc1023;
578 	regs_buff[79] = adapter->stats.prc1522;
579 	regs_buff[80] = adapter->stats.gprc;
580 	regs_buff[81] = adapter->stats.bprc;
581 	regs_buff[82] = adapter->stats.mprc;
582 	regs_buff[83] = adapter->stats.gptc;
583 	regs_buff[84] = adapter->stats.gorc;
584 	regs_buff[86] = adapter->stats.gotc;
585 	regs_buff[88] = adapter->stats.rnbc;
586 	regs_buff[89] = adapter->stats.ruc;
587 	regs_buff[90] = adapter->stats.rfc;
588 	regs_buff[91] = adapter->stats.roc;
589 	regs_buff[92] = adapter->stats.rjc;
590 	regs_buff[93] = adapter->stats.mgprc;
591 	regs_buff[94] = adapter->stats.mgpdc;
592 	regs_buff[95] = adapter->stats.mgptc;
593 	regs_buff[96] = adapter->stats.tor;
594 	regs_buff[98] = adapter->stats.tot;
595 	regs_buff[100] = adapter->stats.tpr;
596 	regs_buff[101] = adapter->stats.tpt;
597 	regs_buff[102] = adapter->stats.ptc64;
598 	regs_buff[103] = adapter->stats.ptc127;
599 	regs_buff[104] = adapter->stats.ptc255;
600 	regs_buff[105] = adapter->stats.ptc511;
601 	regs_buff[106] = adapter->stats.ptc1023;
602 	regs_buff[107] = adapter->stats.ptc1522;
603 	regs_buff[108] = adapter->stats.mptc;
604 	regs_buff[109] = adapter->stats.bptc;
605 	regs_buff[110] = adapter->stats.tsctc;
606 	regs_buff[111] = adapter->stats.iac;
607 	regs_buff[112] = adapter->stats.rpthc;
608 	regs_buff[113] = adapter->stats.hgptc;
609 	regs_buff[114] = adapter->stats.hgorc;
610 	regs_buff[116] = adapter->stats.hgotc;
611 	regs_buff[118] = adapter->stats.lenerrs;
612 	regs_buff[119] = adapter->stats.scvpc;
613 	regs_buff[120] = adapter->stats.hrmpc;
614 
615 	for (i = 0; i < 4; i++)
616 		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
617 	for (i = 0; i < 4; i++)
618 		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
619 	for (i = 0; i < 4; i++)
620 		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
621 	for (i = 0; i < 4; i++)
622 		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
623 	for (i = 0; i < 4; i++)
624 		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
625 	for (i = 0; i < 4; i++)
626 		regs_buff[141 + i] = rd32(E1000_RDH(i));
627 	for (i = 0; i < 4; i++)
628 		regs_buff[145 + i] = rd32(E1000_RDT(i));
629 	for (i = 0; i < 4; i++)
630 		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
631 
632 	for (i = 0; i < 10; i++)
633 		regs_buff[153 + i] = rd32(E1000_EITR(i));
634 	for (i = 0; i < 8; i++)
635 		regs_buff[163 + i] = rd32(E1000_IMIR(i));
636 	for (i = 0; i < 8; i++)
637 		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
638 	for (i = 0; i < 16; i++)
639 		regs_buff[179 + i] = rd32(E1000_RAL(i));
640 	for (i = 0; i < 16; i++)
641 		regs_buff[195 + i] = rd32(E1000_RAH(i));
642 
643 	for (i = 0; i < 4; i++)
644 		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
645 	for (i = 0; i < 4; i++)
646 		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
647 	for (i = 0; i < 4; i++)
648 		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
649 	for (i = 0; i < 4; i++)
650 		regs_buff[223 + i] = rd32(E1000_TDH(i));
651 	for (i = 0; i < 4; i++)
652 		regs_buff[227 + i] = rd32(E1000_TDT(i));
653 	for (i = 0; i < 4; i++)
654 		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
655 	for (i = 0; i < 4; i++)
656 		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
657 	for (i = 0; i < 4; i++)
658 		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
659 	for (i = 0; i < 4; i++)
660 		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
661 
662 	for (i = 0; i < 4; i++)
663 		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
664 	for (i = 0; i < 4; i++)
665 		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
666 	for (i = 0; i < 32; i++)
667 		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
668 	for (i = 0; i < 128; i++)
669 		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
670 	for (i = 0; i < 128; i++)
671 		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
672 	for (i = 0; i < 4; i++)
673 		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
674 
675 	regs_buff[547] = rd32(E1000_TDFH);
676 	regs_buff[548] = rd32(E1000_TDFT);
677 	regs_buff[549] = rd32(E1000_TDFHS);
678 	regs_buff[550] = rd32(E1000_TDFPC);
679 
680 	if (hw->mac.type > e1000_82580) {
681 		regs_buff[551] = adapter->stats.o2bgptc;
682 		regs_buff[552] = adapter->stats.b2ospc;
683 		regs_buff[553] = adapter->stats.o2bspc;
684 		regs_buff[554] = adapter->stats.b2ogprc;
685 	}
686 
687 	if (hw->mac.type == e1000_82576) {
688 		for (i = 0; i < 12; i++)
689 			regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
690 		for (i = 0; i < 4; i++)
691 			regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
692 		for (i = 0; i < 12; i++)
693 			regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
694 		for (i = 0; i < 12; i++)
695 			regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
696 		for (i = 0; i < 12; i++)
697 			regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
698 		for (i = 0; i < 12; i++)
699 			regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
700 		for (i = 0; i < 12; i++)
701 			regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
702 		for (i = 0; i < 12; i++)
703 			regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
704 
705 		for (i = 0; i < 12; i++)
706 			regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
707 		for (i = 0; i < 12; i++)
708 			regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
709 		for (i = 0; i < 12; i++)
710 			regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
711 		for (i = 0; i < 12; i++)
712 			regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
713 		for (i = 0; i < 12; i++)
714 			regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
715 		for (i = 0; i < 12; i++)
716 			regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
717 		for (i = 0; i < 12; i++)
718 			regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
719 		for (i = 0; i < 12; i++)
720 			regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
721 	}
722 
723 	if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211)
724 		regs_buff[739] = rd32(E1000_I210_RR2DCDELAY);
725 }
726 
727 static int igb_get_eeprom_len(struct net_device *netdev)
728 {
729 	struct igb_adapter *adapter = netdev_priv(netdev);
730 	return adapter->hw.nvm.word_size * 2;
731 }
732 
733 static int igb_get_eeprom(struct net_device *netdev,
734 			  struct ethtool_eeprom *eeprom, u8 *bytes)
735 {
736 	struct igb_adapter *adapter = netdev_priv(netdev);
737 	struct e1000_hw *hw = &adapter->hw;
738 	u16 *eeprom_buff;
739 	int first_word, last_word;
740 	int ret_val = 0;
741 	u16 i;
742 
743 	if (eeprom->len == 0)
744 		return -EINVAL;
745 
746 	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
747 
748 	first_word = eeprom->offset >> 1;
749 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
750 
751 	eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
752 				    GFP_KERNEL);
753 	if (!eeprom_buff)
754 		return -ENOMEM;
755 
756 	if (hw->nvm.type == e1000_nvm_eeprom_spi)
757 		ret_val = hw->nvm.ops.read(hw, first_word,
758 					   last_word - first_word + 1,
759 					   eeprom_buff);
760 	else {
761 		for (i = 0; i < last_word - first_word + 1; i++) {
762 			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
763 						   &eeprom_buff[i]);
764 			if (ret_val)
765 				break;
766 		}
767 	}
768 
769 	/* Device's eeprom is always little-endian, word addressable */
770 	for (i = 0; i < last_word - first_word + 1; i++)
771 		le16_to_cpus(&eeprom_buff[i]);
772 
773 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
774 			eeprom->len);
775 	kfree(eeprom_buff);
776 
777 	return ret_val;
778 }
779 
780 static int igb_set_eeprom(struct net_device *netdev,
781 			  struct ethtool_eeprom *eeprom, u8 *bytes)
782 {
783 	struct igb_adapter *adapter = netdev_priv(netdev);
784 	struct e1000_hw *hw = &adapter->hw;
785 	u16 *eeprom_buff;
786 	void *ptr;
787 	int max_len, first_word, last_word, ret_val = 0;
788 	u16 i;
789 
790 	if (eeprom->len == 0)
791 		return -EOPNOTSUPP;
792 
793 	if ((hw->mac.type >= e1000_i210) &&
794 	    !igb_get_flash_presence_i210(hw)) {
795 		return -EOPNOTSUPP;
796 	}
797 
798 	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
799 		return -EFAULT;
800 
801 	max_len = hw->nvm.word_size * 2;
802 
803 	first_word = eeprom->offset >> 1;
804 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
805 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
806 	if (!eeprom_buff)
807 		return -ENOMEM;
808 
809 	ptr = (void *)eeprom_buff;
810 
811 	if (eeprom->offset & 1) {
812 		/* need read/modify/write of first changed EEPROM word
813 		 * only the second byte of the word is being modified
814 		 */
815 		ret_val = hw->nvm.ops.read(hw, first_word, 1,
816 					    &eeprom_buff[0]);
817 		ptr++;
818 	}
819 	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
820 		/* need read/modify/write of last changed EEPROM word
821 		 * only the first byte of the word is being modified
822 		 */
823 		ret_val = hw->nvm.ops.read(hw, last_word, 1,
824 				   &eeprom_buff[last_word - first_word]);
825 	}
826 
827 	/* Device's eeprom is always little-endian, word addressable */
828 	for (i = 0; i < last_word - first_word + 1; i++)
829 		le16_to_cpus(&eeprom_buff[i]);
830 
831 	memcpy(ptr, bytes, eeprom->len);
832 
833 	for (i = 0; i < last_word - first_word + 1; i++)
834 		cpu_to_le16s(&eeprom_buff[i]);
835 
836 	ret_val = hw->nvm.ops.write(hw, first_word,
837 				    last_word - first_word + 1, eeprom_buff);
838 
839 	/* Update the checksum if nvm write succeeded */
840 	if (ret_val == 0)
841 		hw->nvm.ops.update(hw);
842 
843 	igb_set_fw_version(adapter);
844 	kfree(eeprom_buff);
845 	return ret_val;
846 }
847 
848 static void igb_get_drvinfo(struct net_device *netdev,
849 			    struct ethtool_drvinfo *drvinfo)
850 {
851 	struct igb_adapter *adapter = netdev_priv(netdev);
852 
853 	strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
854 
855 	/* EEPROM image version # is reported as firmware version # for
856 	 * 82575 controllers
857 	 */
858 	strlcpy(drvinfo->fw_version, adapter->fw_version,
859 		sizeof(drvinfo->fw_version));
860 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
861 		sizeof(drvinfo->bus_info));
862 
863 	drvinfo->n_priv_flags = IGB_PRIV_FLAGS_STR_LEN;
864 }
865 
866 static void igb_get_ringparam(struct net_device *netdev,
867 			      struct ethtool_ringparam *ring)
868 {
869 	struct igb_adapter *adapter = netdev_priv(netdev);
870 
871 	ring->rx_max_pending = IGB_MAX_RXD;
872 	ring->tx_max_pending = IGB_MAX_TXD;
873 	ring->rx_pending = adapter->rx_ring_count;
874 	ring->tx_pending = adapter->tx_ring_count;
875 }
876 
877 static int igb_set_ringparam(struct net_device *netdev,
878 			     struct ethtool_ringparam *ring)
879 {
880 	struct igb_adapter *adapter = netdev_priv(netdev);
881 	struct igb_ring *temp_ring;
882 	int i, err = 0;
883 	u16 new_rx_count, new_tx_count;
884 
885 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
886 		return -EINVAL;
887 
888 	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
889 	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
890 	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
891 
892 	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
893 	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
894 	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
895 
896 	if ((new_tx_count == adapter->tx_ring_count) &&
897 	    (new_rx_count == adapter->rx_ring_count)) {
898 		/* nothing to do */
899 		return 0;
900 	}
901 
902 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
903 		usleep_range(1000, 2000);
904 
905 	if (!netif_running(adapter->netdev)) {
906 		for (i = 0; i < adapter->num_tx_queues; i++)
907 			adapter->tx_ring[i]->count = new_tx_count;
908 		for (i = 0; i < adapter->num_rx_queues; i++)
909 			adapter->rx_ring[i]->count = new_rx_count;
910 		adapter->tx_ring_count = new_tx_count;
911 		adapter->rx_ring_count = new_rx_count;
912 		goto clear_reset;
913 	}
914 
915 	if (adapter->num_tx_queues > adapter->num_rx_queues)
916 		temp_ring = vmalloc(array_size(sizeof(struct igb_ring),
917 					       adapter->num_tx_queues));
918 	else
919 		temp_ring = vmalloc(array_size(sizeof(struct igb_ring),
920 					       adapter->num_rx_queues));
921 
922 	if (!temp_ring) {
923 		err = -ENOMEM;
924 		goto clear_reset;
925 	}
926 
927 	igb_down(adapter);
928 
929 	/* We can't just free everything and then setup again,
930 	 * because the ISRs in MSI-X mode get passed pointers
931 	 * to the Tx and Rx ring structs.
932 	 */
933 	if (new_tx_count != adapter->tx_ring_count) {
934 		for (i = 0; i < adapter->num_tx_queues; i++) {
935 			memcpy(&temp_ring[i], adapter->tx_ring[i],
936 			       sizeof(struct igb_ring));
937 
938 			temp_ring[i].count = new_tx_count;
939 			err = igb_setup_tx_resources(&temp_ring[i]);
940 			if (err) {
941 				while (i) {
942 					i--;
943 					igb_free_tx_resources(&temp_ring[i]);
944 				}
945 				goto err_setup;
946 			}
947 		}
948 
949 		for (i = 0; i < adapter->num_tx_queues; i++) {
950 			igb_free_tx_resources(adapter->tx_ring[i]);
951 
952 			memcpy(adapter->tx_ring[i], &temp_ring[i],
953 			       sizeof(struct igb_ring));
954 		}
955 
956 		adapter->tx_ring_count = new_tx_count;
957 	}
958 
959 	if (new_rx_count != adapter->rx_ring_count) {
960 		for (i = 0; i < adapter->num_rx_queues; i++) {
961 			memcpy(&temp_ring[i], adapter->rx_ring[i],
962 			       sizeof(struct igb_ring));
963 
964 			/* Clear copied XDP RX-queue info */
965 			memset(&temp_ring[i].xdp_rxq, 0,
966 			       sizeof(temp_ring[i].xdp_rxq));
967 
968 			temp_ring[i].count = new_rx_count;
969 			err = igb_setup_rx_resources(&temp_ring[i]);
970 			if (err) {
971 				while (i) {
972 					i--;
973 					igb_free_rx_resources(&temp_ring[i]);
974 				}
975 				goto err_setup;
976 			}
977 
978 		}
979 
980 		for (i = 0; i < adapter->num_rx_queues; i++) {
981 			igb_free_rx_resources(adapter->rx_ring[i]);
982 
983 			memcpy(adapter->rx_ring[i], &temp_ring[i],
984 			       sizeof(struct igb_ring));
985 		}
986 
987 		adapter->rx_ring_count = new_rx_count;
988 	}
989 err_setup:
990 	igb_up(adapter);
991 	vfree(temp_ring);
992 clear_reset:
993 	clear_bit(__IGB_RESETTING, &adapter->state);
994 	return err;
995 }
996 
997 /* ethtool register test data */
998 struct igb_reg_test {
999 	u16 reg;
1000 	u16 reg_offset;
1001 	u16 array_len;
1002 	u16 test_type;
1003 	u32 mask;
1004 	u32 write;
1005 };
1006 
1007 /* In the hardware, registers are laid out either singly, in arrays
1008  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
1009  * most tests take place on arrays or single registers (handled
1010  * as a single-element array) and special-case the tables.
1011  * Table tests are always pattern tests.
1012  *
1013  * We also make provision for some required setup steps by specifying
1014  * registers to be written without any read-back testing.
1015  */
1016 
1017 #define PATTERN_TEST	1
1018 #define SET_READ_TEST	2
1019 #define WRITE_NO_TEST	3
1020 #define TABLE32_TEST	4
1021 #define TABLE64_TEST_LO	5
1022 #define TABLE64_TEST_HI	6
1023 
1024 /* i210 reg test */
1025 static struct igb_reg_test reg_test_i210[] = {
1026 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1027 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1028 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1029 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1030 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1031 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1032 	/* RDH is read-only for i210, only test RDT. */
1033 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1034 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1035 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1036 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1037 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1038 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1039 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1040 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1041 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1042 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1043 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1044 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1045 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1046 						0xFFFFFFFF, 0xFFFFFFFF },
1047 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1048 						0x900FFFFF, 0xFFFFFFFF },
1049 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1050 						0xFFFFFFFF, 0xFFFFFFFF },
1051 	{ 0, 0, 0, 0, 0 }
1052 };
1053 
1054 /* i350 reg test */
1055 static struct igb_reg_test reg_test_i350[] = {
1056 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1057 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1058 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1059 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1060 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1061 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1062 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1063 	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1064 	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1065 	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1066 	/* RDH is read-only for i350, only test RDT. */
1067 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1068 	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1069 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1070 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1071 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1072 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1073 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1074 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1075 	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1076 	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1077 	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1078 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1079 	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1080 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1081 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1082 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1083 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1084 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1085 						0xFFFFFFFF, 0xFFFFFFFF },
1086 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1087 						0xC3FFFFFF, 0xFFFFFFFF },
1088 	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
1089 						0xFFFFFFFF, 0xFFFFFFFF },
1090 	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
1091 						0xC3FFFFFF, 0xFFFFFFFF },
1092 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1093 						0xFFFFFFFF, 0xFFFFFFFF },
1094 	{ 0, 0, 0, 0 }
1095 };
1096 
1097 /* 82580 reg test */
1098 static struct igb_reg_test reg_test_82580[] = {
1099 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1100 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1101 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1102 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1103 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1104 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1105 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1106 	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1107 	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1108 	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1109 	/* RDH is read-only for 82580, only test RDT. */
1110 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1111 	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1112 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1113 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1114 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1115 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1116 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1117 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1118 	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1119 	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1120 	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1121 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1122 	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1123 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1124 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1125 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1126 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1127 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1128 						0xFFFFFFFF, 0xFFFFFFFF },
1129 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1130 						0x83FFFFFF, 0xFFFFFFFF },
1131 	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
1132 						0xFFFFFFFF, 0xFFFFFFFF },
1133 	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
1134 						0x83FFFFFF, 0xFFFFFFFF },
1135 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1136 						0xFFFFFFFF, 0xFFFFFFFF },
1137 	{ 0, 0, 0, 0 }
1138 };
1139 
1140 /* 82576 reg test */
1141 static struct igb_reg_test reg_test_82576[] = {
1142 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1143 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1144 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1145 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1146 	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1147 	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1148 	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1149 	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1150 	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1151 	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1152 	/* Enable all RX queues before testing. */
1153 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1154 	  E1000_RXDCTL_QUEUE_ENABLE },
1155 	{ E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0,
1156 	  E1000_RXDCTL_QUEUE_ENABLE },
1157 	/* RDH is read-only for 82576, only test RDT. */
1158 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1159 	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1160 	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1161 	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1162 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1163 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1164 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1165 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1166 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1167 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1168 	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1169 	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1170 	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1171 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1172 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1173 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1174 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1175 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1176 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1177 	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1178 	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1179 	{ E1000_MTA,	   0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1180 	{ 0, 0, 0, 0 }
1181 };
1182 
1183 /* 82575 register test */
1184 static struct igb_reg_test reg_test_82575[] = {
1185 	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1186 	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1187 	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1188 	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1189 	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1190 	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1191 	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1192 	/* Enable all four RX queues before testing. */
1193 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1194 	  E1000_RXDCTL_QUEUE_ENABLE },
1195 	/* RDH is read-only for 82575, only test RDT. */
1196 	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1197 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1198 	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1199 	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1200 	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1201 	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1202 	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1203 	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1204 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1205 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1206 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1207 	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1208 	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1209 	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1210 	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1211 	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1212 	{ 0, 0, 0, 0 }
1213 };
1214 
1215 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1216 			     int reg, u32 mask, u32 write)
1217 {
1218 	struct e1000_hw *hw = &adapter->hw;
1219 	u32 pat, val;
1220 	static const u32 _test[] = {
1221 		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1222 	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1223 		wr32(reg, (_test[pat] & write));
1224 		val = rd32(reg) & mask;
1225 		if (val != (_test[pat] & write & mask)) {
1226 			dev_err(&adapter->pdev->dev,
1227 				"pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1228 				reg, val, (_test[pat] & write & mask));
1229 			*data = reg;
1230 			return true;
1231 		}
1232 	}
1233 
1234 	return false;
1235 }
1236 
1237 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1238 			      int reg, u32 mask, u32 write)
1239 {
1240 	struct e1000_hw *hw = &adapter->hw;
1241 	u32 val;
1242 
1243 	wr32(reg, write & mask);
1244 	val = rd32(reg);
1245 	if ((write & mask) != (val & mask)) {
1246 		dev_err(&adapter->pdev->dev,
1247 			"set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
1248 			reg, (val & mask), (write & mask));
1249 		*data = reg;
1250 		return true;
1251 	}
1252 
1253 	return false;
1254 }
1255 
1256 #define REG_PATTERN_TEST(reg, mask, write) \
1257 	do { \
1258 		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1259 			return 1; \
1260 	} while (0)
1261 
1262 #define REG_SET_AND_CHECK(reg, mask, write) \
1263 	do { \
1264 		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1265 			return 1; \
1266 	} while (0)
1267 
1268 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1269 {
1270 	struct e1000_hw *hw = &adapter->hw;
1271 	struct igb_reg_test *test;
1272 	u32 value, before, after;
1273 	u32 i, toggle;
1274 
1275 	switch (adapter->hw.mac.type) {
1276 	case e1000_i350:
1277 	case e1000_i354:
1278 		test = reg_test_i350;
1279 		toggle = 0x7FEFF3FF;
1280 		break;
1281 	case e1000_i210:
1282 	case e1000_i211:
1283 		test = reg_test_i210;
1284 		toggle = 0x7FEFF3FF;
1285 		break;
1286 	case e1000_82580:
1287 		test = reg_test_82580;
1288 		toggle = 0x7FEFF3FF;
1289 		break;
1290 	case e1000_82576:
1291 		test = reg_test_82576;
1292 		toggle = 0x7FFFF3FF;
1293 		break;
1294 	default:
1295 		test = reg_test_82575;
1296 		toggle = 0x7FFFF3FF;
1297 		break;
1298 	}
1299 
1300 	/* Because the status register is such a special case,
1301 	 * we handle it separately from the rest of the register
1302 	 * tests.  Some bits are read-only, some toggle, and some
1303 	 * are writable on newer MACs.
1304 	 */
1305 	before = rd32(E1000_STATUS);
1306 	value = (rd32(E1000_STATUS) & toggle);
1307 	wr32(E1000_STATUS, toggle);
1308 	after = rd32(E1000_STATUS) & toggle;
1309 	if (value != after) {
1310 		dev_err(&adapter->pdev->dev,
1311 			"failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1312 			after, value);
1313 		*data = 1;
1314 		return 1;
1315 	}
1316 	/* restore previous status */
1317 	wr32(E1000_STATUS, before);
1318 
1319 	/* Perform the remainder of the register test, looping through
1320 	 * the test table until we either fail or reach the null entry.
1321 	 */
1322 	while (test->reg) {
1323 		for (i = 0; i < test->array_len; i++) {
1324 			switch (test->test_type) {
1325 			case PATTERN_TEST:
1326 				REG_PATTERN_TEST(test->reg +
1327 						(i * test->reg_offset),
1328 						test->mask,
1329 						test->write);
1330 				break;
1331 			case SET_READ_TEST:
1332 				REG_SET_AND_CHECK(test->reg +
1333 						(i * test->reg_offset),
1334 						test->mask,
1335 						test->write);
1336 				break;
1337 			case WRITE_NO_TEST:
1338 				writel(test->write,
1339 				    (adapter->hw.hw_addr + test->reg)
1340 					+ (i * test->reg_offset));
1341 				break;
1342 			case TABLE32_TEST:
1343 				REG_PATTERN_TEST(test->reg + (i * 4),
1344 						test->mask,
1345 						test->write);
1346 				break;
1347 			case TABLE64_TEST_LO:
1348 				REG_PATTERN_TEST(test->reg + (i * 8),
1349 						test->mask,
1350 						test->write);
1351 				break;
1352 			case TABLE64_TEST_HI:
1353 				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1354 						test->mask,
1355 						test->write);
1356 				break;
1357 			}
1358 		}
1359 		test++;
1360 	}
1361 
1362 	*data = 0;
1363 	return 0;
1364 }
1365 
1366 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1367 {
1368 	struct e1000_hw *hw = &adapter->hw;
1369 
1370 	*data = 0;
1371 
1372 	/* Validate eeprom on all parts but flashless */
1373 	switch (hw->mac.type) {
1374 	case e1000_i210:
1375 	case e1000_i211:
1376 		if (igb_get_flash_presence_i210(hw)) {
1377 			if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1378 				*data = 2;
1379 		}
1380 		break;
1381 	default:
1382 		if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1383 			*data = 2;
1384 		break;
1385 	}
1386 
1387 	return *data;
1388 }
1389 
1390 static irqreturn_t igb_test_intr(int irq, void *data)
1391 {
1392 	struct igb_adapter *adapter = (struct igb_adapter *) data;
1393 	struct e1000_hw *hw = &adapter->hw;
1394 
1395 	adapter->test_icr |= rd32(E1000_ICR);
1396 
1397 	return IRQ_HANDLED;
1398 }
1399 
1400 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1401 {
1402 	struct e1000_hw *hw = &adapter->hw;
1403 	struct net_device *netdev = adapter->netdev;
1404 	u32 mask, ics_mask, i = 0, shared_int = true;
1405 	u32 irq = adapter->pdev->irq;
1406 
1407 	*data = 0;
1408 
1409 	/* Hook up test interrupt handler just for this test */
1410 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1411 		if (request_irq(adapter->msix_entries[0].vector,
1412 				igb_test_intr, 0, netdev->name, adapter)) {
1413 			*data = 1;
1414 			return -1;
1415 		}
1416 	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1417 		shared_int = false;
1418 		if (request_irq(irq,
1419 				igb_test_intr, 0, netdev->name, adapter)) {
1420 			*data = 1;
1421 			return -1;
1422 		}
1423 	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1424 				netdev->name, adapter)) {
1425 		shared_int = false;
1426 	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1427 		 netdev->name, adapter)) {
1428 		*data = 1;
1429 		return -1;
1430 	}
1431 	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1432 		(shared_int ? "shared" : "unshared"));
1433 
1434 	/* Disable all the interrupts */
1435 	wr32(E1000_IMC, ~0);
1436 	wrfl();
1437 	usleep_range(10000, 11000);
1438 
1439 	/* Define all writable bits for ICS */
1440 	switch (hw->mac.type) {
1441 	case e1000_82575:
1442 		ics_mask = 0x37F47EDD;
1443 		break;
1444 	case e1000_82576:
1445 		ics_mask = 0x77D4FBFD;
1446 		break;
1447 	case e1000_82580:
1448 		ics_mask = 0x77DCFED5;
1449 		break;
1450 	case e1000_i350:
1451 	case e1000_i354:
1452 	case e1000_i210:
1453 	case e1000_i211:
1454 		ics_mask = 0x77DCFED5;
1455 		break;
1456 	default:
1457 		ics_mask = 0x7FFFFFFF;
1458 		break;
1459 	}
1460 
1461 	/* Test each interrupt */
1462 	for (; i < 31; i++) {
1463 		/* Interrupt to test */
1464 		mask = BIT(i);
1465 
1466 		if (!(mask & ics_mask))
1467 			continue;
1468 
1469 		if (!shared_int) {
1470 			/* Disable the interrupt to be reported in
1471 			 * the cause register and then force the same
1472 			 * interrupt and see if one gets posted.  If
1473 			 * an interrupt was posted to the bus, the
1474 			 * test failed.
1475 			 */
1476 			adapter->test_icr = 0;
1477 
1478 			/* Flush any pending interrupts */
1479 			wr32(E1000_ICR, ~0);
1480 
1481 			wr32(E1000_IMC, mask);
1482 			wr32(E1000_ICS, mask);
1483 			wrfl();
1484 			usleep_range(10000, 11000);
1485 
1486 			if (adapter->test_icr & mask) {
1487 				*data = 3;
1488 				break;
1489 			}
1490 		}
1491 
1492 		/* Enable the interrupt to be reported in
1493 		 * the cause register and then force the same
1494 		 * interrupt and see if one gets posted.  If
1495 		 * an interrupt was not posted to the bus, the
1496 		 * test failed.
1497 		 */
1498 		adapter->test_icr = 0;
1499 
1500 		/* Flush any pending interrupts */
1501 		wr32(E1000_ICR, ~0);
1502 
1503 		wr32(E1000_IMS, mask);
1504 		wr32(E1000_ICS, mask);
1505 		wrfl();
1506 		usleep_range(10000, 11000);
1507 
1508 		if (!(adapter->test_icr & mask)) {
1509 			*data = 4;
1510 			break;
1511 		}
1512 
1513 		if (!shared_int) {
1514 			/* Disable the other interrupts to be reported in
1515 			 * the cause register and then force the other
1516 			 * interrupts and see if any get posted.  If
1517 			 * an interrupt was posted to the bus, the
1518 			 * test failed.
1519 			 */
1520 			adapter->test_icr = 0;
1521 
1522 			/* Flush any pending interrupts */
1523 			wr32(E1000_ICR, ~0);
1524 
1525 			wr32(E1000_IMC, ~mask);
1526 			wr32(E1000_ICS, ~mask);
1527 			wrfl();
1528 			usleep_range(10000, 11000);
1529 
1530 			if (adapter->test_icr & mask) {
1531 				*data = 5;
1532 				break;
1533 			}
1534 		}
1535 	}
1536 
1537 	/* Disable all the interrupts */
1538 	wr32(E1000_IMC, ~0);
1539 	wrfl();
1540 	usleep_range(10000, 11000);
1541 
1542 	/* Unhook test interrupt handler */
1543 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1544 		free_irq(adapter->msix_entries[0].vector, adapter);
1545 	else
1546 		free_irq(irq, adapter);
1547 
1548 	return *data;
1549 }
1550 
1551 static void igb_free_desc_rings(struct igb_adapter *adapter)
1552 {
1553 	igb_free_tx_resources(&adapter->test_tx_ring);
1554 	igb_free_rx_resources(&adapter->test_rx_ring);
1555 }
1556 
1557 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1558 {
1559 	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1560 	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1561 	struct e1000_hw *hw = &adapter->hw;
1562 	int ret_val;
1563 
1564 	/* Setup Tx descriptor ring and Tx buffers */
1565 	tx_ring->count = IGB_DEFAULT_TXD;
1566 	tx_ring->dev = &adapter->pdev->dev;
1567 	tx_ring->netdev = adapter->netdev;
1568 	tx_ring->reg_idx = adapter->vfs_allocated_count;
1569 
1570 	if (igb_setup_tx_resources(tx_ring)) {
1571 		ret_val = 1;
1572 		goto err_nomem;
1573 	}
1574 
1575 	igb_setup_tctl(adapter);
1576 	igb_configure_tx_ring(adapter, tx_ring);
1577 
1578 	/* Setup Rx descriptor ring and Rx buffers */
1579 	rx_ring->count = IGB_DEFAULT_RXD;
1580 	rx_ring->dev = &adapter->pdev->dev;
1581 	rx_ring->netdev = adapter->netdev;
1582 	rx_ring->reg_idx = adapter->vfs_allocated_count;
1583 
1584 	if (igb_setup_rx_resources(rx_ring)) {
1585 		ret_val = 3;
1586 		goto err_nomem;
1587 	}
1588 
1589 	/* set the default queue to queue 0 of PF */
1590 	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1591 
1592 	/* enable receive ring */
1593 	igb_setup_rctl(adapter);
1594 	igb_configure_rx_ring(adapter, rx_ring);
1595 
1596 	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1597 
1598 	return 0;
1599 
1600 err_nomem:
1601 	igb_free_desc_rings(adapter);
1602 	return ret_val;
1603 }
1604 
1605 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1606 {
1607 	struct e1000_hw *hw = &adapter->hw;
1608 
1609 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1610 	igb_write_phy_reg(hw, 29, 0x001F);
1611 	igb_write_phy_reg(hw, 30, 0x8FFC);
1612 	igb_write_phy_reg(hw, 29, 0x001A);
1613 	igb_write_phy_reg(hw, 30, 0x8FF0);
1614 }
1615 
1616 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1617 {
1618 	struct e1000_hw *hw = &adapter->hw;
1619 	u32 ctrl_reg = 0;
1620 
1621 	hw->mac.autoneg = false;
1622 
1623 	if (hw->phy.type == e1000_phy_m88) {
1624 		if (hw->phy.id != I210_I_PHY_ID) {
1625 			/* Auto-MDI/MDIX Off */
1626 			igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1627 			/* reset to update Auto-MDI/MDIX */
1628 			igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1629 			/* autoneg off */
1630 			igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1631 		} else {
1632 			/* force 1000, set loopback  */
1633 			igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1634 			igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1635 		}
1636 	} else if (hw->phy.type == e1000_phy_82580) {
1637 		/* enable MII loopback */
1638 		igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1639 	}
1640 
1641 	/* add small delay to avoid loopback test failure */
1642 	msleep(50);
1643 
1644 	/* force 1000, set loopback */
1645 	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1646 
1647 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1648 	ctrl_reg = rd32(E1000_CTRL);
1649 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1650 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1651 		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1652 		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1653 		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1654 		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1655 
1656 	if (hw->phy.type == e1000_phy_m88)
1657 		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1658 
1659 	wr32(E1000_CTRL, ctrl_reg);
1660 
1661 	/* Disable the receiver on the PHY so when a cable is plugged in, the
1662 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1663 	 */
1664 	if (hw->phy.type == e1000_phy_m88)
1665 		igb_phy_disable_receiver(adapter);
1666 
1667 	msleep(500);
1668 	return 0;
1669 }
1670 
1671 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1672 {
1673 	return igb_integrated_phy_loopback(adapter);
1674 }
1675 
1676 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1677 {
1678 	struct e1000_hw *hw = &adapter->hw;
1679 	u32 reg;
1680 
1681 	reg = rd32(E1000_CTRL_EXT);
1682 
1683 	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1684 	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1685 		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1686 		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1687 		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1688 		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1689 		(hw->device_id == E1000_DEV_ID_I354_SGMII) ||
1690 		(hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) {
1691 			/* Enable DH89xxCC MPHY for near end loopback */
1692 			reg = rd32(E1000_MPHY_ADDR_CTL);
1693 			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1694 			E1000_MPHY_PCS_CLK_REG_OFFSET;
1695 			wr32(E1000_MPHY_ADDR_CTL, reg);
1696 
1697 			reg = rd32(E1000_MPHY_DATA);
1698 			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1699 			wr32(E1000_MPHY_DATA, reg);
1700 		}
1701 
1702 		reg = rd32(E1000_RCTL);
1703 		reg |= E1000_RCTL_LBM_TCVR;
1704 		wr32(E1000_RCTL, reg);
1705 
1706 		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1707 
1708 		reg = rd32(E1000_CTRL);
1709 		reg &= ~(E1000_CTRL_RFCE |
1710 			 E1000_CTRL_TFCE |
1711 			 E1000_CTRL_LRST);
1712 		reg |= E1000_CTRL_SLU |
1713 		       E1000_CTRL_FD;
1714 		wr32(E1000_CTRL, reg);
1715 
1716 		/* Unset switch control to serdes energy detect */
1717 		reg = rd32(E1000_CONNSW);
1718 		reg &= ~E1000_CONNSW_ENRGSRC;
1719 		wr32(E1000_CONNSW, reg);
1720 
1721 		/* Unset sigdetect for SERDES loopback on
1722 		 * 82580 and newer devices.
1723 		 */
1724 		if (hw->mac.type >= e1000_82580) {
1725 			reg = rd32(E1000_PCS_CFG0);
1726 			reg |= E1000_PCS_CFG_IGN_SD;
1727 			wr32(E1000_PCS_CFG0, reg);
1728 		}
1729 
1730 		/* Set PCS register for forced speed */
1731 		reg = rd32(E1000_PCS_LCTL);
1732 		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1733 		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1734 		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1735 		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1736 		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1737 		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1738 		wr32(E1000_PCS_LCTL, reg);
1739 
1740 		return 0;
1741 	}
1742 
1743 	return igb_set_phy_loopback(adapter);
1744 }
1745 
1746 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1747 {
1748 	struct e1000_hw *hw = &adapter->hw;
1749 	u32 rctl;
1750 	u16 phy_reg;
1751 
1752 	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1753 	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1754 	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1755 	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1756 	(hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1757 		u32 reg;
1758 
1759 		/* Disable near end loopback on DH89xxCC */
1760 		reg = rd32(E1000_MPHY_ADDR_CTL);
1761 		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1762 		E1000_MPHY_PCS_CLK_REG_OFFSET;
1763 		wr32(E1000_MPHY_ADDR_CTL, reg);
1764 
1765 		reg = rd32(E1000_MPHY_DATA);
1766 		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1767 		wr32(E1000_MPHY_DATA, reg);
1768 	}
1769 
1770 	rctl = rd32(E1000_RCTL);
1771 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1772 	wr32(E1000_RCTL, rctl);
1773 
1774 	hw->mac.autoneg = true;
1775 	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1776 	if (phy_reg & MII_CR_LOOPBACK) {
1777 		phy_reg &= ~MII_CR_LOOPBACK;
1778 		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1779 		igb_phy_sw_reset(hw);
1780 	}
1781 }
1782 
1783 static void igb_create_lbtest_frame(struct sk_buff *skb,
1784 				    unsigned int frame_size)
1785 {
1786 	memset(skb->data, 0xFF, frame_size);
1787 	frame_size /= 2;
1788 	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1789 	skb->data[frame_size + 10] = 0xBE;
1790 	skb->data[frame_size + 12] = 0xAF;
1791 }
1792 
1793 static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1794 				  unsigned int frame_size)
1795 {
1796 	unsigned char *data;
1797 	bool match = true;
1798 
1799 	frame_size >>= 1;
1800 
1801 	data = kmap(rx_buffer->page);
1802 
1803 	if (data[3] != 0xFF ||
1804 	    data[frame_size + 10] != 0xBE ||
1805 	    data[frame_size + 12] != 0xAF)
1806 		match = false;
1807 
1808 	kunmap(rx_buffer->page);
1809 
1810 	return match;
1811 }
1812 
1813 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1814 				struct igb_ring *tx_ring,
1815 				unsigned int size)
1816 {
1817 	union e1000_adv_rx_desc *rx_desc;
1818 	struct igb_rx_buffer *rx_buffer_info;
1819 	struct igb_tx_buffer *tx_buffer_info;
1820 	u16 rx_ntc, tx_ntc, count = 0;
1821 
1822 	/* initialize next to clean and descriptor values */
1823 	rx_ntc = rx_ring->next_to_clean;
1824 	tx_ntc = tx_ring->next_to_clean;
1825 	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1826 
1827 	while (rx_desc->wb.upper.length) {
1828 		/* check Rx buffer */
1829 		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1830 
1831 		/* sync Rx buffer for CPU read */
1832 		dma_sync_single_for_cpu(rx_ring->dev,
1833 					rx_buffer_info->dma,
1834 					size,
1835 					DMA_FROM_DEVICE);
1836 
1837 		/* verify contents of skb */
1838 		if (igb_check_lbtest_frame(rx_buffer_info, size))
1839 			count++;
1840 
1841 		/* sync Rx buffer for device write */
1842 		dma_sync_single_for_device(rx_ring->dev,
1843 					   rx_buffer_info->dma,
1844 					   size,
1845 					   DMA_FROM_DEVICE);
1846 
1847 		/* unmap buffer on Tx side */
1848 		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1849 
1850 		/* Free all the Tx ring sk_buffs */
1851 		dev_kfree_skb_any(tx_buffer_info->skb);
1852 
1853 		/* unmap skb header data */
1854 		dma_unmap_single(tx_ring->dev,
1855 				 dma_unmap_addr(tx_buffer_info, dma),
1856 				 dma_unmap_len(tx_buffer_info, len),
1857 				 DMA_TO_DEVICE);
1858 		dma_unmap_len_set(tx_buffer_info, len, 0);
1859 
1860 		/* increment Rx/Tx next to clean counters */
1861 		rx_ntc++;
1862 		if (rx_ntc == rx_ring->count)
1863 			rx_ntc = 0;
1864 		tx_ntc++;
1865 		if (tx_ntc == tx_ring->count)
1866 			tx_ntc = 0;
1867 
1868 		/* fetch next descriptor */
1869 		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1870 	}
1871 
1872 	netdev_tx_reset_queue(txring_txq(tx_ring));
1873 
1874 	/* re-map buffers to ring, store next to clean values */
1875 	igb_alloc_rx_buffers(rx_ring, count);
1876 	rx_ring->next_to_clean = rx_ntc;
1877 	tx_ring->next_to_clean = tx_ntc;
1878 
1879 	return count;
1880 }
1881 
1882 static int igb_run_loopback_test(struct igb_adapter *adapter)
1883 {
1884 	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1885 	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1886 	u16 i, j, lc, good_cnt;
1887 	int ret_val = 0;
1888 	unsigned int size = IGB_RX_HDR_LEN;
1889 	netdev_tx_t tx_ret_val;
1890 	struct sk_buff *skb;
1891 
1892 	/* allocate test skb */
1893 	skb = alloc_skb(size, GFP_KERNEL);
1894 	if (!skb)
1895 		return 11;
1896 
1897 	/* place data into test skb */
1898 	igb_create_lbtest_frame(skb, size);
1899 	skb_put(skb, size);
1900 
1901 	/* Calculate the loop count based on the largest descriptor ring
1902 	 * The idea is to wrap the largest ring a number of times using 64
1903 	 * send/receive pairs during each loop
1904 	 */
1905 
1906 	if (rx_ring->count <= tx_ring->count)
1907 		lc = ((tx_ring->count / 64) * 2) + 1;
1908 	else
1909 		lc = ((rx_ring->count / 64) * 2) + 1;
1910 
1911 	for (j = 0; j <= lc; j++) { /* loop count loop */
1912 		/* reset count of good packets */
1913 		good_cnt = 0;
1914 
1915 		/* place 64 packets on the transmit queue*/
1916 		for (i = 0; i < 64; i++) {
1917 			skb_get(skb);
1918 			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1919 			if (tx_ret_val == NETDEV_TX_OK)
1920 				good_cnt++;
1921 		}
1922 
1923 		if (good_cnt != 64) {
1924 			ret_val = 12;
1925 			break;
1926 		}
1927 
1928 		/* allow 200 milliseconds for packets to go from Tx to Rx */
1929 		msleep(200);
1930 
1931 		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1932 		if (good_cnt != 64) {
1933 			ret_val = 13;
1934 			break;
1935 		}
1936 	} /* end loop count loop */
1937 
1938 	/* free the original skb */
1939 	kfree_skb(skb);
1940 
1941 	return ret_val;
1942 }
1943 
1944 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1945 {
1946 	/* PHY loopback cannot be performed if SoL/IDER
1947 	 * sessions are active
1948 	 */
1949 	if (igb_check_reset_block(&adapter->hw)) {
1950 		dev_err(&adapter->pdev->dev,
1951 			"Cannot do PHY loopback test when SoL/IDER is active.\n");
1952 		*data = 0;
1953 		goto out;
1954 	}
1955 
1956 	if (adapter->hw.mac.type == e1000_i354) {
1957 		dev_info(&adapter->pdev->dev,
1958 			"Loopback test not supported on i354.\n");
1959 		*data = 0;
1960 		goto out;
1961 	}
1962 	*data = igb_setup_desc_rings(adapter);
1963 	if (*data)
1964 		goto out;
1965 	*data = igb_setup_loopback_test(adapter);
1966 	if (*data)
1967 		goto err_loopback;
1968 	*data = igb_run_loopback_test(adapter);
1969 	igb_loopback_cleanup(adapter);
1970 
1971 err_loopback:
1972 	igb_free_desc_rings(adapter);
1973 out:
1974 	return *data;
1975 }
1976 
1977 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1978 {
1979 	struct e1000_hw *hw = &adapter->hw;
1980 	*data = 0;
1981 	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1982 		int i = 0;
1983 
1984 		hw->mac.serdes_has_link = false;
1985 
1986 		/* On some blade server designs, link establishment
1987 		 * could take as long as 2-3 minutes
1988 		 */
1989 		do {
1990 			hw->mac.ops.check_for_link(&adapter->hw);
1991 			if (hw->mac.serdes_has_link)
1992 				return *data;
1993 			msleep(20);
1994 		} while (i++ < 3750);
1995 
1996 		*data = 1;
1997 	} else {
1998 		hw->mac.ops.check_for_link(&adapter->hw);
1999 		if (hw->mac.autoneg)
2000 			msleep(5000);
2001 
2002 		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
2003 			*data = 1;
2004 	}
2005 	return *data;
2006 }
2007 
2008 static void igb_diag_test(struct net_device *netdev,
2009 			  struct ethtool_test *eth_test, u64 *data)
2010 {
2011 	struct igb_adapter *adapter = netdev_priv(netdev);
2012 	u16 autoneg_advertised;
2013 	u8 forced_speed_duplex, autoneg;
2014 	bool if_running = netif_running(netdev);
2015 
2016 	set_bit(__IGB_TESTING, &adapter->state);
2017 
2018 	/* can't do offline tests on media switching devices */
2019 	if (adapter->hw.dev_spec._82575.mas_capable)
2020 		eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
2021 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
2022 		/* Offline tests */
2023 
2024 		/* save speed, duplex, autoneg settings */
2025 		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
2026 		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
2027 		autoneg = adapter->hw.mac.autoneg;
2028 
2029 		dev_info(&adapter->pdev->dev, "offline testing starting\n");
2030 
2031 		/* power up link for link test */
2032 		igb_power_up_link(adapter);
2033 
2034 		/* Link test performed before hardware reset so autoneg doesn't
2035 		 * interfere with test result
2036 		 */
2037 		if (igb_link_test(adapter, &data[TEST_LINK]))
2038 			eth_test->flags |= ETH_TEST_FL_FAILED;
2039 
2040 		if (if_running)
2041 			/* indicate we're in test mode */
2042 			igb_close(netdev);
2043 		else
2044 			igb_reset(adapter);
2045 
2046 		if (igb_reg_test(adapter, &data[TEST_REG]))
2047 			eth_test->flags |= ETH_TEST_FL_FAILED;
2048 
2049 		igb_reset(adapter);
2050 		if (igb_eeprom_test(adapter, &data[TEST_EEP]))
2051 			eth_test->flags |= ETH_TEST_FL_FAILED;
2052 
2053 		igb_reset(adapter);
2054 		if (igb_intr_test(adapter, &data[TEST_IRQ]))
2055 			eth_test->flags |= ETH_TEST_FL_FAILED;
2056 
2057 		igb_reset(adapter);
2058 		/* power up link for loopback test */
2059 		igb_power_up_link(adapter);
2060 		if (igb_loopback_test(adapter, &data[TEST_LOOP]))
2061 			eth_test->flags |= ETH_TEST_FL_FAILED;
2062 
2063 		/* restore speed, duplex, autoneg settings */
2064 		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2065 		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2066 		adapter->hw.mac.autoneg = autoneg;
2067 
2068 		/* force this routine to wait until autoneg complete/timeout */
2069 		adapter->hw.phy.autoneg_wait_to_complete = true;
2070 		igb_reset(adapter);
2071 		adapter->hw.phy.autoneg_wait_to_complete = false;
2072 
2073 		clear_bit(__IGB_TESTING, &adapter->state);
2074 		if (if_running)
2075 			igb_open(netdev);
2076 	} else {
2077 		dev_info(&adapter->pdev->dev, "online testing starting\n");
2078 
2079 		/* PHY is powered down when interface is down */
2080 		if (if_running && igb_link_test(adapter, &data[TEST_LINK]))
2081 			eth_test->flags |= ETH_TEST_FL_FAILED;
2082 		else
2083 			data[TEST_LINK] = 0;
2084 
2085 		/* Online tests aren't run; pass by default */
2086 		data[TEST_REG] = 0;
2087 		data[TEST_EEP] = 0;
2088 		data[TEST_IRQ] = 0;
2089 		data[TEST_LOOP] = 0;
2090 
2091 		clear_bit(__IGB_TESTING, &adapter->state);
2092 	}
2093 	msleep_interruptible(4 * 1000);
2094 }
2095 
2096 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2097 {
2098 	struct igb_adapter *adapter = netdev_priv(netdev);
2099 
2100 	wol->wolopts = 0;
2101 
2102 	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2103 		return;
2104 
2105 	wol->supported = WAKE_UCAST | WAKE_MCAST |
2106 			 WAKE_BCAST | WAKE_MAGIC |
2107 			 WAKE_PHY;
2108 
2109 	/* apply any specific unsupported masks here */
2110 	switch (adapter->hw.device_id) {
2111 	default:
2112 		break;
2113 	}
2114 
2115 	if (adapter->wol & E1000_WUFC_EX)
2116 		wol->wolopts |= WAKE_UCAST;
2117 	if (adapter->wol & E1000_WUFC_MC)
2118 		wol->wolopts |= WAKE_MCAST;
2119 	if (adapter->wol & E1000_WUFC_BC)
2120 		wol->wolopts |= WAKE_BCAST;
2121 	if (adapter->wol & E1000_WUFC_MAG)
2122 		wol->wolopts |= WAKE_MAGIC;
2123 	if (adapter->wol & E1000_WUFC_LNKC)
2124 		wol->wolopts |= WAKE_PHY;
2125 }
2126 
2127 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2128 {
2129 	struct igb_adapter *adapter = netdev_priv(netdev);
2130 
2131 	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_FILTER))
2132 		return -EOPNOTSUPP;
2133 
2134 	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2135 		return wol->wolopts ? -EOPNOTSUPP : 0;
2136 
2137 	/* these settings will always override what we currently have */
2138 	adapter->wol = 0;
2139 
2140 	if (wol->wolopts & WAKE_UCAST)
2141 		adapter->wol |= E1000_WUFC_EX;
2142 	if (wol->wolopts & WAKE_MCAST)
2143 		adapter->wol |= E1000_WUFC_MC;
2144 	if (wol->wolopts & WAKE_BCAST)
2145 		adapter->wol |= E1000_WUFC_BC;
2146 	if (wol->wolopts & WAKE_MAGIC)
2147 		adapter->wol |= E1000_WUFC_MAG;
2148 	if (wol->wolopts & WAKE_PHY)
2149 		adapter->wol |= E1000_WUFC_LNKC;
2150 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2151 
2152 	return 0;
2153 }
2154 
2155 /* bit defines for adapter->led_status */
2156 #define IGB_LED_ON		0
2157 
2158 static int igb_set_phys_id(struct net_device *netdev,
2159 			   enum ethtool_phys_id_state state)
2160 {
2161 	struct igb_adapter *adapter = netdev_priv(netdev);
2162 	struct e1000_hw *hw = &adapter->hw;
2163 
2164 	switch (state) {
2165 	case ETHTOOL_ID_ACTIVE:
2166 		igb_blink_led(hw);
2167 		return 2;
2168 	case ETHTOOL_ID_ON:
2169 		igb_blink_led(hw);
2170 		break;
2171 	case ETHTOOL_ID_OFF:
2172 		igb_led_off(hw);
2173 		break;
2174 	case ETHTOOL_ID_INACTIVE:
2175 		igb_led_off(hw);
2176 		clear_bit(IGB_LED_ON, &adapter->led_status);
2177 		igb_cleanup_led(hw);
2178 		break;
2179 	}
2180 
2181 	return 0;
2182 }
2183 
2184 static int igb_set_coalesce(struct net_device *netdev,
2185 			    struct ethtool_coalesce *ec,
2186 			    struct kernel_ethtool_coalesce *kernel_coal,
2187 			    struct netlink_ext_ack *extack)
2188 {
2189 	struct igb_adapter *adapter = netdev_priv(netdev);
2190 	int i;
2191 
2192 	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2193 	    ((ec->rx_coalesce_usecs > 3) &&
2194 	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2195 	    (ec->rx_coalesce_usecs == 2))
2196 		return -EINVAL;
2197 
2198 	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2199 	    ((ec->tx_coalesce_usecs > 3) &&
2200 	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2201 	    (ec->tx_coalesce_usecs == 2))
2202 		return -EINVAL;
2203 
2204 	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2205 		return -EINVAL;
2206 
2207 	/* If ITR is disabled, disable DMAC */
2208 	if (ec->rx_coalesce_usecs == 0) {
2209 		if (adapter->flags & IGB_FLAG_DMAC)
2210 			adapter->flags &= ~IGB_FLAG_DMAC;
2211 	}
2212 
2213 	/* convert to rate of irq's per second */
2214 	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2215 		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2216 	else
2217 		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2218 
2219 	/* convert to rate of irq's per second */
2220 	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2221 		adapter->tx_itr_setting = adapter->rx_itr_setting;
2222 	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2223 		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2224 	else
2225 		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2226 
2227 	for (i = 0; i < adapter->num_q_vectors; i++) {
2228 		struct igb_q_vector *q_vector = adapter->q_vector[i];
2229 		q_vector->tx.work_limit = adapter->tx_work_limit;
2230 		if (q_vector->rx.ring)
2231 			q_vector->itr_val = adapter->rx_itr_setting;
2232 		else
2233 			q_vector->itr_val = adapter->tx_itr_setting;
2234 		if (q_vector->itr_val && q_vector->itr_val <= 3)
2235 			q_vector->itr_val = IGB_START_ITR;
2236 		q_vector->set_itr = 1;
2237 	}
2238 
2239 	return 0;
2240 }
2241 
2242 static int igb_get_coalesce(struct net_device *netdev,
2243 			    struct ethtool_coalesce *ec,
2244 			    struct kernel_ethtool_coalesce *kernel_coal,
2245 			    struct netlink_ext_ack *extack)
2246 {
2247 	struct igb_adapter *adapter = netdev_priv(netdev);
2248 
2249 	if (adapter->rx_itr_setting <= 3)
2250 		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2251 	else
2252 		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2253 
2254 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2255 		if (adapter->tx_itr_setting <= 3)
2256 			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2257 		else
2258 			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2259 	}
2260 
2261 	return 0;
2262 }
2263 
2264 static int igb_nway_reset(struct net_device *netdev)
2265 {
2266 	struct igb_adapter *adapter = netdev_priv(netdev);
2267 	if (netif_running(netdev))
2268 		igb_reinit_locked(adapter);
2269 	return 0;
2270 }
2271 
2272 static int igb_get_sset_count(struct net_device *netdev, int sset)
2273 {
2274 	switch (sset) {
2275 	case ETH_SS_STATS:
2276 		return IGB_STATS_LEN;
2277 	case ETH_SS_TEST:
2278 		return IGB_TEST_LEN;
2279 	case ETH_SS_PRIV_FLAGS:
2280 		return IGB_PRIV_FLAGS_STR_LEN;
2281 	default:
2282 		return -ENOTSUPP;
2283 	}
2284 }
2285 
2286 static void igb_get_ethtool_stats(struct net_device *netdev,
2287 				  struct ethtool_stats *stats, u64 *data)
2288 {
2289 	struct igb_adapter *adapter = netdev_priv(netdev);
2290 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2291 	unsigned int start;
2292 	struct igb_ring *ring;
2293 	int i, j;
2294 	char *p;
2295 
2296 	spin_lock(&adapter->stats64_lock);
2297 	igb_update_stats(adapter);
2298 
2299 	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2300 		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2301 		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2302 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2303 	}
2304 	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2305 		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2306 		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2307 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2308 	}
2309 	for (j = 0; j < adapter->num_tx_queues; j++) {
2310 		u64	restart2;
2311 
2312 		ring = adapter->tx_ring[j];
2313 		do {
2314 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
2315 			data[i]   = ring->tx_stats.packets;
2316 			data[i+1] = ring->tx_stats.bytes;
2317 			data[i+2] = ring->tx_stats.restart_queue;
2318 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
2319 		do {
2320 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp2);
2321 			restart2  = ring->tx_stats.restart_queue2;
2322 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start));
2323 		data[i+2] += restart2;
2324 
2325 		i += IGB_TX_QUEUE_STATS_LEN;
2326 	}
2327 	for (j = 0; j < adapter->num_rx_queues; j++) {
2328 		ring = adapter->rx_ring[j];
2329 		do {
2330 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
2331 			data[i]   = ring->rx_stats.packets;
2332 			data[i+1] = ring->rx_stats.bytes;
2333 			data[i+2] = ring->rx_stats.drops;
2334 			data[i+3] = ring->rx_stats.csum_err;
2335 			data[i+4] = ring->rx_stats.alloc_failed;
2336 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
2337 		i += IGB_RX_QUEUE_STATS_LEN;
2338 	}
2339 	spin_unlock(&adapter->stats64_lock);
2340 }
2341 
2342 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2343 {
2344 	struct igb_adapter *adapter = netdev_priv(netdev);
2345 	u8 *p = data;
2346 	int i;
2347 
2348 	switch (stringset) {
2349 	case ETH_SS_TEST:
2350 		memcpy(data, igb_gstrings_test, sizeof(igb_gstrings_test));
2351 		break;
2352 	case ETH_SS_STATS:
2353 		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++)
2354 			ethtool_sprintf(&p,
2355 					igb_gstrings_stats[i].stat_string);
2356 		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++)
2357 			ethtool_sprintf(&p,
2358 					igb_gstrings_net_stats[i].stat_string);
2359 		for (i = 0; i < adapter->num_tx_queues; i++) {
2360 			ethtool_sprintf(&p, "tx_queue_%u_packets", i);
2361 			ethtool_sprintf(&p, "tx_queue_%u_bytes", i);
2362 			ethtool_sprintf(&p, "tx_queue_%u_restart", i);
2363 		}
2364 		for (i = 0; i < adapter->num_rx_queues; i++) {
2365 			ethtool_sprintf(&p, "rx_queue_%u_packets", i);
2366 			ethtool_sprintf(&p, "rx_queue_%u_bytes", i);
2367 			ethtool_sprintf(&p, "rx_queue_%u_drops", i);
2368 			ethtool_sprintf(&p, "rx_queue_%u_csum_err", i);
2369 			ethtool_sprintf(&p, "rx_queue_%u_alloc_failed", i);
2370 		}
2371 		/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2372 		break;
2373 	case ETH_SS_PRIV_FLAGS:
2374 		memcpy(data, igb_priv_flags_strings,
2375 		       IGB_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN);
2376 		break;
2377 	}
2378 }
2379 
2380 static int igb_get_ts_info(struct net_device *dev,
2381 			   struct ethtool_ts_info *info)
2382 {
2383 	struct igb_adapter *adapter = netdev_priv(dev);
2384 
2385 	if (adapter->ptp_clock)
2386 		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2387 	else
2388 		info->phc_index = -1;
2389 
2390 	switch (adapter->hw.mac.type) {
2391 	case e1000_82575:
2392 		info->so_timestamping =
2393 			SOF_TIMESTAMPING_TX_SOFTWARE |
2394 			SOF_TIMESTAMPING_RX_SOFTWARE |
2395 			SOF_TIMESTAMPING_SOFTWARE;
2396 		return 0;
2397 	case e1000_82576:
2398 	case e1000_82580:
2399 	case e1000_i350:
2400 	case e1000_i354:
2401 	case e1000_i210:
2402 	case e1000_i211:
2403 		info->so_timestamping =
2404 			SOF_TIMESTAMPING_TX_SOFTWARE |
2405 			SOF_TIMESTAMPING_RX_SOFTWARE |
2406 			SOF_TIMESTAMPING_SOFTWARE |
2407 			SOF_TIMESTAMPING_TX_HARDWARE |
2408 			SOF_TIMESTAMPING_RX_HARDWARE |
2409 			SOF_TIMESTAMPING_RAW_HARDWARE;
2410 
2411 		info->tx_types =
2412 			BIT(HWTSTAMP_TX_OFF) |
2413 			BIT(HWTSTAMP_TX_ON);
2414 
2415 		info->rx_filters = BIT(HWTSTAMP_FILTER_NONE);
2416 
2417 		/* 82576 does not support timestamping all packets. */
2418 		if (adapter->hw.mac.type >= e1000_82580)
2419 			info->rx_filters |= BIT(HWTSTAMP_FILTER_ALL);
2420 		else
2421 			info->rx_filters |=
2422 				BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2423 				BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2424 				BIT(HWTSTAMP_FILTER_PTP_V2_EVENT);
2425 
2426 		return 0;
2427 	default:
2428 		return -EOPNOTSUPP;
2429 	}
2430 }
2431 
2432 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2433 static int igb_get_ethtool_nfc_entry(struct igb_adapter *adapter,
2434 				     struct ethtool_rxnfc *cmd)
2435 {
2436 	struct ethtool_rx_flow_spec *fsp = &cmd->fs;
2437 	struct igb_nfc_filter *rule = NULL;
2438 
2439 	/* report total rule count */
2440 	cmd->data = IGB_MAX_RXNFC_FILTERS;
2441 
2442 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2443 		if (fsp->location <= rule->sw_idx)
2444 			break;
2445 	}
2446 
2447 	if (!rule || fsp->location != rule->sw_idx)
2448 		return -EINVAL;
2449 
2450 	if (rule->filter.match_flags) {
2451 		fsp->flow_type = ETHER_FLOW;
2452 		fsp->ring_cookie = rule->action;
2453 		if (rule->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2454 			fsp->h_u.ether_spec.h_proto = rule->filter.etype;
2455 			fsp->m_u.ether_spec.h_proto = ETHER_TYPE_FULL_MASK;
2456 		}
2457 		if (rule->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI) {
2458 			fsp->flow_type |= FLOW_EXT;
2459 			fsp->h_ext.vlan_tci = rule->filter.vlan_tci;
2460 			fsp->m_ext.vlan_tci = htons(VLAN_PRIO_MASK);
2461 		}
2462 		if (rule->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) {
2463 			ether_addr_copy(fsp->h_u.ether_spec.h_dest,
2464 					rule->filter.dst_addr);
2465 			/* As we only support matching by the full
2466 			 * mask, return the mask to userspace
2467 			 */
2468 			eth_broadcast_addr(fsp->m_u.ether_spec.h_dest);
2469 		}
2470 		if (rule->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) {
2471 			ether_addr_copy(fsp->h_u.ether_spec.h_source,
2472 					rule->filter.src_addr);
2473 			/* As we only support matching by the full
2474 			 * mask, return the mask to userspace
2475 			 */
2476 			eth_broadcast_addr(fsp->m_u.ether_spec.h_source);
2477 		}
2478 
2479 		return 0;
2480 	}
2481 	return -EINVAL;
2482 }
2483 
2484 static int igb_get_ethtool_nfc_all(struct igb_adapter *adapter,
2485 				   struct ethtool_rxnfc *cmd,
2486 				   u32 *rule_locs)
2487 {
2488 	struct igb_nfc_filter *rule;
2489 	int cnt = 0;
2490 
2491 	/* report total rule count */
2492 	cmd->data = IGB_MAX_RXNFC_FILTERS;
2493 
2494 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2495 		if (cnt == cmd->rule_cnt)
2496 			return -EMSGSIZE;
2497 		rule_locs[cnt] = rule->sw_idx;
2498 		cnt++;
2499 	}
2500 
2501 	cmd->rule_cnt = cnt;
2502 
2503 	return 0;
2504 }
2505 
2506 static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2507 				 struct ethtool_rxnfc *cmd)
2508 {
2509 	cmd->data = 0;
2510 
2511 	/* Report default options for RSS on igb */
2512 	switch (cmd->flow_type) {
2513 	case TCP_V4_FLOW:
2514 		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2515 		fallthrough;
2516 	case UDP_V4_FLOW:
2517 		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2518 			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2519 		fallthrough;
2520 	case SCTP_V4_FLOW:
2521 	case AH_ESP_V4_FLOW:
2522 	case AH_V4_FLOW:
2523 	case ESP_V4_FLOW:
2524 	case IPV4_FLOW:
2525 		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2526 		break;
2527 	case TCP_V6_FLOW:
2528 		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2529 		fallthrough;
2530 	case UDP_V6_FLOW:
2531 		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2532 			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2533 		fallthrough;
2534 	case SCTP_V6_FLOW:
2535 	case AH_ESP_V6_FLOW:
2536 	case AH_V6_FLOW:
2537 	case ESP_V6_FLOW:
2538 	case IPV6_FLOW:
2539 		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2540 		break;
2541 	default:
2542 		return -EINVAL;
2543 	}
2544 
2545 	return 0;
2546 }
2547 
2548 static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2549 			 u32 *rule_locs)
2550 {
2551 	struct igb_adapter *adapter = netdev_priv(dev);
2552 	int ret = -EOPNOTSUPP;
2553 
2554 	switch (cmd->cmd) {
2555 	case ETHTOOL_GRXRINGS:
2556 		cmd->data = adapter->num_rx_queues;
2557 		ret = 0;
2558 		break;
2559 	case ETHTOOL_GRXCLSRLCNT:
2560 		cmd->rule_cnt = adapter->nfc_filter_count;
2561 		ret = 0;
2562 		break;
2563 	case ETHTOOL_GRXCLSRULE:
2564 		ret = igb_get_ethtool_nfc_entry(adapter, cmd);
2565 		break;
2566 	case ETHTOOL_GRXCLSRLALL:
2567 		ret = igb_get_ethtool_nfc_all(adapter, cmd, rule_locs);
2568 		break;
2569 	case ETHTOOL_GRXFH:
2570 		ret = igb_get_rss_hash_opts(adapter, cmd);
2571 		break;
2572 	default:
2573 		break;
2574 	}
2575 
2576 	return ret;
2577 }
2578 
2579 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2580 		       IGB_FLAG_RSS_FIELD_IPV6_UDP)
2581 static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2582 				struct ethtool_rxnfc *nfc)
2583 {
2584 	u32 flags = adapter->flags;
2585 
2586 	/* RSS does not support anything other than hashing
2587 	 * to queues on src and dst IPs and ports
2588 	 */
2589 	if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2590 			  RXH_L4_B_0_1 | RXH_L4_B_2_3))
2591 		return -EINVAL;
2592 
2593 	switch (nfc->flow_type) {
2594 	case TCP_V4_FLOW:
2595 	case TCP_V6_FLOW:
2596 		if (!(nfc->data & RXH_IP_SRC) ||
2597 		    !(nfc->data & RXH_IP_DST) ||
2598 		    !(nfc->data & RXH_L4_B_0_1) ||
2599 		    !(nfc->data & RXH_L4_B_2_3))
2600 			return -EINVAL;
2601 		break;
2602 	case UDP_V4_FLOW:
2603 		if (!(nfc->data & RXH_IP_SRC) ||
2604 		    !(nfc->data & RXH_IP_DST))
2605 			return -EINVAL;
2606 		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2607 		case 0:
2608 			flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2609 			break;
2610 		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2611 			flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2612 			break;
2613 		default:
2614 			return -EINVAL;
2615 		}
2616 		break;
2617 	case UDP_V6_FLOW:
2618 		if (!(nfc->data & RXH_IP_SRC) ||
2619 		    !(nfc->data & RXH_IP_DST))
2620 			return -EINVAL;
2621 		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2622 		case 0:
2623 			flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2624 			break;
2625 		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2626 			flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2627 			break;
2628 		default:
2629 			return -EINVAL;
2630 		}
2631 		break;
2632 	case AH_ESP_V4_FLOW:
2633 	case AH_V4_FLOW:
2634 	case ESP_V4_FLOW:
2635 	case SCTP_V4_FLOW:
2636 	case AH_ESP_V6_FLOW:
2637 	case AH_V6_FLOW:
2638 	case ESP_V6_FLOW:
2639 	case SCTP_V6_FLOW:
2640 		if (!(nfc->data & RXH_IP_SRC) ||
2641 		    !(nfc->data & RXH_IP_DST) ||
2642 		    (nfc->data & RXH_L4_B_0_1) ||
2643 		    (nfc->data & RXH_L4_B_2_3))
2644 			return -EINVAL;
2645 		break;
2646 	default:
2647 		return -EINVAL;
2648 	}
2649 
2650 	/* if we changed something we need to update flags */
2651 	if (flags != adapter->flags) {
2652 		struct e1000_hw *hw = &adapter->hw;
2653 		u32 mrqc = rd32(E1000_MRQC);
2654 
2655 		if ((flags & UDP_RSS_FLAGS) &&
2656 		    !(adapter->flags & UDP_RSS_FLAGS))
2657 			dev_err(&adapter->pdev->dev,
2658 				"enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2659 
2660 		adapter->flags = flags;
2661 
2662 		/* Perform hash on these packet types */
2663 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2664 			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2665 			E1000_MRQC_RSS_FIELD_IPV6 |
2666 			E1000_MRQC_RSS_FIELD_IPV6_TCP;
2667 
2668 		mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2669 			  E1000_MRQC_RSS_FIELD_IPV6_UDP);
2670 
2671 		if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2672 			mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2673 
2674 		if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2675 			mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2676 
2677 		wr32(E1000_MRQC, mrqc);
2678 	}
2679 
2680 	return 0;
2681 }
2682 
2683 static int igb_rxnfc_write_etype_filter(struct igb_adapter *adapter,
2684 					struct igb_nfc_filter *input)
2685 {
2686 	struct e1000_hw *hw = &adapter->hw;
2687 	u8 i;
2688 	u32 etqf;
2689 	u16 etype;
2690 
2691 	/* find an empty etype filter register */
2692 	for (i = 0; i < MAX_ETYPE_FILTER; ++i) {
2693 		if (!adapter->etype_bitmap[i])
2694 			break;
2695 	}
2696 	if (i == MAX_ETYPE_FILTER) {
2697 		dev_err(&adapter->pdev->dev, "ethtool -N: etype filters are all used.\n");
2698 		return -EINVAL;
2699 	}
2700 
2701 	adapter->etype_bitmap[i] = true;
2702 
2703 	etqf = rd32(E1000_ETQF(i));
2704 	etype = ntohs(input->filter.etype & ETHER_TYPE_FULL_MASK);
2705 
2706 	etqf |= E1000_ETQF_FILTER_ENABLE;
2707 	etqf &= ~E1000_ETQF_ETYPE_MASK;
2708 	etqf |= (etype & E1000_ETQF_ETYPE_MASK);
2709 
2710 	etqf &= ~E1000_ETQF_QUEUE_MASK;
2711 	etqf |= ((input->action << E1000_ETQF_QUEUE_SHIFT)
2712 		& E1000_ETQF_QUEUE_MASK);
2713 	etqf |= E1000_ETQF_QUEUE_ENABLE;
2714 
2715 	wr32(E1000_ETQF(i), etqf);
2716 
2717 	input->etype_reg_index = i;
2718 
2719 	return 0;
2720 }
2721 
2722 static int igb_rxnfc_write_vlan_prio_filter(struct igb_adapter *adapter,
2723 					    struct igb_nfc_filter *input)
2724 {
2725 	struct e1000_hw *hw = &adapter->hw;
2726 	u8 vlan_priority;
2727 	u16 queue_index;
2728 	u32 vlapqf;
2729 
2730 	vlapqf = rd32(E1000_VLAPQF);
2731 	vlan_priority = (ntohs(input->filter.vlan_tci) & VLAN_PRIO_MASK)
2732 				>> VLAN_PRIO_SHIFT;
2733 	queue_index = (vlapqf >> (vlan_priority * 4)) & E1000_VLAPQF_QUEUE_MASK;
2734 
2735 	/* check whether this vlan prio is already set */
2736 	if ((vlapqf & E1000_VLAPQF_P_VALID(vlan_priority)) &&
2737 	    (queue_index != input->action)) {
2738 		dev_err(&adapter->pdev->dev, "ethtool rxnfc set vlan prio filter failed.\n");
2739 		return -EEXIST;
2740 	}
2741 
2742 	vlapqf |= E1000_VLAPQF_P_VALID(vlan_priority);
2743 	vlapqf |= E1000_VLAPQF_QUEUE_SEL(vlan_priority, input->action);
2744 
2745 	wr32(E1000_VLAPQF, vlapqf);
2746 
2747 	return 0;
2748 }
2749 
2750 int igb_add_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2751 {
2752 	struct e1000_hw *hw = &adapter->hw;
2753 	int err = -EINVAL;
2754 
2755 	if (hw->mac.type == e1000_i210 &&
2756 	    !(input->filter.match_flags & ~IGB_FILTER_FLAG_SRC_MAC_ADDR)) {
2757 		dev_err(&adapter->pdev->dev,
2758 			"i210 doesn't support flow classification rules specifying only source addresses.\n");
2759 		return -EOPNOTSUPP;
2760 	}
2761 
2762 	if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2763 		err = igb_rxnfc_write_etype_filter(adapter, input);
2764 		if (err)
2765 			return err;
2766 	}
2767 
2768 	if (input->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) {
2769 		err = igb_add_mac_steering_filter(adapter,
2770 						  input->filter.dst_addr,
2771 						  input->action, 0);
2772 		err = min_t(int, err, 0);
2773 		if (err)
2774 			return err;
2775 	}
2776 
2777 	if (input->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) {
2778 		err = igb_add_mac_steering_filter(adapter,
2779 						  input->filter.src_addr,
2780 						  input->action,
2781 						  IGB_MAC_STATE_SRC_ADDR);
2782 		err = min_t(int, err, 0);
2783 		if (err)
2784 			return err;
2785 	}
2786 
2787 	if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2788 		err = igb_rxnfc_write_vlan_prio_filter(adapter, input);
2789 
2790 	return err;
2791 }
2792 
2793 static void igb_clear_etype_filter_regs(struct igb_adapter *adapter,
2794 					u16 reg_index)
2795 {
2796 	struct e1000_hw *hw = &adapter->hw;
2797 	u32 etqf = rd32(E1000_ETQF(reg_index));
2798 
2799 	etqf &= ~E1000_ETQF_QUEUE_ENABLE;
2800 	etqf &= ~E1000_ETQF_QUEUE_MASK;
2801 	etqf &= ~E1000_ETQF_FILTER_ENABLE;
2802 
2803 	wr32(E1000_ETQF(reg_index), etqf);
2804 
2805 	adapter->etype_bitmap[reg_index] = false;
2806 }
2807 
2808 static void igb_clear_vlan_prio_filter(struct igb_adapter *adapter,
2809 				       u16 vlan_tci)
2810 {
2811 	struct e1000_hw *hw = &adapter->hw;
2812 	u8 vlan_priority;
2813 	u32 vlapqf;
2814 
2815 	vlan_priority = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
2816 
2817 	vlapqf = rd32(E1000_VLAPQF);
2818 	vlapqf &= ~E1000_VLAPQF_P_VALID(vlan_priority);
2819 	vlapqf &= ~E1000_VLAPQF_QUEUE_SEL(vlan_priority,
2820 						E1000_VLAPQF_QUEUE_MASK);
2821 
2822 	wr32(E1000_VLAPQF, vlapqf);
2823 }
2824 
2825 int igb_erase_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2826 {
2827 	if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE)
2828 		igb_clear_etype_filter_regs(adapter,
2829 					    input->etype_reg_index);
2830 
2831 	if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2832 		igb_clear_vlan_prio_filter(adapter,
2833 					   ntohs(input->filter.vlan_tci));
2834 
2835 	if (input->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR)
2836 		igb_del_mac_steering_filter(adapter, input->filter.src_addr,
2837 					    input->action,
2838 					    IGB_MAC_STATE_SRC_ADDR);
2839 
2840 	if (input->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR)
2841 		igb_del_mac_steering_filter(adapter, input->filter.dst_addr,
2842 					    input->action, 0);
2843 
2844 	return 0;
2845 }
2846 
2847 static int igb_update_ethtool_nfc_entry(struct igb_adapter *adapter,
2848 					struct igb_nfc_filter *input,
2849 					u16 sw_idx)
2850 {
2851 	struct igb_nfc_filter *rule, *parent;
2852 	int err = -EINVAL;
2853 
2854 	parent = NULL;
2855 	rule = NULL;
2856 
2857 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2858 		/* hash found, or no matching entry */
2859 		if (rule->sw_idx >= sw_idx)
2860 			break;
2861 		parent = rule;
2862 	}
2863 
2864 	/* if there is an old rule occupying our place remove it */
2865 	if (rule && (rule->sw_idx == sw_idx)) {
2866 		if (!input)
2867 			err = igb_erase_filter(adapter, rule);
2868 
2869 		hlist_del(&rule->nfc_node);
2870 		kfree(rule);
2871 		adapter->nfc_filter_count--;
2872 	}
2873 
2874 	/* If no input this was a delete, err should be 0 if a rule was
2875 	 * successfully found and removed from the list else -EINVAL
2876 	 */
2877 	if (!input)
2878 		return err;
2879 
2880 	/* initialize node */
2881 	INIT_HLIST_NODE(&input->nfc_node);
2882 
2883 	/* add filter to the list */
2884 	if (parent)
2885 		hlist_add_behind(&input->nfc_node, &parent->nfc_node);
2886 	else
2887 		hlist_add_head(&input->nfc_node, &adapter->nfc_filter_list);
2888 
2889 	/* update counts */
2890 	adapter->nfc_filter_count++;
2891 
2892 	return 0;
2893 }
2894 
2895 static int igb_add_ethtool_nfc_entry(struct igb_adapter *adapter,
2896 				     struct ethtool_rxnfc *cmd)
2897 {
2898 	struct net_device *netdev = adapter->netdev;
2899 	struct ethtool_rx_flow_spec *fsp =
2900 		(struct ethtool_rx_flow_spec *)&cmd->fs;
2901 	struct igb_nfc_filter *input, *rule;
2902 	int err = 0;
2903 
2904 	if (!(netdev->hw_features & NETIF_F_NTUPLE))
2905 		return -EOPNOTSUPP;
2906 
2907 	/* Don't allow programming if the action is a queue greater than
2908 	 * the number of online Rx queues.
2909 	 */
2910 	if ((fsp->ring_cookie == RX_CLS_FLOW_DISC) ||
2911 	    (fsp->ring_cookie >= adapter->num_rx_queues)) {
2912 		dev_err(&adapter->pdev->dev, "ethtool -N: The specified action is invalid\n");
2913 		return -EINVAL;
2914 	}
2915 
2916 	/* Don't allow indexes to exist outside of available space */
2917 	if (fsp->location >= IGB_MAX_RXNFC_FILTERS) {
2918 		dev_err(&adapter->pdev->dev, "Location out of range\n");
2919 		return -EINVAL;
2920 	}
2921 
2922 	if ((fsp->flow_type & ~FLOW_EXT) != ETHER_FLOW)
2923 		return -EINVAL;
2924 
2925 	input = kzalloc(sizeof(*input), GFP_KERNEL);
2926 	if (!input)
2927 		return -ENOMEM;
2928 
2929 	if (fsp->m_u.ether_spec.h_proto == ETHER_TYPE_FULL_MASK) {
2930 		input->filter.etype = fsp->h_u.ether_spec.h_proto;
2931 		input->filter.match_flags = IGB_FILTER_FLAG_ETHER_TYPE;
2932 	}
2933 
2934 	/* Only support matching addresses by the full mask */
2935 	if (is_broadcast_ether_addr(fsp->m_u.ether_spec.h_source)) {
2936 		input->filter.match_flags |= IGB_FILTER_FLAG_SRC_MAC_ADDR;
2937 		ether_addr_copy(input->filter.src_addr,
2938 				fsp->h_u.ether_spec.h_source);
2939 	}
2940 
2941 	/* Only support matching addresses by the full mask */
2942 	if (is_broadcast_ether_addr(fsp->m_u.ether_spec.h_dest)) {
2943 		input->filter.match_flags |= IGB_FILTER_FLAG_DST_MAC_ADDR;
2944 		ether_addr_copy(input->filter.dst_addr,
2945 				fsp->h_u.ether_spec.h_dest);
2946 	}
2947 
2948 	if ((fsp->flow_type & FLOW_EXT) && fsp->m_ext.vlan_tci) {
2949 		if (fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK)) {
2950 			err = -EINVAL;
2951 			goto err_out;
2952 		}
2953 		input->filter.vlan_tci = fsp->h_ext.vlan_tci;
2954 		input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2955 	}
2956 
2957 	input->action = fsp->ring_cookie;
2958 	input->sw_idx = fsp->location;
2959 
2960 	spin_lock(&adapter->nfc_lock);
2961 
2962 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2963 		if (!memcmp(&input->filter, &rule->filter,
2964 			    sizeof(input->filter))) {
2965 			err = -EEXIST;
2966 			dev_err(&adapter->pdev->dev,
2967 				"ethtool: this filter is already set\n");
2968 			goto err_out_w_lock;
2969 		}
2970 	}
2971 
2972 	err = igb_add_filter(adapter, input);
2973 	if (err)
2974 		goto err_out_w_lock;
2975 
2976 	igb_update_ethtool_nfc_entry(adapter, input, input->sw_idx);
2977 
2978 	spin_unlock(&adapter->nfc_lock);
2979 	return 0;
2980 
2981 err_out_w_lock:
2982 	spin_unlock(&adapter->nfc_lock);
2983 err_out:
2984 	kfree(input);
2985 	return err;
2986 }
2987 
2988 static int igb_del_ethtool_nfc_entry(struct igb_adapter *adapter,
2989 				     struct ethtool_rxnfc *cmd)
2990 {
2991 	struct ethtool_rx_flow_spec *fsp =
2992 		(struct ethtool_rx_flow_spec *)&cmd->fs;
2993 	int err;
2994 
2995 	spin_lock(&adapter->nfc_lock);
2996 	err = igb_update_ethtool_nfc_entry(adapter, NULL, fsp->location);
2997 	spin_unlock(&adapter->nfc_lock);
2998 
2999 	return err;
3000 }
3001 
3002 static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
3003 {
3004 	struct igb_adapter *adapter = netdev_priv(dev);
3005 	int ret = -EOPNOTSUPP;
3006 
3007 	switch (cmd->cmd) {
3008 	case ETHTOOL_SRXFH:
3009 		ret = igb_set_rss_hash_opt(adapter, cmd);
3010 		break;
3011 	case ETHTOOL_SRXCLSRLINS:
3012 		ret = igb_add_ethtool_nfc_entry(adapter, cmd);
3013 		break;
3014 	case ETHTOOL_SRXCLSRLDEL:
3015 		ret = igb_del_ethtool_nfc_entry(adapter, cmd);
3016 		break;
3017 	default:
3018 		break;
3019 	}
3020 
3021 	return ret;
3022 }
3023 
3024 static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
3025 {
3026 	struct igb_adapter *adapter = netdev_priv(netdev);
3027 	struct e1000_hw *hw = &adapter->hw;
3028 	u32 ret_val;
3029 	u16 phy_data;
3030 
3031 	if ((hw->mac.type < e1000_i350) ||
3032 	    (hw->phy.media_type != e1000_media_type_copper))
3033 		return -EOPNOTSUPP;
3034 
3035 	edata->supported = (SUPPORTED_1000baseT_Full |
3036 			    SUPPORTED_100baseT_Full);
3037 	if (!hw->dev_spec._82575.eee_disable)
3038 		edata->advertised =
3039 			mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
3040 
3041 	/* The IPCNFG and EEER registers are not supported on I354. */
3042 	if (hw->mac.type == e1000_i354) {
3043 		igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
3044 	} else {
3045 		u32 eeer;
3046 
3047 		eeer = rd32(E1000_EEER);
3048 
3049 		/* EEE status on negotiated link */
3050 		if (eeer & E1000_EEER_EEE_NEG)
3051 			edata->eee_active = true;
3052 
3053 		if (eeer & E1000_EEER_TX_LPI_EN)
3054 			edata->tx_lpi_enabled = true;
3055 	}
3056 
3057 	/* EEE Link Partner Advertised */
3058 	switch (hw->mac.type) {
3059 	case e1000_i350:
3060 		ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
3061 					   &phy_data);
3062 		if (ret_val)
3063 			return -ENODATA;
3064 
3065 		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
3066 		break;
3067 	case e1000_i354:
3068 	case e1000_i210:
3069 	case e1000_i211:
3070 		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
3071 					     E1000_EEE_LP_ADV_DEV_I210,
3072 					     &phy_data);
3073 		if (ret_val)
3074 			return -ENODATA;
3075 
3076 		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
3077 
3078 		break;
3079 	default:
3080 		break;
3081 	}
3082 
3083 	edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
3084 
3085 	if ((hw->mac.type == e1000_i354) &&
3086 	    (edata->eee_enabled))
3087 		edata->tx_lpi_enabled = true;
3088 
3089 	/* Report correct negotiated EEE status for devices that
3090 	 * wrongly report EEE at half-duplex
3091 	 */
3092 	if (adapter->link_duplex == HALF_DUPLEX) {
3093 		edata->eee_enabled = false;
3094 		edata->eee_active = false;
3095 		edata->tx_lpi_enabled = false;
3096 		edata->advertised &= ~edata->advertised;
3097 	}
3098 
3099 	return 0;
3100 }
3101 
3102 static int igb_set_eee(struct net_device *netdev,
3103 		       struct ethtool_eee *edata)
3104 {
3105 	struct igb_adapter *adapter = netdev_priv(netdev);
3106 	struct e1000_hw *hw = &adapter->hw;
3107 	struct ethtool_eee eee_curr;
3108 	bool adv1g_eee = true, adv100m_eee = true;
3109 	s32 ret_val;
3110 
3111 	if ((hw->mac.type < e1000_i350) ||
3112 	    (hw->phy.media_type != e1000_media_type_copper))
3113 		return -EOPNOTSUPP;
3114 
3115 	memset(&eee_curr, 0, sizeof(struct ethtool_eee));
3116 
3117 	ret_val = igb_get_eee(netdev, &eee_curr);
3118 	if (ret_val)
3119 		return ret_val;
3120 
3121 	if (eee_curr.eee_enabled) {
3122 		if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
3123 			dev_err(&adapter->pdev->dev,
3124 				"Setting EEE tx-lpi is not supported\n");
3125 			return -EINVAL;
3126 		}
3127 
3128 		/* Tx LPI timer is not implemented currently */
3129 		if (edata->tx_lpi_timer) {
3130 			dev_err(&adapter->pdev->dev,
3131 				"Setting EEE Tx LPI timer is not supported\n");
3132 			return -EINVAL;
3133 		}
3134 
3135 		if (!edata->advertised || (edata->advertised &
3136 		    ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL))) {
3137 			dev_err(&adapter->pdev->dev,
3138 				"EEE Advertisement supports only 100Tx and/or 100T full duplex\n");
3139 			return -EINVAL;
3140 		}
3141 		adv100m_eee = !!(edata->advertised & ADVERTISE_100_FULL);
3142 		adv1g_eee = !!(edata->advertised & ADVERTISE_1000_FULL);
3143 
3144 	} else if (!edata->eee_enabled) {
3145 		dev_err(&adapter->pdev->dev,
3146 			"Setting EEE options are not supported with EEE disabled\n");
3147 		return -EINVAL;
3148 	}
3149 
3150 	adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
3151 	if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
3152 		hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
3153 		adapter->flags |= IGB_FLAG_EEE;
3154 
3155 		/* reset link */
3156 		if (netif_running(netdev))
3157 			igb_reinit_locked(adapter);
3158 		else
3159 			igb_reset(adapter);
3160 	}
3161 
3162 	if (hw->mac.type == e1000_i354)
3163 		ret_val = igb_set_eee_i354(hw, adv1g_eee, adv100m_eee);
3164 	else
3165 		ret_val = igb_set_eee_i350(hw, adv1g_eee, adv100m_eee);
3166 
3167 	if (ret_val) {
3168 		dev_err(&adapter->pdev->dev,
3169 			"Problem setting EEE advertisement options\n");
3170 		return -EINVAL;
3171 	}
3172 
3173 	return 0;
3174 }
3175 
3176 static int igb_get_module_info(struct net_device *netdev,
3177 			       struct ethtool_modinfo *modinfo)
3178 {
3179 	struct igb_adapter *adapter = netdev_priv(netdev);
3180 	struct e1000_hw *hw = &adapter->hw;
3181 	u32 status = 0;
3182 	u16 sff8472_rev, addr_mode;
3183 	bool page_swap = false;
3184 
3185 	if ((hw->phy.media_type == e1000_media_type_copper) ||
3186 	    (hw->phy.media_type == e1000_media_type_unknown))
3187 		return -EOPNOTSUPP;
3188 
3189 	/* Check whether we support SFF-8472 or not */
3190 	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
3191 	if (status)
3192 		return -EIO;
3193 
3194 	/* addressing mode is not supported */
3195 	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
3196 	if (status)
3197 		return -EIO;
3198 
3199 	/* addressing mode is not supported */
3200 	if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
3201 		hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
3202 		page_swap = true;
3203 	}
3204 
3205 	if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
3206 		/* We have an SFP, but it does not support SFF-8472 */
3207 		modinfo->type = ETH_MODULE_SFF_8079;
3208 		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
3209 	} else {
3210 		/* We have an SFP which supports a revision of SFF-8472 */
3211 		modinfo->type = ETH_MODULE_SFF_8472;
3212 		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
3213 	}
3214 
3215 	return 0;
3216 }
3217 
3218 static int igb_get_module_eeprom(struct net_device *netdev,
3219 				 struct ethtool_eeprom *ee, u8 *data)
3220 {
3221 	struct igb_adapter *adapter = netdev_priv(netdev);
3222 	struct e1000_hw *hw = &adapter->hw;
3223 	u32 status = 0;
3224 	u16 *dataword;
3225 	u16 first_word, last_word;
3226 	int i = 0;
3227 
3228 	if (ee->len == 0)
3229 		return -EINVAL;
3230 
3231 	first_word = ee->offset >> 1;
3232 	last_word = (ee->offset + ee->len - 1) >> 1;
3233 
3234 	dataword = kmalloc_array(last_word - first_word + 1, sizeof(u16),
3235 				 GFP_KERNEL);
3236 	if (!dataword)
3237 		return -ENOMEM;
3238 
3239 	/* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
3240 	for (i = 0; i < last_word - first_word + 1; i++) {
3241 		status = igb_read_phy_reg_i2c(hw, (first_word + i) * 2,
3242 					      &dataword[i]);
3243 		if (status) {
3244 			/* Error occurred while reading module */
3245 			kfree(dataword);
3246 			return -EIO;
3247 		}
3248 
3249 		be16_to_cpus(&dataword[i]);
3250 	}
3251 
3252 	memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
3253 	kfree(dataword);
3254 
3255 	return 0;
3256 }
3257 
3258 static int igb_ethtool_begin(struct net_device *netdev)
3259 {
3260 	struct igb_adapter *adapter = netdev_priv(netdev);
3261 	pm_runtime_get_sync(&adapter->pdev->dev);
3262 	return 0;
3263 }
3264 
3265 static void igb_ethtool_complete(struct net_device *netdev)
3266 {
3267 	struct igb_adapter *adapter = netdev_priv(netdev);
3268 	pm_runtime_put(&adapter->pdev->dev);
3269 }
3270 
3271 static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
3272 {
3273 	return IGB_RETA_SIZE;
3274 }
3275 
3276 static int igb_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key,
3277 			u8 *hfunc)
3278 {
3279 	struct igb_adapter *adapter = netdev_priv(netdev);
3280 	int i;
3281 
3282 	if (hfunc)
3283 		*hfunc = ETH_RSS_HASH_TOP;
3284 	if (!indir)
3285 		return 0;
3286 	for (i = 0; i < IGB_RETA_SIZE; i++)
3287 		indir[i] = adapter->rss_indir_tbl[i];
3288 
3289 	return 0;
3290 }
3291 
3292 void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
3293 {
3294 	struct e1000_hw *hw = &adapter->hw;
3295 	u32 reg = E1000_RETA(0);
3296 	u32 shift = 0;
3297 	int i = 0;
3298 
3299 	switch (hw->mac.type) {
3300 	case e1000_82575:
3301 		shift = 6;
3302 		break;
3303 	case e1000_82576:
3304 		/* 82576 supports 2 RSS queues for SR-IOV */
3305 		if (adapter->vfs_allocated_count)
3306 			shift = 3;
3307 		break;
3308 	default:
3309 		break;
3310 	}
3311 
3312 	while (i < IGB_RETA_SIZE) {
3313 		u32 val = 0;
3314 		int j;
3315 
3316 		for (j = 3; j >= 0; j--) {
3317 			val <<= 8;
3318 			val |= adapter->rss_indir_tbl[i + j];
3319 		}
3320 
3321 		wr32(reg, val << shift);
3322 		reg += 4;
3323 		i += 4;
3324 	}
3325 }
3326 
3327 static int igb_set_rxfh(struct net_device *netdev, const u32 *indir,
3328 			const u8 *key, const u8 hfunc)
3329 {
3330 	struct igb_adapter *adapter = netdev_priv(netdev);
3331 	struct e1000_hw *hw = &adapter->hw;
3332 	int i;
3333 	u32 num_queues;
3334 
3335 	/* We do not allow change in unsupported parameters */
3336 	if (key ||
3337 	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
3338 		return -EOPNOTSUPP;
3339 	if (!indir)
3340 		return 0;
3341 
3342 	num_queues = adapter->rss_queues;
3343 
3344 	switch (hw->mac.type) {
3345 	case e1000_82576:
3346 		/* 82576 supports 2 RSS queues for SR-IOV */
3347 		if (adapter->vfs_allocated_count)
3348 			num_queues = 2;
3349 		break;
3350 	default:
3351 		break;
3352 	}
3353 
3354 	/* Verify user input. */
3355 	for (i = 0; i < IGB_RETA_SIZE; i++)
3356 		if (indir[i] >= num_queues)
3357 			return -EINVAL;
3358 
3359 
3360 	for (i = 0; i < IGB_RETA_SIZE; i++)
3361 		adapter->rss_indir_tbl[i] = indir[i];
3362 
3363 	igb_write_rss_indir_tbl(adapter);
3364 
3365 	return 0;
3366 }
3367 
3368 static unsigned int igb_max_channels(struct igb_adapter *adapter)
3369 {
3370 	return igb_get_max_rss_queues(adapter);
3371 }
3372 
3373 static void igb_get_channels(struct net_device *netdev,
3374 			     struct ethtool_channels *ch)
3375 {
3376 	struct igb_adapter *adapter = netdev_priv(netdev);
3377 
3378 	/* Report maximum channels */
3379 	ch->max_combined = igb_max_channels(adapter);
3380 
3381 	/* Report info for other vector */
3382 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
3383 		ch->max_other = NON_Q_VECTORS;
3384 		ch->other_count = NON_Q_VECTORS;
3385 	}
3386 
3387 	ch->combined_count = adapter->rss_queues;
3388 }
3389 
3390 static int igb_set_channels(struct net_device *netdev,
3391 			    struct ethtool_channels *ch)
3392 {
3393 	struct igb_adapter *adapter = netdev_priv(netdev);
3394 	unsigned int count = ch->combined_count;
3395 	unsigned int max_combined = 0;
3396 
3397 	/* Verify they are not requesting separate vectors */
3398 	if (!count || ch->rx_count || ch->tx_count)
3399 		return -EINVAL;
3400 
3401 	/* Verify other_count is valid and has not been changed */
3402 	if (ch->other_count != NON_Q_VECTORS)
3403 		return -EINVAL;
3404 
3405 	/* Verify the number of channels doesn't exceed hw limits */
3406 	max_combined = igb_max_channels(adapter);
3407 	if (count > max_combined)
3408 		return -EINVAL;
3409 
3410 	if (count != adapter->rss_queues) {
3411 		adapter->rss_queues = count;
3412 		igb_set_flag_queue_pairs(adapter, max_combined);
3413 
3414 		/* Hardware has to reinitialize queues and interrupts to
3415 		 * match the new configuration.
3416 		 */
3417 		return igb_reinit_queues(adapter);
3418 	}
3419 
3420 	return 0;
3421 }
3422 
3423 static u32 igb_get_priv_flags(struct net_device *netdev)
3424 {
3425 	struct igb_adapter *adapter = netdev_priv(netdev);
3426 	u32 priv_flags = 0;
3427 
3428 	if (adapter->flags & IGB_FLAG_RX_LEGACY)
3429 		priv_flags |= IGB_PRIV_FLAGS_LEGACY_RX;
3430 
3431 	return priv_flags;
3432 }
3433 
3434 static int igb_set_priv_flags(struct net_device *netdev, u32 priv_flags)
3435 {
3436 	struct igb_adapter *adapter = netdev_priv(netdev);
3437 	unsigned int flags = adapter->flags;
3438 
3439 	flags &= ~IGB_FLAG_RX_LEGACY;
3440 	if (priv_flags & IGB_PRIV_FLAGS_LEGACY_RX)
3441 		flags |= IGB_FLAG_RX_LEGACY;
3442 
3443 	if (flags != adapter->flags) {
3444 		adapter->flags = flags;
3445 
3446 		/* reset interface to repopulate queues */
3447 		if (netif_running(netdev))
3448 			igb_reinit_locked(adapter);
3449 	}
3450 
3451 	return 0;
3452 }
3453 
3454 static const struct ethtool_ops igb_ethtool_ops = {
3455 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS,
3456 	.get_drvinfo		= igb_get_drvinfo,
3457 	.get_regs_len		= igb_get_regs_len,
3458 	.get_regs		= igb_get_regs,
3459 	.get_wol		= igb_get_wol,
3460 	.set_wol		= igb_set_wol,
3461 	.get_msglevel		= igb_get_msglevel,
3462 	.set_msglevel		= igb_set_msglevel,
3463 	.nway_reset		= igb_nway_reset,
3464 	.get_link		= igb_get_link,
3465 	.get_eeprom_len		= igb_get_eeprom_len,
3466 	.get_eeprom		= igb_get_eeprom,
3467 	.set_eeprom		= igb_set_eeprom,
3468 	.get_ringparam		= igb_get_ringparam,
3469 	.set_ringparam		= igb_set_ringparam,
3470 	.get_pauseparam		= igb_get_pauseparam,
3471 	.set_pauseparam		= igb_set_pauseparam,
3472 	.self_test		= igb_diag_test,
3473 	.get_strings		= igb_get_strings,
3474 	.set_phys_id		= igb_set_phys_id,
3475 	.get_sset_count		= igb_get_sset_count,
3476 	.get_ethtool_stats	= igb_get_ethtool_stats,
3477 	.get_coalesce		= igb_get_coalesce,
3478 	.set_coalesce		= igb_set_coalesce,
3479 	.get_ts_info		= igb_get_ts_info,
3480 	.get_rxnfc		= igb_get_rxnfc,
3481 	.set_rxnfc		= igb_set_rxnfc,
3482 	.get_eee		= igb_get_eee,
3483 	.set_eee		= igb_set_eee,
3484 	.get_module_info	= igb_get_module_info,
3485 	.get_module_eeprom	= igb_get_module_eeprom,
3486 	.get_rxfh_indir_size	= igb_get_rxfh_indir_size,
3487 	.get_rxfh		= igb_get_rxfh,
3488 	.set_rxfh		= igb_set_rxfh,
3489 	.get_channels		= igb_get_channels,
3490 	.set_channels		= igb_set_channels,
3491 	.get_priv_flags		= igb_get_priv_flags,
3492 	.set_priv_flags		= igb_set_priv_flags,
3493 	.begin			= igb_ethtool_begin,
3494 	.complete		= igb_ethtool_complete,
3495 	.get_link_ksettings	= igb_get_link_ksettings,
3496 	.set_link_ksettings	= igb_set_link_ksettings,
3497 };
3498 
3499 void igb_set_ethtool_ops(struct net_device *netdev)
3500 {
3501 	netdev->ethtool_ops = &igb_ethtool_ops;
3502 }
3503