1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2007 - 2018 Intel Corporation. */ 3 4 /* ethtool support for igb */ 5 6 #include <linux/vmalloc.h> 7 #include <linux/netdevice.h> 8 #include <linux/pci.h> 9 #include <linux/delay.h> 10 #include <linux/interrupt.h> 11 #include <linux/if_ether.h> 12 #include <linux/ethtool.h> 13 #include <linux/sched.h> 14 #include <linux/slab.h> 15 #include <linux/pm_runtime.h> 16 #include <linux/highmem.h> 17 #include <linux/mdio.h> 18 19 #include "igb.h" 20 21 struct igb_stats { 22 char stat_string[ETH_GSTRING_LEN]; 23 int sizeof_stat; 24 int stat_offset; 25 }; 26 27 #define IGB_STAT(_name, _stat) { \ 28 .stat_string = _name, \ 29 .sizeof_stat = sizeof_field(struct igb_adapter, _stat), \ 30 .stat_offset = offsetof(struct igb_adapter, _stat) \ 31 } 32 static const struct igb_stats igb_gstrings_stats[] = { 33 IGB_STAT("rx_packets", stats.gprc), 34 IGB_STAT("tx_packets", stats.gptc), 35 IGB_STAT("rx_bytes", stats.gorc), 36 IGB_STAT("tx_bytes", stats.gotc), 37 IGB_STAT("rx_broadcast", stats.bprc), 38 IGB_STAT("tx_broadcast", stats.bptc), 39 IGB_STAT("rx_multicast", stats.mprc), 40 IGB_STAT("tx_multicast", stats.mptc), 41 IGB_STAT("multicast", stats.mprc), 42 IGB_STAT("collisions", stats.colc), 43 IGB_STAT("rx_crc_errors", stats.crcerrs), 44 IGB_STAT("rx_no_buffer_count", stats.rnbc), 45 IGB_STAT("rx_missed_errors", stats.mpc), 46 IGB_STAT("tx_aborted_errors", stats.ecol), 47 IGB_STAT("tx_carrier_errors", stats.tncrs), 48 IGB_STAT("tx_window_errors", stats.latecol), 49 IGB_STAT("tx_abort_late_coll", stats.latecol), 50 IGB_STAT("tx_deferred_ok", stats.dc), 51 IGB_STAT("tx_single_coll_ok", stats.scc), 52 IGB_STAT("tx_multi_coll_ok", stats.mcc), 53 IGB_STAT("tx_timeout_count", tx_timeout_count), 54 IGB_STAT("rx_long_length_errors", stats.roc), 55 IGB_STAT("rx_short_length_errors", stats.ruc), 56 IGB_STAT("rx_align_errors", stats.algnerrc), 57 IGB_STAT("tx_tcp_seg_good", stats.tsctc), 58 IGB_STAT("tx_tcp_seg_failed", stats.tsctfc), 59 IGB_STAT("rx_flow_control_xon", stats.xonrxc), 60 IGB_STAT("rx_flow_control_xoff", stats.xoffrxc), 61 IGB_STAT("tx_flow_control_xon", stats.xontxc), 62 IGB_STAT("tx_flow_control_xoff", stats.xofftxc), 63 IGB_STAT("rx_long_byte_count", stats.gorc), 64 IGB_STAT("tx_dma_out_of_sync", stats.doosync), 65 IGB_STAT("tx_smbus", stats.mgptc), 66 IGB_STAT("rx_smbus", stats.mgprc), 67 IGB_STAT("dropped_smbus", stats.mgpdc), 68 IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc), 69 IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc), 70 IGB_STAT("os2bmc_tx_by_host", stats.o2bspc), 71 IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc), 72 IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts), 73 IGB_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped), 74 IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared), 75 }; 76 77 #define IGB_NETDEV_STAT(_net_stat) { \ 78 .stat_string = __stringify(_net_stat), \ 79 .sizeof_stat = sizeof_field(struct rtnl_link_stats64, _net_stat), \ 80 .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \ 81 } 82 static const struct igb_stats igb_gstrings_net_stats[] = { 83 IGB_NETDEV_STAT(rx_errors), 84 IGB_NETDEV_STAT(tx_errors), 85 IGB_NETDEV_STAT(tx_dropped), 86 IGB_NETDEV_STAT(rx_length_errors), 87 IGB_NETDEV_STAT(rx_over_errors), 88 IGB_NETDEV_STAT(rx_frame_errors), 89 IGB_NETDEV_STAT(rx_fifo_errors), 90 IGB_NETDEV_STAT(tx_fifo_errors), 91 IGB_NETDEV_STAT(tx_heartbeat_errors) 92 }; 93 94 #define IGB_GLOBAL_STATS_LEN \ 95 (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats)) 96 #define IGB_NETDEV_STATS_LEN \ 97 (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats)) 98 #define IGB_RX_QUEUE_STATS_LEN \ 99 (sizeof(struct igb_rx_queue_stats) / sizeof(u64)) 100 101 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */ 102 103 #define IGB_QUEUE_STATS_LEN \ 104 ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \ 105 IGB_RX_QUEUE_STATS_LEN) + \ 106 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \ 107 IGB_TX_QUEUE_STATS_LEN)) 108 #define IGB_STATS_LEN \ 109 (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN) 110 111 enum igb_diagnostics_results { 112 TEST_REG = 0, 113 TEST_EEP, 114 TEST_IRQ, 115 TEST_LOOP, 116 TEST_LINK 117 }; 118 119 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = { 120 [TEST_REG] = "Register test (offline)", 121 [TEST_EEP] = "Eeprom test (offline)", 122 [TEST_IRQ] = "Interrupt test (offline)", 123 [TEST_LOOP] = "Loopback test (offline)", 124 [TEST_LINK] = "Link test (on/offline)" 125 }; 126 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN) 127 128 static const char igb_priv_flags_strings[][ETH_GSTRING_LEN] = { 129 #define IGB_PRIV_FLAGS_LEGACY_RX BIT(0) 130 "legacy-rx", 131 }; 132 133 #define IGB_PRIV_FLAGS_STR_LEN ARRAY_SIZE(igb_priv_flags_strings) 134 135 static int igb_get_link_ksettings(struct net_device *netdev, 136 struct ethtool_link_ksettings *cmd) 137 { 138 struct igb_adapter *adapter = netdev_priv(netdev); 139 struct e1000_hw *hw = &adapter->hw; 140 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; 141 struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags; 142 u32 status; 143 u32 speed; 144 u32 supported, advertising; 145 146 status = pm_runtime_suspended(&adapter->pdev->dev) ? 147 0 : rd32(E1000_STATUS); 148 if (hw->phy.media_type == e1000_media_type_copper) { 149 150 supported = (SUPPORTED_10baseT_Half | 151 SUPPORTED_10baseT_Full | 152 SUPPORTED_100baseT_Half | 153 SUPPORTED_100baseT_Full | 154 SUPPORTED_1000baseT_Full| 155 SUPPORTED_Autoneg | 156 SUPPORTED_TP | 157 SUPPORTED_Pause); 158 advertising = ADVERTISED_TP; 159 160 if (hw->mac.autoneg == 1) { 161 advertising |= ADVERTISED_Autoneg; 162 /* the e1000 autoneg seems to match ethtool nicely */ 163 advertising |= hw->phy.autoneg_advertised; 164 } 165 166 cmd->base.port = PORT_TP; 167 cmd->base.phy_address = hw->phy.addr; 168 } else { 169 supported = (SUPPORTED_FIBRE | 170 SUPPORTED_1000baseKX_Full | 171 SUPPORTED_Autoneg | 172 SUPPORTED_Pause); 173 advertising = (ADVERTISED_FIBRE | 174 ADVERTISED_1000baseKX_Full); 175 if (hw->mac.type == e1000_i354) { 176 if ((hw->device_id == 177 E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) && 178 !(status & E1000_STATUS_2P5_SKU_OVER)) { 179 supported |= SUPPORTED_2500baseX_Full; 180 supported &= ~SUPPORTED_1000baseKX_Full; 181 advertising |= ADVERTISED_2500baseX_Full; 182 advertising &= ~ADVERTISED_1000baseKX_Full; 183 } 184 } 185 if (eth_flags->e100_base_fx || eth_flags->e100_base_lx) { 186 supported |= SUPPORTED_100baseT_Full; 187 advertising |= ADVERTISED_100baseT_Full; 188 } 189 if (hw->mac.autoneg == 1) 190 advertising |= ADVERTISED_Autoneg; 191 192 cmd->base.port = PORT_FIBRE; 193 } 194 if (hw->mac.autoneg != 1) 195 advertising &= ~(ADVERTISED_Pause | 196 ADVERTISED_Asym_Pause); 197 198 switch (hw->fc.requested_mode) { 199 case e1000_fc_full: 200 advertising |= ADVERTISED_Pause; 201 break; 202 case e1000_fc_rx_pause: 203 advertising |= (ADVERTISED_Pause | 204 ADVERTISED_Asym_Pause); 205 break; 206 case e1000_fc_tx_pause: 207 advertising |= ADVERTISED_Asym_Pause; 208 break; 209 default: 210 advertising &= ~(ADVERTISED_Pause | 211 ADVERTISED_Asym_Pause); 212 } 213 if (status & E1000_STATUS_LU) { 214 if ((status & E1000_STATUS_2P5_SKU) && 215 !(status & E1000_STATUS_2P5_SKU_OVER)) { 216 speed = SPEED_2500; 217 } else if (status & E1000_STATUS_SPEED_1000) { 218 speed = SPEED_1000; 219 } else if (status & E1000_STATUS_SPEED_100) { 220 speed = SPEED_100; 221 } else { 222 speed = SPEED_10; 223 } 224 if ((status & E1000_STATUS_FD) || 225 hw->phy.media_type != e1000_media_type_copper) 226 cmd->base.duplex = DUPLEX_FULL; 227 else 228 cmd->base.duplex = DUPLEX_HALF; 229 } else { 230 speed = SPEED_UNKNOWN; 231 cmd->base.duplex = DUPLEX_UNKNOWN; 232 } 233 cmd->base.speed = speed; 234 if ((hw->phy.media_type == e1000_media_type_fiber) || 235 hw->mac.autoneg) 236 cmd->base.autoneg = AUTONEG_ENABLE; 237 else 238 cmd->base.autoneg = AUTONEG_DISABLE; 239 240 /* MDI-X => 2; MDI =>1; Invalid =>0 */ 241 if (hw->phy.media_type == e1000_media_type_copper) 242 cmd->base.eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : 243 ETH_TP_MDI; 244 else 245 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID; 246 247 if (hw->phy.mdix == AUTO_ALL_MODES) 248 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; 249 else 250 cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix; 251 252 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 253 supported); 254 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 255 advertising); 256 257 return 0; 258 } 259 260 static int igb_set_link_ksettings(struct net_device *netdev, 261 const struct ethtool_link_ksettings *cmd) 262 { 263 struct igb_adapter *adapter = netdev_priv(netdev); 264 struct e1000_hw *hw = &adapter->hw; 265 u32 advertising; 266 267 /* When SoL/IDER sessions are active, autoneg/speed/duplex 268 * cannot be changed 269 */ 270 if (igb_check_reset_block(hw)) { 271 dev_err(&adapter->pdev->dev, 272 "Cannot change link characteristics when SoL/IDER is active.\n"); 273 return -EINVAL; 274 } 275 276 /* MDI setting is only allowed when autoneg enabled because 277 * some hardware doesn't allow MDI setting when speed or 278 * duplex is forced. 279 */ 280 if (cmd->base.eth_tp_mdix_ctrl) { 281 if (hw->phy.media_type != e1000_media_type_copper) 282 return -EOPNOTSUPP; 283 284 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && 285 (cmd->base.autoneg != AUTONEG_ENABLE)) { 286 dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); 287 return -EINVAL; 288 } 289 } 290 291 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 292 usleep_range(1000, 2000); 293 294 ethtool_convert_link_mode_to_legacy_u32(&advertising, 295 cmd->link_modes.advertising); 296 297 if (cmd->base.autoneg == AUTONEG_ENABLE) { 298 hw->mac.autoneg = 1; 299 if (hw->phy.media_type == e1000_media_type_fiber) { 300 hw->phy.autoneg_advertised = advertising | 301 ADVERTISED_FIBRE | 302 ADVERTISED_Autoneg; 303 switch (adapter->link_speed) { 304 case SPEED_2500: 305 hw->phy.autoneg_advertised = 306 ADVERTISED_2500baseX_Full; 307 break; 308 case SPEED_1000: 309 hw->phy.autoneg_advertised = 310 ADVERTISED_1000baseT_Full; 311 break; 312 case SPEED_100: 313 hw->phy.autoneg_advertised = 314 ADVERTISED_100baseT_Full; 315 break; 316 default: 317 break; 318 } 319 } else { 320 hw->phy.autoneg_advertised = advertising | 321 ADVERTISED_TP | 322 ADVERTISED_Autoneg; 323 } 324 advertising = hw->phy.autoneg_advertised; 325 if (adapter->fc_autoneg) 326 hw->fc.requested_mode = e1000_fc_default; 327 } else { 328 u32 speed = cmd->base.speed; 329 /* calling this overrides forced MDI setting */ 330 if (igb_set_spd_dplx(adapter, speed, cmd->base.duplex)) { 331 clear_bit(__IGB_RESETTING, &adapter->state); 332 return -EINVAL; 333 } 334 } 335 336 /* MDI-X => 2; MDI => 1; Auto => 3 */ 337 if (cmd->base.eth_tp_mdix_ctrl) { 338 /* fix up the value for auto (3 => 0) as zero is mapped 339 * internally to auto 340 */ 341 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) 342 hw->phy.mdix = AUTO_ALL_MODES; 343 else 344 hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl; 345 } 346 347 /* reset the link */ 348 if (netif_running(adapter->netdev)) { 349 igb_down(adapter); 350 igb_up(adapter); 351 } else 352 igb_reset(adapter); 353 354 clear_bit(__IGB_RESETTING, &adapter->state); 355 return 0; 356 } 357 358 static u32 igb_get_link(struct net_device *netdev) 359 { 360 struct igb_adapter *adapter = netdev_priv(netdev); 361 struct e1000_mac_info *mac = &adapter->hw.mac; 362 363 /* If the link is not reported up to netdev, interrupts are disabled, 364 * and so the physical link state may have changed since we last 365 * looked. Set get_link_status to make sure that the true link 366 * state is interrogated, rather than pulling a cached and possibly 367 * stale link state from the driver. 368 */ 369 if (!netif_carrier_ok(netdev)) 370 mac->get_link_status = 1; 371 372 return igb_has_link(adapter); 373 } 374 375 static void igb_get_pauseparam(struct net_device *netdev, 376 struct ethtool_pauseparam *pause) 377 { 378 struct igb_adapter *adapter = netdev_priv(netdev); 379 struct e1000_hw *hw = &adapter->hw; 380 381 pause->autoneg = 382 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 383 384 if (hw->fc.current_mode == e1000_fc_rx_pause) 385 pause->rx_pause = 1; 386 else if (hw->fc.current_mode == e1000_fc_tx_pause) 387 pause->tx_pause = 1; 388 else if (hw->fc.current_mode == e1000_fc_full) { 389 pause->rx_pause = 1; 390 pause->tx_pause = 1; 391 } 392 } 393 394 static int igb_set_pauseparam(struct net_device *netdev, 395 struct ethtool_pauseparam *pause) 396 { 397 struct igb_adapter *adapter = netdev_priv(netdev); 398 struct e1000_hw *hw = &adapter->hw; 399 int retval = 0; 400 int i; 401 402 /* 100basefx does not support setting link flow control */ 403 if (hw->dev_spec._82575.eth_flags.e100_base_fx) 404 return -EINVAL; 405 406 adapter->fc_autoneg = pause->autoneg; 407 408 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 409 usleep_range(1000, 2000); 410 411 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 412 hw->fc.requested_mode = e1000_fc_default; 413 if (netif_running(adapter->netdev)) { 414 igb_down(adapter); 415 igb_up(adapter); 416 } else { 417 igb_reset(adapter); 418 } 419 } else { 420 if (pause->rx_pause && pause->tx_pause) 421 hw->fc.requested_mode = e1000_fc_full; 422 else if (pause->rx_pause && !pause->tx_pause) 423 hw->fc.requested_mode = e1000_fc_rx_pause; 424 else if (!pause->rx_pause && pause->tx_pause) 425 hw->fc.requested_mode = e1000_fc_tx_pause; 426 else if (!pause->rx_pause && !pause->tx_pause) 427 hw->fc.requested_mode = e1000_fc_none; 428 429 hw->fc.current_mode = hw->fc.requested_mode; 430 431 retval = ((hw->phy.media_type == e1000_media_type_copper) ? 432 igb_force_mac_fc(hw) : igb_setup_link(hw)); 433 434 /* Make sure SRRCTL considers new fc settings for each ring */ 435 for (i = 0; i < adapter->num_rx_queues; i++) { 436 struct igb_ring *ring = adapter->rx_ring[i]; 437 438 igb_setup_srrctl(adapter, ring); 439 } 440 } 441 442 clear_bit(__IGB_RESETTING, &adapter->state); 443 return retval; 444 } 445 446 static u32 igb_get_msglevel(struct net_device *netdev) 447 { 448 struct igb_adapter *adapter = netdev_priv(netdev); 449 return adapter->msg_enable; 450 } 451 452 static void igb_set_msglevel(struct net_device *netdev, u32 data) 453 { 454 struct igb_adapter *adapter = netdev_priv(netdev); 455 adapter->msg_enable = data; 456 } 457 458 static int igb_get_regs_len(struct net_device *netdev) 459 { 460 #define IGB_REGS_LEN 740 461 return IGB_REGS_LEN * sizeof(u32); 462 } 463 464 static void igb_get_regs(struct net_device *netdev, 465 struct ethtool_regs *regs, void *p) 466 { 467 struct igb_adapter *adapter = netdev_priv(netdev); 468 struct e1000_hw *hw = &adapter->hw; 469 u32 *regs_buff = p; 470 u8 i; 471 472 memset(p, 0, IGB_REGS_LEN * sizeof(u32)); 473 474 regs->version = (1u << 24) | (hw->revision_id << 16) | hw->device_id; 475 476 /* General Registers */ 477 regs_buff[0] = rd32(E1000_CTRL); 478 regs_buff[1] = rd32(E1000_STATUS); 479 regs_buff[2] = rd32(E1000_CTRL_EXT); 480 regs_buff[3] = rd32(E1000_MDIC); 481 regs_buff[4] = rd32(E1000_SCTL); 482 regs_buff[5] = rd32(E1000_CONNSW); 483 regs_buff[6] = rd32(E1000_VET); 484 regs_buff[7] = rd32(E1000_LEDCTL); 485 regs_buff[8] = rd32(E1000_PBA); 486 regs_buff[9] = rd32(E1000_PBS); 487 regs_buff[10] = rd32(E1000_FRTIMER); 488 regs_buff[11] = rd32(E1000_TCPTIMER); 489 490 /* NVM Register */ 491 regs_buff[12] = rd32(E1000_EECD); 492 493 /* Interrupt */ 494 /* Reading EICS for EICR because they read the 495 * same but EICS does not clear on read 496 */ 497 regs_buff[13] = rd32(E1000_EICS); 498 regs_buff[14] = rd32(E1000_EICS); 499 regs_buff[15] = rd32(E1000_EIMS); 500 regs_buff[16] = rd32(E1000_EIMC); 501 regs_buff[17] = rd32(E1000_EIAC); 502 regs_buff[18] = rd32(E1000_EIAM); 503 /* Reading ICS for ICR because they read the 504 * same but ICS does not clear on read 505 */ 506 regs_buff[19] = rd32(E1000_ICS); 507 regs_buff[20] = rd32(E1000_ICS); 508 regs_buff[21] = rd32(E1000_IMS); 509 regs_buff[22] = rd32(E1000_IMC); 510 regs_buff[23] = rd32(E1000_IAC); 511 regs_buff[24] = rd32(E1000_IAM); 512 regs_buff[25] = rd32(E1000_IMIRVP); 513 514 /* Flow Control */ 515 regs_buff[26] = rd32(E1000_FCAL); 516 regs_buff[27] = rd32(E1000_FCAH); 517 regs_buff[28] = rd32(E1000_FCTTV); 518 regs_buff[29] = rd32(E1000_FCRTL); 519 regs_buff[30] = rd32(E1000_FCRTH); 520 regs_buff[31] = rd32(E1000_FCRTV); 521 522 /* Receive */ 523 regs_buff[32] = rd32(E1000_RCTL); 524 regs_buff[33] = rd32(E1000_RXCSUM); 525 regs_buff[34] = rd32(E1000_RLPML); 526 regs_buff[35] = rd32(E1000_RFCTL); 527 regs_buff[36] = rd32(E1000_MRQC); 528 regs_buff[37] = rd32(E1000_VT_CTL); 529 530 /* Transmit */ 531 regs_buff[38] = rd32(E1000_TCTL); 532 regs_buff[39] = rd32(E1000_TCTL_EXT); 533 regs_buff[40] = rd32(E1000_TIPG); 534 regs_buff[41] = rd32(E1000_DTXCTL); 535 536 /* Wake Up */ 537 regs_buff[42] = rd32(E1000_WUC); 538 regs_buff[43] = rd32(E1000_WUFC); 539 regs_buff[44] = rd32(E1000_WUS); 540 regs_buff[45] = rd32(E1000_IPAV); 541 regs_buff[46] = rd32(E1000_WUPL); 542 543 /* MAC */ 544 regs_buff[47] = rd32(E1000_PCS_CFG0); 545 regs_buff[48] = rd32(E1000_PCS_LCTL); 546 regs_buff[49] = rd32(E1000_PCS_LSTAT); 547 regs_buff[50] = rd32(E1000_PCS_ANADV); 548 regs_buff[51] = rd32(E1000_PCS_LPAB); 549 regs_buff[52] = rd32(E1000_PCS_NPTX); 550 regs_buff[53] = rd32(E1000_PCS_LPABNP); 551 552 /* Statistics */ 553 regs_buff[54] = adapter->stats.crcerrs; 554 regs_buff[55] = adapter->stats.algnerrc; 555 regs_buff[56] = adapter->stats.symerrs; 556 regs_buff[57] = adapter->stats.rxerrc; 557 regs_buff[58] = adapter->stats.mpc; 558 regs_buff[59] = adapter->stats.scc; 559 regs_buff[60] = adapter->stats.ecol; 560 regs_buff[61] = adapter->stats.mcc; 561 regs_buff[62] = adapter->stats.latecol; 562 regs_buff[63] = adapter->stats.colc; 563 regs_buff[64] = adapter->stats.dc; 564 regs_buff[65] = adapter->stats.tncrs; 565 regs_buff[66] = adapter->stats.sec; 566 regs_buff[67] = adapter->stats.htdpmc; 567 regs_buff[68] = adapter->stats.rlec; 568 regs_buff[69] = adapter->stats.xonrxc; 569 regs_buff[70] = adapter->stats.xontxc; 570 regs_buff[71] = adapter->stats.xoffrxc; 571 regs_buff[72] = adapter->stats.xofftxc; 572 regs_buff[73] = adapter->stats.fcruc; 573 regs_buff[74] = adapter->stats.prc64; 574 regs_buff[75] = adapter->stats.prc127; 575 regs_buff[76] = adapter->stats.prc255; 576 regs_buff[77] = adapter->stats.prc511; 577 regs_buff[78] = adapter->stats.prc1023; 578 regs_buff[79] = adapter->stats.prc1522; 579 regs_buff[80] = adapter->stats.gprc; 580 regs_buff[81] = adapter->stats.bprc; 581 regs_buff[82] = adapter->stats.mprc; 582 regs_buff[83] = adapter->stats.gptc; 583 regs_buff[84] = adapter->stats.gorc; 584 regs_buff[86] = adapter->stats.gotc; 585 regs_buff[88] = adapter->stats.rnbc; 586 regs_buff[89] = adapter->stats.ruc; 587 regs_buff[90] = adapter->stats.rfc; 588 regs_buff[91] = adapter->stats.roc; 589 regs_buff[92] = adapter->stats.rjc; 590 regs_buff[93] = adapter->stats.mgprc; 591 regs_buff[94] = adapter->stats.mgpdc; 592 regs_buff[95] = adapter->stats.mgptc; 593 regs_buff[96] = adapter->stats.tor; 594 regs_buff[98] = adapter->stats.tot; 595 regs_buff[100] = adapter->stats.tpr; 596 regs_buff[101] = adapter->stats.tpt; 597 regs_buff[102] = adapter->stats.ptc64; 598 regs_buff[103] = adapter->stats.ptc127; 599 regs_buff[104] = adapter->stats.ptc255; 600 regs_buff[105] = adapter->stats.ptc511; 601 regs_buff[106] = adapter->stats.ptc1023; 602 regs_buff[107] = adapter->stats.ptc1522; 603 regs_buff[108] = adapter->stats.mptc; 604 regs_buff[109] = adapter->stats.bptc; 605 regs_buff[110] = adapter->stats.tsctc; 606 regs_buff[111] = adapter->stats.iac; 607 regs_buff[112] = adapter->stats.rpthc; 608 regs_buff[113] = adapter->stats.hgptc; 609 regs_buff[114] = adapter->stats.hgorc; 610 regs_buff[116] = adapter->stats.hgotc; 611 regs_buff[118] = adapter->stats.lenerrs; 612 regs_buff[119] = adapter->stats.scvpc; 613 regs_buff[120] = adapter->stats.hrmpc; 614 615 for (i = 0; i < 4; i++) 616 regs_buff[121 + i] = rd32(E1000_SRRCTL(i)); 617 for (i = 0; i < 4; i++) 618 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i)); 619 for (i = 0; i < 4; i++) 620 regs_buff[129 + i] = rd32(E1000_RDBAL(i)); 621 for (i = 0; i < 4; i++) 622 regs_buff[133 + i] = rd32(E1000_RDBAH(i)); 623 for (i = 0; i < 4; i++) 624 regs_buff[137 + i] = rd32(E1000_RDLEN(i)); 625 for (i = 0; i < 4; i++) 626 regs_buff[141 + i] = rd32(E1000_RDH(i)); 627 for (i = 0; i < 4; i++) 628 regs_buff[145 + i] = rd32(E1000_RDT(i)); 629 for (i = 0; i < 4; i++) 630 regs_buff[149 + i] = rd32(E1000_RXDCTL(i)); 631 632 for (i = 0; i < 10; i++) 633 regs_buff[153 + i] = rd32(E1000_EITR(i)); 634 for (i = 0; i < 8; i++) 635 regs_buff[163 + i] = rd32(E1000_IMIR(i)); 636 for (i = 0; i < 8; i++) 637 regs_buff[171 + i] = rd32(E1000_IMIREXT(i)); 638 for (i = 0; i < 16; i++) 639 regs_buff[179 + i] = rd32(E1000_RAL(i)); 640 for (i = 0; i < 16; i++) 641 regs_buff[195 + i] = rd32(E1000_RAH(i)); 642 643 for (i = 0; i < 4; i++) 644 regs_buff[211 + i] = rd32(E1000_TDBAL(i)); 645 for (i = 0; i < 4; i++) 646 regs_buff[215 + i] = rd32(E1000_TDBAH(i)); 647 for (i = 0; i < 4; i++) 648 regs_buff[219 + i] = rd32(E1000_TDLEN(i)); 649 for (i = 0; i < 4; i++) 650 regs_buff[223 + i] = rd32(E1000_TDH(i)); 651 for (i = 0; i < 4; i++) 652 regs_buff[227 + i] = rd32(E1000_TDT(i)); 653 for (i = 0; i < 4; i++) 654 regs_buff[231 + i] = rd32(E1000_TXDCTL(i)); 655 for (i = 0; i < 4; i++) 656 regs_buff[235 + i] = rd32(E1000_TDWBAL(i)); 657 for (i = 0; i < 4; i++) 658 regs_buff[239 + i] = rd32(E1000_TDWBAH(i)); 659 for (i = 0; i < 4; i++) 660 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i)); 661 662 for (i = 0; i < 4; i++) 663 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i)); 664 for (i = 0; i < 4; i++) 665 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i)); 666 for (i = 0; i < 32; i++) 667 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i)); 668 for (i = 0; i < 128; i++) 669 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i)); 670 for (i = 0; i < 128; i++) 671 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i)); 672 for (i = 0; i < 4; i++) 673 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i)); 674 675 regs_buff[547] = rd32(E1000_TDFH); 676 regs_buff[548] = rd32(E1000_TDFT); 677 regs_buff[549] = rd32(E1000_TDFHS); 678 regs_buff[550] = rd32(E1000_TDFPC); 679 680 if (hw->mac.type > e1000_82580) { 681 regs_buff[551] = adapter->stats.o2bgptc; 682 regs_buff[552] = adapter->stats.b2ospc; 683 regs_buff[553] = adapter->stats.o2bspc; 684 regs_buff[554] = adapter->stats.b2ogprc; 685 } 686 687 if (hw->mac.type == e1000_82576) { 688 for (i = 0; i < 12; i++) 689 regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4)); 690 for (i = 0; i < 4; i++) 691 regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4)); 692 for (i = 0; i < 12; i++) 693 regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4)); 694 for (i = 0; i < 12; i++) 695 regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4)); 696 for (i = 0; i < 12; i++) 697 regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4)); 698 for (i = 0; i < 12; i++) 699 regs_buff[607 + i] = rd32(E1000_RDH(i + 4)); 700 for (i = 0; i < 12; i++) 701 regs_buff[619 + i] = rd32(E1000_RDT(i + 4)); 702 for (i = 0; i < 12; i++) 703 regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4)); 704 705 for (i = 0; i < 12; i++) 706 regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4)); 707 for (i = 0; i < 12; i++) 708 regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4)); 709 for (i = 0; i < 12; i++) 710 regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4)); 711 for (i = 0; i < 12; i++) 712 regs_buff[679 + i] = rd32(E1000_TDH(i + 4)); 713 for (i = 0; i < 12; i++) 714 regs_buff[691 + i] = rd32(E1000_TDT(i + 4)); 715 for (i = 0; i < 12; i++) 716 regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4)); 717 for (i = 0; i < 12; i++) 718 regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4)); 719 for (i = 0; i < 12; i++) 720 regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4)); 721 } 722 723 if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) 724 regs_buff[739] = rd32(E1000_I210_RR2DCDELAY); 725 } 726 727 static int igb_get_eeprom_len(struct net_device *netdev) 728 { 729 struct igb_adapter *adapter = netdev_priv(netdev); 730 return adapter->hw.nvm.word_size * 2; 731 } 732 733 static int igb_get_eeprom(struct net_device *netdev, 734 struct ethtool_eeprom *eeprom, u8 *bytes) 735 { 736 struct igb_adapter *adapter = netdev_priv(netdev); 737 struct e1000_hw *hw = &adapter->hw; 738 u16 *eeprom_buff; 739 int first_word, last_word; 740 int ret_val = 0; 741 u16 i; 742 743 if (eeprom->len == 0) 744 return -EINVAL; 745 746 eeprom->magic = hw->vendor_id | (hw->device_id << 16); 747 748 first_word = eeprom->offset >> 1; 749 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 750 751 eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16), 752 GFP_KERNEL); 753 if (!eeprom_buff) 754 return -ENOMEM; 755 756 if (hw->nvm.type == e1000_nvm_eeprom_spi) 757 ret_val = hw->nvm.ops.read(hw, first_word, 758 last_word - first_word + 1, 759 eeprom_buff); 760 else { 761 for (i = 0; i < last_word - first_word + 1; i++) { 762 ret_val = hw->nvm.ops.read(hw, first_word + i, 1, 763 &eeprom_buff[i]); 764 if (ret_val) 765 break; 766 } 767 } 768 769 /* Device's eeprom is always little-endian, word addressable */ 770 for (i = 0; i < last_word - first_word + 1; i++) 771 le16_to_cpus(&eeprom_buff[i]); 772 773 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), 774 eeprom->len); 775 kfree(eeprom_buff); 776 777 return ret_val; 778 } 779 780 static int igb_set_eeprom(struct net_device *netdev, 781 struct ethtool_eeprom *eeprom, u8 *bytes) 782 { 783 struct igb_adapter *adapter = netdev_priv(netdev); 784 struct e1000_hw *hw = &adapter->hw; 785 u16 *eeprom_buff; 786 void *ptr; 787 int max_len, first_word, last_word, ret_val = 0; 788 u16 i; 789 790 if (eeprom->len == 0) 791 return -EOPNOTSUPP; 792 793 if ((hw->mac.type >= e1000_i210) && 794 !igb_get_flash_presence_i210(hw)) { 795 return -EOPNOTSUPP; 796 } 797 798 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16))) 799 return -EFAULT; 800 801 max_len = hw->nvm.word_size * 2; 802 803 first_word = eeprom->offset >> 1; 804 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 805 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 806 if (!eeprom_buff) 807 return -ENOMEM; 808 809 ptr = (void *)eeprom_buff; 810 811 if (eeprom->offset & 1) { 812 /* need read/modify/write of first changed EEPROM word 813 * only the second byte of the word is being modified 814 */ 815 ret_val = hw->nvm.ops.read(hw, first_word, 1, 816 &eeprom_buff[0]); 817 ptr++; 818 } 819 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) { 820 /* need read/modify/write of last changed EEPROM word 821 * only the first byte of the word is being modified 822 */ 823 ret_val = hw->nvm.ops.read(hw, last_word, 1, 824 &eeprom_buff[last_word - first_word]); 825 } 826 827 /* Device's eeprom is always little-endian, word addressable */ 828 for (i = 0; i < last_word - first_word + 1; i++) 829 le16_to_cpus(&eeprom_buff[i]); 830 831 memcpy(ptr, bytes, eeprom->len); 832 833 for (i = 0; i < last_word - first_word + 1; i++) 834 cpu_to_le16s(&eeprom_buff[i]); 835 836 ret_val = hw->nvm.ops.write(hw, first_word, 837 last_word - first_word + 1, eeprom_buff); 838 839 /* Update the checksum if nvm write succeeded */ 840 if (ret_val == 0) 841 hw->nvm.ops.update(hw); 842 843 igb_set_fw_version(adapter); 844 kfree(eeprom_buff); 845 return ret_val; 846 } 847 848 static void igb_get_drvinfo(struct net_device *netdev, 849 struct ethtool_drvinfo *drvinfo) 850 { 851 struct igb_adapter *adapter = netdev_priv(netdev); 852 853 strlcpy(drvinfo->driver, igb_driver_name, sizeof(drvinfo->driver)); 854 855 /* EEPROM image version # is reported as firmware version # for 856 * 82575 controllers 857 */ 858 strlcpy(drvinfo->fw_version, adapter->fw_version, 859 sizeof(drvinfo->fw_version)); 860 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 861 sizeof(drvinfo->bus_info)); 862 863 drvinfo->n_priv_flags = IGB_PRIV_FLAGS_STR_LEN; 864 } 865 866 static void igb_get_ringparam(struct net_device *netdev, 867 struct ethtool_ringparam *ring) 868 { 869 struct igb_adapter *adapter = netdev_priv(netdev); 870 871 ring->rx_max_pending = IGB_MAX_RXD; 872 ring->tx_max_pending = IGB_MAX_TXD; 873 ring->rx_pending = adapter->rx_ring_count; 874 ring->tx_pending = adapter->tx_ring_count; 875 } 876 877 static int igb_set_ringparam(struct net_device *netdev, 878 struct ethtool_ringparam *ring) 879 { 880 struct igb_adapter *adapter = netdev_priv(netdev); 881 struct igb_ring *temp_ring; 882 int i, err = 0; 883 u16 new_rx_count, new_tx_count; 884 885 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 886 return -EINVAL; 887 888 new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD); 889 new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD); 890 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE); 891 892 new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD); 893 new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD); 894 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE); 895 896 if ((new_tx_count == adapter->tx_ring_count) && 897 (new_rx_count == adapter->rx_ring_count)) { 898 /* nothing to do */ 899 return 0; 900 } 901 902 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 903 usleep_range(1000, 2000); 904 905 if (!netif_running(adapter->netdev)) { 906 for (i = 0; i < adapter->num_tx_queues; i++) 907 adapter->tx_ring[i]->count = new_tx_count; 908 for (i = 0; i < adapter->num_rx_queues; i++) 909 adapter->rx_ring[i]->count = new_rx_count; 910 adapter->tx_ring_count = new_tx_count; 911 adapter->rx_ring_count = new_rx_count; 912 goto clear_reset; 913 } 914 915 if (adapter->num_tx_queues > adapter->num_rx_queues) 916 temp_ring = vmalloc(array_size(sizeof(struct igb_ring), 917 adapter->num_tx_queues)); 918 else 919 temp_ring = vmalloc(array_size(sizeof(struct igb_ring), 920 adapter->num_rx_queues)); 921 922 if (!temp_ring) { 923 err = -ENOMEM; 924 goto clear_reset; 925 } 926 927 igb_down(adapter); 928 929 /* We can't just free everything and then setup again, 930 * because the ISRs in MSI-X mode get passed pointers 931 * to the Tx and Rx ring structs. 932 */ 933 if (new_tx_count != adapter->tx_ring_count) { 934 for (i = 0; i < adapter->num_tx_queues; i++) { 935 memcpy(&temp_ring[i], adapter->tx_ring[i], 936 sizeof(struct igb_ring)); 937 938 temp_ring[i].count = new_tx_count; 939 err = igb_setup_tx_resources(&temp_ring[i]); 940 if (err) { 941 while (i) { 942 i--; 943 igb_free_tx_resources(&temp_ring[i]); 944 } 945 goto err_setup; 946 } 947 } 948 949 for (i = 0; i < adapter->num_tx_queues; i++) { 950 igb_free_tx_resources(adapter->tx_ring[i]); 951 952 memcpy(adapter->tx_ring[i], &temp_ring[i], 953 sizeof(struct igb_ring)); 954 } 955 956 adapter->tx_ring_count = new_tx_count; 957 } 958 959 if (new_rx_count != adapter->rx_ring_count) { 960 for (i = 0; i < adapter->num_rx_queues; i++) { 961 memcpy(&temp_ring[i], adapter->rx_ring[i], 962 sizeof(struct igb_ring)); 963 964 /* Clear copied XDP RX-queue info */ 965 memset(&temp_ring[i].xdp_rxq, 0, 966 sizeof(temp_ring[i].xdp_rxq)); 967 968 temp_ring[i].count = new_rx_count; 969 err = igb_setup_rx_resources(&temp_ring[i]); 970 if (err) { 971 while (i) { 972 i--; 973 igb_free_rx_resources(&temp_ring[i]); 974 } 975 goto err_setup; 976 } 977 978 } 979 980 for (i = 0; i < adapter->num_rx_queues; i++) { 981 igb_free_rx_resources(adapter->rx_ring[i]); 982 983 memcpy(adapter->rx_ring[i], &temp_ring[i], 984 sizeof(struct igb_ring)); 985 } 986 987 adapter->rx_ring_count = new_rx_count; 988 } 989 err_setup: 990 igb_up(adapter); 991 vfree(temp_ring); 992 clear_reset: 993 clear_bit(__IGB_RESETTING, &adapter->state); 994 return err; 995 } 996 997 /* ethtool register test data */ 998 struct igb_reg_test { 999 u16 reg; 1000 u16 reg_offset; 1001 u16 array_len; 1002 u16 test_type; 1003 u32 mask; 1004 u32 write; 1005 }; 1006 1007 /* In the hardware, registers are laid out either singly, in arrays 1008 * spaced 0x100 bytes apart, or in contiguous tables. We assume 1009 * most tests take place on arrays or single registers (handled 1010 * as a single-element array) and special-case the tables. 1011 * Table tests are always pattern tests. 1012 * 1013 * We also make provision for some required setup steps by specifying 1014 * registers to be written without any read-back testing. 1015 */ 1016 1017 #define PATTERN_TEST 1 1018 #define SET_READ_TEST 2 1019 #define WRITE_NO_TEST 3 1020 #define TABLE32_TEST 4 1021 #define TABLE64_TEST_LO 5 1022 #define TABLE64_TEST_HI 6 1023 1024 /* i210 reg test */ 1025 static struct igb_reg_test reg_test_i210[] = { 1026 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1027 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1028 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1029 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1030 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1031 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1032 /* RDH is read-only for i210, only test RDT. */ 1033 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1034 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1035 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1036 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1037 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1038 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1039 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1040 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1041 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1042 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, 1043 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, 1044 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1045 { E1000_RA, 0, 16, TABLE64_TEST_LO, 1046 0xFFFFFFFF, 0xFFFFFFFF }, 1047 { E1000_RA, 0, 16, TABLE64_TEST_HI, 1048 0x900FFFFF, 0xFFFFFFFF }, 1049 { E1000_MTA, 0, 128, TABLE32_TEST, 1050 0xFFFFFFFF, 0xFFFFFFFF }, 1051 { 0, 0, 0, 0, 0 } 1052 }; 1053 1054 /* i350 reg test */ 1055 static struct igb_reg_test reg_test_i350[] = { 1056 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1057 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1058 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1059 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 }, 1060 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1061 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1062 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1063 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1064 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1065 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1066 /* RDH is read-only for i350, only test RDT. */ 1067 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1068 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1069 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1070 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1071 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1072 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1073 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1074 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1075 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1076 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1077 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1078 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1079 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1080 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1081 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, 1082 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, 1083 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1084 { E1000_RA, 0, 16, TABLE64_TEST_LO, 1085 0xFFFFFFFF, 0xFFFFFFFF }, 1086 { E1000_RA, 0, 16, TABLE64_TEST_HI, 1087 0xC3FFFFFF, 0xFFFFFFFF }, 1088 { E1000_RA2, 0, 16, TABLE64_TEST_LO, 1089 0xFFFFFFFF, 0xFFFFFFFF }, 1090 { E1000_RA2, 0, 16, TABLE64_TEST_HI, 1091 0xC3FFFFFF, 0xFFFFFFFF }, 1092 { E1000_MTA, 0, 128, TABLE32_TEST, 1093 0xFFFFFFFF, 0xFFFFFFFF }, 1094 { 0, 0, 0, 0 } 1095 }; 1096 1097 /* 82580 reg test */ 1098 static struct igb_reg_test reg_test_82580[] = { 1099 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1100 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1101 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1102 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1103 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1104 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1105 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1106 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1107 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1108 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1109 /* RDH is read-only for 82580, only test RDT. */ 1110 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1111 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1112 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1113 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1114 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1115 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1116 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1117 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1118 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1119 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1120 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1121 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1122 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1123 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1124 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, 1125 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, 1126 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1127 { E1000_RA, 0, 16, TABLE64_TEST_LO, 1128 0xFFFFFFFF, 0xFFFFFFFF }, 1129 { E1000_RA, 0, 16, TABLE64_TEST_HI, 1130 0x83FFFFFF, 0xFFFFFFFF }, 1131 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 1132 0xFFFFFFFF, 0xFFFFFFFF }, 1133 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 1134 0x83FFFFFF, 0xFFFFFFFF }, 1135 { E1000_MTA, 0, 128, TABLE32_TEST, 1136 0xFFFFFFFF, 0xFFFFFFFF }, 1137 { 0, 0, 0, 0 } 1138 }; 1139 1140 /* 82576 reg test */ 1141 static struct igb_reg_test reg_test_82576[] = { 1142 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1143 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1144 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1145 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1146 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1147 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1148 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1149 { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1150 { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1151 { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1152 /* Enable all RX queues before testing. */ 1153 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 1154 E1000_RXDCTL_QUEUE_ENABLE }, 1155 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 1156 E1000_RXDCTL_QUEUE_ENABLE }, 1157 /* RDH is read-only for 82576, only test RDT. */ 1158 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1159 { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1160 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 }, 1161 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 }, 1162 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1163 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1164 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1165 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1166 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1167 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1168 { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1169 { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1170 { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1171 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1172 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, 1173 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, 1174 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1175 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, 1176 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF }, 1177 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, 1178 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF }, 1179 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1180 { 0, 0, 0, 0 } 1181 }; 1182 1183 /* 82575 register test */ 1184 static struct igb_reg_test reg_test_82575[] = { 1185 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1186 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1187 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1188 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1189 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1190 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1191 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1192 /* Enable all four RX queues before testing. */ 1193 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 1194 E1000_RXDCTL_QUEUE_ENABLE }, 1195 /* RDH is read-only for 82575, only test RDT. */ 1196 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1197 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 }, 1198 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1199 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1200 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1201 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1202 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1203 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1204 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1205 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB }, 1206 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF }, 1207 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1208 { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF }, 1209 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, 1210 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF }, 1211 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1212 { 0, 0, 0, 0 } 1213 }; 1214 1215 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data, 1216 int reg, u32 mask, u32 write) 1217 { 1218 struct e1000_hw *hw = &adapter->hw; 1219 u32 pat, val; 1220 static const u32 _test[] = { 1221 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; 1222 for (pat = 0; pat < ARRAY_SIZE(_test); pat++) { 1223 wr32(reg, (_test[pat] & write)); 1224 val = rd32(reg) & mask; 1225 if (val != (_test[pat] & write & mask)) { 1226 dev_err(&adapter->pdev->dev, 1227 "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n", 1228 reg, val, (_test[pat] & write & mask)); 1229 *data = reg; 1230 return true; 1231 } 1232 } 1233 1234 return false; 1235 } 1236 1237 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data, 1238 int reg, u32 mask, u32 write) 1239 { 1240 struct e1000_hw *hw = &adapter->hw; 1241 u32 val; 1242 1243 wr32(reg, write & mask); 1244 val = rd32(reg); 1245 if ((write & mask) != (val & mask)) { 1246 dev_err(&adapter->pdev->dev, 1247 "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", 1248 reg, (val & mask), (write & mask)); 1249 *data = reg; 1250 return true; 1251 } 1252 1253 return false; 1254 } 1255 1256 #define REG_PATTERN_TEST(reg, mask, write) \ 1257 do { \ 1258 if (reg_pattern_test(adapter, data, reg, mask, write)) \ 1259 return 1; \ 1260 } while (0) 1261 1262 #define REG_SET_AND_CHECK(reg, mask, write) \ 1263 do { \ 1264 if (reg_set_and_check(adapter, data, reg, mask, write)) \ 1265 return 1; \ 1266 } while (0) 1267 1268 static int igb_reg_test(struct igb_adapter *adapter, u64 *data) 1269 { 1270 struct e1000_hw *hw = &adapter->hw; 1271 struct igb_reg_test *test; 1272 u32 value, before, after; 1273 u32 i, toggle; 1274 1275 switch (adapter->hw.mac.type) { 1276 case e1000_i350: 1277 case e1000_i354: 1278 test = reg_test_i350; 1279 toggle = 0x7FEFF3FF; 1280 break; 1281 case e1000_i210: 1282 case e1000_i211: 1283 test = reg_test_i210; 1284 toggle = 0x7FEFF3FF; 1285 break; 1286 case e1000_82580: 1287 test = reg_test_82580; 1288 toggle = 0x7FEFF3FF; 1289 break; 1290 case e1000_82576: 1291 test = reg_test_82576; 1292 toggle = 0x7FFFF3FF; 1293 break; 1294 default: 1295 test = reg_test_82575; 1296 toggle = 0x7FFFF3FF; 1297 break; 1298 } 1299 1300 /* Because the status register is such a special case, 1301 * we handle it separately from the rest of the register 1302 * tests. Some bits are read-only, some toggle, and some 1303 * are writable on newer MACs. 1304 */ 1305 before = rd32(E1000_STATUS); 1306 value = (rd32(E1000_STATUS) & toggle); 1307 wr32(E1000_STATUS, toggle); 1308 after = rd32(E1000_STATUS) & toggle; 1309 if (value != after) { 1310 dev_err(&adapter->pdev->dev, 1311 "failed STATUS register test got: 0x%08X expected: 0x%08X\n", 1312 after, value); 1313 *data = 1; 1314 return 1; 1315 } 1316 /* restore previous status */ 1317 wr32(E1000_STATUS, before); 1318 1319 /* Perform the remainder of the register test, looping through 1320 * the test table until we either fail or reach the null entry. 1321 */ 1322 while (test->reg) { 1323 for (i = 0; i < test->array_len; i++) { 1324 switch (test->test_type) { 1325 case PATTERN_TEST: 1326 REG_PATTERN_TEST(test->reg + 1327 (i * test->reg_offset), 1328 test->mask, 1329 test->write); 1330 break; 1331 case SET_READ_TEST: 1332 REG_SET_AND_CHECK(test->reg + 1333 (i * test->reg_offset), 1334 test->mask, 1335 test->write); 1336 break; 1337 case WRITE_NO_TEST: 1338 writel(test->write, 1339 (adapter->hw.hw_addr + test->reg) 1340 + (i * test->reg_offset)); 1341 break; 1342 case TABLE32_TEST: 1343 REG_PATTERN_TEST(test->reg + (i * 4), 1344 test->mask, 1345 test->write); 1346 break; 1347 case TABLE64_TEST_LO: 1348 REG_PATTERN_TEST(test->reg + (i * 8), 1349 test->mask, 1350 test->write); 1351 break; 1352 case TABLE64_TEST_HI: 1353 REG_PATTERN_TEST((test->reg + 4) + (i * 8), 1354 test->mask, 1355 test->write); 1356 break; 1357 } 1358 } 1359 test++; 1360 } 1361 1362 *data = 0; 1363 return 0; 1364 } 1365 1366 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data) 1367 { 1368 struct e1000_hw *hw = &adapter->hw; 1369 1370 *data = 0; 1371 1372 /* Validate eeprom on all parts but flashless */ 1373 switch (hw->mac.type) { 1374 case e1000_i210: 1375 case e1000_i211: 1376 if (igb_get_flash_presence_i210(hw)) { 1377 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0) 1378 *data = 2; 1379 } 1380 break; 1381 default: 1382 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0) 1383 *data = 2; 1384 break; 1385 } 1386 1387 return *data; 1388 } 1389 1390 static irqreturn_t igb_test_intr(int irq, void *data) 1391 { 1392 struct igb_adapter *adapter = (struct igb_adapter *) data; 1393 struct e1000_hw *hw = &adapter->hw; 1394 1395 adapter->test_icr |= rd32(E1000_ICR); 1396 1397 return IRQ_HANDLED; 1398 } 1399 1400 static int igb_intr_test(struct igb_adapter *adapter, u64 *data) 1401 { 1402 struct e1000_hw *hw = &adapter->hw; 1403 struct net_device *netdev = adapter->netdev; 1404 u32 mask, ics_mask, i = 0, shared_int = true; 1405 u32 irq = adapter->pdev->irq; 1406 1407 *data = 0; 1408 1409 /* Hook up test interrupt handler just for this test */ 1410 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1411 if (request_irq(adapter->msix_entries[0].vector, 1412 igb_test_intr, 0, netdev->name, adapter)) { 1413 *data = 1; 1414 return -1; 1415 } 1416 } else if (adapter->flags & IGB_FLAG_HAS_MSI) { 1417 shared_int = false; 1418 if (request_irq(irq, 1419 igb_test_intr, 0, netdev->name, adapter)) { 1420 *data = 1; 1421 return -1; 1422 } 1423 } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED, 1424 netdev->name, adapter)) { 1425 shared_int = false; 1426 } else if (request_irq(irq, igb_test_intr, IRQF_SHARED, 1427 netdev->name, adapter)) { 1428 *data = 1; 1429 return -1; 1430 } 1431 dev_info(&adapter->pdev->dev, "testing %s interrupt\n", 1432 (shared_int ? "shared" : "unshared")); 1433 1434 /* Disable all the interrupts */ 1435 wr32(E1000_IMC, ~0); 1436 wrfl(); 1437 usleep_range(10000, 11000); 1438 1439 /* Define all writable bits for ICS */ 1440 switch (hw->mac.type) { 1441 case e1000_82575: 1442 ics_mask = 0x37F47EDD; 1443 break; 1444 case e1000_82576: 1445 ics_mask = 0x77D4FBFD; 1446 break; 1447 case e1000_82580: 1448 ics_mask = 0x77DCFED5; 1449 break; 1450 case e1000_i350: 1451 case e1000_i354: 1452 case e1000_i210: 1453 case e1000_i211: 1454 ics_mask = 0x77DCFED5; 1455 break; 1456 default: 1457 ics_mask = 0x7FFFFFFF; 1458 break; 1459 } 1460 1461 /* Test each interrupt */ 1462 for (; i < 31; i++) { 1463 /* Interrupt to test */ 1464 mask = BIT(i); 1465 1466 if (!(mask & ics_mask)) 1467 continue; 1468 1469 if (!shared_int) { 1470 /* Disable the interrupt to be reported in 1471 * the cause register and then force the same 1472 * interrupt and see if one gets posted. If 1473 * an interrupt was posted to the bus, the 1474 * test failed. 1475 */ 1476 adapter->test_icr = 0; 1477 1478 /* Flush any pending interrupts */ 1479 wr32(E1000_ICR, ~0); 1480 1481 wr32(E1000_IMC, mask); 1482 wr32(E1000_ICS, mask); 1483 wrfl(); 1484 usleep_range(10000, 11000); 1485 1486 if (adapter->test_icr & mask) { 1487 *data = 3; 1488 break; 1489 } 1490 } 1491 1492 /* Enable the interrupt to be reported in 1493 * the cause register and then force the same 1494 * interrupt and see if one gets posted. If 1495 * an interrupt was not posted to the bus, the 1496 * test failed. 1497 */ 1498 adapter->test_icr = 0; 1499 1500 /* Flush any pending interrupts */ 1501 wr32(E1000_ICR, ~0); 1502 1503 wr32(E1000_IMS, mask); 1504 wr32(E1000_ICS, mask); 1505 wrfl(); 1506 usleep_range(10000, 11000); 1507 1508 if (!(adapter->test_icr & mask)) { 1509 *data = 4; 1510 break; 1511 } 1512 1513 if (!shared_int) { 1514 /* Disable the other interrupts to be reported in 1515 * the cause register and then force the other 1516 * interrupts and see if any get posted. If 1517 * an interrupt was posted to the bus, the 1518 * test failed. 1519 */ 1520 adapter->test_icr = 0; 1521 1522 /* Flush any pending interrupts */ 1523 wr32(E1000_ICR, ~0); 1524 1525 wr32(E1000_IMC, ~mask); 1526 wr32(E1000_ICS, ~mask); 1527 wrfl(); 1528 usleep_range(10000, 11000); 1529 1530 if (adapter->test_icr & mask) { 1531 *data = 5; 1532 break; 1533 } 1534 } 1535 } 1536 1537 /* Disable all the interrupts */ 1538 wr32(E1000_IMC, ~0); 1539 wrfl(); 1540 usleep_range(10000, 11000); 1541 1542 /* Unhook test interrupt handler */ 1543 if (adapter->flags & IGB_FLAG_HAS_MSIX) 1544 free_irq(adapter->msix_entries[0].vector, adapter); 1545 else 1546 free_irq(irq, adapter); 1547 1548 return *data; 1549 } 1550 1551 static void igb_free_desc_rings(struct igb_adapter *adapter) 1552 { 1553 igb_free_tx_resources(&adapter->test_tx_ring); 1554 igb_free_rx_resources(&adapter->test_rx_ring); 1555 } 1556 1557 static int igb_setup_desc_rings(struct igb_adapter *adapter) 1558 { 1559 struct igb_ring *tx_ring = &adapter->test_tx_ring; 1560 struct igb_ring *rx_ring = &adapter->test_rx_ring; 1561 struct e1000_hw *hw = &adapter->hw; 1562 int ret_val; 1563 1564 /* Setup Tx descriptor ring and Tx buffers */ 1565 tx_ring->count = IGB_DEFAULT_TXD; 1566 tx_ring->dev = &adapter->pdev->dev; 1567 tx_ring->netdev = adapter->netdev; 1568 tx_ring->reg_idx = adapter->vfs_allocated_count; 1569 1570 if (igb_setup_tx_resources(tx_ring)) { 1571 ret_val = 1; 1572 goto err_nomem; 1573 } 1574 1575 igb_setup_tctl(adapter); 1576 igb_configure_tx_ring(adapter, tx_ring); 1577 1578 /* Setup Rx descriptor ring and Rx buffers */ 1579 rx_ring->count = IGB_DEFAULT_RXD; 1580 rx_ring->dev = &adapter->pdev->dev; 1581 rx_ring->netdev = adapter->netdev; 1582 rx_ring->reg_idx = adapter->vfs_allocated_count; 1583 1584 if (igb_setup_rx_resources(rx_ring)) { 1585 ret_val = 3; 1586 goto err_nomem; 1587 } 1588 1589 /* set the default queue to queue 0 of PF */ 1590 wr32(E1000_MRQC, adapter->vfs_allocated_count << 3); 1591 1592 /* enable receive ring */ 1593 igb_setup_rctl(adapter); 1594 igb_configure_rx_ring(adapter, rx_ring); 1595 1596 igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring)); 1597 1598 return 0; 1599 1600 err_nomem: 1601 igb_free_desc_rings(adapter); 1602 return ret_val; 1603 } 1604 1605 static void igb_phy_disable_receiver(struct igb_adapter *adapter) 1606 { 1607 struct e1000_hw *hw = &adapter->hw; 1608 1609 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1610 igb_write_phy_reg(hw, 29, 0x001F); 1611 igb_write_phy_reg(hw, 30, 0x8FFC); 1612 igb_write_phy_reg(hw, 29, 0x001A); 1613 igb_write_phy_reg(hw, 30, 0x8FF0); 1614 } 1615 1616 static int igb_integrated_phy_loopback(struct igb_adapter *adapter) 1617 { 1618 struct e1000_hw *hw = &adapter->hw; 1619 u32 ctrl_reg = 0; 1620 1621 hw->mac.autoneg = false; 1622 1623 if (hw->phy.type == e1000_phy_m88) { 1624 if (hw->phy.id != I210_I_PHY_ID) { 1625 /* Auto-MDI/MDIX Off */ 1626 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); 1627 /* reset to update Auto-MDI/MDIX */ 1628 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140); 1629 /* autoneg off */ 1630 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140); 1631 } else { 1632 /* force 1000, set loopback */ 1633 igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0); 1634 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140); 1635 } 1636 } else if (hw->phy.type == e1000_phy_82580) { 1637 /* enable MII loopback */ 1638 igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041); 1639 } 1640 1641 /* add small delay to avoid loopback test failure */ 1642 msleep(50); 1643 1644 /* force 1000, set loopback */ 1645 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140); 1646 1647 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1648 ctrl_reg = rd32(E1000_CTRL); 1649 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1650 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1651 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1652 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1653 E1000_CTRL_FD | /* Force Duplex to FULL */ 1654 E1000_CTRL_SLU); /* Set link up enable bit */ 1655 1656 if (hw->phy.type == e1000_phy_m88) 1657 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1658 1659 wr32(E1000_CTRL, ctrl_reg); 1660 1661 /* Disable the receiver on the PHY so when a cable is plugged in, the 1662 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1663 */ 1664 if (hw->phy.type == e1000_phy_m88) 1665 igb_phy_disable_receiver(adapter); 1666 1667 msleep(500); 1668 return 0; 1669 } 1670 1671 static int igb_set_phy_loopback(struct igb_adapter *adapter) 1672 { 1673 return igb_integrated_phy_loopback(adapter); 1674 } 1675 1676 static int igb_setup_loopback_test(struct igb_adapter *adapter) 1677 { 1678 struct e1000_hw *hw = &adapter->hw; 1679 u32 reg; 1680 1681 reg = rd32(E1000_CTRL_EXT); 1682 1683 /* use CTRL_EXT to identify link type as SGMII can appear as copper */ 1684 if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) { 1685 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) || 1686 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) || 1687 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) || 1688 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) || 1689 (hw->device_id == E1000_DEV_ID_I354_SGMII) || 1690 (hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) { 1691 /* Enable DH89xxCC MPHY for near end loopback */ 1692 reg = rd32(E1000_MPHY_ADDR_CTL); 1693 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) | 1694 E1000_MPHY_PCS_CLK_REG_OFFSET; 1695 wr32(E1000_MPHY_ADDR_CTL, reg); 1696 1697 reg = rd32(E1000_MPHY_DATA); 1698 reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN; 1699 wr32(E1000_MPHY_DATA, reg); 1700 } 1701 1702 reg = rd32(E1000_RCTL); 1703 reg |= E1000_RCTL_LBM_TCVR; 1704 wr32(E1000_RCTL, reg); 1705 1706 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK); 1707 1708 reg = rd32(E1000_CTRL); 1709 reg &= ~(E1000_CTRL_RFCE | 1710 E1000_CTRL_TFCE | 1711 E1000_CTRL_LRST); 1712 reg |= E1000_CTRL_SLU | 1713 E1000_CTRL_FD; 1714 wr32(E1000_CTRL, reg); 1715 1716 /* Unset switch control to serdes energy detect */ 1717 reg = rd32(E1000_CONNSW); 1718 reg &= ~E1000_CONNSW_ENRGSRC; 1719 wr32(E1000_CONNSW, reg); 1720 1721 /* Unset sigdetect for SERDES loopback on 1722 * 82580 and newer devices. 1723 */ 1724 if (hw->mac.type >= e1000_82580) { 1725 reg = rd32(E1000_PCS_CFG0); 1726 reg |= E1000_PCS_CFG_IGN_SD; 1727 wr32(E1000_PCS_CFG0, reg); 1728 } 1729 1730 /* Set PCS register for forced speed */ 1731 reg = rd32(E1000_PCS_LCTL); 1732 reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/ 1733 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */ 1734 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */ 1735 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */ 1736 E1000_PCS_LCTL_FSD | /* Force Speed */ 1737 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */ 1738 wr32(E1000_PCS_LCTL, reg); 1739 1740 return 0; 1741 } 1742 1743 return igb_set_phy_loopback(adapter); 1744 } 1745 1746 static void igb_loopback_cleanup(struct igb_adapter *adapter) 1747 { 1748 struct e1000_hw *hw = &adapter->hw; 1749 u32 rctl; 1750 u16 phy_reg; 1751 1752 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) || 1753 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) || 1754 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) || 1755 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) || 1756 (hw->device_id == E1000_DEV_ID_I354_SGMII)) { 1757 u32 reg; 1758 1759 /* Disable near end loopback on DH89xxCC */ 1760 reg = rd32(E1000_MPHY_ADDR_CTL); 1761 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) | 1762 E1000_MPHY_PCS_CLK_REG_OFFSET; 1763 wr32(E1000_MPHY_ADDR_CTL, reg); 1764 1765 reg = rd32(E1000_MPHY_DATA); 1766 reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN; 1767 wr32(E1000_MPHY_DATA, reg); 1768 } 1769 1770 rctl = rd32(E1000_RCTL); 1771 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1772 wr32(E1000_RCTL, rctl); 1773 1774 hw->mac.autoneg = true; 1775 igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg); 1776 if (phy_reg & MII_CR_LOOPBACK) { 1777 phy_reg &= ~MII_CR_LOOPBACK; 1778 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg); 1779 igb_phy_sw_reset(hw); 1780 } 1781 } 1782 1783 static void igb_create_lbtest_frame(struct sk_buff *skb, 1784 unsigned int frame_size) 1785 { 1786 memset(skb->data, 0xFF, frame_size); 1787 frame_size /= 2; 1788 memset(&skb->data[frame_size], 0xAA, frame_size - 1); 1789 skb->data[frame_size + 10] = 0xBE; 1790 skb->data[frame_size + 12] = 0xAF; 1791 } 1792 1793 static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer, 1794 unsigned int frame_size) 1795 { 1796 unsigned char *data; 1797 bool match = true; 1798 1799 frame_size >>= 1; 1800 1801 data = kmap(rx_buffer->page); 1802 1803 if (data[3] != 0xFF || 1804 data[frame_size + 10] != 0xBE || 1805 data[frame_size + 12] != 0xAF) 1806 match = false; 1807 1808 kunmap(rx_buffer->page); 1809 1810 return match; 1811 } 1812 1813 static int igb_clean_test_rings(struct igb_ring *rx_ring, 1814 struct igb_ring *tx_ring, 1815 unsigned int size) 1816 { 1817 union e1000_adv_rx_desc *rx_desc; 1818 struct igb_rx_buffer *rx_buffer_info; 1819 struct igb_tx_buffer *tx_buffer_info; 1820 u16 rx_ntc, tx_ntc, count = 0; 1821 1822 /* initialize next to clean and descriptor values */ 1823 rx_ntc = rx_ring->next_to_clean; 1824 tx_ntc = tx_ring->next_to_clean; 1825 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc); 1826 1827 while (rx_desc->wb.upper.length) { 1828 /* check Rx buffer */ 1829 rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc]; 1830 1831 /* sync Rx buffer for CPU read */ 1832 dma_sync_single_for_cpu(rx_ring->dev, 1833 rx_buffer_info->dma, 1834 size, 1835 DMA_FROM_DEVICE); 1836 1837 /* verify contents of skb */ 1838 if (igb_check_lbtest_frame(rx_buffer_info, size)) 1839 count++; 1840 1841 /* sync Rx buffer for device write */ 1842 dma_sync_single_for_device(rx_ring->dev, 1843 rx_buffer_info->dma, 1844 size, 1845 DMA_FROM_DEVICE); 1846 1847 /* unmap buffer on Tx side */ 1848 tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc]; 1849 1850 /* Free all the Tx ring sk_buffs */ 1851 dev_kfree_skb_any(tx_buffer_info->skb); 1852 1853 /* unmap skb header data */ 1854 dma_unmap_single(tx_ring->dev, 1855 dma_unmap_addr(tx_buffer_info, dma), 1856 dma_unmap_len(tx_buffer_info, len), 1857 DMA_TO_DEVICE); 1858 dma_unmap_len_set(tx_buffer_info, len, 0); 1859 1860 /* increment Rx/Tx next to clean counters */ 1861 rx_ntc++; 1862 if (rx_ntc == rx_ring->count) 1863 rx_ntc = 0; 1864 tx_ntc++; 1865 if (tx_ntc == tx_ring->count) 1866 tx_ntc = 0; 1867 1868 /* fetch next descriptor */ 1869 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc); 1870 } 1871 1872 netdev_tx_reset_queue(txring_txq(tx_ring)); 1873 1874 /* re-map buffers to ring, store next to clean values */ 1875 igb_alloc_rx_buffers(rx_ring, count); 1876 rx_ring->next_to_clean = rx_ntc; 1877 tx_ring->next_to_clean = tx_ntc; 1878 1879 return count; 1880 } 1881 1882 static int igb_run_loopback_test(struct igb_adapter *adapter) 1883 { 1884 struct igb_ring *tx_ring = &adapter->test_tx_ring; 1885 struct igb_ring *rx_ring = &adapter->test_rx_ring; 1886 u16 i, j, lc, good_cnt; 1887 int ret_val = 0; 1888 unsigned int size = IGB_RX_HDR_LEN; 1889 netdev_tx_t tx_ret_val; 1890 struct sk_buff *skb; 1891 1892 /* allocate test skb */ 1893 skb = alloc_skb(size, GFP_KERNEL); 1894 if (!skb) 1895 return 11; 1896 1897 /* place data into test skb */ 1898 igb_create_lbtest_frame(skb, size); 1899 skb_put(skb, size); 1900 1901 /* Calculate the loop count based on the largest descriptor ring 1902 * The idea is to wrap the largest ring a number of times using 64 1903 * send/receive pairs during each loop 1904 */ 1905 1906 if (rx_ring->count <= tx_ring->count) 1907 lc = ((tx_ring->count / 64) * 2) + 1; 1908 else 1909 lc = ((rx_ring->count / 64) * 2) + 1; 1910 1911 for (j = 0; j <= lc; j++) { /* loop count loop */ 1912 /* reset count of good packets */ 1913 good_cnt = 0; 1914 1915 /* place 64 packets on the transmit queue*/ 1916 for (i = 0; i < 64; i++) { 1917 skb_get(skb); 1918 tx_ret_val = igb_xmit_frame_ring(skb, tx_ring); 1919 if (tx_ret_val == NETDEV_TX_OK) 1920 good_cnt++; 1921 } 1922 1923 if (good_cnt != 64) { 1924 ret_val = 12; 1925 break; 1926 } 1927 1928 /* allow 200 milliseconds for packets to go from Tx to Rx */ 1929 msleep(200); 1930 1931 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size); 1932 if (good_cnt != 64) { 1933 ret_val = 13; 1934 break; 1935 } 1936 } /* end loop count loop */ 1937 1938 /* free the original skb */ 1939 kfree_skb(skb); 1940 1941 return ret_val; 1942 } 1943 1944 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data) 1945 { 1946 /* PHY loopback cannot be performed if SoL/IDER 1947 * sessions are active 1948 */ 1949 if (igb_check_reset_block(&adapter->hw)) { 1950 dev_err(&adapter->pdev->dev, 1951 "Cannot do PHY loopback test when SoL/IDER is active.\n"); 1952 *data = 0; 1953 goto out; 1954 } 1955 1956 if (adapter->hw.mac.type == e1000_i354) { 1957 dev_info(&adapter->pdev->dev, 1958 "Loopback test not supported on i354.\n"); 1959 *data = 0; 1960 goto out; 1961 } 1962 *data = igb_setup_desc_rings(adapter); 1963 if (*data) 1964 goto out; 1965 *data = igb_setup_loopback_test(adapter); 1966 if (*data) 1967 goto err_loopback; 1968 *data = igb_run_loopback_test(adapter); 1969 igb_loopback_cleanup(adapter); 1970 1971 err_loopback: 1972 igb_free_desc_rings(adapter); 1973 out: 1974 return *data; 1975 } 1976 1977 static int igb_link_test(struct igb_adapter *adapter, u64 *data) 1978 { 1979 struct e1000_hw *hw = &adapter->hw; 1980 *data = 0; 1981 if (hw->phy.media_type == e1000_media_type_internal_serdes) { 1982 int i = 0; 1983 1984 hw->mac.serdes_has_link = false; 1985 1986 /* On some blade server designs, link establishment 1987 * could take as long as 2-3 minutes 1988 */ 1989 do { 1990 hw->mac.ops.check_for_link(&adapter->hw); 1991 if (hw->mac.serdes_has_link) 1992 return *data; 1993 msleep(20); 1994 } while (i++ < 3750); 1995 1996 *data = 1; 1997 } else { 1998 hw->mac.ops.check_for_link(&adapter->hw); 1999 if (hw->mac.autoneg) 2000 msleep(5000); 2001 2002 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) 2003 *data = 1; 2004 } 2005 return *data; 2006 } 2007 2008 static void igb_diag_test(struct net_device *netdev, 2009 struct ethtool_test *eth_test, u64 *data) 2010 { 2011 struct igb_adapter *adapter = netdev_priv(netdev); 2012 u16 autoneg_advertised; 2013 u8 forced_speed_duplex, autoneg; 2014 bool if_running = netif_running(netdev); 2015 2016 set_bit(__IGB_TESTING, &adapter->state); 2017 2018 /* can't do offline tests on media switching devices */ 2019 if (adapter->hw.dev_spec._82575.mas_capable) 2020 eth_test->flags &= ~ETH_TEST_FL_OFFLINE; 2021 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 2022 /* Offline tests */ 2023 2024 /* save speed, duplex, autoneg settings */ 2025 autoneg_advertised = adapter->hw.phy.autoneg_advertised; 2026 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; 2027 autoneg = adapter->hw.mac.autoneg; 2028 2029 dev_info(&adapter->pdev->dev, "offline testing starting\n"); 2030 2031 /* power up link for link test */ 2032 igb_power_up_link(adapter); 2033 2034 /* Link test performed before hardware reset so autoneg doesn't 2035 * interfere with test result 2036 */ 2037 if (igb_link_test(adapter, &data[TEST_LINK])) 2038 eth_test->flags |= ETH_TEST_FL_FAILED; 2039 2040 if (if_running) 2041 /* indicate we're in test mode */ 2042 igb_close(netdev); 2043 else 2044 igb_reset(adapter); 2045 2046 if (igb_reg_test(adapter, &data[TEST_REG])) 2047 eth_test->flags |= ETH_TEST_FL_FAILED; 2048 2049 igb_reset(adapter); 2050 if (igb_eeprom_test(adapter, &data[TEST_EEP])) 2051 eth_test->flags |= ETH_TEST_FL_FAILED; 2052 2053 igb_reset(adapter); 2054 if (igb_intr_test(adapter, &data[TEST_IRQ])) 2055 eth_test->flags |= ETH_TEST_FL_FAILED; 2056 2057 igb_reset(adapter); 2058 /* power up link for loopback test */ 2059 igb_power_up_link(adapter); 2060 if (igb_loopback_test(adapter, &data[TEST_LOOP])) 2061 eth_test->flags |= ETH_TEST_FL_FAILED; 2062 2063 /* restore speed, duplex, autoneg settings */ 2064 adapter->hw.phy.autoneg_advertised = autoneg_advertised; 2065 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; 2066 adapter->hw.mac.autoneg = autoneg; 2067 2068 /* force this routine to wait until autoneg complete/timeout */ 2069 adapter->hw.phy.autoneg_wait_to_complete = true; 2070 igb_reset(adapter); 2071 adapter->hw.phy.autoneg_wait_to_complete = false; 2072 2073 clear_bit(__IGB_TESTING, &adapter->state); 2074 if (if_running) 2075 igb_open(netdev); 2076 } else { 2077 dev_info(&adapter->pdev->dev, "online testing starting\n"); 2078 2079 /* PHY is powered down when interface is down */ 2080 if (if_running && igb_link_test(adapter, &data[TEST_LINK])) 2081 eth_test->flags |= ETH_TEST_FL_FAILED; 2082 else 2083 data[TEST_LINK] = 0; 2084 2085 /* Online tests aren't run; pass by default */ 2086 data[TEST_REG] = 0; 2087 data[TEST_EEP] = 0; 2088 data[TEST_IRQ] = 0; 2089 data[TEST_LOOP] = 0; 2090 2091 clear_bit(__IGB_TESTING, &adapter->state); 2092 } 2093 msleep_interruptible(4 * 1000); 2094 } 2095 2096 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 2097 { 2098 struct igb_adapter *adapter = netdev_priv(netdev); 2099 2100 wol->wolopts = 0; 2101 2102 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED)) 2103 return; 2104 2105 wol->supported = WAKE_UCAST | WAKE_MCAST | 2106 WAKE_BCAST | WAKE_MAGIC | 2107 WAKE_PHY; 2108 2109 /* apply any specific unsupported masks here */ 2110 switch (adapter->hw.device_id) { 2111 default: 2112 break; 2113 } 2114 2115 if (adapter->wol & E1000_WUFC_EX) 2116 wol->wolopts |= WAKE_UCAST; 2117 if (adapter->wol & E1000_WUFC_MC) 2118 wol->wolopts |= WAKE_MCAST; 2119 if (adapter->wol & E1000_WUFC_BC) 2120 wol->wolopts |= WAKE_BCAST; 2121 if (adapter->wol & E1000_WUFC_MAG) 2122 wol->wolopts |= WAKE_MAGIC; 2123 if (adapter->wol & E1000_WUFC_LNKC) 2124 wol->wolopts |= WAKE_PHY; 2125 } 2126 2127 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 2128 { 2129 struct igb_adapter *adapter = netdev_priv(netdev); 2130 2131 if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_FILTER)) 2132 return -EOPNOTSUPP; 2133 2134 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED)) 2135 return wol->wolopts ? -EOPNOTSUPP : 0; 2136 2137 /* these settings will always override what we currently have */ 2138 adapter->wol = 0; 2139 2140 if (wol->wolopts & WAKE_UCAST) 2141 adapter->wol |= E1000_WUFC_EX; 2142 if (wol->wolopts & WAKE_MCAST) 2143 adapter->wol |= E1000_WUFC_MC; 2144 if (wol->wolopts & WAKE_BCAST) 2145 adapter->wol |= E1000_WUFC_BC; 2146 if (wol->wolopts & WAKE_MAGIC) 2147 adapter->wol |= E1000_WUFC_MAG; 2148 if (wol->wolopts & WAKE_PHY) 2149 adapter->wol |= E1000_WUFC_LNKC; 2150 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 2151 2152 return 0; 2153 } 2154 2155 /* bit defines for adapter->led_status */ 2156 #define IGB_LED_ON 0 2157 2158 static int igb_set_phys_id(struct net_device *netdev, 2159 enum ethtool_phys_id_state state) 2160 { 2161 struct igb_adapter *adapter = netdev_priv(netdev); 2162 struct e1000_hw *hw = &adapter->hw; 2163 2164 switch (state) { 2165 case ETHTOOL_ID_ACTIVE: 2166 igb_blink_led(hw); 2167 return 2; 2168 case ETHTOOL_ID_ON: 2169 igb_blink_led(hw); 2170 break; 2171 case ETHTOOL_ID_OFF: 2172 igb_led_off(hw); 2173 break; 2174 case ETHTOOL_ID_INACTIVE: 2175 igb_led_off(hw); 2176 clear_bit(IGB_LED_ON, &adapter->led_status); 2177 igb_cleanup_led(hw); 2178 break; 2179 } 2180 2181 return 0; 2182 } 2183 2184 static int igb_set_coalesce(struct net_device *netdev, 2185 struct ethtool_coalesce *ec, 2186 struct kernel_ethtool_coalesce *kernel_coal, 2187 struct netlink_ext_ack *extack) 2188 { 2189 struct igb_adapter *adapter = netdev_priv(netdev); 2190 int i; 2191 2192 if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) || 2193 ((ec->rx_coalesce_usecs > 3) && 2194 (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) || 2195 (ec->rx_coalesce_usecs == 2)) 2196 return -EINVAL; 2197 2198 if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) || 2199 ((ec->tx_coalesce_usecs > 3) && 2200 (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) || 2201 (ec->tx_coalesce_usecs == 2)) 2202 return -EINVAL; 2203 2204 if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs) 2205 return -EINVAL; 2206 2207 /* If ITR is disabled, disable DMAC */ 2208 if (ec->rx_coalesce_usecs == 0) { 2209 if (adapter->flags & IGB_FLAG_DMAC) 2210 adapter->flags &= ~IGB_FLAG_DMAC; 2211 } 2212 2213 /* convert to rate of irq's per second */ 2214 if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3) 2215 adapter->rx_itr_setting = ec->rx_coalesce_usecs; 2216 else 2217 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2; 2218 2219 /* convert to rate of irq's per second */ 2220 if (adapter->flags & IGB_FLAG_QUEUE_PAIRS) 2221 adapter->tx_itr_setting = adapter->rx_itr_setting; 2222 else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3) 2223 adapter->tx_itr_setting = ec->tx_coalesce_usecs; 2224 else 2225 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2; 2226 2227 for (i = 0; i < adapter->num_q_vectors; i++) { 2228 struct igb_q_vector *q_vector = adapter->q_vector[i]; 2229 q_vector->tx.work_limit = adapter->tx_work_limit; 2230 if (q_vector->rx.ring) 2231 q_vector->itr_val = adapter->rx_itr_setting; 2232 else 2233 q_vector->itr_val = adapter->tx_itr_setting; 2234 if (q_vector->itr_val && q_vector->itr_val <= 3) 2235 q_vector->itr_val = IGB_START_ITR; 2236 q_vector->set_itr = 1; 2237 } 2238 2239 return 0; 2240 } 2241 2242 static int igb_get_coalesce(struct net_device *netdev, 2243 struct ethtool_coalesce *ec, 2244 struct kernel_ethtool_coalesce *kernel_coal, 2245 struct netlink_ext_ack *extack) 2246 { 2247 struct igb_adapter *adapter = netdev_priv(netdev); 2248 2249 if (adapter->rx_itr_setting <= 3) 2250 ec->rx_coalesce_usecs = adapter->rx_itr_setting; 2251 else 2252 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2; 2253 2254 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) { 2255 if (adapter->tx_itr_setting <= 3) 2256 ec->tx_coalesce_usecs = adapter->tx_itr_setting; 2257 else 2258 ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2; 2259 } 2260 2261 return 0; 2262 } 2263 2264 static int igb_nway_reset(struct net_device *netdev) 2265 { 2266 struct igb_adapter *adapter = netdev_priv(netdev); 2267 if (netif_running(netdev)) 2268 igb_reinit_locked(adapter); 2269 return 0; 2270 } 2271 2272 static int igb_get_sset_count(struct net_device *netdev, int sset) 2273 { 2274 switch (sset) { 2275 case ETH_SS_STATS: 2276 return IGB_STATS_LEN; 2277 case ETH_SS_TEST: 2278 return IGB_TEST_LEN; 2279 case ETH_SS_PRIV_FLAGS: 2280 return IGB_PRIV_FLAGS_STR_LEN; 2281 default: 2282 return -ENOTSUPP; 2283 } 2284 } 2285 2286 static void igb_get_ethtool_stats(struct net_device *netdev, 2287 struct ethtool_stats *stats, u64 *data) 2288 { 2289 struct igb_adapter *adapter = netdev_priv(netdev); 2290 struct rtnl_link_stats64 *net_stats = &adapter->stats64; 2291 unsigned int start; 2292 struct igb_ring *ring; 2293 int i, j; 2294 char *p; 2295 2296 spin_lock(&adapter->stats64_lock); 2297 igb_update_stats(adapter); 2298 2299 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) { 2300 p = (char *)adapter + igb_gstrings_stats[i].stat_offset; 2301 data[i] = (igb_gstrings_stats[i].sizeof_stat == 2302 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 2303 } 2304 for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) { 2305 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset; 2306 data[i] = (igb_gstrings_net_stats[j].sizeof_stat == 2307 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 2308 } 2309 for (j = 0; j < adapter->num_tx_queues; j++) { 2310 u64 restart2; 2311 2312 ring = adapter->tx_ring[j]; 2313 do { 2314 start = u64_stats_fetch_begin_irq(&ring->tx_syncp); 2315 data[i] = ring->tx_stats.packets; 2316 data[i+1] = ring->tx_stats.bytes; 2317 data[i+2] = ring->tx_stats.restart_queue; 2318 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start)); 2319 do { 2320 start = u64_stats_fetch_begin_irq(&ring->tx_syncp2); 2321 restart2 = ring->tx_stats.restart_queue2; 2322 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start)); 2323 data[i+2] += restart2; 2324 2325 i += IGB_TX_QUEUE_STATS_LEN; 2326 } 2327 for (j = 0; j < adapter->num_rx_queues; j++) { 2328 ring = adapter->rx_ring[j]; 2329 do { 2330 start = u64_stats_fetch_begin_irq(&ring->rx_syncp); 2331 data[i] = ring->rx_stats.packets; 2332 data[i+1] = ring->rx_stats.bytes; 2333 data[i+2] = ring->rx_stats.drops; 2334 data[i+3] = ring->rx_stats.csum_err; 2335 data[i+4] = ring->rx_stats.alloc_failed; 2336 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start)); 2337 i += IGB_RX_QUEUE_STATS_LEN; 2338 } 2339 spin_unlock(&adapter->stats64_lock); 2340 } 2341 2342 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data) 2343 { 2344 struct igb_adapter *adapter = netdev_priv(netdev); 2345 u8 *p = data; 2346 int i; 2347 2348 switch (stringset) { 2349 case ETH_SS_TEST: 2350 memcpy(data, igb_gstrings_test, sizeof(igb_gstrings_test)); 2351 break; 2352 case ETH_SS_STATS: 2353 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) 2354 ethtool_sprintf(&p, 2355 igb_gstrings_stats[i].stat_string); 2356 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) 2357 ethtool_sprintf(&p, 2358 igb_gstrings_net_stats[i].stat_string); 2359 for (i = 0; i < adapter->num_tx_queues; i++) { 2360 ethtool_sprintf(&p, "tx_queue_%u_packets", i); 2361 ethtool_sprintf(&p, "tx_queue_%u_bytes", i); 2362 ethtool_sprintf(&p, "tx_queue_%u_restart", i); 2363 } 2364 for (i = 0; i < adapter->num_rx_queues; i++) { 2365 ethtool_sprintf(&p, "rx_queue_%u_packets", i); 2366 ethtool_sprintf(&p, "rx_queue_%u_bytes", i); 2367 ethtool_sprintf(&p, "rx_queue_%u_drops", i); 2368 ethtool_sprintf(&p, "rx_queue_%u_csum_err", i); 2369 ethtool_sprintf(&p, "rx_queue_%u_alloc_failed", i); 2370 } 2371 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */ 2372 break; 2373 case ETH_SS_PRIV_FLAGS: 2374 memcpy(data, igb_priv_flags_strings, 2375 IGB_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN); 2376 break; 2377 } 2378 } 2379 2380 static int igb_get_ts_info(struct net_device *dev, 2381 struct ethtool_ts_info *info) 2382 { 2383 struct igb_adapter *adapter = netdev_priv(dev); 2384 2385 if (adapter->ptp_clock) 2386 info->phc_index = ptp_clock_index(adapter->ptp_clock); 2387 else 2388 info->phc_index = -1; 2389 2390 switch (adapter->hw.mac.type) { 2391 case e1000_82575: 2392 info->so_timestamping = 2393 SOF_TIMESTAMPING_TX_SOFTWARE | 2394 SOF_TIMESTAMPING_RX_SOFTWARE | 2395 SOF_TIMESTAMPING_SOFTWARE; 2396 return 0; 2397 case e1000_82576: 2398 case e1000_82580: 2399 case e1000_i350: 2400 case e1000_i354: 2401 case e1000_i210: 2402 case e1000_i211: 2403 info->so_timestamping = 2404 SOF_TIMESTAMPING_TX_SOFTWARE | 2405 SOF_TIMESTAMPING_RX_SOFTWARE | 2406 SOF_TIMESTAMPING_SOFTWARE | 2407 SOF_TIMESTAMPING_TX_HARDWARE | 2408 SOF_TIMESTAMPING_RX_HARDWARE | 2409 SOF_TIMESTAMPING_RAW_HARDWARE; 2410 2411 info->tx_types = 2412 BIT(HWTSTAMP_TX_OFF) | 2413 BIT(HWTSTAMP_TX_ON); 2414 2415 info->rx_filters = BIT(HWTSTAMP_FILTER_NONE); 2416 2417 /* 82576 does not support timestamping all packets. */ 2418 if (adapter->hw.mac.type >= e1000_82580) 2419 info->rx_filters |= BIT(HWTSTAMP_FILTER_ALL); 2420 else 2421 info->rx_filters |= 2422 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) | 2423 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) | 2424 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT); 2425 2426 return 0; 2427 default: 2428 return -EOPNOTSUPP; 2429 } 2430 } 2431 2432 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0) 2433 static int igb_get_ethtool_nfc_entry(struct igb_adapter *adapter, 2434 struct ethtool_rxnfc *cmd) 2435 { 2436 struct ethtool_rx_flow_spec *fsp = &cmd->fs; 2437 struct igb_nfc_filter *rule = NULL; 2438 2439 /* report total rule count */ 2440 cmd->data = IGB_MAX_RXNFC_FILTERS; 2441 2442 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) { 2443 if (fsp->location <= rule->sw_idx) 2444 break; 2445 } 2446 2447 if (!rule || fsp->location != rule->sw_idx) 2448 return -EINVAL; 2449 2450 if (rule->filter.match_flags) { 2451 fsp->flow_type = ETHER_FLOW; 2452 fsp->ring_cookie = rule->action; 2453 if (rule->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) { 2454 fsp->h_u.ether_spec.h_proto = rule->filter.etype; 2455 fsp->m_u.ether_spec.h_proto = ETHER_TYPE_FULL_MASK; 2456 } 2457 if (rule->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI) { 2458 fsp->flow_type |= FLOW_EXT; 2459 fsp->h_ext.vlan_tci = rule->filter.vlan_tci; 2460 fsp->m_ext.vlan_tci = htons(VLAN_PRIO_MASK); 2461 } 2462 if (rule->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) { 2463 ether_addr_copy(fsp->h_u.ether_spec.h_dest, 2464 rule->filter.dst_addr); 2465 /* As we only support matching by the full 2466 * mask, return the mask to userspace 2467 */ 2468 eth_broadcast_addr(fsp->m_u.ether_spec.h_dest); 2469 } 2470 if (rule->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) { 2471 ether_addr_copy(fsp->h_u.ether_spec.h_source, 2472 rule->filter.src_addr); 2473 /* As we only support matching by the full 2474 * mask, return the mask to userspace 2475 */ 2476 eth_broadcast_addr(fsp->m_u.ether_spec.h_source); 2477 } 2478 2479 return 0; 2480 } 2481 return -EINVAL; 2482 } 2483 2484 static int igb_get_ethtool_nfc_all(struct igb_adapter *adapter, 2485 struct ethtool_rxnfc *cmd, 2486 u32 *rule_locs) 2487 { 2488 struct igb_nfc_filter *rule; 2489 int cnt = 0; 2490 2491 /* report total rule count */ 2492 cmd->data = IGB_MAX_RXNFC_FILTERS; 2493 2494 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) { 2495 if (cnt == cmd->rule_cnt) 2496 return -EMSGSIZE; 2497 rule_locs[cnt] = rule->sw_idx; 2498 cnt++; 2499 } 2500 2501 cmd->rule_cnt = cnt; 2502 2503 return 0; 2504 } 2505 2506 static int igb_get_rss_hash_opts(struct igb_adapter *adapter, 2507 struct ethtool_rxnfc *cmd) 2508 { 2509 cmd->data = 0; 2510 2511 /* Report default options for RSS on igb */ 2512 switch (cmd->flow_type) { 2513 case TCP_V4_FLOW: 2514 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2515 fallthrough; 2516 case UDP_V4_FLOW: 2517 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP) 2518 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2519 fallthrough; 2520 case SCTP_V4_FLOW: 2521 case AH_ESP_V4_FLOW: 2522 case AH_V4_FLOW: 2523 case ESP_V4_FLOW: 2524 case IPV4_FLOW: 2525 cmd->data |= RXH_IP_SRC | RXH_IP_DST; 2526 break; 2527 case TCP_V6_FLOW: 2528 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2529 fallthrough; 2530 case UDP_V6_FLOW: 2531 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP) 2532 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2533 fallthrough; 2534 case SCTP_V6_FLOW: 2535 case AH_ESP_V6_FLOW: 2536 case AH_V6_FLOW: 2537 case ESP_V6_FLOW: 2538 case IPV6_FLOW: 2539 cmd->data |= RXH_IP_SRC | RXH_IP_DST; 2540 break; 2541 default: 2542 return -EINVAL; 2543 } 2544 2545 return 0; 2546 } 2547 2548 static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd, 2549 u32 *rule_locs) 2550 { 2551 struct igb_adapter *adapter = netdev_priv(dev); 2552 int ret = -EOPNOTSUPP; 2553 2554 switch (cmd->cmd) { 2555 case ETHTOOL_GRXRINGS: 2556 cmd->data = adapter->num_rx_queues; 2557 ret = 0; 2558 break; 2559 case ETHTOOL_GRXCLSRLCNT: 2560 cmd->rule_cnt = adapter->nfc_filter_count; 2561 ret = 0; 2562 break; 2563 case ETHTOOL_GRXCLSRULE: 2564 ret = igb_get_ethtool_nfc_entry(adapter, cmd); 2565 break; 2566 case ETHTOOL_GRXCLSRLALL: 2567 ret = igb_get_ethtool_nfc_all(adapter, cmd, rule_locs); 2568 break; 2569 case ETHTOOL_GRXFH: 2570 ret = igb_get_rss_hash_opts(adapter, cmd); 2571 break; 2572 default: 2573 break; 2574 } 2575 2576 return ret; 2577 } 2578 2579 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \ 2580 IGB_FLAG_RSS_FIELD_IPV6_UDP) 2581 static int igb_set_rss_hash_opt(struct igb_adapter *adapter, 2582 struct ethtool_rxnfc *nfc) 2583 { 2584 u32 flags = adapter->flags; 2585 2586 /* RSS does not support anything other than hashing 2587 * to queues on src and dst IPs and ports 2588 */ 2589 if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST | 2590 RXH_L4_B_0_1 | RXH_L4_B_2_3)) 2591 return -EINVAL; 2592 2593 switch (nfc->flow_type) { 2594 case TCP_V4_FLOW: 2595 case TCP_V6_FLOW: 2596 if (!(nfc->data & RXH_IP_SRC) || 2597 !(nfc->data & RXH_IP_DST) || 2598 !(nfc->data & RXH_L4_B_0_1) || 2599 !(nfc->data & RXH_L4_B_2_3)) 2600 return -EINVAL; 2601 break; 2602 case UDP_V4_FLOW: 2603 if (!(nfc->data & RXH_IP_SRC) || 2604 !(nfc->data & RXH_IP_DST)) 2605 return -EINVAL; 2606 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 2607 case 0: 2608 flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP; 2609 break; 2610 case (RXH_L4_B_0_1 | RXH_L4_B_2_3): 2611 flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP; 2612 break; 2613 default: 2614 return -EINVAL; 2615 } 2616 break; 2617 case UDP_V6_FLOW: 2618 if (!(nfc->data & RXH_IP_SRC) || 2619 !(nfc->data & RXH_IP_DST)) 2620 return -EINVAL; 2621 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 2622 case 0: 2623 flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP; 2624 break; 2625 case (RXH_L4_B_0_1 | RXH_L4_B_2_3): 2626 flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP; 2627 break; 2628 default: 2629 return -EINVAL; 2630 } 2631 break; 2632 case AH_ESP_V4_FLOW: 2633 case AH_V4_FLOW: 2634 case ESP_V4_FLOW: 2635 case SCTP_V4_FLOW: 2636 case AH_ESP_V6_FLOW: 2637 case AH_V6_FLOW: 2638 case ESP_V6_FLOW: 2639 case SCTP_V6_FLOW: 2640 if (!(nfc->data & RXH_IP_SRC) || 2641 !(nfc->data & RXH_IP_DST) || 2642 (nfc->data & RXH_L4_B_0_1) || 2643 (nfc->data & RXH_L4_B_2_3)) 2644 return -EINVAL; 2645 break; 2646 default: 2647 return -EINVAL; 2648 } 2649 2650 /* if we changed something we need to update flags */ 2651 if (flags != adapter->flags) { 2652 struct e1000_hw *hw = &adapter->hw; 2653 u32 mrqc = rd32(E1000_MRQC); 2654 2655 if ((flags & UDP_RSS_FLAGS) && 2656 !(adapter->flags & UDP_RSS_FLAGS)) 2657 dev_err(&adapter->pdev->dev, 2658 "enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n"); 2659 2660 adapter->flags = flags; 2661 2662 /* Perform hash on these packet types */ 2663 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 | 2664 E1000_MRQC_RSS_FIELD_IPV4_TCP | 2665 E1000_MRQC_RSS_FIELD_IPV6 | 2666 E1000_MRQC_RSS_FIELD_IPV6_TCP; 2667 2668 mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP | 2669 E1000_MRQC_RSS_FIELD_IPV6_UDP); 2670 2671 if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP) 2672 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP; 2673 2674 if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP) 2675 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP; 2676 2677 wr32(E1000_MRQC, mrqc); 2678 } 2679 2680 return 0; 2681 } 2682 2683 static int igb_rxnfc_write_etype_filter(struct igb_adapter *adapter, 2684 struct igb_nfc_filter *input) 2685 { 2686 struct e1000_hw *hw = &adapter->hw; 2687 u8 i; 2688 u32 etqf; 2689 u16 etype; 2690 2691 /* find an empty etype filter register */ 2692 for (i = 0; i < MAX_ETYPE_FILTER; ++i) { 2693 if (!adapter->etype_bitmap[i]) 2694 break; 2695 } 2696 if (i == MAX_ETYPE_FILTER) { 2697 dev_err(&adapter->pdev->dev, "ethtool -N: etype filters are all used.\n"); 2698 return -EINVAL; 2699 } 2700 2701 adapter->etype_bitmap[i] = true; 2702 2703 etqf = rd32(E1000_ETQF(i)); 2704 etype = ntohs(input->filter.etype & ETHER_TYPE_FULL_MASK); 2705 2706 etqf |= E1000_ETQF_FILTER_ENABLE; 2707 etqf &= ~E1000_ETQF_ETYPE_MASK; 2708 etqf |= (etype & E1000_ETQF_ETYPE_MASK); 2709 2710 etqf &= ~E1000_ETQF_QUEUE_MASK; 2711 etqf |= ((input->action << E1000_ETQF_QUEUE_SHIFT) 2712 & E1000_ETQF_QUEUE_MASK); 2713 etqf |= E1000_ETQF_QUEUE_ENABLE; 2714 2715 wr32(E1000_ETQF(i), etqf); 2716 2717 input->etype_reg_index = i; 2718 2719 return 0; 2720 } 2721 2722 static int igb_rxnfc_write_vlan_prio_filter(struct igb_adapter *adapter, 2723 struct igb_nfc_filter *input) 2724 { 2725 struct e1000_hw *hw = &adapter->hw; 2726 u8 vlan_priority; 2727 u16 queue_index; 2728 u32 vlapqf; 2729 2730 vlapqf = rd32(E1000_VLAPQF); 2731 vlan_priority = (ntohs(input->filter.vlan_tci) & VLAN_PRIO_MASK) 2732 >> VLAN_PRIO_SHIFT; 2733 queue_index = (vlapqf >> (vlan_priority * 4)) & E1000_VLAPQF_QUEUE_MASK; 2734 2735 /* check whether this vlan prio is already set */ 2736 if ((vlapqf & E1000_VLAPQF_P_VALID(vlan_priority)) && 2737 (queue_index != input->action)) { 2738 dev_err(&adapter->pdev->dev, "ethtool rxnfc set vlan prio filter failed.\n"); 2739 return -EEXIST; 2740 } 2741 2742 vlapqf |= E1000_VLAPQF_P_VALID(vlan_priority); 2743 vlapqf |= E1000_VLAPQF_QUEUE_SEL(vlan_priority, input->action); 2744 2745 wr32(E1000_VLAPQF, vlapqf); 2746 2747 return 0; 2748 } 2749 2750 int igb_add_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input) 2751 { 2752 struct e1000_hw *hw = &adapter->hw; 2753 int err = -EINVAL; 2754 2755 if (hw->mac.type == e1000_i210 && 2756 !(input->filter.match_flags & ~IGB_FILTER_FLAG_SRC_MAC_ADDR)) { 2757 dev_err(&adapter->pdev->dev, 2758 "i210 doesn't support flow classification rules specifying only source addresses.\n"); 2759 return -EOPNOTSUPP; 2760 } 2761 2762 if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) { 2763 err = igb_rxnfc_write_etype_filter(adapter, input); 2764 if (err) 2765 return err; 2766 } 2767 2768 if (input->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) { 2769 err = igb_add_mac_steering_filter(adapter, 2770 input->filter.dst_addr, 2771 input->action, 0); 2772 err = min_t(int, err, 0); 2773 if (err) 2774 return err; 2775 } 2776 2777 if (input->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) { 2778 err = igb_add_mac_steering_filter(adapter, 2779 input->filter.src_addr, 2780 input->action, 2781 IGB_MAC_STATE_SRC_ADDR); 2782 err = min_t(int, err, 0); 2783 if (err) 2784 return err; 2785 } 2786 2787 if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI) 2788 err = igb_rxnfc_write_vlan_prio_filter(adapter, input); 2789 2790 return err; 2791 } 2792 2793 static void igb_clear_etype_filter_regs(struct igb_adapter *adapter, 2794 u16 reg_index) 2795 { 2796 struct e1000_hw *hw = &adapter->hw; 2797 u32 etqf = rd32(E1000_ETQF(reg_index)); 2798 2799 etqf &= ~E1000_ETQF_QUEUE_ENABLE; 2800 etqf &= ~E1000_ETQF_QUEUE_MASK; 2801 etqf &= ~E1000_ETQF_FILTER_ENABLE; 2802 2803 wr32(E1000_ETQF(reg_index), etqf); 2804 2805 adapter->etype_bitmap[reg_index] = false; 2806 } 2807 2808 static void igb_clear_vlan_prio_filter(struct igb_adapter *adapter, 2809 u16 vlan_tci) 2810 { 2811 struct e1000_hw *hw = &adapter->hw; 2812 u8 vlan_priority; 2813 u32 vlapqf; 2814 2815 vlan_priority = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 2816 2817 vlapqf = rd32(E1000_VLAPQF); 2818 vlapqf &= ~E1000_VLAPQF_P_VALID(vlan_priority); 2819 vlapqf &= ~E1000_VLAPQF_QUEUE_SEL(vlan_priority, 2820 E1000_VLAPQF_QUEUE_MASK); 2821 2822 wr32(E1000_VLAPQF, vlapqf); 2823 } 2824 2825 int igb_erase_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input) 2826 { 2827 if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) 2828 igb_clear_etype_filter_regs(adapter, 2829 input->etype_reg_index); 2830 2831 if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI) 2832 igb_clear_vlan_prio_filter(adapter, 2833 ntohs(input->filter.vlan_tci)); 2834 2835 if (input->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) 2836 igb_del_mac_steering_filter(adapter, input->filter.src_addr, 2837 input->action, 2838 IGB_MAC_STATE_SRC_ADDR); 2839 2840 if (input->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) 2841 igb_del_mac_steering_filter(adapter, input->filter.dst_addr, 2842 input->action, 0); 2843 2844 return 0; 2845 } 2846 2847 static int igb_update_ethtool_nfc_entry(struct igb_adapter *adapter, 2848 struct igb_nfc_filter *input, 2849 u16 sw_idx) 2850 { 2851 struct igb_nfc_filter *rule, *parent; 2852 int err = -EINVAL; 2853 2854 parent = NULL; 2855 rule = NULL; 2856 2857 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) { 2858 /* hash found, or no matching entry */ 2859 if (rule->sw_idx >= sw_idx) 2860 break; 2861 parent = rule; 2862 } 2863 2864 /* if there is an old rule occupying our place remove it */ 2865 if (rule && (rule->sw_idx == sw_idx)) { 2866 if (!input) 2867 err = igb_erase_filter(adapter, rule); 2868 2869 hlist_del(&rule->nfc_node); 2870 kfree(rule); 2871 adapter->nfc_filter_count--; 2872 } 2873 2874 /* If no input this was a delete, err should be 0 if a rule was 2875 * successfully found and removed from the list else -EINVAL 2876 */ 2877 if (!input) 2878 return err; 2879 2880 /* initialize node */ 2881 INIT_HLIST_NODE(&input->nfc_node); 2882 2883 /* add filter to the list */ 2884 if (parent) 2885 hlist_add_behind(&input->nfc_node, &parent->nfc_node); 2886 else 2887 hlist_add_head(&input->nfc_node, &adapter->nfc_filter_list); 2888 2889 /* update counts */ 2890 adapter->nfc_filter_count++; 2891 2892 return 0; 2893 } 2894 2895 static int igb_add_ethtool_nfc_entry(struct igb_adapter *adapter, 2896 struct ethtool_rxnfc *cmd) 2897 { 2898 struct net_device *netdev = adapter->netdev; 2899 struct ethtool_rx_flow_spec *fsp = 2900 (struct ethtool_rx_flow_spec *)&cmd->fs; 2901 struct igb_nfc_filter *input, *rule; 2902 int err = 0; 2903 2904 if (!(netdev->hw_features & NETIF_F_NTUPLE)) 2905 return -EOPNOTSUPP; 2906 2907 /* Don't allow programming if the action is a queue greater than 2908 * the number of online Rx queues. 2909 */ 2910 if ((fsp->ring_cookie == RX_CLS_FLOW_DISC) || 2911 (fsp->ring_cookie >= adapter->num_rx_queues)) { 2912 dev_err(&adapter->pdev->dev, "ethtool -N: The specified action is invalid\n"); 2913 return -EINVAL; 2914 } 2915 2916 /* Don't allow indexes to exist outside of available space */ 2917 if (fsp->location >= IGB_MAX_RXNFC_FILTERS) { 2918 dev_err(&adapter->pdev->dev, "Location out of range\n"); 2919 return -EINVAL; 2920 } 2921 2922 if ((fsp->flow_type & ~FLOW_EXT) != ETHER_FLOW) 2923 return -EINVAL; 2924 2925 input = kzalloc(sizeof(*input), GFP_KERNEL); 2926 if (!input) 2927 return -ENOMEM; 2928 2929 if (fsp->m_u.ether_spec.h_proto == ETHER_TYPE_FULL_MASK) { 2930 input->filter.etype = fsp->h_u.ether_spec.h_proto; 2931 input->filter.match_flags = IGB_FILTER_FLAG_ETHER_TYPE; 2932 } 2933 2934 /* Only support matching addresses by the full mask */ 2935 if (is_broadcast_ether_addr(fsp->m_u.ether_spec.h_source)) { 2936 input->filter.match_flags |= IGB_FILTER_FLAG_SRC_MAC_ADDR; 2937 ether_addr_copy(input->filter.src_addr, 2938 fsp->h_u.ether_spec.h_source); 2939 } 2940 2941 /* Only support matching addresses by the full mask */ 2942 if (is_broadcast_ether_addr(fsp->m_u.ether_spec.h_dest)) { 2943 input->filter.match_flags |= IGB_FILTER_FLAG_DST_MAC_ADDR; 2944 ether_addr_copy(input->filter.dst_addr, 2945 fsp->h_u.ether_spec.h_dest); 2946 } 2947 2948 if ((fsp->flow_type & FLOW_EXT) && fsp->m_ext.vlan_tci) { 2949 if (fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK)) { 2950 err = -EINVAL; 2951 goto err_out; 2952 } 2953 input->filter.vlan_tci = fsp->h_ext.vlan_tci; 2954 input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI; 2955 } 2956 2957 input->action = fsp->ring_cookie; 2958 input->sw_idx = fsp->location; 2959 2960 spin_lock(&adapter->nfc_lock); 2961 2962 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) { 2963 if (!memcmp(&input->filter, &rule->filter, 2964 sizeof(input->filter))) { 2965 err = -EEXIST; 2966 dev_err(&adapter->pdev->dev, 2967 "ethtool: this filter is already set\n"); 2968 goto err_out_w_lock; 2969 } 2970 } 2971 2972 err = igb_add_filter(adapter, input); 2973 if (err) 2974 goto err_out_w_lock; 2975 2976 igb_update_ethtool_nfc_entry(adapter, input, input->sw_idx); 2977 2978 spin_unlock(&adapter->nfc_lock); 2979 return 0; 2980 2981 err_out_w_lock: 2982 spin_unlock(&adapter->nfc_lock); 2983 err_out: 2984 kfree(input); 2985 return err; 2986 } 2987 2988 static int igb_del_ethtool_nfc_entry(struct igb_adapter *adapter, 2989 struct ethtool_rxnfc *cmd) 2990 { 2991 struct ethtool_rx_flow_spec *fsp = 2992 (struct ethtool_rx_flow_spec *)&cmd->fs; 2993 int err; 2994 2995 spin_lock(&adapter->nfc_lock); 2996 err = igb_update_ethtool_nfc_entry(adapter, NULL, fsp->location); 2997 spin_unlock(&adapter->nfc_lock); 2998 2999 return err; 3000 } 3001 3002 static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd) 3003 { 3004 struct igb_adapter *adapter = netdev_priv(dev); 3005 int ret = -EOPNOTSUPP; 3006 3007 switch (cmd->cmd) { 3008 case ETHTOOL_SRXFH: 3009 ret = igb_set_rss_hash_opt(adapter, cmd); 3010 break; 3011 case ETHTOOL_SRXCLSRLINS: 3012 ret = igb_add_ethtool_nfc_entry(adapter, cmd); 3013 break; 3014 case ETHTOOL_SRXCLSRLDEL: 3015 ret = igb_del_ethtool_nfc_entry(adapter, cmd); 3016 break; 3017 default: 3018 break; 3019 } 3020 3021 return ret; 3022 } 3023 3024 static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata) 3025 { 3026 struct igb_adapter *adapter = netdev_priv(netdev); 3027 struct e1000_hw *hw = &adapter->hw; 3028 u32 ret_val; 3029 u16 phy_data; 3030 3031 if ((hw->mac.type < e1000_i350) || 3032 (hw->phy.media_type != e1000_media_type_copper)) 3033 return -EOPNOTSUPP; 3034 3035 edata->supported = (SUPPORTED_1000baseT_Full | 3036 SUPPORTED_100baseT_Full); 3037 if (!hw->dev_spec._82575.eee_disable) 3038 edata->advertised = 3039 mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert); 3040 3041 /* The IPCNFG and EEER registers are not supported on I354. */ 3042 if (hw->mac.type == e1000_i354) { 3043 igb_get_eee_status_i354(hw, (bool *)&edata->eee_active); 3044 } else { 3045 u32 eeer; 3046 3047 eeer = rd32(E1000_EEER); 3048 3049 /* EEE status on negotiated link */ 3050 if (eeer & E1000_EEER_EEE_NEG) 3051 edata->eee_active = true; 3052 3053 if (eeer & E1000_EEER_TX_LPI_EN) 3054 edata->tx_lpi_enabled = true; 3055 } 3056 3057 /* EEE Link Partner Advertised */ 3058 switch (hw->mac.type) { 3059 case e1000_i350: 3060 ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350, 3061 &phy_data); 3062 if (ret_val) 3063 return -ENODATA; 3064 3065 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data); 3066 break; 3067 case e1000_i354: 3068 case e1000_i210: 3069 case e1000_i211: 3070 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210, 3071 E1000_EEE_LP_ADV_DEV_I210, 3072 &phy_data); 3073 if (ret_val) 3074 return -ENODATA; 3075 3076 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data); 3077 3078 break; 3079 default: 3080 break; 3081 } 3082 3083 edata->eee_enabled = !hw->dev_spec._82575.eee_disable; 3084 3085 if ((hw->mac.type == e1000_i354) && 3086 (edata->eee_enabled)) 3087 edata->tx_lpi_enabled = true; 3088 3089 /* Report correct negotiated EEE status for devices that 3090 * wrongly report EEE at half-duplex 3091 */ 3092 if (adapter->link_duplex == HALF_DUPLEX) { 3093 edata->eee_enabled = false; 3094 edata->eee_active = false; 3095 edata->tx_lpi_enabled = false; 3096 edata->advertised &= ~edata->advertised; 3097 } 3098 3099 return 0; 3100 } 3101 3102 static int igb_set_eee(struct net_device *netdev, 3103 struct ethtool_eee *edata) 3104 { 3105 struct igb_adapter *adapter = netdev_priv(netdev); 3106 struct e1000_hw *hw = &adapter->hw; 3107 struct ethtool_eee eee_curr; 3108 bool adv1g_eee = true, adv100m_eee = true; 3109 s32 ret_val; 3110 3111 if ((hw->mac.type < e1000_i350) || 3112 (hw->phy.media_type != e1000_media_type_copper)) 3113 return -EOPNOTSUPP; 3114 3115 memset(&eee_curr, 0, sizeof(struct ethtool_eee)); 3116 3117 ret_val = igb_get_eee(netdev, &eee_curr); 3118 if (ret_val) 3119 return ret_val; 3120 3121 if (eee_curr.eee_enabled) { 3122 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) { 3123 dev_err(&adapter->pdev->dev, 3124 "Setting EEE tx-lpi is not supported\n"); 3125 return -EINVAL; 3126 } 3127 3128 /* Tx LPI timer is not implemented currently */ 3129 if (edata->tx_lpi_timer) { 3130 dev_err(&adapter->pdev->dev, 3131 "Setting EEE Tx LPI timer is not supported\n"); 3132 return -EINVAL; 3133 } 3134 3135 if (!edata->advertised || (edata->advertised & 3136 ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL))) { 3137 dev_err(&adapter->pdev->dev, 3138 "EEE Advertisement supports only 100Tx and/or 100T full duplex\n"); 3139 return -EINVAL; 3140 } 3141 adv100m_eee = !!(edata->advertised & ADVERTISE_100_FULL); 3142 adv1g_eee = !!(edata->advertised & ADVERTISE_1000_FULL); 3143 3144 } else if (!edata->eee_enabled) { 3145 dev_err(&adapter->pdev->dev, 3146 "Setting EEE options are not supported with EEE disabled\n"); 3147 return -EINVAL; 3148 } 3149 3150 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised); 3151 if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) { 3152 hw->dev_spec._82575.eee_disable = !edata->eee_enabled; 3153 adapter->flags |= IGB_FLAG_EEE; 3154 3155 /* reset link */ 3156 if (netif_running(netdev)) 3157 igb_reinit_locked(adapter); 3158 else 3159 igb_reset(adapter); 3160 } 3161 3162 if (hw->mac.type == e1000_i354) 3163 ret_val = igb_set_eee_i354(hw, adv1g_eee, adv100m_eee); 3164 else 3165 ret_val = igb_set_eee_i350(hw, adv1g_eee, adv100m_eee); 3166 3167 if (ret_val) { 3168 dev_err(&adapter->pdev->dev, 3169 "Problem setting EEE advertisement options\n"); 3170 return -EINVAL; 3171 } 3172 3173 return 0; 3174 } 3175 3176 static int igb_get_module_info(struct net_device *netdev, 3177 struct ethtool_modinfo *modinfo) 3178 { 3179 struct igb_adapter *adapter = netdev_priv(netdev); 3180 struct e1000_hw *hw = &adapter->hw; 3181 u32 status = 0; 3182 u16 sff8472_rev, addr_mode; 3183 bool page_swap = false; 3184 3185 if ((hw->phy.media_type == e1000_media_type_copper) || 3186 (hw->phy.media_type == e1000_media_type_unknown)) 3187 return -EOPNOTSUPP; 3188 3189 /* Check whether we support SFF-8472 or not */ 3190 status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev); 3191 if (status) 3192 return -EIO; 3193 3194 /* addressing mode is not supported */ 3195 status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode); 3196 if (status) 3197 return -EIO; 3198 3199 /* addressing mode is not supported */ 3200 if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) { 3201 hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n"); 3202 page_swap = true; 3203 } 3204 3205 if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) { 3206 /* We have an SFP, but it does not support SFF-8472 */ 3207 modinfo->type = ETH_MODULE_SFF_8079; 3208 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; 3209 } else { 3210 /* We have an SFP which supports a revision of SFF-8472 */ 3211 modinfo->type = ETH_MODULE_SFF_8472; 3212 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; 3213 } 3214 3215 return 0; 3216 } 3217 3218 static int igb_get_module_eeprom(struct net_device *netdev, 3219 struct ethtool_eeprom *ee, u8 *data) 3220 { 3221 struct igb_adapter *adapter = netdev_priv(netdev); 3222 struct e1000_hw *hw = &adapter->hw; 3223 u32 status = 0; 3224 u16 *dataword; 3225 u16 first_word, last_word; 3226 int i = 0; 3227 3228 if (ee->len == 0) 3229 return -EINVAL; 3230 3231 first_word = ee->offset >> 1; 3232 last_word = (ee->offset + ee->len - 1) >> 1; 3233 3234 dataword = kmalloc_array(last_word - first_word + 1, sizeof(u16), 3235 GFP_KERNEL); 3236 if (!dataword) 3237 return -ENOMEM; 3238 3239 /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */ 3240 for (i = 0; i < last_word - first_word + 1; i++) { 3241 status = igb_read_phy_reg_i2c(hw, (first_word + i) * 2, 3242 &dataword[i]); 3243 if (status) { 3244 /* Error occurred while reading module */ 3245 kfree(dataword); 3246 return -EIO; 3247 } 3248 3249 be16_to_cpus(&dataword[i]); 3250 } 3251 3252 memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len); 3253 kfree(dataword); 3254 3255 return 0; 3256 } 3257 3258 static int igb_ethtool_begin(struct net_device *netdev) 3259 { 3260 struct igb_adapter *adapter = netdev_priv(netdev); 3261 pm_runtime_get_sync(&adapter->pdev->dev); 3262 return 0; 3263 } 3264 3265 static void igb_ethtool_complete(struct net_device *netdev) 3266 { 3267 struct igb_adapter *adapter = netdev_priv(netdev); 3268 pm_runtime_put(&adapter->pdev->dev); 3269 } 3270 3271 static u32 igb_get_rxfh_indir_size(struct net_device *netdev) 3272 { 3273 return IGB_RETA_SIZE; 3274 } 3275 3276 static int igb_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key, 3277 u8 *hfunc) 3278 { 3279 struct igb_adapter *adapter = netdev_priv(netdev); 3280 int i; 3281 3282 if (hfunc) 3283 *hfunc = ETH_RSS_HASH_TOP; 3284 if (!indir) 3285 return 0; 3286 for (i = 0; i < IGB_RETA_SIZE; i++) 3287 indir[i] = adapter->rss_indir_tbl[i]; 3288 3289 return 0; 3290 } 3291 3292 void igb_write_rss_indir_tbl(struct igb_adapter *adapter) 3293 { 3294 struct e1000_hw *hw = &adapter->hw; 3295 u32 reg = E1000_RETA(0); 3296 u32 shift = 0; 3297 int i = 0; 3298 3299 switch (hw->mac.type) { 3300 case e1000_82575: 3301 shift = 6; 3302 break; 3303 case e1000_82576: 3304 /* 82576 supports 2 RSS queues for SR-IOV */ 3305 if (adapter->vfs_allocated_count) 3306 shift = 3; 3307 break; 3308 default: 3309 break; 3310 } 3311 3312 while (i < IGB_RETA_SIZE) { 3313 u32 val = 0; 3314 int j; 3315 3316 for (j = 3; j >= 0; j--) { 3317 val <<= 8; 3318 val |= adapter->rss_indir_tbl[i + j]; 3319 } 3320 3321 wr32(reg, val << shift); 3322 reg += 4; 3323 i += 4; 3324 } 3325 } 3326 3327 static int igb_set_rxfh(struct net_device *netdev, const u32 *indir, 3328 const u8 *key, const u8 hfunc) 3329 { 3330 struct igb_adapter *adapter = netdev_priv(netdev); 3331 struct e1000_hw *hw = &adapter->hw; 3332 int i; 3333 u32 num_queues; 3334 3335 /* We do not allow change in unsupported parameters */ 3336 if (key || 3337 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)) 3338 return -EOPNOTSUPP; 3339 if (!indir) 3340 return 0; 3341 3342 num_queues = adapter->rss_queues; 3343 3344 switch (hw->mac.type) { 3345 case e1000_82576: 3346 /* 82576 supports 2 RSS queues for SR-IOV */ 3347 if (adapter->vfs_allocated_count) 3348 num_queues = 2; 3349 break; 3350 default: 3351 break; 3352 } 3353 3354 /* Verify user input. */ 3355 for (i = 0; i < IGB_RETA_SIZE; i++) 3356 if (indir[i] >= num_queues) 3357 return -EINVAL; 3358 3359 3360 for (i = 0; i < IGB_RETA_SIZE; i++) 3361 adapter->rss_indir_tbl[i] = indir[i]; 3362 3363 igb_write_rss_indir_tbl(adapter); 3364 3365 return 0; 3366 } 3367 3368 static unsigned int igb_max_channels(struct igb_adapter *adapter) 3369 { 3370 return igb_get_max_rss_queues(adapter); 3371 } 3372 3373 static void igb_get_channels(struct net_device *netdev, 3374 struct ethtool_channels *ch) 3375 { 3376 struct igb_adapter *adapter = netdev_priv(netdev); 3377 3378 /* Report maximum channels */ 3379 ch->max_combined = igb_max_channels(adapter); 3380 3381 /* Report info for other vector */ 3382 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 3383 ch->max_other = NON_Q_VECTORS; 3384 ch->other_count = NON_Q_VECTORS; 3385 } 3386 3387 ch->combined_count = adapter->rss_queues; 3388 } 3389 3390 static int igb_set_channels(struct net_device *netdev, 3391 struct ethtool_channels *ch) 3392 { 3393 struct igb_adapter *adapter = netdev_priv(netdev); 3394 unsigned int count = ch->combined_count; 3395 unsigned int max_combined = 0; 3396 3397 /* Verify they are not requesting separate vectors */ 3398 if (!count || ch->rx_count || ch->tx_count) 3399 return -EINVAL; 3400 3401 /* Verify other_count is valid and has not been changed */ 3402 if (ch->other_count != NON_Q_VECTORS) 3403 return -EINVAL; 3404 3405 /* Verify the number of channels doesn't exceed hw limits */ 3406 max_combined = igb_max_channels(adapter); 3407 if (count > max_combined) 3408 return -EINVAL; 3409 3410 if (count != adapter->rss_queues) { 3411 adapter->rss_queues = count; 3412 igb_set_flag_queue_pairs(adapter, max_combined); 3413 3414 /* Hardware has to reinitialize queues and interrupts to 3415 * match the new configuration. 3416 */ 3417 return igb_reinit_queues(adapter); 3418 } 3419 3420 return 0; 3421 } 3422 3423 static u32 igb_get_priv_flags(struct net_device *netdev) 3424 { 3425 struct igb_adapter *adapter = netdev_priv(netdev); 3426 u32 priv_flags = 0; 3427 3428 if (adapter->flags & IGB_FLAG_RX_LEGACY) 3429 priv_flags |= IGB_PRIV_FLAGS_LEGACY_RX; 3430 3431 return priv_flags; 3432 } 3433 3434 static int igb_set_priv_flags(struct net_device *netdev, u32 priv_flags) 3435 { 3436 struct igb_adapter *adapter = netdev_priv(netdev); 3437 unsigned int flags = adapter->flags; 3438 3439 flags &= ~IGB_FLAG_RX_LEGACY; 3440 if (priv_flags & IGB_PRIV_FLAGS_LEGACY_RX) 3441 flags |= IGB_FLAG_RX_LEGACY; 3442 3443 if (flags != adapter->flags) { 3444 adapter->flags = flags; 3445 3446 /* reset interface to repopulate queues */ 3447 if (netif_running(netdev)) 3448 igb_reinit_locked(adapter); 3449 } 3450 3451 return 0; 3452 } 3453 3454 static const struct ethtool_ops igb_ethtool_ops = { 3455 .supported_coalesce_params = ETHTOOL_COALESCE_USECS, 3456 .get_drvinfo = igb_get_drvinfo, 3457 .get_regs_len = igb_get_regs_len, 3458 .get_regs = igb_get_regs, 3459 .get_wol = igb_get_wol, 3460 .set_wol = igb_set_wol, 3461 .get_msglevel = igb_get_msglevel, 3462 .set_msglevel = igb_set_msglevel, 3463 .nway_reset = igb_nway_reset, 3464 .get_link = igb_get_link, 3465 .get_eeprom_len = igb_get_eeprom_len, 3466 .get_eeprom = igb_get_eeprom, 3467 .set_eeprom = igb_set_eeprom, 3468 .get_ringparam = igb_get_ringparam, 3469 .set_ringparam = igb_set_ringparam, 3470 .get_pauseparam = igb_get_pauseparam, 3471 .set_pauseparam = igb_set_pauseparam, 3472 .self_test = igb_diag_test, 3473 .get_strings = igb_get_strings, 3474 .set_phys_id = igb_set_phys_id, 3475 .get_sset_count = igb_get_sset_count, 3476 .get_ethtool_stats = igb_get_ethtool_stats, 3477 .get_coalesce = igb_get_coalesce, 3478 .set_coalesce = igb_set_coalesce, 3479 .get_ts_info = igb_get_ts_info, 3480 .get_rxnfc = igb_get_rxnfc, 3481 .set_rxnfc = igb_set_rxnfc, 3482 .get_eee = igb_get_eee, 3483 .set_eee = igb_set_eee, 3484 .get_module_info = igb_get_module_info, 3485 .get_module_eeprom = igb_get_module_eeprom, 3486 .get_rxfh_indir_size = igb_get_rxfh_indir_size, 3487 .get_rxfh = igb_get_rxfh, 3488 .set_rxfh = igb_set_rxfh, 3489 .get_channels = igb_get_channels, 3490 .set_channels = igb_set_channels, 3491 .get_priv_flags = igb_get_priv_flags, 3492 .set_priv_flags = igb_set_priv_flags, 3493 .begin = igb_ethtool_begin, 3494 .complete = igb_ethtool_complete, 3495 .get_link_ksettings = igb_get_link_ksettings, 3496 .set_link_ksettings = igb_set_link_ksettings, 3497 }; 3498 3499 void igb_set_ethtool_ops(struct net_device *netdev) 3500 { 3501 netdev->ethtool_ops = &igb_ethtool_ops; 3502 } 3503