1 /******************************************************************************* 2 3 Intel(R) Gigabit Ethernet Linux driver 4 Copyright(c) 2007-2014 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, see <http://www.gnu.org/licenses/>. 17 18 The full GNU General Public License is included in this distribution in 19 the file called "COPYING". 20 21 Contact Information: 22 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 24 25 *******************************************************************************/ 26 27 /* ethtool support for igb */ 28 29 #include <linux/vmalloc.h> 30 #include <linux/netdevice.h> 31 #include <linux/pci.h> 32 #include <linux/delay.h> 33 #include <linux/interrupt.h> 34 #include <linux/if_ether.h> 35 #include <linux/ethtool.h> 36 #include <linux/sched.h> 37 #include <linux/slab.h> 38 #include <linux/pm_runtime.h> 39 #include <linux/highmem.h> 40 #include <linux/mdio.h> 41 42 #include "igb.h" 43 44 struct igb_stats { 45 char stat_string[ETH_GSTRING_LEN]; 46 int sizeof_stat; 47 int stat_offset; 48 }; 49 50 #define IGB_STAT(_name, _stat) { \ 51 .stat_string = _name, \ 52 .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \ 53 .stat_offset = offsetof(struct igb_adapter, _stat) \ 54 } 55 static const struct igb_stats igb_gstrings_stats[] = { 56 IGB_STAT("rx_packets", stats.gprc), 57 IGB_STAT("tx_packets", stats.gptc), 58 IGB_STAT("rx_bytes", stats.gorc), 59 IGB_STAT("tx_bytes", stats.gotc), 60 IGB_STAT("rx_broadcast", stats.bprc), 61 IGB_STAT("tx_broadcast", stats.bptc), 62 IGB_STAT("rx_multicast", stats.mprc), 63 IGB_STAT("tx_multicast", stats.mptc), 64 IGB_STAT("multicast", stats.mprc), 65 IGB_STAT("collisions", stats.colc), 66 IGB_STAT("rx_crc_errors", stats.crcerrs), 67 IGB_STAT("rx_no_buffer_count", stats.rnbc), 68 IGB_STAT("rx_missed_errors", stats.mpc), 69 IGB_STAT("tx_aborted_errors", stats.ecol), 70 IGB_STAT("tx_carrier_errors", stats.tncrs), 71 IGB_STAT("tx_window_errors", stats.latecol), 72 IGB_STAT("tx_abort_late_coll", stats.latecol), 73 IGB_STAT("tx_deferred_ok", stats.dc), 74 IGB_STAT("tx_single_coll_ok", stats.scc), 75 IGB_STAT("tx_multi_coll_ok", stats.mcc), 76 IGB_STAT("tx_timeout_count", tx_timeout_count), 77 IGB_STAT("rx_long_length_errors", stats.roc), 78 IGB_STAT("rx_short_length_errors", stats.ruc), 79 IGB_STAT("rx_align_errors", stats.algnerrc), 80 IGB_STAT("tx_tcp_seg_good", stats.tsctc), 81 IGB_STAT("tx_tcp_seg_failed", stats.tsctfc), 82 IGB_STAT("rx_flow_control_xon", stats.xonrxc), 83 IGB_STAT("rx_flow_control_xoff", stats.xoffrxc), 84 IGB_STAT("tx_flow_control_xon", stats.xontxc), 85 IGB_STAT("tx_flow_control_xoff", stats.xofftxc), 86 IGB_STAT("rx_long_byte_count", stats.gorc), 87 IGB_STAT("tx_dma_out_of_sync", stats.doosync), 88 IGB_STAT("tx_smbus", stats.mgptc), 89 IGB_STAT("rx_smbus", stats.mgprc), 90 IGB_STAT("dropped_smbus", stats.mgpdc), 91 IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc), 92 IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc), 93 IGB_STAT("os2bmc_tx_by_host", stats.o2bspc), 94 IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc), 95 IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts), 96 IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared), 97 }; 98 99 #define IGB_NETDEV_STAT(_net_stat) { \ 100 .stat_string = __stringify(_net_stat), \ 101 .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \ 102 .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \ 103 } 104 static const struct igb_stats igb_gstrings_net_stats[] = { 105 IGB_NETDEV_STAT(rx_errors), 106 IGB_NETDEV_STAT(tx_errors), 107 IGB_NETDEV_STAT(tx_dropped), 108 IGB_NETDEV_STAT(rx_length_errors), 109 IGB_NETDEV_STAT(rx_over_errors), 110 IGB_NETDEV_STAT(rx_frame_errors), 111 IGB_NETDEV_STAT(rx_fifo_errors), 112 IGB_NETDEV_STAT(tx_fifo_errors), 113 IGB_NETDEV_STAT(tx_heartbeat_errors) 114 }; 115 116 #define IGB_GLOBAL_STATS_LEN \ 117 (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats)) 118 #define IGB_NETDEV_STATS_LEN \ 119 (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats)) 120 #define IGB_RX_QUEUE_STATS_LEN \ 121 (sizeof(struct igb_rx_queue_stats) / sizeof(u64)) 122 123 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */ 124 125 #define IGB_QUEUE_STATS_LEN \ 126 ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \ 127 IGB_RX_QUEUE_STATS_LEN) + \ 128 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \ 129 IGB_TX_QUEUE_STATS_LEN)) 130 #define IGB_STATS_LEN \ 131 (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN) 132 133 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = { 134 "Register test (offline)", "Eeprom test (offline)", 135 "Interrupt test (offline)", "Loopback test (offline)", 136 "Link test (on/offline)" 137 }; 138 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN) 139 140 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) 141 { 142 struct igb_adapter *adapter = netdev_priv(netdev); 143 struct e1000_hw *hw = &adapter->hw; 144 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; 145 struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags; 146 u32 status; 147 148 status = rd32(E1000_STATUS); 149 if (hw->phy.media_type == e1000_media_type_copper) { 150 151 ecmd->supported = (SUPPORTED_10baseT_Half | 152 SUPPORTED_10baseT_Full | 153 SUPPORTED_100baseT_Half | 154 SUPPORTED_100baseT_Full | 155 SUPPORTED_1000baseT_Full| 156 SUPPORTED_Autoneg | 157 SUPPORTED_TP | 158 SUPPORTED_Pause); 159 ecmd->advertising = ADVERTISED_TP; 160 161 if (hw->mac.autoneg == 1) { 162 ecmd->advertising |= ADVERTISED_Autoneg; 163 /* the e1000 autoneg seems to match ethtool nicely */ 164 ecmd->advertising |= hw->phy.autoneg_advertised; 165 } 166 167 ecmd->port = PORT_TP; 168 ecmd->phy_address = hw->phy.addr; 169 ecmd->transceiver = XCVR_INTERNAL; 170 } else { 171 ecmd->supported = (SUPPORTED_FIBRE | 172 SUPPORTED_1000baseKX_Full | 173 SUPPORTED_Autoneg | 174 SUPPORTED_Pause); 175 ecmd->advertising = (ADVERTISED_FIBRE | 176 ADVERTISED_1000baseKX_Full); 177 if (hw->mac.type == e1000_i354) { 178 if ((hw->device_id == 179 E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) && 180 !(status & E1000_STATUS_2P5_SKU_OVER)) { 181 ecmd->supported |= SUPPORTED_2500baseX_Full; 182 ecmd->supported &= 183 ~SUPPORTED_1000baseKX_Full; 184 ecmd->advertising |= ADVERTISED_2500baseX_Full; 185 ecmd->advertising &= 186 ~ADVERTISED_1000baseKX_Full; 187 } 188 } 189 if (eth_flags->e100_base_fx) { 190 ecmd->supported |= SUPPORTED_100baseT_Full; 191 ecmd->advertising |= ADVERTISED_100baseT_Full; 192 } 193 if (hw->mac.autoneg == 1) 194 ecmd->advertising |= ADVERTISED_Autoneg; 195 196 ecmd->port = PORT_FIBRE; 197 ecmd->transceiver = XCVR_EXTERNAL; 198 } 199 if (hw->mac.autoneg != 1) 200 ecmd->advertising &= ~(ADVERTISED_Pause | 201 ADVERTISED_Asym_Pause); 202 203 switch (hw->fc.requested_mode) { 204 case e1000_fc_full: 205 ecmd->advertising |= ADVERTISED_Pause; 206 break; 207 case e1000_fc_rx_pause: 208 ecmd->advertising |= (ADVERTISED_Pause | 209 ADVERTISED_Asym_Pause); 210 break; 211 case e1000_fc_tx_pause: 212 ecmd->advertising |= ADVERTISED_Asym_Pause; 213 break; 214 default: 215 ecmd->advertising &= ~(ADVERTISED_Pause | 216 ADVERTISED_Asym_Pause); 217 } 218 if (status & E1000_STATUS_LU) { 219 if ((status & E1000_STATUS_2P5_SKU) && 220 !(status & E1000_STATUS_2P5_SKU_OVER)) { 221 ecmd->speed = SPEED_2500; 222 } else if (status & E1000_STATUS_SPEED_1000) { 223 ecmd->speed = SPEED_1000; 224 } else if (status & E1000_STATUS_SPEED_100) { 225 ecmd->speed = SPEED_100; 226 } else { 227 ecmd->speed = SPEED_10; 228 } 229 if ((status & E1000_STATUS_FD) || 230 hw->phy.media_type != e1000_media_type_copper) 231 ecmd->duplex = DUPLEX_FULL; 232 else 233 ecmd->duplex = DUPLEX_HALF; 234 } else { 235 ecmd->speed = -1; 236 ecmd->duplex = -1; 237 } 238 if ((hw->phy.media_type == e1000_media_type_fiber) || 239 hw->mac.autoneg) 240 ecmd->autoneg = AUTONEG_ENABLE; 241 else 242 ecmd->autoneg = AUTONEG_DISABLE; 243 244 /* MDI-X => 2; MDI =>1; Invalid =>0 */ 245 if (hw->phy.media_type == e1000_media_type_copper) 246 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : 247 ETH_TP_MDI; 248 else 249 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID; 250 251 if (hw->phy.mdix == AUTO_ALL_MODES) 252 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; 253 else 254 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix; 255 256 return 0; 257 } 258 259 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) 260 { 261 struct igb_adapter *adapter = netdev_priv(netdev); 262 struct e1000_hw *hw = &adapter->hw; 263 264 /* When SoL/IDER sessions are active, autoneg/speed/duplex 265 * cannot be changed 266 */ 267 if (igb_check_reset_block(hw)) { 268 dev_err(&adapter->pdev->dev, 269 "Cannot change link characteristics when SoL/IDER is active.\n"); 270 return -EINVAL; 271 } 272 273 /* MDI setting is only allowed when autoneg enabled because 274 * some hardware doesn't allow MDI setting when speed or 275 * duplex is forced. 276 */ 277 if (ecmd->eth_tp_mdix_ctrl) { 278 if (hw->phy.media_type != e1000_media_type_copper) 279 return -EOPNOTSUPP; 280 281 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && 282 (ecmd->autoneg != AUTONEG_ENABLE)) { 283 dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); 284 return -EINVAL; 285 } 286 } 287 288 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 289 msleep(1); 290 291 if (ecmd->autoneg == AUTONEG_ENABLE) { 292 hw->mac.autoneg = 1; 293 if (hw->phy.media_type == e1000_media_type_fiber) { 294 hw->phy.autoneg_advertised = ecmd->advertising | 295 ADVERTISED_FIBRE | 296 ADVERTISED_Autoneg; 297 switch (adapter->link_speed) { 298 case SPEED_2500: 299 hw->phy.autoneg_advertised = 300 ADVERTISED_2500baseX_Full; 301 break; 302 case SPEED_1000: 303 hw->phy.autoneg_advertised = 304 ADVERTISED_1000baseT_Full; 305 break; 306 case SPEED_100: 307 hw->phy.autoneg_advertised = 308 ADVERTISED_100baseT_Full; 309 break; 310 default: 311 break; 312 } 313 } else { 314 hw->phy.autoneg_advertised = ecmd->advertising | 315 ADVERTISED_TP | 316 ADVERTISED_Autoneg; 317 } 318 ecmd->advertising = hw->phy.autoneg_advertised; 319 if (adapter->fc_autoneg) 320 hw->fc.requested_mode = e1000_fc_default; 321 } else { 322 u32 speed = ethtool_cmd_speed(ecmd); 323 /* calling this overrides forced MDI setting */ 324 if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) { 325 clear_bit(__IGB_RESETTING, &adapter->state); 326 return -EINVAL; 327 } 328 } 329 330 /* MDI-X => 2; MDI => 1; Auto => 3 */ 331 if (ecmd->eth_tp_mdix_ctrl) { 332 /* fix up the value for auto (3 => 0) as zero is mapped 333 * internally to auto 334 */ 335 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) 336 hw->phy.mdix = AUTO_ALL_MODES; 337 else 338 hw->phy.mdix = ecmd->eth_tp_mdix_ctrl; 339 } 340 341 /* reset the link */ 342 if (netif_running(adapter->netdev)) { 343 igb_down(adapter); 344 igb_up(adapter); 345 } else 346 igb_reset(adapter); 347 348 clear_bit(__IGB_RESETTING, &adapter->state); 349 return 0; 350 } 351 352 static u32 igb_get_link(struct net_device *netdev) 353 { 354 struct igb_adapter *adapter = netdev_priv(netdev); 355 struct e1000_mac_info *mac = &adapter->hw.mac; 356 357 /* If the link is not reported up to netdev, interrupts are disabled, 358 * and so the physical link state may have changed since we last 359 * looked. Set get_link_status to make sure that the true link 360 * state is interrogated, rather than pulling a cached and possibly 361 * stale link state from the driver. 362 */ 363 if (!netif_carrier_ok(netdev)) 364 mac->get_link_status = 1; 365 366 return igb_has_link(adapter); 367 } 368 369 static void igb_get_pauseparam(struct net_device *netdev, 370 struct ethtool_pauseparam *pause) 371 { 372 struct igb_adapter *adapter = netdev_priv(netdev); 373 struct e1000_hw *hw = &adapter->hw; 374 375 pause->autoneg = 376 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 377 378 if (hw->fc.current_mode == e1000_fc_rx_pause) 379 pause->rx_pause = 1; 380 else if (hw->fc.current_mode == e1000_fc_tx_pause) 381 pause->tx_pause = 1; 382 else if (hw->fc.current_mode == e1000_fc_full) { 383 pause->rx_pause = 1; 384 pause->tx_pause = 1; 385 } 386 } 387 388 static int igb_set_pauseparam(struct net_device *netdev, 389 struct ethtool_pauseparam *pause) 390 { 391 struct igb_adapter *adapter = netdev_priv(netdev); 392 struct e1000_hw *hw = &adapter->hw; 393 int retval = 0; 394 395 /* 100basefx does not support setting link flow control */ 396 if (hw->dev_spec._82575.eth_flags.e100_base_fx) 397 return -EINVAL; 398 399 adapter->fc_autoneg = pause->autoneg; 400 401 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 402 msleep(1); 403 404 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 405 hw->fc.requested_mode = e1000_fc_default; 406 if (netif_running(adapter->netdev)) { 407 igb_down(adapter); 408 igb_up(adapter); 409 } else { 410 igb_reset(adapter); 411 } 412 } else { 413 if (pause->rx_pause && pause->tx_pause) 414 hw->fc.requested_mode = e1000_fc_full; 415 else if (pause->rx_pause && !pause->tx_pause) 416 hw->fc.requested_mode = e1000_fc_rx_pause; 417 else if (!pause->rx_pause && pause->tx_pause) 418 hw->fc.requested_mode = e1000_fc_tx_pause; 419 else if (!pause->rx_pause && !pause->tx_pause) 420 hw->fc.requested_mode = e1000_fc_none; 421 422 hw->fc.current_mode = hw->fc.requested_mode; 423 424 retval = ((hw->phy.media_type == e1000_media_type_copper) ? 425 igb_force_mac_fc(hw) : igb_setup_link(hw)); 426 } 427 428 clear_bit(__IGB_RESETTING, &adapter->state); 429 return retval; 430 } 431 432 static u32 igb_get_msglevel(struct net_device *netdev) 433 { 434 struct igb_adapter *adapter = netdev_priv(netdev); 435 return adapter->msg_enable; 436 } 437 438 static void igb_set_msglevel(struct net_device *netdev, u32 data) 439 { 440 struct igb_adapter *adapter = netdev_priv(netdev); 441 adapter->msg_enable = data; 442 } 443 444 static int igb_get_regs_len(struct net_device *netdev) 445 { 446 #define IGB_REGS_LEN 739 447 return IGB_REGS_LEN * sizeof(u32); 448 } 449 450 static void igb_get_regs(struct net_device *netdev, 451 struct ethtool_regs *regs, void *p) 452 { 453 struct igb_adapter *adapter = netdev_priv(netdev); 454 struct e1000_hw *hw = &adapter->hw; 455 u32 *regs_buff = p; 456 u8 i; 457 458 memset(p, 0, IGB_REGS_LEN * sizeof(u32)); 459 460 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id; 461 462 /* General Registers */ 463 regs_buff[0] = rd32(E1000_CTRL); 464 regs_buff[1] = rd32(E1000_STATUS); 465 regs_buff[2] = rd32(E1000_CTRL_EXT); 466 regs_buff[3] = rd32(E1000_MDIC); 467 regs_buff[4] = rd32(E1000_SCTL); 468 regs_buff[5] = rd32(E1000_CONNSW); 469 regs_buff[6] = rd32(E1000_VET); 470 regs_buff[7] = rd32(E1000_LEDCTL); 471 regs_buff[8] = rd32(E1000_PBA); 472 regs_buff[9] = rd32(E1000_PBS); 473 regs_buff[10] = rd32(E1000_FRTIMER); 474 regs_buff[11] = rd32(E1000_TCPTIMER); 475 476 /* NVM Register */ 477 regs_buff[12] = rd32(E1000_EECD); 478 479 /* Interrupt */ 480 /* Reading EICS for EICR because they read the 481 * same but EICS does not clear on read 482 */ 483 regs_buff[13] = rd32(E1000_EICS); 484 regs_buff[14] = rd32(E1000_EICS); 485 regs_buff[15] = rd32(E1000_EIMS); 486 regs_buff[16] = rd32(E1000_EIMC); 487 regs_buff[17] = rd32(E1000_EIAC); 488 regs_buff[18] = rd32(E1000_EIAM); 489 /* Reading ICS for ICR because they read the 490 * same but ICS does not clear on read 491 */ 492 regs_buff[19] = rd32(E1000_ICS); 493 regs_buff[20] = rd32(E1000_ICS); 494 regs_buff[21] = rd32(E1000_IMS); 495 regs_buff[22] = rd32(E1000_IMC); 496 regs_buff[23] = rd32(E1000_IAC); 497 regs_buff[24] = rd32(E1000_IAM); 498 regs_buff[25] = rd32(E1000_IMIRVP); 499 500 /* Flow Control */ 501 regs_buff[26] = rd32(E1000_FCAL); 502 regs_buff[27] = rd32(E1000_FCAH); 503 regs_buff[28] = rd32(E1000_FCTTV); 504 regs_buff[29] = rd32(E1000_FCRTL); 505 regs_buff[30] = rd32(E1000_FCRTH); 506 regs_buff[31] = rd32(E1000_FCRTV); 507 508 /* Receive */ 509 regs_buff[32] = rd32(E1000_RCTL); 510 regs_buff[33] = rd32(E1000_RXCSUM); 511 regs_buff[34] = rd32(E1000_RLPML); 512 regs_buff[35] = rd32(E1000_RFCTL); 513 regs_buff[36] = rd32(E1000_MRQC); 514 regs_buff[37] = rd32(E1000_VT_CTL); 515 516 /* Transmit */ 517 regs_buff[38] = rd32(E1000_TCTL); 518 regs_buff[39] = rd32(E1000_TCTL_EXT); 519 regs_buff[40] = rd32(E1000_TIPG); 520 regs_buff[41] = rd32(E1000_DTXCTL); 521 522 /* Wake Up */ 523 regs_buff[42] = rd32(E1000_WUC); 524 regs_buff[43] = rd32(E1000_WUFC); 525 regs_buff[44] = rd32(E1000_WUS); 526 regs_buff[45] = rd32(E1000_IPAV); 527 regs_buff[46] = rd32(E1000_WUPL); 528 529 /* MAC */ 530 regs_buff[47] = rd32(E1000_PCS_CFG0); 531 regs_buff[48] = rd32(E1000_PCS_LCTL); 532 regs_buff[49] = rd32(E1000_PCS_LSTAT); 533 regs_buff[50] = rd32(E1000_PCS_ANADV); 534 regs_buff[51] = rd32(E1000_PCS_LPAB); 535 regs_buff[52] = rd32(E1000_PCS_NPTX); 536 regs_buff[53] = rd32(E1000_PCS_LPABNP); 537 538 /* Statistics */ 539 regs_buff[54] = adapter->stats.crcerrs; 540 regs_buff[55] = adapter->stats.algnerrc; 541 regs_buff[56] = adapter->stats.symerrs; 542 regs_buff[57] = adapter->stats.rxerrc; 543 regs_buff[58] = adapter->stats.mpc; 544 regs_buff[59] = adapter->stats.scc; 545 regs_buff[60] = adapter->stats.ecol; 546 regs_buff[61] = adapter->stats.mcc; 547 regs_buff[62] = adapter->stats.latecol; 548 regs_buff[63] = adapter->stats.colc; 549 regs_buff[64] = adapter->stats.dc; 550 regs_buff[65] = adapter->stats.tncrs; 551 regs_buff[66] = adapter->stats.sec; 552 regs_buff[67] = adapter->stats.htdpmc; 553 regs_buff[68] = adapter->stats.rlec; 554 regs_buff[69] = adapter->stats.xonrxc; 555 regs_buff[70] = adapter->stats.xontxc; 556 regs_buff[71] = adapter->stats.xoffrxc; 557 regs_buff[72] = adapter->stats.xofftxc; 558 regs_buff[73] = adapter->stats.fcruc; 559 regs_buff[74] = adapter->stats.prc64; 560 regs_buff[75] = adapter->stats.prc127; 561 regs_buff[76] = adapter->stats.prc255; 562 regs_buff[77] = adapter->stats.prc511; 563 regs_buff[78] = adapter->stats.prc1023; 564 regs_buff[79] = adapter->stats.prc1522; 565 regs_buff[80] = adapter->stats.gprc; 566 regs_buff[81] = adapter->stats.bprc; 567 regs_buff[82] = adapter->stats.mprc; 568 regs_buff[83] = adapter->stats.gptc; 569 regs_buff[84] = adapter->stats.gorc; 570 regs_buff[86] = adapter->stats.gotc; 571 regs_buff[88] = adapter->stats.rnbc; 572 regs_buff[89] = adapter->stats.ruc; 573 regs_buff[90] = adapter->stats.rfc; 574 regs_buff[91] = adapter->stats.roc; 575 regs_buff[92] = adapter->stats.rjc; 576 regs_buff[93] = adapter->stats.mgprc; 577 regs_buff[94] = adapter->stats.mgpdc; 578 regs_buff[95] = adapter->stats.mgptc; 579 regs_buff[96] = adapter->stats.tor; 580 regs_buff[98] = adapter->stats.tot; 581 regs_buff[100] = adapter->stats.tpr; 582 regs_buff[101] = adapter->stats.tpt; 583 regs_buff[102] = adapter->stats.ptc64; 584 regs_buff[103] = adapter->stats.ptc127; 585 regs_buff[104] = adapter->stats.ptc255; 586 regs_buff[105] = adapter->stats.ptc511; 587 regs_buff[106] = adapter->stats.ptc1023; 588 regs_buff[107] = adapter->stats.ptc1522; 589 regs_buff[108] = adapter->stats.mptc; 590 regs_buff[109] = adapter->stats.bptc; 591 regs_buff[110] = adapter->stats.tsctc; 592 regs_buff[111] = adapter->stats.iac; 593 regs_buff[112] = adapter->stats.rpthc; 594 regs_buff[113] = adapter->stats.hgptc; 595 regs_buff[114] = adapter->stats.hgorc; 596 regs_buff[116] = adapter->stats.hgotc; 597 regs_buff[118] = adapter->stats.lenerrs; 598 regs_buff[119] = adapter->stats.scvpc; 599 regs_buff[120] = adapter->stats.hrmpc; 600 601 for (i = 0; i < 4; i++) 602 regs_buff[121 + i] = rd32(E1000_SRRCTL(i)); 603 for (i = 0; i < 4; i++) 604 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i)); 605 for (i = 0; i < 4; i++) 606 regs_buff[129 + i] = rd32(E1000_RDBAL(i)); 607 for (i = 0; i < 4; i++) 608 regs_buff[133 + i] = rd32(E1000_RDBAH(i)); 609 for (i = 0; i < 4; i++) 610 regs_buff[137 + i] = rd32(E1000_RDLEN(i)); 611 for (i = 0; i < 4; i++) 612 regs_buff[141 + i] = rd32(E1000_RDH(i)); 613 for (i = 0; i < 4; i++) 614 regs_buff[145 + i] = rd32(E1000_RDT(i)); 615 for (i = 0; i < 4; i++) 616 regs_buff[149 + i] = rd32(E1000_RXDCTL(i)); 617 618 for (i = 0; i < 10; i++) 619 regs_buff[153 + i] = rd32(E1000_EITR(i)); 620 for (i = 0; i < 8; i++) 621 regs_buff[163 + i] = rd32(E1000_IMIR(i)); 622 for (i = 0; i < 8; i++) 623 regs_buff[171 + i] = rd32(E1000_IMIREXT(i)); 624 for (i = 0; i < 16; i++) 625 regs_buff[179 + i] = rd32(E1000_RAL(i)); 626 for (i = 0; i < 16; i++) 627 regs_buff[195 + i] = rd32(E1000_RAH(i)); 628 629 for (i = 0; i < 4; i++) 630 regs_buff[211 + i] = rd32(E1000_TDBAL(i)); 631 for (i = 0; i < 4; i++) 632 regs_buff[215 + i] = rd32(E1000_TDBAH(i)); 633 for (i = 0; i < 4; i++) 634 regs_buff[219 + i] = rd32(E1000_TDLEN(i)); 635 for (i = 0; i < 4; i++) 636 regs_buff[223 + i] = rd32(E1000_TDH(i)); 637 for (i = 0; i < 4; i++) 638 regs_buff[227 + i] = rd32(E1000_TDT(i)); 639 for (i = 0; i < 4; i++) 640 regs_buff[231 + i] = rd32(E1000_TXDCTL(i)); 641 for (i = 0; i < 4; i++) 642 regs_buff[235 + i] = rd32(E1000_TDWBAL(i)); 643 for (i = 0; i < 4; i++) 644 regs_buff[239 + i] = rd32(E1000_TDWBAH(i)); 645 for (i = 0; i < 4; i++) 646 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i)); 647 648 for (i = 0; i < 4; i++) 649 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i)); 650 for (i = 0; i < 4; i++) 651 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i)); 652 for (i = 0; i < 32; i++) 653 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i)); 654 for (i = 0; i < 128; i++) 655 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i)); 656 for (i = 0; i < 128; i++) 657 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i)); 658 for (i = 0; i < 4; i++) 659 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i)); 660 661 regs_buff[547] = rd32(E1000_TDFH); 662 regs_buff[548] = rd32(E1000_TDFT); 663 regs_buff[549] = rd32(E1000_TDFHS); 664 regs_buff[550] = rd32(E1000_TDFPC); 665 666 if (hw->mac.type > e1000_82580) { 667 regs_buff[551] = adapter->stats.o2bgptc; 668 regs_buff[552] = adapter->stats.b2ospc; 669 regs_buff[553] = adapter->stats.o2bspc; 670 regs_buff[554] = adapter->stats.b2ogprc; 671 } 672 673 if (hw->mac.type != e1000_82576) 674 return; 675 for (i = 0; i < 12; i++) 676 regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4)); 677 for (i = 0; i < 4; i++) 678 regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4)); 679 for (i = 0; i < 12; i++) 680 regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4)); 681 for (i = 0; i < 12; i++) 682 regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4)); 683 for (i = 0; i < 12; i++) 684 regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4)); 685 for (i = 0; i < 12; i++) 686 regs_buff[607 + i] = rd32(E1000_RDH(i + 4)); 687 for (i = 0; i < 12; i++) 688 regs_buff[619 + i] = rd32(E1000_RDT(i + 4)); 689 for (i = 0; i < 12; i++) 690 regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4)); 691 692 for (i = 0; i < 12; i++) 693 regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4)); 694 for (i = 0; i < 12; i++) 695 regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4)); 696 for (i = 0; i < 12; i++) 697 regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4)); 698 for (i = 0; i < 12; i++) 699 regs_buff[679 + i] = rd32(E1000_TDH(i + 4)); 700 for (i = 0; i < 12; i++) 701 regs_buff[691 + i] = rd32(E1000_TDT(i + 4)); 702 for (i = 0; i < 12; i++) 703 regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4)); 704 for (i = 0; i < 12; i++) 705 regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4)); 706 for (i = 0; i < 12; i++) 707 regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4)); 708 } 709 710 static int igb_get_eeprom_len(struct net_device *netdev) 711 { 712 struct igb_adapter *adapter = netdev_priv(netdev); 713 return adapter->hw.nvm.word_size * 2; 714 } 715 716 static int igb_get_eeprom(struct net_device *netdev, 717 struct ethtool_eeprom *eeprom, u8 *bytes) 718 { 719 struct igb_adapter *adapter = netdev_priv(netdev); 720 struct e1000_hw *hw = &adapter->hw; 721 u16 *eeprom_buff; 722 int first_word, last_word; 723 int ret_val = 0; 724 u16 i; 725 726 if (eeprom->len == 0) 727 return -EINVAL; 728 729 eeprom->magic = hw->vendor_id | (hw->device_id << 16); 730 731 first_word = eeprom->offset >> 1; 732 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 733 734 eeprom_buff = kmalloc(sizeof(u16) * 735 (last_word - first_word + 1), GFP_KERNEL); 736 if (!eeprom_buff) 737 return -ENOMEM; 738 739 if (hw->nvm.type == e1000_nvm_eeprom_spi) 740 ret_val = hw->nvm.ops.read(hw, first_word, 741 last_word - first_word + 1, 742 eeprom_buff); 743 else { 744 for (i = 0; i < last_word - first_word + 1; i++) { 745 ret_val = hw->nvm.ops.read(hw, first_word + i, 1, 746 &eeprom_buff[i]); 747 if (ret_val) 748 break; 749 } 750 } 751 752 /* Device's eeprom is always little-endian, word addressable */ 753 for (i = 0; i < last_word - first_word + 1; i++) 754 le16_to_cpus(&eeprom_buff[i]); 755 756 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), 757 eeprom->len); 758 kfree(eeprom_buff); 759 760 return ret_val; 761 } 762 763 static int igb_set_eeprom(struct net_device *netdev, 764 struct ethtool_eeprom *eeprom, u8 *bytes) 765 { 766 struct igb_adapter *adapter = netdev_priv(netdev); 767 struct e1000_hw *hw = &adapter->hw; 768 u16 *eeprom_buff; 769 void *ptr; 770 int max_len, first_word, last_word, ret_val = 0; 771 u16 i; 772 773 if (eeprom->len == 0) 774 return -EOPNOTSUPP; 775 776 if ((hw->mac.type >= e1000_i210) && 777 !igb_get_flash_presence_i210(hw)) { 778 return -EOPNOTSUPP; 779 } 780 781 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16))) 782 return -EFAULT; 783 784 max_len = hw->nvm.word_size * 2; 785 786 first_word = eeprom->offset >> 1; 787 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 788 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 789 if (!eeprom_buff) 790 return -ENOMEM; 791 792 ptr = (void *)eeprom_buff; 793 794 if (eeprom->offset & 1) { 795 /* need read/modify/write of first changed EEPROM word 796 * only the second byte of the word is being modified 797 */ 798 ret_val = hw->nvm.ops.read(hw, first_word, 1, 799 &eeprom_buff[0]); 800 ptr++; 801 } 802 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) { 803 /* need read/modify/write of last changed EEPROM word 804 * only the first byte of the word is being modified 805 */ 806 ret_val = hw->nvm.ops.read(hw, last_word, 1, 807 &eeprom_buff[last_word - first_word]); 808 } 809 810 /* Device's eeprom is always little-endian, word addressable */ 811 for (i = 0; i < last_word - first_word + 1; i++) 812 le16_to_cpus(&eeprom_buff[i]); 813 814 memcpy(ptr, bytes, eeprom->len); 815 816 for (i = 0; i < last_word - first_word + 1; i++) 817 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]); 818 819 ret_val = hw->nvm.ops.write(hw, first_word, 820 last_word - first_word + 1, eeprom_buff); 821 822 /* Update the checksum if nvm write succeeded */ 823 if (ret_val == 0) 824 hw->nvm.ops.update(hw); 825 826 igb_set_fw_version(adapter); 827 kfree(eeprom_buff); 828 return ret_val; 829 } 830 831 static void igb_get_drvinfo(struct net_device *netdev, 832 struct ethtool_drvinfo *drvinfo) 833 { 834 struct igb_adapter *adapter = netdev_priv(netdev); 835 836 strlcpy(drvinfo->driver, igb_driver_name, sizeof(drvinfo->driver)); 837 strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version)); 838 839 /* EEPROM image version # is reported as firmware version # for 840 * 82575 controllers 841 */ 842 strlcpy(drvinfo->fw_version, adapter->fw_version, 843 sizeof(drvinfo->fw_version)); 844 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 845 sizeof(drvinfo->bus_info)); 846 drvinfo->n_stats = IGB_STATS_LEN; 847 drvinfo->testinfo_len = IGB_TEST_LEN; 848 drvinfo->regdump_len = igb_get_regs_len(netdev); 849 drvinfo->eedump_len = igb_get_eeprom_len(netdev); 850 } 851 852 static void igb_get_ringparam(struct net_device *netdev, 853 struct ethtool_ringparam *ring) 854 { 855 struct igb_adapter *adapter = netdev_priv(netdev); 856 857 ring->rx_max_pending = IGB_MAX_RXD; 858 ring->tx_max_pending = IGB_MAX_TXD; 859 ring->rx_pending = adapter->rx_ring_count; 860 ring->tx_pending = adapter->tx_ring_count; 861 } 862 863 static int igb_set_ringparam(struct net_device *netdev, 864 struct ethtool_ringparam *ring) 865 { 866 struct igb_adapter *adapter = netdev_priv(netdev); 867 struct igb_ring *temp_ring; 868 int i, err = 0; 869 u16 new_rx_count, new_tx_count; 870 871 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 872 return -EINVAL; 873 874 new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD); 875 new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD); 876 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE); 877 878 new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD); 879 new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD); 880 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE); 881 882 if ((new_tx_count == adapter->tx_ring_count) && 883 (new_rx_count == adapter->rx_ring_count)) { 884 /* nothing to do */ 885 return 0; 886 } 887 888 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 889 msleep(1); 890 891 if (!netif_running(adapter->netdev)) { 892 for (i = 0; i < adapter->num_tx_queues; i++) 893 adapter->tx_ring[i]->count = new_tx_count; 894 for (i = 0; i < adapter->num_rx_queues; i++) 895 adapter->rx_ring[i]->count = new_rx_count; 896 adapter->tx_ring_count = new_tx_count; 897 adapter->rx_ring_count = new_rx_count; 898 goto clear_reset; 899 } 900 901 if (adapter->num_tx_queues > adapter->num_rx_queues) 902 temp_ring = vmalloc(adapter->num_tx_queues * 903 sizeof(struct igb_ring)); 904 else 905 temp_ring = vmalloc(adapter->num_rx_queues * 906 sizeof(struct igb_ring)); 907 908 if (!temp_ring) { 909 err = -ENOMEM; 910 goto clear_reset; 911 } 912 913 igb_down(adapter); 914 915 /* We can't just free everything and then setup again, 916 * because the ISRs in MSI-X mode get passed pointers 917 * to the Tx and Rx ring structs. 918 */ 919 if (new_tx_count != adapter->tx_ring_count) { 920 for (i = 0; i < adapter->num_tx_queues; i++) { 921 memcpy(&temp_ring[i], adapter->tx_ring[i], 922 sizeof(struct igb_ring)); 923 924 temp_ring[i].count = new_tx_count; 925 err = igb_setup_tx_resources(&temp_ring[i]); 926 if (err) { 927 while (i) { 928 i--; 929 igb_free_tx_resources(&temp_ring[i]); 930 } 931 goto err_setup; 932 } 933 } 934 935 for (i = 0; i < adapter->num_tx_queues; i++) { 936 igb_free_tx_resources(adapter->tx_ring[i]); 937 938 memcpy(adapter->tx_ring[i], &temp_ring[i], 939 sizeof(struct igb_ring)); 940 } 941 942 adapter->tx_ring_count = new_tx_count; 943 } 944 945 if (new_rx_count != adapter->rx_ring_count) { 946 for (i = 0; i < adapter->num_rx_queues; i++) { 947 memcpy(&temp_ring[i], adapter->rx_ring[i], 948 sizeof(struct igb_ring)); 949 950 temp_ring[i].count = new_rx_count; 951 err = igb_setup_rx_resources(&temp_ring[i]); 952 if (err) { 953 while (i) { 954 i--; 955 igb_free_rx_resources(&temp_ring[i]); 956 } 957 goto err_setup; 958 } 959 960 } 961 962 for (i = 0; i < adapter->num_rx_queues; i++) { 963 igb_free_rx_resources(adapter->rx_ring[i]); 964 965 memcpy(adapter->rx_ring[i], &temp_ring[i], 966 sizeof(struct igb_ring)); 967 } 968 969 adapter->rx_ring_count = new_rx_count; 970 } 971 err_setup: 972 igb_up(adapter); 973 vfree(temp_ring); 974 clear_reset: 975 clear_bit(__IGB_RESETTING, &adapter->state); 976 return err; 977 } 978 979 /* ethtool register test data */ 980 struct igb_reg_test { 981 u16 reg; 982 u16 reg_offset; 983 u16 array_len; 984 u16 test_type; 985 u32 mask; 986 u32 write; 987 }; 988 989 /* In the hardware, registers are laid out either singly, in arrays 990 * spaced 0x100 bytes apart, or in contiguous tables. We assume 991 * most tests take place on arrays or single registers (handled 992 * as a single-element array) and special-case the tables. 993 * Table tests are always pattern tests. 994 * 995 * We also make provision for some required setup steps by specifying 996 * registers to be written without any read-back testing. 997 */ 998 999 #define PATTERN_TEST 1 1000 #define SET_READ_TEST 2 1001 #define WRITE_NO_TEST 3 1002 #define TABLE32_TEST 4 1003 #define TABLE64_TEST_LO 5 1004 #define TABLE64_TEST_HI 6 1005 1006 /* i210 reg test */ 1007 static struct igb_reg_test reg_test_i210[] = { 1008 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1009 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1010 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1011 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1012 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1013 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1014 /* RDH is read-only for i210, only test RDT. */ 1015 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1016 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1017 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1018 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1019 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1020 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1021 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1022 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1023 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1024 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, 1025 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, 1026 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1027 { E1000_RA, 0, 16, TABLE64_TEST_LO, 1028 0xFFFFFFFF, 0xFFFFFFFF }, 1029 { E1000_RA, 0, 16, TABLE64_TEST_HI, 1030 0x900FFFFF, 0xFFFFFFFF }, 1031 { E1000_MTA, 0, 128, TABLE32_TEST, 1032 0xFFFFFFFF, 0xFFFFFFFF }, 1033 { 0, 0, 0, 0, 0 } 1034 }; 1035 1036 /* i350 reg test */ 1037 static struct igb_reg_test reg_test_i350[] = { 1038 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1039 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1040 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1041 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 }, 1042 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1043 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1044 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1045 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1046 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1047 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1048 /* RDH is read-only for i350, only test RDT. */ 1049 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1050 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1051 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1052 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1053 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1054 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1055 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1056 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1057 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1058 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1059 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1060 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1061 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1062 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1063 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, 1064 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, 1065 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1066 { E1000_RA, 0, 16, TABLE64_TEST_LO, 1067 0xFFFFFFFF, 0xFFFFFFFF }, 1068 { E1000_RA, 0, 16, TABLE64_TEST_HI, 1069 0xC3FFFFFF, 0xFFFFFFFF }, 1070 { E1000_RA2, 0, 16, TABLE64_TEST_LO, 1071 0xFFFFFFFF, 0xFFFFFFFF }, 1072 { E1000_RA2, 0, 16, TABLE64_TEST_HI, 1073 0xC3FFFFFF, 0xFFFFFFFF }, 1074 { E1000_MTA, 0, 128, TABLE32_TEST, 1075 0xFFFFFFFF, 0xFFFFFFFF }, 1076 { 0, 0, 0, 0 } 1077 }; 1078 1079 /* 82580 reg test */ 1080 static struct igb_reg_test reg_test_82580[] = { 1081 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1082 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1083 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1084 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1085 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1086 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1087 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1088 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1089 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1090 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1091 /* RDH is read-only for 82580, only test RDT. */ 1092 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1093 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1094 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1095 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1096 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1097 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1098 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1099 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1100 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1101 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1102 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1103 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1104 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1105 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1106 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, 1107 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, 1108 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1109 { E1000_RA, 0, 16, TABLE64_TEST_LO, 1110 0xFFFFFFFF, 0xFFFFFFFF }, 1111 { E1000_RA, 0, 16, TABLE64_TEST_HI, 1112 0x83FFFFFF, 0xFFFFFFFF }, 1113 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 1114 0xFFFFFFFF, 0xFFFFFFFF }, 1115 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 1116 0x83FFFFFF, 0xFFFFFFFF }, 1117 { E1000_MTA, 0, 128, TABLE32_TEST, 1118 0xFFFFFFFF, 0xFFFFFFFF }, 1119 { 0, 0, 0, 0 } 1120 }; 1121 1122 /* 82576 reg test */ 1123 static struct igb_reg_test reg_test_82576[] = { 1124 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1125 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1126 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1127 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1128 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1129 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1130 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1131 { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1132 { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1133 { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1134 /* Enable all RX queues before testing. */ 1135 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE }, 1136 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE }, 1137 /* RDH is read-only for 82576, only test RDT. */ 1138 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1139 { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1140 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 }, 1141 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 }, 1142 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1143 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1144 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1145 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1146 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1147 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1148 { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1149 { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1150 { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1151 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1152 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, 1153 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, 1154 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1155 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, 1156 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF }, 1157 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, 1158 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF }, 1159 { E1000_MTA, 0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1160 { 0, 0, 0, 0 } 1161 }; 1162 1163 /* 82575 register test */ 1164 static struct igb_reg_test reg_test_82575[] = { 1165 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1166 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1167 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1168 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1169 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1170 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1171 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1172 /* Enable all four RX queues before testing. */ 1173 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE }, 1174 /* RDH is read-only for 82575, only test RDT. */ 1175 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1176 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 }, 1177 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1178 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1179 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1180 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1181 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1182 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1183 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1184 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB }, 1185 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF }, 1186 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1187 { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF }, 1188 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, 1189 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF }, 1190 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1191 { 0, 0, 0, 0 } 1192 }; 1193 1194 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data, 1195 int reg, u32 mask, u32 write) 1196 { 1197 struct e1000_hw *hw = &adapter->hw; 1198 u32 pat, val; 1199 static const u32 _test[] = 1200 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; 1201 for (pat = 0; pat < ARRAY_SIZE(_test); pat++) { 1202 wr32(reg, (_test[pat] & write)); 1203 val = rd32(reg) & mask; 1204 if (val != (_test[pat] & write & mask)) { 1205 dev_err(&adapter->pdev->dev, 1206 "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n", 1207 reg, val, (_test[pat] & write & mask)); 1208 *data = reg; 1209 return 1; 1210 } 1211 } 1212 1213 return 0; 1214 } 1215 1216 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data, 1217 int reg, u32 mask, u32 write) 1218 { 1219 struct e1000_hw *hw = &adapter->hw; 1220 u32 val; 1221 wr32(reg, write & mask); 1222 val = rd32(reg); 1223 if ((write & mask) != (val & mask)) { 1224 dev_err(&adapter->pdev->dev, 1225 "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", reg, 1226 (val & mask), (write & mask)); 1227 *data = reg; 1228 return 1; 1229 } 1230 1231 return 0; 1232 } 1233 1234 #define REG_PATTERN_TEST(reg, mask, write) \ 1235 do { \ 1236 if (reg_pattern_test(adapter, data, reg, mask, write)) \ 1237 return 1; \ 1238 } while (0) 1239 1240 #define REG_SET_AND_CHECK(reg, mask, write) \ 1241 do { \ 1242 if (reg_set_and_check(adapter, data, reg, mask, write)) \ 1243 return 1; \ 1244 } while (0) 1245 1246 static int igb_reg_test(struct igb_adapter *adapter, u64 *data) 1247 { 1248 struct e1000_hw *hw = &adapter->hw; 1249 struct igb_reg_test *test; 1250 u32 value, before, after; 1251 u32 i, toggle; 1252 1253 switch (adapter->hw.mac.type) { 1254 case e1000_i350: 1255 case e1000_i354: 1256 test = reg_test_i350; 1257 toggle = 0x7FEFF3FF; 1258 break; 1259 case e1000_i210: 1260 case e1000_i211: 1261 test = reg_test_i210; 1262 toggle = 0x7FEFF3FF; 1263 break; 1264 case e1000_82580: 1265 test = reg_test_82580; 1266 toggle = 0x7FEFF3FF; 1267 break; 1268 case e1000_82576: 1269 test = reg_test_82576; 1270 toggle = 0x7FFFF3FF; 1271 break; 1272 default: 1273 test = reg_test_82575; 1274 toggle = 0x7FFFF3FF; 1275 break; 1276 } 1277 1278 /* Because the status register is such a special case, 1279 * we handle it separately from the rest of the register 1280 * tests. Some bits are read-only, some toggle, and some 1281 * are writable on newer MACs. 1282 */ 1283 before = rd32(E1000_STATUS); 1284 value = (rd32(E1000_STATUS) & toggle); 1285 wr32(E1000_STATUS, toggle); 1286 after = rd32(E1000_STATUS) & toggle; 1287 if (value != after) { 1288 dev_err(&adapter->pdev->dev, 1289 "failed STATUS register test got: 0x%08X expected: 0x%08X\n", 1290 after, value); 1291 *data = 1; 1292 return 1; 1293 } 1294 /* restore previous status */ 1295 wr32(E1000_STATUS, before); 1296 1297 /* Perform the remainder of the register test, looping through 1298 * the test table until we either fail or reach the null entry. 1299 */ 1300 while (test->reg) { 1301 for (i = 0; i < test->array_len; i++) { 1302 switch (test->test_type) { 1303 case PATTERN_TEST: 1304 REG_PATTERN_TEST(test->reg + 1305 (i * test->reg_offset), 1306 test->mask, 1307 test->write); 1308 break; 1309 case SET_READ_TEST: 1310 REG_SET_AND_CHECK(test->reg + 1311 (i * test->reg_offset), 1312 test->mask, 1313 test->write); 1314 break; 1315 case WRITE_NO_TEST: 1316 writel(test->write, 1317 (adapter->hw.hw_addr + test->reg) 1318 + (i * test->reg_offset)); 1319 break; 1320 case TABLE32_TEST: 1321 REG_PATTERN_TEST(test->reg + (i * 4), 1322 test->mask, 1323 test->write); 1324 break; 1325 case TABLE64_TEST_LO: 1326 REG_PATTERN_TEST(test->reg + (i * 8), 1327 test->mask, 1328 test->write); 1329 break; 1330 case TABLE64_TEST_HI: 1331 REG_PATTERN_TEST((test->reg + 4) + (i * 8), 1332 test->mask, 1333 test->write); 1334 break; 1335 } 1336 } 1337 test++; 1338 } 1339 1340 *data = 0; 1341 return 0; 1342 } 1343 1344 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data) 1345 { 1346 struct e1000_hw *hw = &adapter->hw; 1347 1348 *data = 0; 1349 1350 /* Validate eeprom on all parts but flashless */ 1351 switch (hw->mac.type) { 1352 case e1000_i210: 1353 case e1000_i211: 1354 if (igb_get_flash_presence_i210(hw)) { 1355 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0) 1356 *data = 2; 1357 } 1358 break; 1359 default: 1360 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0) 1361 *data = 2; 1362 break; 1363 } 1364 1365 return *data; 1366 } 1367 1368 static irqreturn_t igb_test_intr(int irq, void *data) 1369 { 1370 struct igb_adapter *adapter = (struct igb_adapter *) data; 1371 struct e1000_hw *hw = &adapter->hw; 1372 1373 adapter->test_icr |= rd32(E1000_ICR); 1374 1375 return IRQ_HANDLED; 1376 } 1377 1378 static int igb_intr_test(struct igb_adapter *adapter, u64 *data) 1379 { 1380 struct e1000_hw *hw = &adapter->hw; 1381 struct net_device *netdev = adapter->netdev; 1382 u32 mask, ics_mask, i = 0, shared_int = true; 1383 u32 irq = adapter->pdev->irq; 1384 1385 *data = 0; 1386 1387 /* Hook up test interrupt handler just for this test */ 1388 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1389 if (request_irq(adapter->msix_entries[0].vector, 1390 igb_test_intr, 0, netdev->name, adapter)) { 1391 *data = 1; 1392 return -1; 1393 } 1394 } else if (adapter->flags & IGB_FLAG_HAS_MSI) { 1395 shared_int = false; 1396 if (request_irq(irq, 1397 igb_test_intr, 0, netdev->name, adapter)) { 1398 *data = 1; 1399 return -1; 1400 } 1401 } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED, 1402 netdev->name, adapter)) { 1403 shared_int = false; 1404 } else if (request_irq(irq, igb_test_intr, IRQF_SHARED, 1405 netdev->name, adapter)) { 1406 *data = 1; 1407 return -1; 1408 } 1409 dev_info(&adapter->pdev->dev, "testing %s interrupt\n", 1410 (shared_int ? "shared" : "unshared")); 1411 1412 /* Disable all the interrupts */ 1413 wr32(E1000_IMC, ~0); 1414 wrfl(); 1415 msleep(10); 1416 1417 /* Define all writable bits for ICS */ 1418 switch (hw->mac.type) { 1419 case e1000_82575: 1420 ics_mask = 0x37F47EDD; 1421 break; 1422 case e1000_82576: 1423 ics_mask = 0x77D4FBFD; 1424 break; 1425 case e1000_82580: 1426 ics_mask = 0x77DCFED5; 1427 break; 1428 case e1000_i350: 1429 case e1000_i354: 1430 case e1000_i210: 1431 case e1000_i211: 1432 ics_mask = 0x77DCFED5; 1433 break; 1434 default: 1435 ics_mask = 0x7FFFFFFF; 1436 break; 1437 } 1438 1439 /* Test each interrupt */ 1440 for (; i < 31; i++) { 1441 /* Interrupt to test */ 1442 mask = 1 << i; 1443 1444 if (!(mask & ics_mask)) 1445 continue; 1446 1447 if (!shared_int) { 1448 /* Disable the interrupt to be reported in 1449 * the cause register and then force the same 1450 * interrupt and see if one gets posted. If 1451 * an interrupt was posted to the bus, the 1452 * test failed. 1453 */ 1454 adapter->test_icr = 0; 1455 1456 /* Flush any pending interrupts */ 1457 wr32(E1000_ICR, ~0); 1458 1459 wr32(E1000_IMC, mask); 1460 wr32(E1000_ICS, mask); 1461 wrfl(); 1462 msleep(10); 1463 1464 if (adapter->test_icr & mask) { 1465 *data = 3; 1466 break; 1467 } 1468 } 1469 1470 /* Enable the interrupt to be reported in 1471 * the cause register and then force the same 1472 * interrupt and see if one gets posted. If 1473 * an interrupt was not posted to the bus, the 1474 * test failed. 1475 */ 1476 adapter->test_icr = 0; 1477 1478 /* Flush any pending interrupts */ 1479 wr32(E1000_ICR, ~0); 1480 1481 wr32(E1000_IMS, mask); 1482 wr32(E1000_ICS, mask); 1483 wrfl(); 1484 msleep(10); 1485 1486 if (!(adapter->test_icr & mask)) { 1487 *data = 4; 1488 break; 1489 } 1490 1491 if (!shared_int) { 1492 /* Disable the other interrupts to be reported in 1493 * the cause register and then force the other 1494 * interrupts and see if any get posted. If 1495 * an interrupt was posted to the bus, the 1496 * test failed. 1497 */ 1498 adapter->test_icr = 0; 1499 1500 /* Flush any pending interrupts */ 1501 wr32(E1000_ICR, ~0); 1502 1503 wr32(E1000_IMC, ~mask); 1504 wr32(E1000_ICS, ~mask); 1505 wrfl(); 1506 msleep(10); 1507 1508 if (adapter->test_icr & mask) { 1509 *data = 5; 1510 break; 1511 } 1512 } 1513 } 1514 1515 /* Disable all the interrupts */ 1516 wr32(E1000_IMC, ~0); 1517 wrfl(); 1518 msleep(10); 1519 1520 /* Unhook test interrupt handler */ 1521 if (adapter->flags & IGB_FLAG_HAS_MSIX) 1522 free_irq(adapter->msix_entries[0].vector, adapter); 1523 else 1524 free_irq(irq, adapter); 1525 1526 return *data; 1527 } 1528 1529 static void igb_free_desc_rings(struct igb_adapter *adapter) 1530 { 1531 igb_free_tx_resources(&adapter->test_tx_ring); 1532 igb_free_rx_resources(&adapter->test_rx_ring); 1533 } 1534 1535 static int igb_setup_desc_rings(struct igb_adapter *adapter) 1536 { 1537 struct igb_ring *tx_ring = &adapter->test_tx_ring; 1538 struct igb_ring *rx_ring = &adapter->test_rx_ring; 1539 struct e1000_hw *hw = &adapter->hw; 1540 int ret_val; 1541 1542 /* Setup Tx descriptor ring and Tx buffers */ 1543 tx_ring->count = IGB_DEFAULT_TXD; 1544 tx_ring->dev = &adapter->pdev->dev; 1545 tx_ring->netdev = adapter->netdev; 1546 tx_ring->reg_idx = adapter->vfs_allocated_count; 1547 1548 if (igb_setup_tx_resources(tx_ring)) { 1549 ret_val = 1; 1550 goto err_nomem; 1551 } 1552 1553 igb_setup_tctl(adapter); 1554 igb_configure_tx_ring(adapter, tx_ring); 1555 1556 /* Setup Rx descriptor ring and Rx buffers */ 1557 rx_ring->count = IGB_DEFAULT_RXD; 1558 rx_ring->dev = &adapter->pdev->dev; 1559 rx_ring->netdev = adapter->netdev; 1560 rx_ring->reg_idx = adapter->vfs_allocated_count; 1561 1562 if (igb_setup_rx_resources(rx_ring)) { 1563 ret_val = 3; 1564 goto err_nomem; 1565 } 1566 1567 /* set the default queue to queue 0 of PF */ 1568 wr32(E1000_MRQC, adapter->vfs_allocated_count << 3); 1569 1570 /* enable receive ring */ 1571 igb_setup_rctl(adapter); 1572 igb_configure_rx_ring(adapter, rx_ring); 1573 1574 igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring)); 1575 1576 return 0; 1577 1578 err_nomem: 1579 igb_free_desc_rings(adapter); 1580 return ret_val; 1581 } 1582 1583 static void igb_phy_disable_receiver(struct igb_adapter *adapter) 1584 { 1585 struct e1000_hw *hw = &adapter->hw; 1586 1587 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1588 igb_write_phy_reg(hw, 29, 0x001F); 1589 igb_write_phy_reg(hw, 30, 0x8FFC); 1590 igb_write_phy_reg(hw, 29, 0x001A); 1591 igb_write_phy_reg(hw, 30, 0x8FF0); 1592 } 1593 1594 static int igb_integrated_phy_loopback(struct igb_adapter *adapter) 1595 { 1596 struct e1000_hw *hw = &adapter->hw; 1597 u32 ctrl_reg = 0; 1598 1599 hw->mac.autoneg = false; 1600 1601 if (hw->phy.type == e1000_phy_m88) { 1602 if (hw->phy.id != I210_I_PHY_ID) { 1603 /* Auto-MDI/MDIX Off */ 1604 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); 1605 /* reset to update Auto-MDI/MDIX */ 1606 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140); 1607 /* autoneg off */ 1608 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140); 1609 } else { 1610 /* force 1000, set loopback */ 1611 igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0); 1612 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140); 1613 } 1614 } else if (hw->phy.type == e1000_phy_82580) { 1615 /* enable MII loopback */ 1616 igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041); 1617 } 1618 1619 /* add small delay to avoid loopback test failure */ 1620 msleep(50); 1621 1622 /* force 1000, set loopback */ 1623 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140); 1624 1625 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1626 ctrl_reg = rd32(E1000_CTRL); 1627 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1628 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1629 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1630 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1631 E1000_CTRL_FD | /* Force Duplex to FULL */ 1632 E1000_CTRL_SLU); /* Set link up enable bit */ 1633 1634 if (hw->phy.type == e1000_phy_m88) 1635 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1636 1637 wr32(E1000_CTRL, ctrl_reg); 1638 1639 /* Disable the receiver on the PHY so when a cable is plugged in, the 1640 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1641 */ 1642 if (hw->phy.type == e1000_phy_m88) 1643 igb_phy_disable_receiver(adapter); 1644 1645 mdelay(500); 1646 return 0; 1647 } 1648 1649 static int igb_set_phy_loopback(struct igb_adapter *adapter) 1650 { 1651 return igb_integrated_phy_loopback(adapter); 1652 } 1653 1654 static int igb_setup_loopback_test(struct igb_adapter *adapter) 1655 { 1656 struct e1000_hw *hw = &adapter->hw; 1657 u32 reg; 1658 1659 reg = rd32(E1000_CTRL_EXT); 1660 1661 /* use CTRL_EXT to identify link type as SGMII can appear as copper */ 1662 if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) { 1663 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) || 1664 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) || 1665 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) || 1666 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) || 1667 (hw->device_id == E1000_DEV_ID_I354_SGMII)) { 1668 1669 /* Enable DH89xxCC MPHY for near end loopback */ 1670 reg = rd32(E1000_MPHY_ADDR_CTL); 1671 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) | 1672 E1000_MPHY_PCS_CLK_REG_OFFSET; 1673 wr32(E1000_MPHY_ADDR_CTL, reg); 1674 1675 reg = rd32(E1000_MPHY_DATA); 1676 reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN; 1677 wr32(E1000_MPHY_DATA, reg); 1678 } 1679 1680 reg = rd32(E1000_RCTL); 1681 reg |= E1000_RCTL_LBM_TCVR; 1682 wr32(E1000_RCTL, reg); 1683 1684 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK); 1685 1686 reg = rd32(E1000_CTRL); 1687 reg &= ~(E1000_CTRL_RFCE | 1688 E1000_CTRL_TFCE | 1689 E1000_CTRL_LRST); 1690 reg |= E1000_CTRL_SLU | 1691 E1000_CTRL_FD; 1692 wr32(E1000_CTRL, reg); 1693 1694 /* Unset switch control to serdes energy detect */ 1695 reg = rd32(E1000_CONNSW); 1696 reg &= ~E1000_CONNSW_ENRGSRC; 1697 wr32(E1000_CONNSW, reg); 1698 1699 /* Unset sigdetect for SERDES loopback on 1700 * 82580 and newer devices. 1701 */ 1702 if (hw->mac.type >= e1000_82580) { 1703 reg = rd32(E1000_PCS_CFG0); 1704 reg |= E1000_PCS_CFG_IGN_SD; 1705 wr32(E1000_PCS_CFG0, reg); 1706 } 1707 1708 /* Set PCS register for forced speed */ 1709 reg = rd32(E1000_PCS_LCTL); 1710 reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/ 1711 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */ 1712 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */ 1713 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */ 1714 E1000_PCS_LCTL_FSD | /* Force Speed */ 1715 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */ 1716 wr32(E1000_PCS_LCTL, reg); 1717 1718 return 0; 1719 } 1720 1721 return igb_set_phy_loopback(adapter); 1722 } 1723 1724 static void igb_loopback_cleanup(struct igb_adapter *adapter) 1725 { 1726 struct e1000_hw *hw = &adapter->hw; 1727 u32 rctl; 1728 u16 phy_reg; 1729 1730 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) || 1731 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) || 1732 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) || 1733 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) || 1734 (hw->device_id == E1000_DEV_ID_I354_SGMII)) { 1735 u32 reg; 1736 1737 /* Disable near end loopback on DH89xxCC */ 1738 reg = rd32(E1000_MPHY_ADDR_CTL); 1739 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) | 1740 E1000_MPHY_PCS_CLK_REG_OFFSET; 1741 wr32(E1000_MPHY_ADDR_CTL, reg); 1742 1743 reg = rd32(E1000_MPHY_DATA); 1744 reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN; 1745 wr32(E1000_MPHY_DATA, reg); 1746 } 1747 1748 rctl = rd32(E1000_RCTL); 1749 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1750 wr32(E1000_RCTL, rctl); 1751 1752 hw->mac.autoneg = true; 1753 igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg); 1754 if (phy_reg & MII_CR_LOOPBACK) { 1755 phy_reg &= ~MII_CR_LOOPBACK; 1756 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg); 1757 igb_phy_sw_reset(hw); 1758 } 1759 } 1760 1761 static void igb_create_lbtest_frame(struct sk_buff *skb, 1762 unsigned int frame_size) 1763 { 1764 memset(skb->data, 0xFF, frame_size); 1765 frame_size /= 2; 1766 memset(&skb->data[frame_size], 0xAA, frame_size - 1); 1767 memset(&skb->data[frame_size + 10], 0xBE, 1); 1768 memset(&skb->data[frame_size + 12], 0xAF, 1); 1769 } 1770 1771 static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer, 1772 unsigned int frame_size) 1773 { 1774 unsigned char *data; 1775 bool match = true; 1776 1777 frame_size >>= 1; 1778 1779 data = kmap(rx_buffer->page); 1780 1781 if (data[3] != 0xFF || 1782 data[frame_size + 10] != 0xBE || 1783 data[frame_size + 12] != 0xAF) 1784 match = false; 1785 1786 kunmap(rx_buffer->page); 1787 1788 return match; 1789 } 1790 1791 static int igb_clean_test_rings(struct igb_ring *rx_ring, 1792 struct igb_ring *tx_ring, 1793 unsigned int size) 1794 { 1795 union e1000_adv_rx_desc *rx_desc; 1796 struct igb_rx_buffer *rx_buffer_info; 1797 struct igb_tx_buffer *tx_buffer_info; 1798 u16 rx_ntc, tx_ntc, count = 0; 1799 1800 /* initialize next to clean and descriptor values */ 1801 rx_ntc = rx_ring->next_to_clean; 1802 tx_ntc = tx_ring->next_to_clean; 1803 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc); 1804 1805 while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) { 1806 /* check Rx buffer */ 1807 rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc]; 1808 1809 /* sync Rx buffer for CPU read */ 1810 dma_sync_single_for_cpu(rx_ring->dev, 1811 rx_buffer_info->dma, 1812 IGB_RX_BUFSZ, 1813 DMA_FROM_DEVICE); 1814 1815 /* verify contents of skb */ 1816 if (igb_check_lbtest_frame(rx_buffer_info, size)) 1817 count++; 1818 1819 /* sync Rx buffer for device write */ 1820 dma_sync_single_for_device(rx_ring->dev, 1821 rx_buffer_info->dma, 1822 IGB_RX_BUFSZ, 1823 DMA_FROM_DEVICE); 1824 1825 /* unmap buffer on Tx side */ 1826 tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc]; 1827 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info); 1828 1829 /* increment Rx/Tx next to clean counters */ 1830 rx_ntc++; 1831 if (rx_ntc == rx_ring->count) 1832 rx_ntc = 0; 1833 tx_ntc++; 1834 if (tx_ntc == tx_ring->count) 1835 tx_ntc = 0; 1836 1837 /* fetch next descriptor */ 1838 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc); 1839 } 1840 1841 netdev_tx_reset_queue(txring_txq(tx_ring)); 1842 1843 /* re-map buffers to ring, store next to clean values */ 1844 igb_alloc_rx_buffers(rx_ring, count); 1845 rx_ring->next_to_clean = rx_ntc; 1846 tx_ring->next_to_clean = tx_ntc; 1847 1848 return count; 1849 } 1850 1851 static int igb_run_loopback_test(struct igb_adapter *adapter) 1852 { 1853 struct igb_ring *tx_ring = &adapter->test_tx_ring; 1854 struct igb_ring *rx_ring = &adapter->test_rx_ring; 1855 u16 i, j, lc, good_cnt; 1856 int ret_val = 0; 1857 unsigned int size = IGB_RX_HDR_LEN; 1858 netdev_tx_t tx_ret_val; 1859 struct sk_buff *skb; 1860 1861 /* allocate test skb */ 1862 skb = alloc_skb(size, GFP_KERNEL); 1863 if (!skb) 1864 return 11; 1865 1866 /* place data into test skb */ 1867 igb_create_lbtest_frame(skb, size); 1868 skb_put(skb, size); 1869 1870 /* Calculate the loop count based on the largest descriptor ring 1871 * The idea is to wrap the largest ring a number of times using 64 1872 * send/receive pairs during each loop 1873 */ 1874 1875 if (rx_ring->count <= tx_ring->count) 1876 lc = ((tx_ring->count / 64) * 2) + 1; 1877 else 1878 lc = ((rx_ring->count / 64) * 2) + 1; 1879 1880 for (j = 0; j <= lc; j++) { /* loop count loop */ 1881 /* reset count of good packets */ 1882 good_cnt = 0; 1883 1884 /* place 64 packets on the transmit queue*/ 1885 for (i = 0; i < 64; i++) { 1886 skb_get(skb); 1887 tx_ret_val = igb_xmit_frame_ring(skb, tx_ring); 1888 if (tx_ret_val == NETDEV_TX_OK) 1889 good_cnt++; 1890 } 1891 1892 if (good_cnt != 64) { 1893 ret_val = 12; 1894 break; 1895 } 1896 1897 /* allow 200 milliseconds for packets to go from Tx to Rx */ 1898 msleep(200); 1899 1900 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size); 1901 if (good_cnt != 64) { 1902 ret_val = 13; 1903 break; 1904 } 1905 } /* end loop count loop */ 1906 1907 /* free the original skb */ 1908 kfree_skb(skb); 1909 1910 return ret_val; 1911 } 1912 1913 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data) 1914 { 1915 /* PHY loopback cannot be performed if SoL/IDER 1916 * sessions are active 1917 */ 1918 if (igb_check_reset_block(&adapter->hw)) { 1919 dev_err(&adapter->pdev->dev, 1920 "Cannot do PHY loopback test when SoL/IDER is active.\n"); 1921 *data = 0; 1922 goto out; 1923 } 1924 1925 if (adapter->hw.mac.type == e1000_i354) { 1926 dev_info(&adapter->pdev->dev, 1927 "Loopback test not supported on i354.\n"); 1928 *data = 0; 1929 goto out; 1930 } 1931 *data = igb_setup_desc_rings(adapter); 1932 if (*data) 1933 goto out; 1934 *data = igb_setup_loopback_test(adapter); 1935 if (*data) 1936 goto err_loopback; 1937 *data = igb_run_loopback_test(adapter); 1938 igb_loopback_cleanup(adapter); 1939 1940 err_loopback: 1941 igb_free_desc_rings(adapter); 1942 out: 1943 return *data; 1944 } 1945 1946 static int igb_link_test(struct igb_adapter *adapter, u64 *data) 1947 { 1948 struct e1000_hw *hw = &adapter->hw; 1949 *data = 0; 1950 if (hw->phy.media_type == e1000_media_type_internal_serdes) { 1951 int i = 0; 1952 hw->mac.serdes_has_link = false; 1953 1954 /* On some blade server designs, link establishment 1955 * could take as long as 2-3 minutes 1956 */ 1957 do { 1958 hw->mac.ops.check_for_link(&adapter->hw); 1959 if (hw->mac.serdes_has_link) 1960 return *data; 1961 msleep(20); 1962 } while (i++ < 3750); 1963 1964 *data = 1; 1965 } else { 1966 hw->mac.ops.check_for_link(&adapter->hw); 1967 if (hw->mac.autoneg) 1968 msleep(5000); 1969 1970 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) 1971 *data = 1; 1972 } 1973 return *data; 1974 } 1975 1976 static void igb_diag_test(struct net_device *netdev, 1977 struct ethtool_test *eth_test, u64 *data) 1978 { 1979 struct igb_adapter *adapter = netdev_priv(netdev); 1980 u16 autoneg_advertised; 1981 u8 forced_speed_duplex, autoneg; 1982 bool if_running = netif_running(netdev); 1983 1984 set_bit(__IGB_TESTING, &adapter->state); 1985 1986 /* can't do offline tests on media switching devices */ 1987 if (adapter->hw.dev_spec._82575.mas_capable) 1988 eth_test->flags &= ~ETH_TEST_FL_OFFLINE; 1989 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1990 /* Offline tests */ 1991 1992 /* save speed, duplex, autoneg settings */ 1993 autoneg_advertised = adapter->hw.phy.autoneg_advertised; 1994 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; 1995 autoneg = adapter->hw.mac.autoneg; 1996 1997 dev_info(&adapter->pdev->dev, "offline testing starting\n"); 1998 1999 /* power up link for link test */ 2000 igb_power_up_link(adapter); 2001 2002 /* Link test performed before hardware reset so autoneg doesn't 2003 * interfere with test result 2004 */ 2005 if (igb_link_test(adapter, &data[4])) 2006 eth_test->flags |= ETH_TEST_FL_FAILED; 2007 2008 if (if_running) 2009 /* indicate we're in test mode */ 2010 dev_close(netdev); 2011 else 2012 igb_reset(adapter); 2013 2014 if (igb_reg_test(adapter, &data[0])) 2015 eth_test->flags |= ETH_TEST_FL_FAILED; 2016 2017 igb_reset(adapter); 2018 if (igb_eeprom_test(adapter, &data[1])) 2019 eth_test->flags |= ETH_TEST_FL_FAILED; 2020 2021 igb_reset(adapter); 2022 if (igb_intr_test(adapter, &data[2])) 2023 eth_test->flags |= ETH_TEST_FL_FAILED; 2024 2025 igb_reset(adapter); 2026 /* power up link for loopback test */ 2027 igb_power_up_link(adapter); 2028 if (igb_loopback_test(adapter, &data[3])) 2029 eth_test->flags |= ETH_TEST_FL_FAILED; 2030 2031 /* restore speed, duplex, autoneg settings */ 2032 adapter->hw.phy.autoneg_advertised = autoneg_advertised; 2033 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; 2034 adapter->hw.mac.autoneg = autoneg; 2035 2036 /* force this routine to wait until autoneg complete/timeout */ 2037 adapter->hw.phy.autoneg_wait_to_complete = true; 2038 igb_reset(adapter); 2039 adapter->hw.phy.autoneg_wait_to_complete = false; 2040 2041 clear_bit(__IGB_TESTING, &adapter->state); 2042 if (if_running) 2043 dev_open(netdev); 2044 } else { 2045 dev_info(&adapter->pdev->dev, "online testing starting\n"); 2046 2047 /* PHY is powered down when interface is down */ 2048 if (if_running && igb_link_test(adapter, &data[4])) 2049 eth_test->flags |= ETH_TEST_FL_FAILED; 2050 else 2051 data[4] = 0; 2052 2053 /* Online tests aren't run; pass by default */ 2054 data[0] = 0; 2055 data[1] = 0; 2056 data[2] = 0; 2057 data[3] = 0; 2058 2059 clear_bit(__IGB_TESTING, &adapter->state); 2060 } 2061 msleep_interruptible(4 * 1000); 2062 } 2063 2064 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 2065 { 2066 struct igb_adapter *adapter = netdev_priv(netdev); 2067 2068 wol->wolopts = 0; 2069 2070 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED)) 2071 return; 2072 2073 wol->supported = WAKE_UCAST | WAKE_MCAST | 2074 WAKE_BCAST | WAKE_MAGIC | 2075 WAKE_PHY; 2076 2077 /* apply any specific unsupported masks here */ 2078 switch (adapter->hw.device_id) { 2079 default: 2080 break; 2081 } 2082 2083 if (adapter->wol & E1000_WUFC_EX) 2084 wol->wolopts |= WAKE_UCAST; 2085 if (adapter->wol & E1000_WUFC_MC) 2086 wol->wolopts |= WAKE_MCAST; 2087 if (adapter->wol & E1000_WUFC_BC) 2088 wol->wolopts |= WAKE_BCAST; 2089 if (adapter->wol & E1000_WUFC_MAG) 2090 wol->wolopts |= WAKE_MAGIC; 2091 if (adapter->wol & E1000_WUFC_LNKC) 2092 wol->wolopts |= WAKE_PHY; 2093 } 2094 2095 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 2096 { 2097 struct igb_adapter *adapter = netdev_priv(netdev); 2098 2099 if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE)) 2100 return -EOPNOTSUPP; 2101 2102 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED)) 2103 return wol->wolopts ? -EOPNOTSUPP : 0; 2104 2105 /* these settings will always override what we currently have */ 2106 adapter->wol = 0; 2107 2108 if (wol->wolopts & WAKE_UCAST) 2109 adapter->wol |= E1000_WUFC_EX; 2110 if (wol->wolopts & WAKE_MCAST) 2111 adapter->wol |= E1000_WUFC_MC; 2112 if (wol->wolopts & WAKE_BCAST) 2113 adapter->wol |= E1000_WUFC_BC; 2114 if (wol->wolopts & WAKE_MAGIC) 2115 adapter->wol |= E1000_WUFC_MAG; 2116 if (wol->wolopts & WAKE_PHY) 2117 adapter->wol |= E1000_WUFC_LNKC; 2118 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 2119 2120 return 0; 2121 } 2122 2123 /* bit defines for adapter->led_status */ 2124 #define IGB_LED_ON 0 2125 2126 static int igb_set_phys_id(struct net_device *netdev, 2127 enum ethtool_phys_id_state state) 2128 { 2129 struct igb_adapter *adapter = netdev_priv(netdev); 2130 struct e1000_hw *hw = &adapter->hw; 2131 2132 switch (state) { 2133 case ETHTOOL_ID_ACTIVE: 2134 igb_blink_led(hw); 2135 return 2; 2136 case ETHTOOL_ID_ON: 2137 igb_blink_led(hw); 2138 break; 2139 case ETHTOOL_ID_OFF: 2140 igb_led_off(hw); 2141 break; 2142 case ETHTOOL_ID_INACTIVE: 2143 igb_led_off(hw); 2144 clear_bit(IGB_LED_ON, &adapter->led_status); 2145 igb_cleanup_led(hw); 2146 break; 2147 } 2148 2149 return 0; 2150 } 2151 2152 static int igb_set_coalesce(struct net_device *netdev, 2153 struct ethtool_coalesce *ec) 2154 { 2155 struct igb_adapter *adapter = netdev_priv(netdev); 2156 int i; 2157 2158 if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) || 2159 ((ec->rx_coalesce_usecs > 3) && 2160 (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) || 2161 (ec->rx_coalesce_usecs == 2)) 2162 return -EINVAL; 2163 2164 if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) || 2165 ((ec->tx_coalesce_usecs > 3) && 2166 (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) || 2167 (ec->tx_coalesce_usecs == 2)) 2168 return -EINVAL; 2169 2170 if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs) 2171 return -EINVAL; 2172 2173 /* If ITR is disabled, disable DMAC */ 2174 if (ec->rx_coalesce_usecs == 0) { 2175 if (adapter->flags & IGB_FLAG_DMAC) 2176 adapter->flags &= ~IGB_FLAG_DMAC; 2177 } 2178 2179 /* convert to rate of irq's per second */ 2180 if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3) 2181 adapter->rx_itr_setting = ec->rx_coalesce_usecs; 2182 else 2183 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2; 2184 2185 /* convert to rate of irq's per second */ 2186 if (adapter->flags & IGB_FLAG_QUEUE_PAIRS) 2187 adapter->tx_itr_setting = adapter->rx_itr_setting; 2188 else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3) 2189 adapter->tx_itr_setting = ec->tx_coalesce_usecs; 2190 else 2191 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2; 2192 2193 for (i = 0; i < adapter->num_q_vectors; i++) { 2194 struct igb_q_vector *q_vector = adapter->q_vector[i]; 2195 q_vector->tx.work_limit = adapter->tx_work_limit; 2196 if (q_vector->rx.ring) 2197 q_vector->itr_val = adapter->rx_itr_setting; 2198 else 2199 q_vector->itr_val = adapter->tx_itr_setting; 2200 if (q_vector->itr_val && q_vector->itr_val <= 3) 2201 q_vector->itr_val = IGB_START_ITR; 2202 q_vector->set_itr = 1; 2203 } 2204 2205 return 0; 2206 } 2207 2208 static int igb_get_coalesce(struct net_device *netdev, 2209 struct ethtool_coalesce *ec) 2210 { 2211 struct igb_adapter *adapter = netdev_priv(netdev); 2212 2213 if (adapter->rx_itr_setting <= 3) 2214 ec->rx_coalesce_usecs = adapter->rx_itr_setting; 2215 else 2216 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2; 2217 2218 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) { 2219 if (adapter->tx_itr_setting <= 3) 2220 ec->tx_coalesce_usecs = adapter->tx_itr_setting; 2221 else 2222 ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2; 2223 } 2224 2225 return 0; 2226 } 2227 2228 static int igb_nway_reset(struct net_device *netdev) 2229 { 2230 struct igb_adapter *adapter = netdev_priv(netdev); 2231 if (netif_running(netdev)) 2232 igb_reinit_locked(adapter); 2233 return 0; 2234 } 2235 2236 static int igb_get_sset_count(struct net_device *netdev, int sset) 2237 { 2238 switch (sset) { 2239 case ETH_SS_STATS: 2240 return IGB_STATS_LEN; 2241 case ETH_SS_TEST: 2242 return IGB_TEST_LEN; 2243 default: 2244 return -ENOTSUPP; 2245 } 2246 } 2247 2248 static void igb_get_ethtool_stats(struct net_device *netdev, 2249 struct ethtool_stats *stats, u64 *data) 2250 { 2251 struct igb_adapter *adapter = netdev_priv(netdev); 2252 struct rtnl_link_stats64 *net_stats = &adapter->stats64; 2253 unsigned int start; 2254 struct igb_ring *ring; 2255 int i, j; 2256 char *p; 2257 2258 spin_lock(&adapter->stats64_lock); 2259 igb_update_stats(adapter, net_stats); 2260 2261 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) { 2262 p = (char *)adapter + igb_gstrings_stats[i].stat_offset; 2263 data[i] = (igb_gstrings_stats[i].sizeof_stat == 2264 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 2265 } 2266 for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) { 2267 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset; 2268 data[i] = (igb_gstrings_net_stats[j].sizeof_stat == 2269 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 2270 } 2271 for (j = 0; j < adapter->num_tx_queues; j++) { 2272 u64 restart2; 2273 2274 ring = adapter->tx_ring[j]; 2275 do { 2276 start = u64_stats_fetch_begin_irq(&ring->tx_syncp); 2277 data[i] = ring->tx_stats.packets; 2278 data[i+1] = ring->tx_stats.bytes; 2279 data[i+2] = ring->tx_stats.restart_queue; 2280 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start)); 2281 do { 2282 start = u64_stats_fetch_begin_irq(&ring->tx_syncp2); 2283 restart2 = ring->tx_stats.restart_queue2; 2284 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start)); 2285 data[i+2] += restart2; 2286 2287 i += IGB_TX_QUEUE_STATS_LEN; 2288 } 2289 for (j = 0; j < adapter->num_rx_queues; j++) { 2290 ring = adapter->rx_ring[j]; 2291 do { 2292 start = u64_stats_fetch_begin_irq(&ring->rx_syncp); 2293 data[i] = ring->rx_stats.packets; 2294 data[i+1] = ring->rx_stats.bytes; 2295 data[i+2] = ring->rx_stats.drops; 2296 data[i+3] = ring->rx_stats.csum_err; 2297 data[i+4] = ring->rx_stats.alloc_failed; 2298 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start)); 2299 i += IGB_RX_QUEUE_STATS_LEN; 2300 } 2301 spin_unlock(&adapter->stats64_lock); 2302 } 2303 2304 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data) 2305 { 2306 struct igb_adapter *adapter = netdev_priv(netdev); 2307 u8 *p = data; 2308 int i; 2309 2310 switch (stringset) { 2311 case ETH_SS_TEST: 2312 memcpy(data, *igb_gstrings_test, 2313 IGB_TEST_LEN*ETH_GSTRING_LEN); 2314 break; 2315 case ETH_SS_STATS: 2316 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) { 2317 memcpy(p, igb_gstrings_stats[i].stat_string, 2318 ETH_GSTRING_LEN); 2319 p += ETH_GSTRING_LEN; 2320 } 2321 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) { 2322 memcpy(p, igb_gstrings_net_stats[i].stat_string, 2323 ETH_GSTRING_LEN); 2324 p += ETH_GSTRING_LEN; 2325 } 2326 for (i = 0; i < adapter->num_tx_queues; i++) { 2327 sprintf(p, "tx_queue_%u_packets", i); 2328 p += ETH_GSTRING_LEN; 2329 sprintf(p, "tx_queue_%u_bytes", i); 2330 p += ETH_GSTRING_LEN; 2331 sprintf(p, "tx_queue_%u_restart", i); 2332 p += ETH_GSTRING_LEN; 2333 } 2334 for (i = 0; i < adapter->num_rx_queues; i++) { 2335 sprintf(p, "rx_queue_%u_packets", i); 2336 p += ETH_GSTRING_LEN; 2337 sprintf(p, "rx_queue_%u_bytes", i); 2338 p += ETH_GSTRING_LEN; 2339 sprintf(p, "rx_queue_%u_drops", i); 2340 p += ETH_GSTRING_LEN; 2341 sprintf(p, "rx_queue_%u_csum_err", i); 2342 p += ETH_GSTRING_LEN; 2343 sprintf(p, "rx_queue_%u_alloc_failed", i); 2344 p += ETH_GSTRING_LEN; 2345 } 2346 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */ 2347 break; 2348 } 2349 } 2350 2351 static int igb_get_ts_info(struct net_device *dev, 2352 struct ethtool_ts_info *info) 2353 { 2354 struct igb_adapter *adapter = netdev_priv(dev); 2355 2356 if (adapter->ptp_clock) 2357 info->phc_index = ptp_clock_index(adapter->ptp_clock); 2358 else 2359 info->phc_index = -1; 2360 2361 switch (adapter->hw.mac.type) { 2362 case e1000_82575: 2363 info->so_timestamping = 2364 SOF_TIMESTAMPING_TX_SOFTWARE | 2365 SOF_TIMESTAMPING_RX_SOFTWARE | 2366 SOF_TIMESTAMPING_SOFTWARE; 2367 return 0; 2368 case e1000_82576: 2369 case e1000_82580: 2370 case e1000_i350: 2371 case e1000_i354: 2372 case e1000_i210: 2373 case e1000_i211: 2374 info->so_timestamping = 2375 SOF_TIMESTAMPING_TX_SOFTWARE | 2376 SOF_TIMESTAMPING_RX_SOFTWARE | 2377 SOF_TIMESTAMPING_SOFTWARE | 2378 SOF_TIMESTAMPING_TX_HARDWARE | 2379 SOF_TIMESTAMPING_RX_HARDWARE | 2380 SOF_TIMESTAMPING_RAW_HARDWARE; 2381 2382 info->tx_types = 2383 (1 << HWTSTAMP_TX_OFF) | 2384 (1 << HWTSTAMP_TX_ON); 2385 2386 info->rx_filters = 1 << HWTSTAMP_FILTER_NONE; 2387 2388 /* 82576 does not support timestamping all packets. */ 2389 if (adapter->hw.mac.type >= e1000_82580) 2390 info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL; 2391 else 2392 info->rx_filters |= 2393 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) | 2394 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) | 2395 (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) | 2396 (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) | 2397 (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) | 2398 (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) | 2399 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 2400 2401 return 0; 2402 default: 2403 return -EOPNOTSUPP; 2404 } 2405 } 2406 2407 static int igb_get_rss_hash_opts(struct igb_adapter *adapter, 2408 struct ethtool_rxnfc *cmd) 2409 { 2410 cmd->data = 0; 2411 2412 /* Report default options for RSS on igb */ 2413 switch (cmd->flow_type) { 2414 case TCP_V4_FLOW: 2415 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2416 case UDP_V4_FLOW: 2417 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP) 2418 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2419 case SCTP_V4_FLOW: 2420 case AH_ESP_V4_FLOW: 2421 case AH_V4_FLOW: 2422 case ESP_V4_FLOW: 2423 case IPV4_FLOW: 2424 cmd->data |= RXH_IP_SRC | RXH_IP_DST; 2425 break; 2426 case TCP_V6_FLOW: 2427 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2428 case UDP_V6_FLOW: 2429 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP) 2430 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2431 case SCTP_V6_FLOW: 2432 case AH_ESP_V6_FLOW: 2433 case AH_V6_FLOW: 2434 case ESP_V6_FLOW: 2435 case IPV6_FLOW: 2436 cmd->data |= RXH_IP_SRC | RXH_IP_DST; 2437 break; 2438 default: 2439 return -EINVAL; 2440 } 2441 2442 return 0; 2443 } 2444 2445 static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd, 2446 u32 *rule_locs) 2447 { 2448 struct igb_adapter *adapter = netdev_priv(dev); 2449 int ret = -EOPNOTSUPP; 2450 2451 switch (cmd->cmd) { 2452 case ETHTOOL_GRXRINGS: 2453 cmd->data = adapter->num_rx_queues; 2454 ret = 0; 2455 break; 2456 case ETHTOOL_GRXFH: 2457 ret = igb_get_rss_hash_opts(adapter, cmd); 2458 break; 2459 default: 2460 break; 2461 } 2462 2463 return ret; 2464 } 2465 2466 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \ 2467 IGB_FLAG_RSS_FIELD_IPV6_UDP) 2468 static int igb_set_rss_hash_opt(struct igb_adapter *adapter, 2469 struct ethtool_rxnfc *nfc) 2470 { 2471 u32 flags = adapter->flags; 2472 2473 /* RSS does not support anything other than hashing 2474 * to queues on src and dst IPs and ports 2475 */ 2476 if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST | 2477 RXH_L4_B_0_1 | RXH_L4_B_2_3)) 2478 return -EINVAL; 2479 2480 switch (nfc->flow_type) { 2481 case TCP_V4_FLOW: 2482 case TCP_V6_FLOW: 2483 if (!(nfc->data & RXH_IP_SRC) || 2484 !(nfc->data & RXH_IP_DST) || 2485 !(nfc->data & RXH_L4_B_0_1) || 2486 !(nfc->data & RXH_L4_B_2_3)) 2487 return -EINVAL; 2488 break; 2489 case UDP_V4_FLOW: 2490 if (!(nfc->data & RXH_IP_SRC) || 2491 !(nfc->data & RXH_IP_DST)) 2492 return -EINVAL; 2493 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 2494 case 0: 2495 flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP; 2496 break; 2497 case (RXH_L4_B_0_1 | RXH_L4_B_2_3): 2498 flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP; 2499 break; 2500 default: 2501 return -EINVAL; 2502 } 2503 break; 2504 case UDP_V6_FLOW: 2505 if (!(nfc->data & RXH_IP_SRC) || 2506 !(nfc->data & RXH_IP_DST)) 2507 return -EINVAL; 2508 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 2509 case 0: 2510 flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP; 2511 break; 2512 case (RXH_L4_B_0_1 | RXH_L4_B_2_3): 2513 flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP; 2514 break; 2515 default: 2516 return -EINVAL; 2517 } 2518 break; 2519 case AH_ESP_V4_FLOW: 2520 case AH_V4_FLOW: 2521 case ESP_V4_FLOW: 2522 case SCTP_V4_FLOW: 2523 case AH_ESP_V6_FLOW: 2524 case AH_V6_FLOW: 2525 case ESP_V6_FLOW: 2526 case SCTP_V6_FLOW: 2527 if (!(nfc->data & RXH_IP_SRC) || 2528 !(nfc->data & RXH_IP_DST) || 2529 (nfc->data & RXH_L4_B_0_1) || 2530 (nfc->data & RXH_L4_B_2_3)) 2531 return -EINVAL; 2532 break; 2533 default: 2534 return -EINVAL; 2535 } 2536 2537 /* if we changed something we need to update flags */ 2538 if (flags != adapter->flags) { 2539 struct e1000_hw *hw = &adapter->hw; 2540 u32 mrqc = rd32(E1000_MRQC); 2541 2542 if ((flags & UDP_RSS_FLAGS) && 2543 !(adapter->flags & UDP_RSS_FLAGS)) 2544 dev_err(&adapter->pdev->dev, 2545 "enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n"); 2546 2547 adapter->flags = flags; 2548 2549 /* Perform hash on these packet types */ 2550 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 | 2551 E1000_MRQC_RSS_FIELD_IPV4_TCP | 2552 E1000_MRQC_RSS_FIELD_IPV6 | 2553 E1000_MRQC_RSS_FIELD_IPV6_TCP; 2554 2555 mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP | 2556 E1000_MRQC_RSS_FIELD_IPV6_UDP); 2557 2558 if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP) 2559 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP; 2560 2561 if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP) 2562 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP; 2563 2564 wr32(E1000_MRQC, mrqc); 2565 } 2566 2567 return 0; 2568 } 2569 2570 static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd) 2571 { 2572 struct igb_adapter *adapter = netdev_priv(dev); 2573 int ret = -EOPNOTSUPP; 2574 2575 switch (cmd->cmd) { 2576 case ETHTOOL_SRXFH: 2577 ret = igb_set_rss_hash_opt(adapter, cmd); 2578 break; 2579 default: 2580 break; 2581 } 2582 2583 return ret; 2584 } 2585 2586 static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata) 2587 { 2588 struct igb_adapter *adapter = netdev_priv(netdev); 2589 struct e1000_hw *hw = &adapter->hw; 2590 u32 ret_val; 2591 u16 phy_data; 2592 2593 if ((hw->mac.type < e1000_i350) || 2594 (hw->phy.media_type != e1000_media_type_copper)) 2595 return -EOPNOTSUPP; 2596 2597 edata->supported = (SUPPORTED_1000baseT_Full | 2598 SUPPORTED_100baseT_Full); 2599 if (!hw->dev_spec._82575.eee_disable) 2600 edata->advertised = 2601 mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert); 2602 2603 /* The IPCNFG and EEER registers are not supported on I354. */ 2604 if (hw->mac.type == e1000_i354) { 2605 igb_get_eee_status_i354(hw, (bool *)&edata->eee_active); 2606 } else { 2607 u32 eeer; 2608 2609 eeer = rd32(E1000_EEER); 2610 2611 /* EEE status on negotiated link */ 2612 if (eeer & E1000_EEER_EEE_NEG) 2613 edata->eee_active = true; 2614 2615 if (eeer & E1000_EEER_TX_LPI_EN) 2616 edata->tx_lpi_enabled = true; 2617 } 2618 2619 /* EEE Link Partner Advertised */ 2620 switch (hw->mac.type) { 2621 case e1000_i350: 2622 ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350, 2623 &phy_data); 2624 if (ret_val) 2625 return -ENODATA; 2626 2627 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data); 2628 break; 2629 case e1000_i354: 2630 case e1000_i210: 2631 case e1000_i211: 2632 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210, 2633 E1000_EEE_LP_ADV_DEV_I210, 2634 &phy_data); 2635 if (ret_val) 2636 return -ENODATA; 2637 2638 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data); 2639 2640 break; 2641 default: 2642 break; 2643 } 2644 2645 edata->eee_enabled = !hw->dev_spec._82575.eee_disable; 2646 2647 if ((hw->mac.type == e1000_i354) && 2648 (edata->eee_enabled)) 2649 edata->tx_lpi_enabled = true; 2650 2651 /* Report correct negotiated EEE status for devices that 2652 * wrongly report EEE at half-duplex 2653 */ 2654 if (adapter->link_duplex == HALF_DUPLEX) { 2655 edata->eee_enabled = false; 2656 edata->eee_active = false; 2657 edata->tx_lpi_enabled = false; 2658 edata->advertised &= ~edata->advertised; 2659 } 2660 2661 return 0; 2662 } 2663 2664 static int igb_set_eee(struct net_device *netdev, 2665 struct ethtool_eee *edata) 2666 { 2667 struct igb_adapter *adapter = netdev_priv(netdev); 2668 struct e1000_hw *hw = &adapter->hw; 2669 struct ethtool_eee eee_curr; 2670 s32 ret_val; 2671 2672 if ((hw->mac.type < e1000_i350) || 2673 (hw->phy.media_type != e1000_media_type_copper)) 2674 return -EOPNOTSUPP; 2675 2676 memset(&eee_curr, 0, sizeof(struct ethtool_eee)); 2677 2678 ret_val = igb_get_eee(netdev, &eee_curr); 2679 if (ret_val) 2680 return ret_val; 2681 2682 if (eee_curr.eee_enabled) { 2683 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) { 2684 dev_err(&adapter->pdev->dev, 2685 "Setting EEE tx-lpi is not supported\n"); 2686 return -EINVAL; 2687 } 2688 2689 /* Tx LPI timer is not implemented currently */ 2690 if (edata->tx_lpi_timer) { 2691 dev_err(&adapter->pdev->dev, 2692 "Setting EEE Tx LPI timer is not supported\n"); 2693 return -EINVAL; 2694 } 2695 2696 if (edata->advertised & 2697 ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) { 2698 dev_err(&adapter->pdev->dev, 2699 "EEE Advertisement supports only 100Tx and or 100T full duplex\n"); 2700 return -EINVAL; 2701 } 2702 2703 } else if (!edata->eee_enabled) { 2704 dev_err(&adapter->pdev->dev, 2705 "Setting EEE options are not supported with EEE disabled\n"); 2706 return -EINVAL; 2707 } 2708 2709 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised); 2710 if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) { 2711 hw->dev_spec._82575.eee_disable = !edata->eee_enabled; 2712 adapter->flags |= IGB_FLAG_EEE; 2713 if (hw->mac.type == e1000_i350) 2714 igb_set_eee_i350(hw); 2715 else 2716 igb_set_eee_i354(hw); 2717 2718 /* reset link */ 2719 if (netif_running(netdev)) 2720 igb_reinit_locked(adapter); 2721 else 2722 igb_reset(adapter); 2723 } 2724 2725 return 0; 2726 } 2727 2728 static int igb_get_module_info(struct net_device *netdev, 2729 struct ethtool_modinfo *modinfo) 2730 { 2731 struct igb_adapter *adapter = netdev_priv(netdev); 2732 struct e1000_hw *hw = &adapter->hw; 2733 u32 status = E1000_SUCCESS; 2734 u16 sff8472_rev, addr_mode; 2735 bool page_swap = false; 2736 2737 if ((hw->phy.media_type == e1000_media_type_copper) || 2738 (hw->phy.media_type == e1000_media_type_unknown)) 2739 return -EOPNOTSUPP; 2740 2741 /* Check whether we support SFF-8472 or not */ 2742 status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev); 2743 if (status != E1000_SUCCESS) 2744 return -EIO; 2745 2746 /* addressing mode is not supported */ 2747 status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode); 2748 if (status != E1000_SUCCESS) 2749 return -EIO; 2750 2751 /* addressing mode is not supported */ 2752 if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) { 2753 hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n"); 2754 page_swap = true; 2755 } 2756 2757 if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) { 2758 /* We have an SFP, but it does not support SFF-8472 */ 2759 modinfo->type = ETH_MODULE_SFF_8079; 2760 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; 2761 } else { 2762 /* We have an SFP which supports a revision of SFF-8472 */ 2763 modinfo->type = ETH_MODULE_SFF_8472; 2764 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; 2765 } 2766 2767 return 0; 2768 } 2769 2770 static int igb_get_module_eeprom(struct net_device *netdev, 2771 struct ethtool_eeprom *ee, u8 *data) 2772 { 2773 struct igb_adapter *adapter = netdev_priv(netdev); 2774 struct e1000_hw *hw = &adapter->hw; 2775 u32 status = E1000_SUCCESS; 2776 u16 *dataword; 2777 u16 first_word, last_word; 2778 int i = 0; 2779 2780 if (ee->len == 0) 2781 return -EINVAL; 2782 2783 first_word = ee->offset >> 1; 2784 last_word = (ee->offset + ee->len - 1) >> 1; 2785 2786 dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1), 2787 GFP_KERNEL); 2788 if (!dataword) 2789 return -ENOMEM; 2790 2791 /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */ 2792 for (i = 0; i < last_word - first_word + 1; i++) { 2793 status = igb_read_phy_reg_i2c(hw, first_word + i, &dataword[i]); 2794 if (status != E1000_SUCCESS) { 2795 /* Error occurred while reading module */ 2796 kfree(dataword); 2797 return -EIO; 2798 } 2799 2800 be16_to_cpus(&dataword[i]); 2801 } 2802 2803 memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len); 2804 kfree(dataword); 2805 2806 return 0; 2807 } 2808 2809 static int igb_ethtool_begin(struct net_device *netdev) 2810 { 2811 struct igb_adapter *adapter = netdev_priv(netdev); 2812 pm_runtime_get_sync(&adapter->pdev->dev); 2813 return 0; 2814 } 2815 2816 static void igb_ethtool_complete(struct net_device *netdev) 2817 { 2818 struct igb_adapter *adapter = netdev_priv(netdev); 2819 pm_runtime_put(&adapter->pdev->dev); 2820 } 2821 2822 static u32 igb_get_rxfh_indir_size(struct net_device *netdev) 2823 { 2824 return IGB_RETA_SIZE; 2825 } 2826 2827 static int igb_get_rxfh_indir(struct net_device *netdev, u32 *indir) 2828 { 2829 struct igb_adapter *adapter = netdev_priv(netdev); 2830 int i; 2831 2832 for (i = 0; i < IGB_RETA_SIZE; i++) 2833 indir[i] = adapter->rss_indir_tbl[i]; 2834 2835 return 0; 2836 } 2837 2838 void igb_write_rss_indir_tbl(struct igb_adapter *adapter) 2839 { 2840 struct e1000_hw *hw = &adapter->hw; 2841 u32 reg = E1000_RETA(0); 2842 u32 shift = 0; 2843 int i = 0; 2844 2845 switch (hw->mac.type) { 2846 case e1000_82575: 2847 shift = 6; 2848 break; 2849 case e1000_82576: 2850 /* 82576 supports 2 RSS queues for SR-IOV */ 2851 if (adapter->vfs_allocated_count) 2852 shift = 3; 2853 break; 2854 default: 2855 break; 2856 } 2857 2858 while (i < IGB_RETA_SIZE) { 2859 u32 val = 0; 2860 int j; 2861 2862 for (j = 3; j >= 0; j--) { 2863 val <<= 8; 2864 val |= adapter->rss_indir_tbl[i + j]; 2865 } 2866 2867 wr32(reg, val << shift); 2868 reg += 4; 2869 i += 4; 2870 } 2871 } 2872 2873 static int igb_set_rxfh_indir(struct net_device *netdev, const u32 *indir) 2874 { 2875 struct igb_adapter *adapter = netdev_priv(netdev); 2876 struct e1000_hw *hw = &adapter->hw; 2877 int i; 2878 u32 num_queues; 2879 2880 num_queues = adapter->rss_queues; 2881 2882 switch (hw->mac.type) { 2883 case e1000_82576: 2884 /* 82576 supports 2 RSS queues for SR-IOV */ 2885 if (adapter->vfs_allocated_count) 2886 num_queues = 2; 2887 break; 2888 default: 2889 break; 2890 } 2891 2892 /* Verify user input. */ 2893 for (i = 0; i < IGB_RETA_SIZE; i++) 2894 if (indir[i] >= num_queues) 2895 return -EINVAL; 2896 2897 2898 for (i = 0; i < IGB_RETA_SIZE; i++) 2899 adapter->rss_indir_tbl[i] = indir[i]; 2900 2901 igb_write_rss_indir_tbl(adapter); 2902 2903 return 0; 2904 } 2905 2906 static unsigned int igb_max_channels(struct igb_adapter *adapter) 2907 { 2908 struct e1000_hw *hw = &adapter->hw; 2909 unsigned int max_combined = 0; 2910 2911 switch (hw->mac.type) { 2912 case e1000_i211: 2913 max_combined = IGB_MAX_RX_QUEUES_I211; 2914 break; 2915 case e1000_82575: 2916 case e1000_i210: 2917 max_combined = IGB_MAX_RX_QUEUES_82575; 2918 break; 2919 case e1000_i350: 2920 if (!!adapter->vfs_allocated_count) { 2921 max_combined = 1; 2922 break; 2923 } 2924 /* fall through */ 2925 case e1000_82576: 2926 if (!!adapter->vfs_allocated_count) { 2927 max_combined = 2; 2928 break; 2929 } 2930 /* fall through */ 2931 case e1000_82580: 2932 case e1000_i354: 2933 default: 2934 max_combined = IGB_MAX_RX_QUEUES; 2935 break; 2936 } 2937 2938 return max_combined; 2939 } 2940 2941 static void igb_get_channels(struct net_device *netdev, 2942 struct ethtool_channels *ch) 2943 { 2944 struct igb_adapter *adapter = netdev_priv(netdev); 2945 2946 /* Report maximum channels */ 2947 ch->max_combined = igb_max_channels(adapter); 2948 2949 /* Report info for other vector */ 2950 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 2951 ch->max_other = NON_Q_VECTORS; 2952 ch->other_count = NON_Q_VECTORS; 2953 } 2954 2955 ch->combined_count = adapter->rss_queues; 2956 } 2957 2958 static int igb_set_channels(struct net_device *netdev, 2959 struct ethtool_channels *ch) 2960 { 2961 struct igb_adapter *adapter = netdev_priv(netdev); 2962 unsigned int count = ch->combined_count; 2963 2964 /* Verify they are not requesting separate vectors */ 2965 if (!count || ch->rx_count || ch->tx_count) 2966 return -EINVAL; 2967 2968 /* Verify other_count is valid and has not been changed */ 2969 if (ch->other_count != NON_Q_VECTORS) 2970 return -EINVAL; 2971 2972 /* Verify the number of channels doesn't exceed hw limits */ 2973 if (count > igb_max_channels(adapter)) 2974 return -EINVAL; 2975 2976 if (count != adapter->rss_queues) { 2977 adapter->rss_queues = count; 2978 2979 /* Hardware has to reinitialize queues and interrupts to 2980 * match the new configuration. 2981 */ 2982 return igb_reinit_queues(adapter); 2983 } 2984 2985 return 0; 2986 } 2987 2988 static const struct ethtool_ops igb_ethtool_ops = { 2989 .get_settings = igb_get_settings, 2990 .set_settings = igb_set_settings, 2991 .get_drvinfo = igb_get_drvinfo, 2992 .get_regs_len = igb_get_regs_len, 2993 .get_regs = igb_get_regs, 2994 .get_wol = igb_get_wol, 2995 .set_wol = igb_set_wol, 2996 .get_msglevel = igb_get_msglevel, 2997 .set_msglevel = igb_set_msglevel, 2998 .nway_reset = igb_nway_reset, 2999 .get_link = igb_get_link, 3000 .get_eeprom_len = igb_get_eeprom_len, 3001 .get_eeprom = igb_get_eeprom, 3002 .set_eeprom = igb_set_eeprom, 3003 .get_ringparam = igb_get_ringparam, 3004 .set_ringparam = igb_set_ringparam, 3005 .get_pauseparam = igb_get_pauseparam, 3006 .set_pauseparam = igb_set_pauseparam, 3007 .self_test = igb_diag_test, 3008 .get_strings = igb_get_strings, 3009 .set_phys_id = igb_set_phys_id, 3010 .get_sset_count = igb_get_sset_count, 3011 .get_ethtool_stats = igb_get_ethtool_stats, 3012 .get_coalesce = igb_get_coalesce, 3013 .set_coalesce = igb_set_coalesce, 3014 .get_ts_info = igb_get_ts_info, 3015 .get_rxnfc = igb_get_rxnfc, 3016 .set_rxnfc = igb_set_rxnfc, 3017 .get_eee = igb_get_eee, 3018 .set_eee = igb_set_eee, 3019 .get_module_info = igb_get_module_info, 3020 .get_module_eeprom = igb_get_module_eeprom, 3021 .get_rxfh_indir_size = igb_get_rxfh_indir_size, 3022 .get_rxfh_indir = igb_get_rxfh_indir, 3023 .set_rxfh_indir = igb_set_rxfh_indir, 3024 .get_channels = igb_get_channels, 3025 .set_channels = igb_set_channels, 3026 .begin = igb_ethtool_begin, 3027 .complete = igb_ethtool_complete, 3028 }; 3029 3030 void igb_set_ethtool_ops(struct net_device *netdev) 3031 { 3032 SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops); 3033 } 3034