1 // SPDX-License-Identifier: GPL-2.0
2 /* Intel(R) Gigabit Ethernet Linux driver
3  * Copyright(c) 2007-2014 Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, see <http://www.gnu.org/licenses/>.
16  *
17  * The full GNU General Public License is included in this distribution in
18  * the file called "COPYING".
19  *
20  * Contact Information:
21  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
22  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
23  */
24 
25 /* ethtool support for igb */
26 
27 #include <linux/vmalloc.h>
28 #include <linux/netdevice.h>
29 #include <linux/pci.h>
30 #include <linux/delay.h>
31 #include <linux/interrupt.h>
32 #include <linux/if_ether.h>
33 #include <linux/ethtool.h>
34 #include <linux/sched.h>
35 #include <linux/slab.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/highmem.h>
38 #include <linux/mdio.h>
39 
40 #include "igb.h"
41 
42 struct igb_stats {
43 	char stat_string[ETH_GSTRING_LEN];
44 	int sizeof_stat;
45 	int stat_offset;
46 };
47 
48 #define IGB_STAT(_name, _stat) { \
49 	.stat_string = _name, \
50 	.sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
51 	.stat_offset = offsetof(struct igb_adapter, _stat) \
52 }
53 static const struct igb_stats igb_gstrings_stats[] = {
54 	IGB_STAT("rx_packets", stats.gprc),
55 	IGB_STAT("tx_packets", stats.gptc),
56 	IGB_STAT("rx_bytes", stats.gorc),
57 	IGB_STAT("tx_bytes", stats.gotc),
58 	IGB_STAT("rx_broadcast", stats.bprc),
59 	IGB_STAT("tx_broadcast", stats.bptc),
60 	IGB_STAT("rx_multicast", stats.mprc),
61 	IGB_STAT("tx_multicast", stats.mptc),
62 	IGB_STAT("multicast", stats.mprc),
63 	IGB_STAT("collisions", stats.colc),
64 	IGB_STAT("rx_crc_errors", stats.crcerrs),
65 	IGB_STAT("rx_no_buffer_count", stats.rnbc),
66 	IGB_STAT("rx_missed_errors", stats.mpc),
67 	IGB_STAT("tx_aborted_errors", stats.ecol),
68 	IGB_STAT("tx_carrier_errors", stats.tncrs),
69 	IGB_STAT("tx_window_errors", stats.latecol),
70 	IGB_STAT("tx_abort_late_coll", stats.latecol),
71 	IGB_STAT("tx_deferred_ok", stats.dc),
72 	IGB_STAT("tx_single_coll_ok", stats.scc),
73 	IGB_STAT("tx_multi_coll_ok", stats.mcc),
74 	IGB_STAT("tx_timeout_count", tx_timeout_count),
75 	IGB_STAT("rx_long_length_errors", stats.roc),
76 	IGB_STAT("rx_short_length_errors", stats.ruc),
77 	IGB_STAT("rx_align_errors", stats.algnerrc),
78 	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
79 	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
80 	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
81 	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
82 	IGB_STAT("tx_flow_control_xon", stats.xontxc),
83 	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
84 	IGB_STAT("rx_long_byte_count", stats.gorc),
85 	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
86 	IGB_STAT("tx_smbus", stats.mgptc),
87 	IGB_STAT("rx_smbus", stats.mgprc),
88 	IGB_STAT("dropped_smbus", stats.mgpdc),
89 	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
90 	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
91 	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
92 	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
93 	IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
94 	IGB_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
95 	IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
96 };
97 
98 #define IGB_NETDEV_STAT(_net_stat) { \
99 	.stat_string = __stringify(_net_stat), \
100 	.sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
101 	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
102 }
103 static const struct igb_stats igb_gstrings_net_stats[] = {
104 	IGB_NETDEV_STAT(rx_errors),
105 	IGB_NETDEV_STAT(tx_errors),
106 	IGB_NETDEV_STAT(tx_dropped),
107 	IGB_NETDEV_STAT(rx_length_errors),
108 	IGB_NETDEV_STAT(rx_over_errors),
109 	IGB_NETDEV_STAT(rx_frame_errors),
110 	IGB_NETDEV_STAT(rx_fifo_errors),
111 	IGB_NETDEV_STAT(tx_fifo_errors),
112 	IGB_NETDEV_STAT(tx_heartbeat_errors)
113 };
114 
115 #define IGB_GLOBAL_STATS_LEN	\
116 	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
117 #define IGB_NETDEV_STATS_LEN	\
118 	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
119 #define IGB_RX_QUEUE_STATS_LEN \
120 	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
121 
122 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
123 
124 #define IGB_QUEUE_STATS_LEN \
125 	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
126 	  IGB_RX_QUEUE_STATS_LEN) + \
127 	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
128 	  IGB_TX_QUEUE_STATS_LEN))
129 #define IGB_STATS_LEN \
130 	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
131 
132 enum igb_diagnostics_results {
133 	TEST_REG = 0,
134 	TEST_EEP,
135 	TEST_IRQ,
136 	TEST_LOOP,
137 	TEST_LINK
138 };
139 
140 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
141 	[TEST_REG]  = "Register test  (offline)",
142 	[TEST_EEP]  = "Eeprom test    (offline)",
143 	[TEST_IRQ]  = "Interrupt test (offline)",
144 	[TEST_LOOP] = "Loopback test  (offline)",
145 	[TEST_LINK] = "Link test   (on/offline)"
146 };
147 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
148 
149 static const char igb_priv_flags_strings[][ETH_GSTRING_LEN] = {
150 #define IGB_PRIV_FLAGS_LEGACY_RX	BIT(0)
151 	"legacy-rx",
152 };
153 
154 #define IGB_PRIV_FLAGS_STR_LEN ARRAY_SIZE(igb_priv_flags_strings)
155 
156 static int igb_get_link_ksettings(struct net_device *netdev,
157 				  struct ethtool_link_ksettings *cmd)
158 {
159 	struct igb_adapter *adapter = netdev_priv(netdev);
160 	struct e1000_hw *hw = &adapter->hw;
161 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
162 	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
163 	u32 status;
164 	u32 speed;
165 	u32 supported, advertising;
166 
167 	status = rd32(E1000_STATUS);
168 	if (hw->phy.media_type == e1000_media_type_copper) {
169 
170 		supported = (SUPPORTED_10baseT_Half |
171 			     SUPPORTED_10baseT_Full |
172 			     SUPPORTED_100baseT_Half |
173 			     SUPPORTED_100baseT_Full |
174 			     SUPPORTED_1000baseT_Full|
175 			     SUPPORTED_Autoneg |
176 			     SUPPORTED_TP |
177 			     SUPPORTED_Pause);
178 		advertising = ADVERTISED_TP;
179 
180 		if (hw->mac.autoneg == 1) {
181 			advertising |= ADVERTISED_Autoneg;
182 			/* the e1000 autoneg seems to match ethtool nicely */
183 			advertising |= hw->phy.autoneg_advertised;
184 		}
185 
186 		cmd->base.port = PORT_TP;
187 		cmd->base.phy_address = hw->phy.addr;
188 	} else {
189 		supported = (SUPPORTED_FIBRE |
190 			     SUPPORTED_1000baseKX_Full |
191 			     SUPPORTED_Autoneg |
192 			     SUPPORTED_Pause);
193 		advertising = (ADVERTISED_FIBRE |
194 			       ADVERTISED_1000baseKX_Full);
195 		if (hw->mac.type == e1000_i354) {
196 			if ((hw->device_id ==
197 			     E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
198 			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
199 				supported |= SUPPORTED_2500baseX_Full;
200 				supported &= ~SUPPORTED_1000baseKX_Full;
201 				advertising |= ADVERTISED_2500baseX_Full;
202 				advertising &= ~ADVERTISED_1000baseKX_Full;
203 			}
204 		}
205 		if (eth_flags->e100_base_fx) {
206 			supported |= SUPPORTED_100baseT_Full;
207 			advertising |= ADVERTISED_100baseT_Full;
208 		}
209 		if (hw->mac.autoneg == 1)
210 			advertising |= ADVERTISED_Autoneg;
211 
212 		cmd->base.port = PORT_FIBRE;
213 	}
214 	if (hw->mac.autoneg != 1)
215 		advertising &= ~(ADVERTISED_Pause |
216 				 ADVERTISED_Asym_Pause);
217 
218 	switch (hw->fc.requested_mode) {
219 	case e1000_fc_full:
220 		advertising |= ADVERTISED_Pause;
221 		break;
222 	case e1000_fc_rx_pause:
223 		advertising |= (ADVERTISED_Pause |
224 				ADVERTISED_Asym_Pause);
225 		break;
226 	case e1000_fc_tx_pause:
227 		advertising |=  ADVERTISED_Asym_Pause;
228 		break;
229 	default:
230 		advertising &= ~(ADVERTISED_Pause |
231 				 ADVERTISED_Asym_Pause);
232 	}
233 	if (status & E1000_STATUS_LU) {
234 		if ((status & E1000_STATUS_2P5_SKU) &&
235 		    !(status & E1000_STATUS_2P5_SKU_OVER)) {
236 			speed = SPEED_2500;
237 		} else if (status & E1000_STATUS_SPEED_1000) {
238 			speed = SPEED_1000;
239 		} else if (status & E1000_STATUS_SPEED_100) {
240 			speed = SPEED_100;
241 		} else {
242 			speed = SPEED_10;
243 		}
244 		if ((status & E1000_STATUS_FD) ||
245 		    hw->phy.media_type != e1000_media_type_copper)
246 			cmd->base.duplex = DUPLEX_FULL;
247 		else
248 			cmd->base.duplex = DUPLEX_HALF;
249 	} else {
250 		speed = SPEED_UNKNOWN;
251 		cmd->base.duplex = DUPLEX_UNKNOWN;
252 	}
253 	cmd->base.speed = speed;
254 	if ((hw->phy.media_type == e1000_media_type_fiber) ||
255 	    hw->mac.autoneg)
256 		cmd->base.autoneg = AUTONEG_ENABLE;
257 	else
258 		cmd->base.autoneg = AUTONEG_DISABLE;
259 
260 	/* MDI-X => 2; MDI =>1; Invalid =>0 */
261 	if (hw->phy.media_type == e1000_media_type_copper)
262 		cmd->base.eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
263 						      ETH_TP_MDI;
264 	else
265 		cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
266 
267 	if (hw->phy.mdix == AUTO_ALL_MODES)
268 		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
269 	else
270 		cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
271 
272 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
273 						supported);
274 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
275 						advertising);
276 
277 	return 0;
278 }
279 
280 static int igb_set_link_ksettings(struct net_device *netdev,
281 				  const struct ethtool_link_ksettings *cmd)
282 {
283 	struct igb_adapter *adapter = netdev_priv(netdev);
284 	struct e1000_hw *hw = &adapter->hw;
285 	u32 advertising;
286 
287 	/* When SoL/IDER sessions are active, autoneg/speed/duplex
288 	 * cannot be changed
289 	 */
290 	if (igb_check_reset_block(hw)) {
291 		dev_err(&adapter->pdev->dev,
292 			"Cannot change link characteristics when SoL/IDER is active.\n");
293 		return -EINVAL;
294 	}
295 
296 	/* MDI setting is only allowed when autoneg enabled because
297 	 * some hardware doesn't allow MDI setting when speed or
298 	 * duplex is forced.
299 	 */
300 	if (cmd->base.eth_tp_mdix_ctrl) {
301 		if (hw->phy.media_type != e1000_media_type_copper)
302 			return -EOPNOTSUPP;
303 
304 		if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
305 		    (cmd->base.autoneg != AUTONEG_ENABLE)) {
306 			dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
307 			return -EINVAL;
308 		}
309 	}
310 
311 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
312 		usleep_range(1000, 2000);
313 
314 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
315 						cmd->link_modes.advertising);
316 
317 	if (cmd->base.autoneg == AUTONEG_ENABLE) {
318 		hw->mac.autoneg = 1;
319 		if (hw->phy.media_type == e1000_media_type_fiber) {
320 			hw->phy.autoneg_advertised = advertising |
321 						     ADVERTISED_FIBRE |
322 						     ADVERTISED_Autoneg;
323 			switch (adapter->link_speed) {
324 			case SPEED_2500:
325 				hw->phy.autoneg_advertised =
326 					ADVERTISED_2500baseX_Full;
327 				break;
328 			case SPEED_1000:
329 				hw->phy.autoneg_advertised =
330 					ADVERTISED_1000baseT_Full;
331 				break;
332 			case SPEED_100:
333 				hw->phy.autoneg_advertised =
334 					ADVERTISED_100baseT_Full;
335 				break;
336 			default:
337 				break;
338 			}
339 		} else {
340 			hw->phy.autoneg_advertised = advertising |
341 						     ADVERTISED_TP |
342 						     ADVERTISED_Autoneg;
343 		}
344 		advertising = hw->phy.autoneg_advertised;
345 		if (adapter->fc_autoneg)
346 			hw->fc.requested_mode = e1000_fc_default;
347 	} else {
348 		u32 speed = cmd->base.speed;
349 		/* calling this overrides forced MDI setting */
350 		if (igb_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
351 			clear_bit(__IGB_RESETTING, &adapter->state);
352 			return -EINVAL;
353 		}
354 	}
355 
356 	/* MDI-X => 2; MDI => 1; Auto => 3 */
357 	if (cmd->base.eth_tp_mdix_ctrl) {
358 		/* fix up the value for auto (3 => 0) as zero is mapped
359 		 * internally to auto
360 		 */
361 		if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
362 			hw->phy.mdix = AUTO_ALL_MODES;
363 		else
364 			hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
365 	}
366 
367 	/* reset the link */
368 	if (netif_running(adapter->netdev)) {
369 		igb_down(adapter);
370 		igb_up(adapter);
371 	} else
372 		igb_reset(adapter);
373 
374 	clear_bit(__IGB_RESETTING, &adapter->state);
375 	return 0;
376 }
377 
378 static u32 igb_get_link(struct net_device *netdev)
379 {
380 	struct igb_adapter *adapter = netdev_priv(netdev);
381 	struct e1000_mac_info *mac = &adapter->hw.mac;
382 
383 	/* If the link is not reported up to netdev, interrupts are disabled,
384 	 * and so the physical link state may have changed since we last
385 	 * looked. Set get_link_status to make sure that the true link
386 	 * state is interrogated, rather than pulling a cached and possibly
387 	 * stale link state from the driver.
388 	 */
389 	if (!netif_carrier_ok(netdev))
390 		mac->get_link_status = 1;
391 
392 	return igb_has_link(adapter);
393 }
394 
395 static void igb_get_pauseparam(struct net_device *netdev,
396 			       struct ethtool_pauseparam *pause)
397 {
398 	struct igb_adapter *adapter = netdev_priv(netdev);
399 	struct e1000_hw *hw = &adapter->hw;
400 
401 	pause->autoneg =
402 		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
403 
404 	if (hw->fc.current_mode == e1000_fc_rx_pause)
405 		pause->rx_pause = 1;
406 	else if (hw->fc.current_mode == e1000_fc_tx_pause)
407 		pause->tx_pause = 1;
408 	else if (hw->fc.current_mode == e1000_fc_full) {
409 		pause->rx_pause = 1;
410 		pause->tx_pause = 1;
411 	}
412 }
413 
414 static int igb_set_pauseparam(struct net_device *netdev,
415 			      struct ethtool_pauseparam *pause)
416 {
417 	struct igb_adapter *adapter = netdev_priv(netdev);
418 	struct e1000_hw *hw = &adapter->hw;
419 	int retval = 0;
420 
421 	/* 100basefx does not support setting link flow control */
422 	if (hw->dev_spec._82575.eth_flags.e100_base_fx)
423 		return -EINVAL;
424 
425 	adapter->fc_autoneg = pause->autoneg;
426 
427 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
428 		usleep_range(1000, 2000);
429 
430 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
431 		hw->fc.requested_mode = e1000_fc_default;
432 		if (netif_running(adapter->netdev)) {
433 			igb_down(adapter);
434 			igb_up(adapter);
435 		} else {
436 			igb_reset(adapter);
437 		}
438 	} else {
439 		if (pause->rx_pause && pause->tx_pause)
440 			hw->fc.requested_mode = e1000_fc_full;
441 		else if (pause->rx_pause && !pause->tx_pause)
442 			hw->fc.requested_mode = e1000_fc_rx_pause;
443 		else if (!pause->rx_pause && pause->tx_pause)
444 			hw->fc.requested_mode = e1000_fc_tx_pause;
445 		else if (!pause->rx_pause && !pause->tx_pause)
446 			hw->fc.requested_mode = e1000_fc_none;
447 
448 		hw->fc.current_mode = hw->fc.requested_mode;
449 
450 		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
451 			  igb_force_mac_fc(hw) : igb_setup_link(hw));
452 	}
453 
454 	clear_bit(__IGB_RESETTING, &adapter->state);
455 	return retval;
456 }
457 
458 static u32 igb_get_msglevel(struct net_device *netdev)
459 {
460 	struct igb_adapter *adapter = netdev_priv(netdev);
461 	return adapter->msg_enable;
462 }
463 
464 static void igb_set_msglevel(struct net_device *netdev, u32 data)
465 {
466 	struct igb_adapter *adapter = netdev_priv(netdev);
467 	adapter->msg_enable = data;
468 }
469 
470 static int igb_get_regs_len(struct net_device *netdev)
471 {
472 #define IGB_REGS_LEN 739
473 	return IGB_REGS_LEN * sizeof(u32);
474 }
475 
476 static void igb_get_regs(struct net_device *netdev,
477 			 struct ethtool_regs *regs, void *p)
478 {
479 	struct igb_adapter *adapter = netdev_priv(netdev);
480 	struct e1000_hw *hw = &adapter->hw;
481 	u32 *regs_buff = p;
482 	u8 i;
483 
484 	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
485 
486 	regs->version = (1u << 24) | (hw->revision_id << 16) | hw->device_id;
487 
488 	/* General Registers */
489 	regs_buff[0] = rd32(E1000_CTRL);
490 	regs_buff[1] = rd32(E1000_STATUS);
491 	regs_buff[2] = rd32(E1000_CTRL_EXT);
492 	regs_buff[3] = rd32(E1000_MDIC);
493 	regs_buff[4] = rd32(E1000_SCTL);
494 	regs_buff[5] = rd32(E1000_CONNSW);
495 	regs_buff[6] = rd32(E1000_VET);
496 	regs_buff[7] = rd32(E1000_LEDCTL);
497 	regs_buff[8] = rd32(E1000_PBA);
498 	regs_buff[9] = rd32(E1000_PBS);
499 	regs_buff[10] = rd32(E1000_FRTIMER);
500 	regs_buff[11] = rd32(E1000_TCPTIMER);
501 
502 	/* NVM Register */
503 	regs_buff[12] = rd32(E1000_EECD);
504 
505 	/* Interrupt */
506 	/* Reading EICS for EICR because they read the
507 	 * same but EICS does not clear on read
508 	 */
509 	regs_buff[13] = rd32(E1000_EICS);
510 	regs_buff[14] = rd32(E1000_EICS);
511 	regs_buff[15] = rd32(E1000_EIMS);
512 	regs_buff[16] = rd32(E1000_EIMC);
513 	regs_buff[17] = rd32(E1000_EIAC);
514 	regs_buff[18] = rd32(E1000_EIAM);
515 	/* Reading ICS for ICR because they read the
516 	 * same but ICS does not clear on read
517 	 */
518 	regs_buff[19] = rd32(E1000_ICS);
519 	regs_buff[20] = rd32(E1000_ICS);
520 	regs_buff[21] = rd32(E1000_IMS);
521 	regs_buff[22] = rd32(E1000_IMC);
522 	regs_buff[23] = rd32(E1000_IAC);
523 	regs_buff[24] = rd32(E1000_IAM);
524 	regs_buff[25] = rd32(E1000_IMIRVP);
525 
526 	/* Flow Control */
527 	regs_buff[26] = rd32(E1000_FCAL);
528 	regs_buff[27] = rd32(E1000_FCAH);
529 	regs_buff[28] = rd32(E1000_FCTTV);
530 	regs_buff[29] = rd32(E1000_FCRTL);
531 	regs_buff[30] = rd32(E1000_FCRTH);
532 	regs_buff[31] = rd32(E1000_FCRTV);
533 
534 	/* Receive */
535 	regs_buff[32] = rd32(E1000_RCTL);
536 	regs_buff[33] = rd32(E1000_RXCSUM);
537 	regs_buff[34] = rd32(E1000_RLPML);
538 	regs_buff[35] = rd32(E1000_RFCTL);
539 	regs_buff[36] = rd32(E1000_MRQC);
540 	regs_buff[37] = rd32(E1000_VT_CTL);
541 
542 	/* Transmit */
543 	regs_buff[38] = rd32(E1000_TCTL);
544 	regs_buff[39] = rd32(E1000_TCTL_EXT);
545 	regs_buff[40] = rd32(E1000_TIPG);
546 	regs_buff[41] = rd32(E1000_DTXCTL);
547 
548 	/* Wake Up */
549 	regs_buff[42] = rd32(E1000_WUC);
550 	regs_buff[43] = rd32(E1000_WUFC);
551 	regs_buff[44] = rd32(E1000_WUS);
552 	regs_buff[45] = rd32(E1000_IPAV);
553 	regs_buff[46] = rd32(E1000_WUPL);
554 
555 	/* MAC */
556 	regs_buff[47] = rd32(E1000_PCS_CFG0);
557 	regs_buff[48] = rd32(E1000_PCS_LCTL);
558 	regs_buff[49] = rd32(E1000_PCS_LSTAT);
559 	regs_buff[50] = rd32(E1000_PCS_ANADV);
560 	regs_buff[51] = rd32(E1000_PCS_LPAB);
561 	regs_buff[52] = rd32(E1000_PCS_NPTX);
562 	regs_buff[53] = rd32(E1000_PCS_LPABNP);
563 
564 	/* Statistics */
565 	regs_buff[54] = adapter->stats.crcerrs;
566 	regs_buff[55] = adapter->stats.algnerrc;
567 	regs_buff[56] = adapter->stats.symerrs;
568 	regs_buff[57] = adapter->stats.rxerrc;
569 	regs_buff[58] = adapter->stats.mpc;
570 	regs_buff[59] = adapter->stats.scc;
571 	regs_buff[60] = adapter->stats.ecol;
572 	regs_buff[61] = adapter->stats.mcc;
573 	regs_buff[62] = adapter->stats.latecol;
574 	regs_buff[63] = adapter->stats.colc;
575 	regs_buff[64] = adapter->stats.dc;
576 	regs_buff[65] = adapter->stats.tncrs;
577 	regs_buff[66] = adapter->stats.sec;
578 	regs_buff[67] = adapter->stats.htdpmc;
579 	regs_buff[68] = adapter->stats.rlec;
580 	regs_buff[69] = adapter->stats.xonrxc;
581 	regs_buff[70] = adapter->stats.xontxc;
582 	regs_buff[71] = adapter->stats.xoffrxc;
583 	regs_buff[72] = adapter->stats.xofftxc;
584 	regs_buff[73] = adapter->stats.fcruc;
585 	regs_buff[74] = adapter->stats.prc64;
586 	regs_buff[75] = adapter->stats.prc127;
587 	regs_buff[76] = adapter->stats.prc255;
588 	regs_buff[77] = adapter->stats.prc511;
589 	regs_buff[78] = adapter->stats.prc1023;
590 	regs_buff[79] = adapter->stats.prc1522;
591 	regs_buff[80] = adapter->stats.gprc;
592 	regs_buff[81] = adapter->stats.bprc;
593 	regs_buff[82] = adapter->stats.mprc;
594 	regs_buff[83] = adapter->stats.gptc;
595 	regs_buff[84] = adapter->stats.gorc;
596 	regs_buff[86] = adapter->stats.gotc;
597 	regs_buff[88] = adapter->stats.rnbc;
598 	regs_buff[89] = adapter->stats.ruc;
599 	regs_buff[90] = adapter->stats.rfc;
600 	regs_buff[91] = adapter->stats.roc;
601 	regs_buff[92] = adapter->stats.rjc;
602 	regs_buff[93] = adapter->stats.mgprc;
603 	regs_buff[94] = adapter->stats.mgpdc;
604 	regs_buff[95] = adapter->stats.mgptc;
605 	regs_buff[96] = adapter->stats.tor;
606 	regs_buff[98] = adapter->stats.tot;
607 	regs_buff[100] = adapter->stats.tpr;
608 	regs_buff[101] = adapter->stats.tpt;
609 	regs_buff[102] = adapter->stats.ptc64;
610 	regs_buff[103] = adapter->stats.ptc127;
611 	regs_buff[104] = adapter->stats.ptc255;
612 	regs_buff[105] = adapter->stats.ptc511;
613 	regs_buff[106] = adapter->stats.ptc1023;
614 	regs_buff[107] = adapter->stats.ptc1522;
615 	regs_buff[108] = adapter->stats.mptc;
616 	regs_buff[109] = adapter->stats.bptc;
617 	regs_buff[110] = adapter->stats.tsctc;
618 	regs_buff[111] = adapter->stats.iac;
619 	regs_buff[112] = adapter->stats.rpthc;
620 	regs_buff[113] = adapter->stats.hgptc;
621 	regs_buff[114] = adapter->stats.hgorc;
622 	regs_buff[116] = adapter->stats.hgotc;
623 	regs_buff[118] = adapter->stats.lenerrs;
624 	regs_buff[119] = adapter->stats.scvpc;
625 	regs_buff[120] = adapter->stats.hrmpc;
626 
627 	for (i = 0; i < 4; i++)
628 		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
629 	for (i = 0; i < 4; i++)
630 		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
631 	for (i = 0; i < 4; i++)
632 		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
633 	for (i = 0; i < 4; i++)
634 		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
635 	for (i = 0; i < 4; i++)
636 		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
637 	for (i = 0; i < 4; i++)
638 		regs_buff[141 + i] = rd32(E1000_RDH(i));
639 	for (i = 0; i < 4; i++)
640 		regs_buff[145 + i] = rd32(E1000_RDT(i));
641 	for (i = 0; i < 4; i++)
642 		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
643 
644 	for (i = 0; i < 10; i++)
645 		regs_buff[153 + i] = rd32(E1000_EITR(i));
646 	for (i = 0; i < 8; i++)
647 		regs_buff[163 + i] = rd32(E1000_IMIR(i));
648 	for (i = 0; i < 8; i++)
649 		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
650 	for (i = 0; i < 16; i++)
651 		regs_buff[179 + i] = rd32(E1000_RAL(i));
652 	for (i = 0; i < 16; i++)
653 		regs_buff[195 + i] = rd32(E1000_RAH(i));
654 
655 	for (i = 0; i < 4; i++)
656 		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
657 	for (i = 0; i < 4; i++)
658 		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
659 	for (i = 0; i < 4; i++)
660 		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
661 	for (i = 0; i < 4; i++)
662 		regs_buff[223 + i] = rd32(E1000_TDH(i));
663 	for (i = 0; i < 4; i++)
664 		regs_buff[227 + i] = rd32(E1000_TDT(i));
665 	for (i = 0; i < 4; i++)
666 		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
667 	for (i = 0; i < 4; i++)
668 		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
669 	for (i = 0; i < 4; i++)
670 		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
671 	for (i = 0; i < 4; i++)
672 		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
673 
674 	for (i = 0; i < 4; i++)
675 		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
676 	for (i = 0; i < 4; i++)
677 		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
678 	for (i = 0; i < 32; i++)
679 		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
680 	for (i = 0; i < 128; i++)
681 		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
682 	for (i = 0; i < 128; i++)
683 		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
684 	for (i = 0; i < 4; i++)
685 		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
686 
687 	regs_buff[547] = rd32(E1000_TDFH);
688 	regs_buff[548] = rd32(E1000_TDFT);
689 	regs_buff[549] = rd32(E1000_TDFHS);
690 	regs_buff[550] = rd32(E1000_TDFPC);
691 
692 	if (hw->mac.type > e1000_82580) {
693 		regs_buff[551] = adapter->stats.o2bgptc;
694 		regs_buff[552] = adapter->stats.b2ospc;
695 		regs_buff[553] = adapter->stats.o2bspc;
696 		regs_buff[554] = adapter->stats.b2ogprc;
697 	}
698 
699 	if (hw->mac.type != e1000_82576)
700 		return;
701 	for (i = 0; i < 12; i++)
702 		regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
703 	for (i = 0; i < 4; i++)
704 		regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
705 	for (i = 0; i < 12; i++)
706 		regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
707 	for (i = 0; i < 12; i++)
708 		regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
709 	for (i = 0; i < 12; i++)
710 		regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
711 	for (i = 0; i < 12; i++)
712 		regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
713 	for (i = 0; i < 12; i++)
714 		regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
715 	for (i = 0; i < 12; i++)
716 		regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
717 
718 	for (i = 0; i < 12; i++)
719 		regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
720 	for (i = 0; i < 12; i++)
721 		regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
722 	for (i = 0; i < 12; i++)
723 		regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
724 	for (i = 0; i < 12; i++)
725 		regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
726 	for (i = 0; i < 12; i++)
727 		regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
728 	for (i = 0; i < 12; i++)
729 		regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
730 	for (i = 0; i < 12; i++)
731 		regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
732 	for (i = 0; i < 12; i++)
733 		regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
734 }
735 
736 static int igb_get_eeprom_len(struct net_device *netdev)
737 {
738 	struct igb_adapter *adapter = netdev_priv(netdev);
739 	return adapter->hw.nvm.word_size * 2;
740 }
741 
742 static int igb_get_eeprom(struct net_device *netdev,
743 			  struct ethtool_eeprom *eeprom, u8 *bytes)
744 {
745 	struct igb_adapter *adapter = netdev_priv(netdev);
746 	struct e1000_hw *hw = &adapter->hw;
747 	u16 *eeprom_buff;
748 	int first_word, last_word;
749 	int ret_val = 0;
750 	u16 i;
751 
752 	if (eeprom->len == 0)
753 		return -EINVAL;
754 
755 	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
756 
757 	first_word = eeprom->offset >> 1;
758 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
759 
760 	eeprom_buff = kmalloc(sizeof(u16) *
761 			(last_word - first_word + 1), GFP_KERNEL);
762 	if (!eeprom_buff)
763 		return -ENOMEM;
764 
765 	if (hw->nvm.type == e1000_nvm_eeprom_spi)
766 		ret_val = hw->nvm.ops.read(hw, first_word,
767 					   last_word - first_word + 1,
768 					   eeprom_buff);
769 	else {
770 		for (i = 0; i < last_word - first_word + 1; i++) {
771 			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
772 						   &eeprom_buff[i]);
773 			if (ret_val)
774 				break;
775 		}
776 	}
777 
778 	/* Device's eeprom is always little-endian, word addressable */
779 	for (i = 0; i < last_word - first_word + 1; i++)
780 		le16_to_cpus(&eeprom_buff[i]);
781 
782 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
783 			eeprom->len);
784 	kfree(eeprom_buff);
785 
786 	return ret_val;
787 }
788 
789 static int igb_set_eeprom(struct net_device *netdev,
790 			  struct ethtool_eeprom *eeprom, u8 *bytes)
791 {
792 	struct igb_adapter *adapter = netdev_priv(netdev);
793 	struct e1000_hw *hw = &adapter->hw;
794 	u16 *eeprom_buff;
795 	void *ptr;
796 	int max_len, first_word, last_word, ret_val = 0;
797 	u16 i;
798 
799 	if (eeprom->len == 0)
800 		return -EOPNOTSUPP;
801 
802 	if ((hw->mac.type >= e1000_i210) &&
803 	    !igb_get_flash_presence_i210(hw)) {
804 		return -EOPNOTSUPP;
805 	}
806 
807 	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
808 		return -EFAULT;
809 
810 	max_len = hw->nvm.word_size * 2;
811 
812 	first_word = eeprom->offset >> 1;
813 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
814 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
815 	if (!eeprom_buff)
816 		return -ENOMEM;
817 
818 	ptr = (void *)eeprom_buff;
819 
820 	if (eeprom->offset & 1) {
821 		/* need read/modify/write of first changed EEPROM word
822 		 * only the second byte of the word is being modified
823 		 */
824 		ret_val = hw->nvm.ops.read(hw, first_word, 1,
825 					    &eeprom_buff[0]);
826 		ptr++;
827 	}
828 	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
829 		/* need read/modify/write of last changed EEPROM word
830 		 * only the first byte of the word is being modified
831 		 */
832 		ret_val = hw->nvm.ops.read(hw, last_word, 1,
833 				   &eeprom_buff[last_word - first_word]);
834 	}
835 
836 	/* Device's eeprom is always little-endian, word addressable */
837 	for (i = 0; i < last_word - first_word + 1; i++)
838 		le16_to_cpus(&eeprom_buff[i]);
839 
840 	memcpy(ptr, bytes, eeprom->len);
841 
842 	for (i = 0; i < last_word - first_word + 1; i++)
843 		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
844 
845 	ret_val = hw->nvm.ops.write(hw, first_word,
846 				    last_word - first_word + 1, eeprom_buff);
847 
848 	/* Update the checksum if nvm write succeeded */
849 	if (ret_val == 0)
850 		hw->nvm.ops.update(hw);
851 
852 	igb_set_fw_version(adapter);
853 	kfree(eeprom_buff);
854 	return ret_val;
855 }
856 
857 static void igb_get_drvinfo(struct net_device *netdev,
858 			    struct ethtool_drvinfo *drvinfo)
859 {
860 	struct igb_adapter *adapter = netdev_priv(netdev);
861 
862 	strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
863 	strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
864 
865 	/* EEPROM image version # is reported as firmware version # for
866 	 * 82575 controllers
867 	 */
868 	strlcpy(drvinfo->fw_version, adapter->fw_version,
869 		sizeof(drvinfo->fw_version));
870 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
871 		sizeof(drvinfo->bus_info));
872 
873 	drvinfo->n_priv_flags = IGB_PRIV_FLAGS_STR_LEN;
874 }
875 
876 static void igb_get_ringparam(struct net_device *netdev,
877 			      struct ethtool_ringparam *ring)
878 {
879 	struct igb_adapter *adapter = netdev_priv(netdev);
880 
881 	ring->rx_max_pending = IGB_MAX_RXD;
882 	ring->tx_max_pending = IGB_MAX_TXD;
883 	ring->rx_pending = adapter->rx_ring_count;
884 	ring->tx_pending = adapter->tx_ring_count;
885 }
886 
887 static int igb_set_ringparam(struct net_device *netdev,
888 			     struct ethtool_ringparam *ring)
889 {
890 	struct igb_adapter *adapter = netdev_priv(netdev);
891 	struct igb_ring *temp_ring;
892 	int i, err = 0;
893 	u16 new_rx_count, new_tx_count;
894 
895 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
896 		return -EINVAL;
897 
898 	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
899 	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
900 	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
901 
902 	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
903 	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
904 	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
905 
906 	if ((new_tx_count == adapter->tx_ring_count) &&
907 	    (new_rx_count == adapter->rx_ring_count)) {
908 		/* nothing to do */
909 		return 0;
910 	}
911 
912 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
913 		usleep_range(1000, 2000);
914 
915 	if (!netif_running(adapter->netdev)) {
916 		for (i = 0; i < adapter->num_tx_queues; i++)
917 			adapter->tx_ring[i]->count = new_tx_count;
918 		for (i = 0; i < adapter->num_rx_queues; i++)
919 			adapter->rx_ring[i]->count = new_rx_count;
920 		adapter->tx_ring_count = new_tx_count;
921 		adapter->rx_ring_count = new_rx_count;
922 		goto clear_reset;
923 	}
924 
925 	if (adapter->num_tx_queues > adapter->num_rx_queues)
926 		temp_ring = vmalloc(adapter->num_tx_queues *
927 				    sizeof(struct igb_ring));
928 	else
929 		temp_ring = vmalloc(adapter->num_rx_queues *
930 				    sizeof(struct igb_ring));
931 
932 	if (!temp_ring) {
933 		err = -ENOMEM;
934 		goto clear_reset;
935 	}
936 
937 	igb_down(adapter);
938 
939 	/* We can't just free everything and then setup again,
940 	 * because the ISRs in MSI-X mode get passed pointers
941 	 * to the Tx and Rx ring structs.
942 	 */
943 	if (new_tx_count != adapter->tx_ring_count) {
944 		for (i = 0; i < adapter->num_tx_queues; i++) {
945 			memcpy(&temp_ring[i], adapter->tx_ring[i],
946 			       sizeof(struct igb_ring));
947 
948 			temp_ring[i].count = new_tx_count;
949 			err = igb_setup_tx_resources(&temp_ring[i]);
950 			if (err) {
951 				while (i) {
952 					i--;
953 					igb_free_tx_resources(&temp_ring[i]);
954 				}
955 				goto err_setup;
956 			}
957 		}
958 
959 		for (i = 0; i < adapter->num_tx_queues; i++) {
960 			igb_free_tx_resources(adapter->tx_ring[i]);
961 
962 			memcpy(adapter->tx_ring[i], &temp_ring[i],
963 			       sizeof(struct igb_ring));
964 		}
965 
966 		adapter->tx_ring_count = new_tx_count;
967 	}
968 
969 	if (new_rx_count != adapter->rx_ring_count) {
970 		for (i = 0; i < adapter->num_rx_queues; i++) {
971 			memcpy(&temp_ring[i], adapter->rx_ring[i],
972 			       sizeof(struct igb_ring));
973 
974 			temp_ring[i].count = new_rx_count;
975 			err = igb_setup_rx_resources(&temp_ring[i]);
976 			if (err) {
977 				while (i) {
978 					i--;
979 					igb_free_rx_resources(&temp_ring[i]);
980 				}
981 				goto err_setup;
982 			}
983 
984 		}
985 
986 		for (i = 0; i < adapter->num_rx_queues; i++) {
987 			igb_free_rx_resources(adapter->rx_ring[i]);
988 
989 			memcpy(adapter->rx_ring[i], &temp_ring[i],
990 			       sizeof(struct igb_ring));
991 		}
992 
993 		adapter->rx_ring_count = new_rx_count;
994 	}
995 err_setup:
996 	igb_up(adapter);
997 	vfree(temp_ring);
998 clear_reset:
999 	clear_bit(__IGB_RESETTING, &adapter->state);
1000 	return err;
1001 }
1002 
1003 /* ethtool register test data */
1004 struct igb_reg_test {
1005 	u16 reg;
1006 	u16 reg_offset;
1007 	u16 array_len;
1008 	u16 test_type;
1009 	u32 mask;
1010 	u32 write;
1011 };
1012 
1013 /* In the hardware, registers are laid out either singly, in arrays
1014  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
1015  * most tests take place on arrays or single registers (handled
1016  * as a single-element array) and special-case the tables.
1017  * Table tests are always pattern tests.
1018  *
1019  * We also make provision for some required setup steps by specifying
1020  * registers to be written without any read-back testing.
1021  */
1022 
1023 #define PATTERN_TEST	1
1024 #define SET_READ_TEST	2
1025 #define WRITE_NO_TEST	3
1026 #define TABLE32_TEST	4
1027 #define TABLE64_TEST_LO	5
1028 #define TABLE64_TEST_HI	6
1029 
1030 /* i210 reg test */
1031 static struct igb_reg_test reg_test_i210[] = {
1032 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1033 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1034 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1035 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1036 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1037 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1038 	/* RDH is read-only for i210, only test RDT. */
1039 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1040 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1041 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1042 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1043 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1044 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1045 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1046 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1047 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1048 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1049 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1050 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1051 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1052 						0xFFFFFFFF, 0xFFFFFFFF },
1053 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1054 						0x900FFFFF, 0xFFFFFFFF },
1055 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1056 						0xFFFFFFFF, 0xFFFFFFFF },
1057 	{ 0, 0, 0, 0, 0 }
1058 };
1059 
1060 /* i350 reg test */
1061 static struct igb_reg_test reg_test_i350[] = {
1062 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1063 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1064 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1065 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1066 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1067 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1068 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1069 	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1070 	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1071 	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1072 	/* RDH is read-only for i350, only test RDT. */
1073 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1074 	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1075 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1076 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1077 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1078 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1079 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1080 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1081 	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1082 	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1083 	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1084 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1085 	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1086 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1087 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1088 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1089 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1090 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1091 						0xFFFFFFFF, 0xFFFFFFFF },
1092 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1093 						0xC3FFFFFF, 0xFFFFFFFF },
1094 	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
1095 						0xFFFFFFFF, 0xFFFFFFFF },
1096 	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
1097 						0xC3FFFFFF, 0xFFFFFFFF },
1098 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1099 						0xFFFFFFFF, 0xFFFFFFFF },
1100 	{ 0, 0, 0, 0 }
1101 };
1102 
1103 /* 82580 reg test */
1104 static struct igb_reg_test reg_test_82580[] = {
1105 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1106 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1107 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1108 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1109 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1110 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1111 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1112 	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1113 	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1114 	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1115 	/* RDH is read-only for 82580, only test RDT. */
1116 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1117 	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1118 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1119 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1120 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1121 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1122 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1123 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1124 	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1125 	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1126 	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1127 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1128 	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1129 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1130 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1131 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1132 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1133 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1134 						0xFFFFFFFF, 0xFFFFFFFF },
1135 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1136 						0x83FFFFFF, 0xFFFFFFFF },
1137 	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
1138 						0xFFFFFFFF, 0xFFFFFFFF },
1139 	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
1140 						0x83FFFFFF, 0xFFFFFFFF },
1141 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1142 						0xFFFFFFFF, 0xFFFFFFFF },
1143 	{ 0, 0, 0, 0 }
1144 };
1145 
1146 /* 82576 reg test */
1147 static struct igb_reg_test reg_test_82576[] = {
1148 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1149 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1150 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1151 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1152 	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1153 	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1154 	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1155 	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1156 	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1157 	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1158 	/* Enable all RX queues before testing. */
1159 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1160 	  E1000_RXDCTL_QUEUE_ENABLE },
1161 	{ E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0,
1162 	  E1000_RXDCTL_QUEUE_ENABLE },
1163 	/* RDH is read-only for 82576, only test RDT. */
1164 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1165 	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1166 	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1167 	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1168 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1169 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1170 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1171 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1172 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1173 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1174 	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1175 	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1176 	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1177 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1178 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1179 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1180 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1181 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1182 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1183 	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1184 	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1185 	{ E1000_MTA,	   0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1186 	{ 0, 0, 0, 0 }
1187 };
1188 
1189 /* 82575 register test */
1190 static struct igb_reg_test reg_test_82575[] = {
1191 	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1192 	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1193 	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1194 	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1195 	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1196 	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1197 	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1198 	/* Enable all four RX queues before testing. */
1199 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1200 	  E1000_RXDCTL_QUEUE_ENABLE },
1201 	/* RDH is read-only for 82575, only test RDT. */
1202 	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1203 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1204 	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1205 	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1206 	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1207 	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1208 	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1209 	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1210 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1211 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1212 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1213 	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1214 	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1215 	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1216 	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1217 	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1218 	{ 0, 0, 0, 0 }
1219 };
1220 
1221 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1222 			     int reg, u32 mask, u32 write)
1223 {
1224 	struct e1000_hw *hw = &adapter->hw;
1225 	u32 pat, val;
1226 	static const u32 _test[] = {
1227 		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1228 	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1229 		wr32(reg, (_test[pat] & write));
1230 		val = rd32(reg) & mask;
1231 		if (val != (_test[pat] & write & mask)) {
1232 			dev_err(&adapter->pdev->dev,
1233 				"pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1234 				reg, val, (_test[pat] & write & mask));
1235 			*data = reg;
1236 			return true;
1237 		}
1238 	}
1239 
1240 	return false;
1241 }
1242 
1243 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1244 			      int reg, u32 mask, u32 write)
1245 {
1246 	struct e1000_hw *hw = &adapter->hw;
1247 	u32 val;
1248 
1249 	wr32(reg, write & mask);
1250 	val = rd32(reg);
1251 	if ((write & mask) != (val & mask)) {
1252 		dev_err(&adapter->pdev->dev,
1253 			"set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
1254 			reg, (val & mask), (write & mask));
1255 		*data = reg;
1256 		return true;
1257 	}
1258 
1259 	return false;
1260 }
1261 
1262 #define REG_PATTERN_TEST(reg, mask, write) \
1263 	do { \
1264 		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1265 			return 1; \
1266 	} while (0)
1267 
1268 #define REG_SET_AND_CHECK(reg, mask, write) \
1269 	do { \
1270 		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1271 			return 1; \
1272 	} while (0)
1273 
1274 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1275 {
1276 	struct e1000_hw *hw = &adapter->hw;
1277 	struct igb_reg_test *test;
1278 	u32 value, before, after;
1279 	u32 i, toggle;
1280 
1281 	switch (adapter->hw.mac.type) {
1282 	case e1000_i350:
1283 	case e1000_i354:
1284 		test = reg_test_i350;
1285 		toggle = 0x7FEFF3FF;
1286 		break;
1287 	case e1000_i210:
1288 	case e1000_i211:
1289 		test = reg_test_i210;
1290 		toggle = 0x7FEFF3FF;
1291 		break;
1292 	case e1000_82580:
1293 		test = reg_test_82580;
1294 		toggle = 0x7FEFF3FF;
1295 		break;
1296 	case e1000_82576:
1297 		test = reg_test_82576;
1298 		toggle = 0x7FFFF3FF;
1299 		break;
1300 	default:
1301 		test = reg_test_82575;
1302 		toggle = 0x7FFFF3FF;
1303 		break;
1304 	}
1305 
1306 	/* Because the status register is such a special case,
1307 	 * we handle it separately from the rest of the register
1308 	 * tests.  Some bits are read-only, some toggle, and some
1309 	 * are writable on newer MACs.
1310 	 */
1311 	before = rd32(E1000_STATUS);
1312 	value = (rd32(E1000_STATUS) & toggle);
1313 	wr32(E1000_STATUS, toggle);
1314 	after = rd32(E1000_STATUS) & toggle;
1315 	if (value != after) {
1316 		dev_err(&adapter->pdev->dev,
1317 			"failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1318 			after, value);
1319 		*data = 1;
1320 		return 1;
1321 	}
1322 	/* restore previous status */
1323 	wr32(E1000_STATUS, before);
1324 
1325 	/* Perform the remainder of the register test, looping through
1326 	 * the test table until we either fail or reach the null entry.
1327 	 */
1328 	while (test->reg) {
1329 		for (i = 0; i < test->array_len; i++) {
1330 			switch (test->test_type) {
1331 			case PATTERN_TEST:
1332 				REG_PATTERN_TEST(test->reg +
1333 						(i * test->reg_offset),
1334 						test->mask,
1335 						test->write);
1336 				break;
1337 			case SET_READ_TEST:
1338 				REG_SET_AND_CHECK(test->reg +
1339 						(i * test->reg_offset),
1340 						test->mask,
1341 						test->write);
1342 				break;
1343 			case WRITE_NO_TEST:
1344 				writel(test->write,
1345 				    (adapter->hw.hw_addr + test->reg)
1346 					+ (i * test->reg_offset));
1347 				break;
1348 			case TABLE32_TEST:
1349 				REG_PATTERN_TEST(test->reg + (i * 4),
1350 						test->mask,
1351 						test->write);
1352 				break;
1353 			case TABLE64_TEST_LO:
1354 				REG_PATTERN_TEST(test->reg + (i * 8),
1355 						test->mask,
1356 						test->write);
1357 				break;
1358 			case TABLE64_TEST_HI:
1359 				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1360 						test->mask,
1361 						test->write);
1362 				break;
1363 			}
1364 		}
1365 		test++;
1366 	}
1367 
1368 	*data = 0;
1369 	return 0;
1370 }
1371 
1372 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1373 {
1374 	struct e1000_hw *hw = &adapter->hw;
1375 
1376 	*data = 0;
1377 
1378 	/* Validate eeprom on all parts but flashless */
1379 	switch (hw->mac.type) {
1380 	case e1000_i210:
1381 	case e1000_i211:
1382 		if (igb_get_flash_presence_i210(hw)) {
1383 			if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1384 				*data = 2;
1385 		}
1386 		break;
1387 	default:
1388 		if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1389 			*data = 2;
1390 		break;
1391 	}
1392 
1393 	return *data;
1394 }
1395 
1396 static irqreturn_t igb_test_intr(int irq, void *data)
1397 {
1398 	struct igb_adapter *adapter = (struct igb_adapter *) data;
1399 	struct e1000_hw *hw = &adapter->hw;
1400 
1401 	adapter->test_icr |= rd32(E1000_ICR);
1402 
1403 	return IRQ_HANDLED;
1404 }
1405 
1406 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1407 {
1408 	struct e1000_hw *hw = &adapter->hw;
1409 	struct net_device *netdev = adapter->netdev;
1410 	u32 mask, ics_mask, i = 0, shared_int = true;
1411 	u32 irq = adapter->pdev->irq;
1412 
1413 	*data = 0;
1414 
1415 	/* Hook up test interrupt handler just for this test */
1416 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1417 		if (request_irq(adapter->msix_entries[0].vector,
1418 				igb_test_intr, 0, netdev->name, adapter)) {
1419 			*data = 1;
1420 			return -1;
1421 		}
1422 	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1423 		shared_int = false;
1424 		if (request_irq(irq,
1425 				igb_test_intr, 0, netdev->name, adapter)) {
1426 			*data = 1;
1427 			return -1;
1428 		}
1429 	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1430 				netdev->name, adapter)) {
1431 		shared_int = false;
1432 	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1433 		 netdev->name, adapter)) {
1434 		*data = 1;
1435 		return -1;
1436 	}
1437 	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1438 		(shared_int ? "shared" : "unshared"));
1439 
1440 	/* Disable all the interrupts */
1441 	wr32(E1000_IMC, ~0);
1442 	wrfl();
1443 	usleep_range(10000, 11000);
1444 
1445 	/* Define all writable bits for ICS */
1446 	switch (hw->mac.type) {
1447 	case e1000_82575:
1448 		ics_mask = 0x37F47EDD;
1449 		break;
1450 	case e1000_82576:
1451 		ics_mask = 0x77D4FBFD;
1452 		break;
1453 	case e1000_82580:
1454 		ics_mask = 0x77DCFED5;
1455 		break;
1456 	case e1000_i350:
1457 	case e1000_i354:
1458 	case e1000_i210:
1459 	case e1000_i211:
1460 		ics_mask = 0x77DCFED5;
1461 		break;
1462 	default:
1463 		ics_mask = 0x7FFFFFFF;
1464 		break;
1465 	}
1466 
1467 	/* Test each interrupt */
1468 	for (; i < 31; i++) {
1469 		/* Interrupt to test */
1470 		mask = BIT(i);
1471 
1472 		if (!(mask & ics_mask))
1473 			continue;
1474 
1475 		if (!shared_int) {
1476 			/* Disable the interrupt to be reported in
1477 			 * the cause register and then force the same
1478 			 * interrupt and see if one gets posted.  If
1479 			 * an interrupt was posted to the bus, the
1480 			 * test failed.
1481 			 */
1482 			adapter->test_icr = 0;
1483 
1484 			/* Flush any pending interrupts */
1485 			wr32(E1000_ICR, ~0);
1486 
1487 			wr32(E1000_IMC, mask);
1488 			wr32(E1000_ICS, mask);
1489 			wrfl();
1490 			usleep_range(10000, 11000);
1491 
1492 			if (adapter->test_icr & mask) {
1493 				*data = 3;
1494 				break;
1495 			}
1496 		}
1497 
1498 		/* Enable the interrupt to be reported in
1499 		 * the cause register and then force the same
1500 		 * interrupt and see if one gets posted.  If
1501 		 * an interrupt was not posted to the bus, the
1502 		 * test failed.
1503 		 */
1504 		adapter->test_icr = 0;
1505 
1506 		/* Flush any pending interrupts */
1507 		wr32(E1000_ICR, ~0);
1508 
1509 		wr32(E1000_IMS, mask);
1510 		wr32(E1000_ICS, mask);
1511 		wrfl();
1512 		usleep_range(10000, 11000);
1513 
1514 		if (!(adapter->test_icr & mask)) {
1515 			*data = 4;
1516 			break;
1517 		}
1518 
1519 		if (!shared_int) {
1520 			/* Disable the other interrupts to be reported in
1521 			 * the cause register and then force the other
1522 			 * interrupts and see if any get posted.  If
1523 			 * an interrupt was posted to the bus, the
1524 			 * test failed.
1525 			 */
1526 			adapter->test_icr = 0;
1527 
1528 			/* Flush any pending interrupts */
1529 			wr32(E1000_ICR, ~0);
1530 
1531 			wr32(E1000_IMC, ~mask);
1532 			wr32(E1000_ICS, ~mask);
1533 			wrfl();
1534 			usleep_range(10000, 11000);
1535 
1536 			if (adapter->test_icr & mask) {
1537 				*data = 5;
1538 				break;
1539 			}
1540 		}
1541 	}
1542 
1543 	/* Disable all the interrupts */
1544 	wr32(E1000_IMC, ~0);
1545 	wrfl();
1546 	usleep_range(10000, 11000);
1547 
1548 	/* Unhook test interrupt handler */
1549 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1550 		free_irq(adapter->msix_entries[0].vector, adapter);
1551 	else
1552 		free_irq(irq, adapter);
1553 
1554 	return *data;
1555 }
1556 
1557 static void igb_free_desc_rings(struct igb_adapter *adapter)
1558 {
1559 	igb_free_tx_resources(&adapter->test_tx_ring);
1560 	igb_free_rx_resources(&adapter->test_rx_ring);
1561 }
1562 
1563 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1564 {
1565 	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1566 	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1567 	struct e1000_hw *hw = &adapter->hw;
1568 	int ret_val;
1569 
1570 	/* Setup Tx descriptor ring and Tx buffers */
1571 	tx_ring->count = IGB_DEFAULT_TXD;
1572 	tx_ring->dev = &adapter->pdev->dev;
1573 	tx_ring->netdev = adapter->netdev;
1574 	tx_ring->reg_idx = adapter->vfs_allocated_count;
1575 
1576 	if (igb_setup_tx_resources(tx_ring)) {
1577 		ret_val = 1;
1578 		goto err_nomem;
1579 	}
1580 
1581 	igb_setup_tctl(adapter);
1582 	igb_configure_tx_ring(adapter, tx_ring);
1583 
1584 	/* Setup Rx descriptor ring and Rx buffers */
1585 	rx_ring->count = IGB_DEFAULT_RXD;
1586 	rx_ring->dev = &adapter->pdev->dev;
1587 	rx_ring->netdev = adapter->netdev;
1588 	rx_ring->reg_idx = adapter->vfs_allocated_count;
1589 
1590 	if (igb_setup_rx_resources(rx_ring)) {
1591 		ret_val = 3;
1592 		goto err_nomem;
1593 	}
1594 
1595 	/* set the default queue to queue 0 of PF */
1596 	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1597 
1598 	/* enable receive ring */
1599 	igb_setup_rctl(adapter);
1600 	igb_configure_rx_ring(adapter, rx_ring);
1601 
1602 	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1603 
1604 	return 0;
1605 
1606 err_nomem:
1607 	igb_free_desc_rings(adapter);
1608 	return ret_val;
1609 }
1610 
1611 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1612 {
1613 	struct e1000_hw *hw = &adapter->hw;
1614 
1615 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1616 	igb_write_phy_reg(hw, 29, 0x001F);
1617 	igb_write_phy_reg(hw, 30, 0x8FFC);
1618 	igb_write_phy_reg(hw, 29, 0x001A);
1619 	igb_write_phy_reg(hw, 30, 0x8FF0);
1620 }
1621 
1622 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1623 {
1624 	struct e1000_hw *hw = &adapter->hw;
1625 	u32 ctrl_reg = 0;
1626 
1627 	hw->mac.autoneg = false;
1628 
1629 	if (hw->phy.type == e1000_phy_m88) {
1630 		if (hw->phy.id != I210_I_PHY_ID) {
1631 			/* Auto-MDI/MDIX Off */
1632 			igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1633 			/* reset to update Auto-MDI/MDIX */
1634 			igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1635 			/* autoneg off */
1636 			igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1637 		} else {
1638 			/* force 1000, set loopback  */
1639 			igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1640 			igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1641 		}
1642 	} else if (hw->phy.type == e1000_phy_82580) {
1643 		/* enable MII loopback */
1644 		igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1645 	}
1646 
1647 	/* add small delay to avoid loopback test failure */
1648 	msleep(50);
1649 
1650 	/* force 1000, set loopback */
1651 	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1652 
1653 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1654 	ctrl_reg = rd32(E1000_CTRL);
1655 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1656 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1657 		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1658 		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1659 		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1660 		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1661 
1662 	if (hw->phy.type == e1000_phy_m88)
1663 		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1664 
1665 	wr32(E1000_CTRL, ctrl_reg);
1666 
1667 	/* Disable the receiver on the PHY so when a cable is plugged in, the
1668 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1669 	 */
1670 	if (hw->phy.type == e1000_phy_m88)
1671 		igb_phy_disable_receiver(adapter);
1672 
1673 	mdelay(500);
1674 	return 0;
1675 }
1676 
1677 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1678 {
1679 	return igb_integrated_phy_loopback(adapter);
1680 }
1681 
1682 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1683 {
1684 	struct e1000_hw *hw = &adapter->hw;
1685 	u32 reg;
1686 
1687 	reg = rd32(E1000_CTRL_EXT);
1688 
1689 	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1690 	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1691 		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1692 		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1693 		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1694 		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1695 		(hw->device_id == E1000_DEV_ID_I354_SGMII) ||
1696 		(hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) {
1697 			/* Enable DH89xxCC MPHY for near end loopback */
1698 			reg = rd32(E1000_MPHY_ADDR_CTL);
1699 			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1700 			E1000_MPHY_PCS_CLK_REG_OFFSET;
1701 			wr32(E1000_MPHY_ADDR_CTL, reg);
1702 
1703 			reg = rd32(E1000_MPHY_DATA);
1704 			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1705 			wr32(E1000_MPHY_DATA, reg);
1706 		}
1707 
1708 		reg = rd32(E1000_RCTL);
1709 		reg |= E1000_RCTL_LBM_TCVR;
1710 		wr32(E1000_RCTL, reg);
1711 
1712 		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1713 
1714 		reg = rd32(E1000_CTRL);
1715 		reg &= ~(E1000_CTRL_RFCE |
1716 			 E1000_CTRL_TFCE |
1717 			 E1000_CTRL_LRST);
1718 		reg |= E1000_CTRL_SLU |
1719 		       E1000_CTRL_FD;
1720 		wr32(E1000_CTRL, reg);
1721 
1722 		/* Unset switch control to serdes energy detect */
1723 		reg = rd32(E1000_CONNSW);
1724 		reg &= ~E1000_CONNSW_ENRGSRC;
1725 		wr32(E1000_CONNSW, reg);
1726 
1727 		/* Unset sigdetect for SERDES loopback on
1728 		 * 82580 and newer devices.
1729 		 */
1730 		if (hw->mac.type >= e1000_82580) {
1731 			reg = rd32(E1000_PCS_CFG0);
1732 			reg |= E1000_PCS_CFG_IGN_SD;
1733 			wr32(E1000_PCS_CFG0, reg);
1734 		}
1735 
1736 		/* Set PCS register for forced speed */
1737 		reg = rd32(E1000_PCS_LCTL);
1738 		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1739 		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1740 		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1741 		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1742 		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1743 		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1744 		wr32(E1000_PCS_LCTL, reg);
1745 
1746 		return 0;
1747 	}
1748 
1749 	return igb_set_phy_loopback(adapter);
1750 }
1751 
1752 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1753 {
1754 	struct e1000_hw *hw = &adapter->hw;
1755 	u32 rctl;
1756 	u16 phy_reg;
1757 
1758 	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1759 	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1760 	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1761 	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1762 	(hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1763 		u32 reg;
1764 
1765 		/* Disable near end loopback on DH89xxCC */
1766 		reg = rd32(E1000_MPHY_ADDR_CTL);
1767 		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1768 		E1000_MPHY_PCS_CLK_REG_OFFSET;
1769 		wr32(E1000_MPHY_ADDR_CTL, reg);
1770 
1771 		reg = rd32(E1000_MPHY_DATA);
1772 		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1773 		wr32(E1000_MPHY_DATA, reg);
1774 	}
1775 
1776 	rctl = rd32(E1000_RCTL);
1777 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1778 	wr32(E1000_RCTL, rctl);
1779 
1780 	hw->mac.autoneg = true;
1781 	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1782 	if (phy_reg & MII_CR_LOOPBACK) {
1783 		phy_reg &= ~MII_CR_LOOPBACK;
1784 		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1785 		igb_phy_sw_reset(hw);
1786 	}
1787 }
1788 
1789 static void igb_create_lbtest_frame(struct sk_buff *skb,
1790 				    unsigned int frame_size)
1791 {
1792 	memset(skb->data, 0xFF, frame_size);
1793 	frame_size /= 2;
1794 	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1795 	memset(&skb->data[frame_size + 10], 0xBE, 1);
1796 	memset(&skb->data[frame_size + 12], 0xAF, 1);
1797 }
1798 
1799 static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1800 				  unsigned int frame_size)
1801 {
1802 	unsigned char *data;
1803 	bool match = true;
1804 
1805 	frame_size >>= 1;
1806 
1807 	data = kmap(rx_buffer->page);
1808 
1809 	if (data[3] != 0xFF ||
1810 	    data[frame_size + 10] != 0xBE ||
1811 	    data[frame_size + 12] != 0xAF)
1812 		match = false;
1813 
1814 	kunmap(rx_buffer->page);
1815 
1816 	return match;
1817 }
1818 
1819 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1820 				struct igb_ring *tx_ring,
1821 				unsigned int size)
1822 {
1823 	union e1000_adv_rx_desc *rx_desc;
1824 	struct igb_rx_buffer *rx_buffer_info;
1825 	struct igb_tx_buffer *tx_buffer_info;
1826 	u16 rx_ntc, tx_ntc, count = 0;
1827 
1828 	/* initialize next to clean and descriptor values */
1829 	rx_ntc = rx_ring->next_to_clean;
1830 	tx_ntc = tx_ring->next_to_clean;
1831 	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1832 
1833 	while (rx_desc->wb.upper.length) {
1834 		/* check Rx buffer */
1835 		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1836 
1837 		/* sync Rx buffer for CPU read */
1838 		dma_sync_single_for_cpu(rx_ring->dev,
1839 					rx_buffer_info->dma,
1840 					size,
1841 					DMA_FROM_DEVICE);
1842 
1843 		/* verify contents of skb */
1844 		if (igb_check_lbtest_frame(rx_buffer_info, size))
1845 			count++;
1846 
1847 		/* sync Rx buffer for device write */
1848 		dma_sync_single_for_device(rx_ring->dev,
1849 					   rx_buffer_info->dma,
1850 					   size,
1851 					   DMA_FROM_DEVICE);
1852 
1853 		/* unmap buffer on Tx side */
1854 		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1855 
1856 		/* Free all the Tx ring sk_buffs */
1857 		dev_kfree_skb_any(tx_buffer_info->skb);
1858 
1859 		/* unmap skb header data */
1860 		dma_unmap_single(tx_ring->dev,
1861 				 dma_unmap_addr(tx_buffer_info, dma),
1862 				 dma_unmap_len(tx_buffer_info, len),
1863 				 DMA_TO_DEVICE);
1864 		dma_unmap_len_set(tx_buffer_info, len, 0);
1865 
1866 		/* increment Rx/Tx next to clean counters */
1867 		rx_ntc++;
1868 		if (rx_ntc == rx_ring->count)
1869 			rx_ntc = 0;
1870 		tx_ntc++;
1871 		if (tx_ntc == tx_ring->count)
1872 			tx_ntc = 0;
1873 
1874 		/* fetch next descriptor */
1875 		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1876 	}
1877 
1878 	netdev_tx_reset_queue(txring_txq(tx_ring));
1879 
1880 	/* re-map buffers to ring, store next to clean values */
1881 	igb_alloc_rx_buffers(rx_ring, count);
1882 	rx_ring->next_to_clean = rx_ntc;
1883 	tx_ring->next_to_clean = tx_ntc;
1884 
1885 	return count;
1886 }
1887 
1888 static int igb_run_loopback_test(struct igb_adapter *adapter)
1889 {
1890 	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1891 	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1892 	u16 i, j, lc, good_cnt;
1893 	int ret_val = 0;
1894 	unsigned int size = IGB_RX_HDR_LEN;
1895 	netdev_tx_t tx_ret_val;
1896 	struct sk_buff *skb;
1897 
1898 	/* allocate test skb */
1899 	skb = alloc_skb(size, GFP_KERNEL);
1900 	if (!skb)
1901 		return 11;
1902 
1903 	/* place data into test skb */
1904 	igb_create_lbtest_frame(skb, size);
1905 	skb_put(skb, size);
1906 
1907 	/* Calculate the loop count based on the largest descriptor ring
1908 	 * The idea is to wrap the largest ring a number of times using 64
1909 	 * send/receive pairs during each loop
1910 	 */
1911 
1912 	if (rx_ring->count <= tx_ring->count)
1913 		lc = ((tx_ring->count / 64) * 2) + 1;
1914 	else
1915 		lc = ((rx_ring->count / 64) * 2) + 1;
1916 
1917 	for (j = 0; j <= lc; j++) { /* loop count loop */
1918 		/* reset count of good packets */
1919 		good_cnt = 0;
1920 
1921 		/* place 64 packets on the transmit queue*/
1922 		for (i = 0; i < 64; i++) {
1923 			skb_get(skb);
1924 			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1925 			if (tx_ret_val == NETDEV_TX_OK)
1926 				good_cnt++;
1927 		}
1928 
1929 		if (good_cnt != 64) {
1930 			ret_val = 12;
1931 			break;
1932 		}
1933 
1934 		/* allow 200 milliseconds for packets to go from Tx to Rx */
1935 		msleep(200);
1936 
1937 		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1938 		if (good_cnt != 64) {
1939 			ret_val = 13;
1940 			break;
1941 		}
1942 	} /* end loop count loop */
1943 
1944 	/* free the original skb */
1945 	kfree_skb(skb);
1946 
1947 	return ret_val;
1948 }
1949 
1950 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1951 {
1952 	/* PHY loopback cannot be performed if SoL/IDER
1953 	 * sessions are active
1954 	 */
1955 	if (igb_check_reset_block(&adapter->hw)) {
1956 		dev_err(&adapter->pdev->dev,
1957 			"Cannot do PHY loopback test when SoL/IDER is active.\n");
1958 		*data = 0;
1959 		goto out;
1960 	}
1961 
1962 	if (adapter->hw.mac.type == e1000_i354) {
1963 		dev_info(&adapter->pdev->dev,
1964 			"Loopback test not supported on i354.\n");
1965 		*data = 0;
1966 		goto out;
1967 	}
1968 	*data = igb_setup_desc_rings(adapter);
1969 	if (*data)
1970 		goto out;
1971 	*data = igb_setup_loopback_test(adapter);
1972 	if (*data)
1973 		goto err_loopback;
1974 	*data = igb_run_loopback_test(adapter);
1975 	igb_loopback_cleanup(adapter);
1976 
1977 err_loopback:
1978 	igb_free_desc_rings(adapter);
1979 out:
1980 	return *data;
1981 }
1982 
1983 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1984 {
1985 	struct e1000_hw *hw = &adapter->hw;
1986 	*data = 0;
1987 	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1988 		int i = 0;
1989 
1990 		hw->mac.serdes_has_link = false;
1991 
1992 		/* On some blade server designs, link establishment
1993 		 * could take as long as 2-3 minutes
1994 		 */
1995 		do {
1996 			hw->mac.ops.check_for_link(&adapter->hw);
1997 			if (hw->mac.serdes_has_link)
1998 				return *data;
1999 			msleep(20);
2000 		} while (i++ < 3750);
2001 
2002 		*data = 1;
2003 	} else {
2004 		hw->mac.ops.check_for_link(&adapter->hw);
2005 		if (hw->mac.autoneg)
2006 			msleep(5000);
2007 
2008 		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
2009 			*data = 1;
2010 	}
2011 	return *data;
2012 }
2013 
2014 static void igb_diag_test(struct net_device *netdev,
2015 			  struct ethtool_test *eth_test, u64 *data)
2016 {
2017 	struct igb_adapter *adapter = netdev_priv(netdev);
2018 	u16 autoneg_advertised;
2019 	u8 forced_speed_duplex, autoneg;
2020 	bool if_running = netif_running(netdev);
2021 
2022 	set_bit(__IGB_TESTING, &adapter->state);
2023 
2024 	/* can't do offline tests on media switching devices */
2025 	if (adapter->hw.dev_spec._82575.mas_capable)
2026 		eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
2027 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
2028 		/* Offline tests */
2029 
2030 		/* save speed, duplex, autoneg settings */
2031 		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
2032 		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
2033 		autoneg = adapter->hw.mac.autoneg;
2034 
2035 		dev_info(&adapter->pdev->dev, "offline testing starting\n");
2036 
2037 		/* power up link for link test */
2038 		igb_power_up_link(adapter);
2039 
2040 		/* Link test performed before hardware reset so autoneg doesn't
2041 		 * interfere with test result
2042 		 */
2043 		if (igb_link_test(adapter, &data[TEST_LINK]))
2044 			eth_test->flags |= ETH_TEST_FL_FAILED;
2045 
2046 		if (if_running)
2047 			/* indicate we're in test mode */
2048 			igb_close(netdev);
2049 		else
2050 			igb_reset(adapter);
2051 
2052 		if (igb_reg_test(adapter, &data[TEST_REG]))
2053 			eth_test->flags |= ETH_TEST_FL_FAILED;
2054 
2055 		igb_reset(adapter);
2056 		if (igb_eeprom_test(adapter, &data[TEST_EEP]))
2057 			eth_test->flags |= ETH_TEST_FL_FAILED;
2058 
2059 		igb_reset(adapter);
2060 		if (igb_intr_test(adapter, &data[TEST_IRQ]))
2061 			eth_test->flags |= ETH_TEST_FL_FAILED;
2062 
2063 		igb_reset(adapter);
2064 		/* power up link for loopback test */
2065 		igb_power_up_link(adapter);
2066 		if (igb_loopback_test(adapter, &data[TEST_LOOP]))
2067 			eth_test->flags |= ETH_TEST_FL_FAILED;
2068 
2069 		/* restore speed, duplex, autoneg settings */
2070 		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2071 		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2072 		adapter->hw.mac.autoneg = autoneg;
2073 
2074 		/* force this routine to wait until autoneg complete/timeout */
2075 		adapter->hw.phy.autoneg_wait_to_complete = true;
2076 		igb_reset(adapter);
2077 		adapter->hw.phy.autoneg_wait_to_complete = false;
2078 
2079 		clear_bit(__IGB_TESTING, &adapter->state);
2080 		if (if_running)
2081 			igb_open(netdev);
2082 	} else {
2083 		dev_info(&adapter->pdev->dev, "online testing starting\n");
2084 
2085 		/* PHY is powered down when interface is down */
2086 		if (if_running && igb_link_test(adapter, &data[TEST_LINK]))
2087 			eth_test->flags |= ETH_TEST_FL_FAILED;
2088 		else
2089 			data[TEST_LINK] = 0;
2090 
2091 		/* Online tests aren't run; pass by default */
2092 		data[TEST_REG] = 0;
2093 		data[TEST_EEP] = 0;
2094 		data[TEST_IRQ] = 0;
2095 		data[TEST_LOOP] = 0;
2096 
2097 		clear_bit(__IGB_TESTING, &adapter->state);
2098 	}
2099 	msleep_interruptible(4 * 1000);
2100 }
2101 
2102 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2103 {
2104 	struct igb_adapter *adapter = netdev_priv(netdev);
2105 
2106 	wol->wolopts = 0;
2107 
2108 	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2109 		return;
2110 
2111 	wol->supported = WAKE_UCAST | WAKE_MCAST |
2112 			 WAKE_BCAST | WAKE_MAGIC |
2113 			 WAKE_PHY;
2114 
2115 	/* apply any specific unsupported masks here */
2116 	switch (adapter->hw.device_id) {
2117 	default:
2118 		break;
2119 	}
2120 
2121 	if (adapter->wol & E1000_WUFC_EX)
2122 		wol->wolopts |= WAKE_UCAST;
2123 	if (adapter->wol & E1000_WUFC_MC)
2124 		wol->wolopts |= WAKE_MCAST;
2125 	if (adapter->wol & E1000_WUFC_BC)
2126 		wol->wolopts |= WAKE_BCAST;
2127 	if (adapter->wol & E1000_WUFC_MAG)
2128 		wol->wolopts |= WAKE_MAGIC;
2129 	if (adapter->wol & E1000_WUFC_LNKC)
2130 		wol->wolopts |= WAKE_PHY;
2131 }
2132 
2133 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2134 {
2135 	struct igb_adapter *adapter = netdev_priv(netdev);
2136 
2137 	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2138 		return -EOPNOTSUPP;
2139 
2140 	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2141 		return wol->wolopts ? -EOPNOTSUPP : 0;
2142 
2143 	/* these settings will always override what we currently have */
2144 	adapter->wol = 0;
2145 
2146 	if (wol->wolopts & WAKE_UCAST)
2147 		adapter->wol |= E1000_WUFC_EX;
2148 	if (wol->wolopts & WAKE_MCAST)
2149 		adapter->wol |= E1000_WUFC_MC;
2150 	if (wol->wolopts & WAKE_BCAST)
2151 		adapter->wol |= E1000_WUFC_BC;
2152 	if (wol->wolopts & WAKE_MAGIC)
2153 		adapter->wol |= E1000_WUFC_MAG;
2154 	if (wol->wolopts & WAKE_PHY)
2155 		adapter->wol |= E1000_WUFC_LNKC;
2156 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2157 
2158 	return 0;
2159 }
2160 
2161 /* bit defines for adapter->led_status */
2162 #define IGB_LED_ON		0
2163 
2164 static int igb_set_phys_id(struct net_device *netdev,
2165 			   enum ethtool_phys_id_state state)
2166 {
2167 	struct igb_adapter *adapter = netdev_priv(netdev);
2168 	struct e1000_hw *hw = &adapter->hw;
2169 
2170 	switch (state) {
2171 	case ETHTOOL_ID_ACTIVE:
2172 		igb_blink_led(hw);
2173 		return 2;
2174 	case ETHTOOL_ID_ON:
2175 		igb_blink_led(hw);
2176 		break;
2177 	case ETHTOOL_ID_OFF:
2178 		igb_led_off(hw);
2179 		break;
2180 	case ETHTOOL_ID_INACTIVE:
2181 		igb_led_off(hw);
2182 		clear_bit(IGB_LED_ON, &adapter->led_status);
2183 		igb_cleanup_led(hw);
2184 		break;
2185 	}
2186 
2187 	return 0;
2188 }
2189 
2190 static int igb_set_coalesce(struct net_device *netdev,
2191 			    struct ethtool_coalesce *ec)
2192 {
2193 	struct igb_adapter *adapter = netdev_priv(netdev);
2194 	int i;
2195 
2196 	if (ec->rx_max_coalesced_frames ||
2197 	    ec->rx_coalesce_usecs_irq ||
2198 	    ec->rx_max_coalesced_frames_irq ||
2199 	    ec->tx_max_coalesced_frames ||
2200 	    ec->tx_coalesce_usecs_irq ||
2201 	    ec->stats_block_coalesce_usecs ||
2202 	    ec->use_adaptive_rx_coalesce ||
2203 	    ec->use_adaptive_tx_coalesce ||
2204 	    ec->pkt_rate_low ||
2205 	    ec->rx_coalesce_usecs_low ||
2206 	    ec->rx_max_coalesced_frames_low ||
2207 	    ec->tx_coalesce_usecs_low ||
2208 	    ec->tx_max_coalesced_frames_low ||
2209 	    ec->pkt_rate_high ||
2210 	    ec->rx_coalesce_usecs_high ||
2211 	    ec->rx_max_coalesced_frames_high ||
2212 	    ec->tx_coalesce_usecs_high ||
2213 	    ec->tx_max_coalesced_frames_high ||
2214 	    ec->rate_sample_interval)
2215 		return -ENOTSUPP;
2216 
2217 	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2218 	    ((ec->rx_coalesce_usecs > 3) &&
2219 	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2220 	    (ec->rx_coalesce_usecs == 2))
2221 		return -EINVAL;
2222 
2223 	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2224 	    ((ec->tx_coalesce_usecs > 3) &&
2225 	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2226 	    (ec->tx_coalesce_usecs == 2))
2227 		return -EINVAL;
2228 
2229 	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2230 		return -EINVAL;
2231 
2232 	/* If ITR is disabled, disable DMAC */
2233 	if (ec->rx_coalesce_usecs == 0) {
2234 		if (adapter->flags & IGB_FLAG_DMAC)
2235 			adapter->flags &= ~IGB_FLAG_DMAC;
2236 	}
2237 
2238 	/* convert to rate of irq's per second */
2239 	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2240 		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2241 	else
2242 		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2243 
2244 	/* convert to rate of irq's per second */
2245 	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2246 		adapter->tx_itr_setting = adapter->rx_itr_setting;
2247 	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2248 		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2249 	else
2250 		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2251 
2252 	for (i = 0; i < adapter->num_q_vectors; i++) {
2253 		struct igb_q_vector *q_vector = adapter->q_vector[i];
2254 		q_vector->tx.work_limit = adapter->tx_work_limit;
2255 		if (q_vector->rx.ring)
2256 			q_vector->itr_val = adapter->rx_itr_setting;
2257 		else
2258 			q_vector->itr_val = adapter->tx_itr_setting;
2259 		if (q_vector->itr_val && q_vector->itr_val <= 3)
2260 			q_vector->itr_val = IGB_START_ITR;
2261 		q_vector->set_itr = 1;
2262 	}
2263 
2264 	return 0;
2265 }
2266 
2267 static int igb_get_coalesce(struct net_device *netdev,
2268 			    struct ethtool_coalesce *ec)
2269 {
2270 	struct igb_adapter *adapter = netdev_priv(netdev);
2271 
2272 	if (adapter->rx_itr_setting <= 3)
2273 		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2274 	else
2275 		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2276 
2277 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2278 		if (adapter->tx_itr_setting <= 3)
2279 			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2280 		else
2281 			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2282 	}
2283 
2284 	return 0;
2285 }
2286 
2287 static int igb_nway_reset(struct net_device *netdev)
2288 {
2289 	struct igb_adapter *adapter = netdev_priv(netdev);
2290 	if (netif_running(netdev))
2291 		igb_reinit_locked(adapter);
2292 	return 0;
2293 }
2294 
2295 static int igb_get_sset_count(struct net_device *netdev, int sset)
2296 {
2297 	switch (sset) {
2298 	case ETH_SS_STATS:
2299 		return IGB_STATS_LEN;
2300 	case ETH_SS_TEST:
2301 		return IGB_TEST_LEN;
2302 	case ETH_SS_PRIV_FLAGS:
2303 		return IGB_PRIV_FLAGS_STR_LEN;
2304 	default:
2305 		return -ENOTSUPP;
2306 	}
2307 }
2308 
2309 static void igb_get_ethtool_stats(struct net_device *netdev,
2310 				  struct ethtool_stats *stats, u64 *data)
2311 {
2312 	struct igb_adapter *adapter = netdev_priv(netdev);
2313 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2314 	unsigned int start;
2315 	struct igb_ring *ring;
2316 	int i, j;
2317 	char *p;
2318 
2319 	spin_lock(&adapter->stats64_lock);
2320 	igb_update_stats(adapter);
2321 
2322 	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2323 		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2324 		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2325 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2326 	}
2327 	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2328 		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2329 		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2330 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2331 	}
2332 	for (j = 0; j < adapter->num_tx_queues; j++) {
2333 		u64	restart2;
2334 
2335 		ring = adapter->tx_ring[j];
2336 		do {
2337 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
2338 			data[i]   = ring->tx_stats.packets;
2339 			data[i+1] = ring->tx_stats.bytes;
2340 			data[i+2] = ring->tx_stats.restart_queue;
2341 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
2342 		do {
2343 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp2);
2344 			restart2  = ring->tx_stats.restart_queue2;
2345 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start));
2346 		data[i+2] += restart2;
2347 
2348 		i += IGB_TX_QUEUE_STATS_LEN;
2349 	}
2350 	for (j = 0; j < adapter->num_rx_queues; j++) {
2351 		ring = adapter->rx_ring[j];
2352 		do {
2353 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
2354 			data[i]   = ring->rx_stats.packets;
2355 			data[i+1] = ring->rx_stats.bytes;
2356 			data[i+2] = ring->rx_stats.drops;
2357 			data[i+3] = ring->rx_stats.csum_err;
2358 			data[i+4] = ring->rx_stats.alloc_failed;
2359 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
2360 		i += IGB_RX_QUEUE_STATS_LEN;
2361 	}
2362 	spin_unlock(&adapter->stats64_lock);
2363 }
2364 
2365 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2366 {
2367 	struct igb_adapter *adapter = netdev_priv(netdev);
2368 	u8 *p = data;
2369 	int i;
2370 
2371 	switch (stringset) {
2372 	case ETH_SS_TEST:
2373 		memcpy(data, *igb_gstrings_test,
2374 			IGB_TEST_LEN*ETH_GSTRING_LEN);
2375 		break;
2376 	case ETH_SS_STATS:
2377 		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2378 			memcpy(p, igb_gstrings_stats[i].stat_string,
2379 			       ETH_GSTRING_LEN);
2380 			p += ETH_GSTRING_LEN;
2381 		}
2382 		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2383 			memcpy(p, igb_gstrings_net_stats[i].stat_string,
2384 			       ETH_GSTRING_LEN);
2385 			p += ETH_GSTRING_LEN;
2386 		}
2387 		for (i = 0; i < adapter->num_tx_queues; i++) {
2388 			sprintf(p, "tx_queue_%u_packets", i);
2389 			p += ETH_GSTRING_LEN;
2390 			sprintf(p, "tx_queue_%u_bytes", i);
2391 			p += ETH_GSTRING_LEN;
2392 			sprintf(p, "tx_queue_%u_restart", i);
2393 			p += ETH_GSTRING_LEN;
2394 		}
2395 		for (i = 0; i < adapter->num_rx_queues; i++) {
2396 			sprintf(p, "rx_queue_%u_packets", i);
2397 			p += ETH_GSTRING_LEN;
2398 			sprintf(p, "rx_queue_%u_bytes", i);
2399 			p += ETH_GSTRING_LEN;
2400 			sprintf(p, "rx_queue_%u_drops", i);
2401 			p += ETH_GSTRING_LEN;
2402 			sprintf(p, "rx_queue_%u_csum_err", i);
2403 			p += ETH_GSTRING_LEN;
2404 			sprintf(p, "rx_queue_%u_alloc_failed", i);
2405 			p += ETH_GSTRING_LEN;
2406 		}
2407 		/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2408 		break;
2409 	case ETH_SS_PRIV_FLAGS:
2410 		memcpy(data, igb_priv_flags_strings,
2411 		       IGB_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN);
2412 		break;
2413 	}
2414 }
2415 
2416 static int igb_get_ts_info(struct net_device *dev,
2417 			   struct ethtool_ts_info *info)
2418 {
2419 	struct igb_adapter *adapter = netdev_priv(dev);
2420 
2421 	if (adapter->ptp_clock)
2422 		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2423 	else
2424 		info->phc_index = -1;
2425 
2426 	switch (adapter->hw.mac.type) {
2427 	case e1000_82575:
2428 		info->so_timestamping =
2429 			SOF_TIMESTAMPING_TX_SOFTWARE |
2430 			SOF_TIMESTAMPING_RX_SOFTWARE |
2431 			SOF_TIMESTAMPING_SOFTWARE;
2432 		return 0;
2433 	case e1000_82576:
2434 	case e1000_82580:
2435 	case e1000_i350:
2436 	case e1000_i354:
2437 	case e1000_i210:
2438 	case e1000_i211:
2439 		info->so_timestamping =
2440 			SOF_TIMESTAMPING_TX_SOFTWARE |
2441 			SOF_TIMESTAMPING_RX_SOFTWARE |
2442 			SOF_TIMESTAMPING_SOFTWARE |
2443 			SOF_TIMESTAMPING_TX_HARDWARE |
2444 			SOF_TIMESTAMPING_RX_HARDWARE |
2445 			SOF_TIMESTAMPING_RAW_HARDWARE;
2446 
2447 		info->tx_types =
2448 			BIT(HWTSTAMP_TX_OFF) |
2449 			BIT(HWTSTAMP_TX_ON);
2450 
2451 		info->rx_filters = BIT(HWTSTAMP_FILTER_NONE);
2452 
2453 		/* 82576 does not support timestamping all packets. */
2454 		if (adapter->hw.mac.type >= e1000_82580)
2455 			info->rx_filters |= BIT(HWTSTAMP_FILTER_ALL);
2456 		else
2457 			info->rx_filters |=
2458 				BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2459 				BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2460 				BIT(HWTSTAMP_FILTER_PTP_V2_EVENT);
2461 
2462 		return 0;
2463 	default:
2464 		return -EOPNOTSUPP;
2465 	}
2466 }
2467 
2468 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2469 static int igb_get_ethtool_nfc_entry(struct igb_adapter *adapter,
2470 				     struct ethtool_rxnfc *cmd)
2471 {
2472 	struct ethtool_rx_flow_spec *fsp = &cmd->fs;
2473 	struct igb_nfc_filter *rule = NULL;
2474 
2475 	/* report total rule count */
2476 	cmd->data = IGB_MAX_RXNFC_FILTERS;
2477 
2478 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2479 		if (fsp->location <= rule->sw_idx)
2480 			break;
2481 	}
2482 
2483 	if (!rule || fsp->location != rule->sw_idx)
2484 		return -EINVAL;
2485 
2486 	if (rule->filter.match_flags) {
2487 		fsp->flow_type = ETHER_FLOW;
2488 		fsp->ring_cookie = rule->action;
2489 		if (rule->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2490 			fsp->h_u.ether_spec.h_proto = rule->filter.etype;
2491 			fsp->m_u.ether_spec.h_proto = ETHER_TYPE_FULL_MASK;
2492 		}
2493 		if (rule->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI) {
2494 			fsp->flow_type |= FLOW_EXT;
2495 			fsp->h_ext.vlan_tci = rule->filter.vlan_tci;
2496 			fsp->m_ext.vlan_tci = htons(VLAN_PRIO_MASK);
2497 		}
2498 		return 0;
2499 	}
2500 	return -EINVAL;
2501 }
2502 
2503 static int igb_get_ethtool_nfc_all(struct igb_adapter *adapter,
2504 				   struct ethtool_rxnfc *cmd,
2505 				   u32 *rule_locs)
2506 {
2507 	struct igb_nfc_filter *rule;
2508 	int cnt = 0;
2509 
2510 	/* report total rule count */
2511 	cmd->data = IGB_MAX_RXNFC_FILTERS;
2512 
2513 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2514 		if (cnt == cmd->rule_cnt)
2515 			return -EMSGSIZE;
2516 		rule_locs[cnt] = rule->sw_idx;
2517 		cnt++;
2518 	}
2519 
2520 	cmd->rule_cnt = cnt;
2521 
2522 	return 0;
2523 }
2524 
2525 static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2526 				 struct ethtool_rxnfc *cmd)
2527 {
2528 	cmd->data = 0;
2529 
2530 	/* Report default options for RSS on igb */
2531 	switch (cmd->flow_type) {
2532 	case TCP_V4_FLOW:
2533 		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2534 		/* Fall through */
2535 	case UDP_V4_FLOW:
2536 		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2537 			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2538 		/* Fall through */
2539 	case SCTP_V4_FLOW:
2540 	case AH_ESP_V4_FLOW:
2541 	case AH_V4_FLOW:
2542 	case ESP_V4_FLOW:
2543 	case IPV4_FLOW:
2544 		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2545 		break;
2546 	case TCP_V6_FLOW:
2547 		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2548 		/* Fall through */
2549 	case UDP_V6_FLOW:
2550 		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2551 			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2552 		/* Fall through */
2553 	case SCTP_V6_FLOW:
2554 	case AH_ESP_V6_FLOW:
2555 	case AH_V6_FLOW:
2556 	case ESP_V6_FLOW:
2557 	case IPV6_FLOW:
2558 		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2559 		break;
2560 	default:
2561 		return -EINVAL;
2562 	}
2563 
2564 	return 0;
2565 }
2566 
2567 static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2568 			 u32 *rule_locs)
2569 {
2570 	struct igb_adapter *adapter = netdev_priv(dev);
2571 	int ret = -EOPNOTSUPP;
2572 
2573 	switch (cmd->cmd) {
2574 	case ETHTOOL_GRXRINGS:
2575 		cmd->data = adapter->num_rx_queues;
2576 		ret = 0;
2577 		break;
2578 	case ETHTOOL_GRXCLSRLCNT:
2579 		cmd->rule_cnt = adapter->nfc_filter_count;
2580 		ret = 0;
2581 		break;
2582 	case ETHTOOL_GRXCLSRULE:
2583 		ret = igb_get_ethtool_nfc_entry(adapter, cmd);
2584 		break;
2585 	case ETHTOOL_GRXCLSRLALL:
2586 		ret = igb_get_ethtool_nfc_all(adapter, cmd, rule_locs);
2587 		break;
2588 	case ETHTOOL_GRXFH:
2589 		ret = igb_get_rss_hash_opts(adapter, cmd);
2590 		break;
2591 	default:
2592 		break;
2593 	}
2594 
2595 	return ret;
2596 }
2597 
2598 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2599 		       IGB_FLAG_RSS_FIELD_IPV6_UDP)
2600 static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2601 				struct ethtool_rxnfc *nfc)
2602 {
2603 	u32 flags = adapter->flags;
2604 
2605 	/* RSS does not support anything other than hashing
2606 	 * to queues on src and dst IPs and ports
2607 	 */
2608 	if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2609 			  RXH_L4_B_0_1 | RXH_L4_B_2_3))
2610 		return -EINVAL;
2611 
2612 	switch (nfc->flow_type) {
2613 	case TCP_V4_FLOW:
2614 	case TCP_V6_FLOW:
2615 		if (!(nfc->data & RXH_IP_SRC) ||
2616 		    !(nfc->data & RXH_IP_DST) ||
2617 		    !(nfc->data & RXH_L4_B_0_1) ||
2618 		    !(nfc->data & RXH_L4_B_2_3))
2619 			return -EINVAL;
2620 		break;
2621 	case UDP_V4_FLOW:
2622 		if (!(nfc->data & RXH_IP_SRC) ||
2623 		    !(nfc->data & RXH_IP_DST))
2624 			return -EINVAL;
2625 		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2626 		case 0:
2627 			flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2628 			break;
2629 		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2630 			flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2631 			break;
2632 		default:
2633 			return -EINVAL;
2634 		}
2635 		break;
2636 	case UDP_V6_FLOW:
2637 		if (!(nfc->data & RXH_IP_SRC) ||
2638 		    !(nfc->data & RXH_IP_DST))
2639 			return -EINVAL;
2640 		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2641 		case 0:
2642 			flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2643 			break;
2644 		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2645 			flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2646 			break;
2647 		default:
2648 			return -EINVAL;
2649 		}
2650 		break;
2651 	case AH_ESP_V4_FLOW:
2652 	case AH_V4_FLOW:
2653 	case ESP_V4_FLOW:
2654 	case SCTP_V4_FLOW:
2655 	case AH_ESP_V6_FLOW:
2656 	case AH_V6_FLOW:
2657 	case ESP_V6_FLOW:
2658 	case SCTP_V6_FLOW:
2659 		if (!(nfc->data & RXH_IP_SRC) ||
2660 		    !(nfc->data & RXH_IP_DST) ||
2661 		    (nfc->data & RXH_L4_B_0_1) ||
2662 		    (nfc->data & RXH_L4_B_2_3))
2663 			return -EINVAL;
2664 		break;
2665 	default:
2666 		return -EINVAL;
2667 	}
2668 
2669 	/* if we changed something we need to update flags */
2670 	if (flags != adapter->flags) {
2671 		struct e1000_hw *hw = &adapter->hw;
2672 		u32 mrqc = rd32(E1000_MRQC);
2673 
2674 		if ((flags & UDP_RSS_FLAGS) &&
2675 		    !(adapter->flags & UDP_RSS_FLAGS))
2676 			dev_err(&adapter->pdev->dev,
2677 				"enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2678 
2679 		adapter->flags = flags;
2680 
2681 		/* Perform hash on these packet types */
2682 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2683 			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2684 			E1000_MRQC_RSS_FIELD_IPV6 |
2685 			E1000_MRQC_RSS_FIELD_IPV6_TCP;
2686 
2687 		mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2688 			  E1000_MRQC_RSS_FIELD_IPV6_UDP);
2689 
2690 		if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2691 			mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2692 
2693 		if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2694 			mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2695 
2696 		wr32(E1000_MRQC, mrqc);
2697 	}
2698 
2699 	return 0;
2700 }
2701 
2702 static int igb_rxnfc_write_etype_filter(struct igb_adapter *adapter,
2703 					struct igb_nfc_filter *input)
2704 {
2705 	struct e1000_hw *hw = &adapter->hw;
2706 	u8 i;
2707 	u32 etqf;
2708 	u16 etype;
2709 
2710 	/* find an empty etype filter register */
2711 	for (i = 0; i < MAX_ETYPE_FILTER; ++i) {
2712 		if (!adapter->etype_bitmap[i])
2713 			break;
2714 	}
2715 	if (i == MAX_ETYPE_FILTER) {
2716 		dev_err(&adapter->pdev->dev, "ethtool -N: etype filters are all used.\n");
2717 		return -EINVAL;
2718 	}
2719 
2720 	adapter->etype_bitmap[i] = true;
2721 
2722 	etqf = rd32(E1000_ETQF(i));
2723 	etype = ntohs(input->filter.etype & ETHER_TYPE_FULL_MASK);
2724 
2725 	etqf |= E1000_ETQF_FILTER_ENABLE;
2726 	etqf &= ~E1000_ETQF_ETYPE_MASK;
2727 	etqf |= (etype & E1000_ETQF_ETYPE_MASK);
2728 
2729 	etqf &= ~E1000_ETQF_QUEUE_MASK;
2730 	etqf |= ((input->action << E1000_ETQF_QUEUE_SHIFT)
2731 		& E1000_ETQF_QUEUE_MASK);
2732 	etqf |= E1000_ETQF_QUEUE_ENABLE;
2733 
2734 	wr32(E1000_ETQF(i), etqf);
2735 
2736 	input->etype_reg_index = i;
2737 
2738 	return 0;
2739 }
2740 
2741 static int igb_rxnfc_write_vlan_prio_filter(struct igb_adapter *adapter,
2742 					    struct igb_nfc_filter *input)
2743 {
2744 	struct e1000_hw *hw = &adapter->hw;
2745 	u8 vlan_priority;
2746 	u16 queue_index;
2747 	u32 vlapqf;
2748 
2749 	vlapqf = rd32(E1000_VLAPQF);
2750 	vlan_priority = (ntohs(input->filter.vlan_tci) & VLAN_PRIO_MASK)
2751 				>> VLAN_PRIO_SHIFT;
2752 	queue_index = (vlapqf >> (vlan_priority * 4)) & E1000_VLAPQF_QUEUE_MASK;
2753 
2754 	/* check whether this vlan prio is already set */
2755 	if ((vlapqf & E1000_VLAPQF_P_VALID(vlan_priority)) &&
2756 	    (queue_index != input->action)) {
2757 		dev_err(&adapter->pdev->dev, "ethtool rxnfc set vlan prio filter failed.\n");
2758 		return -EEXIST;
2759 	}
2760 
2761 	vlapqf |= E1000_VLAPQF_P_VALID(vlan_priority);
2762 	vlapqf |= E1000_VLAPQF_QUEUE_SEL(vlan_priority, input->action);
2763 
2764 	wr32(E1000_VLAPQF, vlapqf);
2765 
2766 	return 0;
2767 }
2768 
2769 int igb_add_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2770 {
2771 	int err = -EINVAL;
2772 
2773 	if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2774 		err = igb_rxnfc_write_etype_filter(adapter, input);
2775 		if (err)
2776 			return err;
2777 	}
2778 
2779 	if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2780 		err = igb_rxnfc_write_vlan_prio_filter(adapter, input);
2781 
2782 	return err;
2783 }
2784 
2785 static void igb_clear_etype_filter_regs(struct igb_adapter *adapter,
2786 					u16 reg_index)
2787 {
2788 	struct e1000_hw *hw = &adapter->hw;
2789 	u32 etqf = rd32(E1000_ETQF(reg_index));
2790 
2791 	etqf &= ~E1000_ETQF_QUEUE_ENABLE;
2792 	etqf &= ~E1000_ETQF_QUEUE_MASK;
2793 	etqf &= ~E1000_ETQF_FILTER_ENABLE;
2794 
2795 	wr32(E1000_ETQF(reg_index), etqf);
2796 
2797 	adapter->etype_bitmap[reg_index] = false;
2798 }
2799 
2800 static void igb_clear_vlan_prio_filter(struct igb_adapter *adapter,
2801 				       u16 vlan_tci)
2802 {
2803 	struct e1000_hw *hw = &adapter->hw;
2804 	u8 vlan_priority;
2805 	u32 vlapqf;
2806 
2807 	vlan_priority = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
2808 
2809 	vlapqf = rd32(E1000_VLAPQF);
2810 	vlapqf &= ~E1000_VLAPQF_P_VALID(vlan_priority);
2811 	vlapqf &= ~E1000_VLAPQF_QUEUE_SEL(vlan_priority,
2812 						E1000_VLAPQF_QUEUE_MASK);
2813 
2814 	wr32(E1000_VLAPQF, vlapqf);
2815 }
2816 
2817 int igb_erase_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2818 {
2819 	if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE)
2820 		igb_clear_etype_filter_regs(adapter,
2821 					    input->etype_reg_index);
2822 
2823 	if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2824 		igb_clear_vlan_prio_filter(adapter,
2825 					   ntohs(input->filter.vlan_tci));
2826 
2827 	return 0;
2828 }
2829 
2830 static int igb_update_ethtool_nfc_entry(struct igb_adapter *adapter,
2831 					struct igb_nfc_filter *input,
2832 					u16 sw_idx)
2833 {
2834 	struct igb_nfc_filter *rule, *parent;
2835 	int err = -EINVAL;
2836 
2837 	parent = NULL;
2838 	rule = NULL;
2839 
2840 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2841 		/* hash found, or no matching entry */
2842 		if (rule->sw_idx >= sw_idx)
2843 			break;
2844 		parent = rule;
2845 	}
2846 
2847 	/* if there is an old rule occupying our place remove it */
2848 	if (rule && (rule->sw_idx == sw_idx)) {
2849 		if (!input)
2850 			err = igb_erase_filter(adapter, rule);
2851 
2852 		hlist_del(&rule->nfc_node);
2853 		kfree(rule);
2854 		adapter->nfc_filter_count--;
2855 	}
2856 
2857 	/* If no input this was a delete, err should be 0 if a rule was
2858 	 * successfully found and removed from the list else -EINVAL
2859 	 */
2860 	if (!input)
2861 		return err;
2862 
2863 	/* initialize node */
2864 	INIT_HLIST_NODE(&input->nfc_node);
2865 
2866 	/* add filter to the list */
2867 	if (parent)
2868 		hlist_add_behind(&parent->nfc_node, &input->nfc_node);
2869 	else
2870 		hlist_add_head(&input->nfc_node, &adapter->nfc_filter_list);
2871 
2872 	/* update counts */
2873 	adapter->nfc_filter_count++;
2874 
2875 	return 0;
2876 }
2877 
2878 static int igb_add_ethtool_nfc_entry(struct igb_adapter *adapter,
2879 				     struct ethtool_rxnfc *cmd)
2880 {
2881 	struct net_device *netdev = adapter->netdev;
2882 	struct ethtool_rx_flow_spec *fsp =
2883 		(struct ethtool_rx_flow_spec *)&cmd->fs;
2884 	struct igb_nfc_filter *input, *rule;
2885 	int err = 0;
2886 
2887 	if (!(netdev->hw_features & NETIF_F_NTUPLE))
2888 		return -EOPNOTSUPP;
2889 
2890 	/* Don't allow programming if the action is a queue greater than
2891 	 * the number of online Rx queues.
2892 	 */
2893 	if ((fsp->ring_cookie == RX_CLS_FLOW_DISC) ||
2894 	    (fsp->ring_cookie >= adapter->num_rx_queues)) {
2895 		dev_err(&adapter->pdev->dev, "ethtool -N: The specified action is invalid\n");
2896 		return -EINVAL;
2897 	}
2898 
2899 	/* Don't allow indexes to exist outside of available space */
2900 	if (fsp->location >= IGB_MAX_RXNFC_FILTERS) {
2901 		dev_err(&adapter->pdev->dev, "Location out of range\n");
2902 		return -EINVAL;
2903 	}
2904 
2905 	if ((fsp->flow_type & ~FLOW_EXT) != ETHER_FLOW)
2906 		return -EINVAL;
2907 
2908 	if (fsp->m_u.ether_spec.h_proto != ETHER_TYPE_FULL_MASK &&
2909 	    fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK))
2910 		return -EINVAL;
2911 
2912 	input = kzalloc(sizeof(*input), GFP_KERNEL);
2913 	if (!input)
2914 		return -ENOMEM;
2915 
2916 	if (fsp->m_u.ether_spec.h_proto == ETHER_TYPE_FULL_MASK) {
2917 		input->filter.etype = fsp->h_u.ether_spec.h_proto;
2918 		input->filter.match_flags = IGB_FILTER_FLAG_ETHER_TYPE;
2919 	}
2920 
2921 	if ((fsp->flow_type & FLOW_EXT) && fsp->m_ext.vlan_tci) {
2922 		if (fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK)) {
2923 			err = -EINVAL;
2924 			goto err_out;
2925 		}
2926 		input->filter.vlan_tci = fsp->h_ext.vlan_tci;
2927 		input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2928 	}
2929 
2930 	input->action = fsp->ring_cookie;
2931 	input->sw_idx = fsp->location;
2932 
2933 	spin_lock(&adapter->nfc_lock);
2934 
2935 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2936 		if (!memcmp(&input->filter, &rule->filter,
2937 			    sizeof(input->filter))) {
2938 			err = -EEXIST;
2939 			dev_err(&adapter->pdev->dev,
2940 				"ethtool: this filter is already set\n");
2941 			goto err_out_w_lock;
2942 		}
2943 	}
2944 
2945 	err = igb_add_filter(adapter, input);
2946 	if (err)
2947 		goto err_out_w_lock;
2948 
2949 	igb_update_ethtool_nfc_entry(adapter, input, input->sw_idx);
2950 
2951 	spin_unlock(&adapter->nfc_lock);
2952 	return 0;
2953 
2954 err_out_w_lock:
2955 	spin_unlock(&adapter->nfc_lock);
2956 err_out:
2957 	kfree(input);
2958 	return err;
2959 }
2960 
2961 static int igb_del_ethtool_nfc_entry(struct igb_adapter *adapter,
2962 				     struct ethtool_rxnfc *cmd)
2963 {
2964 	struct ethtool_rx_flow_spec *fsp =
2965 		(struct ethtool_rx_flow_spec *)&cmd->fs;
2966 	int err;
2967 
2968 	spin_lock(&adapter->nfc_lock);
2969 	err = igb_update_ethtool_nfc_entry(adapter, NULL, fsp->location);
2970 	spin_unlock(&adapter->nfc_lock);
2971 
2972 	return err;
2973 }
2974 
2975 static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
2976 {
2977 	struct igb_adapter *adapter = netdev_priv(dev);
2978 	int ret = -EOPNOTSUPP;
2979 
2980 	switch (cmd->cmd) {
2981 	case ETHTOOL_SRXFH:
2982 		ret = igb_set_rss_hash_opt(adapter, cmd);
2983 		break;
2984 	case ETHTOOL_SRXCLSRLINS:
2985 		ret = igb_add_ethtool_nfc_entry(adapter, cmd);
2986 		break;
2987 	case ETHTOOL_SRXCLSRLDEL:
2988 		ret = igb_del_ethtool_nfc_entry(adapter, cmd);
2989 	default:
2990 		break;
2991 	}
2992 
2993 	return ret;
2994 }
2995 
2996 static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2997 {
2998 	struct igb_adapter *adapter = netdev_priv(netdev);
2999 	struct e1000_hw *hw = &adapter->hw;
3000 	u32 ret_val;
3001 	u16 phy_data;
3002 
3003 	if ((hw->mac.type < e1000_i350) ||
3004 	    (hw->phy.media_type != e1000_media_type_copper))
3005 		return -EOPNOTSUPP;
3006 
3007 	edata->supported = (SUPPORTED_1000baseT_Full |
3008 			    SUPPORTED_100baseT_Full);
3009 	if (!hw->dev_spec._82575.eee_disable)
3010 		edata->advertised =
3011 			mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
3012 
3013 	/* The IPCNFG and EEER registers are not supported on I354. */
3014 	if (hw->mac.type == e1000_i354) {
3015 		igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
3016 	} else {
3017 		u32 eeer;
3018 
3019 		eeer = rd32(E1000_EEER);
3020 
3021 		/* EEE status on negotiated link */
3022 		if (eeer & E1000_EEER_EEE_NEG)
3023 			edata->eee_active = true;
3024 
3025 		if (eeer & E1000_EEER_TX_LPI_EN)
3026 			edata->tx_lpi_enabled = true;
3027 	}
3028 
3029 	/* EEE Link Partner Advertised */
3030 	switch (hw->mac.type) {
3031 	case e1000_i350:
3032 		ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
3033 					   &phy_data);
3034 		if (ret_val)
3035 			return -ENODATA;
3036 
3037 		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
3038 		break;
3039 	case e1000_i354:
3040 	case e1000_i210:
3041 	case e1000_i211:
3042 		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
3043 					     E1000_EEE_LP_ADV_DEV_I210,
3044 					     &phy_data);
3045 		if (ret_val)
3046 			return -ENODATA;
3047 
3048 		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
3049 
3050 		break;
3051 	default:
3052 		break;
3053 	}
3054 
3055 	edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
3056 
3057 	if ((hw->mac.type == e1000_i354) &&
3058 	    (edata->eee_enabled))
3059 		edata->tx_lpi_enabled = true;
3060 
3061 	/* Report correct negotiated EEE status for devices that
3062 	 * wrongly report EEE at half-duplex
3063 	 */
3064 	if (adapter->link_duplex == HALF_DUPLEX) {
3065 		edata->eee_enabled = false;
3066 		edata->eee_active = false;
3067 		edata->tx_lpi_enabled = false;
3068 		edata->advertised &= ~edata->advertised;
3069 	}
3070 
3071 	return 0;
3072 }
3073 
3074 static int igb_set_eee(struct net_device *netdev,
3075 		       struct ethtool_eee *edata)
3076 {
3077 	struct igb_adapter *adapter = netdev_priv(netdev);
3078 	struct e1000_hw *hw = &adapter->hw;
3079 	struct ethtool_eee eee_curr;
3080 	bool adv1g_eee = true, adv100m_eee = true;
3081 	s32 ret_val;
3082 
3083 	if ((hw->mac.type < e1000_i350) ||
3084 	    (hw->phy.media_type != e1000_media_type_copper))
3085 		return -EOPNOTSUPP;
3086 
3087 	memset(&eee_curr, 0, sizeof(struct ethtool_eee));
3088 
3089 	ret_val = igb_get_eee(netdev, &eee_curr);
3090 	if (ret_val)
3091 		return ret_val;
3092 
3093 	if (eee_curr.eee_enabled) {
3094 		if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
3095 			dev_err(&adapter->pdev->dev,
3096 				"Setting EEE tx-lpi is not supported\n");
3097 			return -EINVAL;
3098 		}
3099 
3100 		/* Tx LPI timer is not implemented currently */
3101 		if (edata->tx_lpi_timer) {
3102 			dev_err(&adapter->pdev->dev,
3103 				"Setting EEE Tx LPI timer is not supported\n");
3104 			return -EINVAL;
3105 		}
3106 
3107 		if (!edata->advertised || (edata->advertised &
3108 		    ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL))) {
3109 			dev_err(&adapter->pdev->dev,
3110 				"EEE Advertisement supports only 100Tx and/or 100T full duplex\n");
3111 			return -EINVAL;
3112 		}
3113 		adv100m_eee = !!(edata->advertised & ADVERTISE_100_FULL);
3114 		adv1g_eee = !!(edata->advertised & ADVERTISE_1000_FULL);
3115 
3116 	} else if (!edata->eee_enabled) {
3117 		dev_err(&adapter->pdev->dev,
3118 			"Setting EEE options are not supported with EEE disabled\n");
3119 			return -EINVAL;
3120 		}
3121 
3122 	adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
3123 	if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
3124 		hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
3125 		adapter->flags |= IGB_FLAG_EEE;
3126 
3127 		/* reset link */
3128 		if (netif_running(netdev))
3129 			igb_reinit_locked(adapter);
3130 		else
3131 			igb_reset(adapter);
3132 	}
3133 
3134 	if (hw->mac.type == e1000_i354)
3135 		ret_val = igb_set_eee_i354(hw, adv1g_eee, adv100m_eee);
3136 	else
3137 		ret_val = igb_set_eee_i350(hw, adv1g_eee, adv100m_eee);
3138 
3139 	if (ret_val) {
3140 		dev_err(&adapter->pdev->dev,
3141 			"Problem setting EEE advertisement options\n");
3142 		return -EINVAL;
3143 	}
3144 
3145 	return 0;
3146 }
3147 
3148 static int igb_get_module_info(struct net_device *netdev,
3149 			       struct ethtool_modinfo *modinfo)
3150 {
3151 	struct igb_adapter *adapter = netdev_priv(netdev);
3152 	struct e1000_hw *hw = &adapter->hw;
3153 	u32 status = 0;
3154 	u16 sff8472_rev, addr_mode;
3155 	bool page_swap = false;
3156 
3157 	if ((hw->phy.media_type == e1000_media_type_copper) ||
3158 	    (hw->phy.media_type == e1000_media_type_unknown))
3159 		return -EOPNOTSUPP;
3160 
3161 	/* Check whether we support SFF-8472 or not */
3162 	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
3163 	if (status)
3164 		return -EIO;
3165 
3166 	/* addressing mode is not supported */
3167 	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
3168 	if (status)
3169 		return -EIO;
3170 
3171 	/* addressing mode is not supported */
3172 	if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
3173 		hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
3174 		page_swap = true;
3175 	}
3176 
3177 	if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
3178 		/* We have an SFP, but it does not support SFF-8472 */
3179 		modinfo->type = ETH_MODULE_SFF_8079;
3180 		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
3181 	} else {
3182 		/* We have an SFP which supports a revision of SFF-8472 */
3183 		modinfo->type = ETH_MODULE_SFF_8472;
3184 		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
3185 	}
3186 
3187 	return 0;
3188 }
3189 
3190 static int igb_get_module_eeprom(struct net_device *netdev,
3191 				 struct ethtool_eeprom *ee, u8 *data)
3192 {
3193 	struct igb_adapter *adapter = netdev_priv(netdev);
3194 	struct e1000_hw *hw = &adapter->hw;
3195 	u32 status = 0;
3196 	u16 *dataword;
3197 	u16 first_word, last_word;
3198 	int i = 0;
3199 
3200 	if (ee->len == 0)
3201 		return -EINVAL;
3202 
3203 	first_word = ee->offset >> 1;
3204 	last_word = (ee->offset + ee->len - 1) >> 1;
3205 
3206 	dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1),
3207 			   GFP_KERNEL);
3208 	if (!dataword)
3209 		return -ENOMEM;
3210 
3211 	/* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
3212 	for (i = 0; i < last_word - first_word + 1; i++) {
3213 		status = igb_read_phy_reg_i2c(hw, (first_word + i) * 2,
3214 					      &dataword[i]);
3215 		if (status) {
3216 			/* Error occurred while reading module */
3217 			kfree(dataword);
3218 			return -EIO;
3219 		}
3220 
3221 		be16_to_cpus(&dataword[i]);
3222 	}
3223 
3224 	memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
3225 	kfree(dataword);
3226 
3227 	return 0;
3228 }
3229 
3230 static int igb_ethtool_begin(struct net_device *netdev)
3231 {
3232 	struct igb_adapter *adapter = netdev_priv(netdev);
3233 	pm_runtime_get_sync(&adapter->pdev->dev);
3234 	return 0;
3235 }
3236 
3237 static void igb_ethtool_complete(struct net_device *netdev)
3238 {
3239 	struct igb_adapter *adapter = netdev_priv(netdev);
3240 	pm_runtime_put(&adapter->pdev->dev);
3241 }
3242 
3243 static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
3244 {
3245 	return IGB_RETA_SIZE;
3246 }
3247 
3248 static int igb_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key,
3249 			u8 *hfunc)
3250 {
3251 	struct igb_adapter *adapter = netdev_priv(netdev);
3252 	int i;
3253 
3254 	if (hfunc)
3255 		*hfunc = ETH_RSS_HASH_TOP;
3256 	if (!indir)
3257 		return 0;
3258 	for (i = 0; i < IGB_RETA_SIZE; i++)
3259 		indir[i] = adapter->rss_indir_tbl[i];
3260 
3261 	return 0;
3262 }
3263 
3264 void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
3265 {
3266 	struct e1000_hw *hw = &adapter->hw;
3267 	u32 reg = E1000_RETA(0);
3268 	u32 shift = 0;
3269 	int i = 0;
3270 
3271 	switch (hw->mac.type) {
3272 	case e1000_82575:
3273 		shift = 6;
3274 		break;
3275 	case e1000_82576:
3276 		/* 82576 supports 2 RSS queues for SR-IOV */
3277 		if (adapter->vfs_allocated_count)
3278 			shift = 3;
3279 		break;
3280 	default:
3281 		break;
3282 	}
3283 
3284 	while (i < IGB_RETA_SIZE) {
3285 		u32 val = 0;
3286 		int j;
3287 
3288 		for (j = 3; j >= 0; j--) {
3289 			val <<= 8;
3290 			val |= adapter->rss_indir_tbl[i + j];
3291 		}
3292 
3293 		wr32(reg, val << shift);
3294 		reg += 4;
3295 		i += 4;
3296 	}
3297 }
3298 
3299 static int igb_set_rxfh(struct net_device *netdev, const u32 *indir,
3300 			const u8 *key, const u8 hfunc)
3301 {
3302 	struct igb_adapter *adapter = netdev_priv(netdev);
3303 	struct e1000_hw *hw = &adapter->hw;
3304 	int i;
3305 	u32 num_queues;
3306 
3307 	/* We do not allow change in unsupported parameters */
3308 	if (key ||
3309 	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
3310 		return -EOPNOTSUPP;
3311 	if (!indir)
3312 		return 0;
3313 
3314 	num_queues = adapter->rss_queues;
3315 
3316 	switch (hw->mac.type) {
3317 	case e1000_82576:
3318 		/* 82576 supports 2 RSS queues for SR-IOV */
3319 		if (adapter->vfs_allocated_count)
3320 			num_queues = 2;
3321 		break;
3322 	default:
3323 		break;
3324 	}
3325 
3326 	/* Verify user input. */
3327 	for (i = 0; i < IGB_RETA_SIZE; i++)
3328 		if (indir[i] >= num_queues)
3329 			return -EINVAL;
3330 
3331 
3332 	for (i = 0; i < IGB_RETA_SIZE; i++)
3333 		adapter->rss_indir_tbl[i] = indir[i];
3334 
3335 	igb_write_rss_indir_tbl(adapter);
3336 
3337 	return 0;
3338 }
3339 
3340 static unsigned int igb_max_channels(struct igb_adapter *adapter)
3341 {
3342 	return igb_get_max_rss_queues(adapter);
3343 }
3344 
3345 static void igb_get_channels(struct net_device *netdev,
3346 			     struct ethtool_channels *ch)
3347 {
3348 	struct igb_adapter *adapter = netdev_priv(netdev);
3349 
3350 	/* Report maximum channels */
3351 	ch->max_combined = igb_max_channels(adapter);
3352 
3353 	/* Report info for other vector */
3354 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
3355 		ch->max_other = NON_Q_VECTORS;
3356 		ch->other_count = NON_Q_VECTORS;
3357 	}
3358 
3359 	ch->combined_count = adapter->rss_queues;
3360 }
3361 
3362 static int igb_set_channels(struct net_device *netdev,
3363 			    struct ethtool_channels *ch)
3364 {
3365 	struct igb_adapter *adapter = netdev_priv(netdev);
3366 	unsigned int count = ch->combined_count;
3367 	unsigned int max_combined = 0;
3368 
3369 	/* Verify they are not requesting separate vectors */
3370 	if (!count || ch->rx_count || ch->tx_count)
3371 		return -EINVAL;
3372 
3373 	/* Verify other_count is valid and has not been changed */
3374 	if (ch->other_count != NON_Q_VECTORS)
3375 		return -EINVAL;
3376 
3377 	/* Verify the number of channels doesn't exceed hw limits */
3378 	max_combined = igb_max_channels(adapter);
3379 	if (count > max_combined)
3380 		return -EINVAL;
3381 
3382 	if (count != adapter->rss_queues) {
3383 		adapter->rss_queues = count;
3384 		igb_set_flag_queue_pairs(adapter, max_combined);
3385 
3386 		/* Hardware has to reinitialize queues and interrupts to
3387 		 * match the new configuration.
3388 		 */
3389 		return igb_reinit_queues(adapter);
3390 	}
3391 
3392 	return 0;
3393 }
3394 
3395 static u32 igb_get_priv_flags(struct net_device *netdev)
3396 {
3397 	struct igb_adapter *adapter = netdev_priv(netdev);
3398 	u32 priv_flags = 0;
3399 
3400 	if (adapter->flags & IGB_FLAG_RX_LEGACY)
3401 		priv_flags |= IGB_PRIV_FLAGS_LEGACY_RX;
3402 
3403 	return priv_flags;
3404 }
3405 
3406 static int igb_set_priv_flags(struct net_device *netdev, u32 priv_flags)
3407 {
3408 	struct igb_adapter *adapter = netdev_priv(netdev);
3409 	unsigned int flags = adapter->flags;
3410 
3411 	flags &= ~IGB_FLAG_RX_LEGACY;
3412 	if (priv_flags & IGB_PRIV_FLAGS_LEGACY_RX)
3413 		flags |= IGB_FLAG_RX_LEGACY;
3414 
3415 	if (flags != adapter->flags) {
3416 		adapter->flags = flags;
3417 
3418 		/* reset interface to repopulate queues */
3419 		if (netif_running(netdev))
3420 			igb_reinit_locked(adapter);
3421 	}
3422 
3423 	return 0;
3424 }
3425 
3426 static const struct ethtool_ops igb_ethtool_ops = {
3427 	.get_drvinfo		= igb_get_drvinfo,
3428 	.get_regs_len		= igb_get_regs_len,
3429 	.get_regs		= igb_get_regs,
3430 	.get_wol		= igb_get_wol,
3431 	.set_wol		= igb_set_wol,
3432 	.get_msglevel		= igb_get_msglevel,
3433 	.set_msglevel		= igb_set_msglevel,
3434 	.nway_reset		= igb_nway_reset,
3435 	.get_link		= igb_get_link,
3436 	.get_eeprom_len		= igb_get_eeprom_len,
3437 	.get_eeprom		= igb_get_eeprom,
3438 	.set_eeprom		= igb_set_eeprom,
3439 	.get_ringparam		= igb_get_ringparam,
3440 	.set_ringparam		= igb_set_ringparam,
3441 	.get_pauseparam		= igb_get_pauseparam,
3442 	.set_pauseparam		= igb_set_pauseparam,
3443 	.self_test		= igb_diag_test,
3444 	.get_strings		= igb_get_strings,
3445 	.set_phys_id		= igb_set_phys_id,
3446 	.get_sset_count		= igb_get_sset_count,
3447 	.get_ethtool_stats	= igb_get_ethtool_stats,
3448 	.get_coalesce		= igb_get_coalesce,
3449 	.set_coalesce		= igb_set_coalesce,
3450 	.get_ts_info		= igb_get_ts_info,
3451 	.get_rxnfc		= igb_get_rxnfc,
3452 	.set_rxnfc		= igb_set_rxnfc,
3453 	.get_eee		= igb_get_eee,
3454 	.set_eee		= igb_set_eee,
3455 	.get_module_info	= igb_get_module_info,
3456 	.get_module_eeprom	= igb_get_module_eeprom,
3457 	.get_rxfh_indir_size	= igb_get_rxfh_indir_size,
3458 	.get_rxfh		= igb_get_rxfh,
3459 	.set_rxfh		= igb_set_rxfh,
3460 	.get_channels		= igb_get_channels,
3461 	.set_channels		= igb_set_channels,
3462 	.get_priv_flags		= igb_get_priv_flags,
3463 	.set_priv_flags		= igb_set_priv_flags,
3464 	.begin			= igb_ethtool_begin,
3465 	.complete		= igb_ethtool_complete,
3466 	.get_link_ksettings	= igb_get_link_ksettings,
3467 	.set_link_ksettings	= igb_set_link_ksettings,
3468 };
3469 
3470 void igb_set_ethtool_ops(struct net_device *netdev)
3471 {
3472 	netdev->ethtool_ops = &igb_ethtool_ops;
3473 }
3474