1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23 
24 /* ethtool support for igb */
25 
26 #include <linux/vmalloc.h>
27 #include <linux/netdevice.h>
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/if_ether.h>
32 #include <linux/ethtool.h>
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/highmem.h>
37 #include <linux/mdio.h>
38 
39 #include "igb.h"
40 
41 struct igb_stats {
42 	char stat_string[ETH_GSTRING_LEN];
43 	int sizeof_stat;
44 	int stat_offset;
45 };
46 
47 #define IGB_STAT(_name, _stat) { \
48 	.stat_string = _name, \
49 	.sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
50 	.stat_offset = offsetof(struct igb_adapter, _stat) \
51 }
52 static const struct igb_stats igb_gstrings_stats[] = {
53 	IGB_STAT("rx_packets", stats.gprc),
54 	IGB_STAT("tx_packets", stats.gptc),
55 	IGB_STAT("rx_bytes", stats.gorc),
56 	IGB_STAT("tx_bytes", stats.gotc),
57 	IGB_STAT("rx_broadcast", stats.bprc),
58 	IGB_STAT("tx_broadcast", stats.bptc),
59 	IGB_STAT("rx_multicast", stats.mprc),
60 	IGB_STAT("tx_multicast", stats.mptc),
61 	IGB_STAT("multicast", stats.mprc),
62 	IGB_STAT("collisions", stats.colc),
63 	IGB_STAT("rx_crc_errors", stats.crcerrs),
64 	IGB_STAT("rx_no_buffer_count", stats.rnbc),
65 	IGB_STAT("rx_missed_errors", stats.mpc),
66 	IGB_STAT("tx_aborted_errors", stats.ecol),
67 	IGB_STAT("tx_carrier_errors", stats.tncrs),
68 	IGB_STAT("tx_window_errors", stats.latecol),
69 	IGB_STAT("tx_abort_late_coll", stats.latecol),
70 	IGB_STAT("tx_deferred_ok", stats.dc),
71 	IGB_STAT("tx_single_coll_ok", stats.scc),
72 	IGB_STAT("tx_multi_coll_ok", stats.mcc),
73 	IGB_STAT("tx_timeout_count", tx_timeout_count),
74 	IGB_STAT("rx_long_length_errors", stats.roc),
75 	IGB_STAT("rx_short_length_errors", stats.ruc),
76 	IGB_STAT("rx_align_errors", stats.algnerrc),
77 	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
78 	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
79 	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
80 	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
81 	IGB_STAT("tx_flow_control_xon", stats.xontxc),
82 	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
83 	IGB_STAT("rx_long_byte_count", stats.gorc),
84 	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
85 	IGB_STAT("tx_smbus", stats.mgptc),
86 	IGB_STAT("rx_smbus", stats.mgprc),
87 	IGB_STAT("dropped_smbus", stats.mgpdc),
88 	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
89 	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
90 	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
91 	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
92 	IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
93 	IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
94 };
95 
96 #define IGB_NETDEV_STAT(_net_stat) { \
97 	.stat_string = __stringify(_net_stat), \
98 	.sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
99 	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
100 }
101 static const struct igb_stats igb_gstrings_net_stats[] = {
102 	IGB_NETDEV_STAT(rx_errors),
103 	IGB_NETDEV_STAT(tx_errors),
104 	IGB_NETDEV_STAT(tx_dropped),
105 	IGB_NETDEV_STAT(rx_length_errors),
106 	IGB_NETDEV_STAT(rx_over_errors),
107 	IGB_NETDEV_STAT(rx_frame_errors),
108 	IGB_NETDEV_STAT(rx_fifo_errors),
109 	IGB_NETDEV_STAT(tx_fifo_errors),
110 	IGB_NETDEV_STAT(tx_heartbeat_errors)
111 };
112 
113 #define IGB_GLOBAL_STATS_LEN	\
114 	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
115 #define IGB_NETDEV_STATS_LEN	\
116 	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
117 #define IGB_RX_QUEUE_STATS_LEN \
118 	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
119 
120 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
121 
122 #define IGB_QUEUE_STATS_LEN \
123 	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
124 	  IGB_RX_QUEUE_STATS_LEN) + \
125 	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
126 	  IGB_TX_QUEUE_STATS_LEN))
127 #define IGB_STATS_LEN \
128 	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
129 
130 enum igb_diagnostics_results {
131 	TEST_REG = 0,
132 	TEST_EEP,
133 	TEST_IRQ,
134 	TEST_LOOP,
135 	TEST_LINK
136 };
137 
138 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
139 	[TEST_REG]  = "Register test  (offline)",
140 	[TEST_EEP]  = "Eeprom test    (offline)",
141 	[TEST_IRQ]  = "Interrupt test (offline)",
142 	[TEST_LOOP] = "Loopback test  (offline)",
143 	[TEST_LINK] = "Link test   (on/offline)"
144 };
145 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
146 
147 static const char igb_priv_flags_strings[][ETH_GSTRING_LEN] = {
148 #define IGB_PRIV_FLAGS_LEGACY_RX	BIT(0)
149 	"legacy-rx",
150 };
151 
152 #define IGB_PRIV_FLAGS_STR_LEN ARRAY_SIZE(igb_priv_flags_strings)
153 
154 static int igb_get_link_ksettings(struct net_device *netdev,
155 				  struct ethtool_link_ksettings *cmd)
156 {
157 	struct igb_adapter *adapter = netdev_priv(netdev);
158 	struct e1000_hw *hw = &adapter->hw;
159 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
160 	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
161 	u32 status;
162 	u32 speed;
163 	u32 supported, advertising;
164 
165 	status = rd32(E1000_STATUS);
166 	if (hw->phy.media_type == e1000_media_type_copper) {
167 
168 		supported = (SUPPORTED_10baseT_Half |
169 			     SUPPORTED_10baseT_Full |
170 			     SUPPORTED_100baseT_Half |
171 			     SUPPORTED_100baseT_Full |
172 			     SUPPORTED_1000baseT_Full|
173 			     SUPPORTED_Autoneg |
174 			     SUPPORTED_TP |
175 			     SUPPORTED_Pause);
176 		advertising = ADVERTISED_TP;
177 
178 		if (hw->mac.autoneg == 1) {
179 			advertising |= ADVERTISED_Autoneg;
180 			/* the e1000 autoneg seems to match ethtool nicely */
181 			advertising |= hw->phy.autoneg_advertised;
182 		}
183 
184 		cmd->base.port = PORT_TP;
185 		cmd->base.phy_address = hw->phy.addr;
186 	} else {
187 		supported = (SUPPORTED_FIBRE |
188 			     SUPPORTED_1000baseKX_Full |
189 			     SUPPORTED_Autoneg |
190 			     SUPPORTED_Pause);
191 		advertising = (ADVERTISED_FIBRE |
192 			       ADVERTISED_1000baseKX_Full);
193 		if (hw->mac.type == e1000_i354) {
194 			if ((hw->device_id ==
195 			     E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
196 			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
197 				supported |= SUPPORTED_2500baseX_Full;
198 				supported &= ~SUPPORTED_1000baseKX_Full;
199 				advertising |= ADVERTISED_2500baseX_Full;
200 				advertising &= ~ADVERTISED_1000baseKX_Full;
201 			}
202 		}
203 		if (eth_flags->e100_base_fx) {
204 			supported |= SUPPORTED_100baseT_Full;
205 			advertising |= ADVERTISED_100baseT_Full;
206 		}
207 		if (hw->mac.autoneg == 1)
208 			advertising |= ADVERTISED_Autoneg;
209 
210 		cmd->base.port = PORT_FIBRE;
211 	}
212 	if (hw->mac.autoneg != 1)
213 		advertising &= ~(ADVERTISED_Pause |
214 				 ADVERTISED_Asym_Pause);
215 
216 	switch (hw->fc.requested_mode) {
217 	case e1000_fc_full:
218 		advertising |= ADVERTISED_Pause;
219 		break;
220 	case e1000_fc_rx_pause:
221 		advertising |= (ADVERTISED_Pause |
222 				ADVERTISED_Asym_Pause);
223 		break;
224 	case e1000_fc_tx_pause:
225 		advertising |=  ADVERTISED_Asym_Pause;
226 		break;
227 	default:
228 		advertising &= ~(ADVERTISED_Pause |
229 				 ADVERTISED_Asym_Pause);
230 	}
231 	if (status & E1000_STATUS_LU) {
232 		if ((status & E1000_STATUS_2P5_SKU) &&
233 		    !(status & E1000_STATUS_2P5_SKU_OVER)) {
234 			speed = SPEED_2500;
235 		} else if (status & E1000_STATUS_SPEED_1000) {
236 			speed = SPEED_1000;
237 		} else if (status & E1000_STATUS_SPEED_100) {
238 			speed = SPEED_100;
239 		} else {
240 			speed = SPEED_10;
241 		}
242 		if ((status & E1000_STATUS_FD) ||
243 		    hw->phy.media_type != e1000_media_type_copper)
244 			cmd->base.duplex = DUPLEX_FULL;
245 		else
246 			cmd->base.duplex = DUPLEX_HALF;
247 	} else {
248 		speed = SPEED_UNKNOWN;
249 		cmd->base.duplex = DUPLEX_UNKNOWN;
250 	}
251 	cmd->base.speed = speed;
252 	if ((hw->phy.media_type == e1000_media_type_fiber) ||
253 	    hw->mac.autoneg)
254 		cmd->base.autoneg = AUTONEG_ENABLE;
255 	else
256 		cmd->base.autoneg = AUTONEG_DISABLE;
257 
258 	/* MDI-X => 2; MDI =>1; Invalid =>0 */
259 	if (hw->phy.media_type == e1000_media_type_copper)
260 		cmd->base.eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
261 						      ETH_TP_MDI;
262 	else
263 		cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
264 
265 	if (hw->phy.mdix == AUTO_ALL_MODES)
266 		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
267 	else
268 		cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
269 
270 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
271 						supported);
272 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
273 						advertising);
274 
275 	return 0;
276 }
277 
278 static int igb_set_link_ksettings(struct net_device *netdev,
279 				  const struct ethtool_link_ksettings *cmd)
280 {
281 	struct igb_adapter *adapter = netdev_priv(netdev);
282 	struct e1000_hw *hw = &adapter->hw;
283 	u32 advertising;
284 
285 	/* When SoL/IDER sessions are active, autoneg/speed/duplex
286 	 * cannot be changed
287 	 */
288 	if (igb_check_reset_block(hw)) {
289 		dev_err(&adapter->pdev->dev,
290 			"Cannot change link characteristics when SoL/IDER is active.\n");
291 		return -EINVAL;
292 	}
293 
294 	/* MDI setting is only allowed when autoneg enabled because
295 	 * some hardware doesn't allow MDI setting when speed or
296 	 * duplex is forced.
297 	 */
298 	if (cmd->base.eth_tp_mdix_ctrl) {
299 		if (hw->phy.media_type != e1000_media_type_copper)
300 			return -EOPNOTSUPP;
301 
302 		if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
303 		    (cmd->base.autoneg != AUTONEG_ENABLE)) {
304 			dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
305 			return -EINVAL;
306 		}
307 	}
308 
309 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
310 		usleep_range(1000, 2000);
311 
312 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
313 						cmd->link_modes.advertising);
314 
315 	if (cmd->base.autoneg == AUTONEG_ENABLE) {
316 		hw->mac.autoneg = 1;
317 		if (hw->phy.media_type == e1000_media_type_fiber) {
318 			hw->phy.autoneg_advertised = advertising |
319 						     ADVERTISED_FIBRE |
320 						     ADVERTISED_Autoneg;
321 			switch (adapter->link_speed) {
322 			case SPEED_2500:
323 				hw->phy.autoneg_advertised =
324 					ADVERTISED_2500baseX_Full;
325 				break;
326 			case SPEED_1000:
327 				hw->phy.autoneg_advertised =
328 					ADVERTISED_1000baseT_Full;
329 				break;
330 			case SPEED_100:
331 				hw->phy.autoneg_advertised =
332 					ADVERTISED_100baseT_Full;
333 				break;
334 			default:
335 				break;
336 			}
337 		} else {
338 			hw->phy.autoneg_advertised = advertising |
339 						     ADVERTISED_TP |
340 						     ADVERTISED_Autoneg;
341 		}
342 		advertising = hw->phy.autoneg_advertised;
343 		if (adapter->fc_autoneg)
344 			hw->fc.requested_mode = e1000_fc_default;
345 	} else {
346 		u32 speed = cmd->base.speed;
347 		/* calling this overrides forced MDI setting */
348 		if (igb_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
349 			clear_bit(__IGB_RESETTING, &adapter->state);
350 			return -EINVAL;
351 		}
352 	}
353 
354 	/* MDI-X => 2; MDI => 1; Auto => 3 */
355 	if (cmd->base.eth_tp_mdix_ctrl) {
356 		/* fix up the value for auto (3 => 0) as zero is mapped
357 		 * internally to auto
358 		 */
359 		if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
360 			hw->phy.mdix = AUTO_ALL_MODES;
361 		else
362 			hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
363 	}
364 
365 	/* reset the link */
366 	if (netif_running(adapter->netdev)) {
367 		igb_down(adapter);
368 		igb_up(adapter);
369 	} else
370 		igb_reset(adapter);
371 
372 	clear_bit(__IGB_RESETTING, &adapter->state);
373 	return 0;
374 }
375 
376 static u32 igb_get_link(struct net_device *netdev)
377 {
378 	struct igb_adapter *adapter = netdev_priv(netdev);
379 	struct e1000_mac_info *mac = &adapter->hw.mac;
380 
381 	/* If the link is not reported up to netdev, interrupts are disabled,
382 	 * and so the physical link state may have changed since we last
383 	 * looked. Set get_link_status to make sure that the true link
384 	 * state is interrogated, rather than pulling a cached and possibly
385 	 * stale link state from the driver.
386 	 */
387 	if (!netif_carrier_ok(netdev))
388 		mac->get_link_status = 1;
389 
390 	return igb_has_link(adapter);
391 }
392 
393 static void igb_get_pauseparam(struct net_device *netdev,
394 			       struct ethtool_pauseparam *pause)
395 {
396 	struct igb_adapter *adapter = netdev_priv(netdev);
397 	struct e1000_hw *hw = &adapter->hw;
398 
399 	pause->autoneg =
400 		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
401 
402 	if (hw->fc.current_mode == e1000_fc_rx_pause)
403 		pause->rx_pause = 1;
404 	else if (hw->fc.current_mode == e1000_fc_tx_pause)
405 		pause->tx_pause = 1;
406 	else if (hw->fc.current_mode == e1000_fc_full) {
407 		pause->rx_pause = 1;
408 		pause->tx_pause = 1;
409 	}
410 }
411 
412 static int igb_set_pauseparam(struct net_device *netdev,
413 			      struct ethtool_pauseparam *pause)
414 {
415 	struct igb_adapter *adapter = netdev_priv(netdev);
416 	struct e1000_hw *hw = &adapter->hw;
417 	int retval = 0;
418 
419 	/* 100basefx does not support setting link flow control */
420 	if (hw->dev_spec._82575.eth_flags.e100_base_fx)
421 		return -EINVAL;
422 
423 	adapter->fc_autoneg = pause->autoneg;
424 
425 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
426 		usleep_range(1000, 2000);
427 
428 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
429 		hw->fc.requested_mode = e1000_fc_default;
430 		if (netif_running(adapter->netdev)) {
431 			igb_down(adapter);
432 			igb_up(adapter);
433 		} else {
434 			igb_reset(adapter);
435 		}
436 	} else {
437 		if (pause->rx_pause && pause->tx_pause)
438 			hw->fc.requested_mode = e1000_fc_full;
439 		else if (pause->rx_pause && !pause->tx_pause)
440 			hw->fc.requested_mode = e1000_fc_rx_pause;
441 		else if (!pause->rx_pause && pause->tx_pause)
442 			hw->fc.requested_mode = e1000_fc_tx_pause;
443 		else if (!pause->rx_pause && !pause->tx_pause)
444 			hw->fc.requested_mode = e1000_fc_none;
445 
446 		hw->fc.current_mode = hw->fc.requested_mode;
447 
448 		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
449 			  igb_force_mac_fc(hw) : igb_setup_link(hw));
450 	}
451 
452 	clear_bit(__IGB_RESETTING, &adapter->state);
453 	return retval;
454 }
455 
456 static u32 igb_get_msglevel(struct net_device *netdev)
457 {
458 	struct igb_adapter *adapter = netdev_priv(netdev);
459 	return adapter->msg_enable;
460 }
461 
462 static void igb_set_msglevel(struct net_device *netdev, u32 data)
463 {
464 	struct igb_adapter *adapter = netdev_priv(netdev);
465 	adapter->msg_enable = data;
466 }
467 
468 static int igb_get_regs_len(struct net_device *netdev)
469 {
470 #define IGB_REGS_LEN 739
471 	return IGB_REGS_LEN * sizeof(u32);
472 }
473 
474 static void igb_get_regs(struct net_device *netdev,
475 			 struct ethtool_regs *regs, void *p)
476 {
477 	struct igb_adapter *adapter = netdev_priv(netdev);
478 	struct e1000_hw *hw = &adapter->hw;
479 	u32 *regs_buff = p;
480 	u8 i;
481 
482 	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
483 
484 	regs->version = (1u << 24) | (hw->revision_id << 16) | hw->device_id;
485 
486 	/* General Registers */
487 	regs_buff[0] = rd32(E1000_CTRL);
488 	regs_buff[1] = rd32(E1000_STATUS);
489 	regs_buff[2] = rd32(E1000_CTRL_EXT);
490 	regs_buff[3] = rd32(E1000_MDIC);
491 	regs_buff[4] = rd32(E1000_SCTL);
492 	regs_buff[5] = rd32(E1000_CONNSW);
493 	regs_buff[6] = rd32(E1000_VET);
494 	regs_buff[7] = rd32(E1000_LEDCTL);
495 	regs_buff[8] = rd32(E1000_PBA);
496 	regs_buff[9] = rd32(E1000_PBS);
497 	regs_buff[10] = rd32(E1000_FRTIMER);
498 	regs_buff[11] = rd32(E1000_TCPTIMER);
499 
500 	/* NVM Register */
501 	regs_buff[12] = rd32(E1000_EECD);
502 
503 	/* Interrupt */
504 	/* Reading EICS for EICR because they read the
505 	 * same but EICS does not clear on read
506 	 */
507 	regs_buff[13] = rd32(E1000_EICS);
508 	regs_buff[14] = rd32(E1000_EICS);
509 	regs_buff[15] = rd32(E1000_EIMS);
510 	regs_buff[16] = rd32(E1000_EIMC);
511 	regs_buff[17] = rd32(E1000_EIAC);
512 	regs_buff[18] = rd32(E1000_EIAM);
513 	/* Reading ICS for ICR because they read the
514 	 * same but ICS does not clear on read
515 	 */
516 	regs_buff[19] = rd32(E1000_ICS);
517 	regs_buff[20] = rd32(E1000_ICS);
518 	regs_buff[21] = rd32(E1000_IMS);
519 	regs_buff[22] = rd32(E1000_IMC);
520 	regs_buff[23] = rd32(E1000_IAC);
521 	regs_buff[24] = rd32(E1000_IAM);
522 	regs_buff[25] = rd32(E1000_IMIRVP);
523 
524 	/* Flow Control */
525 	regs_buff[26] = rd32(E1000_FCAL);
526 	regs_buff[27] = rd32(E1000_FCAH);
527 	regs_buff[28] = rd32(E1000_FCTTV);
528 	regs_buff[29] = rd32(E1000_FCRTL);
529 	regs_buff[30] = rd32(E1000_FCRTH);
530 	regs_buff[31] = rd32(E1000_FCRTV);
531 
532 	/* Receive */
533 	regs_buff[32] = rd32(E1000_RCTL);
534 	regs_buff[33] = rd32(E1000_RXCSUM);
535 	regs_buff[34] = rd32(E1000_RLPML);
536 	regs_buff[35] = rd32(E1000_RFCTL);
537 	regs_buff[36] = rd32(E1000_MRQC);
538 	regs_buff[37] = rd32(E1000_VT_CTL);
539 
540 	/* Transmit */
541 	regs_buff[38] = rd32(E1000_TCTL);
542 	regs_buff[39] = rd32(E1000_TCTL_EXT);
543 	regs_buff[40] = rd32(E1000_TIPG);
544 	regs_buff[41] = rd32(E1000_DTXCTL);
545 
546 	/* Wake Up */
547 	regs_buff[42] = rd32(E1000_WUC);
548 	regs_buff[43] = rd32(E1000_WUFC);
549 	regs_buff[44] = rd32(E1000_WUS);
550 	regs_buff[45] = rd32(E1000_IPAV);
551 	regs_buff[46] = rd32(E1000_WUPL);
552 
553 	/* MAC */
554 	regs_buff[47] = rd32(E1000_PCS_CFG0);
555 	regs_buff[48] = rd32(E1000_PCS_LCTL);
556 	regs_buff[49] = rd32(E1000_PCS_LSTAT);
557 	regs_buff[50] = rd32(E1000_PCS_ANADV);
558 	regs_buff[51] = rd32(E1000_PCS_LPAB);
559 	regs_buff[52] = rd32(E1000_PCS_NPTX);
560 	regs_buff[53] = rd32(E1000_PCS_LPABNP);
561 
562 	/* Statistics */
563 	regs_buff[54] = adapter->stats.crcerrs;
564 	regs_buff[55] = adapter->stats.algnerrc;
565 	regs_buff[56] = adapter->stats.symerrs;
566 	regs_buff[57] = adapter->stats.rxerrc;
567 	regs_buff[58] = adapter->stats.mpc;
568 	regs_buff[59] = adapter->stats.scc;
569 	regs_buff[60] = adapter->stats.ecol;
570 	regs_buff[61] = adapter->stats.mcc;
571 	regs_buff[62] = adapter->stats.latecol;
572 	regs_buff[63] = adapter->stats.colc;
573 	regs_buff[64] = adapter->stats.dc;
574 	regs_buff[65] = adapter->stats.tncrs;
575 	regs_buff[66] = adapter->stats.sec;
576 	regs_buff[67] = adapter->stats.htdpmc;
577 	regs_buff[68] = adapter->stats.rlec;
578 	regs_buff[69] = adapter->stats.xonrxc;
579 	regs_buff[70] = adapter->stats.xontxc;
580 	regs_buff[71] = adapter->stats.xoffrxc;
581 	regs_buff[72] = adapter->stats.xofftxc;
582 	regs_buff[73] = adapter->stats.fcruc;
583 	regs_buff[74] = adapter->stats.prc64;
584 	regs_buff[75] = adapter->stats.prc127;
585 	regs_buff[76] = adapter->stats.prc255;
586 	regs_buff[77] = adapter->stats.prc511;
587 	regs_buff[78] = adapter->stats.prc1023;
588 	regs_buff[79] = adapter->stats.prc1522;
589 	regs_buff[80] = adapter->stats.gprc;
590 	regs_buff[81] = adapter->stats.bprc;
591 	regs_buff[82] = adapter->stats.mprc;
592 	regs_buff[83] = adapter->stats.gptc;
593 	regs_buff[84] = adapter->stats.gorc;
594 	regs_buff[86] = adapter->stats.gotc;
595 	regs_buff[88] = adapter->stats.rnbc;
596 	regs_buff[89] = adapter->stats.ruc;
597 	regs_buff[90] = adapter->stats.rfc;
598 	regs_buff[91] = adapter->stats.roc;
599 	regs_buff[92] = adapter->stats.rjc;
600 	regs_buff[93] = adapter->stats.mgprc;
601 	regs_buff[94] = adapter->stats.mgpdc;
602 	regs_buff[95] = adapter->stats.mgptc;
603 	regs_buff[96] = adapter->stats.tor;
604 	regs_buff[98] = adapter->stats.tot;
605 	regs_buff[100] = adapter->stats.tpr;
606 	regs_buff[101] = adapter->stats.tpt;
607 	regs_buff[102] = adapter->stats.ptc64;
608 	regs_buff[103] = adapter->stats.ptc127;
609 	regs_buff[104] = adapter->stats.ptc255;
610 	regs_buff[105] = adapter->stats.ptc511;
611 	regs_buff[106] = adapter->stats.ptc1023;
612 	regs_buff[107] = adapter->stats.ptc1522;
613 	regs_buff[108] = adapter->stats.mptc;
614 	regs_buff[109] = adapter->stats.bptc;
615 	regs_buff[110] = adapter->stats.tsctc;
616 	regs_buff[111] = adapter->stats.iac;
617 	regs_buff[112] = adapter->stats.rpthc;
618 	regs_buff[113] = adapter->stats.hgptc;
619 	regs_buff[114] = adapter->stats.hgorc;
620 	regs_buff[116] = adapter->stats.hgotc;
621 	regs_buff[118] = adapter->stats.lenerrs;
622 	regs_buff[119] = adapter->stats.scvpc;
623 	regs_buff[120] = adapter->stats.hrmpc;
624 
625 	for (i = 0; i < 4; i++)
626 		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
627 	for (i = 0; i < 4; i++)
628 		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
629 	for (i = 0; i < 4; i++)
630 		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
631 	for (i = 0; i < 4; i++)
632 		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
633 	for (i = 0; i < 4; i++)
634 		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
635 	for (i = 0; i < 4; i++)
636 		regs_buff[141 + i] = rd32(E1000_RDH(i));
637 	for (i = 0; i < 4; i++)
638 		regs_buff[145 + i] = rd32(E1000_RDT(i));
639 	for (i = 0; i < 4; i++)
640 		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
641 
642 	for (i = 0; i < 10; i++)
643 		regs_buff[153 + i] = rd32(E1000_EITR(i));
644 	for (i = 0; i < 8; i++)
645 		regs_buff[163 + i] = rd32(E1000_IMIR(i));
646 	for (i = 0; i < 8; i++)
647 		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
648 	for (i = 0; i < 16; i++)
649 		regs_buff[179 + i] = rd32(E1000_RAL(i));
650 	for (i = 0; i < 16; i++)
651 		regs_buff[195 + i] = rd32(E1000_RAH(i));
652 
653 	for (i = 0; i < 4; i++)
654 		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
655 	for (i = 0; i < 4; i++)
656 		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
657 	for (i = 0; i < 4; i++)
658 		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
659 	for (i = 0; i < 4; i++)
660 		regs_buff[223 + i] = rd32(E1000_TDH(i));
661 	for (i = 0; i < 4; i++)
662 		regs_buff[227 + i] = rd32(E1000_TDT(i));
663 	for (i = 0; i < 4; i++)
664 		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
665 	for (i = 0; i < 4; i++)
666 		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
667 	for (i = 0; i < 4; i++)
668 		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
669 	for (i = 0; i < 4; i++)
670 		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
671 
672 	for (i = 0; i < 4; i++)
673 		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
674 	for (i = 0; i < 4; i++)
675 		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
676 	for (i = 0; i < 32; i++)
677 		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
678 	for (i = 0; i < 128; i++)
679 		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
680 	for (i = 0; i < 128; i++)
681 		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
682 	for (i = 0; i < 4; i++)
683 		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
684 
685 	regs_buff[547] = rd32(E1000_TDFH);
686 	regs_buff[548] = rd32(E1000_TDFT);
687 	regs_buff[549] = rd32(E1000_TDFHS);
688 	regs_buff[550] = rd32(E1000_TDFPC);
689 
690 	if (hw->mac.type > e1000_82580) {
691 		regs_buff[551] = adapter->stats.o2bgptc;
692 		regs_buff[552] = adapter->stats.b2ospc;
693 		regs_buff[553] = adapter->stats.o2bspc;
694 		regs_buff[554] = adapter->stats.b2ogprc;
695 	}
696 
697 	if (hw->mac.type != e1000_82576)
698 		return;
699 	for (i = 0; i < 12; i++)
700 		regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
701 	for (i = 0; i < 4; i++)
702 		regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
703 	for (i = 0; i < 12; i++)
704 		regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
705 	for (i = 0; i < 12; i++)
706 		regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
707 	for (i = 0; i < 12; i++)
708 		regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
709 	for (i = 0; i < 12; i++)
710 		regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
711 	for (i = 0; i < 12; i++)
712 		regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
713 	for (i = 0; i < 12; i++)
714 		regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
715 
716 	for (i = 0; i < 12; i++)
717 		regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
718 	for (i = 0; i < 12; i++)
719 		regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
720 	for (i = 0; i < 12; i++)
721 		regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
722 	for (i = 0; i < 12; i++)
723 		regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
724 	for (i = 0; i < 12; i++)
725 		regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
726 	for (i = 0; i < 12; i++)
727 		regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
728 	for (i = 0; i < 12; i++)
729 		regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
730 	for (i = 0; i < 12; i++)
731 		regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
732 }
733 
734 static int igb_get_eeprom_len(struct net_device *netdev)
735 {
736 	struct igb_adapter *adapter = netdev_priv(netdev);
737 	return adapter->hw.nvm.word_size * 2;
738 }
739 
740 static int igb_get_eeprom(struct net_device *netdev,
741 			  struct ethtool_eeprom *eeprom, u8 *bytes)
742 {
743 	struct igb_adapter *adapter = netdev_priv(netdev);
744 	struct e1000_hw *hw = &adapter->hw;
745 	u16 *eeprom_buff;
746 	int first_word, last_word;
747 	int ret_val = 0;
748 	u16 i;
749 
750 	if (eeprom->len == 0)
751 		return -EINVAL;
752 
753 	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
754 
755 	first_word = eeprom->offset >> 1;
756 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
757 
758 	eeprom_buff = kmalloc(sizeof(u16) *
759 			(last_word - first_word + 1), GFP_KERNEL);
760 	if (!eeprom_buff)
761 		return -ENOMEM;
762 
763 	if (hw->nvm.type == e1000_nvm_eeprom_spi)
764 		ret_val = hw->nvm.ops.read(hw, first_word,
765 					   last_word - first_word + 1,
766 					   eeprom_buff);
767 	else {
768 		for (i = 0; i < last_word - first_word + 1; i++) {
769 			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
770 						   &eeprom_buff[i]);
771 			if (ret_val)
772 				break;
773 		}
774 	}
775 
776 	/* Device's eeprom is always little-endian, word addressable */
777 	for (i = 0; i < last_word - first_word + 1; i++)
778 		le16_to_cpus(&eeprom_buff[i]);
779 
780 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
781 			eeprom->len);
782 	kfree(eeprom_buff);
783 
784 	return ret_val;
785 }
786 
787 static int igb_set_eeprom(struct net_device *netdev,
788 			  struct ethtool_eeprom *eeprom, u8 *bytes)
789 {
790 	struct igb_adapter *adapter = netdev_priv(netdev);
791 	struct e1000_hw *hw = &adapter->hw;
792 	u16 *eeprom_buff;
793 	void *ptr;
794 	int max_len, first_word, last_word, ret_val = 0;
795 	u16 i;
796 
797 	if (eeprom->len == 0)
798 		return -EOPNOTSUPP;
799 
800 	if ((hw->mac.type >= e1000_i210) &&
801 	    !igb_get_flash_presence_i210(hw)) {
802 		return -EOPNOTSUPP;
803 	}
804 
805 	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
806 		return -EFAULT;
807 
808 	max_len = hw->nvm.word_size * 2;
809 
810 	first_word = eeprom->offset >> 1;
811 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
812 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
813 	if (!eeprom_buff)
814 		return -ENOMEM;
815 
816 	ptr = (void *)eeprom_buff;
817 
818 	if (eeprom->offset & 1) {
819 		/* need read/modify/write of first changed EEPROM word
820 		 * only the second byte of the word is being modified
821 		 */
822 		ret_val = hw->nvm.ops.read(hw, first_word, 1,
823 					    &eeprom_buff[0]);
824 		ptr++;
825 	}
826 	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
827 		/* need read/modify/write of last changed EEPROM word
828 		 * only the first byte of the word is being modified
829 		 */
830 		ret_val = hw->nvm.ops.read(hw, last_word, 1,
831 				   &eeprom_buff[last_word - first_word]);
832 	}
833 
834 	/* Device's eeprom is always little-endian, word addressable */
835 	for (i = 0; i < last_word - first_word + 1; i++)
836 		le16_to_cpus(&eeprom_buff[i]);
837 
838 	memcpy(ptr, bytes, eeprom->len);
839 
840 	for (i = 0; i < last_word - first_word + 1; i++)
841 		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
842 
843 	ret_val = hw->nvm.ops.write(hw, first_word,
844 				    last_word - first_word + 1, eeprom_buff);
845 
846 	/* Update the checksum if nvm write succeeded */
847 	if (ret_val == 0)
848 		hw->nvm.ops.update(hw);
849 
850 	igb_set_fw_version(adapter);
851 	kfree(eeprom_buff);
852 	return ret_val;
853 }
854 
855 static void igb_get_drvinfo(struct net_device *netdev,
856 			    struct ethtool_drvinfo *drvinfo)
857 {
858 	struct igb_adapter *adapter = netdev_priv(netdev);
859 
860 	strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
861 	strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
862 
863 	/* EEPROM image version # is reported as firmware version # for
864 	 * 82575 controllers
865 	 */
866 	strlcpy(drvinfo->fw_version, adapter->fw_version,
867 		sizeof(drvinfo->fw_version));
868 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
869 		sizeof(drvinfo->bus_info));
870 
871 	drvinfo->n_priv_flags = IGB_PRIV_FLAGS_STR_LEN;
872 }
873 
874 static void igb_get_ringparam(struct net_device *netdev,
875 			      struct ethtool_ringparam *ring)
876 {
877 	struct igb_adapter *adapter = netdev_priv(netdev);
878 
879 	ring->rx_max_pending = IGB_MAX_RXD;
880 	ring->tx_max_pending = IGB_MAX_TXD;
881 	ring->rx_pending = adapter->rx_ring_count;
882 	ring->tx_pending = adapter->tx_ring_count;
883 }
884 
885 static int igb_set_ringparam(struct net_device *netdev,
886 			     struct ethtool_ringparam *ring)
887 {
888 	struct igb_adapter *adapter = netdev_priv(netdev);
889 	struct igb_ring *temp_ring;
890 	int i, err = 0;
891 	u16 new_rx_count, new_tx_count;
892 
893 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
894 		return -EINVAL;
895 
896 	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
897 	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
898 	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
899 
900 	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
901 	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
902 	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
903 
904 	if ((new_tx_count == adapter->tx_ring_count) &&
905 	    (new_rx_count == adapter->rx_ring_count)) {
906 		/* nothing to do */
907 		return 0;
908 	}
909 
910 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
911 		usleep_range(1000, 2000);
912 
913 	if (!netif_running(adapter->netdev)) {
914 		for (i = 0; i < adapter->num_tx_queues; i++)
915 			adapter->tx_ring[i]->count = new_tx_count;
916 		for (i = 0; i < adapter->num_rx_queues; i++)
917 			adapter->rx_ring[i]->count = new_rx_count;
918 		adapter->tx_ring_count = new_tx_count;
919 		adapter->rx_ring_count = new_rx_count;
920 		goto clear_reset;
921 	}
922 
923 	if (adapter->num_tx_queues > adapter->num_rx_queues)
924 		temp_ring = vmalloc(adapter->num_tx_queues *
925 				    sizeof(struct igb_ring));
926 	else
927 		temp_ring = vmalloc(adapter->num_rx_queues *
928 				    sizeof(struct igb_ring));
929 
930 	if (!temp_ring) {
931 		err = -ENOMEM;
932 		goto clear_reset;
933 	}
934 
935 	igb_down(adapter);
936 
937 	/* We can't just free everything and then setup again,
938 	 * because the ISRs in MSI-X mode get passed pointers
939 	 * to the Tx and Rx ring structs.
940 	 */
941 	if (new_tx_count != adapter->tx_ring_count) {
942 		for (i = 0; i < adapter->num_tx_queues; i++) {
943 			memcpy(&temp_ring[i], adapter->tx_ring[i],
944 			       sizeof(struct igb_ring));
945 
946 			temp_ring[i].count = new_tx_count;
947 			err = igb_setup_tx_resources(&temp_ring[i]);
948 			if (err) {
949 				while (i) {
950 					i--;
951 					igb_free_tx_resources(&temp_ring[i]);
952 				}
953 				goto err_setup;
954 			}
955 		}
956 
957 		for (i = 0; i < adapter->num_tx_queues; i++) {
958 			igb_free_tx_resources(adapter->tx_ring[i]);
959 
960 			memcpy(adapter->tx_ring[i], &temp_ring[i],
961 			       sizeof(struct igb_ring));
962 		}
963 
964 		adapter->tx_ring_count = new_tx_count;
965 	}
966 
967 	if (new_rx_count != adapter->rx_ring_count) {
968 		for (i = 0; i < adapter->num_rx_queues; i++) {
969 			memcpy(&temp_ring[i], adapter->rx_ring[i],
970 			       sizeof(struct igb_ring));
971 
972 			temp_ring[i].count = new_rx_count;
973 			err = igb_setup_rx_resources(&temp_ring[i]);
974 			if (err) {
975 				while (i) {
976 					i--;
977 					igb_free_rx_resources(&temp_ring[i]);
978 				}
979 				goto err_setup;
980 			}
981 
982 		}
983 
984 		for (i = 0; i < adapter->num_rx_queues; i++) {
985 			igb_free_rx_resources(adapter->rx_ring[i]);
986 
987 			memcpy(adapter->rx_ring[i], &temp_ring[i],
988 			       sizeof(struct igb_ring));
989 		}
990 
991 		adapter->rx_ring_count = new_rx_count;
992 	}
993 err_setup:
994 	igb_up(adapter);
995 	vfree(temp_ring);
996 clear_reset:
997 	clear_bit(__IGB_RESETTING, &adapter->state);
998 	return err;
999 }
1000 
1001 /* ethtool register test data */
1002 struct igb_reg_test {
1003 	u16 reg;
1004 	u16 reg_offset;
1005 	u16 array_len;
1006 	u16 test_type;
1007 	u32 mask;
1008 	u32 write;
1009 };
1010 
1011 /* In the hardware, registers are laid out either singly, in arrays
1012  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
1013  * most tests take place on arrays or single registers (handled
1014  * as a single-element array) and special-case the tables.
1015  * Table tests are always pattern tests.
1016  *
1017  * We also make provision for some required setup steps by specifying
1018  * registers to be written without any read-back testing.
1019  */
1020 
1021 #define PATTERN_TEST	1
1022 #define SET_READ_TEST	2
1023 #define WRITE_NO_TEST	3
1024 #define TABLE32_TEST	4
1025 #define TABLE64_TEST_LO	5
1026 #define TABLE64_TEST_HI	6
1027 
1028 /* i210 reg test */
1029 static struct igb_reg_test reg_test_i210[] = {
1030 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1031 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1032 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1033 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1034 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1035 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1036 	/* RDH is read-only for i210, only test RDT. */
1037 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1038 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1039 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1040 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1041 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1042 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1043 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1044 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1045 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1046 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1047 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1048 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1049 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1050 						0xFFFFFFFF, 0xFFFFFFFF },
1051 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1052 						0x900FFFFF, 0xFFFFFFFF },
1053 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1054 						0xFFFFFFFF, 0xFFFFFFFF },
1055 	{ 0, 0, 0, 0, 0 }
1056 };
1057 
1058 /* i350 reg test */
1059 static struct igb_reg_test reg_test_i350[] = {
1060 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1061 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1062 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1063 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1064 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1065 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1066 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1067 	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1068 	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1069 	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1070 	/* RDH is read-only for i350, only test RDT. */
1071 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1072 	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1073 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1074 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1075 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1076 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1077 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1078 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1079 	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1080 	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1081 	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1082 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1083 	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1084 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1085 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1086 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1087 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1088 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1089 						0xFFFFFFFF, 0xFFFFFFFF },
1090 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1091 						0xC3FFFFFF, 0xFFFFFFFF },
1092 	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
1093 						0xFFFFFFFF, 0xFFFFFFFF },
1094 	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
1095 						0xC3FFFFFF, 0xFFFFFFFF },
1096 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1097 						0xFFFFFFFF, 0xFFFFFFFF },
1098 	{ 0, 0, 0, 0 }
1099 };
1100 
1101 /* 82580 reg test */
1102 static struct igb_reg_test reg_test_82580[] = {
1103 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1104 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1105 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1106 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1107 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1108 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1109 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1110 	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1111 	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1112 	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1113 	/* RDH is read-only for 82580, only test RDT. */
1114 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1115 	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1116 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1117 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1118 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1119 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1120 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1121 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1122 	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1123 	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1124 	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1125 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1126 	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1127 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1128 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1129 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1130 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1131 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1132 						0xFFFFFFFF, 0xFFFFFFFF },
1133 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1134 						0x83FFFFFF, 0xFFFFFFFF },
1135 	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
1136 						0xFFFFFFFF, 0xFFFFFFFF },
1137 	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
1138 						0x83FFFFFF, 0xFFFFFFFF },
1139 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1140 						0xFFFFFFFF, 0xFFFFFFFF },
1141 	{ 0, 0, 0, 0 }
1142 };
1143 
1144 /* 82576 reg test */
1145 static struct igb_reg_test reg_test_82576[] = {
1146 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1147 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1148 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1149 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1150 	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1151 	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1152 	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1153 	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1154 	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1155 	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1156 	/* Enable all RX queues before testing. */
1157 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1158 	  E1000_RXDCTL_QUEUE_ENABLE },
1159 	{ E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0,
1160 	  E1000_RXDCTL_QUEUE_ENABLE },
1161 	/* RDH is read-only for 82576, only test RDT. */
1162 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1163 	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1164 	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1165 	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1166 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1167 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1168 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1169 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1170 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1171 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1172 	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1173 	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1174 	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1175 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1176 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1177 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1178 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1179 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1180 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1181 	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1182 	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1183 	{ E1000_MTA,	   0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1184 	{ 0, 0, 0, 0 }
1185 };
1186 
1187 /* 82575 register test */
1188 static struct igb_reg_test reg_test_82575[] = {
1189 	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1190 	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1191 	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1192 	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1193 	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1194 	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1195 	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1196 	/* Enable all four RX queues before testing. */
1197 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1198 	  E1000_RXDCTL_QUEUE_ENABLE },
1199 	/* RDH is read-only for 82575, only test RDT. */
1200 	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1201 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1202 	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1203 	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1204 	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1205 	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1206 	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1207 	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1208 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1209 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1210 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1211 	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1212 	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1213 	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1214 	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1215 	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1216 	{ 0, 0, 0, 0 }
1217 };
1218 
1219 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1220 			     int reg, u32 mask, u32 write)
1221 {
1222 	struct e1000_hw *hw = &adapter->hw;
1223 	u32 pat, val;
1224 	static const u32 _test[] = {
1225 		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1226 	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1227 		wr32(reg, (_test[pat] & write));
1228 		val = rd32(reg) & mask;
1229 		if (val != (_test[pat] & write & mask)) {
1230 			dev_err(&adapter->pdev->dev,
1231 				"pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1232 				reg, val, (_test[pat] & write & mask));
1233 			*data = reg;
1234 			return true;
1235 		}
1236 	}
1237 
1238 	return false;
1239 }
1240 
1241 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1242 			      int reg, u32 mask, u32 write)
1243 {
1244 	struct e1000_hw *hw = &adapter->hw;
1245 	u32 val;
1246 
1247 	wr32(reg, write & mask);
1248 	val = rd32(reg);
1249 	if ((write & mask) != (val & mask)) {
1250 		dev_err(&adapter->pdev->dev,
1251 			"set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
1252 			reg, (val & mask), (write & mask));
1253 		*data = reg;
1254 		return true;
1255 	}
1256 
1257 	return false;
1258 }
1259 
1260 #define REG_PATTERN_TEST(reg, mask, write) \
1261 	do { \
1262 		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1263 			return 1; \
1264 	} while (0)
1265 
1266 #define REG_SET_AND_CHECK(reg, mask, write) \
1267 	do { \
1268 		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1269 			return 1; \
1270 	} while (0)
1271 
1272 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1273 {
1274 	struct e1000_hw *hw = &adapter->hw;
1275 	struct igb_reg_test *test;
1276 	u32 value, before, after;
1277 	u32 i, toggle;
1278 
1279 	switch (adapter->hw.mac.type) {
1280 	case e1000_i350:
1281 	case e1000_i354:
1282 		test = reg_test_i350;
1283 		toggle = 0x7FEFF3FF;
1284 		break;
1285 	case e1000_i210:
1286 	case e1000_i211:
1287 		test = reg_test_i210;
1288 		toggle = 0x7FEFF3FF;
1289 		break;
1290 	case e1000_82580:
1291 		test = reg_test_82580;
1292 		toggle = 0x7FEFF3FF;
1293 		break;
1294 	case e1000_82576:
1295 		test = reg_test_82576;
1296 		toggle = 0x7FFFF3FF;
1297 		break;
1298 	default:
1299 		test = reg_test_82575;
1300 		toggle = 0x7FFFF3FF;
1301 		break;
1302 	}
1303 
1304 	/* Because the status register is such a special case,
1305 	 * we handle it separately from the rest of the register
1306 	 * tests.  Some bits are read-only, some toggle, and some
1307 	 * are writable on newer MACs.
1308 	 */
1309 	before = rd32(E1000_STATUS);
1310 	value = (rd32(E1000_STATUS) & toggle);
1311 	wr32(E1000_STATUS, toggle);
1312 	after = rd32(E1000_STATUS) & toggle;
1313 	if (value != after) {
1314 		dev_err(&adapter->pdev->dev,
1315 			"failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1316 			after, value);
1317 		*data = 1;
1318 		return 1;
1319 	}
1320 	/* restore previous status */
1321 	wr32(E1000_STATUS, before);
1322 
1323 	/* Perform the remainder of the register test, looping through
1324 	 * the test table until we either fail or reach the null entry.
1325 	 */
1326 	while (test->reg) {
1327 		for (i = 0; i < test->array_len; i++) {
1328 			switch (test->test_type) {
1329 			case PATTERN_TEST:
1330 				REG_PATTERN_TEST(test->reg +
1331 						(i * test->reg_offset),
1332 						test->mask,
1333 						test->write);
1334 				break;
1335 			case SET_READ_TEST:
1336 				REG_SET_AND_CHECK(test->reg +
1337 						(i * test->reg_offset),
1338 						test->mask,
1339 						test->write);
1340 				break;
1341 			case WRITE_NO_TEST:
1342 				writel(test->write,
1343 				    (adapter->hw.hw_addr + test->reg)
1344 					+ (i * test->reg_offset));
1345 				break;
1346 			case TABLE32_TEST:
1347 				REG_PATTERN_TEST(test->reg + (i * 4),
1348 						test->mask,
1349 						test->write);
1350 				break;
1351 			case TABLE64_TEST_LO:
1352 				REG_PATTERN_TEST(test->reg + (i * 8),
1353 						test->mask,
1354 						test->write);
1355 				break;
1356 			case TABLE64_TEST_HI:
1357 				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1358 						test->mask,
1359 						test->write);
1360 				break;
1361 			}
1362 		}
1363 		test++;
1364 	}
1365 
1366 	*data = 0;
1367 	return 0;
1368 }
1369 
1370 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1371 {
1372 	struct e1000_hw *hw = &adapter->hw;
1373 
1374 	*data = 0;
1375 
1376 	/* Validate eeprom on all parts but flashless */
1377 	switch (hw->mac.type) {
1378 	case e1000_i210:
1379 	case e1000_i211:
1380 		if (igb_get_flash_presence_i210(hw)) {
1381 			if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1382 				*data = 2;
1383 		}
1384 		break;
1385 	default:
1386 		if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1387 			*data = 2;
1388 		break;
1389 	}
1390 
1391 	return *data;
1392 }
1393 
1394 static irqreturn_t igb_test_intr(int irq, void *data)
1395 {
1396 	struct igb_adapter *adapter = (struct igb_adapter *) data;
1397 	struct e1000_hw *hw = &adapter->hw;
1398 
1399 	adapter->test_icr |= rd32(E1000_ICR);
1400 
1401 	return IRQ_HANDLED;
1402 }
1403 
1404 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1405 {
1406 	struct e1000_hw *hw = &adapter->hw;
1407 	struct net_device *netdev = adapter->netdev;
1408 	u32 mask, ics_mask, i = 0, shared_int = true;
1409 	u32 irq = adapter->pdev->irq;
1410 
1411 	*data = 0;
1412 
1413 	/* Hook up test interrupt handler just for this test */
1414 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1415 		if (request_irq(adapter->msix_entries[0].vector,
1416 				igb_test_intr, 0, netdev->name, adapter)) {
1417 			*data = 1;
1418 			return -1;
1419 		}
1420 	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1421 		shared_int = false;
1422 		if (request_irq(irq,
1423 				igb_test_intr, 0, netdev->name, adapter)) {
1424 			*data = 1;
1425 			return -1;
1426 		}
1427 	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1428 				netdev->name, adapter)) {
1429 		shared_int = false;
1430 	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1431 		 netdev->name, adapter)) {
1432 		*data = 1;
1433 		return -1;
1434 	}
1435 	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1436 		(shared_int ? "shared" : "unshared"));
1437 
1438 	/* Disable all the interrupts */
1439 	wr32(E1000_IMC, ~0);
1440 	wrfl();
1441 	usleep_range(10000, 11000);
1442 
1443 	/* Define all writable bits for ICS */
1444 	switch (hw->mac.type) {
1445 	case e1000_82575:
1446 		ics_mask = 0x37F47EDD;
1447 		break;
1448 	case e1000_82576:
1449 		ics_mask = 0x77D4FBFD;
1450 		break;
1451 	case e1000_82580:
1452 		ics_mask = 0x77DCFED5;
1453 		break;
1454 	case e1000_i350:
1455 	case e1000_i354:
1456 	case e1000_i210:
1457 	case e1000_i211:
1458 		ics_mask = 0x77DCFED5;
1459 		break;
1460 	default:
1461 		ics_mask = 0x7FFFFFFF;
1462 		break;
1463 	}
1464 
1465 	/* Test each interrupt */
1466 	for (; i < 31; i++) {
1467 		/* Interrupt to test */
1468 		mask = BIT(i);
1469 
1470 		if (!(mask & ics_mask))
1471 			continue;
1472 
1473 		if (!shared_int) {
1474 			/* Disable the interrupt to be reported in
1475 			 * the cause register and then force the same
1476 			 * interrupt and see if one gets posted.  If
1477 			 * an interrupt was posted to the bus, the
1478 			 * test failed.
1479 			 */
1480 			adapter->test_icr = 0;
1481 
1482 			/* Flush any pending interrupts */
1483 			wr32(E1000_ICR, ~0);
1484 
1485 			wr32(E1000_IMC, mask);
1486 			wr32(E1000_ICS, mask);
1487 			wrfl();
1488 			usleep_range(10000, 11000);
1489 
1490 			if (adapter->test_icr & mask) {
1491 				*data = 3;
1492 				break;
1493 			}
1494 		}
1495 
1496 		/* Enable the interrupt to be reported in
1497 		 * the cause register and then force the same
1498 		 * interrupt and see if one gets posted.  If
1499 		 * an interrupt was not posted to the bus, the
1500 		 * test failed.
1501 		 */
1502 		adapter->test_icr = 0;
1503 
1504 		/* Flush any pending interrupts */
1505 		wr32(E1000_ICR, ~0);
1506 
1507 		wr32(E1000_IMS, mask);
1508 		wr32(E1000_ICS, mask);
1509 		wrfl();
1510 		usleep_range(10000, 11000);
1511 
1512 		if (!(adapter->test_icr & mask)) {
1513 			*data = 4;
1514 			break;
1515 		}
1516 
1517 		if (!shared_int) {
1518 			/* Disable the other interrupts to be reported in
1519 			 * the cause register and then force the other
1520 			 * interrupts and see if any get posted.  If
1521 			 * an interrupt was posted to the bus, the
1522 			 * test failed.
1523 			 */
1524 			adapter->test_icr = 0;
1525 
1526 			/* Flush any pending interrupts */
1527 			wr32(E1000_ICR, ~0);
1528 
1529 			wr32(E1000_IMC, ~mask);
1530 			wr32(E1000_ICS, ~mask);
1531 			wrfl();
1532 			usleep_range(10000, 11000);
1533 
1534 			if (adapter->test_icr & mask) {
1535 				*data = 5;
1536 				break;
1537 			}
1538 		}
1539 	}
1540 
1541 	/* Disable all the interrupts */
1542 	wr32(E1000_IMC, ~0);
1543 	wrfl();
1544 	usleep_range(10000, 11000);
1545 
1546 	/* Unhook test interrupt handler */
1547 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1548 		free_irq(adapter->msix_entries[0].vector, adapter);
1549 	else
1550 		free_irq(irq, adapter);
1551 
1552 	return *data;
1553 }
1554 
1555 static void igb_free_desc_rings(struct igb_adapter *adapter)
1556 {
1557 	igb_free_tx_resources(&adapter->test_tx_ring);
1558 	igb_free_rx_resources(&adapter->test_rx_ring);
1559 }
1560 
1561 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1562 {
1563 	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1564 	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1565 	struct e1000_hw *hw = &adapter->hw;
1566 	int ret_val;
1567 
1568 	/* Setup Tx descriptor ring and Tx buffers */
1569 	tx_ring->count = IGB_DEFAULT_TXD;
1570 	tx_ring->dev = &adapter->pdev->dev;
1571 	tx_ring->netdev = adapter->netdev;
1572 	tx_ring->reg_idx = adapter->vfs_allocated_count;
1573 
1574 	if (igb_setup_tx_resources(tx_ring)) {
1575 		ret_val = 1;
1576 		goto err_nomem;
1577 	}
1578 
1579 	igb_setup_tctl(adapter);
1580 	igb_configure_tx_ring(adapter, tx_ring);
1581 
1582 	/* Setup Rx descriptor ring and Rx buffers */
1583 	rx_ring->count = IGB_DEFAULT_RXD;
1584 	rx_ring->dev = &adapter->pdev->dev;
1585 	rx_ring->netdev = adapter->netdev;
1586 	rx_ring->reg_idx = adapter->vfs_allocated_count;
1587 
1588 	if (igb_setup_rx_resources(rx_ring)) {
1589 		ret_val = 3;
1590 		goto err_nomem;
1591 	}
1592 
1593 	/* set the default queue to queue 0 of PF */
1594 	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1595 
1596 	/* enable receive ring */
1597 	igb_setup_rctl(adapter);
1598 	igb_configure_rx_ring(adapter, rx_ring);
1599 
1600 	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1601 
1602 	return 0;
1603 
1604 err_nomem:
1605 	igb_free_desc_rings(adapter);
1606 	return ret_val;
1607 }
1608 
1609 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1610 {
1611 	struct e1000_hw *hw = &adapter->hw;
1612 
1613 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1614 	igb_write_phy_reg(hw, 29, 0x001F);
1615 	igb_write_phy_reg(hw, 30, 0x8FFC);
1616 	igb_write_phy_reg(hw, 29, 0x001A);
1617 	igb_write_phy_reg(hw, 30, 0x8FF0);
1618 }
1619 
1620 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1621 {
1622 	struct e1000_hw *hw = &adapter->hw;
1623 	u32 ctrl_reg = 0;
1624 
1625 	hw->mac.autoneg = false;
1626 
1627 	if (hw->phy.type == e1000_phy_m88) {
1628 		if (hw->phy.id != I210_I_PHY_ID) {
1629 			/* Auto-MDI/MDIX Off */
1630 			igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1631 			/* reset to update Auto-MDI/MDIX */
1632 			igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1633 			/* autoneg off */
1634 			igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1635 		} else {
1636 			/* force 1000, set loopback  */
1637 			igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1638 			igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1639 		}
1640 	} else if (hw->phy.type == e1000_phy_82580) {
1641 		/* enable MII loopback */
1642 		igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1643 	}
1644 
1645 	/* add small delay to avoid loopback test failure */
1646 	msleep(50);
1647 
1648 	/* force 1000, set loopback */
1649 	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1650 
1651 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1652 	ctrl_reg = rd32(E1000_CTRL);
1653 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1654 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1655 		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1656 		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1657 		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1658 		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1659 
1660 	if (hw->phy.type == e1000_phy_m88)
1661 		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1662 
1663 	wr32(E1000_CTRL, ctrl_reg);
1664 
1665 	/* Disable the receiver on the PHY so when a cable is plugged in, the
1666 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1667 	 */
1668 	if (hw->phy.type == e1000_phy_m88)
1669 		igb_phy_disable_receiver(adapter);
1670 
1671 	mdelay(500);
1672 	return 0;
1673 }
1674 
1675 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1676 {
1677 	return igb_integrated_phy_loopback(adapter);
1678 }
1679 
1680 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1681 {
1682 	struct e1000_hw *hw = &adapter->hw;
1683 	u32 reg;
1684 
1685 	reg = rd32(E1000_CTRL_EXT);
1686 
1687 	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1688 	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1689 		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1690 		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1691 		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1692 		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1693 		(hw->device_id == E1000_DEV_ID_I354_SGMII) ||
1694 		(hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) {
1695 			/* Enable DH89xxCC MPHY for near end loopback */
1696 			reg = rd32(E1000_MPHY_ADDR_CTL);
1697 			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1698 			E1000_MPHY_PCS_CLK_REG_OFFSET;
1699 			wr32(E1000_MPHY_ADDR_CTL, reg);
1700 
1701 			reg = rd32(E1000_MPHY_DATA);
1702 			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1703 			wr32(E1000_MPHY_DATA, reg);
1704 		}
1705 
1706 		reg = rd32(E1000_RCTL);
1707 		reg |= E1000_RCTL_LBM_TCVR;
1708 		wr32(E1000_RCTL, reg);
1709 
1710 		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1711 
1712 		reg = rd32(E1000_CTRL);
1713 		reg &= ~(E1000_CTRL_RFCE |
1714 			 E1000_CTRL_TFCE |
1715 			 E1000_CTRL_LRST);
1716 		reg |= E1000_CTRL_SLU |
1717 		       E1000_CTRL_FD;
1718 		wr32(E1000_CTRL, reg);
1719 
1720 		/* Unset switch control to serdes energy detect */
1721 		reg = rd32(E1000_CONNSW);
1722 		reg &= ~E1000_CONNSW_ENRGSRC;
1723 		wr32(E1000_CONNSW, reg);
1724 
1725 		/* Unset sigdetect for SERDES loopback on
1726 		 * 82580 and newer devices.
1727 		 */
1728 		if (hw->mac.type >= e1000_82580) {
1729 			reg = rd32(E1000_PCS_CFG0);
1730 			reg |= E1000_PCS_CFG_IGN_SD;
1731 			wr32(E1000_PCS_CFG0, reg);
1732 		}
1733 
1734 		/* Set PCS register for forced speed */
1735 		reg = rd32(E1000_PCS_LCTL);
1736 		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1737 		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1738 		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1739 		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1740 		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1741 		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1742 		wr32(E1000_PCS_LCTL, reg);
1743 
1744 		return 0;
1745 	}
1746 
1747 	return igb_set_phy_loopback(adapter);
1748 }
1749 
1750 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1751 {
1752 	struct e1000_hw *hw = &adapter->hw;
1753 	u32 rctl;
1754 	u16 phy_reg;
1755 
1756 	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1757 	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1758 	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1759 	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1760 	(hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1761 		u32 reg;
1762 
1763 		/* Disable near end loopback on DH89xxCC */
1764 		reg = rd32(E1000_MPHY_ADDR_CTL);
1765 		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1766 		E1000_MPHY_PCS_CLK_REG_OFFSET;
1767 		wr32(E1000_MPHY_ADDR_CTL, reg);
1768 
1769 		reg = rd32(E1000_MPHY_DATA);
1770 		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1771 		wr32(E1000_MPHY_DATA, reg);
1772 	}
1773 
1774 	rctl = rd32(E1000_RCTL);
1775 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1776 	wr32(E1000_RCTL, rctl);
1777 
1778 	hw->mac.autoneg = true;
1779 	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1780 	if (phy_reg & MII_CR_LOOPBACK) {
1781 		phy_reg &= ~MII_CR_LOOPBACK;
1782 		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1783 		igb_phy_sw_reset(hw);
1784 	}
1785 }
1786 
1787 static void igb_create_lbtest_frame(struct sk_buff *skb,
1788 				    unsigned int frame_size)
1789 {
1790 	memset(skb->data, 0xFF, frame_size);
1791 	frame_size /= 2;
1792 	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1793 	memset(&skb->data[frame_size + 10], 0xBE, 1);
1794 	memset(&skb->data[frame_size + 12], 0xAF, 1);
1795 }
1796 
1797 static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1798 				  unsigned int frame_size)
1799 {
1800 	unsigned char *data;
1801 	bool match = true;
1802 
1803 	frame_size >>= 1;
1804 
1805 	data = kmap(rx_buffer->page);
1806 
1807 	if (data[3] != 0xFF ||
1808 	    data[frame_size + 10] != 0xBE ||
1809 	    data[frame_size + 12] != 0xAF)
1810 		match = false;
1811 
1812 	kunmap(rx_buffer->page);
1813 
1814 	return match;
1815 }
1816 
1817 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1818 				struct igb_ring *tx_ring,
1819 				unsigned int size)
1820 {
1821 	union e1000_adv_rx_desc *rx_desc;
1822 	struct igb_rx_buffer *rx_buffer_info;
1823 	struct igb_tx_buffer *tx_buffer_info;
1824 	u16 rx_ntc, tx_ntc, count = 0;
1825 
1826 	/* initialize next to clean and descriptor values */
1827 	rx_ntc = rx_ring->next_to_clean;
1828 	tx_ntc = tx_ring->next_to_clean;
1829 	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1830 
1831 	while (rx_desc->wb.upper.length) {
1832 		/* check Rx buffer */
1833 		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1834 
1835 		/* sync Rx buffer for CPU read */
1836 		dma_sync_single_for_cpu(rx_ring->dev,
1837 					rx_buffer_info->dma,
1838 					size,
1839 					DMA_FROM_DEVICE);
1840 
1841 		/* verify contents of skb */
1842 		if (igb_check_lbtest_frame(rx_buffer_info, size))
1843 			count++;
1844 
1845 		/* sync Rx buffer for device write */
1846 		dma_sync_single_for_device(rx_ring->dev,
1847 					   rx_buffer_info->dma,
1848 					   size,
1849 					   DMA_FROM_DEVICE);
1850 
1851 		/* unmap buffer on Tx side */
1852 		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1853 
1854 		/* Free all the Tx ring sk_buffs */
1855 		dev_kfree_skb_any(tx_buffer_info->skb);
1856 
1857 		/* unmap skb header data */
1858 		dma_unmap_single(tx_ring->dev,
1859 				 dma_unmap_addr(tx_buffer_info, dma),
1860 				 dma_unmap_len(tx_buffer_info, len),
1861 				 DMA_TO_DEVICE);
1862 		dma_unmap_len_set(tx_buffer_info, len, 0);
1863 
1864 		/* increment Rx/Tx next to clean counters */
1865 		rx_ntc++;
1866 		if (rx_ntc == rx_ring->count)
1867 			rx_ntc = 0;
1868 		tx_ntc++;
1869 		if (tx_ntc == tx_ring->count)
1870 			tx_ntc = 0;
1871 
1872 		/* fetch next descriptor */
1873 		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1874 	}
1875 
1876 	netdev_tx_reset_queue(txring_txq(tx_ring));
1877 
1878 	/* re-map buffers to ring, store next to clean values */
1879 	igb_alloc_rx_buffers(rx_ring, count);
1880 	rx_ring->next_to_clean = rx_ntc;
1881 	tx_ring->next_to_clean = tx_ntc;
1882 
1883 	return count;
1884 }
1885 
1886 static int igb_run_loopback_test(struct igb_adapter *adapter)
1887 {
1888 	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1889 	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1890 	u16 i, j, lc, good_cnt;
1891 	int ret_val = 0;
1892 	unsigned int size = IGB_RX_HDR_LEN;
1893 	netdev_tx_t tx_ret_val;
1894 	struct sk_buff *skb;
1895 
1896 	/* allocate test skb */
1897 	skb = alloc_skb(size, GFP_KERNEL);
1898 	if (!skb)
1899 		return 11;
1900 
1901 	/* place data into test skb */
1902 	igb_create_lbtest_frame(skb, size);
1903 	skb_put(skb, size);
1904 
1905 	/* Calculate the loop count based on the largest descriptor ring
1906 	 * The idea is to wrap the largest ring a number of times using 64
1907 	 * send/receive pairs during each loop
1908 	 */
1909 
1910 	if (rx_ring->count <= tx_ring->count)
1911 		lc = ((tx_ring->count / 64) * 2) + 1;
1912 	else
1913 		lc = ((rx_ring->count / 64) * 2) + 1;
1914 
1915 	for (j = 0; j <= lc; j++) { /* loop count loop */
1916 		/* reset count of good packets */
1917 		good_cnt = 0;
1918 
1919 		/* place 64 packets on the transmit queue*/
1920 		for (i = 0; i < 64; i++) {
1921 			skb_get(skb);
1922 			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1923 			if (tx_ret_val == NETDEV_TX_OK)
1924 				good_cnt++;
1925 		}
1926 
1927 		if (good_cnt != 64) {
1928 			ret_val = 12;
1929 			break;
1930 		}
1931 
1932 		/* allow 200 milliseconds for packets to go from Tx to Rx */
1933 		msleep(200);
1934 
1935 		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1936 		if (good_cnt != 64) {
1937 			ret_val = 13;
1938 			break;
1939 		}
1940 	} /* end loop count loop */
1941 
1942 	/* free the original skb */
1943 	kfree_skb(skb);
1944 
1945 	return ret_val;
1946 }
1947 
1948 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1949 {
1950 	/* PHY loopback cannot be performed if SoL/IDER
1951 	 * sessions are active
1952 	 */
1953 	if (igb_check_reset_block(&adapter->hw)) {
1954 		dev_err(&adapter->pdev->dev,
1955 			"Cannot do PHY loopback test when SoL/IDER is active.\n");
1956 		*data = 0;
1957 		goto out;
1958 	}
1959 
1960 	if (adapter->hw.mac.type == e1000_i354) {
1961 		dev_info(&adapter->pdev->dev,
1962 			"Loopback test not supported on i354.\n");
1963 		*data = 0;
1964 		goto out;
1965 	}
1966 	*data = igb_setup_desc_rings(adapter);
1967 	if (*data)
1968 		goto out;
1969 	*data = igb_setup_loopback_test(adapter);
1970 	if (*data)
1971 		goto err_loopback;
1972 	*data = igb_run_loopback_test(adapter);
1973 	igb_loopback_cleanup(adapter);
1974 
1975 err_loopback:
1976 	igb_free_desc_rings(adapter);
1977 out:
1978 	return *data;
1979 }
1980 
1981 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1982 {
1983 	struct e1000_hw *hw = &adapter->hw;
1984 	*data = 0;
1985 	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1986 		int i = 0;
1987 
1988 		hw->mac.serdes_has_link = false;
1989 
1990 		/* On some blade server designs, link establishment
1991 		 * could take as long as 2-3 minutes
1992 		 */
1993 		do {
1994 			hw->mac.ops.check_for_link(&adapter->hw);
1995 			if (hw->mac.serdes_has_link)
1996 				return *data;
1997 			msleep(20);
1998 		} while (i++ < 3750);
1999 
2000 		*data = 1;
2001 	} else {
2002 		hw->mac.ops.check_for_link(&adapter->hw);
2003 		if (hw->mac.autoneg)
2004 			msleep(5000);
2005 
2006 		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
2007 			*data = 1;
2008 	}
2009 	return *data;
2010 }
2011 
2012 static void igb_diag_test(struct net_device *netdev,
2013 			  struct ethtool_test *eth_test, u64 *data)
2014 {
2015 	struct igb_adapter *adapter = netdev_priv(netdev);
2016 	u16 autoneg_advertised;
2017 	u8 forced_speed_duplex, autoneg;
2018 	bool if_running = netif_running(netdev);
2019 
2020 	set_bit(__IGB_TESTING, &adapter->state);
2021 
2022 	/* can't do offline tests on media switching devices */
2023 	if (adapter->hw.dev_spec._82575.mas_capable)
2024 		eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
2025 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
2026 		/* Offline tests */
2027 
2028 		/* save speed, duplex, autoneg settings */
2029 		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
2030 		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
2031 		autoneg = adapter->hw.mac.autoneg;
2032 
2033 		dev_info(&adapter->pdev->dev, "offline testing starting\n");
2034 
2035 		/* power up link for link test */
2036 		igb_power_up_link(adapter);
2037 
2038 		/* Link test performed before hardware reset so autoneg doesn't
2039 		 * interfere with test result
2040 		 */
2041 		if (igb_link_test(adapter, &data[TEST_LINK]))
2042 			eth_test->flags |= ETH_TEST_FL_FAILED;
2043 
2044 		if (if_running)
2045 			/* indicate we're in test mode */
2046 			igb_close(netdev);
2047 		else
2048 			igb_reset(adapter);
2049 
2050 		if (igb_reg_test(adapter, &data[TEST_REG]))
2051 			eth_test->flags |= ETH_TEST_FL_FAILED;
2052 
2053 		igb_reset(adapter);
2054 		if (igb_eeprom_test(adapter, &data[TEST_EEP]))
2055 			eth_test->flags |= ETH_TEST_FL_FAILED;
2056 
2057 		igb_reset(adapter);
2058 		if (igb_intr_test(adapter, &data[TEST_IRQ]))
2059 			eth_test->flags |= ETH_TEST_FL_FAILED;
2060 
2061 		igb_reset(adapter);
2062 		/* power up link for loopback test */
2063 		igb_power_up_link(adapter);
2064 		if (igb_loopback_test(adapter, &data[TEST_LOOP]))
2065 			eth_test->flags |= ETH_TEST_FL_FAILED;
2066 
2067 		/* restore speed, duplex, autoneg settings */
2068 		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2069 		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2070 		adapter->hw.mac.autoneg = autoneg;
2071 
2072 		/* force this routine to wait until autoneg complete/timeout */
2073 		adapter->hw.phy.autoneg_wait_to_complete = true;
2074 		igb_reset(adapter);
2075 		adapter->hw.phy.autoneg_wait_to_complete = false;
2076 
2077 		clear_bit(__IGB_TESTING, &adapter->state);
2078 		if (if_running)
2079 			igb_open(netdev);
2080 	} else {
2081 		dev_info(&adapter->pdev->dev, "online testing starting\n");
2082 
2083 		/* PHY is powered down when interface is down */
2084 		if (if_running && igb_link_test(adapter, &data[TEST_LINK]))
2085 			eth_test->flags |= ETH_TEST_FL_FAILED;
2086 		else
2087 			data[TEST_LINK] = 0;
2088 
2089 		/* Online tests aren't run; pass by default */
2090 		data[TEST_REG] = 0;
2091 		data[TEST_EEP] = 0;
2092 		data[TEST_IRQ] = 0;
2093 		data[TEST_LOOP] = 0;
2094 
2095 		clear_bit(__IGB_TESTING, &adapter->state);
2096 	}
2097 	msleep_interruptible(4 * 1000);
2098 }
2099 
2100 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2101 {
2102 	struct igb_adapter *adapter = netdev_priv(netdev);
2103 
2104 	wol->wolopts = 0;
2105 
2106 	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2107 		return;
2108 
2109 	wol->supported = WAKE_UCAST | WAKE_MCAST |
2110 			 WAKE_BCAST | WAKE_MAGIC |
2111 			 WAKE_PHY;
2112 
2113 	/* apply any specific unsupported masks here */
2114 	switch (adapter->hw.device_id) {
2115 	default:
2116 		break;
2117 	}
2118 
2119 	if (adapter->wol & E1000_WUFC_EX)
2120 		wol->wolopts |= WAKE_UCAST;
2121 	if (adapter->wol & E1000_WUFC_MC)
2122 		wol->wolopts |= WAKE_MCAST;
2123 	if (adapter->wol & E1000_WUFC_BC)
2124 		wol->wolopts |= WAKE_BCAST;
2125 	if (adapter->wol & E1000_WUFC_MAG)
2126 		wol->wolopts |= WAKE_MAGIC;
2127 	if (adapter->wol & E1000_WUFC_LNKC)
2128 		wol->wolopts |= WAKE_PHY;
2129 }
2130 
2131 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2132 {
2133 	struct igb_adapter *adapter = netdev_priv(netdev);
2134 
2135 	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2136 		return -EOPNOTSUPP;
2137 
2138 	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2139 		return wol->wolopts ? -EOPNOTSUPP : 0;
2140 
2141 	/* these settings will always override what we currently have */
2142 	adapter->wol = 0;
2143 
2144 	if (wol->wolopts & WAKE_UCAST)
2145 		adapter->wol |= E1000_WUFC_EX;
2146 	if (wol->wolopts & WAKE_MCAST)
2147 		adapter->wol |= E1000_WUFC_MC;
2148 	if (wol->wolopts & WAKE_BCAST)
2149 		adapter->wol |= E1000_WUFC_BC;
2150 	if (wol->wolopts & WAKE_MAGIC)
2151 		adapter->wol |= E1000_WUFC_MAG;
2152 	if (wol->wolopts & WAKE_PHY)
2153 		adapter->wol |= E1000_WUFC_LNKC;
2154 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2155 
2156 	return 0;
2157 }
2158 
2159 /* bit defines for adapter->led_status */
2160 #define IGB_LED_ON		0
2161 
2162 static int igb_set_phys_id(struct net_device *netdev,
2163 			   enum ethtool_phys_id_state state)
2164 {
2165 	struct igb_adapter *adapter = netdev_priv(netdev);
2166 	struct e1000_hw *hw = &adapter->hw;
2167 
2168 	switch (state) {
2169 	case ETHTOOL_ID_ACTIVE:
2170 		igb_blink_led(hw);
2171 		return 2;
2172 	case ETHTOOL_ID_ON:
2173 		igb_blink_led(hw);
2174 		break;
2175 	case ETHTOOL_ID_OFF:
2176 		igb_led_off(hw);
2177 		break;
2178 	case ETHTOOL_ID_INACTIVE:
2179 		igb_led_off(hw);
2180 		clear_bit(IGB_LED_ON, &adapter->led_status);
2181 		igb_cleanup_led(hw);
2182 		break;
2183 	}
2184 
2185 	return 0;
2186 }
2187 
2188 static int igb_set_coalesce(struct net_device *netdev,
2189 			    struct ethtool_coalesce *ec)
2190 {
2191 	struct igb_adapter *adapter = netdev_priv(netdev);
2192 	int i;
2193 
2194 	if (ec->rx_max_coalesced_frames ||
2195 	    ec->rx_coalesce_usecs_irq ||
2196 	    ec->rx_max_coalesced_frames_irq ||
2197 	    ec->tx_max_coalesced_frames ||
2198 	    ec->tx_coalesce_usecs_irq ||
2199 	    ec->stats_block_coalesce_usecs ||
2200 	    ec->use_adaptive_rx_coalesce ||
2201 	    ec->use_adaptive_tx_coalesce ||
2202 	    ec->pkt_rate_low ||
2203 	    ec->rx_coalesce_usecs_low ||
2204 	    ec->rx_max_coalesced_frames_low ||
2205 	    ec->tx_coalesce_usecs_low ||
2206 	    ec->tx_max_coalesced_frames_low ||
2207 	    ec->pkt_rate_high ||
2208 	    ec->rx_coalesce_usecs_high ||
2209 	    ec->rx_max_coalesced_frames_high ||
2210 	    ec->tx_coalesce_usecs_high ||
2211 	    ec->tx_max_coalesced_frames_high ||
2212 	    ec->rate_sample_interval)
2213 		return -ENOTSUPP;
2214 
2215 	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2216 	    ((ec->rx_coalesce_usecs > 3) &&
2217 	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2218 	    (ec->rx_coalesce_usecs == 2))
2219 		return -EINVAL;
2220 
2221 	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2222 	    ((ec->tx_coalesce_usecs > 3) &&
2223 	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2224 	    (ec->tx_coalesce_usecs == 2))
2225 		return -EINVAL;
2226 
2227 	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2228 		return -EINVAL;
2229 
2230 	/* If ITR is disabled, disable DMAC */
2231 	if (ec->rx_coalesce_usecs == 0) {
2232 		if (adapter->flags & IGB_FLAG_DMAC)
2233 			adapter->flags &= ~IGB_FLAG_DMAC;
2234 	}
2235 
2236 	/* convert to rate of irq's per second */
2237 	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2238 		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2239 	else
2240 		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2241 
2242 	/* convert to rate of irq's per second */
2243 	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2244 		adapter->tx_itr_setting = adapter->rx_itr_setting;
2245 	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2246 		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2247 	else
2248 		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2249 
2250 	for (i = 0; i < adapter->num_q_vectors; i++) {
2251 		struct igb_q_vector *q_vector = adapter->q_vector[i];
2252 		q_vector->tx.work_limit = adapter->tx_work_limit;
2253 		if (q_vector->rx.ring)
2254 			q_vector->itr_val = adapter->rx_itr_setting;
2255 		else
2256 			q_vector->itr_val = adapter->tx_itr_setting;
2257 		if (q_vector->itr_val && q_vector->itr_val <= 3)
2258 			q_vector->itr_val = IGB_START_ITR;
2259 		q_vector->set_itr = 1;
2260 	}
2261 
2262 	return 0;
2263 }
2264 
2265 static int igb_get_coalesce(struct net_device *netdev,
2266 			    struct ethtool_coalesce *ec)
2267 {
2268 	struct igb_adapter *adapter = netdev_priv(netdev);
2269 
2270 	if (adapter->rx_itr_setting <= 3)
2271 		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2272 	else
2273 		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2274 
2275 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2276 		if (adapter->tx_itr_setting <= 3)
2277 			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2278 		else
2279 			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2280 	}
2281 
2282 	return 0;
2283 }
2284 
2285 static int igb_nway_reset(struct net_device *netdev)
2286 {
2287 	struct igb_adapter *adapter = netdev_priv(netdev);
2288 	if (netif_running(netdev))
2289 		igb_reinit_locked(adapter);
2290 	return 0;
2291 }
2292 
2293 static int igb_get_sset_count(struct net_device *netdev, int sset)
2294 {
2295 	switch (sset) {
2296 	case ETH_SS_STATS:
2297 		return IGB_STATS_LEN;
2298 	case ETH_SS_TEST:
2299 		return IGB_TEST_LEN;
2300 	case ETH_SS_PRIV_FLAGS:
2301 		return IGB_PRIV_FLAGS_STR_LEN;
2302 	default:
2303 		return -ENOTSUPP;
2304 	}
2305 }
2306 
2307 static void igb_get_ethtool_stats(struct net_device *netdev,
2308 				  struct ethtool_stats *stats, u64 *data)
2309 {
2310 	struct igb_adapter *adapter = netdev_priv(netdev);
2311 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2312 	unsigned int start;
2313 	struct igb_ring *ring;
2314 	int i, j;
2315 	char *p;
2316 
2317 	spin_lock(&adapter->stats64_lock);
2318 	igb_update_stats(adapter, net_stats);
2319 
2320 	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2321 		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2322 		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2323 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2324 	}
2325 	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2326 		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2327 		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2328 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2329 	}
2330 	for (j = 0; j < adapter->num_tx_queues; j++) {
2331 		u64	restart2;
2332 
2333 		ring = adapter->tx_ring[j];
2334 		do {
2335 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
2336 			data[i]   = ring->tx_stats.packets;
2337 			data[i+1] = ring->tx_stats.bytes;
2338 			data[i+2] = ring->tx_stats.restart_queue;
2339 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
2340 		do {
2341 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp2);
2342 			restart2  = ring->tx_stats.restart_queue2;
2343 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start));
2344 		data[i+2] += restart2;
2345 
2346 		i += IGB_TX_QUEUE_STATS_LEN;
2347 	}
2348 	for (j = 0; j < adapter->num_rx_queues; j++) {
2349 		ring = adapter->rx_ring[j];
2350 		do {
2351 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
2352 			data[i]   = ring->rx_stats.packets;
2353 			data[i+1] = ring->rx_stats.bytes;
2354 			data[i+2] = ring->rx_stats.drops;
2355 			data[i+3] = ring->rx_stats.csum_err;
2356 			data[i+4] = ring->rx_stats.alloc_failed;
2357 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
2358 		i += IGB_RX_QUEUE_STATS_LEN;
2359 	}
2360 	spin_unlock(&adapter->stats64_lock);
2361 }
2362 
2363 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2364 {
2365 	struct igb_adapter *adapter = netdev_priv(netdev);
2366 	u8 *p = data;
2367 	int i;
2368 
2369 	switch (stringset) {
2370 	case ETH_SS_TEST:
2371 		memcpy(data, *igb_gstrings_test,
2372 			IGB_TEST_LEN*ETH_GSTRING_LEN);
2373 		break;
2374 	case ETH_SS_STATS:
2375 		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2376 			memcpy(p, igb_gstrings_stats[i].stat_string,
2377 			       ETH_GSTRING_LEN);
2378 			p += ETH_GSTRING_LEN;
2379 		}
2380 		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2381 			memcpy(p, igb_gstrings_net_stats[i].stat_string,
2382 			       ETH_GSTRING_LEN);
2383 			p += ETH_GSTRING_LEN;
2384 		}
2385 		for (i = 0; i < adapter->num_tx_queues; i++) {
2386 			sprintf(p, "tx_queue_%u_packets", i);
2387 			p += ETH_GSTRING_LEN;
2388 			sprintf(p, "tx_queue_%u_bytes", i);
2389 			p += ETH_GSTRING_LEN;
2390 			sprintf(p, "tx_queue_%u_restart", i);
2391 			p += ETH_GSTRING_LEN;
2392 		}
2393 		for (i = 0; i < adapter->num_rx_queues; i++) {
2394 			sprintf(p, "rx_queue_%u_packets", i);
2395 			p += ETH_GSTRING_LEN;
2396 			sprintf(p, "rx_queue_%u_bytes", i);
2397 			p += ETH_GSTRING_LEN;
2398 			sprintf(p, "rx_queue_%u_drops", i);
2399 			p += ETH_GSTRING_LEN;
2400 			sprintf(p, "rx_queue_%u_csum_err", i);
2401 			p += ETH_GSTRING_LEN;
2402 			sprintf(p, "rx_queue_%u_alloc_failed", i);
2403 			p += ETH_GSTRING_LEN;
2404 		}
2405 		/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2406 		break;
2407 	case ETH_SS_PRIV_FLAGS:
2408 		memcpy(data, igb_priv_flags_strings,
2409 		       IGB_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN);
2410 		break;
2411 	}
2412 }
2413 
2414 static int igb_get_ts_info(struct net_device *dev,
2415 			   struct ethtool_ts_info *info)
2416 {
2417 	struct igb_adapter *adapter = netdev_priv(dev);
2418 
2419 	if (adapter->ptp_clock)
2420 		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2421 	else
2422 		info->phc_index = -1;
2423 
2424 	switch (adapter->hw.mac.type) {
2425 	case e1000_82575:
2426 		info->so_timestamping =
2427 			SOF_TIMESTAMPING_TX_SOFTWARE |
2428 			SOF_TIMESTAMPING_RX_SOFTWARE |
2429 			SOF_TIMESTAMPING_SOFTWARE;
2430 		return 0;
2431 	case e1000_82576:
2432 	case e1000_82580:
2433 	case e1000_i350:
2434 	case e1000_i354:
2435 	case e1000_i210:
2436 	case e1000_i211:
2437 		info->so_timestamping =
2438 			SOF_TIMESTAMPING_TX_SOFTWARE |
2439 			SOF_TIMESTAMPING_RX_SOFTWARE |
2440 			SOF_TIMESTAMPING_SOFTWARE |
2441 			SOF_TIMESTAMPING_TX_HARDWARE |
2442 			SOF_TIMESTAMPING_RX_HARDWARE |
2443 			SOF_TIMESTAMPING_RAW_HARDWARE;
2444 
2445 		info->tx_types =
2446 			BIT(HWTSTAMP_TX_OFF) |
2447 			BIT(HWTSTAMP_TX_ON);
2448 
2449 		info->rx_filters = BIT(HWTSTAMP_FILTER_NONE);
2450 
2451 		/* 82576 does not support timestamping all packets. */
2452 		if (adapter->hw.mac.type >= e1000_82580)
2453 			info->rx_filters |= BIT(HWTSTAMP_FILTER_ALL);
2454 		else
2455 			info->rx_filters |=
2456 				BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2457 				BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2458 				BIT(HWTSTAMP_FILTER_PTP_V2_EVENT);
2459 
2460 		return 0;
2461 	default:
2462 		return -EOPNOTSUPP;
2463 	}
2464 }
2465 
2466 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2467 static int igb_get_ethtool_nfc_entry(struct igb_adapter *adapter,
2468 				     struct ethtool_rxnfc *cmd)
2469 {
2470 	struct ethtool_rx_flow_spec *fsp = &cmd->fs;
2471 	struct igb_nfc_filter *rule = NULL;
2472 
2473 	/* report total rule count */
2474 	cmd->data = IGB_MAX_RXNFC_FILTERS;
2475 
2476 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2477 		if (fsp->location <= rule->sw_idx)
2478 			break;
2479 	}
2480 
2481 	if (!rule || fsp->location != rule->sw_idx)
2482 		return -EINVAL;
2483 
2484 	if (rule->filter.match_flags) {
2485 		fsp->flow_type = ETHER_FLOW;
2486 		fsp->ring_cookie = rule->action;
2487 		if (rule->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2488 			fsp->h_u.ether_spec.h_proto = rule->filter.etype;
2489 			fsp->m_u.ether_spec.h_proto = ETHER_TYPE_FULL_MASK;
2490 		}
2491 		if (rule->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI) {
2492 			fsp->flow_type |= FLOW_EXT;
2493 			fsp->h_ext.vlan_tci = rule->filter.vlan_tci;
2494 			fsp->m_ext.vlan_tci = htons(VLAN_PRIO_MASK);
2495 		}
2496 		return 0;
2497 	}
2498 	return -EINVAL;
2499 }
2500 
2501 static int igb_get_ethtool_nfc_all(struct igb_adapter *adapter,
2502 				   struct ethtool_rxnfc *cmd,
2503 				   u32 *rule_locs)
2504 {
2505 	struct igb_nfc_filter *rule;
2506 	int cnt = 0;
2507 
2508 	/* report total rule count */
2509 	cmd->data = IGB_MAX_RXNFC_FILTERS;
2510 
2511 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2512 		if (cnt == cmd->rule_cnt)
2513 			return -EMSGSIZE;
2514 		rule_locs[cnt] = rule->sw_idx;
2515 		cnt++;
2516 	}
2517 
2518 	cmd->rule_cnt = cnt;
2519 
2520 	return 0;
2521 }
2522 
2523 static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2524 				 struct ethtool_rxnfc *cmd)
2525 {
2526 	cmd->data = 0;
2527 
2528 	/* Report default options for RSS on igb */
2529 	switch (cmd->flow_type) {
2530 	case TCP_V4_FLOW:
2531 		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2532 		/* Fall through */
2533 	case UDP_V4_FLOW:
2534 		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2535 			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2536 		/* Fall through */
2537 	case SCTP_V4_FLOW:
2538 	case AH_ESP_V4_FLOW:
2539 	case AH_V4_FLOW:
2540 	case ESP_V4_FLOW:
2541 	case IPV4_FLOW:
2542 		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2543 		break;
2544 	case TCP_V6_FLOW:
2545 		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2546 		/* Fall through */
2547 	case UDP_V6_FLOW:
2548 		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2549 			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2550 		/* Fall through */
2551 	case SCTP_V6_FLOW:
2552 	case AH_ESP_V6_FLOW:
2553 	case AH_V6_FLOW:
2554 	case ESP_V6_FLOW:
2555 	case IPV6_FLOW:
2556 		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2557 		break;
2558 	default:
2559 		return -EINVAL;
2560 	}
2561 
2562 	return 0;
2563 }
2564 
2565 static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2566 			 u32 *rule_locs)
2567 {
2568 	struct igb_adapter *adapter = netdev_priv(dev);
2569 	int ret = -EOPNOTSUPP;
2570 
2571 	switch (cmd->cmd) {
2572 	case ETHTOOL_GRXRINGS:
2573 		cmd->data = adapter->num_rx_queues;
2574 		ret = 0;
2575 		break;
2576 	case ETHTOOL_GRXCLSRLCNT:
2577 		cmd->rule_cnt = adapter->nfc_filter_count;
2578 		ret = 0;
2579 		break;
2580 	case ETHTOOL_GRXCLSRULE:
2581 		ret = igb_get_ethtool_nfc_entry(adapter, cmd);
2582 		break;
2583 	case ETHTOOL_GRXCLSRLALL:
2584 		ret = igb_get_ethtool_nfc_all(adapter, cmd, rule_locs);
2585 		break;
2586 	case ETHTOOL_GRXFH:
2587 		ret = igb_get_rss_hash_opts(adapter, cmd);
2588 		break;
2589 	default:
2590 		break;
2591 	}
2592 
2593 	return ret;
2594 }
2595 
2596 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2597 		       IGB_FLAG_RSS_FIELD_IPV6_UDP)
2598 static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2599 				struct ethtool_rxnfc *nfc)
2600 {
2601 	u32 flags = adapter->flags;
2602 
2603 	/* RSS does not support anything other than hashing
2604 	 * to queues on src and dst IPs and ports
2605 	 */
2606 	if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2607 			  RXH_L4_B_0_1 | RXH_L4_B_2_3))
2608 		return -EINVAL;
2609 
2610 	switch (nfc->flow_type) {
2611 	case TCP_V4_FLOW:
2612 	case TCP_V6_FLOW:
2613 		if (!(nfc->data & RXH_IP_SRC) ||
2614 		    !(nfc->data & RXH_IP_DST) ||
2615 		    !(nfc->data & RXH_L4_B_0_1) ||
2616 		    !(nfc->data & RXH_L4_B_2_3))
2617 			return -EINVAL;
2618 		break;
2619 	case UDP_V4_FLOW:
2620 		if (!(nfc->data & RXH_IP_SRC) ||
2621 		    !(nfc->data & RXH_IP_DST))
2622 			return -EINVAL;
2623 		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2624 		case 0:
2625 			flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2626 			break;
2627 		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2628 			flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2629 			break;
2630 		default:
2631 			return -EINVAL;
2632 		}
2633 		break;
2634 	case UDP_V6_FLOW:
2635 		if (!(nfc->data & RXH_IP_SRC) ||
2636 		    !(nfc->data & RXH_IP_DST))
2637 			return -EINVAL;
2638 		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2639 		case 0:
2640 			flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2641 			break;
2642 		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2643 			flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2644 			break;
2645 		default:
2646 			return -EINVAL;
2647 		}
2648 		break;
2649 	case AH_ESP_V4_FLOW:
2650 	case AH_V4_FLOW:
2651 	case ESP_V4_FLOW:
2652 	case SCTP_V4_FLOW:
2653 	case AH_ESP_V6_FLOW:
2654 	case AH_V6_FLOW:
2655 	case ESP_V6_FLOW:
2656 	case SCTP_V6_FLOW:
2657 		if (!(nfc->data & RXH_IP_SRC) ||
2658 		    !(nfc->data & RXH_IP_DST) ||
2659 		    (nfc->data & RXH_L4_B_0_1) ||
2660 		    (nfc->data & RXH_L4_B_2_3))
2661 			return -EINVAL;
2662 		break;
2663 	default:
2664 		return -EINVAL;
2665 	}
2666 
2667 	/* if we changed something we need to update flags */
2668 	if (flags != adapter->flags) {
2669 		struct e1000_hw *hw = &adapter->hw;
2670 		u32 mrqc = rd32(E1000_MRQC);
2671 
2672 		if ((flags & UDP_RSS_FLAGS) &&
2673 		    !(adapter->flags & UDP_RSS_FLAGS))
2674 			dev_err(&adapter->pdev->dev,
2675 				"enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2676 
2677 		adapter->flags = flags;
2678 
2679 		/* Perform hash on these packet types */
2680 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2681 			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2682 			E1000_MRQC_RSS_FIELD_IPV6 |
2683 			E1000_MRQC_RSS_FIELD_IPV6_TCP;
2684 
2685 		mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2686 			  E1000_MRQC_RSS_FIELD_IPV6_UDP);
2687 
2688 		if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2689 			mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2690 
2691 		if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2692 			mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2693 
2694 		wr32(E1000_MRQC, mrqc);
2695 	}
2696 
2697 	return 0;
2698 }
2699 
2700 static int igb_rxnfc_write_etype_filter(struct igb_adapter *adapter,
2701 					struct igb_nfc_filter *input)
2702 {
2703 	struct e1000_hw *hw = &adapter->hw;
2704 	u8 i;
2705 	u32 etqf;
2706 	u16 etype;
2707 
2708 	/* find an empty etype filter register */
2709 	for (i = 0; i < MAX_ETYPE_FILTER; ++i) {
2710 		if (!adapter->etype_bitmap[i])
2711 			break;
2712 	}
2713 	if (i == MAX_ETYPE_FILTER) {
2714 		dev_err(&adapter->pdev->dev, "ethtool -N: etype filters are all used.\n");
2715 		return -EINVAL;
2716 	}
2717 
2718 	adapter->etype_bitmap[i] = true;
2719 
2720 	etqf = rd32(E1000_ETQF(i));
2721 	etype = ntohs(input->filter.etype & ETHER_TYPE_FULL_MASK);
2722 
2723 	etqf |= E1000_ETQF_FILTER_ENABLE;
2724 	etqf &= ~E1000_ETQF_ETYPE_MASK;
2725 	etqf |= (etype & E1000_ETQF_ETYPE_MASK);
2726 
2727 	etqf &= ~E1000_ETQF_QUEUE_MASK;
2728 	etqf |= ((input->action << E1000_ETQF_QUEUE_SHIFT)
2729 		& E1000_ETQF_QUEUE_MASK);
2730 	etqf |= E1000_ETQF_QUEUE_ENABLE;
2731 
2732 	wr32(E1000_ETQF(i), etqf);
2733 
2734 	input->etype_reg_index = i;
2735 
2736 	return 0;
2737 }
2738 
2739 static int igb_rxnfc_write_vlan_prio_filter(struct igb_adapter *adapter,
2740 					    struct igb_nfc_filter *input)
2741 {
2742 	struct e1000_hw *hw = &adapter->hw;
2743 	u8 vlan_priority;
2744 	u16 queue_index;
2745 	u32 vlapqf;
2746 
2747 	vlapqf = rd32(E1000_VLAPQF);
2748 	vlan_priority = (ntohs(input->filter.vlan_tci) & VLAN_PRIO_MASK)
2749 				>> VLAN_PRIO_SHIFT;
2750 	queue_index = (vlapqf >> (vlan_priority * 4)) & E1000_VLAPQF_QUEUE_MASK;
2751 
2752 	/* check whether this vlan prio is already set */
2753 	if ((vlapqf & E1000_VLAPQF_P_VALID(vlan_priority)) &&
2754 	    (queue_index != input->action)) {
2755 		dev_err(&adapter->pdev->dev, "ethtool rxnfc set vlan prio filter failed.\n");
2756 		return -EEXIST;
2757 	}
2758 
2759 	vlapqf |= E1000_VLAPQF_P_VALID(vlan_priority);
2760 	vlapqf |= E1000_VLAPQF_QUEUE_SEL(vlan_priority, input->action);
2761 
2762 	wr32(E1000_VLAPQF, vlapqf);
2763 
2764 	return 0;
2765 }
2766 
2767 int igb_add_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2768 {
2769 	int err = -EINVAL;
2770 
2771 	if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2772 		err = igb_rxnfc_write_etype_filter(adapter, input);
2773 		if (err)
2774 			return err;
2775 	}
2776 
2777 	if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2778 		err = igb_rxnfc_write_vlan_prio_filter(adapter, input);
2779 
2780 	return err;
2781 }
2782 
2783 static void igb_clear_etype_filter_regs(struct igb_adapter *adapter,
2784 					u16 reg_index)
2785 {
2786 	struct e1000_hw *hw = &adapter->hw;
2787 	u32 etqf = rd32(E1000_ETQF(reg_index));
2788 
2789 	etqf &= ~E1000_ETQF_QUEUE_ENABLE;
2790 	etqf &= ~E1000_ETQF_QUEUE_MASK;
2791 	etqf &= ~E1000_ETQF_FILTER_ENABLE;
2792 
2793 	wr32(E1000_ETQF(reg_index), etqf);
2794 
2795 	adapter->etype_bitmap[reg_index] = false;
2796 }
2797 
2798 static void igb_clear_vlan_prio_filter(struct igb_adapter *adapter,
2799 				       u16 vlan_tci)
2800 {
2801 	struct e1000_hw *hw = &adapter->hw;
2802 	u8 vlan_priority;
2803 	u32 vlapqf;
2804 
2805 	vlan_priority = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
2806 
2807 	vlapqf = rd32(E1000_VLAPQF);
2808 	vlapqf &= ~E1000_VLAPQF_P_VALID(vlan_priority);
2809 	vlapqf &= ~E1000_VLAPQF_QUEUE_SEL(vlan_priority,
2810 						E1000_VLAPQF_QUEUE_MASK);
2811 
2812 	wr32(E1000_VLAPQF, vlapqf);
2813 }
2814 
2815 int igb_erase_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2816 {
2817 	if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE)
2818 		igb_clear_etype_filter_regs(adapter,
2819 					    input->etype_reg_index);
2820 
2821 	if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2822 		igb_clear_vlan_prio_filter(adapter,
2823 					   ntohs(input->filter.vlan_tci));
2824 
2825 	return 0;
2826 }
2827 
2828 static int igb_update_ethtool_nfc_entry(struct igb_adapter *adapter,
2829 					struct igb_nfc_filter *input,
2830 					u16 sw_idx)
2831 {
2832 	struct igb_nfc_filter *rule, *parent;
2833 	int err = -EINVAL;
2834 
2835 	parent = NULL;
2836 	rule = NULL;
2837 
2838 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2839 		/* hash found, or no matching entry */
2840 		if (rule->sw_idx >= sw_idx)
2841 			break;
2842 		parent = rule;
2843 	}
2844 
2845 	/* if there is an old rule occupying our place remove it */
2846 	if (rule && (rule->sw_idx == sw_idx)) {
2847 		if (!input)
2848 			err = igb_erase_filter(adapter, rule);
2849 
2850 		hlist_del(&rule->nfc_node);
2851 		kfree(rule);
2852 		adapter->nfc_filter_count--;
2853 	}
2854 
2855 	/* If no input this was a delete, err should be 0 if a rule was
2856 	 * successfully found and removed from the list else -EINVAL
2857 	 */
2858 	if (!input)
2859 		return err;
2860 
2861 	/* initialize node */
2862 	INIT_HLIST_NODE(&input->nfc_node);
2863 
2864 	/* add filter to the list */
2865 	if (parent)
2866 		hlist_add_behind(&parent->nfc_node, &input->nfc_node);
2867 	else
2868 		hlist_add_head(&input->nfc_node, &adapter->nfc_filter_list);
2869 
2870 	/* update counts */
2871 	adapter->nfc_filter_count++;
2872 
2873 	return 0;
2874 }
2875 
2876 static int igb_add_ethtool_nfc_entry(struct igb_adapter *adapter,
2877 				     struct ethtool_rxnfc *cmd)
2878 {
2879 	struct net_device *netdev = adapter->netdev;
2880 	struct ethtool_rx_flow_spec *fsp =
2881 		(struct ethtool_rx_flow_spec *)&cmd->fs;
2882 	struct igb_nfc_filter *input, *rule;
2883 	int err = 0;
2884 
2885 	if (!(netdev->hw_features & NETIF_F_NTUPLE))
2886 		return -EOPNOTSUPP;
2887 
2888 	/* Don't allow programming if the action is a queue greater than
2889 	 * the number of online Rx queues.
2890 	 */
2891 	if ((fsp->ring_cookie == RX_CLS_FLOW_DISC) ||
2892 	    (fsp->ring_cookie >= adapter->num_rx_queues)) {
2893 		dev_err(&adapter->pdev->dev, "ethtool -N: The specified action is invalid\n");
2894 		return -EINVAL;
2895 	}
2896 
2897 	/* Don't allow indexes to exist outside of available space */
2898 	if (fsp->location >= IGB_MAX_RXNFC_FILTERS) {
2899 		dev_err(&adapter->pdev->dev, "Location out of range\n");
2900 		return -EINVAL;
2901 	}
2902 
2903 	if ((fsp->flow_type & ~FLOW_EXT) != ETHER_FLOW)
2904 		return -EINVAL;
2905 
2906 	if (fsp->m_u.ether_spec.h_proto != ETHER_TYPE_FULL_MASK &&
2907 	    fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK))
2908 		return -EINVAL;
2909 
2910 	input = kzalloc(sizeof(*input), GFP_KERNEL);
2911 	if (!input)
2912 		return -ENOMEM;
2913 
2914 	if (fsp->m_u.ether_spec.h_proto == ETHER_TYPE_FULL_MASK) {
2915 		input->filter.etype = fsp->h_u.ether_spec.h_proto;
2916 		input->filter.match_flags = IGB_FILTER_FLAG_ETHER_TYPE;
2917 	}
2918 
2919 	if ((fsp->flow_type & FLOW_EXT) && fsp->m_ext.vlan_tci) {
2920 		if (fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK)) {
2921 			err = -EINVAL;
2922 			goto err_out;
2923 		}
2924 		input->filter.vlan_tci = fsp->h_ext.vlan_tci;
2925 		input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2926 	}
2927 
2928 	input->action = fsp->ring_cookie;
2929 	input->sw_idx = fsp->location;
2930 
2931 	spin_lock(&adapter->nfc_lock);
2932 
2933 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2934 		if (!memcmp(&input->filter, &rule->filter,
2935 			    sizeof(input->filter))) {
2936 			err = -EEXIST;
2937 			dev_err(&adapter->pdev->dev,
2938 				"ethtool: this filter is already set\n");
2939 			goto err_out_w_lock;
2940 		}
2941 	}
2942 
2943 	err = igb_add_filter(adapter, input);
2944 	if (err)
2945 		goto err_out_w_lock;
2946 
2947 	igb_update_ethtool_nfc_entry(adapter, input, input->sw_idx);
2948 
2949 	spin_unlock(&adapter->nfc_lock);
2950 	return 0;
2951 
2952 err_out_w_lock:
2953 	spin_unlock(&adapter->nfc_lock);
2954 err_out:
2955 	kfree(input);
2956 	return err;
2957 }
2958 
2959 static int igb_del_ethtool_nfc_entry(struct igb_adapter *adapter,
2960 				     struct ethtool_rxnfc *cmd)
2961 {
2962 	struct ethtool_rx_flow_spec *fsp =
2963 		(struct ethtool_rx_flow_spec *)&cmd->fs;
2964 	int err;
2965 
2966 	spin_lock(&adapter->nfc_lock);
2967 	err = igb_update_ethtool_nfc_entry(adapter, NULL, fsp->location);
2968 	spin_unlock(&adapter->nfc_lock);
2969 
2970 	return err;
2971 }
2972 
2973 static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
2974 {
2975 	struct igb_adapter *adapter = netdev_priv(dev);
2976 	int ret = -EOPNOTSUPP;
2977 
2978 	switch (cmd->cmd) {
2979 	case ETHTOOL_SRXFH:
2980 		ret = igb_set_rss_hash_opt(adapter, cmd);
2981 		break;
2982 	case ETHTOOL_SRXCLSRLINS:
2983 		ret = igb_add_ethtool_nfc_entry(adapter, cmd);
2984 		break;
2985 	case ETHTOOL_SRXCLSRLDEL:
2986 		ret = igb_del_ethtool_nfc_entry(adapter, cmd);
2987 	default:
2988 		break;
2989 	}
2990 
2991 	return ret;
2992 }
2993 
2994 static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2995 {
2996 	struct igb_adapter *adapter = netdev_priv(netdev);
2997 	struct e1000_hw *hw = &adapter->hw;
2998 	u32 ret_val;
2999 	u16 phy_data;
3000 
3001 	if ((hw->mac.type < e1000_i350) ||
3002 	    (hw->phy.media_type != e1000_media_type_copper))
3003 		return -EOPNOTSUPP;
3004 
3005 	edata->supported = (SUPPORTED_1000baseT_Full |
3006 			    SUPPORTED_100baseT_Full);
3007 	if (!hw->dev_spec._82575.eee_disable)
3008 		edata->advertised =
3009 			mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
3010 
3011 	/* The IPCNFG and EEER registers are not supported on I354. */
3012 	if (hw->mac.type == e1000_i354) {
3013 		igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
3014 	} else {
3015 		u32 eeer;
3016 
3017 		eeer = rd32(E1000_EEER);
3018 
3019 		/* EEE status on negotiated link */
3020 		if (eeer & E1000_EEER_EEE_NEG)
3021 			edata->eee_active = true;
3022 
3023 		if (eeer & E1000_EEER_TX_LPI_EN)
3024 			edata->tx_lpi_enabled = true;
3025 	}
3026 
3027 	/* EEE Link Partner Advertised */
3028 	switch (hw->mac.type) {
3029 	case e1000_i350:
3030 		ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
3031 					   &phy_data);
3032 		if (ret_val)
3033 			return -ENODATA;
3034 
3035 		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
3036 		break;
3037 	case e1000_i354:
3038 	case e1000_i210:
3039 	case e1000_i211:
3040 		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
3041 					     E1000_EEE_LP_ADV_DEV_I210,
3042 					     &phy_data);
3043 		if (ret_val)
3044 			return -ENODATA;
3045 
3046 		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
3047 
3048 		break;
3049 	default:
3050 		break;
3051 	}
3052 
3053 	edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
3054 
3055 	if ((hw->mac.type == e1000_i354) &&
3056 	    (edata->eee_enabled))
3057 		edata->tx_lpi_enabled = true;
3058 
3059 	/* Report correct negotiated EEE status for devices that
3060 	 * wrongly report EEE at half-duplex
3061 	 */
3062 	if (adapter->link_duplex == HALF_DUPLEX) {
3063 		edata->eee_enabled = false;
3064 		edata->eee_active = false;
3065 		edata->tx_lpi_enabled = false;
3066 		edata->advertised &= ~edata->advertised;
3067 	}
3068 
3069 	return 0;
3070 }
3071 
3072 static int igb_set_eee(struct net_device *netdev,
3073 		       struct ethtool_eee *edata)
3074 {
3075 	struct igb_adapter *adapter = netdev_priv(netdev);
3076 	struct e1000_hw *hw = &adapter->hw;
3077 	struct ethtool_eee eee_curr;
3078 	bool adv1g_eee = true, adv100m_eee = true;
3079 	s32 ret_val;
3080 
3081 	if ((hw->mac.type < e1000_i350) ||
3082 	    (hw->phy.media_type != e1000_media_type_copper))
3083 		return -EOPNOTSUPP;
3084 
3085 	memset(&eee_curr, 0, sizeof(struct ethtool_eee));
3086 
3087 	ret_val = igb_get_eee(netdev, &eee_curr);
3088 	if (ret_val)
3089 		return ret_val;
3090 
3091 	if (eee_curr.eee_enabled) {
3092 		if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
3093 			dev_err(&adapter->pdev->dev,
3094 				"Setting EEE tx-lpi is not supported\n");
3095 			return -EINVAL;
3096 		}
3097 
3098 		/* Tx LPI timer is not implemented currently */
3099 		if (edata->tx_lpi_timer) {
3100 			dev_err(&adapter->pdev->dev,
3101 				"Setting EEE Tx LPI timer is not supported\n");
3102 			return -EINVAL;
3103 		}
3104 
3105 		if (!edata->advertised || (edata->advertised &
3106 		    ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL))) {
3107 			dev_err(&adapter->pdev->dev,
3108 				"EEE Advertisement supports only 100Tx and/or 100T full duplex\n");
3109 			return -EINVAL;
3110 		}
3111 		adv100m_eee = !!(edata->advertised & ADVERTISE_100_FULL);
3112 		adv1g_eee = !!(edata->advertised & ADVERTISE_1000_FULL);
3113 
3114 	} else if (!edata->eee_enabled) {
3115 		dev_err(&adapter->pdev->dev,
3116 			"Setting EEE options are not supported with EEE disabled\n");
3117 			return -EINVAL;
3118 		}
3119 
3120 	adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
3121 	if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
3122 		hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
3123 		adapter->flags |= IGB_FLAG_EEE;
3124 
3125 		/* reset link */
3126 		if (netif_running(netdev))
3127 			igb_reinit_locked(adapter);
3128 		else
3129 			igb_reset(adapter);
3130 	}
3131 
3132 	if (hw->mac.type == e1000_i354)
3133 		ret_val = igb_set_eee_i354(hw, adv1g_eee, adv100m_eee);
3134 	else
3135 		ret_val = igb_set_eee_i350(hw, adv1g_eee, adv100m_eee);
3136 
3137 	if (ret_val) {
3138 		dev_err(&adapter->pdev->dev,
3139 			"Problem setting EEE advertisement options\n");
3140 		return -EINVAL;
3141 	}
3142 
3143 	return 0;
3144 }
3145 
3146 static int igb_get_module_info(struct net_device *netdev,
3147 			       struct ethtool_modinfo *modinfo)
3148 {
3149 	struct igb_adapter *adapter = netdev_priv(netdev);
3150 	struct e1000_hw *hw = &adapter->hw;
3151 	u32 status = 0;
3152 	u16 sff8472_rev, addr_mode;
3153 	bool page_swap = false;
3154 
3155 	if ((hw->phy.media_type == e1000_media_type_copper) ||
3156 	    (hw->phy.media_type == e1000_media_type_unknown))
3157 		return -EOPNOTSUPP;
3158 
3159 	/* Check whether we support SFF-8472 or not */
3160 	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
3161 	if (status)
3162 		return -EIO;
3163 
3164 	/* addressing mode is not supported */
3165 	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
3166 	if (status)
3167 		return -EIO;
3168 
3169 	/* addressing mode is not supported */
3170 	if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
3171 		hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
3172 		page_swap = true;
3173 	}
3174 
3175 	if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
3176 		/* We have an SFP, but it does not support SFF-8472 */
3177 		modinfo->type = ETH_MODULE_SFF_8079;
3178 		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
3179 	} else {
3180 		/* We have an SFP which supports a revision of SFF-8472 */
3181 		modinfo->type = ETH_MODULE_SFF_8472;
3182 		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
3183 	}
3184 
3185 	return 0;
3186 }
3187 
3188 static int igb_get_module_eeprom(struct net_device *netdev,
3189 				 struct ethtool_eeprom *ee, u8 *data)
3190 {
3191 	struct igb_adapter *adapter = netdev_priv(netdev);
3192 	struct e1000_hw *hw = &adapter->hw;
3193 	u32 status = 0;
3194 	u16 *dataword;
3195 	u16 first_word, last_word;
3196 	int i = 0;
3197 
3198 	if (ee->len == 0)
3199 		return -EINVAL;
3200 
3201 	first_word = ee->offset >> 1;
3202 	last_word = (ee->offset + ee->len - 1) >> 1;
3203 
3204 	dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1),
3205 			   GFP_KERNEL);
3206 	if (!dataword)
3207 		return -ENOMEM;
3208 
3209 	/* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
3210 	for (i = 0; i < last_word - first_word + 1; i++) {
3211 		status = igb_read_phy_reg_i2c(hw, (first_word + i) * 2,
3212 					      &dataword[i]);
3213 		if (status) {
3214 			/* Error occurred while reading module */
3215 			kfree(dataword);
3216 			return -EIO;
3217 		}
3218 
3219 		be16_to_cpus(&dataword[i]);
3220 	}
3221 
3222 	memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
3223 	kfree(dataword);
3224 
3225 	return 0;
3226 }
3227 
3228 static int igb_ethtool_begin(struct net_device *netdev)
3229 {
3230 	struct igb_adapter *adapter = netdev_priv(netdev);
3231 	pm_runtime_get_sync(&adapter->pdev->dev);
3232 	return 0;
3233 }
3234 
3235 static void igb_ethtool_complete(struct net_device *netdev)
3236 {
3237 	struct igb_adapter *adapter = netdev_priv(netdev);
3238 	pm_runtime_put(&adapter->pdev->dev);
3239 }
3240 
3241 static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
3242 {
3243 	return IGB_RETA_SIZE;
3244 }
3245 
3246 static int igb_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key,
3247 			u8 *hfunc)
3248 {
3249 	struct igb_adapter *adapter = netdev_priv(netdev);
3250 	int i;
3251 
3252 	if (hfunc)
3253 		*hfunc = ETH_RSS_HASH_TOP;
3254 	if (!indir)
3255 		return 0;
3256 	for (i = 0; i < IGB_RETA_SIZE; i++)
3257 		indir[i] = adapter->rss_indir_tbl[i];
3258 
3259 	return 0;
3260 }
3261 
3262 void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
3263 {
3264 	struct e1000_hw *hw = &adapter->hw;
3265 	u32 reg = E1000_RETA(0);
3266 	u32 shift = 0;
3267 	int i = 0;
3268 
3269 	switch (hw->mac.type) {
3270 	case e1000_82575:
3271 		shift = 6;
3272 		break;
3273 	case e1000_82576:
3274 		/* 82576 supports 2 RSS queues for SR-IOV */
3275 		if (adapter->vfs_allocated_count)
3276 			shift = 3;
3277 		break;
3278 	default:
3279 		break;
3280 	}
3281 
3282 	while (i < IGB_RETA_SIZE) {
3283 		u32 val = 0;
3284 		int j;
3285 
3286 		for (j = 3; j >= 0; j--) {
3287 			val <<= 8;
3288 			val |= adapter->rss_indir_tbl[i + j];
3289 		}
3290 
3291 		wr32(reg, val << shift);
3292 		reg += 4;
3293 		i += 4;
3294 	}
3295 }
3296 
3297 static int igb_set_rxfh(struct net_device *netdev, const u32 *indir,
3298 			const u8 *key, const u8 hfunc)
3299 {
3300 	struct igb_adapter *adapter = netdev_priv(netdev);
3301 	struct e1000_hw *hw = &adapter->hw;
3302 	int i;
3303 	u32 num_queues;
3304 
3305 	/* We do not allow change in unsupported parameters */
3306 	if (key ||
3307 	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
3308 		return -EOPNOTSUPP;
3309 	if (!indir)
3310 		return 0;
3311 
3312 	num_queues = adapter->rss_queues;
3313 
3314 	switch (hw->mac.type) {
3315 	case e1000_82576:
3316 		/* 82576 supports 2 RSS queues for SR-IOV */
3317 		if (adapter->vfs_allocated_count)
3318 			num_queues = 2;
3319 		break;
3320 	default:
3321 		break;
3322 	}
3323 
3324 	/* Verify user input. */
3325 	for (i = 0; i < IGB_RETA_SIZE; i++)
3326 		if (indir[i] >= num_queues)
3327 			return -EINVAL;
3328 
3329 
3330 	for (i = 0; i < IGB_RETA_SIZE; i++)
3331 		adapter->rss_indir_tbl[i] = indir[i];
3332 
3333 	igb_write_rss_indir_tbl(adapter);
3334 
3335 	return 0;
3336 }
3337 
3338 static unsigned int igb_max_channels(struct igb_adapter *adapter)
3339 {
3340 	struct e1000_hw *hw = &adapter->hw;
3341 	unsigned int max_combined = 0;
3342 
3343 	switch (hw->mac.type) {
3344 	case e1000_i211:
3345 		max_combined = IGB_MAX_RX_QUEUES_I211;
3346 		break;
3347 	case e1000_82575:
3348 	case e1000_i210:
3349 		max_combined = IGB_MAX_RX_QUEUES_82575;
3350 		break;
3351 	case e1000_i350:
3352 		if (!!adapter->vfs_allocated_count) {
3353 			max_combined = 1;
3354 			break;
3355 		}
3356 		/* fall through */
3357 	case e1000_82576:
3358 		if (!!adapter->vfs_allocated_count) {
3359 			max_combined = 2;
3360 			break;
3361 		}
3362 		/* fall through */
3363 	case e1000_82580:
3364 	case e1000_i354:
3365 	default:
3366 		max_combined = IGB_MAX_RX_QUEUES;
3367 		break;
3368 	}
3369 
3370 	return max_combined;
3371 }
3372 
3373 static void igb_get_channels(struct net_device *netdev,
3374 			     struct ethtool_channels *ch)
3375 {
3376 	struct igb_adapter *adapter = netdev_priv(netdev);
3377 
3378 	/* Report maximum channels */
3379 	ch->max_combined = igb_max_channels(adapter);
3380 
3381 	/* Report info for other vector */
3382 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
3383 		ch->max_other = NON_Q_VECTORS;
3384 		ch->other_count = NON_Q_VECTORS;
3385 	}
3386 
3387 	ch->combined_count = adapter->rss_queues;
3388 }
3389 
3390 static int igb_set_channels(struct net_device *netdev,
3391 			    struct ethtool_channels *ch)
3392 {
3393 	struct igb_adapter *adapter = netdev_priv(netdev);
3394 	unsigned int count = ch->combined_count;
3395 	unsigned int max_combined = 0;
3396 
3397 	/* Verify they are not requesting separate vectors */
3398 	if (!count || ch->rx_count || ch->tx_count)
3399 		return -EINVAL;
3400 
3401 	/* Verify other_count is valid and has not been changed */
3402 	if (ch->other_count != NON_Q_VECTORS)
3403 		return -EINVAL;
3404 
3405 	/* Verify the number of channels doesn't exceed hw limits */
3406 	max_combined = igb_max_channels(adapter);
3407 	if (count > max_combined)
3408 		return -EINVAL;
3409 
3410 	if (count != adapter->rss_queues) {
3411 		adapter->rss_queues = count;
3412 		igb_set_flag_queue_pairs(adapter, max_combined);
3413 
3414 		/* Hardware has to reinitialize queues and interrupts to
3415 		 * match the new configuration.
3416 		 */
3417 		return igb_reinit_queues(adapter);
3418 	}
3419 
3420 	return 0;
3421 }
3422 
3423 static u32 igb_get_priv_flags(struct net_device *netdev)
3424 {
3425 	struct igb_adapter *adapter = netdev_priv(netdev);
3426 	u32 priv_flags = 0;
3427 
3428 	if (adapter->flags & IGB_FLAG_RX_LEGACY)
3429 		priv_flags |= IGB_PRIV_FLAGS_LEGACY_RX;
3430 
3431 	return priv_flags;
3432 }
3433 
3434 static int igb_set_priv_flags(struct net_device *netdev, u32 priv_flags)
3435 {
3436 	struct igb_adapter *adapter = netdev_priv(netdev);
3437 	unsigned int flags = adapter->flags;
3438 
3439 	flags &= ~IGB_FLAG_RX_LEGACY;
3440 	if (priv_flags & IGB_PRIV_FLAGS_LEGACY_RX)
3441 		flags |= IGB_FLAG_RX_LEGACY;
3442 
3443 	if (flags != adapter->flags) {
3444 		adapter->flags = flags;
3445 
3446 		/* reset interface to repopulate queues */
3447 		if (netif_running(netdev))
3448 			igb_reinit_locked(adapter);
3449 	}
3450 
3451 	return 0;
3452 }
3453 
3454 static const struct ethtool_ops igb_ethtool_ops = {
3455 	.get_drvinfo		= igb_get_drvinfo,
3456 	.get_regs_len		= igb_get_regs_len,
3457 	.get_regs		= igb_get_regs,
3458 	.get_wol		= igb_get_wol,
3459 	.set_wol		= igb_set_wol,
3460 	.get_msglevel		= igb_get_msglevel,
3461 	.set_msglevel		= igb_set_msglevel,
3462 	.nway_reset		= igb_nway_reset,
3463 	.get_link		= igb_get_link,
3464 	.get_eeprom_len		= igb_get_eeprom_len,
3465 	.get_eeprom		= igb_get_eeprom,
3466 	.set_eeprom		= igb_set_eeprom,
3467 	.get_ringparam		= igb_get_ringparam,
3468 	.set_ringparam		= igb_set_ringparam,
3469 	.get_pauseparam		= igb_get_pauseparam,
3470 	.set_pauseparam		= igb_set_pauseparam,
3471 	.self_test		= igb_diag_test,
3472 	.get_strings		= igb_get_strings,
3473 	.set_phys_id		= igb_set_phys_id,
3474 	.get_sset_count		= igb_get_sset_count,
3475 	.get_ethtool_stats	= igb_get_ethtool_stats,
3476 	.get_coalesce		= igb_get_coalesce,
3477 	.set_coalesce		= igb_set_coalesce,
3478 	.get_ts_info		= igb_get_ts_info,
3479 	.get_rxnfc		= igb_get_rxnfc,
3480 	.set_rxnfc		= igb_set_rxnfc,
3481 	.get_eee		= igb_get_eee,
3482 	.set_eee		= igb_set_eee,
3483 	.get_module_info	= igb_get_module_info,
3484 	.get_module_eeprom	= igb_get_module_eeprom,
3485 	.get_rxfh_indir_size	= igb_get_rxfh_indir_size,
3486 	.get_rxfh		= igb_get_rxfh,
3487 	.set_rxfh		= igb_set_rxfh,
3488 	.get_channels		= igb_get_channels,
3489 	.set_channels		= igb_set_channels,
3490 	.get_priv_flags		= igb_get_priv_flags,
3491 	.set_priv_flags		= igb_set_priv_flags,
3492 	.begin			= igb_ethtool_begin,
3493 	.complete		= igb_ethtool_complete,
3494 	.get_link_ksettings	= igb_get_link_ksettings,
3495 	.set_link_ksettings	= igb_set_link_ksettings,
3496 };
3497 
3498 void igb_set_ethtool_ops(struct net_device *netdev)
3499 {
3500 	netdev->ethtool_ops = &igb_ethtool_ops;
3501 }
3502