1 /******************************************************************************* 2 3 Intel(R) Gigabit Ethernet Linux driver 4 Copyright(c) 2007-2013 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 25 26 *******************************************************************************/ 27 28 /* ethtool support for igb */ 29 30 #include <linux/vmalloc.h> 31 #include <linux/netdevice.h> 32 #include <linux/pci.h> 33 #include <linux/delay.h> 34 #include <linux/interrupt.h> 35 #include <linux/if_ether.h> 36 #include <linux/ethtool.h> 37 #include <linux/sched.h> 38 #include <linux/slab.h> 39 #include <linux/pm_runtime.h> 40 #include <linux/highmem.h> 41 42 #include "igb.h" 43 44 struct igb_stats { 45 char stat_string[ETH_GSTRING_LEN]; 46 int sizeof_stat; 47 int stat_offset; 48 }; 49 50 #define IGB_STAT(_name, _stat) { \ 51 .stat_string = _name, \ 52 .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \ 53 .stat_offset = offsetof(struct igb_adapter, _stat) \ 54 } 55 static const struct igb_stats igb_gstrings_stats[] = { 56 IGB_STAT("rx_packets", stats.gprc), 57 IGB_STAT("tx_packets", stats.gptc), 58 IGB_STAT("rx_bytes", stats.gorc), 59 IGB_STAT("tx_bytes", stats.gotc), 60 IGB_STAT("rx_broadcast", stats.bprc), 61 IGB_STAT("tx_broadcast", stats.bptc), 62 IGB_STAT("rx_multicast", stats.mprc), 63 IGB_STAT("tx_multicast", stats.mptc), 64 IGB_STAT("multicast", stats.mprc), 65 IGB_STAT("collisions", stats.colc), 66 IGB_STAT("rx_crc_errors", stats.crcerrs), 67 IGB_STAT("rx_no_buffer_count", stats.rnbc), 68 IGB_STAT("rx_missed_errors", stats.mpc), 69 IGB_STAT("tx_aborted_errors", stats.ecol), 70 IGB_STAT("tx_carrier_errors", stats.tncrs), 71 IGB_STAT("tx_window_errors", stats.latecol), 72 IGB_STAT("tx_abort_late_coll", stats.latecol), 73 IGB_STAT("tx_deferred_ok", stats.dc), 74 IGB_STAT("tx_single_coll_ok", stats.scc), 75 IGB_STAT("tx_multi_coll_ok", stats.mcc), 76 IGB_STAT("tx_timeout_count", tx_timeout_count), 77 IGB_STAT("rx_long_length_errors", stats.roc), 78 IGB_STAT("rx_short_length_errors", stats.ruc), 79 IGB_STAT("rx_align_errors", stats.algnerrc), 80 IGB_STAT("tx_tcp_seg_good", stats.tsctc), 81 IGB_STAT("tx_tcp_seg_failed", stats.tsctfc), 82 IGB_STAT("rx_flow_control_xon", stats.xonrxc), 83 IGB_STAT("rx_flow_control_xoff", stats.xoffrxc), 84 IGB_STAT("tx_flow_control_xon", stats.xontxc), 85 IGB_STAT("tx_flow_control_xoff", stats.xofftxc), 86 IGB_STAT("rx_long_byte_count", stats.gorc), 87 IGB_STAT("tx_dma_out_of_sync", stats.doosync), 88 IGB_STAT("tx_smbus", stats.mgptc), 89 IGB_STAT("rx_smbus", stats.mgprc), 90 IGB_STAT("dropped_smbus", stats.mgpdc), 91 IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc), 92 IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc), 93 IGB_STAT("os2bmc_tx_by_host", stats.o2bspc), 94 IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc), 95 IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts), 96 IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared), 97 }; 98 99 #define IGB_NETDEV_STAT(_net_stat) { \ 100 .stat_string = __stringify(_net_stat), \ 101 .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \ 102 .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \ 103 } 104 static const struct igb_stats igb_gstrings_net_stats[] = { 105 IGB_NETDEV_STAT(rx_errors), 106 IGB_NETDEV_STAT(tx_errors), 107 IGB_NETDEV_STAT(tx_dropped), 108 IGB_NETDEV_STAT(rx_length_errors), 109 IGB_NETDEV_STAT(rx_over_errors), 110 IGB_NETDEV_STAT(rx_frame_errors), 111 IGB_NETDEV_STAT(rx_fifo_errors), 112 IGB_NETDEV_STAT(tx_fifo_errors), 113 IGB_NETDEV_STAT(tx_heartbeat_errors) 114 }; 115 116 #define IGB_GLOBAL_STATS_LEN \ 117 (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats)) 118 #define IGB_NETDEV_STATS_LEN \ 119 (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats)) 120 #define IGB_RX_QUEUE_STATS_LEN \ 121 (sizeof(struct igb_rx_queue_stats) / sizeof(u64)) 122 123 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */ 124 125 #define IGB_QUEUE_STATS_LEN \ 126 ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \ 127 IGB_RX_QUEUE_STATS_LEN) + \ 128 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \ 129 IGB_TX_QUEUE_STATS_LEN)) 130 #define IGB_STATS_LEN \ 131 (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN) 132 133 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = { 134 "Register test (offline)", "Eeprom test (offline)", 135 "Interrupt test (offline)", "Loopback test (offline)", 136 "Link test (on/offline)" 137 }; 138 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN) 139 140 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) 141 { 142 struct igb_adapter *adapter = netdev_priv(netdev); 143 struct e1000_hw *hw = &adapter->hw; 144 u32 status; 145 146 if (hw->phy.media_type == e1000_media_type_copper) { 147 148 ecmd->supported = (SUPPORTED_10baseT_Half | 149 SUPPORTED_10baseT_Full | 150 SUPPORTED_100baseT_Half | 151 SUPPORTED_100baseT_Full | 152 SUPPORTED_1000baseT_Full| 153 SUPPORTED_Autoneg | 154 SUPPORTED_TP | 155 SUPPORTED_Pause); 156 ecmd->advertising = ADVERTISED_TP; 157 158 if (hw->mac.autoneg == 1) { 159 ecmd->advertising |= ADVERTISED_Autoneg; 160 /* the e1000 autoneg seems to match ethtool nicely */ 161 ecmd->advertising |= hw->phy.autoneg_advertised; 162 } 163 164 if (hw->mac.autoneg != 1) 165 ecmd->advertising &= ~(ADVERTISED_Pause | 166 ADVERTISED_Asym_Pause); 167 168 if (hw->fc.requested_mode == e1000_fc_full) 169 ecmd->advertising |= ADVERTISED_Pause; 170 else if (hw->fc.requested_mode == e1000_fc_rx_pause) 171 ecmd->advertising |= (ADVERTISED_Pause | 172 ADVERTISED_Asym_Pause); 173 else if (hw->fc.requested_mode == e1000_fc_tx_pause) 174 ecmd->advertising |= ADVERTISED_Asym_Pause; 175 else 176 ecmd->advertising &= ~(ADVERTISED_Pause | 177 ADVERTISED_Asym_Pause); 178 179 ecmd->port = PORT_TP; 180 ecmd->phy_address = hw->phy.addr; 181 } else { 182 ecmd->supported = (SUPPORTED_1000baseT_Full | 183 SUPPORTED_FIBRE | 184 SUPPORTED_Autoneg); 185 186 ecmd->advertising = (ADVERTISED_1000baseT_Full | 187 ADVERTISED_FIBRE | 188 ADVERTISED_Autoneg | 189 ADVERTISED_Pause); 190 191 ecmd->port = PORT_FIBRE; 192 } 193 194 ecmd->transceiver = XCVR_INTERNAL; 195 196 status = rd32(E1000_STATUS); 197 198 if (status & E1000_STATUS_LU) { 199 200 if ((status & E1000_STATUS_SPEED_1000) || 201 hw->phy.media_type != e1000_media_type_copper) 202 ethtool_cmd_speed_set(ecmd, SPEED_1000); 203 else if (status & E1000_STATUS_SPEED_100) 204 ethtool_cmd_speed_set(ecmd, SPEED_100); 205 else 206 ethtool_cmd_speed_set(ecmd, SPEED_10); 207 208 if ((status & E1000_STATUS_FD) || 209 hw->phy.media_type != e1000_media_type_copper) 210 ecmd->duplex = DUPLEX_FULL; 211 else 212 ecmd->duplex = DUPLEX_HALF; 213 } else { 214 ethtool_cmd_speed_set(ecmd, -1); 215 ecmd->duplex = -1; 216 } 217 218 ecmd->autoneg = hw->mac.autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE; 219 220 /* MDI-X => 2; MDI =>1; Invalid =>0 */ 221 if (hw->phy.media_type == e1000_media_type_copper) 222 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : 223 ETH_TP_MDI; 224 else 225 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID; 226 227 if (hw->phy.mdix == AUTO_ALL_MODES) 228 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; 229 else 230 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix; 231 232 return 0; 233 } 234 235 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) 236 { 237 struct igb_adapter *adapter = netdev_priv(netdev); 238 struct e1000_hw *hw = &adapter->hw; 239 240 /* When SoL/IDER sessions are active, autoneg/speed/duplex 241 * cannot be changed */ 242 if (igb_check_reset_block(hw)) { 243 dev_err(&adapter->pdev->dev, 244 "Cannot change link characteristics when SoL/IDER is active.\n"); 245 return -EINVAL; 246 } 247 248 /* 249 * MDI setting is only allowed when autoneg enabled because 250 * some hardware doesn't allow MDI setting when speed or 251 * duplex is forced. 252 */ 253 if (ecmd->eth_tp_mdix_ctrl) { 254 if (hw->phy.media_type != e1000_media_type_copper) 255 return -EOPNOTSUPP; 256 257 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && 258 (ecmd->autoneg != AUTONEG_ENABLE)) { 259 dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); 260 return -EINVAL; 261 } 262 } 263 264 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 265 msleep(1); 266 267 if (ecmd->autoneg == AUTONEG_ENABLE) { 268 hw->mac.autoneg = 1; 269 hw->phy.autoneg_advertised = ecmd->advertising | 270 ADVERTISED_TP | 271 ADVERTISED_Autoneg; 272 ecmd->advertising = hw->phy.autoneg_advertised; 273 if (adapter->fc_autoneg) 274 hw->fc.requested_mode = e1000_fc_default; 275 } else { 276 u32 speed = ethtool_cmd_speed(ecmd); 277 /* calling this overrides forced MDI setting */ 278 if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) { 279 clear_bit(__IGB_RESETTING, &adapter->state); 280 return -EINVAL; 281 } 282 } 283 284 /* MDI-X => 2; MDI => 1; Auto => 3 */ 285 if (ecmd->eth_tp_mdix_ctrl) { 286 /* 287 * fix up the value for auto (3 => 0) as zero is mapped 288 * internally to auto 289 */ 290 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) 291 hw->phy.mdix = AUTO_ALL_MODES; 292 else 293 hw->phy.mdix = ecmd->eth_tp_mdix_ctrl; 294 } 295 296 /* reset the link */ 297 if (netif_running(adapter->netdev)) { 298 igb_down(adapter); 299 igb_up(adapter); 300 } else 301 igb_reset(adapter); 302 303 clear_bit(__IGB_RESETTING, &adapter->state); 304 return 0; 305 } 306 307 static u32 igb_get_link(struct net_device *netdev) 308 { 309 struct igb_adapter *adapter = netdev_priv(netdev); 310 struct e1000_mac_info *mac = &adapter->hw.mac; 311 312 /* 313 * If the link is not reported up to netdev, interrupts are disabled, 314 * and so the physical link state may have changed since we last 315 * looked. Set get_link_status to make sure that the true link 316 * state is interrogated, rather than pulling a cached and possibly 317 * stale link state from the driver. 318 */ 319 if (!netif_carrier_ok(netdev)) 320 mac->get_link_status = 1; 321 322 return igb_has_link(adapter); 323 } 324 325 static void igb_get_pauseparam(struct net_device *netdev, 326 struct ethtool_pauseparam *pause) 327 { 328 struct igb_adapter *adapter = netdev_priv(netdev); 329 struct e1000_hw *hw = &adapter->hw; 330 331 pause->autoneg = 332 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 333 334 if (hw->fc.current_mode == e1000_fc_rx_pause) 335 pause->rx_pause = 1; 336 else if (hw->fc.current_mode == e1000_fc_tx_pause) 337 pause->tx_pause = 1; 338 else if (hw->fc.current_mode == e1000_fc_full) { 339 pause->rx_pause = 1; 340 pause->tx_pause = 1; 341 } 342 } 343 344 static int igb_set_pauseparam(struct net_device *netdev, 345 struct ethtool_pauseparam *pause) 346 { 347 struct igb_adapter *adapter = netdev_priv(netdev); 348 struct e1000_hw *hw = &adapter->hw; 349 int retval = 0; 350 351 adapter->fc_autoneg = pause->autoneg; 352 353 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 354 msleep(1); 355 356 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 357 hw->fc.requested_mode = e1000_fc_default; 358 if (netif_running(adapter->netdev)) { 359 igb_down(adapter); 360 igb_up(adapter); 361 } else { 362 igb_reset(adapter); 363 } 364 } else { 365 if (pause->rx_pause && pause->tx_pause) 366 hw->fc.requested_mode = e1000_fc_full; 367 else if (pause->rx_pause && !pause->tx_pause) 368 hw->fc.requested_mode = e1000_fc_rx_pause; 369 else if (!pause->rx_pause && pause->tx_pause) 370 hw->fc.requested_mode = e1000_fc_tx_pause; 371 else if (!pause->rx_pause && !pause->tx_pause) 372 hw->fc.requested_mode = e1000_fc_none; 373 374 hw->fc.current_mode = hw->fc.requested_mode; 375 376 retval = ((hw->phy.media_type == e1000_media_type_copper) ? 377 igb_force_mac_fc(hw) : igb_setup_link(hw)); 378 } 379 380 clear_bit(__IGB_RESETTING, &adapter->state); 381 return retval; 382 } 383 384 static u32 igb_get_msglevel(struct net_device *netdev) 385 { 386 struct igb_adapter *adapter = netdev_priv(netdev); 387 return adapter->msg_enable; 388 } 389 390 static void igb_set_msglevel(struct net_device *netdev, u32 data) 391 { 392 struct igb_adapter *adapter = netdev_priv(netdev); 393 adapter->msg_enable = data; 394 } 395 396 static int igb_get_regs_len(struct net_device *netdev) 397 { 398 #define IGB_REGS_LEN 739 399 return IGB_REGS_LEN * sizeof(u32); 400 } 401 402 static void igb_get_regs(struct net_device *netdev, 403 struct ethtool_regs *regs, void *p) 404 { 405 struct igb_adapter *adapter = netdev_priv(netdev); 406 struct e1000_hw *hw = &adapter->hw; 407 u32 *regs_buff = p; 408 u8 i; 409 410 memset(p, 0, IGB_REGS_LEN * sizeof(u32)); 411 412 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id; 413 414 /* General Registers */ 415 regs_buff[0] = rd32(E1000_CTRL); 416 regs_buff[1] = rd32(E1000_STATUS); 417 regs_buff[2] = rd32(E1000_CTRL_EXT); 418 regs_buff[3] = rd32(E1000_MDIC); 419 regs_buff[4] = rd32(E1000_SCTL); 420 regs_buff[5] = rd32(E1000_CONNSW); 421 regs_buff[6] = rd32(E1000_VET); 422 regs_buff[7] = rd32(E1000_LEDCTL); 423 regs_buff[8] = rd32(E1000_PBA); 424 regs_buff[9] = rd32(E1000_PBS); 425 regs_buff[10] = rd32(E1000_FRTIMER); 426 regs_buff[11] = rd32(E1000_TCPTIMER); 427 428 /* NVM Register */ 429 regs_buff[12] = rd32(E1000_EECD); 430 431 /* Interrupt */ 432 /* Reading EICS for EICR because they read the 433 * same but EICS does not clear on read */ 434 regs_buff[13] = rd32(E1000_EICS); 435 regs_buff[14] = rd32(E1000_EICS); 436 regs_buff[15] = rd32(E1000_EIMS); 437 regs_buff[16] = rd32(E1000_EIMC); 438 regs_buff[17] = rd32(E1000_EIAC); 439 regs_buff[18] = rd32(E1000_EIAM); 440 /* Reading ICS for ICR because they read the 441 * same but ICS does not clear on read */ 442 regs_buff[19] = rd32(E1000_ICS); 443 regs_buff[20] = rd32(E1000_ICS); 444 regs_buff[21] = rd32(E1000_IMS); 445 regs_buff[22] = rd32(E1000_IMC); 446 regs_buff[23] = rd32(E1000_IAC); 447 regs_buff[24] = rd32(E1000_IAM); 448 regs_buff[25] = rd32(E1000_IMIRVP); 449 450 /* Flow Control */ 451 regs_buff[26] = rd32(E1000_FCAL); 452 regs_buff[27] = rd32(E1000_FCAH); 453 regs_buff[28] = rd32(E1000_FCTTV); 454 regs_buff[29] = rd32(E1000_FCRTL); 455 regs_buff[30] = rd32(E1000_FCRTH); 456 regs_buff[31] = rd32(E1000_FCRTV); 457 458 /* Receive */ 459 regs_buff[32] = rd32(E1000_RCTL); 460 regs_buff[33] = rd32(E1000_RXCSUM); 461 regs_buff[34] = rd32(E1000_RLPML); 462 regs_buff[35] = rd32(E1000_RFCTL); 463 regs_buff[36] = rd32(E1000_MRQC); 464 regs_buff[37] = rd32(E1000_VT_CTL); 465 466 /* Transmit */ 467 regs_buff[38] = rd32(E1000_TCTL); 468 regs_buff[39] = rd32(E1000_TCTL_EXT); 469 regs_buff[40] = rd32(E1000_TIPG); 470 regs_buff[41] = rd32(E1000_DTXCTL); 471 472 /* Wake Up */ 473 regs_buff[42] = rd32(E1000_WUC); 474 regs_buff[43] = rd32(E1000_WUFC); 475 regs_buff[44] = rd32(E1000_WUS); 476 regs_buff[45] = rd32(E1000_IPAV); 477 regs_buff[46] = rd32(E1000_WUPL); 478 479 /* MAC */ 480 regs_buff[47] = rd32(E1000_PCS_CFG0); 481 regs_buff[48] = rd32(E1000_PCS_LCTL); 482 regs_buff[49] = rd32(E1000_PCS_LSTAT); 483 regs_buff[50] = rd32(E1000_PCS_ANADV); 484 regs_buff[51] = rd32(E1000_PCS_LPAB); 485 regs_buff[52] = rd32(E1000_PCS_NPTX); 486 regs_buff[53] = rd32(E1000_PCS_LPABNP); 487 488 /* Statistics */ 489 regs_buff[54] = adapter->stats.crcerrs; 490 regs_buff[55] = adapter->stats.algnerrc; 491 regs_buff[56] = adapter->stats.symerrs; 492 regs_buff[57] = adapter->stats.rxerrc; 493 regs_buff[58] = adapter->stats.mpc; 494 regs_buff[59] = adapter->stats.scc; 495 regs_buff[60] = adapter->stats.ecol; 496 regs_buff[61] = adapter->stats.mcc; 497 regs_buff[62] = adapter->stats.latecol; 498 regs_buff[63] = adapter->stats.colc; 499 regs_buff[64] = adapter->stats.dc; 500 regs_buff[65] = adapter->stats.tncrs; 501 regs_buff[66] = adapter->stats.sec; 502 regs_buff[67] = adapter->stats.htdpmc; 503 regs_buff[68] = adapter->stats.rlec; 504 regs_buff[69] = adapter->stats.xonrxc; 505 regs_buff[70] = adapter->stats.xontxc; 506 regs_buff[71] = adapter->stats.xoffrxc; 507 regs_buff[72] = adapter->stats.xofftxc; 508 regs_buff[73] = adapter->stats.fcruc; 509 regs_buff[74] = adapter->stats.prc64; 510 regs_buff[75] = adapter->stats.prc127; 511 regs_buff[76] = adapter->stats.prc255; 512 regs_buff[77] = adapter->stats.prc511; 513 regs_buff[78] = adapter->stats.prc1023; 514 regs_buff[79] = adapter->stats.prc1522; 515 regs_buff[80] = adapter->stats.gprc; 516 regs_buff[81] = adapter->stats.bprc; 517 regs_buff[82] = adapter->stats.mprc; 518 regs_buff[83] = adapter->stats.gptc; 519 regs_buff[84] = adapter->stats.gorc; 520 regs_buff[86] = adapter->stats.gotc; 521 regs_buff[88] = adapter->stats.rnbc; 522 regs_buff[89] = adapter->stats.ruc; 523 regs_buff[90] = adapter->stats.rfc; 524 regs_buff[91] = adapter->stats.roc; 525 regs_buff[92] = adapter->stats.rjc; 526 regs_buff[93] = adapter->stats.mgprc; 527 regs_buff[94] = adapter->stats.mgpdc; 528 regs_buff[95] = adapter->stats.mgptc; 529 regs_buff[96] = adapter->stats.tor; 530 regs_buff[98] = adapter->stats.tot; 531 regs_buff[100] = adapter->stats.tpr; 532 regs_buff[101] = adapter->stats.tpt; 533 regs_buff[102] = adapter->stats.ptc64; 534 regs_buff[103] = adapter->stats.ptc127; 535 regs_buff[104] = adapter->stats.ptc255; 536 regs_buff[105] = adapter->stats.ptc511; 537 regs_buff[106] = adapter->stats.ptc1023; 538 regs_buff[107] = adapter->stats.ptc1522; 539 regs_buff[108] = adapter->stats.mptc; 540 regs_buff[109] = adapter->stats.bptc; 541 regs_buff[110] = adapter->stats.tsctc; 542 regs_buff[111] = adapter->stats.iac; 543 regs_buff[112] = adapter->stats.rpthc; 544 regs_buff[113] = adapter->stats.hgptc; 545 regs_buff[114] = adapter->stats.hgorc; 546 regs_buff[116] = adapter->stats.hgotc; 547 regs_buff[118] = adapter->stats.lenerrs; 548 regs_buff[119] = adapter->stats.scvpc; 549 regs_buff[120] = adapter->stats.hrmpc; 550 551 for (i = 0; i < 4; i++) 552 regs_buff[121 + i] = rd32(E1000_SRRCTL(i)); 553 for (i = 0; i < 4; i++) 554 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i)); 555 for (i = 0; i < 4; i++) 556 regs_buff[129 + i] = rd32(E1000_RDBAL(i)); 557 for (i = 0; i < 4; i++) 558 regs_buff[133 + i] = rd32(E1000_RDBAH(i)); 559 for (i = 0; i < 4; i++) 560 regs_buff[137 + i] = rd32(E1000_RDLEN(i)); 561 for (i = 0; i < 4; i++) 562 regs_buff[141 + i] = rd32(E1000_RDH(i)); 563 for (i = 0; i < 4; i++) 564 regs_buff[145 + i] = rd32(E1000_RDT(i)); 565 for (i = 0; i < 4; i++) 566 regs_buff[149 + i] = rd32(E1000_RXDCTL(i)); 567 568 for (i = 0; i < 10; i++) 569 regs_buff[153 + i] = rd32(E1000_EITR(i)); 570 for (i = 0; i < 8; i++) 571 regs_buff[163 + i] = rd32(E1000_IMIR(i)); 572 for (i = 0; i < 8; i++) 573 regs_buff[171 + i] = rd32(E1000_IMIREXT(i)); 574 for (i = 0; i < 16; i++) 575 regs_buff[179 + i] = rd32(E1000_RAL(i)); 576 for (i = 0; i < 16; i++) 577 regs_buff[195 + i] = rd32(E1000_RAH(i)); 578 579 for (i = 0; i < 4; i++) 580 regs_buff[211 + i] = rd32(E1000_TDBAL(i)); 581 for (i = 0; i < 4; i++) 582 regs_buff[215 + i] = rd32(E1000_TDBAH(i)); 583 for (i = 0; i < 4; i++) 584 regs_buff[219 + i] = rd32(E1000_TDLEN(i)); 585 for (i = 0; i < 4; i++) 586 regs_buff[223 + i] = rd32(E1000_TDH(i)); 587 for (i = 0; i < 4; i++) 588 regs_buff[227 + i] = rd32(E1000_TDT(i)); 589 for (i = 0; i < 4; i++) 590 regs_buff[231 + i] = rd32(E1000_TXDCTL(i)); 591 for (i = 0; i < 4; i++) 592 regs_buff[235 + i] = rd32(E1000_TDWBAL(i)); 593 for (i = 0; i < 4; i++) 594 regs_buff[239 + i] = rd32(E1000_TDWBAH(i)); 595 for (i = 0; i < 4; i++) 596 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i)); 597 598 for (i = 0; i < 4; i++) 599 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i)); 600 for (i = 0; i < 4; i++) 601 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i)); 602 for (i = 0; i < 32; i++) 603 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i)); 604 for (i = 0; i < 128; i++) 605 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i)); 606 for (i = 0; i < 128; i++) 607 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i)); 608 for (i = 0; i < 4; i++) 609 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i)); 610 611 regs_buff[547] = rd32(E1000_TDFH); 612 regs_buff[548] = rd32(E1000_TDFT); 613 regs_buff[549] = rd32(E1000_TDFHS); 614 regs_buff[550] = rd32(E1000_TDFPC); 615 616 if (hw->mac.type > e1000_82580) { 617 regs_buff[551] = adapter->stats.o2bgptc; 618 regs_buff[552] = adapter->stats.b2ospc; 619 regs_buff[553] = adapter->stats.o2bspc; 620 regs_buff[554] = adapter->stats.b2ogprc; 621 } 622 623 if (hw->mac.type != e1000_82576) 624 return; 625 for (i = 0; i < 12; i++) 626 regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4)); 627 for (i = 0; i < 4; i++) 628 regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4)); 629 for (i = 0; i < 12; i++) 630 regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4)); 631 for (i = 0; i < 12; i++) 632 regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4)); 633 for (i = 0; i < 12; i++) 634 regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4)); 635 for (i = 0; i < 12; i++) 636 regs_buff[607 + i] = rd32(E1000_RDH(i + 4)); 637 for (i = 0; i < 12; i++) 638 regs_buff[619 + i] = rd32(E1000_RDT(i + 4)); 639 for (i = 0; i < 12; i++) 640 regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4)); 641 642 for (i = 0; i < 12; i++) 643 regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4)); 644 for (i = 0; i < 12; i++) 645 regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4)); 646 for (i = 0; i < 12; i++) 647 regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4)); 648 for (i = 0; i < 12; i++) 649 regs_buff[679 + i] = rd32(E1000_TDH(i + 4)); 650 for (i = 0; i < 12; i++) 651 regs_buff[691 + i] = rd32(E1000_TDT(i + 4)); 652 for (i = 0; i < 12; i++) 653 regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4)); 654 for (i = 0; i < 12; i++) 655 regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4)); 656 for (i = 0; i < 12; i++) 657 regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4)); 658 } 659 660 static int igb_get_eeprom_len(struct net_device *netdev) 661 { 662 struct igb_adapter *adapter = netdev_priv(netdev); 663 return adapter->hw.nvm.word_size * 2; 664 } 665 666 static int igb_get_eeprom(struct net_device *netdev, 667 struct ethtool_eeprom *eeprom, u8 *bytes) 668 { 669 struct igb_adapter *adapter = netdev_priv(netdev); 670 struct e1000_hw *hw = &adapter->hw; 671 u16 *eeprom_buff; 672 int first_word, last_word; 673 int ret_val = 0; 674 u16 i; 675 676 if (eeprom->len == 0) 677 return -EINVAL; 678 679 eeprom->magic = hw->vendor_id | (hw->device_id << 16); 680 681 first_word = eeprom->offset >> 1; 682 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 683 684 eeprom_buff = kmalloc(sizeof(u16) * 685 (last_word - first_word + 1), GFP_KERNEL); 686 if (!eeprom_buff) 687 return -ENOMEM; 688 689 if (hw->nvm.type == e1000_nvm_eeprom_spi) 690 ret_val = hw->nvm.ops.read(hw, first_word, 691 last_word - first_word + 1, 692 eeprom_buff); 693 else { 694 for (i = 0; i < last_word - first_word + 1; i++) { 695 ret_val = hw->nvm.ops.read(hw, first_word + i, 1, 696 &eeprom_buff[i]); 697 if (ret_val) 698 break; 699 } 700 } 701 702 /* Device's eeprom is always little-endian, word addressable */ 703 for (i = 0; i < last_word - first_word + 1; i++) 704 le16_to_cpus(&eeprom_buff[i]); 705 706 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), 707 eeprom->len); 708 kfree(eeprom_buff); 709 710 return ret_val; 711 } 712 713 static int igb_set_eeprom(struct net_device *netdev, 714 struct ethtool_eeprom *eeprom, u8 *bytes) 715 { 716 struct igb_adapter *adapter = netdev_priv(netdev); 717 struct e1000_hw *hw = &adapter->hw; 718 u16 *eeprom_buff; 719 void *ptr; 720 int max_len, first_word, last_word, ret_val = 0; 721 u16 i; 722 723 if (eeprom->len == 0) 724 return -EOPNOTSUPP; 725 726 if (hw->mac.type == e1000_i211) 727 return -EOPNOTSUPP; 728 729 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16))) 730 return -EFAULT; 731 732 max_len = hw->nvm.word_size * 2; 733 734 first_word = eeprom->offset >> 1; 735 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 736 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 737 if (!eeprom_buff) 738 return -ENOMEM; 739 740 ptr = (void *)eeprom_buff; 741 742 if (eeprom->offset & 1) { 743 /* need read/modify/write of first changed EEPROM word */ 744 /* only the second byte of the word is being modified */ 745 ret_val = hw->nvm.ops.read(hw, first_word, 1, 746 &eeprom_buff[0]); 747 ptr++; 748 } 749 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) { 750 /* need read/modify/write of last changed EEPROM word */ 751 /* only the first byte of the word is being modified */ 752 ret_val = hw->nvm.ops.read(hw, last_word, 1, 753 &eeprom_buff[last_word - first_word]); 754 } 755 756 /* Device's eeprom is always little-endian, word addressable */ 757 for (i = 0; i < last_word - first_word + 1; i++) 758 le16_to_cpus(&eeprom_buff[i]); 759 760 memcpy(ptr, bytes, eeprom->len); 761 762 for (i = 0; i < last_word - first_word + 1; i++) 763 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]); 764 765 ret_val = hw->nvm.ops.write(hw, first_word, 766 last_word - first_word + 1, eeprom_buff); 767 768 /* Update the checksum over the first part of the EEPROM if needed 769 * and flush shadow RAM for 82573 controllers */ 770 if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG))) 771 hw->nvm.ops.update(hw); 772 773 igb_set_fw_version(adapter); 774 kfree(eeprom_buff); 775 return ret_val; 776 } 777 778 static void igb_get_drvinfo(struct net_device *netdev, 779 struct ethtool_drvinfo *drvinfo) 780 { 781 struct igb_adapter *adapter = netdev_priv(netdev); 782 783 strlcpy(drvinfo->driver, igb_driver_name, sizeof(drvinfo->driver)); 784 strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version)); 785 786 /* 787 * EEPROM image version # is reported as firmware version # for 788 * 82575 controllers 789 */ 790 strlcpy(drvinfo->fw_version, adapter->fw_version, 791 sizeof(drvinfo->fw_version)); 792 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 793 sizeof(drvinfo->bus_info)); 794 drvinfo->n_stats = IGB_STATS_LEN; 795 drvinfo->testinfo_len = IGB_TEST_LEN; 796 drvinfo->regdump_len = igb_get_regs_len(netdev); 797 drvinfo->eedump_len = igb_get_eeprom_len(netdev); 798 } 799 800 static void igb_get_ringparam(struct net_device *netdev, 801 struct ethtool_ringparam *ring) 802 { 803 struct igb_adapter *adapter = netdev_priv(netdev); 804 805 ring->rx_max_pending = IGB_MAX_RXD; 806 ring->tx_max_pending = IGB_MAX_TXD; 807 ring->rx_pending = adapter->rx_ring_count; 808 ring->tx_pending = adapter->tx_ring_count; 809 } 810 811 static int igb_set_ringparam(struct net_device *netdev, 812 struct ethtool_ringparam *ring) 813 { 814 struct igb_adapter *adapter = netdev_priv(netdev); 815 struct igb_ring *temp_ring; 816 int i, err = 0; 817 u16 new_rx_count, new_tx_count; 818 819 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 820 return -EINVAL; 821 822 new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD); 823 new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD); 824 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE); 825 826 new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD); 827 new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD); 828 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE); 829 830 if ((new_tx_count == adapter->tx_ring_count) && 831 (new_rx_count == adapter->rx_ring_count)) { 832 /* nothing to do */ 833 return 0; 834 } 835 836 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 837 msleep(1); 838 839 if (!netif_running(adapter->netdev)) { 840 for (i = 0; i < adapter->num_tx_queues; i++) 841 adapter->tx_ring[i]->count = new_tx_count; 842 for (i = 0; i < adapter->num_rx_queues; i++) 843 adapter->rx_ring[i]->count = new_rx_count; 844 adapter->tx_ring_count = new_tx_count; 845 adapter->rx_ring_count = new_rx_count; 846 goto clear_reset; 847 } 848 849 if (adapter->num_tx_queues > adapter->num_rx_queues) 850 temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring)); 851 else 852 temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring)); 853 854 if (!temp_ring) { 855 err = -ENOMEM; 856 goto clear_reset; 857 } 858 859 igb_down(adapter); 860 861 /* 862 * We can't just free everything and then setup again, 863 * because the ISRs in MSI-X mode get passed pointers 864 * to the tx and rx ring structs. 865 */ 866 if (new_tx_count != adapter->tx_ring_count) { 867 for (i = 0; i < adapter->num_tx_queues; i++) { 868 memcpy(&temp_ring[i], adapter->tx_ring[i], 869 sizeof(struct igb_ring)); 870 871 temp_ring[i].count = new_tx_count; 872 err = igb_setup_tx_resources(&temp_ring[i]); 873 if (err) { 874 while (i) { 875 i--; 876 igb_free_tx_resources(&temp_ring[i]); 877 } 878 goto err_setup; 879 } 880 } 881 882 for (i = 0; i < adapter->num_tx_queues; i++) { 883 igb_free_tx_resources(adapter->tx_ring[i]); 884 885 memcpy(adapter->tx_ring[i], &temp_ring[i], 886 sizeof(struct igb_ring)); 887 } 888 889 adapter->tx_ring_count = new_tx_count; 890 } 891 892 if (new_rx_count != adapter->rx_ring_count) { 893 for (i = 0; i < adapter->num_rx_queues; i++) { 894 memcpy(&temp_ring[i], adapter->rx_ring[i], 895 sizeof(struct igb_ring)); 896 897 temp_ring[i].count = new_rx_count; 898 err = igb_setup_rx_resources(&temp_ring[i]); 899 if (err) { 900 while (i) { 901 i--; 902 igb_free_rx_resources(&temp_ring[i]); 903 } 904 goto err_setup; 905 } 906 907 } 908 909 for (i = 0; i < adapter->num_rx_queues; i++) { 910 igb_free_rx_resources(adapter->rx_ring[i]); 911 912 memcpy(adapter->rx_ring[i], &temp_ring[i], 913 sizeof(struct igb_ring)); 914 } 915 916 adapter->rx_ring_count = new_rx_count; 917 } 918 err_setup: 919 igb_up(adapter); 920 vfree(temp_ring); 921 clear_reset: 922 clear_bit(__IGB_RESETTING, &adapter->state); 923 return err; 924 } 925 926 /* ethtool register test data */ 927 struct igb_reg_test { 928 u16 reg; 929 u16 reg_offset; 930 u16 array_len; 931 u16 test_type; 932 u32 mask; 933 u32 write; 934 }; 935 936 /* In the hardware, registers are laid out either singly, in arrays 937 * spaced 0x100 bytes apart, or in contiguous tables. We assume 938 * most tests take place on arrays or single registers (handled 939 * as a single-element array) and special-case the tables. 940 * Table tests are always pattern tests. 941 * 942 * We also make provision for some required setup steps by specifying 943 * registers to be written without any read-back testing. 944 */ 945 946 #define PATTERN_TEST 1 947 #define SET_READ_TEST 2 948 #define WRITE_NO_TEST 3 949 #define TABLE32_TEST 4 950 #define TABLE64_TEST_LO 5 951 #define TABLE64_TEST_HI 6 952 953 /* i210 reg test */ 954 static struct igb_reg_test reg_test_i210[] = { 955 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 956 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 957 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 958 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 959 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 960 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 961 /* RDH is read-only for i210, only test RDT. */ 962 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 963 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 964 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 965 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 966 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 967 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 968 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 969 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 970 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 971 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, 972 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, 973 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 974 { E1000_RA, 0, 16, TABLE64_TEST_LO, 975 0xFFFFFFFF, 0xFFFFFFFF }, 976 { E1000_RA, 0, 16, TABLE64_TEST_HI, 977 0x900FFFFF, 0xFFFFFFFF }, 978 { E1000_MTA, 0, 128, TABLE32_TEST, 979 0xFFFFFFFF, 0xFFFFFFFF }, 980 { 0, 0, 0, 0, 0 } 981 }; 982 983 /* i350 reg test */ 984 static struct igb_reg_test reg_test_i350[] = { 985 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 986 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 987 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 988 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 }, 989 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 990 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 991 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 992 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 993 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 994 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 995 /* RDH is read-only for i350, only test RDT. */ 996 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 997 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 998 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 999 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1000 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1001 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1002 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1003 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1004 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1005 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1006 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1007 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1008 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1009 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1010 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, 1011 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, 1012 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1013 { E1000_RA, 0, 16, TABLE64_TEST_LO, 1014 0xFFFFFFFF, 0xFFFFFFFF }, 1015 { E1000_RA, 0, 16, TABLE64_TEST_HI, 1016 0xC3FFFFFF, 0xFFFFFFFF }, 1017 { E1000_RA2, 0, 16, TABLE64_TEST_LO, 1018 0xFFFFFFFF, 0xFFFFFFFF }, 1019 { E1000_RA2, 0, 16, TABLE64_TEST_HI, 1020 0xC3FFFFFF, 0xFFFFFFFF }, 1021 { E1000_MTA, 0, 128, TABLE32_TEST, 1022 0xFFFFFFFF, 0xFFFFFFFF }, 1023 { 0, 0, 0, 0 } 1024 }; 1025 1026 /* 82580 reg test */ 1027 static struct igb_reg_test reg_test_82580[] = { 1028 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1029 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1030 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1031 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1032 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1033 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1034 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1035 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1036 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1037 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1038 /* RDH is read-only for 82580, only test RDT. */ 1039 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1040 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1041 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1042 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1043 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1044 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1045 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1046 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1047 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1048 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1049 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1050 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1051 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1052 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1053 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, 1054 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, 1055 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1056 { E1000_RA, 0, 16, TABLE64_TEST_LO, 1057 0xFFFFFFFF, 0xFFFFFFFF }, 1058 { E1000_RA, 0, 16, TABLE64_TEST_HI, 1059 0x83FFFFFF, 0xFFFFFFFF }, 1060 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 1061 0xFFFFFFFF, 0xFFFFFFFF }, 1062 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 1063 0x83FFFFFF, 0xFFFFFFFF }, 1064 { E1000_MTA, 0, 128, TABLE32_TEST, 1065 0xFFFFFFFF, 0xFFFFFFFF }, 1066 { 0, 0, 0, 0 } 1067 }; 1068 1069 /* 82576 reg test */ 1070 static struct igb_reg_test reg_test_82576[] = { 1071 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1072 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1073 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1074 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1075 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1076 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1077 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1078 { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1079 { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1080 { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1081 /* Enable all RX queues before testing. */ 1082 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE }, 1083 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE }, 1084 /* RDH is read-only for 82576, only test RDT. */ 1085 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1086 { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1087 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 }, 1088 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 }, 1089 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1090 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1091 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1092 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1093 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1094 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1095 { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1096 { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1097 { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1098 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1099 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, 1100 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, 1101 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1102 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, 1103 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF }, 1104 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, 1105 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF }, 1106 { E1000_MTA, 0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1107 { 0, 0, 0, 0 } 1108 }; 1109 1110 /* 82575 register test */ 1111 static struct igb_reg_test reg_test_82575[] = { 1112 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1113 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1114 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1115 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1116 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1117 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1118 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1119 /* Enable all four RX queues before testing. */ 1120 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE }, 1121 /* RDH is read-only for 82575, only test RDT. */ 1122 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1123 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 }, 1124 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1125 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1126 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1127 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1128 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1129 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1130 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1131 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB }, 1132 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF }, 1133 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1134 { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF }, 1135 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, 1136 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF }, 1137 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1138 { 0, 0, 0, 0 } 1139 }; 1140 1141 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data, 1142 int reg, u32 mask, u32 write) 1143 { 1144 struct e1000_hw *hw = &adapter->hw; 1145 u32 pat, val; 1146 static const u32 _test[] = 1147 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; 1148 for (pat = 0; pat < ARRAY_SIZE(_test); pat++) { 1149 wr32(reg, (_test[pat] & write)); 1150 val = rd32(reg) & mask; 1151 if (val != (_test[pat] & write & mask)) { 1152 dev_err(&adapter->pdev->dev, 1153 "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n", 1154 reg, val, (_test[pat] & write & mask)); 1155 *data = reg; 1156 return 1; 1157 } 1158 } 1159 1160 return 0; 1161 } 1162 1163 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data, 1164 int reg, u32 mask, u32 write) 1165 { 1166 struct e1000_hw *hw = &adapter->hw; 1167 u32 val; 1168 wr32(reg, write & mask); 1169 val = rd32(reg); 1170 if ((write & mask) != (val & mask)) { 1171 dev_err(&adapter->pdev->dev, 1172 "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", reg, 1173 (val & mask), (write & mask)); 1174 *data = reg; 1175 return 1; 1176 } 1177 1178 return 0; 1179 } 1180 1181 #define REG_PATTERN_TEST(reg, mask, write) \ 1182 do { \ 1183 if (reg_pattern_test(adapter, data, reg, mask, write)) \ 1184 return 1; \ 1185 } while (0) 1186 1187 #define REG_SET_AND_CHECK(reg, mask, write) \ 1188 do { \ 1189 if (reg_set_and_check(adapter, data, reg, mask, write)) \ 1190 return 1; \ 1191 } while (0) 1192 1193 static int igb_reg_test(struct igb_adapter *adapter, u64 *data) 1194 { 1195 struct e1000_hw *hw = &adapter->hw; 1196 struct igb_reg_test *test; 1197 u32 value, before, after; 1198 u32 i, toggle; 1199 1200 switch (adapter->hw.mac.type) { 1201 case e1000_i350: 1202 test = reg_test_i350; 1203 toggle = 0x7FEFF3FF; 1204 break; 1205 case e1000_i210: 1206 case e1000_i211: 1207 test = reg_test_i210; 1208 toggle = 0x7FEFF3FF; 1209 break; 1210 case e1000_82580: 1211 test = reg_test_82580; 1212 toggle = 0x7FEFF3FF; 1213 break; 1214 case e1000_82576: 1215 test = reg_test_82576; 1216 toggle = 0x7FFFF3FF; 1217 break; 1218 default: 1219 test = reg_test_82575; 1220 toggle = 0x7FFFF3FF; 1221 break; 1222 } 1223 1224 /* Because the status register is such a special case, 1225 * we handle it separately from the rest of the register 1226 * tests. Some bits are read-only, some toggle, and some 1227 * are writable on newer MACs. 1228 */ 1229 before = rd32(E1000_STATUS); 1230 value = (rd32(E1000_STATUS) & toggle); 1231 wr32(E1000_STATUS, toggle); 1232 after = rd32(E1000_STATUS) & toggle; 1233 if (value != after) { 1234 dev_err(&adapter->pdev->dev, 1235 "failed STATUS register test got: 0x%08X expected: 0x%08X\n", 1236 after, value); 1237 *data = 1; 1238 return 1; 1239 } 1240 /* restore previous status */ 1241 wr32(E1000_STATUS, before); 1242 1243 /* Perform the remainder of the register test, looping through 1244 * the test table until we either fail or reach the null entry. 1245 */ 1246 while (test->reg) { 1247 for (i = 0; i < test->array_len; i++) { 1248 switch (test->test_type) { 1249 case PATTERN_TEST: 1250 REG_PATTERN_TEST(test->reg + 1251 (i * test->reg_offset), 1252 test->mask, 1253 test->write); 1254 break; 1255 case SET_READ_TEST: 1256 REG_SET_AND_CHECK(test->reg + 1257 (i * test->reg_offset), 1258 test->mask, 1259 test->write); 1260 break; 1261 case WRITE_NO_TEST: 1262 writel(test->write, 1263 (adapter->hw.hw_addr + test->reg) 1264 + (i * test->reg_offset)); 1265 break; 1266 case TABLE32_TEST: 1267 REG_PATTERN_TEST(test->reg + (i * 4), 1268 test->mask, 1269 test->write); 1270 break; 1271 case TABLE64_TEST_LO: 1272 REG_PATTERN_TEST(test->reg + (i * 8), 1273 test->mask, 1274 test->write); 1275 break; 1276 case TABLE64_TEST_HI: 1277 REG_PATTERN_TEST((test->reg + 4) + (i * 8), 1278 test->mask, 1279 test->write); 1280 break; 1281 } 1282 } 1283 test++; 1284 } 1285 1286 *data = 0; 1287 return 0; 1288 } 1289 1290 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data) 1291 { 1292 *data = 0; 1293 1294 /* Validate eeprom on all parts but i211 */ 1295 if (adapter->hw.mac.type != e1000_i211) { 1296 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0) 1297 *data = 2; 1298 } 1299 1300 return *data; 1301 } 1302 1303 static irqreturn_t igb_test_intr(int irq, void *data) 1304 { 1305 struct igb_adapter *adapter = (struct igb_adapter *) data; 1306 struct e1000_hw *hw = &adapter->hw; 1307 1308 adapter->test_icr |= rd32(E1000_ICR); 1309 1310 return IRQ_HANDLED; 1311 } 1312 1313 static int igb_intr_test(struct igb_adapter *adapter, u64 *data) 1314 { 1315 struct e1000_hw *hw = &adapter->hw; 1316 struct net_device *netdev = adapter->netdev; 1317 u32 mask, ics_mask, i = 0, shared_int = true; 1318 u32 irq = adapter->pdev->irq; 1319 1320 *data = 0; 1321 1322 /* Hook up test interrupt handler just for this test */ 1323 if (adapter->msix_entries) { 1324 if (request_irq(adapter->msix_entries[0].vector, 1325 igb_test_intr, 0, netdev->name, adapter)) { 1326 *data = 1; 1327 return -1; 1328 } 1329 } else if (adapter->flags & IGB_FLAG_HAS_MSI) { 1330 shared_int = false; 1331 if (request_irq(irq, 1332 igb_test_intr, 0, netdev->name, adapter)) { 1333 *data = 1; 1334 return -1; 1335 } 1336 } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED, 1337 netdev->name, adapter)) { 1338 shared_int = false; 1339 } else if (request_irq(irq, igb_test_intr, IRQF_SHARED, 1340 netdev->name, adapter)) { 1341 *data = 1; 1342 return -1; 1343 } 1344 dev_info(&adapter->pdev->dev, "testing %s interrupt\n", 1345 (shared_int ? "shared" : "unshared")); 1346 1347 /* Disable all the interrupts */ 1348 wr32(E1000_IMC, ~0); 1349 wrfl(); 1350 msleep(10); 1351 1352 /* Define all writable bits for ICS */ 1353 switch (hw->mac.type) { 1354 case e1000_82575: 1355 ics_mask = 0x37F47EDD; 1356 break; 1357 case e1000_82576: 1358 ics_mask = 0x77D4FBFD; 1359 break; 1360 case e1000_82580: 1361 ics_mask = 0x77DCFED5; 1362 break; 1363 case e1000_i350: 1364 case e1000_i210: 1365 case e1000_i211: 1366 ics_mask = 0x77DCFED5; 1367 break; 1368 default: 1369 ics_mask = 0x7FFFFFFF; 1370 break; 1371 } 1372 1373 /* Test each interrupt */ 1374 for (; i < 31; i++) { 1375 /* Interrupt to test */ 1376 mask = 1 << i; 1377 1378 if (!(mask & ics_mask)) 1379 continue; 1380 1381 if (!shared_int) { 1382 /* Disable the interrupt to be reported in 1383 * the cause register and then force the same 1384 * interrupt and see if one gets posted. If 1385 * an interrupt was posted to the bus, the 1386 * test failed. 1387 */ 1388 adapter->test_icr = 0; 1389 1390 /* Flush any pending interrupts */ 1391 wr32(E1000_ICR, ~0); 1392 1393 wr32(E1000_IMC, mask); 1394 wr32(E1000_ICS, mask); 1395 wrfl(); 1396 msleep(10); 1397 1398 if (adapter->test_icr & mask) { 1399 *data = 3; 1400 break; 1401 } 1402 } 1403 1404 /* Enable the interrupt to be reported in 1405 * the cause register and then force the same 1406 * interrupt and see if one gets posted. If 1407 * an interrupt was not posted to the bus, the 1408 * test failed. 1409 */ 1410 adapter->test_icr = 0; 1411 1412 /* Flush any pending interrupts */ 1413 wr32(E1000_ICR, ~0); 1414 1415 wr32(E1000_IMS, mask); 1416 wr32(E1000_ICS, mask); 1417 wrfl(); 1418 msleep(10); 1419 1420 if (!(adapter->test_icr & mask)) { 1421 *data = 4; 1422 break; 1423 } 1424 1425 if (!shared_int) { 1426 /* Disable the other interrupts to be reported in 1427 * the cause register and then force the other 1428 * interrupts and see if any get posted. If 1429 * an interrupt was posted to the bus, the 1430 * test failed. 1431 */ 1432 adapter->test_icr = 0; 1433 1434 /* Flush any pending interrupts */ 1435 wr32(E1000_ICR, ~0); 1436 1437 wr32(E1000_IMC, ~mask); 1438 wr32(E1000_ICS, ~mask); 1439 wrfl(); 1440 msleep(10); 1441 1442 if (adapter->test_icr & mask) { 1443 *data = 5; 1444 break; 1445 } 1446 } 1447 } 1448 1449 /* Disable all the interrupts */ 1450 wr32(E1000_IMC, ~0); 1451 wrfl(); 1452 msleep(10); 1453 1454 /* Unhook test interrupt handler */ 1455 if (adapter->msix_entries) 1456 free_irq(adapter->msix_entries[0].vector, adapter); 1457 else 1458 free_irq(irq, adapter); 1459 1460 return *data; 1461 } 1462 1463 static void igb_free_desc_rings(struct igb_adapter *adapter) 1464 { 1465 igb_free_tx_resources(&adapter->test_tx_ring); 1466 igb_free_rx_resources(&adapter->test_rx_ring); 1467 } 1468 1469 static int igb_setup_desc_rings(struct igb_adapter *adapter) 1470 { 1471 struct igb_ring *tx_ring = &adapter->test_tx_ring; 1472 struct igb_ring *rx_ring = &adapter->test_rx_ring; 1473 struct e1000_hw *hw = &adapter->hw; 1474 int ret_val; 1475 1476 /* Setup Tx descriptor ring and Tx buffers */ 1477 tx_ring->count = IGB_DEFAULT_TXD; 1478 tx_ring->dev = &adapter->pdev->dev; 1479 tx_ring->netdev = adapter->netdev; 1480 tx_ring->reg_idx = adapter->vfs_allocated_count; 1481 1482 if (igb_setup_tx_resources(tx_ring)) { 1483 ret_val = 1; 1484 goto err_nomem; 1485 } 1486 1487 igb_setup_tctl(adapter); 1488 igb_configure_tx_ring(adapter, tx_ring); 1489 1490 /* Setup Rx descriptor ring and Rx buffers */ 1491 rx_ring->count = IGB_DEFAULT_RXD; 1492 rx_ring->dev = &adapter->pdev->dev; 1493 rx_ring->netdev = adapter->netdev; 1494 rx_ring->reg_idx = adapter->vfs_allocated_count; 1495 1496 if (igb_setup_rx_resources(rx_ring)) { 1497 ret_val = 3; 1498 goto err_nomem; 1499 } 1500 1501 /* set the default queue to queue 0 of PF */ 1502 wr32(E1000_MRQC, adapter->vfs_allocated_count << 3); 1503 1504 /* enable receive ring */ 1505 igb_setup_rctl(adapter); 1506 igb_configure_rx_ring(adapter, rx_ring); 1507 1508 igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring)); 1509 1510 return 0; 1511 1512 err_nomem: 1513 igb_free_desc_rings(adapter); 1514 return ret_val; 1515 } 1516 1517 static void igb_phy_disable_receiver(struct igb_adapter *adapter) 1518 { 1519 struct e1000_hw *hw = &adapter->hw; 1520 1521 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1522 igb_write_phy_reg(hw, 29, 0x001F); 1523 igb_write_phy_reg(hw, 30, 0x8FFC); 1524 igb_write_phy_reg(hw, 29, 0x001A); 1525 igb_write_phy_reg(hw, 30, 0x8FF0); 1526 } 1527 1528 static int igb_integrated_phy_loopback(struct igb_adapter *adapter) 1529 { 1530 struct e1000_hw *hw = &adapter->hw; 1531 u32 ctrl_reg = 0; 1532 1533 hw->mac.autoneg = false; 1534 1535 if (hw->phy.type == e1000_phy_m88) { 1536 if (hw->phy.id != I210_I_PHY_ID) { 1537 /* Auto-MDI/MDIX Off */ 1538 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); 1539 /* reset to update Auto-MDI/MDIX */ 1540 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140); 1541 /* autoneg off */ 1542 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140); 1543 } else { 1544 /* force 1000, set loopback */ 1545 igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0); 1546 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140); 1547 } 1548 } 1549 1550 /* add small delay to avoid loopback test failure */ 1551 msleep(50); 1552 1553 /* force 1000, set loopback */ 1554 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140); 1555 1556 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1557 ctrl_reg = rd32(E1000_CTRL); 1558 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1559 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1560 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1561 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1562 E1000_CTRL_FD | /* Force Duplex to FULL */ 1563 E1000_CTRL_SLU); /* Set link up enable bit */ 1564 1565 if (hw->phy.type == e1000_phy_m88) 1566 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1567 1568 wr32(E1000_CTRL, ctrl_reg); 1569 1570 /* Disable the receiver on the PHY so when a cable is plugged in, the 1571 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1572 */ 1573 if (hw->phy.type == e1000_phy_m88) 1574 igb_phy_disable_receiver(adapter); 1575 1576 mdelay(500); 1577 return 0; 1578 } 1579 1580 static int igb_set_phy_loopback(struct igb_adapter *adapter) 1581 { 1582 return igb_integrated_phy_loopback(adapter); 1583 } 1584 1585 static int igb_setup_loopback_test(struct igb_adapter *adapter) 1586 { 1587 struct e1000_hw *hw = &adapter->hw; 1588 u32 reg; 1589 1590 reg = rd32(E1000_CTRL_EXT); 1591 1592 /* use CTRL_EXT to identify link type as SGMII can appear as copper */ 1593 if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) { 1594 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) || 1595 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) || 1596 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) || 1597 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) { 1598 1599 /* Enable DH89xxCC MPHY for near end loopback */ 1600 reg = rd32(E1000_MPHY_ADDR_CTL); 1601 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) | 1602 E1000_MPHY_PCS_CLK_REG_OFFSET; 1603 wr32(E1000_MPHY_ADDR_CTL, reg); 1604 1605 reg = rd32(E1000_MPHY_DATA); 1606 reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN; 1607 wr32(E1000_MPHY_DATA, reg); 1608 } 1609 1610 reg = rd32(E1000_RCTL); 1611 reg |= E1000_RCTL_LBM_TCVR; 1612 wr32(E1000_RCTL, reg); 1613 1614 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK); 1615 1616 reg = rd32(E1000_CTRL); 1617 reg &= ~(E1000_CTRL_RFCE | 1618 E1000_CTRL_TFCE | 1619 E1000_CTRL_LRST); 1620 reg |= E1000_CTRL_SLU | 1621 E1000_CTRL_FD; 1622 wr32(E1000_CTRL, reg); 1623 1624 /* Unset switch control to serdes energy detect */ 1625 reg = rd32(E1000_CONNSW); 1626 reg &= ~E1000_CONNSW_ENRGSRC; 1627 wr32(E1000_CONNSW, reg); 1628 1629 /* Unset sigdetect for SERDES loopback on 1630 * 82580 and i350 devices. 1631 */ 1632 switch (hw->mac.type) { 1633 case e1000_82580: 1634 case e1000_i350: 1635 reg = rd32(E1000_PCS_CFG0); 1636 reg |= E1000_PCS_CFG_IGN_SD; 1637 wr32(E1000_PCS_CFG0, reg); 1638 break; 1639 default: 1640 break; 1641 } 1642 1643 /* Set PCS register for forced speed */ 1644 reg = rd32(E1000_PCS_LCTL); 1645 reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/ 1646 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */ 1647 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */ 1648 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */ 1649 E1000_PCS_LCTL_FSD | /* Force Speed */ 1650 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */ 1651 wr32(E1000_PCS_LCTL, reg); 1652 1653 return 0; 1654 } 1655 1656 return igb_set_phy_loopback(adapter); 1657 } 1658 1659 static void igb_loopback_cleanup(struct igb_adapter *adapter) 1660 { 1661 struct e1000_hw *hw = &adapter->hw; 1662 u32 rctl; 1663 u16 phy_reg; 1664 1665 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) || 1666 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) || 1667 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) || 1668 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) { 1669 u32 reg; 1670 1671 /* Disable near end loopback on DH89xxCC */ 1672 reg = rd32(E1000_MPHY_ADDR_CTL); 1673 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) | 1674 E1000_MPHY_PCS_CLK_REG_OFFSET; 1675 wr32(E1000_MPHY_ADDR_CTL, reg); 1676 1677 reg = rd32(E1000_MPHY_DATA); 1678 reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN; 1679 wr32(E1000_MPHY_DATA, reg); 1680 } 1681 1682 rctl = rd32(E1000_RCTL); 1683 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1684 wr32(E1000_RCTL, rctl); 1685 1686 hw->mac.autoneg = true; 1687 igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg); 1688 if (phy_reg & MII_CR_LOOPBACK) { 1689 phy_reg &= ~MII_CR_LOOPBACK; 1690 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg); 1691 igb_phy_sw_reset(hw); 1692 } 1693 } 1694 1695 static void igb_create_lbtest_frame(struct sk_buff *skb, 1696 unsigned int frame_size) 1697 { 1698 memset(skb->data, 0xFF, frame_size); 1699 frame_size /= 2; 1700 memset(&skb->data[frame_size], 0xAA, frame_size - 1); 1701 memset(&skb->data[frame_size + 10], 0xBE, 1); 1702 memset(&skb->data[frame_size + 12], 0xAF, 1); 1703 } 1704 1705 static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer, 1706 unsigned int frame_size) 1707 { 1708 unsigned char *data; 1709 bool match = true; 1710 1711 frame_size >>= 1; 1712 1713 data = kmap(rx_buffer->page); 1714 1715 if (data[3] != 0xFF || 1716 data[frame_size + 10] != 0xBE || 1717 data[frame_size + 12] != 0xAF) 1718 match = false; 1719 1720 kunmap(rx_buffer->page); 1721 1722 return match; 1723 } 1724 1725 static int igb_clean_test_rings(struct igb_ring *rx_ring, 1726 struct igb_ring *tx_ring, 1727 unsigned int size) 1728 { 1729 union e1000_adv_rx_desc *rx_desc; 1730 struct igb_rx_buffer *rx_buffer_info; 1731 struct igb_tx_buffer *tx_buffer_info; 1732 u16 rx_ntc, tx_ntc, count = 0; 1733 1734 /* initialize next to clean and descriptor values */ 1735 rx_ntc = rx_ring->next_to_clean; 1736 tx_ntc = tx_ring->next_to_clean; 1737 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc); 1738 1739 while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) { 1740 /* check rx buffer */ 1741 rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc]; 1742 1743 /* sync Rx buffer for CPU read */ 1744 dma_sync_single_for_cpu(rx_ring->dev, 1745 rx_buffer_info->dma, 1746 IGB_RX_BUFSZ, 1747 DMA_FROM_DEVICE); 1748 1749 /* verify contents of skb */ 1750 if (igb_check_lbtest_frame(rx_buffer_info, size)) 1751 count++; 1752 1753 /* sync Rx buffer for device write */ 1754 dma_sync_single_for_device(rx_ring->dev, 1755 rx_buffer_info->dma, 1756 IGB_RX_BUFSZ, 1757 DMA_FROM_DEVICE); 1758 1759 /* unmap buffer on tx side */ 1760 tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc]; 1761 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info); 1762 1763 /* increment rx/tx next to clean counters */ 1764 rx_ntc++; 1765 if (rx_ntc == rx_ring->count) 1766 rx_ntc = 0; 1767 tx_ntc++; 1768 if (tx_ntc == tx_ring->count) 1769 tx_ntc = 0; 1770 1771 /* fetch next descriptor */ 1772 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc); 1773 } 1774 1775 netdev_tx_reset_queue(txring_txq(tx_ring)); 1776 1777 /* re-map buffers to ring, store next to clean values */ 1778 igb_alloc_rx_buffers(rx_ring, count); 1779 rx_ring->next_to_clean = rx_ntc; 1780 tx_ring->next_to_clean = tx_ntc; 1781 1782 return count; 1783 } 1784 1785 static int igb_run_loopback_test(struct igb_adapter *adapter) 1786 { 1787 struct igb_ring *tx_ring = &adapter->test_tx_ring; 1788 struct igb_ring *rx_ring = &adapter->test_rx_ring; 1789 u16 i, j, lc, good_cnt; 1790 int ret_val = 0; 1791 unsigned int size = IGB_RX_HDR_LEN; 1792 netdev_tx_t tx_ret_val; 1793 struct sk_buff *skb; 1794 1795 /* allocate test skb */ 1796 skb = alloc_skb(size, GFP_KERNEL); 1797 if (!skb) 1798 return 11; 1799 1800 /* place data into test skb */ 1801 igb_create_lbtest_frame(skb, size); 1802 skb_put(skb, size); 1803 1804 /* 1805 * Calculate the loop count based on the largest descriptor ring 1806 * The idea is to wrap the largest ring a number of times using 64 1807 * send/receive pairs during each loop 1808 */ 1809 1810 if (rx_ring->count <= tx_ring->count) 1811 lc = ((tx_ring->count / 64) * 2) + 1; 1812 else 1813 lc = ((rx_ring->count / 64) * 2) + 1; 1814 1815 for (j = 0; j <= lc; j++) { /* loop count loop */ 1816 /* reset count of good packets */ 1817 good_cnt = 0; 1818 1819 /* place 64 packets on the transmit queue*/ 1820 for (i = 0; i < 64; i++) { 1821 skb_get(skb); 1822 tx_ret_val = igb_xmit_frame_ring(skb, tx_ring); 1823 if (tx_ret_val == NETDEV_TX_OK) 1824 good_cnt++; 1825 } 1826 1827 if (good_cnt != 64) { 1828 ret_val = 12; 1829 break; 1830 } 1831 1832 /* allow 200 milliseconds for packets to go from tx to rx */ 1833 msleep(200); 1834 1835 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size); 1836 if (good_cnt != 64) { 1837 ret_val = 13; 1838 break; 1839 } 1840 } /* end loop count loop */ 1841 1842 /* free the original skb */ 1843 kfree_skb(skb); 1844 1845 return ret_val; 1846 } 1847 1848 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data) 1849 { 1850 /* PHY loopback cannot be performed if SoL/IDER 1851 * sessions are active */ 1852 if (igb_check_reset_block(&adapter->hw)) { 1853 dev_err(&adapter->pdev->dev, 1854 "Cannot do PHY loopback test when SoL/IDER is active.\n"); 1855 *data = 0; 1856 goto out; 1857 } 1858 *data = igb_setup_desc_rings(adapter); 1859 if (*data) 1860 goto out; 1861 *data = igb_setup_loopback_test(adapter); 1862 if (*data) 1863 goto err_loopback; 1864 *data = igb_run_loopback_test(adapter); 1865 igb_loopback_cleanup(adapter); 1866 1867 err_loopback: 1868 igb_free_desc_rings(adapter); 1869 out: 1870 return *data; 1871 } 1872 1873 static int igb_link_test(struct igb_adapter *adapter, u64 *data) 1874 { 1875 struct e1000_hw *hw = &adapter->hw; 1876 *data = 0; 1877 if (hw->phy.media_type == e1000_media_type_internal_serdes) { 1878 int i = 0; 1879 hw->mac.serdes_has_link = false; 1880 1881 /* On some blade server designs, link establishment 1882 * could take as long as 2-3 minutes */ 1883 do { 1884 hw->mac.ops.check_for_link(&adapter->hw); 1885 if (hw->mac.serdes_has_link) 1886 return *data; 1887 msleep(20); 1888 } while (i++ < 3750); 1889 1890 *data = 1; 1891 } else { 1892 hw->mac.ops.check_for_link(&adapter->hw); 1893 if (hw->mac.autoneg) 1894 msleep(5000); 1895 1896 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) 1897 *data = 1; 1898 } 1899 return *data; 1900 } 1901 1902 static void igb_diag_test(struct net_device *netdev, 1903 struct ethtool_test *eth_test, u64 *data) 1904 { 1905 struct igb_adapter *adapter = netdev_priv(netdev); 1906 u16 autoneg_advertised; 1907 u8 forced_speed_duplex, autoneg; 1908 bool if_running = netif_running(netdev); 1909 1910 set_bit(__IGB_TESTING, &adapter->state); 1911 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1912 /* Offline tests */ 1913 1914 /* save speed, duplex, autoneg settings */ 1915 autoneg_advertised = adapter->hw.phy.autoneg_advertised; 1916 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; 1917 autoneg = adapter->hw.mac.autoneg; 1918 1919 dev_info(&adapter->pdev->dev, "offline testing starting\n"); 1920 1921 /* power up link for link test */ 1922 igb_power_up_link(adapter); 1923 1924 /* Link test performed before hardware reset so autoneg doesn't 1925 * interfere with test result */ 1926 if (igb_link_test(adapter, &data[4])) 1927 eth_test->flags |= ETH_TEST_FL_FAILED; 1928 1929 if (if_running) 1930 /* indicate we're in test mode */ 1931 dev_close(netdev); 1932 else 1933 igb_reset(adapter); 1934 1935 if (igb_reg_test(adapter, &data[0])) 1936 eth_test->flags |= ETH_TEST_FL_FAILED; 1937 1938 igb_reset(adapter); 1939 if (igb_eeprom_test(adapter, &data[1])) 1940 eth_test->flags |= ETH_TEST_FL_FAILED; 1941 1942 igb_reset(adapter); 1943 if (igb_intr_test(adapter, &data[2])) 1944 eth_test->flags |= ETH_TEST_FL_FAILED; 1945 1946 igb_reset(adapter); 1947 /* power up link for loopback test */ 1948 igb_power_up_link(adapter); 1949 if (igb_loopback_test(adapter, &data[3])) 1950 eth_test->flags |= ETH_TEST_FL_FAILED; 1951 1952 /* restore speed, duplex, autoneg settings */ 1953 adapter->hw.phy.autoneg_advertised = autoneg_advertised; 1954 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; 1955 adapter->hw.mac.autoneg = autoneg; 1956 1957 /* force this routine to wait until autoneg complete/timeout */ 1958 adapter->hw.phy.autoneg_wait_to_complete = true; 1959 igb_reset(adapter); 1960 adapter->hw.phy.autoneg_wait_to_complete = false; 1961 1962 clear_bit(__IGB_TESTING, &adapter->state); 1963 if (if_running) 1964 dev_open(netdev); 1965 } else { 1966 dev_info(&adapter->pdev->dev, "online testing starting\n"); 1967 1968 /* PHY is powered down when interface is down */ 1969 if (if_running && igb_link_test(adapter, &data[4])) 1970 eth_test->flags |= ETH_TEST_FL_FAILED; 1971 else 1972 data[4] = 0; 1973 1974 /* Online tests aren't run; pass by default */ 1975 data[0] = 0; 1976 data[1] = 0; 1977 data[2] = 0; 1978 data[3] = 0; 1979 1980 clear_bit(__IGB_TESTING, &adapter->state); 1981 } 1982 msleep_interruptible(4 * 1000); 1983 } 1984 1985 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 1986 { 1987 struct igb_adapter *adapter = netdev_priv(netdev); 1988 1989 wol->supported = WAKE_UCAST | WAKE_MCAST | 1990 WAKE_BCAST | WAKE_MAGIC | 1991 WAKE_PHY; 1992 wol->wolopts = 0; 1993 1994 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED)) 1995 return; 1996 1997 /* apply any specific unsupported masks here */ 1998 switch (adapter->hw.device_id) { 1999 default: 2000 break; 2001 } 2002 2003 if (adapter->wol & E1000_WUFC_EX) 2004 wol->wolopts |= WAKE_UCAST; 2005 if (adapter->wol & E1000_WUFC_MC) 2006 wol->wolopts |= WAKE_MCAST; 2007 if (adapter->wol & E1000_WUFC_BC) 2008 wol->wolopts |= WAKE_BCAST; 2009 if (adapter->wol & E1000_WUFC_MAG) 2010 wol->wolopts |= WAKE_MAGIC; 2011 if (adapter->wol & E1000_WUFC_LNKC) 2012 wol->wolopts |= WAKE_PHY; 2013 } 2014 2015 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 2016 { 2017 struct igb_adapter *adapter = netdev_priv(netdev); 2018 2019 if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE)) 2020 return -EOPNOTSUPP; 2021 2022 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED)) 2023 return wol->wolopts ? -EOPNOTSUPP : 0; 2024 2025 /* these settings will always override what we currently have */ 2026 adapter->wol = 0; 2027 2028 if (wol->wolopts & WAKE_UCAST) 2029 adapter->wol |= E1000_WUFC_EX; 2030 if (wol->wolopts & WAKE_MCAST) 2031 adapter->wol |= E1000_WUFC_MC; 2032 if (wol->wolopts & WAKE_BCAST) 2033 adapter->wol |= E1000_WUFC_BC; 2034 if (wol->wolopts & WAKE_MAGIC) 2035 adapter->wol |= E1000_WUFC_MAG; 2036 if (wol->wolopts & WAKE_PHY) 2037 adapter->wol |= E1000_WUFC_LNKC; 2038 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 2039 2040 return 0; 2041 } 2042 2043 /* bit defines for adapter->led_status */ 2044 #define IGB_LED_ON 0 2045 2046 static int igb_set_phys_id(struct net_device *netdev, 2047 enum ethtool_phys_id_state state) 2048 { 2049 struct igb_adapter *adapter = netdev_priv(netdev); 2050 struct e1000_hw *hw = &adapter->hw; 2051 2052 switch (state) { 2053 case ETHTOOL_ID_ACTIVE: 2054 igb_blink_led(hw); 2055 return 2; 2056 case ETHTOOL_ID_ON: 2057 igb_blink_led(hw); 2058 break; 2059 case ETHTOOL_ID_OFF: 2060 igb_led_off(hw); 2061 break; 2062 case ETHTOOL_ID_INACTIVE: 2063 igb_led_off(hw); 2064 clear_bit(IGB_LED_ON, &adapter->led_status); 2065 igb_cleanup_led(hw); 2066 break; 2067 } 2068 2069 return 0; 2070 } 2071 2072 static int igb_set_coalesce(struct net_device *netdev, 2073 struct ethtool_coalesce *ec) 2074 { 2075 struct igb_adapter *adapter = netdev_priv(netdev); 2076 int i; 2077 2078 if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) || 2079 ((ec->rx_coalesce_usecs > 3) && 2080 (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) || 2081 (ec->rx_coalesce_usecs == 2)) 2082 return -EINVAL; 2083 2084 if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) || 2085 ((ec->tx_coalesce_usecs > 3) && 2086 (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) || 2087 (ec->tx_coalesce_usecs == 2)) 2088 return -EINVAL; 2089 2090 if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs) 2091 return -EINVAL; 2092 2093 /* If ITR is disabled, disable DMAC */ 2094 if (ec->rx_coalesce_usecs == 0) { 2095 if (adapter->flags & IGB_FLAG_DMAC) 2096 adapter->flags &= ~IGB_FLAG_DMAC; 2097 } 2098 2099 /* convert to rate of irq's per second */ 2100 if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3) 2101 adapter->rx_itr_setting = ec->rx_coalesce_usecs; 2102 else 2103 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2; 2104 2105 /* convert to rate of irq's per second */ 2106 if (adapter->flags & IGB_FLAG_QUEUE_PAIRS) 2107 adapter->tx_itr_setting = adapter->rx_itr_setting; 2108 else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3) 2109 adapter->tx_itr_setting = ec->tx_coalesce_usecs; 2110 else 2111 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2; 2112 2113 for (i = 0; i < adapter->num_q_vectors; i++) { 2114 struct igb_q_vector *q_vector = adapter->q_vector[i]; 2115 q_vector->tx.work_limit = adapter->tx_work_limit; 2116 if (q_vector->rx.ring) 2117 q_vector->itr_val = adapter->rx_itr_setting; 2118 else 2119 q_vector->itr_val = adapter->tx_itr_setting; 2120 if (q_vector->itr_val && q_vector->itr_val <= 3) 2121 q_vector->itr_val = IGB_START_ITR; 2122 q_vector->set_itr = 1; 2123 } 2124 2125 return 0; 2126 } 2127 2128 static int igb_get_coalesce(struct net_device *netdev, 2129 struct ethtool_coalesce *ec) 2130 { 2131 struct igb_adapter *adapter = netdev_priv(netdev); 2132 2133 if (adapter->rx_itr_setting <= 3) 2134 ec->rx_coalesce_usecs = adapter->rx_itr_setting; 2135 else 2136 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2; 2137 2138 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) { 2139 if (adapter->tx_itr_setting <= 3) 2140 ec->tx_coalesce_usecs = adapter->tx_itr_setting; 2141 else 2142 ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2; 2143 } 2144 2145 return 0; 2146 } 2147 2148 static int igb_nway_reset(struct net_device *netdev) 2149 { 2150 struct igb_adapter *adapter = netdev_priv(netdev); 2151 if (netif_running(netdev)) 2152 igb_reinit_locked(adapter); 2153 return 0; 2154 } 2155 2156 static int igb_get_sset_count(struct net_device *netdev, int sset) 2157 { 2158 switch (sset) { 2159 case ETH_SS_STATS: 2160 return IGB_STATS_LEN; 2161 case ETH_SS_TEST: 2162 return IGB_TEST_LEN; 2163 default: 2164 return -ENOTSUPP; 2165 } 2166 } 2167 2168 static void igb_get_ethtool_stats(struct net_device *netdev, 2169 struct ethtool_stats *stats, u64 *data) 2170 { 2171 struct igb_adapter *adapter = netdev_priv(netdev); 2172 struct rtnl_link_stats64 *net_stats = &adapter->stats64; 2173 unsigned int start; 2174 struct igb_ring *ring; 2175 int i, j; 2176 char *p; 2177 2178 spin_lock(&adapter->stats64_lock); 2179 igb_update_stats(adapter, net_stats); 2180 2181 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) { 2182 p = (char *)adapter + igb_gstrings_stats[i].stat_offset; 2183 data[i] = (igb_gstrings_stats[i].sizeof_stat == 2184 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 2185 } 2186 for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) { 2187 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset; 2188 data[i] = (igb_gstrings_net_stats[j].sizeof_stat == 2189 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 2190 } 2191 for (j = 0; j < adapter->num_tx_queues; j++) { 2192 u64 restart2; 2193 2194 ring = adapter->tx_ring[j]; 2195 do { 2196 start = u64_stats_fetch_begin_bh(&ring->tx_syncp); 2197 data[i] = ring->tx_stats.packets; 2198 data[i+1] = ring->tx_stats.bytes; 2199 data[i+2] = ring->tx_stats.restart_queue; 2200 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start)); 2201 do { 2202 start = u64_stats_fetch_begin_bh(&ring->tx_syncp2); 2203 restart2 = ring->tx_stats.restart_queue2; 2204 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start)); 2205 data[i+2] += restart2; 2206 2207 i += IGB_TX_QUEUE_STATS_LEN; 2208 } 2209 for (j = 0; j < adapter->num_rx_queues; j++) { 2210 ring = adapter->rx_ring[j]; 2211 do { 2212 start = u64_stats_fetch_begin_bh(&ring->rx_syncp); 2213 data[i] = ring->rx_stats.packets; 2214 data[i+1] = ring->rx_stats.bytes; 2215 data[i+2] = ring->rx_stats.drops; 2216 data[i+3] = ring->rx_stats.csum_err; 2217 data[i+4] = ring->rx_stats.alloc_failed; 2218 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start)); 2219 i += IGB_RX_QUEUE_STATS_LEN; 2220 } 2221 spin_unlock(&adapter->stats64_lock); 2222 } 2223 2224 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data) 2225 { 2226 struct igb_adapter *adapter = netdev_priv(netdev); 2227 u8 *p = data; 2228 int i; 2229 2230 switch (stringset) { 2231 case ETH_SS_TEST: 2232 memcpy(data, *igb_gstrings_test, 2233 IGB_TEST_LEN*ETH_GSTRING_LEN); 2234 break; 2235 case ETH_SS_STATS: 2236 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) { 2237 memcpy(p, igb_gstrings_stats[i].stat_string, 2238 ETH_GSTRING_LEN); 2239 p += ETH_GSTRING_LEN; 2240 } 2241 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) { 2242 memcpy(p, igb_gstrings_net_stats[i].stat_string, 2243 ETH_GSTRING_LEN); 2244 p += ETH_GSTRING_LEN; 2245 } 2246 for (i = 0; i < adapter->num_tx_queues; i++) { 2247 sprintf(p, "tx_queue_%u_packets", i); 2248 p += ETH_GSTRING_LEN; 2249 sprintf(p, "tx_queue_%u_bytes", i); 2250 p += ETH_GSTRING_LEN; 2251 sprintf(p, "tx_queue_%u_restart", i); 2252 p += ETH_GSTRING_LEN; 2253 } 2254 for (i = 0; i < adapter->num_rx_queues; i++) { 2255 sprintf(p, "rx_queue_%u_packets", i); 2256 p += ETH_GSTRING_LEN; 2257 sprintf(p, "rx_queue_%u_bytes", i); 2258 p += ETH_GSTRING_LEN; 2259 sprintf(p, "rx_queue_%u_drops", i); 2260 p += ETH_GSTRING_LEN; 2261 sprintf(p, "rx_queue_%u_csum_err", i); 2262 p += ETH_GSTRING_LEN; 2263 sprintf(p, "rx_queue_%u_alloc_failed", i); 2264 p += ETH_GSTRING_LEN; 2265 } 2266 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */ 2267 break; 2268 } 2269 } 2270 2271 static int igb_get_ts_info(struct net_device *dev, 2272 struct ethtool_ts_info *info) 2273 { 2274 struct igb_adapter *adapter = netdev_priv(dev); 2275 2276 switch (adapter->hw.mac.type) { 2277 case e1000_82575: 2278 info->so_timestamping = 2279 SOF_TIMESTAMPING_TX_SOFTWARE | 2280 SOF_TIMESTAMPING_RX_SOFTWARE | 2281 SOF_TIMESTAMPING_SOFTWARE; 2282 return 0; 2283 case e1000_82576: 2284 case e1000_82580: 2285 case e1000_i350: 2286 case e1000_i210: 2287 case e1000_i211: 2288 info->so_timestamping = 2289 SOF_TIMESTAMPING_TX_SOFTWARE | 2290 SOF_TIMESTAMPING_RX_SOFTWARE | 2291 SOF_TIMESTAMPING_SOFTWARE | 2292 SOF_TIMESTAMPING_TX_HARDWARE | 2293 SOF_TIMESTAMPING_RX_HARDWARE | 2294 SOF_TIMESTAMPING_RAW_HARDWARE; 2295 2296 if (adapter->ptp_clock) 2297 info->phc_index = ptp_clock_index(adapter->ptp_clock); 2298 else 2299 info->phc_index = -1; 2300 2301 info->tx_types = 2302 (1 << HWTSTAMP_TX_OFF) | 2303 (1 << HWTSTAMP_TX_ON); 2304 2305 info->rx_filters = 1 << HWTSTAMP_FILTER_NONE; 2306 2307 /* 82576 does not support timestamping all packets. */ 2308 if (adapter->hw.mac.type >= e1000_82580) 2309 info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL; 2310 else 2311 info->rx_filters |= 2312 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) | 2313 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) | 2314 (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) | 2315 (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) | 2316 (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) | 2317 (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) | 2318 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 2319 2320 return 0; 2321 default: 2322 return -EOPNOTSUPP; 2323 } 2324 } 2325 2326 static int igb_get_rss_hash_opts(struct igb_adapter *adapter, 2327 struct ethtool_rxnfc *cmd) 2328 { 2329 cmd->data = 0; 2330 2331 /* Report default options for RSS on igb */ 2332 switch (cmd->flow_type) { 2333 case TCP_V4_FLOW: 2334 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2335 case UDP_V4_FLOW: 2336 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP) 2337 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2338 case SCTP_V4_FLOW: 2339 case AH_ESP_V4_FLOW: 2340 case AH_V4_FLOW: 2341 case ESP_V4_FLOW: 2342 case IPV4_FLOW: 2343 cmd->data |= RXH_IP_SRC | RXH_IP_DST; 2344 break; 2345 case TCP_V6_FLOW: 2346 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2347 case UDP_V6_FLOW: 2348 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP) 2349 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2350 case SCTP_V6_FLOW: 2351 case AH_ESP_V6_FLOW: 2352 case AH_V6_FLOW: 2353 case ESP_V6_FLOW: 2354 case IPV6_FLOW: 2355 cmd->data |= RXH_IP_SRC | RXH_IP_DST; 2356 break; 2357 default: 2358 return -EINVAL; 2359 } 2360 2361 return 0; 2362 } 2363 2364 static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd, 2365 u32 *rule_locs) 2366 { 2367 struct igb_adapter *adapter = netdev_priv(dev); 2368 int ret = -EOPNOTSUPP; 2369 2370 switch (cmd->cmd) { 2371 case ETHTOOL_GRXRINGS: 2372 cmd->data = adapter->num_rx_queues; 2373 ret = 0; 2374 break; 2375 case ETHTOOL_GRXFH: 2376 ret = igb_get_rss_hash_opts(adapter, cmd); 2377 break; 2378 default: 2379 break; 2380 } 2381 2382 return ret; 2383 } 2384 2385 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \ 2386 IGB_FLAG_RSS_FIELD_IPV6_UDP) 2387 static int igb_set_rss_hash_opt(struct igb_adapter *adapter, 2388 struct ethtool_rxnfc *nfc) 2389 { 2390 u32 flags = adapter->flags; 2391 2392 /* RSS does not support anything other than hashing 2393 * to queues on src and dst IPs and ports 2394 */ 2395 if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST | 2396 RXH_L4_B_0_1 | RXH_L4_B_2_3)) 2397 return -EINVAL; 2398 2399 switch (nfc->flow_type) { 2400 case TCP_V4_FLOW: 2401 case TCP_V6_FLOW: 2402 if (!(nfc->data & RXH_IP_SRC) || 2403 !(nfc->data & RXH_IP_DST) || 2404 !(nfc->data & RXH_L4_B_0_1) || 2405 !(nfc->data & RXH_L4_B_2_3)) 2406 return -EINVAL; 2407 break; 2408 case UDP_V4_FLOW: 2409 if (!(nfc->data & RXH_IP_SRC) || 2410 !(nfc->data & RXH_IP_DST)) 2411 return -EINVAL; 2412 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 2413 case 0: 2414 flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP; 2415 break; 2416 case (RXH_L4_B_0_1 | RXH_L4_B_2_3): 2417 flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP; 2418 break; 2419 default: 2420 return -EINVAL; 2421 } 2422 break; 2423 case UDP_V6_FLOW: 2424 if (!(nfc->data & RXH_IP_SRC) || 2425 !(nfc->data & RXH_IP_DST)) 2426 return -EINVAL; 2427 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 2428 case 0: 2429 flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP; 2430 break; 2431 case (RXH_L4_B_0_1 | RXH_L4_B_2_3): 2432 flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP; 2433 break; 2434 default: 2435 return -EINVAL; 2436 } 2437 break; 2438 case AH_ESP_V4_FLOW: 2439 case AH_V4_FLOW: 2440 case ESP_V4_FLOW: 2441 case SCTP_V4_FLOW: 2442 case AH_ESP_V6_FLOW: 2443 case AH_V6_FLOW: 2444 case ESP_V6_FLOW: 2445 case SCTP_V6_FLOW: 2446 if (!(nfc->data & RXH_IP_SRC) || 2447 !(nfc->data & RXH_IP_DST) || 2448 (nfc->data & RXH_L4_B_0_1) || 2449 (nfc->data & RXH_L4_B_2_3)) 2450 return -EINVAL; 2451 break; 2452 default: 2453 return -EINVAL; 2454 } 2455 2456 /* if we changed something we need to update flags */ 2457 if (flags != adapter->flags) { 2458 struct e1000_hw *hw = &adapter->hw; 2459 u32 mrqc = rd32(E1000_MRQC); 2460 2461 if ((flags & UDP_RSS_FLAGS) && 2462 !(adapter->flags & UDP_RSS_FLAGS)) 2463 dev_err(&adapter->pdev->dev, 2464 "enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n"); 2465 2466 adapter->flags = flags; 2467 2468 /* Perform hash on these packet types */ 2469 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 | 2470 E1000_MRQC_RSS_FIELD_IPV4_TCP | 2471 E1000_MRQC_RSS_FIELD_IPV6 | 2472 E1000_MRQC_RSS_FIELD_IPV6_TCP; 2473 2474 mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP | 2475 E1000_MRQC_RSS_FIELD_IPV6_UDP); 2476 2477 if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP) 2478 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP; 2479 2480 if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP) 2481 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP; 2482 2483 wr32(E1000_MRQC, mrqc); 2484 } 2485 2486 return 0; 2487 } 2488 2489 static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd) 2490 { 2491 struct igb_adapter *adapter = netdev_priv(dev); 2492 int ret = -EOPNOTSUPP; 2493 2494 switch (cmd->cmd) { 2495 case ETHTOOL_SRXFH: 2496 ret = igb_set_rss_hash_opt(adapter, cmd); 2497 break; 2498 default: 2499 break; 2500 } 2501 2502 return ret; 2503 } 2504 2505 static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata) 2506 { 2507 struct igb_adapter *adapter = netdev_priv(netdev); 2508 struct e1000_hw *hw = &adapter->hw; 2509 u32 ipcnfg, eeer; 2510 2511 if ((hw->mac.type < e1000_i350) || 2512 (hw->phy.media_type != e1000_media_type_copper)) 2513 return -EOPNOTSUPP; 2514 2515 edata->supported = (SUPPORTED_1000baseT_Full | 2516 SUPPORTED_100baseT_Full); 2517 2518 ipcnfg = rd32(E1000_IPCNFG); 2519 eeer = rd32(E1000_EEER); 2520 2521 /* EEE status on negotiated link */ 2522 if (ipcnfg & E1000_IPCNFG_EEE_1G_AN) 2523 edata->advertised = ADVERTISED_1000baseT_Full; 2524 2525 if (ipcnfg & E1000_IPCNFG_EEE_100M_AN) 2526 edata->advertised |= ADVERTISED_100baseT_Full; 2527 2528 if (eeer & E1000_EEER_EEE_NEG) 2529 edata->eee_active = true; 2530 2531 edata->eee_enabled = !hw->dev_spec._82575.eee_disable; 2532 2533 if (eeer & E1000_EEER_TX_LPI_EN) 2534 edata->tx_lpi_enabled = true; 2535 2536 /* Report correct negotiated EEE status for devices that 2537 * wrongly report EEE at half-duplex 2538 */ 2539 if (adapter->link_duplex == HALF_DUPLEX) { 2540 edata->eee_enabled = false; 2541 edata->eee_active = false; 2542 edata->tx_lpi_enabled = false; 2543 edata->advertised &= ~edata->advertised; 2544 } 2545 2546 return 0; 2547 } 2548 2549 static int igb_set_eee(struct net_device *netdev, 2550 struct ethtool_eee *edata) 2551 { 2552 struct igb_adapter *adapter = netdev_priv(netdev); 2553 struct e1000_hw *hw = &adapter->hw; 2554 struct ethtool_eee eee_curr; 2555 s32 ret_val; 2556 2557 if ((hw->mac.type < e1000_i350) || 2558 (hw->phy.media_type != e1000_media_type_copper)) 2559 return -EOPNOTSUPP; 2560 2561 ret_val = igb_get_eee(netdev, &eee_curr); 2562 if (ret_val) 2563 return ret_val; 2564 2565 if (eee_curr.eee_enabled) { 2566 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) { 2567 dev_err(&adapter->pdev->dev, 2568 "Setting EEE tx-lpi is not supported\n"); 2569 return -EINVAL; 2570 } 2571 2572 /* Tx LPI timer is not implemented currently */ 2573 if (edata->tx_lpi_timer) { 2574 dev_err(&adapter->pdev->dev, 2575 "Setting EEE Tx LPI timer is not supported\n"); 2576 return -EINVAL; 2577 } 2578 2579 if (eee_curr.advertised != edata->advertised) { 2580 dev_err(&adapter->pdev->dev, 2581 "Setting EEE Advertisement is not supported\n"); 2582 return -EINVAL; 2583 } 2584 2585 } else if (!edata->eee_enabled) { 2586 dev_err(&adapter->pdev->dev, 2587 "Setting EEE options are not supported with EEE disabled\n"); 2588 return -EINVAL; 2589 } 2590 2591 if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) { 2592 hw->dev_spec._82575.eee_disable = !edata->eee_enabled; 2593 igb_set_eee_i350(hw); 2594 2595 /* reset link */ 2596 if (!netif_running(netdev)) 2597 igb_reset(adapter); 2598 } 2599 2600 return 0; 2601 } 2602 2603 static int igb_ethtool_begin(struct net_device *netdev) 2604 { 2605 struct igb_adapter *adapter = netdev_priv(netdev); 2606 pm_runtime_get_sync(&adapter->pdev->dev); 2607 return 0; 2608 } 2609 2610 static void igb_ethtool_complete(struct net_device *netdev) 2611 { 2612 struct igb_adapter *adapter = netdev_priv(netdev); 2613 pm_runtime_put(&adapter->pdev->dev); 2614 } 2615 2616 static const struct ethtool_ops igb_ethtool_ops = { 2617 .get_settings = igb_get_settings, 2618 .set_settings = igb_set_settings, 2619 .get_drvinfo = igb_get_drvinfo, 2620 .get_regs_len = igb_get_regs_len, 2621 .get_regs = igb_get_regs, 2622 .get_wol = igb_get_wol, 2623 .set_wol = igb_set_wol, 2624 .get_msglevel = igb_get_msglevel, 2625 .set_msglevel = igb_set_msglevel, 2626 .nway_reset = igb_nway_reset, 2627 .get_link = igb_get_link, 2628 .get_eeprom_len = igb_get_eeprom_len, 2629 .get_eeprom = igb_get_eeprom, 2630 .set_eeprom = igb_set_eeprom, 2631 .get_ringparam = igb_get_ringparam, 2632 .set_ringparam = igb_set_ringparam, 2633 .get_pauseparam = igb_get_pauseparam, 2634 .set_pauseparam = igb_set_pauseparam, 2635 .self_test = igb_diag_test, 2636 .get_strings = igb_get_strings, 2637 .set_phys_id = igb_set_phys_id, 2638 .get_sset_count = igb_get_sset_count, 2639 .get_ethtool_stats = igb_get_ethtool_stats, 2640 .get_coalesce = igb_get_coalesce, 2641 .set_coalesce = igb_set_coalesce, 2642 .get_ts_info = igb_get_ts_info, 2643 .get_rxnfc = igb_get_rxnfc, 2644 .set_rxnfc = igb_set_rxnfc, 2645 .get_eee = igb_get_eee, 2646 .set_eee = igb_set_eee, 2647 .begin = igb_ethtool_begin, 2648 .complete = igb_ethtool_complete, 2649 }; 2650 2651 void igb_set_ethtool_ops(struct net_device *netdev) 2652 { 2653 SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops); 2654 } 2655