1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23 
24 /* ethtool support for igb */
25 
26 #include <linux/vmalloc.h>
27 #include <linux/netdevice.h>
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/if_ether.h>
32 #include <linux/ethtool.h>
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/highmem.h>
37 #include <linux/mdio.h>
38 
39 #include "igb.h"
40 
41 struct igb_stats {
42 	char stat_string[ETH_GSTRING_LEN];
43 	int sizeof_stat;
44 	int stat_offset;
45 };
46 
47 #define IGB_STAT(_name, _stat) { \
48 	.stat_string = _name, \
49 	.sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
50 	.stat_offset = offsetof(struct igb_adapter, _stat) \
51 }
52 static const struct igb_stats igb_gstrings_stats[] = {
53 	IGB_STAT("rx_packets", stats.gprc),
54 	IGB_STAT("tx_packets", stats.gptc),
55 	IGB_STAT("rx_bytes", stats.gorc),
56 	IGB_STAT("tx_bytes", stats.gotc),
57 	IGB_STAT("rx_broadcast", stats.bprc),
58 	IGB_STAT("tx_broadcast", stats.bptc),
59 	IGB_STAT("rx_multicast", stats.mprc),
60 	IGB_STAT("tx_multicast", stats.mptc),
61 	IGB_STAT("multicast", stats.mprc),
62 	IGB_STAT("collisions", stats.colc),
63 	IGB_STAT("rx_crc_errors", stats.crcerrs),
64 	IGB_STAT("rx_no_buffer_count", stats.rnbc),
65 	IGB_STAT("rx_missed_errors", stats.mpc),
66 	IGB_STAT("tx_aborted_errors", stats.ecol),
67 	IGB_STAT("tx_carrier_errors", stats.tncrs),
68 	IGB_STAT("tx_window_errors", stats.latecol),
69 	IGB_STAT("tx_abort_late_coll", stats.latecol),
70 	IGB_STAT("tx_deferred_ok", stats.dc),
71 	IGB_STAT("tx_single_coll_ok", stats.scc),
72 	IGB_STAT("tx_multi_coll_ok", stats.mcc),
73 	IGB_STAT("tx_timeout_count", tx_timeout_count),
74 	IGB_STAT("rx_long_length_errors", stats.roc),
75 	IGB_STAT("rx_short_length_errors", stats.ruc),
76 	IGB_STAT("rx_align_errors", stats.algnerrc),
77 	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
78 	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
79 	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
80 	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
81 	IGB_STAT("tx_flow_control_xon", stats.xontxc),
82 	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
83 	IGB_STAT("rx_long_byte_count", stats.gorc),
84 	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
85 	IGB_STAT("tx_smbus", stats.mgptc),
86 	IGB_STAT("rx_smbus", stats.mgprc),
87 	IGB_STAT("dropped_smbus", stats.mgpdc),
88 	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
89 	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
90 	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
91 	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
92 	IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
93 	IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
94 };
95 
96 #define IGB_NETDEV_STAT(_net_stat) { \
97 	.stat_string = __stringify(_net_stat), \
98 	.sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
99 	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
100 }
101 static const struct igb_stats igb_gstrings_net_stats[] = {
102 	IGB_NETDEV_STAT(rx_errors),
103 	IGB_NETDEV_STAT(tx_errors),
104 	IGB_NETDEV_STAT(tx_dropped),
105 	IGB_NETDEV_STAT(rx_length_errors),
106 	IGB_NETDEV_STAT(rx_over_errors),
107 	IGB_NETDEV_STAT(rx_frame_errors),
108 	IGB_NETDEV_STAT(rx_fifo_errors),
109 	IGB_NETDEV_STAT(tx_fifo_errors),
110 	IGB_NETDEV_STAT(tx_heartbeat_errors)
111 };
112 
113 #define IGB_GLOBAL_STATS_LEN	\
114 	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
115 #define IGB_NETDEV_STATS_LEN	\
116 	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
117 #define IGB_RX_QUEUE_STATS_LEN \
118 	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
119 
120 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
121 
122 #define IGB_QUEUE_STATS_LEN \
123 	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
124 	  IGB_RX_QUEUE_STATS_LEN) + \
125 	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
126 	  IGB_TX_QUEUE_STATS_LEN))
127 #define IGB_STATS_LEN \
128 	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
129 
130 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
131 	"Register test  (offline)", "Eeprom test    (offline)",
132 	"Interrupt test (offline)", "Loopback test  (offline)",
133 	"Link test   (on/offline)"
134 };
135 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
136 
137 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
138 {
139 	struct igb_adapter *adapter = netdev_priv(netdev);
140 	struct e1000_hw *hw = &adapter->hw;
141 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
142 	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
143 	u32 status;
144 	u32 speed;
145 
146 	status = rd32(E1000_STATUS);
147 	if (hw->phy.media_type == e1000_media_type_copper) {
148 
149 		ecmd->supported = (SUPPORTED_10baseT_Half |
150 				   SUPPORTED_10baseT_Full |
151 				   SUPPORTED_100baseT_Half |
152 				   SUPPORTED_100baseT_Full |
153 				   SUPPORTED_1000baseT_Full|
154 				   SUPPORTED_Autoneg |
155 				   SUPPORTED_TP |
156 				   SUPPORTED_Pause);
157 		ecmd->advertising = ADVERTISED_TP;
158 
159 		if (hw->mac.autoneg == 1) {
160 			ecmd->advertising |= ADVERTISED_Autoneg;
161 			/* the e1000 autoneg seems to match ethtool nicely */
162 			ecmd->advertising |= hw->phy.autoneg_advertised;
163 		}
164 
165 		ecmd->port = PORT_TP;
166 		ecmd->phy_address = hw->phy.addr;
167 		ecmd->transceiver = XCVR_INTERNAL;
168 	} else {
169 		ecmd->supported = (SUPPORTED_FIBRE |
170 				   SUPPORTED_1000baseKX_Full |
171 				   SUPPORTED_Autoneg |
172 				   SUPPORTED_Pause);
173 		ecmd->advertising = (ADVERTISED_FIBRE |
174 				     ADVERTISED_1000baseKX_Full);
175 		if (hw->mac.type == e1000_i354) {
176 			if ((hw->device_id ==
177 			     E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
178 			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
179 				ecmd->supported |= SUPPORTED_2500baseX_Full;
180 				ecmd->supported &=
181 					~SUPPORTED_1000baseKX_Full;
182 				ecmd->advertising |= ADVERTISED_2500baseX_Full;
183 				ecmd->advertising &=
184 					~ADVERTISED_1000baseKX_Full;
185 			}
186 		}
187 		if (eth_flags->e100_base_fx) {
188 			ecmd->supported |= SUPPORTED_100baseT_Full;
189 			ecmd->advertising |= ADVERTISED_100baseT_Full;
190 		}
191 		if (hw->mac.autoneg == 1)
192 			ecmd->advertising |= ADVERTISED_Autoneg;
193 
194 		ecmd->port = PORT_FIBRE;
195 		ecmd->transceiver = XCVR_EXTERNAL;
196 	}
197 	if (hw->mac.autoneg != 1)
198 		ecmd->advertising &= ~(ADVERTISED_Pause |
199 				       ADVERTISED_Asym_Pause);
200 
201 	switch (hw->fc.requested_mode) {
202 	case e1000_fc_full:
203 		ecmd->advertising |= ADVERTISED_Pause;
204 		break;
205 	case e1000_fc_rx_pause:
206 		ecmd->advertising |= (ADVERTISED_Pause |
207 				      ADVERTISED_Asym_Pause);
208 		break;
209 	case e1000_fc_tx_pause:
210 		ecmd->advertising |=  ADVERTISED_Asym_Pause;
211 		break;
212 	default:
213 		ecmd->advertising &= ~(ADVERTISED_Pause |
214 				       ADVERTISED_Asym_Pause);
215 	}
216 	if (status & E1000_STATUS_LU) {
217 		if ((status & E1000_STATUS_2P5_SKU) &&
218 		    !(status & E1000_STATUS_2P5_SKU_OVER)) {
219 			speed = SPEED_2500;
220 		} else if (status & E1000_STATUS_SPEED_1000) {
221 			speed = SPEED_1000;
222 		} else if (status & E1000_STATUS_SPEED_100) {
223 			speed = SPEED_100;
224 		} else {
225 			speed = SPEED_10;
226 		}
227 		if ((status & E1000_STATUS_FD) ||
228 		    hw->phy.media_type != e1000_media_type_copper)
229 			ecmd->duplex = DUPLEX_FULL;
230 		else
231 			ecmd->duplex = DUPLEX_HALF;
232 	} else {
233 		speed = SPEED_UNKNOWN;
234 		ecmd->duplex = DUPLEX_UNKNOWN;
235 	}
236 	ethtool_cmd_speed_set(ecmd, speed);
237 	if ((hw->phy.media_type == e1000_media_type_fiber) ||
238 	    hw->mac.autoneg)
239 		ecmd->autoneg = AUTONEG_ENABLE;
240 	else
241 		ecmd->autoneg = AUTONEG_DISABLE;
242 
243 	/* MDI-X => 2; MDI =>1; Invalid =>0 */
244 	if (hw->phy.media_type == e1000_media_type_copper)
245 		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
246 						      ETH_TP_MDI;
247 	else
248 		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
249 
250 	if (hw->phy.mdix == AUTO_ALL_MODES)
251 		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
252 	else
253 		ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
254 
255 	return 0;
256 }
257 
258 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
259 {
260 	struct igb_adapter *adapter = netdev_priv(netdev);
261 	struct e1000_hw *hw = &adapter->hw;
262 
263 	/* When SoL/IDER sessions are active, autoneg/speed/duplex
264 	 * cannot be changed
265 	 */
266 	if (igb_check_reset_block(hw)) {
267 		dev_err(&adapter->pdev->dev,
268 			"Cannot change link characteristics when SoL/IDER is active.\n");
269 		return -EINVAL;
270 	}
271 
272 	/* MDI setting is only allowed when autoneg enabled because
273 	 * some hardware doesn't allow MDI setting when speed or
274 	 * duplex is forced.
275 	 */
276 	if (ecmd->eth_tp_mdix_ctrl) {
277 		if (hw->phy.media_type != e1000_media_type_copper)
278 			return -EOPNOTSUPP;
279 
280 		if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
281 		    (ecmd->autoneg != AUTONEG_ENABLE)) {
282 			dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
283 			return -EINVAL;
284 		}
285 	}
286 
287 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
288 		usleep_range(1000, 2000);
289 
290 	if (ecmd->autoneg == AUTONEG_ENABLE) {
291 		hw->mac.autoneg = 1;
292 		if (hw->phy.media_type == e1000_media_type_fiber) {
293 			hw->phy.autoneg_advertised = ecmd->advertising |
294 						     ADVERTISED_FIBRE |
295 						     ADVERTISED_Autoneg;
296 			switch (adapter->link_speed) {
297 			case SPEED_2500:
298 				hw->phy.autoneg_advertised =
299 					ADVERTISED_2500baseX_Full;
300 				break;
301 			case SPEED_1000:
302 				hw->phy.autoneg_advertised =
303 					ADVERTISED_1000baseT_Full;
304 				break;
305 			case SPEED_100:
306 				hw->phy.autoneg_advertised =
307 					ADVERTISED_100baseT_Full;
308 				break;
309 			default:
310 				break;
311 			}
312 		} else {
313 			hw->phy.autoneg_advertised = ecmd->advertising |
314 						     ADVERTISED_TP |
315 						     ADVERTISED_Autoneg;
316 		}
317 		ecmd->advertising = hw->phy.autoneg_advertised;
318 		if (adapter->fc_autoneg)
319 			hw->fc.requested_mode = e1000_fc_default;
320 	} else {
321 		u32 speed = ethtool_cmd_speed(ecmd);
322 		/* calling this overrides forced MDI setting */
323 		if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
324 			clear_bit(__IGB_RESETTING, &adapter->state);
325 			return -EINVAL;
326 		}
327 	}
328 
329 	/* MDI-X => 2; MDI => 1; Auto => 3 */
330 	if (ecmd->eth_tp_mdix_ctrl) {
331 		/* fix up the value for auto (3 => 0) as zero is mapped
332 		 * internally to auto
333 		 */
334 		if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
335 			hw->phy.mdix = AUTO_ALL_MODES;
336 		else
337 			hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
338 	}
339 
340 	/* reset the link */
341 	if (netif_running(adapter->netdev)) {
342 		igb_down(adapter);
343 		igb_up(adapter);
344 	} else
345 		igb_reset(adapter);
346 
347 	clear_bit(__IGB_RESETTING, &adapter->state);
348 	return 0;
349 }
350 
351 static u32 igb_get_link(struct net_device *netdev)
352 {
353 	struct igb_adapter *adapter = netdev_priv(netdev);
354 	struct e1000_mac_info *mac = &adapter->hw.mac;
355 
356 	/* If the link is not reported up to netdev, interrupts are disabled,
357 	 * and so the physical link state may have changed since we last
358 	 * looked. Set get_link_status to make sure that the true link
359 	 * state is interrogated, rather than pulling a cached and possibly
360 	 * stale link state from the driver.
361 	 */
362 	if (!netif_carrier_ok(netdev))
363 		mac->get_link_status = 1;
364 
365 	return igb_has_link(adapter);
366 }
367 
368 static void igb_get_pauseparam(struct net_device *netdev,
369 			       struct ethtool_pauseparam *pause)
370 {
371 	struct igb_adapter *adapter = netdev_priv(netdev);
372 	struct e1000_hw *hw = &adapter->hw;
373 
374 	pause->autoneg =
375 		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
376 
377 	if (hw->fc.current_mode == e1000_fc_rx_pause)
378 		pause->rx_pause = 1;
379 	else if (hw->fc.current_mode == e1000_fc_tx_pause)
380 		pause->tx_pause = 1;
381 	else if (hw->fc.current_mode == e1000_fc_full) {
382 		pause->rx_pause = 1;
383 		pause->tx_pause = 1;
384 	}
385 }
386 
387 static int igb_set_pauseparam(struct net_device *netdev,
388 			      struct ethtool_pauseparam *pause)
389 {
390 	struct igb_adapter *adapter = netdev_priv(netdev);
391 	struct e1000_hw *hw = &adapter->hw;
392 	int retval = 0;
393 
394 	/* 100basefx does not support setting link flow control */
395 	if (hw->dev_spec._82575.eth_flags.e100_base_fx)
396 		return -EINVAL;
397 
398 	adapter->fc_autoneg = pause->autoneg;
399 
400 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
401 		usleep_range(1000, 2000);
402 
403 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
404 		hw->fc.requested_mode = e1000_fc_default;
405 		if (netif_running(adapter->netdev)) {
406 			igb_down(adapter);
407 			igb_up(adapter);
408 		} else {
409 			igb_reset(adapter);
410 		}
411 	} else {
412 		if (pause->rx_pause && pause->tx_pause)
413 			hw->fc.requested_mode = e1000_fc_full;
414 		else if (pause->rx_pause && !pause->tx_pause)
415 			hw->fc.requested_mode = e1000_fc_rx_pause;
416 		else if (!pause->rx_pause && pause->tx_pause)
417 			hw->fc.requested_mode = e1000_fc_tx_pause;
418 		else if (!pause->rx_pause && !pause->tx_pause)
419 			hw->fc.requested_mode = e1000_fc_none;
420 
421 		hw->fc.current_mode = hw->fc.requested_mode;
422 
423 		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
424 			  igb_force_mac_fc(hw) : igb_setup_link(hw));
425 	}
426 
427 	clear_bit(__IGB_RESETTING, &adapter->state);
428 	return retval;
429 }
430 
431 static u32 igb_get_msglevel(struct net_device *netdev)
432 {
433 	struct igb_adapter *adapter = netdev_priv(netdev);
434 	return adapter->msg_enable;
435 }
436 
437 static void igb_set_msglevel(struct net_device *netdev, u32 data)
438 {
439 	struct igb_adapter *adapter = netdev_priv(netdev);
440 	adapter->msg_enable = data;
441 }
442 
443 static int igb_get_regs_len(struct net_device *netdev)
444 {
445 #define IGB_REGS_LEN 739
446 	return IGB_REGS_LEN * sizeof(u32);
447 }
448 
449 static void igb_get_regs(struct net_device *netdev,
450 			 struct ethtool_regs *regs, void *p)
451 {
452 	struct igb_adapter *adapter = netdev_priv(netdev);
453 	struct e1000_hw *hw = &adapter->hw;
454 	u32 *regs_buff = p;
455 	u8 i;
456 
457 	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
458 
459 	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
460 
461 	/* General Registers */
462 	regs_buff[0] = rd32(E1000_CTRL);
463 	regs_buff[1] = rd32(E1000_STATUS);
464 	regs_buff[2] = rd32(E1000_CTRL_EXT);
465 	regs_buff[3] = rd32(E1000_MDIC);
466 	regs_buff[4] = rd32(E1000_SCTL);
467 	regs_buff[5] = rd32(E1000_CONNSW);
468 	regs_buff[6] = rd32(E1000_VET);
469 	regs_buff[7] = rd32(E1000_LEDCTL);
470 	regs_buff[8] = rd32(E1000_PBA);
471 	regs_buff[9] = rd32(E1000_PBS);
472 	regs_buff[10] = rd32(E1000_FRTIMER);
473 	regs_buff[11] = rd32(E1000_TCPTIMER);
474 
475 	/* NVM Register */
476 	regs_buff[12] = rd32(E1000_EECD);
477 
478 	/* Interrupt */
479 	/* Reading EICS for EICR because they read the
480 	 * same but EICS does not clear on read
481 	 */
482 	regs_buff[13] = rd32(E1000_EICS);
483 	regs_buff[14] = rd32(E1000_EICS);
484 	regs_buff[15] = rd32(E1000_EIMS);
485 	regs_buff[16] = rd32(E1000_EIMC);
486 	regs_buff[17] = rd32(E1000_EIAC);
487 	regs_buff[18] = rd32(E1000_EIAM);
488 	/* Reading ICS for ICR because they read the
489 	 * same but ICS does not clear on read
490 	 */
491 	regs_buff[19] = rd32(E1000_ICS);
492 	regs_buff[20] = rd32(E1000_ICS);
493 	regs_buff[21] = rd32(E1000_IMS);
494 	regs_buff[22] = rd32(E1000_IMC);
495 	regs_buff[23] = rd32(E1000_IAC);
496 	regs_buff[24] = rd32(E1000_IAM);
497 	regs_buff[25] = rd32(E1000_IMIRVP);
498 
499 	/* Flow Control */
500 	regs_buff[26] = rd32(E1000_FCAL);
501 	regs_buff[27] = rd32(E1000_FCAH);
502 	regs_buff[28] = rd32(E1000_FCTTV);
503 	regs_buff[29] = rd32(E1000_FCRTL);
504 	regs_buff[30] = rd32(E1000_FCRTH);
505 	regs_buff[31] = rd32(E1000_FCRTV);
506 
507 	/* Receive */
508 	regs_buff[32] = rd32(E1000_RCTL);
509 	regs_buff[33] = rd32(E1000_RXCSUM);
510 	regs_buff[34] = rd32(E1000_RLPML);
511 	regs_buff[35] = rd32(E1000_RFCTL);
512 	regs_buff[36] = rd32(E1000_MRQC);
513 	regs_buff[37] = rd32(E1000_VT_CTL);
514 
515 	/* Transmit */
516 	regs_buff[38] = rd32(E1000_TCTL);
517 	regs_buff[39] = rd32(E1000_TCTL_EXT);
518 	regs_buff[40] = rd32(E1000_TIPG);
519 	regs_buff[41] = rd32(E1000_DTXCTL);
520 
521 	/* Wake Up */
522 	regs_buff[42] = rd32(E1000_WUC);
523 	regs_buff[43] = rd32(E1000_WUFC);
524 	regs_buff[44] = rd32(E1000_WUS);
525 	regs_buff[45] = rd32(E1000_IPAV);
526 	regs_buff[46] = rd32(E1000_WUPL);
527 
528 	/* MAC */
529 	regs_buff[47] = rd32(E1000_PCS_CFG0);
530 	regs_buff[48] = rd32(E1000_PCS_LCTL);
531 	regs_buff[49] = rd32(E1000_PCS_LSTAT);
532 	regs_buff[50] = rd32(E1000_PCS_ANADV);
533 	regs_buff[51] = rd32(E1000_PCS_LPAB);
534 	regs_buff[52] = rd32(E1000_PCS_NPTX);
535 	regs_buff[53] = rd32(E1000_PCS_LPABNP);
536 
537 	/* Statistics */
538 	regs_buff[54] = adapter->stats.crcerrs;
539 	regs_buff[55] = adapter->stats.algnerrc;
540 	regs_buff[56] = adapter->stats.symerrs;
541 	regs_buff[57] = adapter->stats.rxerrc;
542 	regs_buff[58] = adapter->stats.mpc;
543 	regs_buff[59] = adapter->stats.scc;
544 	regs_buff[60] = adapter->stats.ecol;
545 	regs_buff[61] = adapter->stats.mcc;
546 	regs_buff[62] = adapter->stats.latecol;
547 	regs_buff[63] = adapter->stats.colc;
548 	regs_buff[64] = adapter->stats.dc;
549 	regs_buff[65] = adapter->stats.tncrs;
550 	regs_buff[66] = adapter->stats.sec;
551 	regs_buff[67] = adapter->stats.htdpmc;
552 	regs_buff[68] = adapter->stats.rlec;
553 	regs_buff[69] = adapter->stats.xonrxc;
554 	regs_buff[70] = adapter->stats.xontxc;
555 	regs_buff[71] = adapter->stats.xoffrxc;
556 	regs_buff[72] = adapter->stats.xofftxc;
557 	regs_buff[73] = adapter->stats.fcruc;
558 	regs_buff[74] = adapter->stats.prc64;
559 	regs_buff[75] = adapter->stats.prc127;
560 	regs_buff[76] = adapter->stats.prc255;
561 	regs_buff[77] = adapter->stats.prc511;
562 	regs_buff[78] = adapter->stats.prc1023;
563 	regs_buff[79] = adapter->stats.prc1522;
564 	regs_buff[80] = adapter->stats.gprc;
565 	regs_buff[81] = adapter->stats.bprc;
566 	regs_buff[82] = adapter->stats.mprc;
567 	regs_buff[83] = adapter->stats.gptc;
568 	regs_buff[84] = adapter->stats.gorc;
569 	regs_buff[86] = adapter->stats.gotc;
570 	regs_buff[88] = adapter->stats.rnbc;
571 	regs_buff[89] = adapter->stats.ruc;
572 	regs_buff[90] = adapter->stats.rfc;
573 	regs_buff[91] = adapter->stats.roc;
574 	regs_buff[92] = adapter->stats.rjc;
575 	regs_buff[93] = adapter->stats.mgprc;
576 	regs_buff[94] = adapter->stats.mgpdc;
577 	regs_buff[95] = adapter->stats.mgptc;
578 	regs_buff[96] = adapter->stats.tor;
579 	regs_buff[98] = adapter->stats.tot;
580 	regs_buff[100] = adapter->stats.tpr;
581 	regs_buff[101] = adapter->stats.tpt;
582 	regs_buff[102] = adapter->stats.ptc64;
583 	regs_buff[103] = adapter->stats.ptc127;
584 	regs_buff[104] = adapter->stats.ptc255;
585 	regs_buff[105] = adapter->stats.ptc511;
586 	regs_buff[106] = adapter->stats.ptc1023;
587 	regs_buff[107] = adapter->stats.ptc1522;
588 	regs_buff[108] = adapter->stats.mptc;
589 	regs_buff[109] = adapter->stats.bptc;
590 	regs_buff[110] = adapter->stats.tsctc;
591 	regs_buff[111] = adapter->stats.iac;
592 	regs_buff[112] = adapter->stats.rpthc;
593 	regs_buff[113] = adapter->stats.hgptc;
594 	regs_buff[114] = adapter->stats.hgorc;
595 	regs_buff[116] = adapter->stats.hgotc;
596 	regs_buff[118] = adapter->stats.lenerrs;
597 	regs_buff[119] = adapter->stats.scvpc;
598 	regs_buff[120] = adapter->stats.hrmpc;
599 
600 	for (i = 0; i < 4; i++)
601 		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
602 	for (i = 0; i < 4; i++)
603 		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
604 	for (i = 0; i < 4; i++)
605 		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
606 	for (i = 0; i < 4; i++)
607 		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
608 	for (i = 0; i < 4; i++)
609 		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
610 	for (i = 0; i < 4; i++)
611 		regs_buff[141 + i] = rd32(E1000_RDH(i));
612 	for (i = 0; i < 4; i++)
613 		regs_buff[145 + i] = rd32(E1000_RDT(i));
614 	for (i = 0; i < 4; i++)
615 		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
616 
617 	for (i = 0; i < 10; i++)
618 		regs_buff[153 + i] = rd32(E1000_EITR(i));
619 	for (i = 0; i < 8; i++)
620 		regs_buff[163 + i] = rd32(E1000_IMIR(i));
621 	for (i = 0; i < 8; i++)
622 		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
623 	for (i = 0; i < 16; i++)
624 		regs_buff[179 + i] = rd32(E1000_RAL(i));
625 	for (i = 0; i < 16; i++)
626 		regs_buff[195 + i] = rd32(E1000_RAH(i));
627 
628 	for (i = 0; i < 4; i++)
629 		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
630 	for (i = 0; i < 4; i++)
631 		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
632 	for (i = 0; i < 4; i++)
633 		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
634 	for (i = 0; i < 4; i++)
635 		regs_buff[223 + i] = rd32(E1000_TDH(i));
636 	for (i = 0; i < 4; i++)
637 		regs_buff[227 + i] = rd32(E1000_TDT(i));
638 	for (i = 0; i < 4; i++)
639 		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
640 	for (i = 0; i < 4; i++)
641 		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
642 	for (i = 0; i < 4; i++)
643 		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
644 	for (i = 0; i < 4; i++)
645 		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
646 
647 	for (i = 0; i < 4; i++)
648 		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
649 	for (i = 0; i < 4; i++)
650 		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
651 	for (i = 0; i < 32; i++)
652 		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
653 	for (i = 0; i < 128; i++)
654 		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
655 	for (i = 0; i < 128; i++)
656 		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
657 	for (i = 0; i < 4; i++)
658 		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
659 
660 	regs_buff[547] = rd32(E1000_TDFH);
661 	regs_buff[548] = rd32(E1000_TDFT);
662 	regs_buff[549] = rd32(E1000_TDFHS);
663 	regs_buff[550] = rd32(E1000_TDFPC);
664 
665 	if (hw->mac.type > e1000_82580) {
666 		regs_buff[551] = adapter->stats.o2bgptc;
667 		regs_buff[552] = adapter->stats.b2ospc;
668 		regs_buff[553] = adapter->stats.o2bspc;
669 		regs_buff[554] = adapter->stats.b2ogprc;
670 	}
671 
672 	if (hw->mac.type != e1000_82576)
673 		return;
674 	for (i = 0; i < 12; i++)
675 		regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
676 	for (i = 0; i < 4; i++)
677 		regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
678 	for (i = 0; i < 12; i++)
679 		regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
680 	for (i = 0; i < 12; i++)
681 		regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
682 	for (i = 0; i < 12; i++)
683 		regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
684 	for (i = 0; i < 12; i++)
685 		regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
686 	for (i = 0; i < 12; i++)
687 		regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
688 	for (i = 0; i < 12; i++)
689 		regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
690 
691 	for (i = 0; i < 12; i++)
692 		regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
693 	for (i = 0; i < 12; i++)
694 		regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
695 	for (i = 0; i < 12; i++)
696 		regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
697 	for (i = 0; i < 12; i++)
698 		regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
699 	for (i = 0; i < 12; i++)
700 		regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
701 	for (i = 0; i < 12; i++)
702 		regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
703 	for (i = 0; i < 12; i++)
704 		regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
705 	for (i = 0; i < 12; i++)
706 		regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
707 }
708 
709 static int igb_get_eeprom_len(struct net_device *netdev)
710 {
711 	struct igb_adapter *adapter = netdev_priv(netdev);
712 	return adapter->hw.nvm.word_size * 2;
713 }
714 
715 static int igb_get_eeprom(struct net_device *netdev,
716 			  struct ethtool_eeprom *eeprom, u8 *bytes)
717 {
718 	struct igb_adapter *adapter = netdev_priv(netdev);
719 	struct e1000_hw *hw = &adapter->hw;
720 	u16 *eeprom_buff;
721 	int first_word, last_word;
722 	int ret_val = 0;
723 	u16 i;
724 
725 	if (eeprom->len == 0)
726 		return -EINVAL;
727 
728 	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
729 
730 	first_word = eeprom->offset >> 1;
731 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
732 
733 	eeprom_buff = kmalloc(sizeof(u16) *
734 			(last_word - first_word + 1), GFP_KERNEL);
735 	if (!eeprom_buff)
736 		return -ENOMEM;
737 
738 	if (hw->nvm.type == e1000_nvm_eeprom_spi)
739 		ret_val = hw->nvm.ops.read(hw, first_word,
740 					   last_word - first_word + 1,
741 					   eeprom_buff);
742 	else {
743 		for (i = 0; i < last_word - first_word + 1; i++) {
744 			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
745 						   &eeprom_buff[i]);
746 			if (ret_val)
747 				break;
748 		}
749 	}
750 
751 	/* Device's eeprom is always little-endian, word addressable */
752 	for (i = 0; i < last_word - first_word + 1; i++)
753 		le16_to_cpus(&eeprom_buff[i]);
754 
755 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
756 			eeprom->len);
757 	kfree(eeprom_buff);
758 
759 	return ret_val;
760 }
761 
762 static int igb_set_eeprom(struct net_device *netdev,
763 			  struct ethtool_eeprom *eeprom, u8 *bytes)
764 {
765 	struct igb_adapter *adapter = netdev_priv(netdev);
766 	struct e1000_hw *hw = &adapter->hw;
767 	u16 *eeprom_buff;
768 	void *ptr;
769 	int max_len, first_word, last_word, ret_val = 0;
770 	u16 i;
771 
772 	if (eeprom->len == 0)
773 		return -EOPNOTSUPP;
774 
775 	if ((hw->mac.type >= e1000_i210) &&
776 	    !igb_get_flash_presence_i210(hw)) {
777 		return -EOPNOTSUPP;
778 	}
779 
780 	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
781 		return -EFAULT;
782 
783 	max_len = hw->nvm.word_size * 2;
784 
785 	first_word = eeprom->offset >> 1;
786 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
787 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
788 	if (!eeprom_buff)
789 		return -ENOMEM;
790 
791 	ptr = (void *)eeprom_buff;
792 
793 	if (eeprom->offset & 1) {
794 		/* need read/modify/write of first changed EEPROM word
795 		 * only the second byte of the word is being modified
796 		 */
797 		ret_val = hw->nvm.ops.read(hw, first_word, 1,
798 					    &eeprom_buff[0]);
799 		ptr++;
800 	}
801 	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
802 		/* need read/modify/write of last changed EEPROM word
803 		 * only the first byte of the word is being modified
804 		 */
805 		ret_val = hw->nvm.ops.read(hw, last_word, 1,
806 				   &eeprom_buff[last_word - first_word]);
807 	}
808 
809 	/* Device's eeprom is always little-endian, word addressable */
810 	for (i = 0; i < last_word - first_word + 1; i++)
811 		le16_to_cpus(&eeprom_buff[i]);
812 
813 	memcpy(ptr, bytes, eeprom->len);
814 
815 	for (i = 0; i < last_word - first_word + 1; i++)
816 		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
817 
818 	ret_val = hw->nvm.ops.write(hw, first_word,
819 				    last_word - first_word + 1, eeprom_buff);
820 
821 	/* Update the checksum if nvm write succeeded */
822 	if (ret_val == 0)
823 		hw->nvm.ops.update(hw);
824 
825 	igb_set_fw_version(adapter);
826 	kfree(eeprom_buff);
827 	return ret_val;
828 }
829 
830 static void igb_get_drvinfo(struct net_device *netdev,
831 			    struct ethtool_drvinfo *drvinfo)
832 {
833 	struct igb_adapter *adapter = netdev_priv(netdev);
834 
835 	strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
836 	strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
837 
838 	/* EEPROM image version # is reported as firmware version # for
839 	 * 82575 controllers
840 	 */
841 	strlcpy(drvinfo->fw_version, adapter->fw_version,
842 		sizeof(drvinfo->fw_version));
843 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
844 		sizeof(drvinfo->bus_info));
845 }
846 
847 static void igb_get_ringparam(struct net_device *netdev,
848 			      struct ethtool_ringparam *ring)
849 {
850 	struct igb_adapter *adapter = netdev_priv(netdev);
851 
852 	ring->rx_max_pending = IGB_MAX_RXD;
853 	ring->tx_max_pending = IGB_MAX_TXD;
854 	ring->rx_pending = adapter->rx_ring_count;
855 	ring->tx_pending = adapter->tx_ring_count;
856 }
857 
858 static int igb_set_ringparam(struct net_device *netdev,
859 			     struct ethtool_ringparam *ring)
860 {
861 	struct igb_adapter *adapter = netdev_priv(netdev);
862 	struct igb_ring *temp_ring;
863 	int i, err = 0;
864 	u16 new_rx_count, new_tx_count;
865 
866 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
867 		return -EINVAL;
868 
869 	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
870 	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
871 	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
872 
873 	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
874 	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
875 	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
876 
877 	if ((new_tx_count == adapter->tx_ring_count) &&
878 	    (new_rx_count == adapter->rx_ring_count)) {
879 		/* nothing to do */
880 		return 0;
881 	}
882 
883 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
884 		usleep_range(1000, 2000);
885 
886 	if (!netif_running(adapter->netdev)) {
887 		for (i = 0; i < adapter->num_tx_queues; i++)
888 			adapter->tx_ring[i]->count = new_tx_count;
889 		for (i = 0; i < adapter->num_rx_queues; i++)
890 			adapter->rx_ring[i]->count = new_rx_count;
891 		adapter->tx_ring_count = new_tx_count;
892 		adapter->rx_ring_count = new_rx_count;
893 		goto clear_reset;
894 	}
895 
896 	if (adapter->num_tx_queues > adapter->num_rx_queues)
897 		temp_ring = vmalloc(adapter->num_tx_queues *
898 				    sizeof(struct igb_ring));
899 	else
900 		temp_ring = vmalloc(adapter->num_rx_queues *
901 				    sizeof(struct igb_ring));
902 
903 	if (!temp_ring) {
904 		err = -ENOMEM;
905 		goto clear_reset;
906 	}
907 
908 	igb_down(adapter);
909 
910 	/* We can't just free everything and then setup again,
911 	 * because the ISRs in MSI-X mode get passed pointers
912 	 * to the Tx and Rx ring structs.
913 	 */
914 	if (new_tx_count != adapter->tx_ring_count) {
915 		for (i = 0; i < adapter->num_tx_queues; i++) {
916 			memcpy(&temp_ring[i], adapter->tx_ring[i],
917 			       sizeof(struct igb_ring));
918 
919 			temp_ring[i].count = new_tx_count;
920 			err = igb_setup_tx_resources(&temp_ring[i]);
921 			if (err) {
922 				while (i) {
923 					i--;
924 					igb_free_tx_resources(&temp_ring[i]);
925 				}
926 				goto err_setup;
927 			}
928 		}
929 
930 		for (i = 0; i < adapter->num_tx_queues; i++) {
931 			igb_free_tx_resources(adapter->tx_ring[i]);
932 
933 			memcpy(adapter->tx_ring[i], &temp_ring[i],
934 			       sizeof(struct igb_ring));
935 		}
936 
937 		adapter->tx_ring_count = new_tx_count;
938 	}
939 
940 	if (new_rx_count != adapter->rx_ring_count) {
941 		for (i = 0; i < adapter->num_rx_queues; i++) {
942 			memcpy(&temp_ring[i], adapter->rx_ring[i],
943 			       sizeof(struct igb_ring));
944 
945 			temp_ring[i].count = new_rx_count;
946 			err = igb_setup_rx_resources(&temp_ring[i]);
947 			if (err) {
948 				while (i) {
949 					i--;
950 					igb_free_rx_resources(&temp_ring[i]);
951 				}
952 				goto err_setup;
953 			}
954 
955 		}
956 
957 		for (i = 0; i < adapter->num_rx_queues; i++) {
958 			igb_free_rx_resources(adapter->rx_ring[i]);
959 
960 			memcpy(adapter->rx_ring[i], &temp_ring[i],
961 			       sizeof(struct igb_ring));
962 		}
963 
964 		adapter->rx_ring_count = new_rx_count;
965 	}
966 err_setup:
967 	igb_up(adapter);
968 	vfree(temp_ring);
969 clear_reset:
970 	clear_bit(__IGB_RESETTING, &adapter->state);
971 	return err;
972 }
973 
974 /* ethtool register test data */
975 struct igb_reg_test {
976 	u16 reg;
977 	u16 reg_offset;
978 	u16 array_len;
979 	u16 test_type;
980 	u32 mask;
981 	u32 write;
982 };
983 
984 /* In the hardware, registers are laid out either singly, in arrays
985  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
986  * most tests take place on arrays or single registers (handled
987  * as a single-element array) and special-case the tables.
988  * Table tests are always pattern tests.
989  *
990  * We also make provision for some required setup steps by specifying
991  * registers to be written without any read-back testing.
992  */
993 
994 #define PATTERN_TEST	1
995 #define SET_READ_TEST	2
996 #define WRITE_NO_TEST	3
997 #define TABLE32_TEST	4
998 #define TABLE64_TEST_LO	5
999 #define TABLE64_TEST_HI	6
1000 
1001 /* i210 reg test */
1002 static struct igb_reg_test reg_test_i210[] = {
1003 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1004 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1005 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1006 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1007 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1008 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1009 	/* RDH is read-only for i210, only test RDT. */
1010 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1011 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1012 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1013 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1014 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1015 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1016 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1017 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1018 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1019 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1020 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1021 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1022 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1023 						0xFFFFFFFF, 0xFFFFFFFF },
1024 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1025 						0x900FFFFF, 0xFFFFFFFF },
1026 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1027 						0xFFFFFFFF, 0xFFFFFFFF },
1028 	{ 0, 0, 0, 0, 0 }
1029 };
1030 
1031 /* i350 reg test */
1032 static struct igb_reg_test reg_test_i350[] = {
1033 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1034 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1035 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1036 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1037 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1038 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1039 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1040 	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1041 	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1042 	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1043 	/* RDH is read-only for i350, only test RDT. */
1044 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1045 	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1046 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1047 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1048 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1049 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1050 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1051 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1052 	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1053 	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1054 	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1055 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1056 	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1057 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1058 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1059 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1060 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1061 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1062 						0xFFFFFFFF, 0xFFFFFFFF },
1063 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1064 						0xC3FFFFFF, 0xFFFFFFFF },
1065 	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
1066 						0xFFFFFFFF, 0xFFFFFFFF },
1067 	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
1068 						0xC3FFFFFF, 0xFFFFFFFF },
1069 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1070 						0xFFFFFFFF, 0xFFFFFFFF },
1071 	{ 0, 0, 0, 0 }
1072 };
1073 
1074 /* 82580 reg test */
1075 static struct igb_reg_test reg_test_82580[] = {
1076 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1077 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1078 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1079 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1080 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1081 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1082 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1083 	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1084 	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1085 	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1086 	/* RDH is read-only for 82580, only test RDT. */
1087 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1088 	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1089 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1090 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1091 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1092 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1093 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1094 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1095 	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1096 	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1097 	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1098 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1099 	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1100 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1101 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1102 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1103 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1104 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1105 						0xFFFFFFFF, 0xFFFFFFFF },
1106 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1107 						0x83FFFFFF, 0xFFFFFFFF },
1108 	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
1109 						0xFFFFFFFF, 0xFFFFFFFF },
1110 	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
1111 						0x83FFFFFF, 0xFFFFFFFF },
1112 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1113 						0xFFFFFFFF, 0xFFFFFFFF },
1114 	{ 0, 0, 0, 0 }
1115 };
1116 
1117 /* 82576 reg test */
1118 static struct igb_reg_test reg_test_82576[] = {
1119 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1120 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1121 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1122 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1123 	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1124 	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1125 	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1126 	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1127 	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1128 	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1129 	/* Enable all RX queues before testing. */
1130 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1131 	  E1000_RXDCTL_QUEUE_ENABLE },
1132 	{ E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0,
1133 	  E1000_RXDCTL_QUEUE_ENABLE },
1134 	/* RDH is read-only for 82576, only test RDT. */
1135 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1136 	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1137 	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1138 	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1139 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1140 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1141 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1142 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1143 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1144 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1145 	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1146 	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1147 	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1148 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1149 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1150 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1151 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1152 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1153 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1154 	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1155 	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1156 	{ E1000_MTA,	   0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1157 	{ 0, 0, 0, 0 }
1158 };
1159 
1160 /* 82575 register test */
1161 static struct igb_reg_test reg_test_82575[] = {
1162 	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1163 	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1164 	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1165 	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1166 	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1167 	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1168 	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1169 	/* Enable all four RX queues before testing. */
1170 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1171 	  E1000_RXDCTL_QUEUE_ENABLE },
1172 	/* RDH is read-only for 82575, only test RDT. */
1173 	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1174 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1175 	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1176 	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1177 	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1178 	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1179 	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1180 	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1181 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1182 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1183 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1184 	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1185 	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1186 	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1187 	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1188 	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1189 	{ 0, 0, 0, 0 }
1190 };
1191 
1192 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1193 			     int reg, u32 mask, u32 write)
1194 {
1195 	struct e1000_hw *hw = &adapter->hw;
1196 	u32 pat, val;
1197 	static const u32 _test[] = {
1198 		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1199 	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1200 		wr32(reg, (_test[pat] & write));
1201 		val = rd32(reg) & mask;
1202 		if (val != (_test[pat] & write & mask)) {
1203 			dev_err(&adapter->pdev->dev,
1204 				"pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1205 				reg, val, (_test[pat] & write & mask));
1206 			*data = reg;
1207 			return true;
1208 		}
1209 	}
1210 
1211 	return false;
1212 }
1213 
1214 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1215 			      int reg, u32 mask, u32 write)
1216 {
1217 	struct e1000_hw *hw = &adapter->hw;
1218 	u32 val;
1219 
1220 	wr32(reg, write & mask);
1221 	val = rd32(reg);
1222 	if ((write & mask) != (val & mask)) {
1223 		dev_err(&adapter->pdev->dev,
1224 			"set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
1225 			reg, (val & mask), (write & mask));
1226 		*data = reg;
1227 		return true;
1228 	}
1229 
1230 	return false;
1231 }
1232 
1233 #define REG_PATTERN_TEST(reg, mask, write) \
1234 	do { \
1235 		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1236 			return 1; \
1237 	} while (0)
1238 
1239 #define REG_SET_AND_CHECK(reg, mask, write) \
1240 	do { \
1241 		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1242 			return 1; \
1243 	} while (0)
1244 
1245 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1246 {
1247 	struct e1000_hw *hw = &adapter->hw;
1248 	struct igb_reg_test *test;
1249 	u32 value, before, after;
1250 	u32 i, toggle;
1251 
1252 	switch (adapter->hw.mac.type) {
1253 	case e1000_i350:
1254 	case e1000_i354:
1255 		test = reg_test_i350;
1256 		toggle = 0x7FEFF3FF;
1257 		break;
1258 	case e1000_i210:
1259 	case e1000_i211:
1260 		test = reg_test_i210;
1261 		toggle = 0x7FEFF3FF;
1262 		break;
1263 	case e1000_82580:
1264 		test = reg_test_82580;
1265 		toggle = 0x7FEFF3FF;
1266 		break;
1267 	case e1000_82576:
1268 		test = reg_test_82576;
1269 		toggle = 0x7FFFF3FF;
1270 		break;
1271 	default:
1272 		test = reg_test_82575;
1273 		toggle = 0x7FFFF3FF;
1274 		break;
1275 	}
1276 
1277 	/* Because the status register is such a special case,
1278 	 * we handle it separately from the rest of the register
1279 	 * tests.  Some bits are read-only, some toggle, and some
1280 	 * are writable on newer MACs.
1281 	 */
1282 	before = rd32(E1000_STATUS);
1283 	value = (rd32(E1000_STATUS) & toggle);
1284 	wr32(E1000_STATUS, toggle);
1285 	after = rd32(E1000_STATUS) & toggle;
1286 	if (value != after) {
1287 		dev_err(&adapter->pdev->dev,
1288 			"failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1289 			after, value);
1290 		*data = 1;
1291 		return 1;
1292 	}
1293 	/* restore previous status */
1294 	wr32(E1000_STATUS, before);
1295 
1296 	/* Perform the remainder of the register test, looping through
1297 	 * the test table until we either fail or reach the null entry.
1298 	 */
1299 	while (test->reg) {
1300 		for (i = 0; i < test->array_len; i++) {
1301 			switch (test->test_type) {
1302 			case PATTERN_TEST:
1303 				REG_PATTERN_TEST(test->reg +
1304 						(i * test->reg_offset),
1305 						test->mask,
1306 						test->write);
1307 				break;
1308 			case SET_READ_TEST:
1309 				REG_SET_AND_CHECK(test->reg +
1310 						(i * test->reg_offset),
1311 						test->mask,
1312 						test->write);
1313 				break;
1314 			case WRITE_NO_TEST:
1315 				writel(test->write,
1316 				    (adapter->hw.hw_addr + test->reg)
1317 					+ (i * test->reg_offset));
1318 				break;
1319 			case TABLE32_TEST:
1320 				REG_PATTERN_TEST(test->reg + (i * 4),
1321 						test->mask,
1322 						test->write);
1323 				break;
1324 			case TABLE64_TEST_LO:
1325 				REG_PATTERN_TEST(test->reg + (i * 8),
1326 						test->mask,
1327 						test->write);
1328 				break;
1329 			case TABLE64_TEST_HI:
1330 				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1331 						test->mask,
1332 						test->write);
1333 				break;
1334 			}
1335 		}
1336 		test++;
1337 	}
1338 
1339 	*data = 0;
1340 	return 0;
1341 }
1342 
1343 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1344 {
1345 	struct e1000_hw *hw = &adapter->hw;
1346 
1347 	*data = 0;
1348 
1349 	/* Validate eeprom on all parts but flashless */
1350 	switch (hw->mac.type) {
1351 	case e1000_i210:
1352 	case e1000_i211:
1353 		if (igb_get_flash_presence_i210(hw)) {
1354 			if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1355 				*data = 2;
1356 		}
1357 		break;
1358 	default:
1359 		if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1360 			*data = 2;
1361 		break;
1362 	}
1363 
1364 	return *data;
1365 }
1366 
1367 static irqreturn_t igb_test_intr(int irq, void *data)
1368 {
1369 	struct igb_adapter *adapter = (struct igb_adapter *) data;
1370 	struct e1000_hw *hw = &adapter->hw;
1371 
1372 	adapter->test_icr |= rd32(E1000_ICR);
1373 
1374 	return IRQ_HANDLED;
1375 }
1376 
1377 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1378 {
1379 	struct e1000_hw *hw = &adapter->hw;
1380 	struct net_device *netdev = adapter->netdev;
1381 	u32 mask, ics_mask, i = 0, shared_int = true;
1382 	u32 irq = adapter->pdev->irq;
1383 
1384 	*data = 0;
1385 
1386 	/* Hook up test interrupt handler just for this test */
1387 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1388 		if (request_irq(adapter->msix_entries[0].vector,
1389 				igb_test_intr, 0, netdev->name, adapter)) {
1390 			*data = 1;
1391 			return -1;
1392 		}
1393 	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1394 		shared_int = false;
1395 		if (request_irq(irq,
1396 				igb_test_intr, 0, netdev->name, adapter)) {
1397 			*data = 1;
1398 			return -1;
1399 		}
1400 	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1401 				netdev->name, adapter)) {
1402 		shared_int = false;
1403 	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1404 		 netdev->name, adapter)) {
1405 		*data = 1;
1406 		return -1;
1407 	}
1408 	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1409 		(shared_int ? "shared" : "unshared"));
1410 
1411 	/* Disable all the interrupts */
1412 	wr32(E1000_IMC, ~0);
1413 	wrfl();
1414 	usleep_range(10000, 11000);
1415 
1416 	/* Define all writable bits for ICS */
1417 	switch (hw->mac.type) {
1418 	case e1000_82575:
1419 		ics_mask = 0x37F47EDD;
1420 		break;
1421 	case e1000_82576:
1422 		ics_mask = 0x77D4FBFD;
1423 		break;
1424 	case e1000_82580:
1425 		ics_mask = 0x77DCFED5;
1426 		break;
1427 	case e1000_i350:
1428 	case e1000_i354:
1429 	case e1000_i210:
1430 	case e1000_i211:
1431 		ics_mask = 0x77DCFED5;
1432 		break;
1433 	default:
1434 		ics_mask = 0x7FFFFFFF;
1435 		break;
1436 	}
1437 
1438 	/* Test each interrupt */
1439 	for (; i < 31; i++) {
1440 		/* Interrupt to test */
1441 		mask = 1 << i;
1442 
1443 		if (!(mask & ics_mask))
1444 			continue;
1445 
1446 		if (!shared_int) {
1447 			/* Disable the interrupt to be reported in
1448 			 * the cause register and then force the same
1449 			 * interrupt and see if one gets posted.  If
1450 			 * an interrupt was posted to the bus, the
1451 			 * test failed.
1452 			 */
1453 			adapter->test_icr = 0;
1454 
1455 			/* Flush any pending interrupts */
1456 			wr32(E1000_ICR, ~0);
1457 
1458 			wr32(E1000_IMC, mask);
1459 			wr32(E1000_ICS, mask);
1460 			wrfl();
1461 			usleep_range(10000, 11000);
1462 
1463 			if (adapter->test_icr & mask) {
1464 				*data = 3;
1465 				break;
1466 			}
1467 		}
1468 
1469 		/* Enable the interrupt to be reported in
1470 		 * the cause register and then force the same
1471 		 * interrupt and see if one gets posted.  If
1472 		 * an interrupt was not posted to the bus, the
1473 		 * test failed.
1474 		 */
1475 		adapter->test_icr = 0;
1476 
1477 		/* Flush any pending interrupts */
1478 		wr32(E1000_ICR, ~0);
1479 
1480 		wr32(E1000_IMS, mask);
1481 		wr32(E1000_ICS, mask);
1482 		wrfl();
1483 		usleep_range(10000, 11000);
1484 
1485 		if (!(adapter->test_icr & mask)) {
1486 			*data = 4;
1487 			break;
1488 		}
1489 
1490 		if (!shared_int) {
1491 			/* Disable the other interrupts to be reported in
1492 			 * the cause register and then force the other
1493 			 * interrupts and see if any get posted.  If
1494 			 * an interrupt was posted to the bus, the
1495 			 * test failed.
1496 			 */
1497 			adapter->test_icr = 0;
1498 
1499 			/* Flush any pending interrupts */
1500 			wr32(E1000_ICR, ~0);
1501 
1502 			wr32(E1000_IMC, ~mask);
1503 			wr32(E1000_ICS, ~mask);
1504 			wrfl();
1505 			usleep_range(10000, 11000);
1506 
1507 			if (adapter->test_icr & mask) {
1508 				*data = 5;
1509 				break;
1510 			}
1511 		}
1512 	}
1513 
1514 	/* Disable all the interrupts */
1515 	wr32(E1000_IMC, ~0);
1516 	wrfl();
1517 	usleep_range(10000, 11000);
1518 
1519 	/* Unhook test interrupt handler */
1520 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1521 		free_irq(adapter->msix_entries[0].vector, adapter);
1522 	else
1523 		free_irq(irq, adapter);
1524 
1525 	return *data;
1526 }
1527 
1528 static void igb_free_desc_rings(struct igb_adapter *adapter)
1529 {
1530 	igb_free_tx_resources(&adapter->test_tx_ring);
1531 	igb_free_rx_resources(&adapter->test_rx_ring);
1532 }
1533 
1534 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1535 {
1536 	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1537 	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1538 	struct e1000_hw *hw = &adapter->hw;
1539 	int ret_val;
1540 
1541 	/* Setup Tx descriptor ring and Tx buffers */
1542 	tx_ring->count = IGB_DEFAULT_TXD;
1543 	tx_ring->dev = &adapter->pdev->dev;
1544 	tx_ring->netdev = adapter->netdev;
1545 	tx_ring->reg_idx = adapter->vfs_allocated_count;
1546 
1547 	if (igb_setup_tx_resources(tx_ring)) {
1548 		ret_val = 1;
1549 		goto err_nomem;
1550 	}
1551 
1552 	igb_setup_tctl(adapter);
1553 	igb_configure_tx_ring(adapter, tx_ring);
1554 
1555 	/* Setup Rx descriptor ring and Rx buffers */
1556 	rx_ring->count = IGB_DEFAULT_RXD;
1557 	rx_ring->dev = &adapter->pdev->dev;
1558 	rx_ring->netdev = adapter->netdev;
1559 	rx_ring->reg_idx = adapter->vfs_allocated_count;
1560 
1561 	if (igb_setup_rx_resources(rx_ring)) {
1562 		ret_val = 3;
1563 		goto err_nomem;
1564 	}
1565 
1566 	/* set the default queue to queue 0 of PF */
1567 	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1568 
1569 	/* enable receive ring */
1570 	igb_setup_rctl(adapter);
1571 	igb_configure_rx_ring(adapter, rx_ring);
1572 
1573 	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1574 
1575 	return 0;
1576 
1577 err_nomem:
1578 	igb_free_desc_rings(adapter);
1579 	return ret_val;
1580 }
1581 
1582 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1583 {
1584 	struct e1000_hw *hw = &adapter->hw;
1585 
1586 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1587 	igb_write_phy_reg(hw, 29, 0x001F);
1588 	igb_write_phy_reg(hw, 30, 0x8FFC);
1589 	igb_write_phy_reg(hw, 29, 0x001A);
1590 	igb_write_phy_reg(hw, 30, 0x8FF0);
1591 }
1592 
1593 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1594 {
1595 	struct e1000_hw *hw = &adapter->hw;
1596 	u32 ctrl_reg = 0;
1597 
1598 	hw->mac.autoneg = false;
1599 
1600 	if (hw->phy.type == e1000_phy_m88) {
1601 		if (hw->phy.id != I210_I_PHY_ID) {
1602 			/* Auto-MDI/MDIX Off */
1603 			igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1604 			/* reset to update Auto-MDI/MDIX */
1605 			igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1606 			/* autoneg off */
1607 			igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1608 		} else {
1609 			/* force 1000, set loopback  */
1610 			igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1611 			igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1612 		}
1613 	} else if (hw->phy.type == e1000_phy_82580) {
1614 		/* enable MII loopback */
1615 		igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1616 	}
1617 
1618 	/* add small delay to avoid loopback test failure */
1619 	msleep(50);
1620 
1621 	/* force 1000, set loopback */
1622 	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1623 
1624 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1625 	ctrl_reg = rd32(E1000_CTRL);
1626 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1627 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1628 		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1629 		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1630 		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1631 		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1632 
1633 	if (hw->phy.type == e1000_phy_m88)
1634 		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1635 
1636 	wr32(E1000_CTRL, ctrl_reg);
1637 
1638 	/* Disable the receiver on the PHY so when a cable is plugged in, the
1639 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1640 	 */
1641 	if (hw->phy.type == e1000_phy_m88)
1642 		igb_phy_disable_receiver(adapter);
1643 
1644 	mdelay(500);
1645 	return 0;
1646 }
1647 
1648 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1649 {
1650 	return igb_integrated_phy_loopback(adapter);
1651 }
1652 
1653 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1654 {
1655 	struct e1000_hw *hw = &adapter->hw;
1656 	u32 reg;
1657 
1658 	reg = rd32(E1000_CTRL_EXT);
1659 
1660 	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1661 	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1662 		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1663 		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1664 		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1665 		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1666 		(hw->device_id == E1000_DEV_ID_I354_SGMII) ||
1667 		(hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) {
1668 			/* Enable DH89xxCC MPHY for near end loopback */
1669 			reg = rd32(E1000_MPHY_ADDR_CTL);
1670 			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1671 			E1000_MPHY_PCS_CLK_REG_OFFSET;
1672 			wr32(E1000_MPHY_ADDR_CTL, reg);
1673 
1674 			reg = rd32(E1000_MPHY_DATA);
1675 			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1676 			wr32(E1000_MPHY_DATA, reg);
1677 		}
1678 
1679 		reg = rd32(E1000_RCTL);
1680 		reg |= E1000_RCTL_LBM_TCVR;
1681 		wr32(E1000_RCTL, reg);
1682 
1683 		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1684 
1685 		reg = rd32(E1000_CTRL);
1686 		reg &= ~(E1000_CTRL_RFCE |
1687 			 E1000_CTRL_TFCE |
1688 			 E1000_CTRL_LRST);
1689 		reg |= E1000_CTRL_SLU |
1690 		       E1000_CTRL_FD;
1691 		wr32(E1000_CTRL, reg);
1692 
1693 		/* Unset switch control to serdes energy detect */
1694 		reg = rd32(E1000_CONNSW);
1695 		reg &= ~E1000_CONNSW_ENRGSRC;
1696 		wr32(E1000_CONNSW, reg);
1697 
1698 		/* Unset sigdetect for SERDES loopback on
1699 		 * 82580 and newer devices.
1700 		 */
1701 		if (hw->mac.type >= e1000_82580) {
1702 			reg = rd32(E1000_PCS_CFG0);
1703 			reg |= E1000_PCS_CFG_IGN_SD;
1704 			wr32(E1000_PCS_CFG0, reg);
1705 		}
1706 
1707 		/* Set PCS register for forced speed */
1708 		reg = rd32(E1000_PCS_LCTL);
1709 		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1710 		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1711 		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1712 		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1713 		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1714 		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1715 		wr32(E1000_PCS_LCTL, reg);
1716 
1717 		return 0;
1718 	}
1719 
1720 	return igb_set_phy_loopback(adapter);
1721 }
1722 
1723 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1724 {
1725 	struct e1000_hw *hw = &adapter->hw;
1726 	u32 rctl;
1727 	u16 phy_reg;
1728 
1729 	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1730 	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1731 	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1732 	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1733 	(hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1734 		u32 reg;
1735 
1736 		/* Disable near end loopback on DH89xxCC */
1737 		reg = rd32(E1000_MPHY_ADDR_CTL);
1738 		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1739 		E1000_MPHY_PCS_CLK_REG_OFFSET;
1740 		wr32(E1000_MPHY_ADDR_CTL, reg);
1741 
1742 		reg = rd32(E1000_MPHY_DATA);
1743 		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1744 		wr32(E1000_MPHY_DATA, reg);
1745 	}
1746 
1747 	rctl = rd32(E1000_RCTL);
1748 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1749 	wr32(E1000_RCTL, rctl);
1750 
1751 	hw->mac.autoneg = true;
1752 	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1753 	if (phy_reg & MII_CR_LOOPBACK) {
1754 		phy_reg &= ~MII_CR_LOOPBACK;
1755 		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1756 		igb_phy_sw_reset(hw);
1757 	}
1758 }
1759 
1760 static void igb_create_lbtest_frame(struct sk_buff *skb,
1761 				    unsigned int frame_size)
1762 {
1763 	memset(skb->data, 0xFF, frame_size);
1764 	frame_size /= 2;
1765 	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1766 	memset(&skb->data[frame_size + 10], 0xBE, 1);
1767 	memset(&skb->data[frame_size + 12], 0xAF, 1);
1768 }
1769 
1770 static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1771 				  unsigned int frame_size)
1772 {
1773 	unsigned char *data;
1774 	bool match = true;
1775 
1776 	frame_size >>= 1;
1777 
1778 	data = kmap(rx_buffer->page);
1779 
1780 	if (data[3] != 0xFF ||
1781 	    data[frame_size + 10] != 0xBE ||
1782 	    data[frame_size + 12] != 0xAF)
1783 		match = false;
1784 
1785 	kunmap(rx_buffer->page);
1786 
1787 	return match;
1788 }
1789 
1790 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1791 				struct igb_ring *tx_ring,
1792 				unsigned int size)
1793 {
1794 	union e1000_adv_rx_desc *rx_desc;
1795 	struct igb_rx_buffer *rx_buffer_info;
1796 	struct igb_tx_buffer *tx_buffer_info;
1797 	u16 rx_ntc, tx_ntc, count = 0;
1798 
1799 	/* initialize next to clean and descriptor values */
1800 	rx_ntc = rx_ring->next_to_clean;
1801 	tx_ntc = tx_ring->next_to_clean;
1802 	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1803 
1804 	while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1805 		/* check Rx buffer */
1806 		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1807 
1808 		/* sync Rx buffer for CPU read */
1809 		dma_sync_single_for_cpu(rx_ring->dev,
1810 					rx_buffer_info->dma,
1811 					IGB_RX_BUFSZ,
1812 					DMA_FROM_DEVICE);
1813 
1814 		/* verify contents of skb */
1815 		if (igb_check_lbtest_frame(rx_buffer_info, size))
1816 			count++;
1817 
1818 		/* sync Rx buffer for device write */
1819 		dma_sync_single_for_device(rx_ring->dev,
1820 					   rx_buffer_info->dma,
1821 					   IGB_RX_BUFSZ,
1822 					   DMA_FROM_DEVICE);
1823 
1824 		/* unmap buffer on Tx side */
1825 		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1826 		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1827 
1828 		/* increment Rx/Tx next to clean counters */
1829 		rx_ntc++;
1830 		if (rx_ntc == rx_ring->count)
1831 			rx_ntc = 0;
1832 		tx_ntc++;
1833 		if (tx_ntc == tx_ring->count)
1834 			tx_ntc = 0;
1835 
1836 		/* fetch next descriptor */
1837 		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1838 	}
1839 
1840 	netdev_tx_reset_queue(txring_txq(tx_ring));
1841 
1842 	/* re-map buffers to ring, store next to clean values */
1843 	igb_alloc_rx_buffers(rx_ring, count);
1844 	rx_ring->next_to_clean = rx_ntc;
1845 	tx_ring->next_to_clean = tx_ntc;
1846 
1847 	return count;
1848 }
1849 
1850 static int igb_run_loopback_test(struct igb_adapter *adapter)
1851 {
1852 	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1853 	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1854 	u16 i, j, lc, good_cnt;
1855 	int ret_val = 0;
1856 	unsigned int size = IGB_RX_HDR_LEN;
1857 	netdev_tx_t tx_ret_val;
1858 	struct sk_buff *skb;
1859 
1860 	/* allocate test skb */
1861 	skb = alloc_skb(size, GFP_KERNEL);
1862 	if (!skb)
1863 		return 11;
1864 
1865 	/* place data into test skb */
1866 	igb_create_lbtest_frame(skb, size);
1867 	skb_put(skb, size);
1868 
1869 	/* Calculate the loop count based on the largest descriptor ring
1870 	 * The idea is to wrap the largest ring a number of times using 64
1871 	 * send/receive pairs during each loop
1872 	 */
1873 
1874 	if (rx_ring->count <= tx_ring->count)
1875 		lc = ((tx_ring->count / 64) * 2) + 1;
1876 	else
1877 		lc = ((rx_ring->count / 64) * 2) + 1;
1878 
1879 	for (j = 0; j <= lc; j++) { /* loop count loop */
1880 		/* reset count of good packets */
1881 		good_cnt = 0;
1882 
1883 		/* place 64 packets on the transmit queue*/
1884 		for (i = 0; i < 64; i++) {
1885 			skb_get(skb);
1886 			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1887 			if (tx_ret_val == NETDEV_TX_OK)
1888 				good_cnt++;
1889 		}
1890 
1891 		if (good_cnt != 64) {
1892 			ret_val = 12;
1893 			break;
1894 		}
1895 
1896 		/* allow 200 milliseconds for packets to go from Tx to Rx */
1897 		msleep(200);
1898 
1899 		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1900 		if (good_cnt != 64) {
1901 			ret_val = 13;
1902 			break;
1903 		}
1904 	} /* end loop count loop */
1905 
1906 	/* free the original skb */
1907 	kfree_skb(skb);
1908 
1909 	return ret_val;
1910 }
1911 
1912 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1913 {
1914 	/* PHY loopback cannot be performed if SoL/IDER
1915 	 * sessions are active
1916 	 */
1917 	if (igb_check_reset_block(&adapter->hw)) {
1918 		dev_err(&adapter->pdev->dev,
1919 			"Cannot do PHY loopback test when SoL/IDER is active.\n");
1920 		*data = 0;
1921 		goto out;
1922 	}
1923 
1924 	if (adapter->hw.mac.type == e1000_i354) {
1925 		dev_info(&adapter->pdev->dev,
1926 			"Loopback test not supported on i354.\n");
1927 		*data = 0;
1928 		goto out;
1929 	}
1930 	*data = igb_setup_desc_rings(adapter);
1931 	if (*data)
1932 		goto out;
1933 	*data = igb_setup_loopback_test(adapter);
1934 	if (*data)
1935 		goto err_loopback;
1936 	*data = igb_run_loopback_test(adapter);
1937 	igb_loopback_cleanup(adapter);
1938 
1939 err_loopback:
1940 	igb_free_desc_rings(adapter);
1941 out:
1942 	return *data;
1943 }
1944 
1945 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1946 {
1947 	struct e1000_hw *hw = &adapter->hw;
1948 	*data = 0;
1949 	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1950 		int i = 0;
1951 
1952 		hw->mac.serdes_has_link = false;
1953 
1954 		/* On some blade server designs, link establishment
1955 		 * could take as long as 2-3 minutes
1956 		 */
1957 		do {
1958 			hw->mac.ops.check_for_link(&adapter->hw);
1959 			if (hw->mac.serdes_has_link)
1960 				return *data;
1961 			msleep(20);
1962 		} while (i++ < 3750);
1963 
1964 		*data = 1;
1965 	} else {
1966 		hw->mac.ops.check_for_link(&adapter->hw);
1967 		if (hw->mac.autoneg)
1968 			msleep(5000);
1969 
1970 		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1971 			*data = 1;
1972 	}
1973 	return *data;
1974 }
1975 
1976 static void igb_diag_test(struct net_device *netdev,
1977 			  struct ethtool_test *eth_test, u64 *data)
1978 {
1979 	struct igb_adapter *adapter = netdev_priv(netdev);
1980 	u16 autoneg_advertised;
1981 	u8 forced_speed_duplex, autoneg;
1982 	bool if_running = netif_running(netdev);
1983 
1984 	set_bit(__IGB_TESTING, &adapter->state);
1985 
1986 	/* can't do offline tests on media switching devices */
1987 	if (adapter->hw.dev_spec._82575.mas_capable)
1988 		eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
1989 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1990 		/* Offline tests */
1991 
1992 		/* save speed, duplex, autoneg settings */
1993 		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1994 		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1995 		autoneg = adapter->hw.mac.autoneg;
1996 
1997 		dev_info(&adapter->pdev->dev, "offline testing starting\n");
1998 
1999 		/* power up link for link test */
2000 		igb_power_up_link(adapter);
2001 
2002 		/* Link test performed before hardware reset so autoneg doesn't
2003 		 * interfere with test result
2004 		 */
2005 		if (igb_link_test(adapter, &data[4]))
2006 			eth_test->flags |= ETH_TEST_FL_FAILED;
2007 
2008 		if (if_running)
2009 			/* indicate we're in test mode */
2010 			dev_close(netdev);
2011 		else
2012 			igb_reset(adapter);
2013 
2014 		if (igb_reg_test(adapter, &data[0]))
2015 			eth_test->flags |= ETH_TEST_FL_FAILED;
2016 
2017 		igb_reset(adapter);
2018 		if (igb_eeprom_test(adapter, &data[1]))
2019 			eth_test->flags |= ETH_TEST_FL_FAILED;
2020 
2021 		igb_reset(adapter);
2022 		if (igb_intr_test(adapter, &data[2]))
2023 			eth_test->flags |= ETH_TEST_FL_FAILED;
2024 
2025 		igb_reset(adapter);
2026 		/* power up link for loopback test */
2027 		igb_power_up_link(adapter);
2028 		if (igb_loopback_test(adapter, &data[3]))
2029 			eth_test->flags |= ETH_TEST_FL_FAILED;
2030 
2031 		/* restore speed, duplex, autoneg settings */
2032 		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2033 		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2034 		adapter->hw.mac.autoneg = autoneg;
2035 
2036 		/* force this routine to wait until autoneg complete/timeout */
2037 		adapter->hw.phy.autoneg_wait_to_complete = true;
2038 		igb_reset(adapter);
2039 		adapter->hw.phy.autoneg_wait_to_complete = false;
2040 
2041 		clear_bit(__IGB_TESTING, &adapter->state);
2042 		if (if_running)
2043 			dev_open(netdev);
2044 	} else {
2045 		dev_info(&adapter->pdev->dev, "online testing starting\n");
2046 
2047 		/* PHY is powered down when interface is down */
2048 		if (if_running && igb_link_test(adapter, &data[4]))
2049 			eth_test->flags |= ETH_TEST_FL_FAILED;
2050 		else
2051 			data[4] = 0;
2052 
2053 		/* Online tests aren't run; pass by default */
2054 		data[0] = 0;
2055 		data[1] = 0;
2056 		data[2] = 0;
2057 		data[3] = 0;
2058 
2059 		clear_bit(__IGB_TESTING, &adapter->state);
2060 	}
2061 	msleep_interruptible(4 * 1000);
2062 }
2063 
2064 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2065 {
2066 	struct igb_adapter *adapter = netdev_priv(netdev);
2067 
2068 	wol->wolopts = 0;
2069 
2070 	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2071 		return;
2072 
2073 	wol->supported = WAKE_UCAST | WAKE_MCAST |
2074 			 WAKE_BCAST | WAKE_MAGIC |
2075 			 WAKE_PHY;
2076 
2077 	/* apply any specific unsupported masks here */
2078 	switch (adapter->hw.device_id) {
2079 	default:
2080 		break;
2081 	}
2082 
2083 	if (adapter->wol & E1000_WUFC_EX)
2084 		wol->wolopts |= WAKE_UCAST;
2085 	if (adapter->wol & E1000_WUFC_MC)
2086 		wol->wolopts |= WAKE_MCAST;
2087 	if (adapter->wol & E1000_WUFC_BC)
2088 		wol->wolopts |= WAKE_BCAST;
2089 	if (adapter->wol & E1000_WUFC_MAG)
2090 		wol->wolopts |= WAKE_MAGIC;
2091 	if (adapter->wol & E1000_WUFC_LNKC)
2092 		wol->wolopts |= WAKE_PHY;
2093 }
2094 
2095 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2096 {
2097 	struct igb_adapter *adapter = netdev_priv(netdev);
2098 
2099 	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2100 		return -EOPNOTSUPP;
2101 
2102 	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2103 		return wol->wolopts ? -EOPNOTSUPP : 0;
2104 
2105 	/* these settings will always override what we currently have */
2106 	adapter->wol = 0;
2107 
2108 	if (wol->wolopts & WAKE_UCAST)
2109 		adapter->wol |= E1000_WUFC_EX;
2110 	if (wol->wolopts & WAKE_MCAST)
2111 		adapter->wol |= E1000_WUFC_MC;
2112 	if (wol->wolopts & WAKE_BCAST)
2113 		adapter->wol |= E1000_WUFC_BC;
2114 	if (wol->wolopts & WAKE_MAGIC)
2115 		adapter->wol |= E1000_WUFC_MAG;
2116 	if (wol->wolopts & WAKE_PHY)
2117 		adapter->wol |= E1000_WUFC_LNKC;
2118 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2119 
2120 	return 0;
2121 }
2122 
2123 /* bit defines for adapter->led_status */
2124 #define IGB_LED_ON		0
2125 
2126 static int igb_set_phys_id(struct net_device *netdev,
2127 			   enum ethtool_phys_id_state state)
2128 {
2129 	struct igb_adapter *adapter = netdev_priv(netdev);
2130 	struct e1000_hw *hw = &adapter->hw;
2131 
2132 	switch (state) {
2133 	case ETHTOOL_ID_ACTIVE:
2134 		igb_blink_led(hw);
2135 		return 2;
2136 	case ETHTOOL_ID_ON:
2137 		igb_blink_led(hw);
2138 		break;
2139 	case ETHTOOL_ID_OFF:
2140 		igb_led_off(hw);
2141 		break;
2142 	case ETHTOOL_ID_INACTIVE:
2143 		igb_led_off(hw);
2144 		clear_bit(IGB_LED_ON, &adapter->led_status);
2145 		igb_cleanup_led(hw);
2146 		break;
2147 	}
2148 
2149 	return 0;
2150 }
2151 
2152 static int igb_set_coalesce(struct net_device *netdev,
2153 			    struct ethtool_coalesce *ec)
2154 {
2155 	struct igb_adapter *adapter = netdev_priv(netdev);
2156 	int i;
2157 
2158 	if (ec->rx_max_coalesced_frames ||
2159 	    ec->rx_coalesce_usecs_irq ||
2160 	    ec->rx_max_coalesced_frames_irq ||
2161 	    ec->tx_max_coalesced_frames ||
2162 	    ec->tx_coalesce_usecs_irq ||
2163 	    ec->stats_block_coalesce_usecs ||
2164 	    ec->use_adaptive_rx_coalesce ||
2165 	    ec->use_adaptive_tx_coalesce ||
2166 	    ec->pkt_rate_low ||
2167 	    ec->rx_coalesce_usecs_low ||
2168 	    ec->rx_max_coalesced_frames_low ||
2169 	    ec->tx_coalesce_usecs_low ||
2170 	    ec->tx_max_coalesced_frames_low ||
2171 	    ec->pkt_rate_high ||
2172 	    ec->rx_coalesce_usecs_high ||
2173 	    ec->rx_max_coalesced_frames_high ||
2174 	    ec->tx_coalesce_usecs_high ||
2175 	    ec->tx_max_coalesced_frames_high ||
2176 	    ec->rate_sample_interval)
2177 		return -ENOTSUPP;
2178 
2179 	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2180 	    ((ec->rx_coalesce_usecs > 3) &&
2181 	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2182 	    (ec->rx_coalesce_usecs == 2))
2183 		return -EINVAL;
2184 
2185 	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2186 	    ((ec->tx_coalesce_usecs > 3) &&
2187 	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2188 	    (ec->tx_coalesce_usecs == 2))
2189 		return -EINVAL;
2190 
2191 	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2192 		return -EINVAL;
2193 
2194 	/* If ITR is disabled, disable DMAC */
2195 	if (ec->rx_coalesce_usecs == 0) {
2196 		if (adapter->flags & IGB_FLAG_DMAC)
2197 			adapter->flags &= ~IGB_FLAG_DMAC;
2198 	}
2199 
2200 	/* convert to rate of irq's per second */
2201 	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2202 		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2203 	else
2204 		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2205 
2206 	/* convert to rate of irq's per second */
2207 	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2208 		adapter->tx_itr_setting = adapter->rx_itr_setting;
2209 	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2210 		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2211 	else
2212 		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2213 
2214 	for (i = 0; i < adapter->num_q_vectors; i++) {
2215 		struct igb_q_vector *q_vector = adapter->q_vector[i];
2216 		q_vector->tx.work_limit = adapter->tx_work_limit;
2217 		if (q_vector->rx.ring)
2218 			q_vector->itr_val = adapter->rx_itr_setting;
2219 		else
2220 			q_vector->itr_val = adapter->tx_itr_setting;
2221 		if (q_vector->itr_val && q_vector->itr_val <= 3)
2222 			q_vector->itr_val = IGB_START_ITR;
2223 		q_vector->set_itr = 1;
2224 	}
2225 
2226 	return 0;
2227 }
2228 
2229 static int igb_get_coalesce(struct net_device *netdev,
2230 			    struct ethtool_coalesce *ec)
2231 {
2232 	struct igb_adapter *adapter = netdev_priv(netdev);
2233 
2234 	if (adapter->rx_itr_setting <= 3)
2235 		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2236 	else
2237 		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2238 
2239 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2240 		if (adapter->tx_itr_setting <= 3)
2241 			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2242 		else
2243 			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2244 	}
2245 
2246 	return 0;
2247 }
2248 
2249 static int igb_nway_reset(struct net_device *netdev)
2250 {
2251 	struct igb_adapter *adapter = netdev_priv(netdev);
2252 	if (netif_running(netdev))
2253 		igb_reinit_locked(adapter);
2254 	return 0;
2255 }
2256 
2257 static int igb_get_sset_count(struct net_device *netdev, int sset)
2258 {
2259 	switch (sset) {
2260 	case ETH_SS_STATS:
2261 		return IGB_STATS_LEN;
2262 	case ETH_SS_TEST:
2263 		return IGB_TEST_LEN;
2264 	default:
2265 		return -ENOTSUPP;
2266 	}
2267 }
2268 
2269 static void igb_get_ethtool_stats(struct net_device *netdev,
2270 				  struct ethtool_stats *stats, u64 *data)
2271 {
2272 	struct igb_adapter *adapter = netdev_priv(netdev);
2273 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2274 	unsigned int start;
2275 	struct igb_ring *ring;
2276 	int i, j;
2277 	char *p;
2278 
2279 	spin_lock(&adapter->stats64_lock);
2280 	igb_update_stats(adapter, net_stats);
2281 
2282 	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2283 		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2284 		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2285 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2286 	}
2287 	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2288 		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2289 		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2290 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2291 	}
2292 	for (j = 0; j < adapter->num_tx_queues; j++) {
2293 		u64	restart2;
2294 
2295 		ring = adapter->tx_ring[j];
2296 		do {
2297 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
2298 			data[i]   = ring->tx_stats.packets;
2299 			data[i+1] = ring->tx_stats.bytes;
2300 			data[i+2] = ring->tx_stats.restart_queue;
2301 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
2302 		do {
2303 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp2);
2304 			restart2  = ring->tx_stats.restart_queue2;
2305 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start));
2306 		data[i+2] += restart2;
2307 
2308 		i += IGB_TX_QUEUE_STATS_LEN;
2309 	}
2310 	for (j = 0; j < adapter->num_rx_queues; j++) {
2311 		ring = adapter->rx_ring[j];
2312 		do {
2313 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
2314 			data[i]   = ring->rx_stats.packets;
2315 			data[i+1] = ring->rx_stats.bytes;
2316 			data[i+2] = ring->rx_stats.drops;
2317 			data[i+3] = ring->rx_stats.csum_err;
2318 			data[i+4] = ring->rx_stats.alloc_failed;
2319 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
2320 		i += IGB_RX_QUEUE_STATS_LEN;
2321 	}
2322 	spin_unlock(&adapter->stats64_lock);
2323 }
2324 
2325 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2326 {
2327 	struct igb_adapter *adapter = netdev_priv(netdev);
2328 	u8 *p = data;
2329 	int i;
2330 
2331 	switch (stringset) {
2332 	case ETH_SS_TEST:
2333 		memcpy(data, *igb_gstrings_test,
2334 			IGB_TEST_LEN*ETH_GSTRING_LEN);
2335 		break;
2336 	case ETH_SS_STATS:
2337 		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2338 			memcpy(p, igb_gstrings_stats[i].stat_string,
2339 			       ETH_GSTRING_LEN);
2340 			p += ETH_GSTRING_LEN;
2341 		}
2342 		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2343 			memcpy(p, igb_gstrings_net_stats[i].stat_string,
2344 			       ETH_GSTRING_LEN);
2345 			p += ETH_GSTRING_LEN;
2346 		}
2347 		for (i = 0; i < adapter->num_tx_queues; i++) {
2348 			sprintf(p, "tx_queue_%u_packets", i);
2349 			p += ETH_GSTRING_LEN;
2350 			sprintf(p, "tx_queue_%u_bytes", i);
2351 			p += ETH_GSTRING_LEN;
2352 			sprintf(p, "tx_queue_%u_restart", i);
2353 			p += ETH_GSTRING_LEN;
2354 		}
2355 		for (i = 0; i < adapter->num_rx_queues; i++) {
2356 			sprintf(p, "rx_queue_%u_packets", i);
2357 			p += ETH_GSTRING_LEN;
2358 			sprintf(p, "rx_queue_%u_bytes", i);
2359 			p += ETH_GSTRING_LEN;
2360 			sprintf(p, "rx_queue_%u_drops", i);
2361 			p += ETH_GSTRING_LEN;
2362 			sprintf(p, "rx_queue_%u_csum_err", i);
2363 			p += ETH_GSTRING_LEN;
2364 			sprintf(p, "rx_queue_%u_alloc_failed", i);
2365 			p += ETH_GSTRING_LEN;
2366 		}
2367 		/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2368 		break;
2369 	}
2370 }
2371 
2372 static int igb_get_ts_info(struct net_device *dev,
2373 			   struct ethtool_ts_info *info)
2374 {
2375 	struct igb_adapter *adapter = netdev_priv(dev);
2376 
2377 	if (adapter->ptp_clock)
2378 		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2379 	else
2380 		info->phc_index = -1;
2381 
2382 	switch (adapter->hw.mac.type) {
2383 	case e1000_82575:
2384 		info->so_timestamping =
2385 			SOF_TIMESTAMPING_TX_SOFTWARE |
2386 			SOF_TIMESTAMPING_RX_SOFTWARE |
2387 			SOF_TIMESTAMPING_SOFTWARE;
2388 		return 0;
2389 	case e1000_82576:
2390 	case e1000_82580:
2391 	case e1000_i350:
2392 	case e1000_i354:
2393 	case e1000_i210:
2394 	case e1000_i211:
2395 		info->so_timestamping =
2396 			SOF_TIMESTAMPING_TX_SOFTWARE |
2397 			SOF_TIMESTAMPING_RX_SOFTWARE |
2398 			SOF_TIMESTAMPING_SOFTWARE |
2399 			SOF_TIMESTAMPING_TX_HARDWARE |
2400 			SOF_TIMESTAMPING_RX_HARDWARE |
2401 			SOF_TIMESTAMPING_RAW_HARDWARE;
2402 
2403 		info->tx_types =
2404 			(1 << HWTSTAMP_TX_OFF) |
2405 			(1 << HWTSTAMP_TX_ON);
2406 
2407 		info->rx_filters = 1 << HWTSTAMP_FILTER_NONE;
2408 
2409 		/* 82576 does not support timestamping all packets. */
2410 		if (adapter->hw.mac.type >= e1000_82580)
2411 			info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL;
2412 		else
2413 			info->rx_filters |=
2414 				(1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2415 				(1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2416 				(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2417 
2418 		return 0;
2419 	default:
2420 		return -EOPNOTSUPP;
2421 	}
2422 }
2423 
2424 static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2425 				 struct ethtool_rxnfc *cmd)
2426 {
2427 	cmd->data = 0;
2428 
2429 	/* Report default options for RSS on igb */
2430 	switch (cmd->flow_type) {
2431 	case TCP_V4_FLOW:
2432 		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2433 		/* Fall through */
2434 	case UDP_V4_FLOW:
2435 		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2436 			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2437 		/* Fall through */
2438 	case SCTP_V4_FLOW:
2439 	case AH_ESP_V4_FLOW:
2440 	case AH_V4_FLOW:
2441 	case ESP_V4_FLOW:
2442 	case IPV4_FLOW:
2443 		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2444 		break;
2445 	case TCP_V6_FLOW:
2446 		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2447 		/* Fall through */
2448 	case UDP_V6_FLOW:
2449 		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2450 			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2451 		/* Fall through */
2452 	case SCTP_V6_FLOW:
2453 	case AH_ESP_V6_FLOW:
2454 	case AH_V6_FLOW:
2455 	case ESP_V6_FLOW:
2456 	case IPV6_FLOW:
2457 		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2458 		break;
2459 	default:
2460 		return -EINVAL;
2461 	}
2462 
2463 	return 0;
2464 }
2465 
2466 static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2467 			 u32 *rule_locs)
2468 {
2469 	struct igb_adapter *adapter = netdev_priv(dev);
2470 	int ret = -EOPNOTSUPP;
2471 
2472 	switch (cmd->cmd) {
2473 	case ETHTOOL_GRXRINGS:
2474 		cmd->data = adapter->num_rx_queues;
2475 		ret = 0;
2476 		break;
2477 	case ETHTOOL_GRXFH:
2478 		ret = igb_get_rss_hash_opts(adapter, cmd);
2479 		break;
2480 	default:
2481 		break;
2482 	}
2483 
2484 	return ret;
2485 }
2486 
2487 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2488 		       IGB_FLAG_RSS_FIELD_IPV6_UDP)
2489 static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2490 				struct ethtool_rxnfc *nfc)
2491 {
2492 	u32 flags = adapter->flags;
2493 
2494 	/* RSS does not support anything other than hashing
2495 	 * to queues on src and dst IPs and ports
2496 	 */
2497 	if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2498 			  RXH_L4_B_0_1 | RXH_L4_B_2_3))
2499 		return -EINVAL;
2500 
2501 	switch (nfc->flow_type) {
2502 	case TCP_V4_FLOW:
2503 	case TCP_V6_FLOW:
2504 		if (!(nfc->data & RXH_IP_SRC) ||
2505 		    !(nfc->data & RXH_IP_DST) ||
2506 		    !(nfc->data & RXH_L4_B_0_1) ||
2507 		    !(nfc->data & RXH_L4_B_2_3))
2508 			return -EINVAL;
2509 		break;
2510 	case UDP_V4_FLOW:
2511 		if (!(nfc->data & RXH_IP_SRC) ||
2512 		    !(nfc->data & RXH_IP_DST))
2513 			return -EINVAL;
2514 		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2515 		case 0:
2516 			flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2517 			break;
2518 		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2519 			flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2520 			break;
2521 		default:
2522 			return -EINVAL;
2523 		}
2524 		break;
2525 	case UDP_V6_FLOW:
2526 		if (!(nfc->data & RXH_IP_SRC) ||
2527 		    !(nfc->data & RXH_IP_DST))
2528 			return -EINVAL;
2529 		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2530 		case 0:
2531 			flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2532 			break;
2533 		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2534 			flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2535 			break;
2536 		default:
2537 			return -EINVAL;
2538 		}
2539 		break;
2540 	case AH_ESP_V4_FLOW:
2541 	case AH_V4_FLOW:
2542 	case ESP_V4_FLOW:
2543 	case SCTP_V4_FLOW:
2544 	case AH_ESP_V6_FLOW:
2545 	case AH_V6_FLOW:
2546 	case ESP_V6_FLOW:
2547 	case SCTP_V6_FLOW:
2548 		if (!(nfc->data & RXH_IP_SRC) ||
2549 		    !(nfc->data & RXH_IP_DST) ||
2550 		    (nfc->data & RXH_L4_B_0_1) ||
2551 		    (nfc->data & RXH_L4_B_2_3))
2552 			return -EINVAL;
2553 		break;
2554 	default:
2555 		return -EINVAL;
2556 	}
2557 
2558 	/* if we changed something we need to update flags */
2559 	if (flags != adapter->flags) {
2560 		struct e1000_hw *hw = &adapter->hw;
2561 		u32 mrqc = rd32(E1000_MRQC);
2562 
2563 		if ((flags & UDP_RSS_FLAGS) &&
2564 		    !(adapter->flags & UDP_RSS_FLAGS))
2565 			dev_err(&adapter->pdev->dev,
2566 				"enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2567 
2568 		adapter->flags = flags;
2569 
2570 		/* Perform hash on these packet types */
2571 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2572 			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2573 			E1000_MRQC_RSS_FIELD_IPV6 |
2574 			E1000_MRQC_RSS_FIELD_IPV6_TCP;
2575 
2576 		mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2577 			  E1000_MRQC_RSS_FIELD_IPV6_UDP);
2578 
2579 		if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2580 			mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2581 
2582 		if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2583 			mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2584 
2585 		wr32(E1000_MRQC, mrqc);
2586 	}
2587 
2588 	return 0;
2589 }
2590 
2591 static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
2592 {
2593 	struct igb_adapter *adapter = netdev_priv(dev);
2594 	int ret = -EOPNOTSUPP;
2595 
2596 	switch (cmd->cmd) {
2597 	case ETHTOOL_SRXFH:
2598 		ret = igb_set_rss_hash_opt(adapter, cmd);
2599 		break;
2600 	default:
2601 		break;
2602 	}
2603 
2604 	return ret;
2605 }
2606 
2607 static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2608 {
2609 	struct igb_adapter *adapter = netdev_priv(netdev);
2610 	struct e1000_hw *hw = &adapter->hw;
2611 	u32 ret_val;
2612 	u16 phy_data;
2613 
2614 	if ((hw->mac.type < e1000_i350) ||
2615 	    (hw->phy.media_type != e1000_media_type_copper))
2616 		return -EOPNOTSUPP;
2617 
2618 	edata->supported = (SUPPORTED_1000baseT_Full |
2619 			    SUPPORTED_100baseT_Full);
2620 	if (!hw->dev_spec._82575.eee_disable)
2621 		edata->advertised =
2622 			mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2623 
2624 	/* The IPCNFG and EEER registers are not supported on I354. */
2625 	if (hw->mac.type == e1000_i354) {
2626 		igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
2627 	} else {
2628 		u32 eeer;
2629 
2630 		eeer = rd32(E1000_EEER);
2631 
2632 		/* EEE status on negotiated link */
2633 		if (eeer & E1000_EEER_EEE_NEG)
2634 			edata->eee_active = true;
2635 
2636 		if (eeer & E1000_EEER_TX_LPI_EN)
2637 			edata->tx_lpi_enabled = true;
2638 	}
2639 
2640 	/* EEE Link Partner Advertised */
2641 	switch (hw->mac.type) {
2642 	case e1000_i350:
2643 		ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
2644 					   &phy_data);
2645 		if (ret_val)
2646 			return -ENODATA;
2647 
2648 		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2649 		break;
2650 	case e1000_i354:
2651 	case e1000_i210:
2652 	case e1000_i211:
2653 		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
2654 					     E1000_EEE_LP_ADV_DEV_I210,
2655 					     &phy_data);
2656 		if (ret_val)
2657 			return -ENODATA;
2658 
2659 		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2660 
2661 		break;
2662 	default:
2663 		break;
2664 	}
2665 
2666 	edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
2667 
2668 	if ((hw->mac.type == e1000_i354) &&
2669 	    (edata->eee_enabled))
2670 		edata->tx_lpi_enabled = true;
2671 
2672 	/* Report correct negotiated EEE status for devices that
2673 	 * wrongly report EEE at half-duplex
2674 	 */
2675 	if (adapter->link_duplex == HALF_DUPLEX) {
2676 		edata->eee_enabled = false;
2677 		edata->eee_active = false;
2678 		edata->tx_lpi_enabled = false;
2679 		edata->advertised &= ~edata->advertised;
2680 	}
2681 
2682 	return 0;
2683 }
2684 
2685 static int igb_set_eee(struct net_device *netdev,
2686 		       struct ethtool_eee *edata)
2687 {
2688 	struct igb_adapter *adapter = netdev_priv(netdev);
2689 	struct e1000_hw *hw = &adapter->hw;
2690 	struct ethtool_eee eee_curr;
2691 	bool adv1g_eee = true, adv100m_eee = true;
2692 	s32 ret_val;
2693 
2694 	if ((hw->mac.type < e1000_i350) ||
2695 	    (hw->phy.media_type != e1000_media_type_copper))
2696 		return -EOPNOTSUPP;
2697 
2698 	memset(&eee_curr, 0, sizeof(struct ethtool_eee));
2699 
2700 	ret_val = igb_get_eee(netdev, &eee_curr);
2701 	if (ret_val)
2702 		return ret_val;
2703 
2704 	if (eee_curr.eee_enabled) {
2705 		if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2706 			dev_err(&adapter->pdev->dev,
2707 				"Setting EEE tx-lpi is not supported\n");
2708 			return -EINVAL;
2709 		}
2710 
2711 		/* Tx LPI timer is not implemented currently */
2712 		if (edata->tx_lpi_timer) {
2713 			dev_err(&adapter->pdev->dev,
2714 				"Setting EEE Tx LPI timer is not supported\n");
2715 			return -EINVAL;
2716 		}
2717 
2718 		if (!edata->advertised || (edata->advertised &
2719 		    ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL))) {
2720 			dev_err(&adapter->pdev->dev,
2721 				"EEE Advertisement supports only 100Tx and/or 100T full duplex\n");
2722 			return -EINVAL;
2723 		}
2724 		adv100m_eee = !!(edata->advertised & ADVERTISE_100_FULL);
2725 		adv1g_eee = !!(edata->advertised & ADVERTISE_1000_FULL);
2726 
2727 	} else if (!edata->eee_enabled) {
2728 		dev_err(&adapter->pdev->dev,
2729 			"Setting EEE options are not supported with EEE disabled\n");
2730 			return -EINVAL;
2731 		}
2732 
2733 	adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2734 	if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
2735 		hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
2736 		adapter->flags |= IGB_FLAG_EEE;
2737 
2738 		/* reset link */
2739 		if (netif_running(netdev))
2740 			igb_reinit_locked(adapter);
2741 		else
2742 			igb_reset(adapter);
2743 	}
2744 
2745 	if (hw->mac.type == e1000_i354)
2746 		ret_val = igb_set_eee_i354(hw, adv1g_eee, adv100m_eee);
2747 	else
2748 		ret_val = igb_set_eee_i350(hw, adv1g_eee, adv100m_eee);
2749 
2750 	if (ret_val) {
2751 		dev_err(&adapter->pdev->dev,
2752 			"Problem setting EEE advertisement options\n");
2753 		return -EINVAL;
2754 	}
2755 
2756 	return 0;
2757 }
2758 
2759 static int igb_get_module_info(struct net_device *netdev,
2760 			       struct ethtool_modinfo *modinfo)
2761 {
2762 	struct igb_adapter *adapter = netdev_priv(netdev);
2763 	struct e1000_hw *hw = &adapter->hw;
2764 	u32 status = 0;
2765 	u16 sff8472_rev, addr_mode;
2766 	bool page_swap = false;
2767 
2768 	if ((hw->phy.media_type == e1000_media_type_copper) ||
2769 	    (hw->phy.media_type == e1000_media_type_unknown))
2770 		return -EOPNOTSUPP;
2771 
2772 	/* Check whether we support SFF-8472 or not */
2773 	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
2774 	if (status)
2775 		return -EIO;
2776 
2777 	/* addressing mode is not supported */
2778 	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
2779 	if (status)
2780 		return -EIO;
2781 
2782 	/* addressing mode is not supported */
2783 	if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
2784 		hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
2785 		page_swap = true;
2786 	}
2787 
2788 	if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
2789 		/* We have an SFP, but it does not support SFF-8472 */
2790 		modinfo->type = ETH_MODULE_SFF_8079;
2791 		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2792 	} else {
2793 		/* We have an SFP which supports a revision of SFF-8472 */
2794 		modinfo->type = ETH_MODULE_SFF_8472;
2795 		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2796 	}
2797 
2798 	return 0;
2799 }
2800 
2801 static int igb_get_module_eeprom(struct net_device *netdev,
2802 				 struct ethtool_eeprom *ee, u8 *data)
2803 {
2804 	struct igb_adapter *adapter = netdev_priv(netdev);
2805 	struct e1000_hw *hw = &adapter->hw;
2806 	u32 status = 0;
2807 	u16 *dataword;
2808 	u16 first_word, last_word;
2809 	int i = 0;
2810 
2811 	if (ee->len == 0)
2812 		return -EINVAL;
2813 
2814 	first_word = ee->offset >> 1;
2815 	last_word = (ee->offset + ee->len - 1) >> 1;
2816 
2817 	dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1),
2818 			   GFP_KERNEL);
2819 	if (!dataword)
2820 		return -ENOMEM;
2821 
2822 	/* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
2823 	for (i = 0; i < last_word - first_word + 1; i++) {
2824 		status = igb_read_phy_reg_i2c(hw, first_word + i, &dataword[i]);
2825 		if (status) {
2826 			/* Error occurred while reading module */
2827 			kfree(dataword);
2828 			return -EIO;
2829 		}
2830 
2831 		be16_to_cpus(&dataword[i]);
2832 	}
2833 
2834 	memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
2835 	kfree(dataword);
2836 
2837 	return 0;
2838 }
2839 
2840 static int igb_ethtool_begin(struct net_device *netdev)
2841 {
2842 	struct igb_adapter *adapter = netdev_priv(netdev);
2843 	pm_runtime_get_sync(&adapter->pdev->dev);
2844 	return 0;
2845 }
2846 
2847 static void igb_ethtool_complete(struct net_device *netdev)
2848 {
2849 	struct igb_adapter *adapter = netdev_priv(netdev);
2850 	pm_runtime_put(&adapter->pdev->dev);
2851 }
2852 
2853 static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
2854 {
2855 	return IGB_RETA_SIZE;
2856 }
2857 
2858 static int igb_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key,
2859 			u8 *hfunc)
2860 {
2861 	struct igb_adapter *adapter = netdev_priv(netdev);
2862 	int i;
2863 
2864 	if (hfunc)
2865 		*hfunc = ETH_RSS_HASH_TOP;
2866 	if (!indir)
2867 		return 0;
2868 	for (i = 0; i < IGB_RETA_SIZE; i++)
2869 		indir[i] = adapter->rss_indir_tbl[i];
2870 
2871 	return 0;
2872 }
2873 
2874 void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
2875 {
2876 	struct e1000_hw *hw = &adapter->hw;
2877 	u32 reg = E1000_RETA(0);
2878 	u32 shift = 0;
2879 	int i = 0;
2880 
2881 	switch (hw->mac.type) {
2882 	case e1000_82575:
2883 		shift = 6;
2884 		break;
2885 	case e1000_82576:
2886 		/* 82576 supports 2 RSS queues for SR-IOV */
2887 		if (adapter->vfs_allocated_count)
2888 			shift = 3;
2889 		break;
2890 	default:
2891 		break;
2892 	}
2893 
2894 	while (i < IGB_RETA_SIZE) {
2895 		u32 val = 0;
2896 		int j;
2897 
2898 		for (j = 3; j >= 0; j--) {
2899 			val <<= 8;
2900 			val |= adapter->rss_indir_tbl[i + j];
2901 		}
2902 
2903 		wr32(reg, val << shift);
2904 		reg += 4;
2905 		i += 4;
2906 	}
2907 }
2908 
2909 static int igb_set_rxfh(struct net_device *netdev, const u32 *indir,
2910 			const u8 *key, const u8 hfunc)
2911 {
2912 	struct igb_adapter *adapter = netdev_priv(netdev);
2913 	struct e1000_hw *hw = &adapter->hw;
2914 	int i;
2915 	u32 num_queues;
2916 
2917 	/* We do not allow change in unsupported parameters */
2918 	if (key ||
2919 	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
2920 		return -EOPNOTSUPP;
2921 	if (!indir)
2922 		return 0;
2923 
2924 	num_queues = adapter->rss_queues;
2925 
2926 	switch (hw->mac.type) {
2927 	case e1000_82576:
2928 		/* 82576 supports 2 RSS queues for SR-IOV */
2929 		if (adapter->vfs_allocated_count)
2930 			num_queues = 2;
2931 		break;
2932 	default:
2933 		break;
2934 	}
2935 
2936 	/* Verify user input. */
2937 	for (i = 0; i < IGB_RETA_SIZE; i++)
2938 		if (indir[i] >= num_queues)
2939 			return -EINVAL;
2940 
2941 
2942 	for (i = 0; i < IGB_RETA_SIZE; i++)
2943 		adapter->rss_indir_tbl[i] = indir[i];
2944 
2945 	igb_write_rss_indir_tbl(adapter);
2946 
2947 	return 0;
2948 }
2949 
2950 static unsigned int igb_max_channels(struct igb_adapter *adapter)
2951 {
2952 	struct e1000_hw *hw = &adapter->hw;
2953 	unsigned int max_combined = 0;
2954 
2955 	switch (hw->mac.type) {
2956 	case e1000_i211:
2957 		max_combined = IGB_MAX_RX_QUEUES_I211;
2958 		break;
2959 	case e1000_82575:
2960 	case e1000_i210:
2961 		max_combined = IGB_MAX_RX_QUEUES_82575;
2962 		break;
2963 	case e1000_i350:
2964 		if (!!adapter->vfs_allocated_count) {
2965 			max_combined = 1;
2966 			break;
2967 		}
2968 		/* fall through */
2969 	case e1000_82576:
2970 		if (!!adapter->vfs_allocated_count) {
2971 			max_combined = 2;
2972 			break;
2973 		}
2974 		/* fall through */
2975 	case e1000_82580:
2976 	case e1000_i354:
2977 	default:
2978 		max_combined = IGB_MAX_RX_QUEUES;
2979 		break;
2980 	}
2981 
2982 	return max_combined;
2983 }
2984 
2985 static void igb_get_channels(struct net_device *netdev,
2986 			     struct ethtool_channels *ch)
2987 {
2988 	struct igb_adapter *adapter = netdev_priv(netdev);
2989 
2990 	/* Report maximum channels */
2991 	ch->max_combined = igb_max_channels(adapter);
2992 
2993 	/* Report info for other vector */
2994 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
2995 		ch->max_other = NON_Q_VECTORS;
2996 		ch->other_count = NON_Q_VECTORS;
2997 	}
2998 
2999 	ch->combined_count = adapter->rss_queues;
3000 }
3001 
3002 static int igb_set_channels(struct net_device *netdev,
3003 			    struct ethtool_channels *ch)
3004 {
3005 	struct igb_adapter *adapter = netdev_priv(netdev);
3006 	unsigned int count = ch->combined_count;
3007 	unsigned int max_combined = 0;
3008 
3009 	/* Verify they are not requesting separate vectors */
3010 	if (!count || ch->rx_count || ch->tx_count)
3011 		return -EINVAL;
3012 
3013 	/* Verify other_count is valid and has not been changed */
3014 	if (ch->other_count != NON_Q_VECTORS)
3015 		return -EINVAL;
3016 
3017 	/* Verify the number of channels doesn't exceed hw limits */
3018 	max_combined = igb_max_channels(adapter);
3019 	if (count > max_combined)
3020 		return -EINVAL;
3021 
3022 	if (count != adapter->rss_queues) {
3023 		adapter->rss_queues = count;
3024 		igb_set_flag_queue_pairs(adapter, max_combined);
3025 
3026 		/* Hardware has to reinitialize queues and interrupts to
3027 		 * match the new configuration.
3028 		 */
3029 		return igb_reinit_queues(adapter);
3030 	}
3031 
3032 	return 0;
3033 }
3034 
3035 static const struct ethtool_ops igb_ethtool_ops = {
3036 	.get_settings		= igb_get_settings,
3037 	.set_settings		= igb_set_settings,
3038 	.get_drvinfo		= igb_get_drvinfo,
3039 	.get_regs_len		= igb_get_regs_len,
3040 	.get_regs		= igb_get_regs,
3041 	.get_wol		= igb_get_wol,
3042 	.set_wol		= igb_set_wol,
3043 	.get_msglevel		= igb_get_msglevel,
3044 	.set_msglevel		= igb_set_msglevel,
3045 	.nway_reset		= igb_nway_reset,
3046 	.get_link		= igb_get_link,
3047 	.get_eeprom_len		= igb_get_eeprom_len,
3048 	.get_eeprom		= igb_get_eeprom,
3049 	.set_eeprom		= igb_set_eeprom,
3050 	.get_ringparam		= igb_get_ringparam,
3051 	.set_ringparam		= igb_set_ringparam,
3052 	.get_pauseparam		= igb_get_pauseparam,
3053 	.set_pauseparam		= igb_set_pauseparam,
3054 	.self_test		= igb_diag_test,
3055 	.get_strings		= igb_get_strings,
3056 	.set_phys_id		= igb_set_phys_id,
3057 	.get_sset_count		= igb_get_sset_count,
3058 	.get_ethtool_stats	= igb_get_ethtool_stats,
3059 	.get_coalesce		= igb_get_coalesce,
3060 	.set_coalesce		= igb_set_coalesce,
3061 	.get_ts_info		= igb_get_ts_info,
3062 	.get_rxnfc		= igb_get_rxnfc,
3063 	.set_rxnfc		= igb_set_rxnfc,
3064 	.get_eee		= igb_get_eee,
3065 	.set_eee		= igb_set_eee,
3066 	.get_module_info	= igb_get_module_info,
3067 	.get_module_eeprom	= igb_get_module_eeprom,
3068 	.get_rxfh_indir_size	= igb_get_rxfh_indir_size,
3069 	.get_rxfh		= igb_get_rxfh,
3070 	.set_rxfh		= igb_set_rxfh,
3071 	.get_channels		= igb_get_channels,
3072 	.set_channels		= igb_set_channels,
3073 	.begin			= igb_ethtool_begin,
3074 	.complete		= igb_ethtool_complete,
3075 };
3076 
3077 void igb_set_ethtool_ops(struct net_device *netdev)
3078 {
3079 	netdev->ethtool_ops = &igb_ethtool_ops;
3080 }
3081