1 /*******************************************************************************
2 
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2012 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 /* ethtool support for igb */
29 
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
37 #include <linux/sched.h>
38 #include <linux/slab.h>
39 #include <linux/pm_runtime.h>
40 
41 #include "igb.h"
42 
43 struct igb_stats {
44 	char stat_string[ETH_GSTRING_LEN];
45 	int sizeof_stat;
46 	int stat_offset;
47 };
48 
49 #define IGB_STAT(_name, _stat) { \
50 	.stat_string = _name, \
51 	.sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
52 	.stat_offset = offsetof(struct igb_adapter, _stat) \
53 }
54 static const struct igb_stats igb_gstrings_stats[] = {
55 	IGB_STAT("rx_packets", stats.gprc),
56 	IGB_STAT("tx_packets", stats.gptc),
57 	IGB_STAT("rx_bytes", stats.gorc),
58 	IGB_STAT("tx_bytes", stats.gotc),
59 	IGB_STAT("rx_broadcast", stats.bprc),
60 	IGB_STAT("tx_broadcast", stats.bptc),
61 	IGB_STAT("rx_multicast", stats.mprc),
62 	IGB_STAT("tx_multicast", stats.mptc),
63 	IGB_STAT("multicast", stats.mprc),
64 	IGB_STAT("collisions", stats.colc),
65 	IGB_STAT("rx_crc_errors", stats.crcerrs),
66 	IGB_STAT("rx_no_buffer_count", stats.rnbc),
67 	IGB_STAT("rx_missed_errors", stats.mpc),
68 	IGB_STAT("tx_aborted_errors", stats.ecol),
69 	IGB_STAT("tx_carrier_errors", stats.tncrs),
70 	IGB_STAT("tx_window_errors", stats.latecol),
71 	IGB_STAT("tx_abort_late_coll", stats.latecol),
72 	IGB_STAT("tx_deferred_ok", stats.dc),
73 	IGB_STAT("tx_single_coll_ok", stats.scc),
74 	IGB_STAT("tx_multi_coll_ok", stats.mcc),
75 	IGB_STAT("tx_timeout_count", tx_timeout_count),
76 	IGB_STAT("rx_long_length_errors", stats.roc),
77 	IGB_STAT("rx_short_length_errors", stats.ruc),
78 	IGB_STAT("rx_align_errors", stats.algnerrc),
79 	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
80 	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
81 	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
82 	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
83 	IGB_STAT("tx_flow_control_xon", stats.xontxc),
84 	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
85 	IGB_STAT("rx_long_byte_count", stats.gorc),
86 	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
87 	IGB_STAT("tx_smbus", stats.mgptc),
88 	IGB_STAT("rx_smbus", stats.mgprc),
89 	IGB_STAT("dropped_smbus", stats.mgpdc),
90 	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
91 	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
92 	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
93 	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
94 };
95 
96 #define IGB_NETDEV_STAT(_net_stat) { \
97 	.stat_string = __stringify(_net_stat), \
98 	.sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
99 	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
100 }
101 static const struct igb_stats igb_gstrings_net_stats[] = {
102 	IGB_NETDEV_STAT(rx_errors),
103 	IGB_NETDEV_STAT(tx_errors),
104 	IGB_NETDEV_STAT(tx_dropped),
105 	IGB_NETDEV_STAT(rx_length_errors),
106 	IGB_NETDEV_STAT(rx_over_errors),
107 	IGB_NETDEV_STAT(rx_frame_errors),
108 	IGB_NETDEV_STAT(rx_fifo_errors),
109 	IGB_NETDEV_STAT(tx_fifo_errors),
110 	IGB_NETDEV_STAT(tx_heartbeat_errors)
111 };
112 
113 #define IGB_GLOBAL_STATS_LEN	\
114 	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
115 #define IGB_NETDEV_STATS_LEN	\
116 	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
117 #define IGB_RX_QUEUE_STATS_LEN \
118 	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
119 
120 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
121 
122 #define IGB_QUEUE_STATS_LEN \
123 	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
124 	  IGB_RX_QUEUE_STATS_LEN) + \
125 	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
126 	  IGB_TX_QUEUE_STATS_LEN))
127 #define IGB_STATS_LEN \
128 	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
129 
130 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
131 	"Register test  (offline)", "Eeprom test    (offline)",
132 	"Interrupt test (offline)", "Loopback test  (offline)",
133 	"Link test   (on/offline)"
134 };
135 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
136 
137 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
138 {
139 	struct igb_adapter *adapter = netdev_priv(netdev);
140 	struct e1000_hw *hw = &adapter->hw;
141 	u32 status;
142 
143 	if (hw->phy.media_type == e1000_media_type_copper) {
144 
145 		ecmd->supported = (SUPPORTED_10baseT_Half |
146 				   SUPPORTED_10baseT_Full |
147 				   SUPPORTED_100baseT_Half |
148 				   SUPPORTED_100baseT_Full |
149 				   SUPPORTED_1000baseT_Full|
150 				   SUPPORTED_Autoneg |
151 				   SUPPORTED_TP);
152 		ecmd->advertising = (ADVERTISED_TP |
153 				     ADVERTISED_Pause);
154 
155 		if (hw->mac.autoneg == 1) {
156 			ecmd->advertising |= ADVERTISED_Autoneg;
157 			/* the e1000 autoneg seems to match ethtool nicely */
158 			ecmd->advertising |= hw->phy.autoneg_advertised;
159 		}
160 
161 		ecmd->port = PORT_TP;
162 		ecmd->phy_address = hw->phy.addr;
163 	} else {
164 		ecmd->supported   = (SUPPORTED_1000baseT_Full |
165 				     SUPPORTED_FIBRE |
166 				     SUPPORTED_Autoneg);
167 
168 		ecmd->advertising = (ADVERTISED_1000baseT_Full |
169 				     ADVERTISED_FIBRE |
170 				     ADVERTISED_Autoneg |
171 				     ADVERTISED_Pause);
172 
173 		ecmd->port = PORT_FIBRE;
174 	}
175 
176 	ecmd->transceiver = XCVR_INTERNAL;
177 
178 	status = rd32(E1000_STATUS);
179 
180 	if (status & E1000_STATUS_LU) {
181 
182 		if ((status & E1000_STATUS_SPEED_1000) ||
183 		    hw->phy.media_type != e1000_media_type_copper)
184 			ethtool_cmd_speed_set(ecmd, SPEED_1000);
185 		else if (status & E1000_STATUS_SPEED_100)
186 			ethtool_cmd_speed_set(ecmd, SPEED_100);
187 		else
188 			ethtool_cmd_speed_set(ecmd, SPEED_10);
189 
190 		if ((status & E1000_STATUS_FD) ||
191 		    hw->phy.media_type != e1000_media_type_copper)
192 			ecmd->duplex = DUPLEX_FULL;
193 		else
194 			ecmd->duplex = DUPLEX_HALF;
195 	} else {
196 		ethtool_cmd_speed_set(ecmd, -1);
197 		ecmd->duplex = -1;
198 	}
199 
200 	ecmd->autoneg = hw->mac.autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
201 	return 0;
202 }
203 
204 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
205 {
206 	struct igb_adapter *adapter = netdev_priv(netdev);
207 	struct e1000_hw *hw = &adapter->hw;
208 
209 	/* When SoL/IDER sessions are active, autoneg/speed/duplex
210 	 * cannot be changed */
211 	if (igb_check_reset_block(hw)) {
212 		dev_err(&adapter->pdev->dev,
213 			"Cannot change link characteristics when SoL/IDER is active.\n");
214 		return -EINVAL;
215 	}
216 
217 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
218 		msleep(1);
219 
220 	if (ecmd->autoneg == AUTONEG_ENABLE) {
221 		hw->mac.autoneg = 1;
222 		hw->phy.autoneg_advertised = ecmd->advertising |
223 					     ADVERTISED_TP |
224 					     ADVERTISED_Autoneg;
225 		ecmd->advertising = hw->phy.autoneg_advertised;
226 		if (adapter->fc_autoneg)
227 			hw->fc.requested_mode = e1000_fc_default;
228 	} else {
229 		u32 speed = ethtool_cmd_speed(ecmd);
230 		if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
231 			clear_bit(__IGB_RESETTING, &adapter->state);
232 			return -EINVAL;
233 		}
234 	}
235 
236 	/* reset the link */
237 	if (netif_running(adapter->netdev)) {
238 		igb_down(adapter);
239 		igb_up(adapter);
240 	} else
241 		igb_reset(adapter);
242 
243 	clear_bit(__IGB_RESETTING, &adapter->state);
244 	return 0;
245 }
246 
247 static u32 igb_get_link(struct net_device *netdev)
248 {
249 	struct igb_adapter *adapter = netdev_priv(netdev);
250 	struct e1000_mac_info *mac = &adapter->hw.mac;
251 
252 	/*
253 	 * If the link is not reported up to netdev, interrupts are disabled,
254 	 * and so the physical link state may have changed since we last
255 	 * looked. Set get_link_status to make sure that the true link
256 	 * state is interrogated, rather than pulling a cached and possibly
257 	 * stale link state from the driver.
258 	 */
259 	if (!netif_carrier_ok(netdev))
260 		mac->get_link_status = 1;
261 
262 	return igb_has_link(adapter);
263 }
264 
265 static void igb_get_pauseparam(struct net_device *netdev,
266 			       struct ethtool_pauseparam *pause)
267 {
268 	struct igb_adapter *adapter = netdev_priv(netdev);
269 	struct e1000_hw *hw = &adapter->hw;
270 
271 	pause->autoneg =
272 		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
273 
274 	if (hw->fc.current_mode == e1000_fc_rx_pause)
275 		pause->rx_pause = 1;
276 	else if (hw->fc.current_mode == e1000_fc_tx_pause)
277 		pause->tx_pause = 1;
278 	else if (hw->fc.current_mode == e1000_fc_full) {
279 		pause->rx_pause = 1;
280 		pause->tx_pause = 1;
281 	}
282 }
283 
284 static int igb_set_pauseparam(struct net_device *netdev,
285 			      struct ethtool_pauseparam *pause)
286 {
287 	struct igb_adapter *adapter = netdev_priv(netdev);
288 	struct e1000_hw *hw = &adapter->hw;
289 	int retval = 0;
290 
291 	adapter->fc_autoneg = pause->autoneg;
292 
293 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
294 		msleep(1);
295 
296 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
297 		hw->fc.requested_mode = e1000_fc_default;
298 		if (netif_running(adapter->netdev)) {
299 			igb_down(adapter);
300 			igb_up(adapter);
301 		} else {
302 			igb_reset(adapter);
303 		}
304 	} else {
305 		if (pause->rx_pause && pause->tx_pause)
306 			hw->fc.requested_mode = e1000_fc_full;
307 		else if (pause->rx_pause && !pause->tx_pause)
308 			hw->fc.requested_mode = e1000_fc_rx_pause;
309 		else if (!pause->rx_pause && pause->tx_pause)
310 			hw->fc.requested_mode = e1000_fc_tx_pause;
311 		else if (!pause->rx_pause && !pause->tx_pause)
312 			hw->fc.requested_mode = e1000_fc_none;
313 
314 		hw->fc.current_mode = hw->fc.requested_mode;
315 
316 		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
317 			  igb_force_mac_fc(hw) : igb_setup_link(hw));
318 	}
319 
320 	clear_bit(__IGB_RESETTING, &adapter->state);
321 	return retval;
322 }
323 
324 static u32 igb_get_msglevel(struct net_device *netdev)
325 {
326 	struct igb_adapter *adapter = netdev_priv(netdev);
327 	return adapter->msg_enable;
328 }
329 
330 static void igb_set_msglevel(struct net_device *netdev, u32 data)
331 {
332 	struct igb_adapter *adapter = netdev_priv(netdev);
333 	adapter->msg_enable = data;
334 }
335 
336 static int igb_get_regs_len(struct net_device *netdev)
337 {
338 #define IGB_REGS_LEN 739
339 	return IGB_REGS_LEN * sizeof(u32);
340 }
341 
342 static void igb_get_regs(struct net_device *netdev,
343 			 struct ethtool_regs *regs, void *p)
344 {
345 	struct igb_adapter *adapter = netdev_priv(netdev);
346 	struct e1000_hw *hw = &adapter->hw;
347 	u32 *regs_buff = p;
348 	u8 i;
349 
350 	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
351 
352 	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
353 
354 	/* General Registers */
355 	regs_buff[0] = rd32(E1000_CTRL);
356 	regs_buff[1] = rd32(E1000_STATUS);
357 	regs_buff[2] = rd32(E1000_CTRL_EXT);
358 	regs_buff[3] = rd32(E1000_MDIC);
359 	regs_buff[4] = rd32(E1000_SCTL);
360 	regs_buff[5] = rd32(E1000_CONNSW);
361 	regs_buff[6] = rd32(E1000_VET);
362 	regs_buff[7] = rd32(E1000_LEDCTL);
363 	regs_buff[8] = rd32(E1000_PBA);
364 	regs_buff[9] = rd32(E1000_PBS);
365 	regs_buff[10] = rd32(E1000_FRTIMER);
366 	regs_buff[11] = rd32(E1000_TCPTIMER);
367 
368 	/* NVM Register */
369 	regs_buff[12] = rd32(E1000_EECD);
370 
371 	/* Interrupt */
372 	/* Reading EICS for EICR because they read the
373 	 * same but EICS does not clear on read */
374 	regs_buff[13] = rd32(E1000_EICS);
375 	regs_buff[14] = rd32(E1000_EICS);
376 	regs_buff[15] = rd32(E1000_EIMS);
377 	regs_buff[16] = rd32(E1000_EIMC);
378 	regs_buff[17] = rd32(E1000_EIAC);
379 	regs_buff[18] = rd32(E1000_EIAM);
380 	/* Reading ICS for ICR because they read the
381 	 * same but ICS does not clear on read */
382 	regs_buff[19] = rd32(E1000_ICS);
383 	regs_buff[20] = rd32(E1000_ICS);
384 	regs_buff[21] = rd32(E1000_IMS);
385 	regs_buff[22] = rd32(E1000_IMC);
386 	regs_buff[23] = rd32(E1000_IAC);
387 	regs_buff[24] = rd32(E1000_IAM);
388 	regs_buff[25] = rd32(E1000_IMIRVP);
389 
390 	/* Flow Control */
391 	regs_buff[26] = rd32(E1000_FCAL);
392 	regs_buff[27] = rd32(E1000_FCAH);
393 	regs_buff[28] = rd32(E1000_FCTTV);
394 	regs_buff[29] = rd32(E1000_FCRTL);
395 	regs_buff[30] = rd32(E1000_FCRTH);
396 	regs_buff[31] = rd32(E1000_FCRTV);
397 
398 	/* Receive */
399 	regs_buff[32] = rd32(E1000_RCTL);
400 	regs_buff[33] = rd32(E1000_RXCSUM);
401 	regs_buff[34] = rd32(E1000_RLPML);
402 	regs_buff[35] = rd32(E1000_RFCTL);
403 	regs_buff[36] = rd32(E1000_MRQC);
404 	regs_buff[37] = rd32(E1000_VT_CTL);
405 
406 	/* Transmit */
407 	regs_buff[38] = rd32(E1000_TCTL);
408 	regs_buff[39] = rd32(E1000_TCTL_EXT);
409 	regs_buff[40] = rd32(E1000_TIPG);
410 	regs_buff[41] = rd32(E1000_DTXCTL);
411 
412 	/* Wake Up */
413 	regs_buff[42] = rd32(E1000_WUC);
414 	regs_buff[43] = rd32(E1000_WUFC);
415 	regs_buff[44] = rd32(E1000_WUS);
416 	regs_buff[45] = rd32(E1000_IPAV);
417 	regs_buff[46] = rd32(E1000_WUPL);
418 
419 	/* MAC */
420 	regs_buff[47] = rd32(E1000_PCS_CFG0);
421 	regs_buff[48] = rd32(E1000_PCS_LCTL);
422 	regs_buff[49] = rd32(E1000_PCS_LSTAT);
423 	regs_buff[50] = rd32(E1000_PCS_ANADV);
424 	regs_buff[51] = rd32(E1000_PCS_LPAB);
425 	regs_buff[52] = rd32(E1000_PCS_NPTX);
426 	regs_buff[53] = rd32(E1000_PCS_LPABNP);
427 
428 	/* Statistics */
429 	regs_buff[54] = adapter->stats.crcerrs;
430 	regs_buff[55] = adapter->stats.algnerrc;
431 	regs_buff[56] = adapter->stats.symerrs;
432 	regs_buff[57] = adapter->stats.rxerrc;
433 	regs_buff[58] = adapter->stats.mpc;
434 	regs_buff[59] = adapter->stats.scc;
435 	regs_buff[60] = adapter->stats.ecol;
436 	regs_buff[61] = adapter->stats.mcc;
437 	regs_buff[62] = adapter->stats.latecol;
438 	regs_buff[63] = adapter->stats.colc;
439 	regs_buff[64] = adapter->stats.dc;
440 	regs_buff[65] = adapter->stats.tncrs;
441 	regs_buff[66] = adapter->stats.sec;
442 	regs_buff[67] = adapter->stats.htdpmc;
443 	regs_buff[68] = adapter->stats.rlec;
444 	regs_buff[69] = adapter->stats.xonrxc;
445 	regs_buff[70] = adapter->stats.xontxc;
446 	regs_buff[71] = adapter->stats.xoffrxc;
447 	regs_buff[72] = adapter->stats.xofftxc;
448 	regs_buff[73] = adapter->stats.fcruc;
449 	regs_buff[74] = adapter->stats.prc64;
450 	regs_buff[75] = adapter->stats.prc127;
451 	regs_buff[76] = adapter->stats.prc255;
452 	regs_buff[77] = adapter->stats.prc511;
453 	regs_buff[78] = adapter->stats.prc1023;
454 	regs_buff[79] = adapter->stats.prc1522;
455 	regs_buff[80] = adapter->stats.gprc;
456 	regs_buff[81] = adapter->stats.bprc;
457 	regs_buff[82] = adapter->stats.mprc;
458 	regs_buff[83] = adapter->stats.gptc;
459 	regs_buff[84] = adapter->stats.gorc;
460 	regs_buff[86] = adapter->stats.gotc;
461 	regs_buff[88] = adapter->stats.rnbc;
462 	regs_buff[89] = adapter->stats.ruc;
463 	regs_buff[90] = adapter->stats.rfc;
464 	regs_buff[91] = adapter->stats.roc;
465 	regs_buff[92] = adapter->stats.rjc;
466 	regs_buff[93] = adapter->stats.mgprc;
467 	regs_buff[94] = adapter->stats.mgpdc;
468 	regs_buff[95] = adapter->stats.mgptc;
469 	regs_buff[96] = adapter->stats.tor;
470 	regs_buff[98] = adapter->stats.tot;
471 	regs_buff[100] = adapter->stats.tpr;
472 	regs_buff[101] = adapter->stats.tpt;
473 	regs_buff[102] = adapter->stats.ptc64;
474 	regs_buff[103] = adapter->stats.ptc127;
475 	regs_buff[104] = adapter->stats.ptc255;
476 	regs_buff[105] = adapter->stats.ptc511;
477 	regs_buff[106] = adapter->stats.ptc1023;
478 	regs_buff[107] = adapter->stats.ptc1522;
479 	regs_buff[108] = adapter->stats.mptc;
480 	regs_buff[109] = adapter->stats.bptc;
481 	regs_buff[110] = adapter->stats.tsctc;
482 	regs_buff[111] = adapter->stats.iac;
483 	regs_buff[112] = adapter->stats.rpthc;
484 	regs_buff[113] = adapter->stats.hgptc;
485 	regs_buff[114] = adapter->stats.hgorc;
486 	regs_buff[116] = adapter->stats.hgotc;
487 	regs_buff[118] = adapter->stats.lenerrs;
488 	regs_buff[119] = adapter->stats.scvpc;
489 	regs_buff[120] = adapter->stats.hrmpc;
490 
491 	for (i = 0; i < 4; i++)
492 		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
493 	for (i = 0; i < 4; i++)
494 		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
495 	for (i = 0; i < 4; i++)
496 		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
497 	for (i = 0; i < 4; i++)
498 		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
499 	for (i = 0; i < 4; i++)
500 		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
501 	for (i = 0; i < 4; i++)
502 		regs_buff[141 + i] = rd32(E1000_RDH(i));
503 	for (i = 0; i < 4; i++)
504 		regs_buff[145 + i] = rd32(E1000_RDT(i));
505 	for (i = 0; i < 4; i++)
506 		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
507 
508 	for (i = 0; i < 10; i++)
509 		regs_buff[153 + i] = rd32(E1000_EITR(i));
510 	for (i = 0; i < 8; i++)
511 		regs_buff[163 + i] = rd32(E1000_IMIR(i));
512 	for (i = 0; i < 8; i++)
513 		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
514 	for (i = 0; i < 16; i++)
515 		regs_buff[179 + i] = rd32(E1000_RAL(i));
516 	for (i = 0; i < 16; i++)
517 		regs_buff[195 + i] = rd32(E1000_RAH(i));
518 
519 	for (i = 0; i < 4; i++)
520 		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
521 	for (i = 0; i < 4; i++)
522 		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
523 	for (i = 0; i < 4; i++)
524 		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
525 	for (i = 0; i < 4; i++)
526 		regs_buff[223 + i] = rd32(E1000_TDH(i));
527 	for (i = 0; i < 4; i++)
528 		regs_buff[227 + i] = rd32(E1000_TDT(i));
529 	for (i = 0; i < 4; i++)
530 		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
531 	for (i = 0; i < 4; i++)
532 		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
533 	for (i = 0; i < 4; i++)
534 		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
535 	for (i = 0; i < 4; i++)
536 		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
537 
538 	for (i = 0; i < 4; i++)
539 		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
540 	for (i = 0; i < 4; i++)
541 		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
542 	for (i = 0; i < 32; i++)
543 		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
544 	for (i = 0; i < 128; i++)
545 		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
546 	for (i = 0; i < 128; i++)
547 		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
548 	for (i = 0; i < 4; i++)
549 		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
550 
551 	regs_buff[547] = rd32(E1000_TDFH);
552 	regs_buff[548] = rd32(E1000_TDFT);
553 	regs_buff[549] = rd32(E1000_TDFHS);
554 	regs_buff[550] = rd32(E1000_TDFPC);
555 
556 	if (hw->mac.type > e1000_82580) {
557 		regs_buff[551] = adapter->stats.o2bgptc;
558 		regs_buff[552] = adapter->stats.b2ospc;
559 		regs_buff[553] = adapter->stats.o2bspc;
560 		regs_buff[554] = adapter->stats.b2ogprc;
561 	}
562 
563 	if (hw->mac.type != e1000_82576)
564 		return;
565 	for (i = 0; i < 12; i++)
566 		regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
567 	for (i = 0; i < 4; i++)
568 		regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
569 	for (i = 0; i < 12; i++)
570 		regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
571 	for (i = 0; i < 12; i++)
572 		regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
573 	for (i = 0; i < 12; i++)
574 		regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
575 	for (i = 0; i < 12; i++)
576 		regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
577 	for (i = 0; i < 12; i++)
578 		regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
579 	for (i = 0; i < 12; i++)
580 		regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
581 
582 	for (i = 0; i < 12; i++)
583 		regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
584 	for (i = 0; i < 12; i++)
585 		regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
586 	for (i = 0; i < 12; i++)
587 		regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
588 	for (i = 0; i < 12; i++)
589 		regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
590 	for (i = 0; i < 12; i++)
591 		regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
592 	for (i = 0; i < 12; i++)
593 		regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
594 	for (i = 0; i < 12; i++)
595 		regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
596 	for (i = 0; i < 12; i++)
597 		regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
598 }
599 
600 static int igb_get_eeprom_len(struct net_device *netdev)
601 {
602 	struct igb_adapter *adapter = netdev_priv(netdev);
603 	return adapter->hw.nvm.word_size * 2;
604 }
605 
606 static int igb_get_eeprom(struct net_device *netdev,
607 			  struct ethtool_eeprom *eeprom, u8 *bytes)
608 {
609 	struct igb_adapter *adapter = netdev_priv(netdev);
610 	struct e1000_hw *hw = &adapter->hw;
611 	u16 *eeprom_buff;
612 	int first_word, last_word;
613 	int ret_val = 0;
614 	u16 i;
615 
616 	if (eeprom->len == 0)
617 		return -EINVAL;
618 
619 	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
620 
621 	first_word = eeprom->offset >> 1;
622 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
623 
624 	eeprom_buff = kmalloc(sizeof(u16) *
625 			(last_word - first_word + 1), GFP_KERNEL);
626 	if (!eeprom_buff)
627 		return -ENOMEM;
628 
629 	if (hw->nvm.type == e1000_nvm_eeprom_spi)
630 		ret_val = hw->nvm.ops.read(hw, first_word,
631 					    last_word - first_word + 1,
632 					    eeprom_buff);
633 	else {
634 		for (i = 0; i < last_word - first_word + 1; i++) {
635 			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
636 						    &eeprom_buff[i]);
637 			if (ret_val)
638 				break;
639 		}
640 	}
641 
642 	/* Device's eeprom is always little-endian, word addressable */
643 	for (i = 0; i < last_word - first_word + 1; i++)
644 		le16_to_cpus(&eeprom_buff[i]);
645 
646 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
647 			eeprom->len);
648 	kfree(eeprom_buff);
649 
650 	return ret_val;
651 }
652 
653 static int igb_set_eeprom(struct net_device *netdev,
654 			  struct ethtool_eeprom *eeprom, u8 *bytes)
655 {
656 	struct igb_adapter *adapter = netdev_priv(netdev);
657 	struct e1000_hw *hw = &adapter->hw;
658 	u16 *eeprom_buff;
659 	void *ptr;
660 	int max_len, first_word, last_word, ret_val = 0;
661 	u16 i;
662 
663 	if (eeprom->len == 0)
664 		return -EOPNOTSUPP;
665 
666 	if (hw->mac.type == e1000_i211)
667 		return -EOPNOTSUPP;
668 
669 	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
670 		return -EFAULT;
671 
672 	max_len = hw->nvm.word_size * 2;
673 
674 	first_word = eeprom->offset >> 1;
675 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
676 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
677 	if (!eeprom_buff)
678 		return -ENOMEM;
679 
680 	ptr = (void *)eeprom_buff;
681 
682 	if (eeprom->offset & 1) {
683 		/* need read/modify/write of first changed EEPROM word */
684 		/* only the second byte of the word is being modified */
685 		ret_val = hw->nvm.ops.read(hw, first_word, 1,
686 					    &eeprom_buff[0]);
687 		ptr++;
688 	}
689 	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
690 		/* need read/modify/write of last changed EEPROM word */
691 		/* only the first byte of the word is being modified */
692 		ret_val = hw->nvm.ops.read(hw, last_word, 1,
693 				   &eeprom_buff[last_word - first_word]);
694 	}
695 
696 	/* Device's eeprom is always little-endian, word addressable */
697 	for (i = 0; i < last_word - first_word + 1; i++)
698 		le16_to_cpus(&eeprom_buff[i]);
699 
700 	memcpy(ptr, bytes, eeprom->len);
701 
702 	for (i = 0; i < last_word - first_word + 1; i++)
703 		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
704 
705 	ret_val = hw->nvm.ops.write(hw, first_word,
706 				     last_word - first_word + 1, eeprom_buff);
707 
708 	/* Update the checksum over the first part of the EEPROM if needed
709 	 * and flush shadow RAM for 82573 controllers */
710 	if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
711 		hw->nvm.ops.update(hw);
712 
713 	igb_set_fw_version(adapter);
714 	kfree(eeprom_buff);
715 	return ret_val;
716 }
717 
718 static void igb_get_drvinfo(struct net_device *netdev,
719 			    struct ethtool_drvinfo *drvinfo)
720 {
721 	struct igb_adapter *adapter = netdev_priv(netdev);
722 
723 	strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
724 	strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
725 
726 	/*
727 	 * EEPROM image version # is reported as firmware version # for
728 	 * 82575 controllers
729 	 */
730 	strlcpy(drvinfo->fw_version, adapter->fw_version,
731 		sizeof(drvinfo->fw_version));
732 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
733 		sizeof(drvinfo->bus_info));
734 	drvinfo->n_stats = IGB_STATS_LEN;
735 	drvinfo->testinfo_len = IGB_TEST_LEN;
736 	drvinfo->regdump_len = igb_get_regs_len(netdev);
737 	drvinfo->eedump_len = igb_get_eeprom_len(netdev);
738 }
739 
740 static void igb_get_ringparam(struct net_device *netdev,
741 			      struct ethtool_ringparam *ring)
742 {
743 	struct igb_adapter *adapter = netdev_priv(netdev);
744 
745 	ring->rx_max_pending = IGB_MAX_RXD;
746 	ring->tx_max_pending = IGB_MAX_TXD;
747 	ring->rx_pending = adapter->rx_ring_count;
748 	ring->tx_pending = adapter->tx_ring_count;
749 }
750 
751 static int igb_set_ringparam(struct net_device *netdev,
752 			     struct ethtool_ringparam *ring)
753 {
754 	struct igb_adapter *adapter = netdev_priv(netdev);
755 	struct igb_ring *temp_ring;
756 	int i, err = 0;
757 	u16 new_rx_count, new_tx_count;
758 
759 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
760 		return -EINVAL;
761 
762 	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
763 	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
764 	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
765 
766 	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
767 	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
768 	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
769 
770 	if ((new_tx_count == adapter->tx_ring_count) &&
771 	    (new_rx_count == adapter->rx_ring_count)) {
772 		/* nothing to do */
773 		return 0;
774 	}
775 
776 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
777 		msleep(1);
778 
779 	if (!netif_running(adapter->netdev)) {
780 		for (i = 0; i < adapter->num_tx_queues; i++)
781 			adapter->tx_ring[i]->count = new_tx_count;
782 		for (i = 0; i < adapter->num_rx_queues; i++)
783 			adapter->rx_ring[i]->count = new_rx_count;
784 		adapter->tx_ring_count = new_tx_count;
785 		adapter->rx_ring_count = new_rx_count;
786 		goto clear_reset;
787 	}
788 
789 	if (adapter->num_tx_queues > adapter->num_rx_queues)
790 		temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
791 	else
792 		temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
793 
794 	if (!temp_ring) {
795 		err = -ENOMEM;
796 		goto clear_reset;
797 	}
798 
799 	igb_down(adapter);
800 
801 	/*
802 	 * We can't just free everything and then setup again,
803 	 * because the ISRs in MSI-X mode get passed pointers
804 	 * to the tx and rx ring structs.
805 	 */
806 	if (new_tx_count != adapter->tx_ring_count) {
807 		for (i = 0; i < adapter->num_tx_queues; i++) {
808 			memcpy(&temp_ring[i], adapter->tx_ring[i],
809 			       sizeof(struct igb_ring));
810 
811 			temp_ring[i].count = new_tx_count;
812 			err = igb_setup_tx_resources(&temp_ring[i]);
813 			if (err) {
814 				while (i) {
815 					i--;
816 					igb_free_tx_resources(&temp_ring[i]);
817 				}
818 				goto err_setup;
819 			}
820 		}
821 
822 		for (i = 0; i < adapter->num_tx_queues; i++) {
823 			igb_free_tx_resources(adapter->tx_ring[i]);
824 
825 			memcpy(adapter->tx_ring[i], &temp_ring[i],
826 			       sizeof(struct igb_ring));
827 		}
828 
829 		adapter->tx_ring_count = new_tx_count;
830 	}
831 
832 	if (new_rx_count != adapter->rx_ring_count) {
833 		for (i = 0; i < adapter->num_rx_queues; i++) {
834 			memcpy(&temp_ring[i], adapter->rx_ring[i],
835 			       sizeof(struct igb_ring));
836 
837 			temp_ring[i].count = new_rx_count;
838 			err = igb_setup_rx_resources(&temp_ring[i]);
839 			if (err) {
840 				while (i) {
841 					i--;
842 					igb_free_rx_resources(&temp_ring[i]);
843 				}
844 				goto err_setup;
845 			}
846 
847 		}
848 
849 		for (i = 0; i < adapter->num_rx_queues; i++) {
850 			igb_free_rx_resources(adapter->rx_ring[i]);
851 
852 			memcpy(adapter->rx_ring[i], &temp_ring[i],
853 			       sizeof(struct igb_ring));
854 		}
855 
856 		adapter->rx_ring_count = new_rx_count;
857 	}
858 err_setup:
859 	igb_up(adapter);
860 	vfree(temp_ring);
861 clear_reset:
862 	clear_bit(__IGB_RESETTING, &adapter->state);
863 	return err;
864 }
865 
866 /* ethtool register test data */
867 struct igb_reg_test {
868 	u16 reg;
869 	u16 reg_offset;
870 	u16 array_len;
871 	u16 test_type;
872 	u32 mask;
873 	u32 write;
874 };
875 
876 /* In the hardware, registers are laid out either singly, in arrays
877  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
878  * most tests take place on arrays or single registers (handled
879  * as a single-element array) and special-case the tables.
880  * Table tests are always pattern tests.
881  *
882  * We also make provision for some required setup steps by specifying
883  * registers to be written without any read-back testing.
884  */
885 
886 #define PATTERN_TEST	1
887 #define SET_READ_TEST	2
888 #define WRITE_NO_TEST	3
889 #define TABLE32_TEST	4
890 #define TABLE64_TEST_LO	5
891 #define TABLE64_TEST_HI	6
892 
893 /* i210 reg test */
894 static struct igb_reg_test reg_test_i210[] = {
895 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
896 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
897 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
898 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
899 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
900 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
901 	/* RDH is read-only for i210, only test RDT. */
902 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
903 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
904 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
905 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
906 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
907 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
908 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
909 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
910 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
911 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
912 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
913 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
914 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
915 						0xFFFFFFFF, 0xFFFFFFFF },
916 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
917 						0x900FFFFF, 0xFFFFFFFF },
918 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
919 						0xFFFFFFFF, 0xFFFFFFFF },
920 	{ 0, 0, 0, 0, 0 }
921 };
922 
923 /* i350 reg test */
924 static struct igb_reg_test reg_test_i350[] = {
925 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
926 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
927 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
928 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
929 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
930 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
931 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
932 	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
933 	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
934 	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
935 	/* RDH is read-only for i350, only test RDT. */
936 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
937 	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
938 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
939 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
940 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
941 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
942 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
943 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
944 	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
945 	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
946 	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
947 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
948 	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
949 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
950 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
951 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
952 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
953 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
954 						0xFFFFFFFF, 0xFFFFFFFF },
955 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
956 						0xC3FFFFFF, 0xFFFFFFFF },
957 	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
958 						0xFFFFFFFF, 0xFFFFFFFF },
959 	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
960 						0xC3FFFFFF, 0xFFFFFFFF },
961 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
962 						0xFFFFFFFF, 0xFFFFFFFF },
963 	{ 0, 0, 0, 0 }
964 };
965 
966 /* 82580 reg test */
967 static struct igb_reg_test reg_test_82580[] = {
968 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
969 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
970 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
971 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
972 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
973 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
974 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
975 	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
976 	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
977 	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
978 	/* RDH is read-only for 82580, only test RDT. */
979 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
980 	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
981 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
982 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
983 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
984 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
985 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
986 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
987 	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
988 	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
989 	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
990 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
991 	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
992 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
993 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
994 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
995 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
996 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
997 						0xFFFFFFFF, 0xFFFFFFFF },
998 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
999 						0x83FFFFFF, 0xFFFFFFFF },
1000 	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
1001 						0xFFFFFFFF, 0xFFFFFFFF },
1002 	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
1003 						0x83FFFFFF, 0xFFFFFFFF },
1004 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1005 						0xFFFFFFFF, 0xFFFFFFFF },
1006 	{ 0, 0, 0, 0 }
1007 };
1008 
1009 /* 82576 reg test */
1010 static struct igb_reg_test reg_test_82576[] = {
1011 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1012 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1013 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1014 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1015 	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1016 	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1017 	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1018 	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1019 	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1020 	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1021 	/* Enable all RX queues before testing. */
1022 	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1023 	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1024 	/* RDH is read-only for 82576, only test RDT. */
1025 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1026 	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1027 	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1028 	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1029 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1030 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1031 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1032 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1033 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1034 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1035 	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1036 	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1037 	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1038 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1039 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1040 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1041 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1042 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1043 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1044 	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1045 	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1046 	{ E1000_MTA,	   0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1047 	{ 0, 0, 0, 0 }
1048 };
1049 
1050 /* 82575 register test */
1051 static struct igb_reg_test reg_test_82575[] = {
1052 	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1053 	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1054 	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1055 	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1056 	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1057 	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1058 	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1059 	/* Enable all four RX queues before testing. */
1060 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1061 	/* RDH is read-only for 82575, only test RDT. */
1062 	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1063 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1064 	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1065 	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1066 	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1067 	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1068 	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1069 	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1070 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1071 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1072 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1073 	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1074 	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1075 	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1076 	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1077 	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1078 	{ 0, 0, 0, 0 }
1079 };
1080 
1081 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1082 			     int reg, u32 mask, u32 write)
1083 {
1084 	struct e1000_hw *hw = &adapter->hw;
1085 	u32 pat, val;
1086 	static const u32 _test[] =
1087 		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1088 	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1089 		wr32(reg, (_test[pat] & write));
1090 		val = rd32(reg) & mask;
1091 		if (val != (_test[pat] & write & mask)) {
1092 			dev_err(&adapter->pdev->dev,
1093 				"pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1094 				reg, val, (_test[pat] & write & mask));
1095 			*data = reg;
1096 			return 1;
1097 		}
1098 	}
1099 
1100 	return 0;
1101 }
1102 
1103 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1104 			      int reg, u32 mask, u32 write)
1105 {
1106 	struct e1000_hw *hw = &adapter->hw;
1107 	u32 val;
1108 	wr32(reg, write & mask);
1109 	val = rd32(reg);
1110 	if ((write & mask) != (val & mask)) {
1111 		dev_err(&adapter->pdev->dev,
1112 			"set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", reg,
1113 			(val & mask), (write & mask));
1114 		*data = reg;
1115 		return 1;
1116 	}
1117 
1118 	return 0;
1119 }
1120 
1121 #define REG_PATTERN_TEST(reg, mask, write) \
1122 	do { \
1123 		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1124 			return 1; \
1125 	} while (0)
1126 
1127 #define REG_SET_AND_CHECK(reg, mask, write) \
1128 	do { \
1129 		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1130 			return 1; \
1131 	} while (0)
1132 
1133 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1134 {
1135 	struct e1000_hw *hw = &adapter->hw;
1136 	struct igb_reg_test *test;
1137 	u32 value, before, after;
1138 	u32 i, toggle;
1139 
1140 	switch (adapter->hw.mac.type) {
1141 	case e1000_i350:
1142 		test = reg_test_i350;
1143 		toggle = 0x7FEFF3FF;
1144 		break;
1145 	case e1000_i210:
1146 	case e1000_i211:
1147 		test = reg_test_i210;
1148 		toggle = 0x7FEFF3FF;
1149 		break;
1150 	case e1000_82580:
1151 		test = reg_test_82580;
1152 		toggle = 0x7FEFF3FF;
1153 		break;
1154 	case e1000_82576:
1155 		test = reg_test_82576;
1156 		toggle = 0x7FFFF3FF;
1157 		break;
1158 	default:
1159 		test = reg_test_82575;
1160 		toggle = 0x7FFFF3FF;
1161 		break;
1162 	}
1163 
1164 	/* Because the status register is such a special case,
1165 	 * we handle it separately from the rest of the register
1166 	 * tests.  Some bits are read-only, some toggle, and some
1167 	 * are writable on newer MACs.
1168 	 */
1169 	before = rd32(E1000_STATUS);
1170 	value = (rd32(E1000_STATUS) & toggle);
1171 	wr32(E1000_STATUS, toggle);
1172 	after = rd32(E1000_STATUS) & toggle;
1173 	if (value != after) {
1174 		dev_err(&adapter->pdev->dev,
1175 			"failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1176 			after, value);
1177 		*data = 1;
1178 		return 1;
1179 	}
1180 	/* restore previous status */
1181 	wr32(E1000_STATUS, before);
1182 
1183 	/* Perform the remainder of the register test, looping through
1184 	 * the test table until we either fail or reach the null entry.
1185 	 */
1186 	while (test->reg) {
1187 		for (i = 0; i < test->array_len; i++) {
1188 			switch (test->test_type) {
1189 			case PATTERN_TEST:
1190 				REG_PATTERN_TEST(test->reg +
1191 						(i * test->reg_offset),
1192 						test->mask,
1193 						test->write);
1194 				break;
1195 			case SET_READ_TEST:
1196 				REG_SET_AND_CHECK(test->reg +
1197 						(i * test->reg_offset),
1198 						test->mask,
1199 						test->write);
1200 				break;
1201 			case WRITE_NO_TEST:
1202 				writel(test->write,
1203 				    (adapter->hw.hw_addr + test->reg)
1204 					+ (i * test->reg_offset));
1205 				break;
1206 			case TABLE32_TEST:
1207 				REG_PATTERN_TEST(test->reg + (i * 4),
1208 						test->mask,
1209 						test->write);
1210 				break;
1211 			case TABLE64_TEST_LO:
1212 				REG_PATTERN_TEST(test->reg + (i * 8),
1213 						test->mask,
1214 						test->write);
1215 				break;
1216 			case TABLE64_TEST_HI:
1217 				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1218 						test->mask,
1219 						test->write);
1220 				break;
1221 			}
1222 		}
1223 		test++;
1224 	}
1225 
1226 	*data = 0;
1227 	return 0;
1228 }
1229 
1230 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1231 {
1232 	*data = 0;
1233 
1234 	/* Validate eeprom on all parts but i211 */
1235 	if (adapter->hw.mac.type != e1000_i211) {
1236 		if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1237 			*data = 2;
1238 	}
1239 
1240 	return *data;
1241 }
1242 
1243 static irqreturn_t igb_test_intr(int irq, void *data)
1244 {
1245 	struct igb_adapter *adapter = (struct igb_adapter *) data;
1246 	struct e1000_hw *hw = &adapter->hw;
1247 
1248 	adapter->test_icr |= rd32(E1000_ICR);
1249 
1250 	return IRQ_HANDLED;
1251 }
1252 
1253 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1254 {
1255 	struct e1000_hw *hw = &adapter->hw;
1256 	struct net_device *netdev = adapter->netdev;
1257 	u32 mask, ics_mask, i = 0, shared_int = true;
1258 	u32 irq = adapter->pdev->irq;
1259 
1260 	*data = 0;
1261 
1262 	/* Hook up test interrupt handler just for this test */
1263 	if (adapter->msix_entries) {
1264 		if (request_irq(adapter->msix_entries[0].vector,
1265 		                igb_test_intr, 0, netdev->name, adapter)) {
1266 			*data = 1;
1267 			return -1;
1268 		}
1269 	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1270 		shared_int = false;
1271 		if (request_irq(irq,
1272 		                igb_test_intr, 0, netdev->name, adapter)) {
1273 			*data = 1;
1274 			return -1;
1275 		}
1276 	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1277 				netdev->name, adapter)) {
1278 		shared_int = false;
1279 	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1280 		 netdev->name, adapter)) {
1281 		*data = 1;
1282 		return -1;
1283 	}
1284 	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1285 		(shared_int ? "shared" : "unshared"));
1286 
1287 	/* Disable all the interrupts */
1288 	wr32(E1000_IMC, ~0);
1289 	wrfl();
1290 	msleep(10);
1291 
1292 	/* Define all writable bits for ICS */
1293 	switch (hw->mac.type) {
1294 	case e1000_82575:
1295 		ics_mask = 0x37F47EDD;
1296 		break;
1297 	case e1000_82576:
1298 		ics_mask = 0x77D4FBFD;
1299 		break;
1300 	case e1000_82580:
1301 		ics_mask = 0x77DCFED5;
1302 		break;
1303 	case e1000_i350:
1304 	case e1000_i210:
1305 	case e1000_i211:
1306 		ics_mask = 0x77DCFED5;
1307 		break;
1308 	default:
1309 		ics_mask = 0x7FFFFFFF;
1310 		break;
1311 	}
1312 
1313 	/* Test each interrupt */
1314 	for (; i < 31; i++) {
1315 		/* Interrupt to test */
1316 		mask = 1 << i;
1317 
1318 		if (!(mask & ics_mask))
1319 			continue;
1320 
1321 		if (!shared_int) {
1322 			/* Disable the interrupt to be reported in
1323 			 * the cause register and then force the same
1324 			 * interrupt and see if one gets posted.  If
1325 			 * an interrupt was posted to the bus, the
1326 			 * test failed.
1327 			 */
1328 			adapter->test_icr = 0;
1329 
1330 			/* Flush any pending interrupts */
1331 			wr32(E1000_ICR, ~0);
1332 
1333 			wr32(E1000_IMC, mask);
1334 			wr32(E1000_ICS, mask);
1335 			wrfl();
1336 			msleep(10);
1337 
1338 			if (adapter->test_icr & mask) {
1339 				*data = 3;
1340 				break;
1341 			}
1342 		}
1343 
1344 		/* Enable the interrupt to be reported in
1345 		 * the cause register and then force the same
1346 		 * interrupt and see if one gets posted.  If
1347 		 * an interrupt was not posted to the bus, the
1348 		 * test failed.
1349 		 */
1350 		adapter->test_icr = 0;
1351 
1352 		/* Flush any pending interrupts */
1353 		wr32(E1000_ICR, ~0);
1354 
1355 		wr32(E1000_IMS, mask);
1356 		wr32(E1000_ICS, mask);
1357 		wrfl();
1358 		msleep(10);
1359 
1360 		if (!(adapter->test_icr & mask)) {
1361 			*data = 4;
1362 			break;
1363 		}
1364 
1365 		if (!shared_int) {
1366 			/* Disable the other interrupts to be reported in
1367 			 * the cause register and then force the other
1368 			 * interrupts and see if any get posted.  If
1369 			 * an interrupt was posted to the bus, the
1370 			 * test failed.
1371 			 */
1372 			adapter->test_icr = 0;
1373 
1374 			/* Flush any pending interrupts */
1375 			wr32(E1000_ICR, ~0);
1376 
1377 			wr32(E1000_IMC, ~mask);
1378 			wr32(E1000_ICS, ~mask);
1379 			wrfl();
1380 			msleep(10);
1381 
1382 			if (adapter->test_icr & mask) {
1383 				*data = 5;
1384 				break;
1385 			}
1386 		}
1387 	}
1388 
1389 	/* Disable all the interrupts */
1390 	wr32(E1000_IMC, ~0);
1391 	wrfl();
1392 	msleep(10);
1393 
1394 	/* Unhook test interrupt handler */
1395 	if (adapter->msix_entries)
1396 		free_irq(adapter->msix_entries[0].vector, adapter);
1397 	else
1398 		free_irq(irq, adapter);
1399 
1400 	return *data;
1401 }
1402 
1403 static void igb_free_desc_rings(struct igb_adapter *adapter)
1404 {
1405 	igb_free_tx_resources(&adapter->test_tx_ring);
1406 	igb_free_rx_resources(&adapter->test_rx_ring);
1407 }
1408 
1409 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1410 {
1411 	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1412 	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1413 	struct e1000_hw *hw = &adapter->hw;
1414 	int ret_val;
1415 
1416 	/* Setup Tx descriptor ring and Tx buffers */
1417 	tx_ring->count = IGB_DEFAULT_TXD;
1418 	tx_ring->dev = &adapter->pdev->dev;
1419 	tx_ring->netdev = adapter->netdev;
1420 	tx_ring->reg_idx = adapter->vfs_allocated_count;
1421 
1422 	if (igb_setup_tx_resources(tx_ring)) {
1423 		ret_val = 1;
1424 		goto err_nomem;
1425 	}
1426 
1427 	igb_setup_tctl(adapter);
1428 	igb_configure_tx_ring(adapter, tx_ring);
1429 
1430 	/* Setup Rx descriptor ring and Rx buffers */
1431 	rx_ring->count = IGB_DEFAULT_RXD;
1432 	rx_ring->dev = &adapter->pdev->dev;
1433 	rx_ring->netdev = adapter->netdev;
1434 	rx_ring->reg_idx = adapter->vfs_allocated_count;
1435 
1436 	if (igb_setup_rx_resources(rx_ring)) {
1437 		ret_val = 3;
1438 		goto err_nomem;
1439 	}
1440 
1441 	/* set the default queue to queue 0 of PF */
1442 	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1443 
1444 	/* enable receive ring */
1445 	igb_setup_rctl(adapter);
1446 	igb_configure_rx_ring(adapter, rx_ring);
1447 
1448 	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1449 
1450 	return 0;
1451 
1452 err_nomem:
1453 	igb_free_desc_rings(adapter);
1454 	return ret_val;
1455 }
1456 
1457 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1458 {
1459 	struct e1000_hw *hw = &adapter->hw;
1460 
1461 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1462 	igb_write_phy_reg(hw, 29, 0x001F);
1463 	igb_write_phy_reg(hw, 30, 0x8FFC);
1464 	igb_write_phy_reg(hw, 29, 0x001A);
1465 	igb_write_phy_reg(hw, 30, 0x8FF0);
1466 }
1467 
1468 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1469 {
1470 	struct e1000_hw *hw = &adapter->hw;
1471 	u32 ctrl_reg = 0;
1472 	u16 phy_reg = 0;
1473 
1474 	hw->mac.autoneg = false;
1475 
1476 	switch (hw->phy.type) {
1477 	case e1000_phy_m88:
1478 		/* Auto-MDI/MDIX Off */
1479 		igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1480 		/* reset to update Auto-MDI/MDIX */
1481 		igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1482 		/* autoneg off */
1483 		igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1484 		break;
1485 	case e1000_phy_82580:
1486 		/* enable MII loopback */
1487 		igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1488 		break;
1489 	case e1000_phy_i210:
1490 		/* set loopback speed in PHY */
1491 		igb_read_phy_reg(hw, (GS40G_PAGE_SELECT & GS40G_PAGE_2),
1492 					&phy_reg);
1493 		phy_reg |= GS40G_MAC_SPEED_1G;
1494 		igb_write_phy_reg(hw, (GS40G_PAGE_SELECT & GS40G_PAGE_2),
1495 					phy_reg);
1496 		ctrl_reg = rd32(E1000_CTRL_EXT);
1497 	default:
1498 		break;
1499 	}
1500 
1501 	/* add small delay to avoid loopback test failure */
1502 	msleep(50);
1503 
1504 	/* force 1000, set loopback */
1505 	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1506 
1507 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1508 	ctrl_reg = rd32(E1000_CTRL);
1509 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1510 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1511 		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1512 		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1513 		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1514 		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1515 
1516 	if ((hw->phy.type == e1000_phy_m88) || (hw->phy.type == e1000_phy_i210))
1517 		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1518 
1519 	wr32(E1000_CTRL, ctrl_reg);
1520 
1521 	/* Disable the receiver on the PHY so when a cable is plugged in, the
1522 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1523 	 */
1524 	if ((hw->phy.type == e1000_phy_m88) || (hw->phy.type == e1000_phy_i210))
1525 		igb_phy_disable_receiver(adapter);
1526 
1527 	udelay(500);
1528 
1529 	return 0;
1530 }
1531 
1532 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1533 {
1534 	return igb_integrated_phy_loopback(adapter);
1535 }
1536 
1537 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1538 {
1539 	struct e1000_hw *hw = &adapter->hw;
1540 	u32 reg;
1541 
1542 	reg = rd32(E1000_CTRL_EXT);
1543 
1544 	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1545 	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1546 		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1547 		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1548 		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1549 		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1550 
1551 			/* Enable DH89xxCC MPHY for near end loopback */
1552 			reg = rd32(E1000_MPHY_ADDR_CTL);
1553 			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1554 			E1000_MPHY_PCS_CLK_REG_OFFSET;
1555 			wr32(E1000_MPHY_ADDR_CTL, reg);
1556 
1557 			reg = rd32(E1000_MPHY_DATA);
1558 			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1559 			wr32(E1000_MPHY_DATA, reg);
1560 		}
1561 
1562 		reg = rd32(E1000_RCTL);
1563 		reg |= E1000_RCTL_LBM_TCVR;
1564 		wr32(E1000_RCTL, reg);
1565 
1566 		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1567 
1568 		reg = rd32(E1000_CTRL);
1569 		reg &= ~(E1000_CTRL_RFCE |
1570 			 E1000_CTRL_TFCE |
1571 			 E1000_CTRL_LRST);
1572 		reg |= E1000_CTRL_SLU |
1573 		       E1000_CTRL_FD;
1574 		wr32(E1000_CTRL, reg);
1575 
1576 		/* Unset switch control to serdes energy detect */
1577 		reg = rd32(E1000_CONNSW);
1578 		reg &= ~E1000_CONNSW_ENRGSRC;
1579 		wr32(E1000_CONNSW, reg);
1580 
1581 		/* Set PCS register for forced speed */
1582 		reg = rd32(E1000_PCS_LCTL);
1583 		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1584 		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1585 		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1586 		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1587 		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1588 		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1589 		wr32(E1000_PCS_LCTL, reg);
1590 
1591 		return 0;
1592 	}
1593 
1594 	return igb_set_phy_loopback(adapter);
1595 }
1596 
1597 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1598 {
1599 	struct e1000_hw *hw = &adapter->hw;
1600 	u32 rctl;
1601 	u16 phy_reg;
1602 
1603 	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1604 	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1605 	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1606 	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1607 		u32 reg;
1608 
1609 		/* Disable near end loopback on DH89xxCC */
1610 		reg = rd32(E1000_MPHY_ADDR_CTL);
1611 		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1612 		E1000_MPHY_PCS_CLK_REG_OFFSET;
1613 		wr32(E1000_MPHY_ADDR_CTL, reg);
1614 
1615 		reg = rd32(E1000_MPHY_DATA);
1616 		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1617 		wr32(E1000_MPHY_DATA, reg);
1618 	}
1619 
1620 	rctl = rd32(E1000_RCTL);
1621 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1622 	wr32(E1000_RCTL, rctl);
1623 
1624 	hw->mac.autoneg = true;
1625 	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1626 	if (phy_reg & MII_CR_LOOPBACK) {
1627 		phy_reg &= ~MII_CR_LOOPBACK;
1628 		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1629 		igb_phy_sw_reset(hw);
1630 	}
1631 }
1632 
1633 static void igb_create_lbtest_frame(struct sk_buff *skb,
1634 				    unsigned int frame_size)
1635 {
1636 	memset(skb->data, 0xFF, frame_size);
1637 	frame_size /= 2;
1638 	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1639 	memset(&skb->data[frame_size + 10], 0xBE, 1);
1640 	memset(&skb->data[frame_size + 12], 0xAF, 1);
1641 }
1642 
1643 static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1644 {
1645 	frame_size /= 2;
1646 	if (*(skb->data + 3) == 0xFF) {
1647 		if ((*(skb->data + frame_size + 10) == 0xBE) &&
1648 		   (*(skb->data + frame_size + 12) == 0xAF)) {
1649 			return 0;
1650 		}
1651 	}
1652 	return 13;
1653 }
1654 
1655 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1656                                 struct igb_ring *tx_ring,
1657                                 unsigned int size)
1658 {
1659 	union e1000_adv_rx_desc *rx_desc;
1660 	struct igb_rx_buffer *rx_buffer_info;
1661 	struct igb_tx_buffer *tx_buffer_info;
1662 	struct netdev_queue *txq;
1663 	u16 rx_ntc, tx_ntc, count = 0;
1664 	unsigned int total_bytes = 0, total_packets = 0;
1665 
1666 	/* initialize next to clean and descriptor values */
1667 	rx_ntc = rx_ring->next_to_clean;
1668 	tx_ntc = tx_ring->next_to_clean;
1669 	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1670 
1671 	while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1672 		/* check rx buffer */
1673 		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1674 
1675 		/* unmap rx buffer, will be remapped by alloc_rx_buffers */
1676 		dma_unmap_single(rx_ring->dev,
1677 				 rx_buffer_info->dma,
1678 				 IGB_RX_HDR_LEN,
1679 				 DMA_FROM_DEVICE);
1680 		rx_buffer_info->dma = 0;
1681 
1682 		/* verify contents of skb */
1683 		if (!igb_check_lbtest_frame(rx_buffer_info->skb, size))
1684 			count++;
1685 
1686 		/* unmap buffer on tx side */
1687 		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1688 		total_bytes += tx_buffer_info->bytecount;
1689 		total_packets += tx_buffer_info->gso_segs;
1690 		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1691 
1692 		/* increment rx/tx next to clean counters */
1693 		rx_ntc++;
1694 		if (rx_ntc == rx_ring->count)
1695 			rx_ntc = 0;
1696 		tx_ntc++;
1697 		if (tx_ntc == tx_ring->count)
1698 			tx_ntc = 0;
1699 
1700 		/* fetch next descriptor */
1701 		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1702 	}
1703 
1704 	txq = netdev_get_tx_queue(tx_ring->netdev, tx_ring->queue_index);
1705 	netdev_tx_completed_queue(txq, total_packets, total_bytes);
1706 
1707 	/* re-map buffers to ring, store next to clean values */
1708 	igb_alloc_rx_buffers(rx_ring, count);
1709 	rx_ring->next_to_clean = rx_ntc;
1710 	tx_ring->next_to_clean = tx_ntc;
1711 
1712 	return count;
1713 }
1714 
1715 static int igb_run_loopback_test(struct igb_adapter *adapter)
1716 {
1717 	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1718 	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1719 	u16 i, j, lc, good_cnt;
1720 	int ret_val = 0;
1721 	unsigned int size = IGB_RX_HDR_LEN;
1722 	netdev_tx_t tx_ret_val;
1723 	struct sk_buff *skb;
1724 
1725 	/* allocate test skb */
1726 	skb = alloc_skb(size, GFP_KERNEL);
1727 	if (!skb)
1728 		return 11;
1729 
1730 	/* place data into test skb */
1731 	igb_create_lbtest_frame(skb, size);
1732 	skb_put(skb, size);
1733 
1734 	/*
1735 	 * Calculate the loop count based on the largest descriptor ring
1736 	 * The idea is to wrap the largest ring a number of times using 64
1737 	 * send/receive pairs during each loop
1738 	 */
1739 
1740 	if (rx_ring->count <= tx_ring->count)
1741 		lc = ((tx_ring->count / 64) * 2) + 1;
1742 	else
1743 		lc = ((rx_ring->count / 64) * 2) + 1;
1744 
1745 	for (j = 0; j <= lc; j++) { /* loop count loop */
1746 		/* reset count of good packets */
1747 		good_cnt = 0;
1748 
1749 		/* place 64 packets on the transmit queue*/
1750 		for (i = 0; i < 64; i++) {
1751 			skb_get(skb);
1752 			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1753 			if (tx_ret_val == NETDEV_TX_OK)
1754 				good_cnt++;
1755 		}
1756 
1757 		if (good_cnt != 64) {
1758 			ret_val = 12;
1759 			break;
1760 		}
1761 
1762 		/* allow 200 milliseconds for packets to go from tx to rx */
1763 		msleep(200);
1764 
1765 		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1766 		if (good_cnt != 64) {
1767 			ret_val = 13;
1768 			break;
1769 		}
1770 	} /* end loop count loop */
1771 
1772 	/* free the original skb */
1773 	kfree_skb(skb);
1774 
1775 	return ret_val;
1776 }
1777 
1778 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1779 {
1780 	/* PHY loopback cannot be performed if SoL/IDER
1781 	 * sessions are active */
1782 	if (igb_check_reset_block(&adapter->hw)) {
1783 		dev_err(&adapter->pdev->dev,
1784 			"Cannot do PHY loopback test when SoL/IDER is active.\n");
1785 		*data = 0;
1786 		goto out;
1787 	}
1788 	if ((adapter->hw.mac.type == e1000_i210)
1789 		|| (adapter->hw.mac.type == e1000_i211)) {
1790 		dev_err(&adapter->pdev->dev,
1791 			"Loopback test not supported on this part at this time.\n");
1792 		*data = 0;
1793 		goto out;
1794 	}
1795 	*data = igb_setup_desc_rings(adapter);
1796 	if (*data)
1797 		goto out;
1798 	*data = igb_setup_loopback_test(adapter);
1799 	if (*data)
1800 		goto err_loopback;
1801 	*data = igb_run_loopback_test(adapter);
1802 	igb_loopback_cleanup(adapter);
1803 
1804 err_loopback:
1805 	igb_free_desc_rings(adapter);
1806 out:
1807 	return *data;
1808 }
1809 
1810 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1811 {
1812 	struct e1000_hw *hw = &adapter->hw;
1813 	*data = 0;
1814 	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1815 		int i = 0;
1816 		hw->mac.serdes_has_link = false;
1817 
1818 		/* On some blade server designs, link establishment
1819 		 * could take as long as 2-3 minutes */
1820 		do {
1821 			hw->mac.ops.check_for_link(&adapter->hw);
1822 			if (hw->mac.serdes_has_link)
1823 				return *data;
1824 			msleep(20);
1825 		} while (i++ < 3750);
1826 
1827 		*data = 1;
1828 	} else {
1829 		hw->mac.ops.check_for_link(&adapter->hw);
1830 		if (hw->mac.autoneg)
1831 			msleep(4000);
1832 
1833 		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1834 			*data = 1;
1835 	}
1836 	return *data;
1837 }
1838 
1839 static void igb_diag_test(struct net_device *netdev,
1840 			  struct ethtool_test *eth_test, u64 *data)
1841 {
1842 	struct igb_adapter *adapter = netdev_priv(netdev);
1843 	u16 autoneg_advertised;
1844 	u8 forced_speed_duplex, autoneg;
1845 	bool if_running = netif_running(netdev);
1846 
1847 	set_bit(__IGB_TESTING, &adapter->state);
1848 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1849 		/* Offline tests */
1850 
1851 		/* save speed, duplex, autoneg settings */
1852 		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1853 		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1854 		autoneg = adapter->hw.mac.autoneg;
1855 
1856 		dev_info(&adapter->pdev->dev, "offline testing starting\n");
1857 
1858 		/* power up link for link test */
1859 		igb_power_up_link(adapter);
1860 
1861 		/* Link test performed before hardware reset so autoneg doesn't
1862 		 * interfere with test result */
1863 		if (igb_link_test(adapter, &data[4]))
1864 			eth_test->flags |= ETH_TEST_FL_FAILED;
1865 
1866 		if (if_running)
1867 			/* indicate we're in test mode */
1868 			dev_close(netdev);
1869 		else
1870 			igb_reset(adapter);
1871 
1872 		if (igb_reg_test(adapter, &data[0]))
1873 			eth_test->flags |= ETH_TEST_FL_FAILED;
1874 
1875 		igb_reset(adapter);
1876 		if (igb_eeprom_test(adapter, &data[1]))
1877 			eth_test->flags |= ETH_TEST_FL_FAILED;
1878 
1879 		igb_reset(adapter);
1880 		if (igb_intr_test(adapter, &data[2]))
1881 			eth_test->flags |= ETH_TEST_FL_FAILED;
1882 
1883 		igb_reset(adapter);
1884 		/* power up link for loopback test */
1885 		igb_power_up_link(adapter);
1886 		if (igb_loopback_test(adapter, &data[3]))
1887 			eth_test->flags |= ETH_TEST_FL_FAILED;
1888 
1889 		/* restore speed, duplex, autoneg settings */
1890 		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1891 		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1892 		adapter->hw.mac.autoneg = autoneg;
1893 
1894 		/* force this routine to wait until autoneg complete/timeout */
1895 		adapter->hw.phy.autoneg_wait_to_complete = true;
1896 		igb_reset(adapter);
1897 		adapter->hw.phy.autoneg_wait_to_complete = false;
1898 
1899 		clear_bit(__IGB_TESTING, &adapter->state);
1900 		if (if_running)
1901 			dev_open(netdev);
1902 	} else {
1903 		dev_info(&adapter->pdev->dev, "online testing starting\n");
1904 
1905 		/* PHY is powered down when interface is down */
1906 		if (if_running && igb_link_test(adapter, &data[4]))
1907 			eth_test->flags |= ETH_TEST_FL_FAILED;
1908 		else
1909 			data[4] = 0;
1910 
1911 		/* Online tests aren't run; pass by default */
1912 		data[0] = 0;
1913 		data[1] = 0;
1914 		data[2] = 0;
1915 		data[3] = 0;
1916 
1917 		clear_bit(__IGB_TESTING, &adapter->state);
1918 	}
1919 	msleep_interruptible(4 * 1000);
1920 }
1921 
1922 static int igb_wol_exclusion(struct igb_adapter *adapter,
1923 			     struct ethtool_wolinfo *wol)
1924 {
1925 	struct e1000_hw *hw = &adapter->hw;
1926 	int retval = 1; /* fail by default */
1927 
1928 	switch (hw->device_id) {
1929 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
1930 		/* WoL not supported */
1931 		wol->supported = 0;
1932 		break;
1933 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
1934 	case E1000_DEV_ID_82576_FIBER:
1935 	case E1000_DEV_ID_82576_SERDES:
1936 		/* Wake events not supported on port B */
1937 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1938 			wol->supported = 0;
1939 			break;
1940 		}
1941 		/* return success for non excluded adapter ports */
1942 		retval = 0;
1943 		break;
1944 	case E1000_DEV_ID_82576_QUAD_COPPER:
1945 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
1946 		/* quad port adapters only support WoL on port A */
1947 		if (!(adapter->flags & IGB_FLAG_QUAD_PORT_A)) {
1948 			wol->supported = 0;
1949 			break;
1950 		}
1951 		/* return success for non excluded adapter ports */
1952 		retval = 0;
1953 		break;
1954 	default:
1955 		/* dual port cards only support WoL on port A from now on
1956 		 * unless it was enabled in the eeprom for port B
1957 		 * so exclude FUNC_1 ports from having WoL enabled */
1958 		if ((rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) &&
1959 		    !adapter->eeprom_wol) {
1960 			wol->supported = 0;
1961 			break;
1962 		}
1963 
1964 		retval = 0;
1965 	}
1966 
1967 	return retval;
1968 }
1969 
1970 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1971 {
1972 	struct igb_adapter *adapter = netdev_priv(netdev);
1973 
1974 	wol->supported = WAKE_UCAST | WAKE_MCAST |
1975 	                 WAKE_BCAST | WAKE_MAGIC |
1976 	                 WAKE_PHY;
1977 	wol->wolopts = 0;
1978 
1979 	/* this function will set ->supported = 0 and return 1 if wol is not
1980 	 * supported by this hardware */
1981 	if (igb_wol_exclusion(adapter, wol) ||
1982 	    !device_can_wakeup(&adapter->pdev->dev))
1983 		return;
1984 
1985 	/* apply any specific unsupported masks here */
1986 	switch (adapter->hw.device_id) {
1987 	default:
1988 		break;
1989 	}
1990 
1991 	if (adapter->wol & E1000_WUFC_EX)
1992 		wol->wolopts |= WAKE_UCAST;
1993 	if (adapter->wol & E1000_WUFC_MC)
1994 		wol->wolopts |= WAKE_MCAST;
1995 	if (adapter->wol & E1000_WUFC_BC)
1996 		wol->wolopts |= WAKE_BCAST;
1997 	if (adapter->wol & E1000_WUFC_MAG)
1998 		wol->wolopts |= WAKE_MAGIC;
1999 	if (adapter->wol & E1000_WUFC_LNKC)
2000 		wol->wolopts |= WAKE_PHY;
2001 }
2002 
2003 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2004 {
2005 	struct igb_adapter *adapter = netdev_priv(netdev);
2006 
2007 	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2008 		return -EOPNOTSUPP;
2009 
2010 	if (igb_wol_exclusion(adapter, wol) ||
2011 	    !device_can_wakeup(&adapter->pdev->dev))
2012 		return wol->wolopts ? -EOPNOTSUPP : 0;
2013 
2014 	/* these settings will always override what we currently have */
2015 	adapter->wol = 0;
2016 
2017 	if (wol->wolopts & WAKE_UCAST)
2018 		adapter->wol |= E1000_WUFC_EX;
2019 	if (wol->wolopts & WAKE_MCAST)
2020 		adapter->wol |= E1000_WUFC_MC;
2021 	if (wol->wolopts & WAKE_BCAST)
2022 		adapter->wol |= E1000_WUFC_BC;
2023 	if (wol->wolopts & WAKE_MAGIC)
2024 		adapter->wol |= E1000_WUFC_MAG;
2025 	if (wol->wolopts & WAKE_PHY)
2026 		adapter->wol |= E1000_WUFC_LNKC;
2027 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2028 
2029 	return 0;
2030 }
2031 
2032 /* bit defines for adapter->led_status */
2033 #define IGB_LED_ON		0
2034 
2035 static int igb_set_phys_id(struct net_device *netdev,
2036 			   enum ethtool_phys_id_state state)
2037 {
2038 	struct igb_adapter *adapter = netdev_priv(netdev);
2039 	struct e1000_hw *hw = &adapter->hw;
2040 
2041 	switch (state) {
2042 	case ETHTOOL_ID_ACTIVE:
2043 		igb_blink_led(hw);
2044 		return 2;
2045 	case ETHTOOL_ID_ON:
2046 		igb_blink_led(hw);
2047 		break;
2048 	case ETHTOOL_ID_OFF:
2049 		igb_led_off(hw);
2050 		break;
2051 	case ETHTOOL_ID_INACTIVE:
2052 		igb_led_off(hw);
2053 		clear_bit(IGB_LED_ON, &adapter->led_status);
2054 		igb_cleanup_led(hw);
2055 		break;
2056 	}
2057 
2058 	return 0;
2059 }
2060 
2061 static int igb_set_coalesce(struct net_device *netdev,
2062 			    struct ethtool_coalesce *ec)
2063 {
2064 	struct igb_adapter *adapter = netdev_priv(netdev);
2065 	int i;
2066 
2067 	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2068 	    ((ec->rx_coalesce_usecs > 3) &&
2069 	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2070 	    (ec->rx_coalesce_usecs == 2))
2071 		return -EINVAL;
2072 
2073 	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2074 	    ((ec->tx_coalesce_usecs > 3) &&
2075 	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2076 	    (ec->tx_coalesce_usecs == 2))
2077 		return -EINVAL;
2078 
2079 	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2080 		return -EINVAL;
2081 
2082 	/* If ITR is disabled, disable DMAC */
2083 	if (ec->rx_coalesce_usecs == 0) {
2084 		if (adapter->flags & IGB_FLAG_DMAC)
2085 			adapter->flags &= ~IGB_FLAG_DMAC;
2086 	}
2087 
2088 	/* convert to rate of irq's per second */
2089 	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2090 		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2091 	else
2092 		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2093 
2094 	/* convert to rate of irq's per second */
2095 	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2096 		adapter->tx_itr_setting = adapter->rx_itr_setting;
2097 	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2098 		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2099 	else
2100 		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2101 
2102 	for (i = 0; i < adapter->num_q_vectors; i++) {
2103 		struct igb_q_vector *q_vector = adapter->q_vector[i];
2104 		q_vector->tx.work_limit = adapter->tx_work_limit;
2105 		if (q_vector->rx.ring)
2106 			q_vector->itr_val = adapter->rx_itr_setting;
2107 		else
2108 			q_vector->itr_val = adapter->tx_itr_setting;
2109 		if (q_vector->itr_val && q_vector->itr_val <= 3)
2110 			q_vector->itr_val = IGB_START_ITR;
2111 		q_vector->set_itr = 1;
2112 	}
2113 
2114 	return 0;
2115 }
2116 
2117 static int igb_get_coalesce(struct net_device *netdev,
2118 			    struct ethtool_coalesce *ec)
2119 {
2120 	struct igb_adapter *adapter = netdev_priv(netdev);
2121 
2122 	if (adapter->rx_itr_setting <= 3)
2123 		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2124 	else
2125 		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2126 
2127 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2128 		if (adapter->tx_itr_setting <= 3)
2129 			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2130 		else
2131 			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2132 	}
2133 
2134 	return 0;
2135 }
2136 
2137 static int igb_nway_reset(struct net_device *netdev)
2138 {
2139 	struct igb_adapter *adapter = netdev_priv(netdev);
2140 	if (netif_running(netdev))
2141 		igb_reinit_locked(adapter);
2142 	return 0;
2143 }
2144 
2145 static int igb_get_sset_count(struct net_device *netdev, int sset)
2146 {
2147 	switch (sset) {
2148 	case ETH_SS_STATS:
2149 		return IGB_STATS_LEN;
2150 	case ETH_SS_TEST:
2151 		return IGB_TEST_LEN;
2152 	default:
2153 		return -ENOTSUPP;
2154 	}
2155 }
2156 
2157 static void igb_get_ethtool_stats(struct net_device *netdev,
2158 				  struct ethtool_stats *stats, u64 *data)
2159 {
2160 	struct igb_adapter *adapter = netdev_priv(netdev);
2161 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2162 	unsigned int start;
2163 	struct igb_ring *ring;
2164 	int i, j;
2165 	char *p;
2166 
2167 	spin_lock(&adapter->stats64_lock);
2168 	igb_update_stats(adapter, net_stats);
2169 
2170 	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2171 		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2172 		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2173 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2174 	}
2175 	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2176 		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2177 		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2178 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2179 	}
2180 	for (j = 0; j < adapter->num_tx_queues; j++) {
2181 		u64	restart2;
2182 
2183 		ring = adapter->tx_ring[j];
2184 		do {
2185 			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
2186 			data[i]   = ring->tx_stats.packets;
2187 			data[i+1] = ring->tx_stats.bytes;
2188 			data[i+2] = ring->tx_stats.restart_queue;
2189 		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
2190 		do {
2191 			start = u64_stats_fetch_begin_bh(&ring->tx_syncp2);
2192 			restart2  = ring->tx_stats.restart_queue2;
2193 		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start));
2194 		data[i+2] += restart2;
2195 
2196 		i += IGB_TX_QUEUE_STATS_LEN;
2197 	}
2198 	for (j = 0; j < adapter->num_rx_queues; j++) {
2199 		ring = adapter->rx_ring[j];
2200 		do {
2201 			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
2202 			data[i]   = ring->rx_stats.packets;
2203 			data[i+1] = ring->rx_stats.bytes;
2204 			data[i+2] = ring->rx_stats.drops;
2205 			data[i+3] = ring->rx_stats.csum_err;
2206 			data[i+4] = ring->rx_stats.alloc_failed;
2207 		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
2208 		i += IGB_RX_QUEUE_STATS_LEN;
2209 	}
2210 	spin_unlock(&adapter->stats64_lock);
2211 }
2212 
2213 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2214 {
2215 	struct igb_adapter *adapter = netdev_priv(netdev);
2216 	u8 *p = data;
2217 	int i;
2218 
2219 	switch (stringset) {
2220 	case ETH_SS_TEST:
2221 		memcpy(data, *igb_gstrings_test,
2222 			IGB_TEST_LEN*ETH_GSTRING_LEN);
2223 		break;
2224 	case ETH_SS_STATS:
2225 		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2226 			memcpy(p, igb_gstrings_stats[i].stat_string,
2227 			       ETH_GSTRING_LEN);
2228 			p += ETH_GSTRING_LEN;
2229 		}
2230 		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2231 			memcpy(p, igb_gstrings_net_stats[i].stat_string,
2232 			       ETH_GSTRING_LEN);
2233 			p += ETH_GSTRING_LEN;
2234 		}
2235 		for (i = 0; i < adapter->num_tx_queues; i++) {
2236 			sprintf(p, "tx_queue_%u_packets", i);
2237 			p += ETH_GSTRING_LEN;
2238 			sprintf(p, "tx_queue_%u_bytes", i);
2239 			p += ETH_GSTRING_LEN;
2240 			sprintf(p, "tx_queue_%u_restart", i);
2241 			p += ETH_GSTRING_LEN;
2242 		}
2243 		for (i = 0; i < adapter->num_rx_queues; i++) {
2244 			sprintf(p, "rx_queue_%u_packets", i);
2245 			p += ETH_GSTRING_LEN;
2246 			sprintf(p, "rx_queue_%u_bytes", i);
2247 			p += ETH_GSTRING_LEN;
2248 			sprintf(p, "rx_queue_%u_drops", i);
2249 			p += ETH_GSTRING_LEN;
2250 			sprintf(p, "rx_queue_%u_csum_err", i);
2251 			p += ETH_GSTRING_LEN;
2252 			sprintf(p, "rx_queue_%u_alloc_failed", i);
2253 			p += ETH_GSTRING_LEN;
2254 		}
2255 /*		BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2256 		break;
2257 	}
2258 }
2259 
2260 static int igb_ethtool_begin(struct net_device *netdev)
2261 {
2262 	struct igb_adapter *adapter = netdev_priv(netdev);
2263 	pm_runtime_get_sync(&adapter->pdev->dev);
2264 	return 0;
2265 }
2266 
2267 static void igb_ethtool_complete(struct net_device *netdev)
2268 {
2269 	struct igb_adapter *adapter = netdev_priv(netdev);
2270 	pm_runtime_put(&adapter->pdev->dev);
2271 }
2272 
2273 #ifdef CONFIG_IGB_PTP
2274 static int igb_ethtool_get_ts_info(struct net_device *dev,
2275 				   struct ethtool_ts_info *info)
2276 {
2277 	struct igb_adapter *adapter = netdev_priv(dev);
2278 
2279 	info->so_timestamping =
2280 		SOF_TIMESTAMPING_TX_HARDWARE |
2281 		SOF_TIMESTAMPING_RX_HARDWARE |
2282 		SOF_TIMESTAMPING_RAW_HARDWARE;
2283 
2284 	if (adapter->ptp_clock)
2285 		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2286 	else
2287 		info->phc_index = -1;
2288 
2289 	info->tx_types =
2290 		(1 << HWTSTAMP_TX_OFF) |
2291 		(1 << HWTSTAMP_TX_ON);
2292 
2293 	info->rx_filters =
2294 		(1 << HWTSTAMP_FILTER_NONE) |
2295 		(1 << HWTSTAMP_FILTER_ALL) |
2296 		(1 << HWTSTAMP_FILTER_SOME) |
2297 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2298 		(1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2299 		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2300 
2301 	return 0;
2302 }
2303 
2304 #endif
2305 static const struct ethtool_ops igb_ethtool_ops = {
2306 	.get_settings           = igb_get_settings,
2307 	.set_settings           = igb_set_settings,
2308 	.get_drvinfo            = igb_get_drvinfo,
2309 	.get_regs_len           = igb_get_regs_len,
2310 	.get_regs               = igb_get_regs,
2311 	.get_wol                = igb_get_wol,
2312 	.set_wol                = igb_set_wol,
2313 	.get_msglevel           = igb_get_msglevel,
2314 	.set_msglevel           = igb_set_msglevel,
2315 	.nway_reset             = igb_nway_reset,
2316 	.get_link               = igb_get_link,
2317 	.get_eeprom_len         = igb_get_eeprom_len,
2318 	.get_eeprom             = igb_get_eeprom,
2319 	.set_eeprom             = igb_set_eeprom,
2320 	.get_ringparam          = igb_get_ringparam,
2321 	.set_ringparam          = igb_set_ringparam,
2322 	.get_pauseparam         = igb_get_pauseparam,
2323 	.set_pauseparam         = igb_set_pauseparam,
2324 	.self_test              = igb_diag_test,
2325 	.get_strings            = igb_get_strings,
2326 	.set_phys_id            = igb_set_phys_id,
2327 	.get_sset_count         = igb_get_sset_count,
2328 	.get_ethtool_stats      = igb_get_ethtool_stats,
2329 	.get_coalesce           = igb_get_coalesce,
2330 	.set_coalesce           = igb_set_coalesce,
2331 	.begin			= igb_ethtool_begin,
2332 	.complete		= igb_ethtool_complete,
2333 #ifdef CONFIG_IGB_PTP
2334 	.get_ts_info		= igb_ethtool_get_ts_info,
2335 #endif
2336 };
2337 
2338 void igb_set_ethtool_ops(struct net_device *netdev)
2339 {
2340 	SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2341 }
2342