1 /*******************************************************************************
2 
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2013 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 /* ethtool support for igb */
29 
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
37 #include <linux/sched.h>
38 #include <linux/slab.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/highmem.h>
41 #include <linux/mdio.h>
42 
43 #include "igb.h"
44 
45 struct igb_stats {
46 	char stat_string[ETH_GSTRING_LEN];
47 	int sizeof_stat;
48 	int stat_offset;
49 };
50 
51 #define IGB_STAT(_name, _stat) { \
52 	.stat_string = _name, \
53 	.sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
54 	.stat_offset = offsetof(struct igb_adapter, _stat) \
55 }
56 static const struct igb_stats igb_gstrings_stats[] = {
57 	IGB_STAT("rx_packets", stats.gprc),
58 	IGB_STAT("tx_packets", stats.gptc),
59 	IGB_STAT("rx_bytes", stats.gorc),
60 	IGB_STAT("tx_bytes", stats.gotc),
61 	IGB_STAT("rx_broadcast", stats.bprc),
62 	IGB_STAT("tx_broadcast", stats.bptc),
63 	IGB_STAT("rx_multicast", stats.mprc),
64 	IGB_STAT("tx_multicast", stats.mptc),
65 	IGB_STAT("multicast", stats.mprc),
66 	IGB_STAT("collisions", stats.colc),
67 	IGB_STAT("rx_crc_errors", stats.crcerrs),
68 	IGB_STAT("rx_no_buffer_count", stats.rnbc),
69 	IGB_STAT("rx_missed_errors", stats.mpc),
70 	IGB_STAT("tx_aborted_errors", stats.ecol),
71 	IGB_STAT("tx_carrier_errors", stats.tncrs),
72 	IGB_STAT("tx_window_errors", stats.latecol),
73 	IGB_STAT("tx_abort_late_coll", stats.latecol),
74 	IGB_STAT("tx_deferred_ok", stats.dc),
75 	IGB_STAT("tx_single_coll_ok", stats.scc),
76 	IGB_STAT("tx_multi_coll_ok", stats.mcc),
77 	IGB_STAT("tx_timeout_count", tx_timeout_count),
78 	IGB_STAT("rx_long_length_errors", stats.roc),
79 	IGB_STAT("rx_short_length_errors", stats.ruc),
80 	IGB_STAT("rx_align_errors", stats.algnerrc),
81 	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
82 	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
83 	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
84 	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
85 	IGB_STAT("tx_flow_control_xon", stats.xontxc),
86 	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
87 	IGB_STAT("rx_long_byte_count", stats.gorc),
88 	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
89 	IGB_STAT("tx_smbus", stats.mgptc),
90 	IGB_STAT("rx_smbus", stats.mgprc),
91 	IGB_STAT("dropped_smbus", stats.mgpdc),
92 	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
93 	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
94 	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
95 	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
96 	IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
97 	IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
98 };
99 
100 #define IGB_NETDEV_STAT(_net_stat) { \
101 	.stat_string = __stringify(_net_stat), \
102 	.sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
103 	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
104 }
105 static const struct igb_stats igb_gstrings_net_stats[] = {
106 	IGB_NETDEV_STAT(rx_errors),
107 	IGB_NETDEV_STAT(tx_errors),
108 	IGB_NETDEV_STAT(tx_dropped),
109 	IGB_NETDEV_STAT(rx_length_errors),
110 	IGB_NETDEV_STAT(rx_over_errors),
111 	IGB_NETDEV_STAT(rx_frame_errors),
112 	IGB_NETDEV_STAT(rx_fifo_errors),
113 	IGB_NETDEV_STAT(tx_fifo_errors),
114 	IGB_NETDEV_STAT(tx_heartbeat_errors)
115 };
116 
117 #define IGB_GLOBAL_STATS_LEN	\
118 	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
119 #define IGB_NETDEV_STATS_LEN	\
120 	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
121 #define IGB_RX_QUEUE_STATS_LEN \
122 	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
123 
124 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
125 
126 #define IGB_QUEUE_STATS_LEN \
127 	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
128 	  IGB_RX_QUEUE_STATS_LEN) + \
129 	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
130 	  IGB_TX_QUEUE_STATS_LEN))
131 #define IGB_STATS_LEN \
132 	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
133 
134 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
135 	"Register test  (offline)", "Eeprom test    (offline)",
136 	"Interrupt test (offline)", "Loopback test  (offline)",
137 	"Link test   (on/offline)"
138 };
139 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
140 
141 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
142 {
143 	struct igb_adapter *adapter = netdev_priv(netdev);
144 	struct e1000_hw *hw = &adapter->hw;
145 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
146 	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
147 	u32 status;
148 
149 	status = rd32(E1000_STATUS);
150 	if (hw->phy.media_type == e1000_media_type_copper) {
151 
152 		ecmd->supported = (SUPPORTED_10baseT_Half |
153 				   SUPPORTED_10baseT_Full |
154 				   SUPPORTED_100baseT_Half |
155 				   SUPPORTED_100baseT_Full |
156 				   SUPPORTED_1000baseT_Full|
157 				   SUPPORTED_Autoneg |
158 				   SUPPORTED_TP |
159 				   SUPPORTED_Pause);
160 		ecmd->advertising = ADVERTISED_TP;
161 
162 		if (hw->mac.autoneg == 1) {
163 			ecmd->advertising |= ADVERTISED_Autoneg;
164 			/* the e1000 autoneg seems to match ethtool nicely */
165 			ecmd->advertising |= hw->phy.autoneg_advertised;
166 		}
167 
168 		ecmd->port = PORT_TP;
169 		ecmd->phy_address = hw->phy.addr;
170 		ecmd->transceiver = XCVR_INTERNAL;
171 	} else {
172 		ecmd->supported = (SUPPORTED_FIBRE |
173 				   SUPPORTED_1000baseKX_Full |
174 				   SUPPORTED_Autoneg |
175 				   SUPPORTED_Pause);
176 		ecmd->advertising = (ADVERTISED_FIBRE |
177 				     ADVERTISED_1000baseKX_Full);
178 		if (hw->mac.type == e1000_i354) {
179 			if ((hw->device_id ==
180 			     E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
181 			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
182 				ecmd->supported |= SUPPORTED_2500baseX_Full;
183 				ecmd->supported &=
184 					~SUPPORTED_1000baseKX_Full;
185 				ecmd->advertising |= ADVERTISED_2500baseX_Full;
186 				ecmd->advertising &=
187 					~ADVERTISED_1000baseKX_Full;
188 			}
189 		}
190 		if (eth_flags->e100_base_fx) {
191 			ecmd->supported |= SUPPORTED_100baseT_Full;
192 			ecmd->advertising |= ADVERTISED_100baseT_Full;
193 		}
194 		if (hw->mac.autoneg == 1)
195 			ecmd->advertising |= ADVERTISED_Autoneg;
196 
197 		ecmd->port = PORT_FIBRE;
198 		ecmd->transceiver = XCVR_EXTERNAL;
199 	}
200 	if (hw->mac.autoneg != 1)
201 		ecmd->advertising &= ~(ADVERTISED_Pause |
202 				       ADVERTISED_Asym_Pause);
203 
204 	switch (hw->fc.requested_mode) {
205 	case e1000_fc_full:
206 		ecmd->advertising |= ADVERTISED_Pause;
207 		break;
208 	case e1000_fc_rx_pause:
209 		ecmd->advertising |= (ADVERTISED_Pause |
210 				      ADVERTISED_Asym_Pause);
211 		break;
212 	case e1000_fc_tx_pause:
213 		ecmd->advertising |=  ADVERTISED_Asym_Pause;
214 		break;
215 	default:
216 		ecmd->advertising &= ~(ADVERTISED_Pause |
217 				       ADVERTISED_Asym_Pause);
218 	}
219 	if (status & E1000_STATUS_LU) {
220 		if ((status & E1000_STATUS_2P5_SKU) &&
221 		    !(status & E1000_STATUS_2P5_SKU_OVER)) {
222 			ecmd->speed = SPEED_2500;
223 		} else if (status & E1000_STATUS_SPEED_1000) {
224 			ecmd->speed = SPEED_1000;
225 		} else if (status & E1000_STATUS_SPEED_100) {
226 			ecmd->speed = SPEED_100;
227 		} else {
228 			ecmd->speed = SPEED_10;
229 		}
230 		if ((status & E1000_STATUS_FD) ||
231 		    hw->phy.media_type != e1000_media_type_copper)
232 			ecmd->duplex = DUPLEX_FULL;
233 		else
234 			ecmd->duplex = DUPLEX_HALF;
235 	} else {
236 		ecmd->speed = -1;
237 		ecmd->duplex = -1;
238 	}
239 	if ((hw->phy.media_type == e1000_media_type_fiber) ||
240 	    hw->mac.autoneg)
241 		ecmd->autoneg = AUTONEG_ENABLE;
242 	else
243 		ecmd->autoneg = AUTONEG_DISABLE;
244 
245 	/* MDI-X => 2; MDI =>1; Invalid =>0 */
246 	if (hw->phy.media_type == e1000_media_type_copper)
247 		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
248 						      ETH_TP_MDI;
249 	else
250 		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
251 
252 	if (hw->phy.mdix == AUTO_ALL_MODES)
253 		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
254 	else
255 		ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
256 
257 	return 0;
258 }
259 
260 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
261 {
262 	struct igb_adapter *adapter = netdev_priv(netdev);
263 	struct e1000_hw *hw = &adapter->hw;
264 
265 	/* When SoL/IDER sessions are active, autoneg/speed/duplex
266 	 * cannot be changed
267 	 */
268 	if (igb_check_reset_block(hw)) {
269 		dev_err(&adapter->pdev->dev,
270 			"Cannot change link characteristics when SoL/IDER is active.\n");
271 		return -EINVAL;
272 	}
273 
274 	/* MDI setting is only allowed when autoneg enabled because
275 	 * some hardware doesn't allow MDI setting when speed or
276 	 * duplex is forced.
277 	 */
278 	if (ecmd->eth_tp_mdix_ctrl) {
279 		if (hw->phy.media_type != e1000_media_type_copper)
280 			return -EOPNOTSUPP;
281 
282 		if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
283 		    (ecmd->autoneg != AUTONEG_ENABLE)) {
284 			dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
285 			return -EINVAL;
286 		}
287 	}
288 
289 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
290 		msleep(1);
291 
292 	if (ecmd->autoneg == AUTONEG_ENABLE) {
293 		hw->mac.autoneg = 1;
294 		if (hw->phy.media_type == e1000_media_type_fiber) {
295 			hw->phy.autoneg_advertised = ecmd->advertising |
296 						     ADVERTISED_FIBRE |
297 						     ADVERTISED_Autoneg;
298 			switch (adapter->link_speed) {
299 			case SPEED_2500:
300 				hw->phy.autoneg_advertised =
301 					ADVERTISED_2500baseX_Full;
302 				break;
303 			case SPEED_1000:
304 				hw->phy.autoneg_advertised =
305 					ADVERTISED_1000baseT_Full;
306 				break;
307 			case SPEED_100:
308 				hw->phy.autoneg_advertised =
309 					ADVERTISED_100baseT_Full;
310 				break;
311 			default:
312 				break;
313 			}
314 		} else {
315 			hw->phy.autoneg_advertised = ecmd->advertising |
316 						     ADVERTISED_TP |
317 						     ADVERTISED_Autoneg;
318 		}
319 		ecmd->advertising = hw->phy.autoneg_advertised;
320 		if (adapter->fc_autoneg)
321 			hw->fc.requested_mode = e1000_fc_default;
322 	} else {
323 		u32 speed = ethtool_cmd_speed(ecmd);
324 		/* calling this overrides forced MDI setting */
325 		if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
326 			clear_bit(__IGB_RESETTING, &adapter->state);
327 			return -EINVAL;
328 		}
329 	}
330 
331 	/* MDI-X => 2; MDI => 1; Auto => 3 */
332 	if (ecmd->eth_tp_mdix_ctrl) {
333 		/* fix up the value for auto (3 => 0) as zero is mapped
334 		 * internally to auto
335 		 */
336 		if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
337 			hw->phy.mdix = AUTO_ALL_MODES;
338 		else
339 			hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
340 	}
341 
342 	/* reset the link */
343 	if (netif_running(adapter->netdev)) {
344 		igb_down(adapter);
345 		igb_up(adapter);
346 	} else
347 		igb_reset(adapter);
348 
349 	clear_bit(__IGB_RESETTING, &adapter->state);
350 	return 0;
351 }
352 
353 static u32 igb_get_link(struct net_device *netdev)
354 {
355 	struct igb_adapter *adapter = netdev_priv(netdev);
356 	struct e1000_mac_info *mac = &adapter->hw.mac;
357 
358 	/* If the link is not reported up to netdev, interrupts are disabled,
359 	 * and so the physical link state may have changed since we last
360 	 * looked. Set get_link_status to make sure that the true link
361 	 * state is interrogated, rather than pulling a cached and possibly
362 	 * stale link state from the driver.
363 	 */
364 	if (!netif_carrier_ok(netdev))
365 		mac->get_link_status = 1;
366 
367 	return igb_has_link(adapter);
368 }
369 
370 static void igb_get_pauseparam(struct net_device *netdev,
371 			       struct ethtool_pauseparam *pause)
372 {
373 	struct igb_adapter *adapter = netdev_priv(netdev);
374 	struct e1000_hw *hw = &adapter->hw;
375 
376 	pause->autoneg =
377 		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
378 
379 	if (hw->fc.current_mode == e1000_fc_rx_pause)
380 		pause->rx_pause = 1;
381 	else if (hw->fc.current_mode == e1000_fc_tx_pause)
382 		pause->tx_pause = 1;
383 	else if (hw->fc.current_mode == e1000_fc_full) {
384 		pause->rx_pause = 1;
385 		pause->tx_pause = 1;
386 	}
387 }
388 
389 static int igb_set_pauseparam(struct net_device *netdev,
390 			      struct ethtool_pauseparam *pause)
391 {
392 	struct igb_adapter *adapter = netdev_priv(netdev);
393 	struct e1000_hw *hw = &adapter->hw;
394 	int retval = 0;
395 
396 	/* 100basefx does not support setting link flow control */
397 	if (hw->dev_spec._82575.eth_flags.e100_base_fx)
398 		return -EINVAL;
399 
400 	adapter->fc_autoneg = pause->autoneg;
401 
402 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
403 		msleep(1);
404 
405 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
406 		hw->fc.requested_mode = e1000_fc_default;
407 		if (netif_running(adapter->netdev)) {
408 			igb_down(adapter);
409 			igb_up(adapter);
410 		} else {
411 			igb_reset(adapter);
412 		}
413 	} else {
414 		if (pause->rx_pause && pause->tx_pause)
415 			hw->fc.requested_mode = e1000_fc_full;
416 		else if (pause->rx_pause && !pause->tx_pause)
417 			hw->fc.requested_mode = e1000_fc_rx_pause;
418 		else if (!pause->rx_pause && pause->tx_pause)
419 			hw->fc.requested_mode = e1000_fc_tx_pause;
420 		else if (!pause->rx_pause && !pause->tx_pause)
421 			hw->fc.requested_mode = e1000_fc_none;
422 
423 		hw->fc.current_mode = hw->fc.requested_mode;
424 
425 		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
426 			  igb_force_mac_fc(hw) : igb_setup_link(hw));
427 	}
428 
429 	clear_bit(__IGB_RESETTING, &adapter->state);
430 	return retval;
431 }
432 
433 static u32 igb_get_msglevel(struct net_device *netdev)
434 {
435 	struct igb_adapter *adapter = netdev_priv(netdev);
436 	return adapter->msg_enable;
437 }
438 
439 static void igb_set_msglevel(struct net_device *netdev, u32 data)
440 {
441 	struct igb_adapter *adapter = netdev_priv(netdev);
442 	adapter->msg_enable = data;
443 }
444 
445 static int igb_get_regs_len(struct net_device *netdev)
446 {
447 #define IGB_REGS_LEN 739
448 	return IGB_REGS_LEN * sizeof(u32);
449 }
450 
451 static void igb_get_regs(struct net_device *netdev,
452 			 struct ethtool_regs *regs, void *p)
453 {
454 	struct igb_adapter *adapter = netdev_priv(netdev);
455 	struct e1000_hw *hw = &adapter->hw;
456 	u32 *regs_buff = p;
457 	u8 i;
458 
459 	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
460 
461 	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
462 
463 	/* General Registers */
464 	regs_buff[0] = rd32(E1000_CTRL);
465 	regs_buff[1] = rd32(E1000_STATUS);
466 	regs_buff[2] = rd32(E1000_CTRL_EXT);
467 	regs_buff[3] = rd32(E1000_MDIC);
468 	regs_buff[4] = rd32(E1000_SCTL);
469 	regs_buff[5] = rd32(E1000_CONNSW);
470 	regs_buff[6] = rd32(E1000_VET);
471 	regs_buff[7] = rd32(E1000_LEDCTL);
472 	regs_buff[8] = rd32(E1000_PBA);
473 	regs_buff[9] = rd32(E1000_PBS);
474 	regs_buff[10] = rd32(E1000_FRTIMER);
475 	regs_buff[11] = rd32(E1000_TCPTIMER);
476 
477 	/* NVM Register */
478 	regs_buff[12] = rd32(E1000_EECD);
479 
480 	/* Interrupt */
481 	/* Reading EICS for EICR because they read the
482 	 * same but EICS does not clear on read
483 	 */
484 	regs_buff[13] = rd32(E1000_EICS);
485 	regs_buff[14] = rd32(E1000_EICS);
486 	regs_buff[15] = rd32(E1000_EIMS);
487 	regs_buff[16] = rd32(E1000_EIMC);
488 	regs_buff[17] = rd32(E1000_EIAC);
489 	regs_buff[18] = rd32(E1000_EIAM);
490 	/* Reading ICS for ICR because they read the
491 	 * same but ICS does not clear on read
492 	 */
493 	regs_buff[19] = rd32(E1000_ICS);
494 	regs_buff[20] = rd32(E1000_ICS);
495 	regs_buff[21] = rd32(E1000_IMS);
496 	regs_buff[22] = rd32(E1000_IMC);
497 	regs_buff[23] = rd32(E1000_IAC);
498 	regs_buff[24] = rd32(E1000_IAM);
499 	regs_buff[25] = rd32(E1000_IMIRVP);
500 
501 	/* Flow Control */
502 	regs_buff[26] = rd32(E1000_FCAL);
503 	regs_buff[27] = rd32(E1000_FCAH);
504 	regs_buff[28] = rd32(E1000_FCTTV);
505 	regs_buff[29] = rd32(E1000_FCRTL);
506 	regs_buff[30] = rd32(E1000_FCRTH);
507 	regs_buff[31] = rd32(E1000_FCRTV);
508 
509 	/* Receive */
510 	regs_buff[32] = rd32(E1000_RCTL);
511 	regs_buff[33] = rd32(E1000_RXCSUM);
512 	regs_buff[34] = rd32(E1000_RLPML);
513 	regs_buff[35] = rd32(E1000_RFCTL);
514 	regs_buff[36] = rd32(E1000_MRQC);
515 	regs_buff[37] = rd32(E1000_VT_CTL);
516 
517 	/* Transmit */
518 	regs_buff[38] = rd32(E1000_TCTL);
519 	regs_buff[39] = rd32(E1000_TCTL_EXT);
520 	regs_buff[40] = rd32(E1000_TIPG);
521 	regs_buff[41] = rd32(E1000_DTXCTL);
522 
523 	/* Wake Up */
524 	regs_buff[42] = rd32(E1000_WUC);
525 	regs_buff[43] = rd32(E1000_WUFC);
526 	regs_buff[44] = rd32(E1000_WUS);
527 	regs_buff[45] = rd32(E1000_IPAV);
528 	regs_buff[46] = rd32(E1000_WUPL);
529 
530 	/* MAC */
531 	regs_buff[47] = rd32(E1000_PCS_CFG0);
532 	regs_buff[48] = rd32(E1000_PCS_LCTL);
533 	regs_buff[49] = rd32(E1000_PCS_LSTAT);
534 	regs_buff[50] = rd32(E1000_PCS_ANADV);
535 	regs_buff[51] = rd32(E1000_PCS_LPAB);
536 	regs_buff[52] = rd32(E1000_PCS_NPTX);
537 	regs_buff[53] = rd32(E1000_PCS_LPABNP);
538 
539 	/* Statistics */
540 	regs_buff[54] = adapter->stats.crcerrs;
541 	regs_buff[55] = adapter->stats.algnerrc;
542 	regs_buff[56] = adapter->stats.symerrs;
543 	regs_buff[57] = adapter->stats.rxerrc;
544 	regs_buff[58] = adapter->stats.mpc;
545 	regs_buff[59] = adapter->stats.scc;
546 	regs_buff[60] = adapter->stats.ecol;
547 	regs_buff[61] = adapter->stats.mcc;
548 	regs_buff[62] = adapter->stats.latecol;
549 	regs_buff[63] = adapter->stats.colc;
550 	regs_buff[64] = adapter->stats.dc;
551 	regs_buff[65] = adapter->stats.tncrs;
552 	regs_buff[66] = adapter->stats.sec;
553 	regs_buff[67] = adapter->stats.htdpmc;
554 	regs_buff[68] = adapter->stats.rlec;
555 	regs_buff[69] = adapter->stats.xonrxc;
556 	regs_buff[70] = adapter->stats.xontxc;
557 	regs_buff[71] = adapter->stats.xoffrxc;
558 	regs_buff[72] = adapter->stats.xofftxc;
559 	regs_buff[73] = adapter->stats.fcruc;
560 	regs_buff[74] = adapter->stats.prc64;
561 	regs_buff[75] = adapter->stats.prc127;
562 	regs_buff[76] = adapter->stats.prc255;
563 	regs_buff[77] = adapter->stats.prc511;
564 	regs_buff[78] = adapter->stats.prc1023;
565 	regs_buff[79] = adapter->stats.prc1522;
566 	regs_buff[80] = adapter->stats.gprc;
567 	regs_buff[81] = adapter->stats.bprc;
568 	regs_buff[82] = adapter->stats.mprc;
569 	regs_buff[83] = adapter->stats.gptc;
570 	regs_buff[84] = adapter->stats.gorc;
571 	regs_buff[86] = adapter->stats.gotc;
572 	regs_buff[88] = adapter->stats.rnbc;
573 	regs_buff[89] = adapter->stats.ruc;
574 	regs_buff[90] = adapter->stats.rfc;
575 	regs_buff[91] = adapter->stats.roc;
576 	regs_buff[92] = adapter->stats.rjc;
577 	regs_buff[93] = adapter->stats.mgprc;
578 	regs_buff[94] = adapter->stats.mgpdc;
579 	regs_buff[95] = adapter->stats.mgptc;
580 	regs_buff[96] = adapter->stats.tor;
581 	regs_buff[98] = adapter->stats.tot;
582 	regs_buff[100] = adapter->stats.tpr;
583 	regs_buff[101] = adapter->stats.tpt;
584 	regs_buff[102] = adapter->stats.ptc64;
585 	regs_buff[103] = adapter->stats.ptc127;
586 	regs_buff[104] = adapter->stats.ptc255;
587 	regs_buff[105] = adapter->stats.ptc511;
588 	regs_buff[106] = adapter->stats.ptc1023;
589 	regs_buff[107] = adapter->stats.ptc1522;
590 	regs_buff[108] = adapter->stats.mptc;
591 	regs_buff[109] = adapter->stats.bptc;
592 	regs_buff[110] = adapter->stats.tsctc;
593 	regs_buff[111] = adapter->stats.iac;
594 	regs_buff[112] = adapter->stats.rpthc;
595 	regs_buff[113] = adapter->stats.hgptc;
596 	regs_buff[114] = adapter->stats.hgorc;
597 	regs_buff[116] = adapter->stats.hgotc;
598 	regs_buff[118] = adapter->stats.lenerrs;
599 	regs_buff[119] = adapter->stats.scvpc;
600 	regs_buff[120] = adapter->stats.hrmpc;
601 
602 	for (i = 0; i < 4; i++)
603 		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
604 	for (i = 0; i < 4; i++)
605 		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
606 	for (i = 0; i < 4; i++)
607 		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
608 	for (i = 0; i < 4; i++)
609 		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
610 	for (i = 0; i < 4; i++)
611 		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
612 	for (i = 0; i < 4; i++)
613 		regs_buff[141 + i] = rd32(E1000_RDH(i));
614 	for (i = 0; i < 4; i++)
615 		regs_buff[145 + i] = rd32(E1000_RDT(i));
616 	for (i = 0; i < 4; i++)
617 		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
618 
619 	for (i = 0; i < 10; i++)
620 		regs_buff[153 + i] = rd32(E1000_EITR(i));
621 	for (i = 0; i < 8; i++)
622 		regs_buff[163 + i] = rd32(E1000_IMIR(i));
623 	for (i = 0; i < 8; i++)
624 		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
625 	for (i = 0; i < 16; i++)
626 		regs_buff[179 + i] = rd32(E1000_RAL(i));
627 	for (i = 0; i < 16; i++)
628 		regs_buff[195 + i] = rd32(E1000_RAH(i));
629 
630 	for (i = 0; i < 4; i++)
631 		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
632 	for (i = 0; i < 4; i++)
633 		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
634 	for (i = 0; i < 4; i++)
635 		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
636 	for (i = 0; i < 4; i++)
637 		regs_buff[223 + i] = rd32(E1000_TDH(i));
638 	for (i = 0; i < 4; i++)
639 		regs_buff[227 + i] = rd32(E1000_TDT(i));
640 	for (i = 0; i < 4; i++)
641 		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
642 	for (i = 0; i < 4; i++)
643 		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
644 	for (i = 0; i < 4; i++)
645 		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
646 	for (i = 0; i < 4; i++)
647 		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
648 
649 	for (i = 0; i < 4; i++)
650 		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
651 	for (i = 0; i < 4; i++)
652 		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
653 	for (i = 0; i < 32; i++)
654 		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
655 	for (i = 0; i < 128; i++)
656 		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
657 	for (i = 0; i < 128; i++)
658 		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
659 	for (i = 0; i < 4; i++)
660 		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
661 
662 	regs_buff[547] = rd32(E1000_TDFH);
663 	regs_buff[548] = rd32(E1000_TDFT);
664 	regs_buff[549] = rd32(E1000_TDFHS);
665 	regs_buff[550] = rd32(E1000_TDFPC);
666 
667 	if (hw->mac.type > e1000_82580) {
668 		regs_buff[551] = adapter->stats.o2bgptc;
669 		regs_buff[552] = adapter->stats.b2ospc;
670 		regs_buff[553] = adapter->stats.o2bspc;
671 		regs_buff[554] = adapter->stats.b2ogprc;
672 	}
673 
674 	if (hw->mac.type != e1000_82576)
675 		return;
676 	for (i = 0; i < 12; i++)
677 		regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
678 	for (i = 0; i < 4; i++)
679 		regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
680 	for (i = 0; i < 12; i++)
681 		regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
682 	for (i = 0; i < 12; i++)
683 		regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
684 	for (i = 0; i < 12; i++)
685 		regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
686 	for (i = 0; i < 12; i++)
687 		regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
688 	for (i = 0; i < 12; i++)
689 		regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
690 	for (i = 0; i < 12; i++)
691 		regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
692 
693 	for (i = 0; i < 12; i++)
694 		regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
695 	for (i = 0; i < 12; i++)
696 		regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
697 	for (i = 0; i < 12; i++)
698 		regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
699 	for (i = 0; i < 12; i++)
700 		regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
701 	for (i = 0; i < 12; i++)
702 		regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
703 	for (i = 0; i < 12; i++)
704 		regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
705 	for (i = 0; i < 12; i++)
706 		regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
707 	for (i = 0; i < 12; i++)
708 		regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
709 }
710 
711 static int igb_get_eeprom_len(struct net_device *netdev)
712 {
713 	struct igb_adapter *adapter = netdev_priv(netdev);
714 	return adapter->hw.nvm.word_size * 2;
715 }
716 
717 static int igb_get_eeprom(struct net_device *netdev,
718 			  struct ethtool_eeprom *eeprom, u8 *bytes)
719 {
720 	struct igb_adapter *adapter = netdev_priv(netdev);
721 	struct e1000_hw *hw = &adapter->hw;
722 	u16 *eeprom_buff;
723 	int first_word, last_word;
724 	int ret_val = 0;
725 	u16 i;
726 
727 	if (eeprom->len == 0)
728 		return -EINVAL;
729 
730 	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
731 
732 	first_word = eeprom->offset >> 1;
733 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
734 
735 	eeprom_buff = kmalloc(sizeof(u16) *
736 			(last_word - first_word + 1), GFP_KERNEL);
737 	if (!eeprom_buff)
738 		return -ENOMEM;
739 
740 	if (hw->nvm.type == e1000_nvm_eeprom_spi)
741 		ret_val = hw->nvm.ops.read(hw, first_word,
742 					   last_word - first_word + 1,
743 					   eeprom_buff);
744 	else {
745 		for (i = 0; i < last_word - first_word + 1; i++) {
746 			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
747 						   &eeprom_buff[i]);
748 			if (ret_val)
749 				break;
750 		}
751 	}
752 
753 	/* Device's eeprom is always little-endian, word addressable */
754 	for (i = 0; i < last_word - first_word + 1; i++)
755 		le16_to_cpus(&eeprom_buff[i]);
756 
757 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
758 			eeprom->len);
759 	kfree(eeprom_buff);
760 
761 	return ret_val;
762 }
763 
764 static int igb_set_eeprom(struct net_device *netdev,
765 			  struct ethtool_eeprom *eeprom, u8 *bytes)
766 {
767 	struct igb_adapter *adapter = netdev_priv(netdev);
768 	struct e1000_hw *hw = &adapter->hw;
769 	u16 *eeprom_buff;
770 	void *ptr;
771 	int max_len, first_word, last_word, ret_val = 0;
772 	u16 i;
773 
774 	if (eeprom->len == 0)
775 		return -EOPNOTSUPP;
776 
777 	if ((hw->mac.type >= e1000_i210) &&
778 	    !igb_get_flash_presence_i210(hw)) {
779 		return -EOPNOTSUPP;
780 	}
781 
782 	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
783 		return -EFAULT;
784 
785 	max_len = hw->nvm.word_size * 2;
786 
787 	first_word = eeprom->offset >> 1;
788 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
789 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
790 	if (!eeprom_buff)
791 		return -ENOMEM;
792 
793 	ptr = (void *)eeprom_buff;
794 
795 	if (eeprom->offset & 1) {
796 		/* need read/modify/write of first changed EEPROM word
797 		 * only the second byte of the word is being modified
798 		 */
799 		ret_val = hw->nvm.ops.read(hw, first_word, 1,
800 					    &eeprom_buff[0]);
801 		ptr++;
802 	}
803 	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
804 		/* need read/modify/write of last changed EEPROM word
805 		 * only the first byte of the word is being modified
806 		 */
807 		ret_val = hw->nvm.ops.read(hw, last_word, 1,
808 				   &eeprom_buff[last_word - first_word]);
809 	}
810 
811 	/* Device's eeprom is always little-endian, word addressable */
812 	for (i = 0; i < last_word - first_word + 1; i++)
813 		le16_to_cpus(&eeprom_buff[i]);
814 
815 	memcpy(ptr, bytes, eeprom->len);
816 
817 	for (i = 0; i < last_word - first_word + 1; i++)
818 		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
819 
820 	ret_val = hw->nvm.ops.write(hw, first_word,
821 				    last_word - first_word + 1, eeprom_buff);
822 
823 	/* Update the checksum if nvm write succeeded */
824 	if (ret_val == 0)
825 		hw->nvm.ops.update(hw);
826 
827 	igb_set_fw_version(adapter);
828 	kfree(eeprom_buff);
829 	return ret_val;
830 }
831 
832 static void igb_get_drvinfo(struct net_device *netdev,
833 			    struct ethtool_drvinfo *drvinfo)
834 {
835 	struct igb_adapter *adapter = netdev_priv(netdev);
836 
837 	strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
838 	strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
839 
840 	/* EEPROM image version # is reported as firmware version # for
841 	 * 82575 controllers
842 	 */
843 	strlcpy(drvinfo->fw_version, adapter->fw_version,
844 		sizeof(drvinfo->fw_version));
845 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
846 		sizeof(drvinfo->bus_info));
847 	drvinfo->n_stats = IGB_STATS_LEN;
848 	drvinfo->testinfo_len = IGB_TEST_LEN;
849 	drvinfo->regdump_len = igb_get_regs_len(netdev);
850 	drvinfo->eedump_len = igb_get_eeprom_len(netdev);
851 }
852 
853 static void igb_get_ringparam(struct net_device *netdev,
854 			      struct ethtool_ringparam *ring)
855 {
856 	struct igb_adapter *adapter = netdev_priv(netdev);
857 
858 	ring->rx_max_pending = IGB_MAX_RXD;
859 	ring->tx_max_pending = IGB_MAX_TXD;
860 	ring->rx_pending = adapter->rx_ring_count;
861 	ring->tx_pending = adapter->tx_ring_count;
862 }
863 
864 static int igb_set_ringparam(struct net_device *netdev,
865 			     struct ethtool_ringparam *ring)
866 {
867 	struct igb_adapter *adapter = netdev_priv(netdev);
868 	struct igb_ring *temp_ring;
869 	int i, err = 0;
870 	u16 new_rx_count, new_tx_count;
871 
872 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
873 		return -EINVAL;
874 
875 	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
876 	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
877 	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
878 
879 	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
880 	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
881 	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
882 
883 	if ((new_tx_count == adapter->tx_ring_count) &&
884 	    (new_rx_count == adapter->rx_ring_count)) {
885 		/* nothing to do */
886 		return 0;
887 	}
888 
889 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
890 		msleep(1);
891 
892 	if (!netif_running(adapter->netdev)) {
893 		for (i = 0; i < adapter->num_tx_queues; i++)
894 			adapter->tx_ring[i]->count = new_tx_count;
895 		for (i = 0; i < adapter->num_rx_queues; i++)
896 			adapter->rx_ring[i]->count = new_rx_count;
897 		adapter->tx_ring_count = new_tx_count;
898 		adapter->rx_ring_count = new_rx_count;
899 		goto clear_reset;
900 	}
901 
902 	if (adapter->num_tx_queues > adapter->num_rx_queues)
903 		temp_ring = vmalloc(adapter->num_tx_queues *
904 				    sizeof(struct igb_ring));
905 	else
906 		temp_ring = vmalloc(adapter->num_rx_queues *
907 				    sizeof(struct igb_ring));
908 
909 	if (!temp_ring) {
910 		err = -ENOMEM;
911 		goto clear_reset;
912 	}
913 
914 	igb_down(adapter);
915 
916 	/* We can't just free everything and then setup again,
917 	 * because the ISRs in MSI-X mode get passed pointers
918 	 * to the Tx and Rx ring structs.
919 	 */
920 	if (new_tx_count != adapter->tx_ring_count) {
921 		for (i = 0; i < adapter->num_tx_queues; i++) {
922 			memcpy(&temp_ring[i], adapter->tx_ring[i],
923 			       sizeof(struct igb_ring));
924 
925 			temp_ring[i].count = new_tx_count;
926 			err = igb_setup_tx_resources(&temp_ring[i]);
927 			if (err) {
928 				while (i) {
929 					i--;
930 					igb_free_tx_resources(&temp_ring[i]);
931 				}
932 				goto err_setup;
933 			}
934 		}
935 
936 		for (i = 0; i < adapter->num_tx_queues; i++) {
937 			igb_free_tx_resources(adapter->tx_ring[i]);
938 
939 			memcpy(adapter->tx_ring[i], &temp_ring[i],
940 			       sizeof(struct igb_ring));
941 		}
942 
943 		adapter->tx_ring_count = new_tx_count;
944 	}
945 
946 	if (new_rx_count != adapter->rx_ring_count) {
947 		for (i = 0; i < adapter->num_rx_queues; i++) {
948 			memcpy(&temp_ring[i], adapter->rx_ring[i],
949 			       sizeof(struct igb_ring));
950 
951 			temp_ring[i].count = new_rx_count;
952 			err = igb_setup_rx_resources(&temp_ring[i]);
953 			if (err) {
954 				while (i) {
955 					i--;
956 					igb_free_rx_resources(&temp_ring[i]);
957 				}
958 				goto err_setup;
959 			}
960 
961 		}
962 
963 		for (i = 0; i < adapter->num_rx_queues; i++) {
964 			igb_free_rx_resources(adapter->rx_ring[i]);
965 
966 			memcpy(adapter->rx_ring[i], &temp_ring[i],
967 			       sizeof(struct igb_ring));
968 		}
969 
970 		adapter->rx_ring_count = new_rx_count;
971 	}
972 err_setup:
973 	igb_up(adapter);
974 	vfree(temp_ring);
975 clear_reset:
976 	clear_bit(__IGB_RESETTING, &adapter->state);
977 	return err;
978 }
979 
980 /* ethtool register test data */
981 struct igb_reg_test {
982 	u16 reg;
983 	u16 reg_offset;
984 	u16 array_len;
985 	u16 test_type;
986 	u32 mask;
987 	u32 write;
988 };
989 
990 /* In the hardware, registers are laid out either singly, in arrays
991  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
992  * most tests take place on arrays or single registers (handled
993  * as a single-element array) and special-case the tables.
994  * Table tests are always pattern tests.
995  *
996  * We also make provision for some required setup steps by specifying
997  * registers to be written without any read-back testing.
998  */
999 
1000 #define PATTERN_TEST	1
1001 #define SET_READ_TEST	2
1002 #define WRITE_NO_TEST	3
1003 #define TABLE32_TEST	4
1004 #define TABLE64_TEST_LO	5
1005 #define TABLE64_TEST_HI	6
1006 
1007 /* i210 reg test */
1008 static struct igb_reg_test reg_test_i210[] = {
1009 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1010 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1011 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1012 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1013 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1014 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1015 	/* RDH is read-only for i210, only test RDT. */
1016 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1017 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1018 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1019 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1020 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1021 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1022 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1023 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1024 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1025 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1026 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1027 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1028 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1029 						0xFFFFFFFF, 0xFFFFFFFF },
1030 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1031 						0x900FFFFF, 0xFFFFFFFF },
1032 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1033 						0xFFFFFFFF, 0xFFFFFFFF },
1034 	{ 0, 0, 0, 0, 0 }
1035 };
1036 
1037 /* i350 reg test */
1038 static struct igb_reg_test reg_test_i350[] = {
1039 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1040 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1041 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1042 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1043 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1044 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1045 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1046 	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1047 	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1048 	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1049 	/* RDH is read-only for i350, only test RDT. */
1050 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1051 	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1052 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1053 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1054 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1055 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1056 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1057 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1058 	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1059 	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1060 	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1061 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1062 	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1063 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1064 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1065 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1066 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1067 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1068 						0xFFFFFFFF, 0xFFFFFFFF },
1069 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1070 						0xC3FFFFFF, 0xFFFFFFFF },
1071 	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
1072 						0xFFFFFFFF, 0xFFFFFFFF },
1073 	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
1074 						0xC3FFFFFF, 0xFFFFFFFF },
1075 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1076 						0xFFFFFFFF, 0xFFFFFFFF },
1077 	{ 0, 0, 0, 0 }
1078 };
1079 
1080 /* 82580 reg test */
1081 static struct igb_reg_test reg_test_82580[] = {
1082 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1083 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1084 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1085 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1086 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1087 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1088 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1089 	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1090 	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1091 	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1092 	/* RDH is read-only for 82580, only test RDT. */
1093 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1094 	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1095 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1096 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1097 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1098 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1099 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1100 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1101 	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1102 	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1103 	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1104 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1105 	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1106 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1107 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1108 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1109 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1110 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1111 						0xFFFFFFFF, 0xFFFFFFFF },
1112 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1113 						0x83FFFFFF, 0xFFFFFFFF },
1114 	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
1115 						0xFFFFFFFF, 0xFFFFFFFF },
1116 	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
1117 						0x83FFFFFF, 0xFFFFFFFF },
1118 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1119 						0xFFFFFFFF, 0xFFFFFFFF },
1120 	{ 0, 0, 0, 0 }
1121 };
1122 
1123 /* 82576 reg test */
1124 static struct igb_reg_test reg_test_82576[] = {
1125 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1126 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1127 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1128 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1129 	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1130 	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1131 	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1132 	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1133 	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1134 	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1135 	/* Enable all RX queues before testing. */
1136 	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1137 	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1138 	/* RDH is read-only for 82576, only test RDT. */
1139 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1140 	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1141 	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1142 	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1143 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1144 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1145 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1146 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1147 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1148 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1149 	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1150 	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1151 	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1152 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1153 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1154 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1155 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1156 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1157 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1158 	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1159 	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1160 	{ E1000_MTA,	   0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1161 	{ 0, 0, 0, 0 }
1162 };
1163 
1164 /* 82575 register test */
1165 static struct igb_reg_test reg_test_82575[] = {
1166 	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1167 	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1168 	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1169 	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1170 	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1171 	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1172 	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1173 	/* Enable all four RX queues before testing. */
1174 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1175 	/* RDH is read-only for 82575, only test RDT. */
1176 	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1177 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1178 	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1179 	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1180 	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1181 	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1182 	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1183 	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1184 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1185 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1186 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1187 	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1188 	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1189 	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1190 	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1191 	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1192 	{ 0, 0, 0, 0 }
1193 };
1194 
1195 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1196 			     int reg, u32 mask, u32 write)
1197 {
1198 	struct e1000_hw *hw = &adapter->hw;
1199 	u32 pat, val;
1200 	static const u32 _test[] =
1201 		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1202 	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1203 		wr32(reg, (_test[pat] & write));
1204 		val = rd32(reg) & mask;
1205 		if (val != (_test[pat] & write & mask)) {
1206 			dev_err(&adapter->pdev->dev,
1207 				"pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1208 				reg, val, (_test[pat] & write & mask));
1209 			*data = reg;
1210 			return 1;
1211 		}
1212 	}
1213 
1214 	return 0;
1215 }
1216 
1217 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1218 			      int reg, u32 mask, u32 write)
1219 {
1220 	struct e1000_hw *hw = &adapter->hw;
1221 	u32 val;
1222 	wr32(reg, write & mask);
1223 	val = rd32(reg);
1224 	if ((write & mask) != (val & mask)) {
1225 		dev_err(&adapter->pdev->dev,
1226 			"set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", reg,
1227 			(val & mask), (write & mask));
1228 		*data = reg;
1229 		return 1;
1230 	}
1231 
1232 	return 0;
1233 }
1234 
1235 #define REG_PATTERN_TEST(reg, mask, write) \
1236 	do { \
1237 		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1238 			return 1; \
1239 	} while (0)
1240 
1241 #define REG_SET_AND_CHECK(reg, mask, write) \
1242 	do { \
1243 		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1244 			return 1; \
1245 	} while (0)
1246 
1247 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1248 {
1249 	struct e1000_hw *hw = &adapter->hw;
1250 	struct igb_reg_test *test;
1251 	u32 value, before, after;
1252 	u32 i, toggle;
1253 
1254 	switch (adapter->hw.mac.type) {
1255 	case e1000_i350:
1256 	case e1000_i354:
1257 		test = reg_test_i350;
1258 		toggle = 0x7FEFF3FF;
1259 		break;
1260 	case e1000_i210:
1261 	case e1000_i211:
1262 		test = reg_test_i210;
1263 		toggle = 0x7FEFF3FF;
1264 		break;
1265 	case e1000_82580:
1266 		test = reg_test_82580;
1267 		toggle = 0x7FEFF3FF;
1268 		break;
1269 	case e1000_82576:
1270 		test = reg_test_82576;
1271 		toggle = 0x7FFFF3FF;
1272 		break;
1273 	default:
1274 		test = reg_test_82575;
1275 		toggle = 0x7FFFF3FF;
1276 		break;
1277 	}
1278 
1279 	/* Because the status register is such a special case,
1280 	 * we handle it separately from the rest of the register
1281 	 * tests.  Some bits are read-only, some toggle, and some
1282 	 * are writable on newer MACs.
1283 	 */
1284 	before = rd32(E1000_STATUS);
1285 	value = (rd32(E1000_STATUS) & toggle);
1286 	wr32(E1000_STATUS, toggle);
1287 	after = rd32(E1000_STATUS) & toggle;
1288 	if (value != after) {
1289 		dev_err(&adapter->pdev->dev,
1290 			"failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1291 			after, value);
1292 		*data = 1;
1293 		return 1;
1294 	}
1295 	/* restore previous status */
1296 	wr32(E1000_STATUS, before);
1297 
1298 	/* Perform the remainder of the register test, looping through
1299 	 * the test table until we either fail or reach the null entry.
1300 	 */
1301 	while (test->reg) {
1302 		for (i = 0; i < test->array_len; i++) {
1303 			switch (test->test_type) {
1304 			case PATTERN_TEST:
1305 				REG_PATTERN_TEST(test->reg +
1306 						(i * test->reg_offset),
1307 						test->mask,
1308 						test->write);
1309 				break;
1310 			case SET_READ_TEST:
1311 				REG_SET_AND_CHECK(test->reg +
1312 						(i * test->reg_offset),
1313 						test->mask,
1314 						test->write);
1315 				break;
1316 			case WRITE_NO_TEST:
1317 				writel(test->write,
1318 				    (adapter->hw.hw_addr + test->reg)
1319 					+ (i * test->reg_offset));
1320 				break;
1321 			case TABLE32_TEST:
1322 				REG_PATTERN_TEST(test->reg + (i * 4),
1323 						test->mask,
1324 						test->write);
1325 				break;
1326 			case TABLE64_TEST_LO:
1327 				REG_PATTERN_TEST(test->reg + (i * 8),
1328 						test->mask,
1329 						test->write);
1330 				break;
1331 			case TABLE64_TEST_HI:
1332 				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1333 						test->mask,
1334 						test->write);
1335 				break;
1336 			}
1337 		}
1338 		test++;
1339 	}
1340 
1341 	*data = 0;
1342 	return 0;
1343 }
1344 
1345 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1346 {
1347 	struct e1000_hw *hw = &adapter->hw;
1348 
1349 	*data = 0;
1350 
1351 	/* Validate eeprom on all parts but flashless */
1352 	switch (hw->mac.type) {
1353 	case e1000_i210:
1354 	case e1000_i211:
1355 		if (igb_get_flash_presence_i210(hw)) {
1356 			if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1357 				*data = 2;
1358 		}
1359 		break;
1360 	default:
1361 		if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1362 			*data = 2;
1363 		break;
1364 	}
1365 
1366 	return *data;
1367 }
1368 
1369 static irqreturn_t igb_test_intr(int irq, void *data)
1370 {
1371 	struct igb_adapter *adapter = (struct igb_adapter *) data;
1372 	struct e1000_hw *hw = &adapter->hw;
1373 
1374 	adapter->test_icr |= rd32(E1000_ICR);
1375 
1376 	return IRQ_HANDLED;
1377 }
1378 
1379 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1380 {
1381 	struct e1000_hw *hw = &adapter->hw;
1382 	struct net_device *netdev = adapter->netdev;
1383 	u32 mask, ics_mask, i = 0, shared_int = true;
1384 	u32 irq = adapter->pdev->irq;
1385 
1386 	*data = 0;
1387 
1388 	/* Hook up test interrupt handler just for this test */
1389 	if (adapter->msix_entries) {
1390 		if (request_irq(adapter->msix_entries[0].vector,
1391 		                igb_test_intr, 0, netdev->name, adapter)) {
1392 			*data = 1;
1393 			return -1;
1394 		}
1395 	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1396 		shared_int = false;
1397 		if (request_irq(irq,
1398 		                igb_test_intr, 0, netdev->name, adapter)) {
1399 			*data = 1;
1400 			return -1;
1401 		}
1402 	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1403 				netdev->name, adapter)) {
1404 		shared_int = false;
1405 	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1406 		 netdev->name, adapter)) {
1407 		*data = 1;
1408 		return -1;
1409 	}
1410 	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1411 		(shared_int ? "shared" : "unshared"));
1412 
1413 	/* Disable all the interrupts */
1414 	wr32(E1000_IMC, ~0);
1415 	wrfl();
1416 	msleep(10);
1417 
1418 	/* Define all writable bits for ICS */
1419 	switch (hw->mac.type) {
1420 	case e1000_82575:
1421 		ics_mask = 0x37F47EDD;
1422 		break;
1423 	case e1000_82576:
1424 		ics_mask = 0x77D4FBFD;
1425 		break;
1426 	case e1000_82580:
1427 		ics_mask = 0x77DCFED5;
1428 		break;
1429 	case e1000_i350:
1430 	case e1000_i354:
1431 	case e1000_i210:
1432 	case e1000_i211:
1433 		ics_mask = 0x77DCFED5;
1434 		break;
1435 	default:
1436 		ics_mask = 0x7FFFFFFF;
1437 		break;
1438 	}
1439 
1440 	/* Test each interrupt */
1441 	for (; i < 31; i++) {
1442 		/* Interrupt to test */
1443 		mask = 1 << i;
1444 
1445 		if (!(mask & ics_mask))
1446 			continue;
1447 
1448 		if (!shared_int) {
1449 			/* Disable the interrupt to be reported in
1450 			 * the cause register and then force the same
1451 			 * interrupt and see if one gets posted.  If
1452 			 * an interrupt was posted to the bus, the
1453 			 * test failed.
1454 			 */
1455 			adapter->test_icr = 0;
1456 
1457 			/* Flush any pending interrupts */
1458 			wr32(E1000_ICR, ~0);
1459 
1460 			wr32(E1000_IMC, mask);
1461 			wr32(E1000_ICS, mask);
1462 			wrfl();
1463 			msleep(10);
1464 
1465 			if (adapter->test_icr & mask) {
1466 				*data = 3;
1467 				break;
1468 			}
1469 		}
1470 
1471 		/* Enable the interrupt to be reported in
1472 		 * the cause register and then force the same
1473 		 * interrupt and see if one gets posted.  If
1474 		 * an interrupt was not posted to the bus, the
1475 		 * test failed.
1476 		 */
1477 		adapter->test_icr = 0;
1478 
1479 		/* Flush any pending interrupts */
1480 		wr32(E1000_ICR, ~0);
1481 
1482 		wr32(E1000_IMS, mask);
1483 		wr32(E1000_ICS, mask);
1484 		wrfl();
1485 		msleep(10);
1486 
1487 		if (!(adapter->test_icr & mask)) {
1488 			*data = 4;
1489 			break;
1490 		}
1491 
1492 		if (!shared_int) {
1493 			/* Disable the other interrupts to be reported in
1494 			 * the cause register and then force the other
1495 			 * interrupts and see if any get posted.  If
1496 			 * an interrupt was posted to the bus, the
1497 			 * test failed.
1498 			 */
1499 			adapter->test_icr = 0;
1500 
1501 			/* Flush any pending interrupts */
1502 			wr32(E1000_ICR, ~0);
1503 
1504 			wr32(E1000_IMC, ~mask);
1505 			wr32(E1000_ICS, ~mask);
1506 			wrfl();
1507 			msleep(10);
1508 
1509 			if (adapter->test_icr & mask) {
1510 				*data = 5;
1511 				break;
1512 			}
1513 		}
1514 	}
1515 
1516 	/* Disable all the interrupts */
1517 	wr32(E1000_IMC, ~0);
1518 	wrfl();
1519 	msleep(10);
1520 
1521 	/* Unhook test interrupt handler */
1522 	if (adapter->msix_entries)
1523 		free_irq(adapter->msix_entries[0].vector, adapter);
1524 	else
1525 		free_irq(irq, adapter);
1526 
1527 	return *data;
1528 }
1529 
1530 static void igb_free_desc_rings(struct igb_adapter *adapter)
1531 {
1532 	igb_free_tx_resources(&adapter->test_tx_ring);
1533 	igb_free_rx_resources(&adapter->test_rx_ring);
1534 }
1535 
1536 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1537 {
1538 	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1539 	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1540 	struct e1000_hw *hw = &adapter->hw;
1541 	int ret_val;
1542 
1543 	/* Setup Tx descriptor ring and Tx buffers */
1544 	tx_ring->count = IGB_DEFAULT_TXD;
1545 	tx_ring->dev = &adapter->pdev->dev;
1546 	tx_ring->netdev = adapter->netdev;
1547 	tx_ring->reg_idx = adapter->vfs_allocated_count;
1548 
1549 	if (igb_setup_tx_resources(tx_ring)) {
1550 		ret_val = 1;
1551 		goto err_nomem;
1552 	}
1553 
1554 	igb_setup_tctl(adapter);
1555 	igb_configure_tx_ring(adapter, tx_ring);
1556 
1557 	/* Setup Rx descriptor ring and Rx buffers */
1558 	rx_ring->count = IGB_DEFAULT_RXD;
1559 	rx_ring->dev = &adapter->pdev->dev;
1560 	rx_ring->netdev = adapter->netdev;
1561 	rx_ring->reg_idx = adapter->vfs_allocated_count;
1562 
1563 	if (igb_setup_rx_resources(rx_ring)) {
1564 		ret_val = 3;
1565 		goto err_nomem;
1566 	}
1567 
1568 	/* set the default queue to queue 0 of PF */
1569 	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1570 
1571 	/* enable receive ring */
1572 	igb_setup_rctl(adapter);
1573 	igb_configure_rx_ring(adapter, rx_ring);
1574 
1575 	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1576 
1577 	return 0;
1578 
1579 err_nomem:
1580 	igb_free_desc_rings(adapter);
1581 	return ret_val;
1582 }
1583 
1584 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1585 {
1586 	struct e1000_hw *hw = &adapter->hw;
1587 
1588 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1589 	igb_write_phy_reg(hw, 29, 0x001F);
1590 	igb_write_phy_reg(hw, 30, 0x8FFC);
1591 	igb_write_phy_reg(hw, 29, 0x001A);
1592 	igb_write_phy_reg(hw, 30, 0x8FF0);
1593 }
1594 
1595 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1596 {
1597 	struct e1000_hw *hw = &adapter->hw;
1598 	u32 ctrl_reg = 0;
1599 
1600 	hw->mac.autoneg = false;
1601 
1602 	if (hw->phy.type == e1000_phy_m88) {
1603 		if (hw->phy.id != I210_I_PHY_ID) {
1604 			/* Auto-MDI/MDIX Off */
1605 			igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1606 			/* reset to update Auto-MDI/MDIX */
1607 			igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1608 			/* autoneg off */
1609 			igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1610 		} else {
1611 			/* force 1000, set loopback  */
1612 			igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1613 			igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1614 		}
1615 	} else if (hw->phy.type == e1000_phy_82580) {
1616 		/* enable MII loopback */
1617 		igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1618 	}
1619 
1620 	/* add small delay to avoid loopback test failure */
1621 	msleep(50);
1622 
1623 	/* force 1000, set loopback */
1624 	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1625 
1626 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1627 	ctrl_reg = rd32(E1000_CTRL);
1628 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1629 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1630 		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1631 		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1632 		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1633 		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1634 
1635 	if (hw->phy.type == e1000_phy_m88)
1636 		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1637 
1638 	wr32(E1000_CTRL, ctrl_reg);
1639 
1640 	/* Disable the receiver on the PHY so when a cable is plugged in, the
1641 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1642 	 */
1643 	if (hw->phy.type == e1000_phy_m88)
1644 		igb_phy_disable_receiver(adapter);
1645 
1646 	mdelay(500);
1647 	return 0;
1648 }
1649 
1650 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1651 {
1652 	return igb_integrated_phy_loopback(adapter);
1653 }
1654 
1655 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1656 {
1657 	struct e1000_hw *hw = &adapter->hw;
1658 	u32 reg;
1659 
1660 	reg = rd32(E1000_CTRL_EXT);
1661 
1662 	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1663 	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1664 		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1665 		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1666 		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1667 		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1668 		(hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1669 
1670 			/* Enable DH89xxCC MPHY for near end loopback */
1671 			reg = rd32(E1000_MPHY_ADDR_CTL);
1672 			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1673 			E1000_MPHY_PCS_CLK_REG_OFFSET;
1674 			wr32(E1000_MPHY_ADDR_CTL, reg);
1675 
1676 			reg = rd32(E1000_MPHY_DATA);
1677 			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1678 			wr32(E1000_MPHY_DATA, reg);
1679 		}
1680 
1681 		reg = rd32(E1000_RCTL);
1682 		reg |= E1000_RCTL_LBM_TCVR;
1683 		wr32(E1000_RCTL, reg);
1684 
1685 		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1686 
1687 		reg = rd32(E1000_CTRL);
1688 		reg &= ~(E1000_CTRL_RFCE |
1689 			 E1000_CTRL_TFCE |
1690 			 E1000_CTRL_LRST);
1691 		reg |= E1000_CTRL_SLU |
1692 		       E1000_CTRL_FD;
1693 		wr32(E1000_CTRL, reg);
1694 
1695 		/* Unset switch control to serdes energy detect */
1696 		reg = rd32(E1000_CONNSW);
1697 		reg &= ~E1000_CONNSW_ENRGSRC;
1698 		wr32(E1000_CONNSW, reg);
1699 
1700 		/* Unset sigdetect for SERDES loopback on
1701 		 * 82580 and newer devices.
1702 		 */
1703 		if (hw->mac.type >= e1000_82580) {
1704 			reg = rd32(E1000_PCS_CFG0);
1705 			reg |= E1000_PCS_CFG_IGN_SD;
1706 			wr32(E1000_PCS_CFG0, reg);
1707 		}
1708 
1709 		/* Set PCS register for forced speed */
1710 		reg = rd32(E1000_PCS_LCTL);
1711 		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1712 		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1713 		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1714 		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1715 		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1716 		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1717 		wr32(E1000_PCS_LCTL, reg);
1718 
1719 		return 0;
1720 	}
1721 
1722 	return igb_set_phy_loopback(adapter);
1723 }
1724 
1725 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1726 {
1727 	struct e1000_hw *hw = &adapter->hw;
1728 	u32 rctl;
1729 	u16 phy_reg;
1730 
1731 	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1732 	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1733 	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1734 	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1735 	(hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1736 		u32 reg;
1737 
1738 		/* Disable near end loopback on DH89xxCC */
1739 		reg = rd32(E1000_MPHY_ADDR_CTL);
1740 		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1741 		E1000_MPHY_PCS_CLK_REG_OFFSET;
1742 		wr32(E1000_MPHY_ADDR_CTL, reg);
1743 
1744 		reg = rd32(E1000_MPHY_DATA);
1745 		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1746 		wr32(E1000_MPHY_DATA, reg);
1747 	}
1748 
1749 	rctl = rd32(E1000_RCTL);
1750 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1751 	wr32(E1000_RCTL, rctl);
1752 
1753 	hw->mac.autoneg = true;
1754 	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1755 	if (phy_reg & MII_CR_LOOPBACK) {
1756 		phy_reg &= ~MII_CR_LOOPBACK;
1757 		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1758 		igb_phy_sw_reset(hw);
1759 	}
1760 }
1761 
1762 static void igb_create_lbtest_frame(struct sk_buff *skb,
1763 				    unsigned int frame_size)
1764 {
1765 	memset(skb->data, 0xFF, frame_size);
1766 	frame_size /= 2;
1767 	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1768 	memset(&skb->data[frame_size + 10], 0xBE, 1);
1769 	memset(&skb->data[frame_size + 12], 0xAF, 1);
1770 }
1771 
1772 static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1773 				  unsigned int frame_size)
1774 {
1775 	unsigned char *data;
1776 	bool match = true;
1777 
1778 	frame_size >>= 1;
1779 
1780 	data = kmap(rx_buffer->page);
1781 
1782 	if (data[3] != 0xFF ||
1783 	    data[frame_size + 10] != 0xBE ||
1784 	    data[frame_size + 12] != 0xAF)
1785 		match = false;
1786 
1787 	kunmap(rx_buffer->page);
1788 
1789 	return match;
1790 }
1791 
1792 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1793 				struct igb_ring *tx_ring,
1794 				unsigned int size)
1795 {
1796 	union e1000_adv_rx_desc *rx_desc;
1797 	struct igb_rx_buffer *rx_buffer_info;
1798 	struct igb_tx_buffer *tx_buffer_info;
1799 	u16 rx_ntc, tx_ntc, count = 0;
1800 
1801 	/* initialize next to clean and descriptor values */
1802 	rx_ntc = rx_ring->next_to_clean;
1803 	tx_ntc = tx_ring->next_to_clean;
1804 	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1805 
1806 	while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1807 		/* check Rx buffer */
1808 		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1809 
1810 		/* sync Rx buffer for CPU read */
1811 		dma_sync_single_for_cpu(rx_ring->dev,
1812 					rx_buffer_info->dma,
1813 					IGB_RX_BUFSZ,
1814 					DMA_FROM_DEVICE);
1815 
1816 		/* verify contents of skb */
1817 		if (igb_check_lbtest_frame(rx_buffer_info, size))
1818 			count++;
1819 
1820 		/* sync Rx buffer for device write */
1821 		dma_sync_single_for_device(rx_ring->dev,
1822 					   rx_buffer_info->dma,
1823 					   IGB_RX_BUFSZ,
1824 					   DMA_FROM_DEVICE);
1825 
1826 		/* unmap buffer on Tx side */
1827 		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1828 		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1829 
1830 		/* increment Rx/Tx next to clean counters */
1831 		rx_ntc++;
1832 		if (rx_ntc == rx_ring->count)
1833 			rx_ntc = 0;
1834 		tx_ntc++;
1835 		if (tx_ntc == tx_ring->count)
1836 			tx_ntc = 0;
1837 
1838 		/* fetch next descriptor */
1839 		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1840 	}
1841 
1842 	netdev_tx_reset_queue(txring_txq(tx_ring));
1843 
1844 	/* re-map buffers to ring, store next to clean values */
1845 	igb_alloc_rx_buffers(rx_ring, count);
1846 	rx_ring->next_to_clean = rx_ntc;
1847 	tx_ring->next_to_clean = tx_ntc;
1848 
1849 	return count;
1850 }
1851 
1852 static int igb_run_loopback_test(struct igb_adapter *adapter)
1853 {
1854 	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1855 	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1856 	u16 i, j, lc, good_cnt;
1857 	int ret_val = 0;
1858 	unsigned int size = IGB_RX_HDR_LEN;
1859 	netdev_tx_t tx_ret_val;
1860 	struct sk_buff *skb;
1861 
1862 	/* allocate test skb */
1863 	skb = alloc_skb(size, GFP_KERNEL);
1864 	if (!skb)
1865 		return 11;
1866 
1867 	/* place data into test skb */
1868 	igb_create_lbtest_frame(skb, size);
1869 	skb_put(skb, size);
1870 
1871 	/* Calculate the loop count based on the largest descriptor ring
1872 	 * The idea is to wrap the largest ring a number of times using 64
1873 	 * send/receive pairs during each loop
1874 	 */
1875 
1876 	if (rx_ring->count <= tx_ring->count)
1877 		lc = ((tx_ring->count / 64) * 2) + 1;
1878 	else
1879 		lc = ((rx_ring->count / 64) * 2) + 1;
1880 
1881 	for (j = 0; j <= lc; j++) { /* loop count loop */
1882 		/* reset count of good packets */
1883 		good_cnt = 0;
1884 
1885 		/* place 64 packets on the transmit queue*/
1886 		for (i = 0; i < 64; i++) {
1887 			skb_get(skb);
1888 			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1889 			if (tx_ret_val == NETDEV_TX_OK)
1890 				good_cnt++;
1891 		}
1892 
1893 		if (good_cnt != 64) {
1894 			ret_val = 12;
1895 			break;
1896 		}
1897 
1898 		/* allow 200 milliseconds for packets to go from Tx to Rx */
1899 		msleep(200);
1900 
1901 		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1902 		if (good_cnt != 64) {
1903 			ret_val = 13;
1904 			break;
1905 		}
1906 	} /* end loop count loop */
1907 
1908 	/* free the original skb */
1909 	kfree_skb(skb);
1910 
1911 	return ret_val;
1912 }
1913 
1914 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1915 {
1916 	/* PHY loopback cannot be performed if SoL/IDER
1917 	 * sessions are active
1918 	 */
1919 	if (igb_check_reset_block(&adapter->hw)) {
1920 		dev_err(&adapter->pdev->dev,
1921 			"Cannot do PHY loopback test when SoL/IDER is active.\n");
1922 		*data = 0;
1923 		goto out;
1924 	}
1925 
1926 	if (adapter->hw.mac.type == e1000_i354) {
1927 		dev_info(&adapter->pdev->dev,
1928 			"Loopback test not supported on i354.\n");
1929 		*data = 0;
1930 		goto out;
1931 	}
1932 	*data = igb_setup_desc_rings(adapter);
1933 	if (*data)
1934 		goto out;
1935 	*data = igb_setup_loopback_test(adapter);
1936 	if (*data)
1937 		goto err_loopback;
1938 	*data = igb_run_loopback_test(adapter);
1939 	igb_loopback_cleanup(adapter);
1940 
1941 err_loopback:
1942 	igb_free_desc_rings(adapter);
1943 out:
1944 	return *data;
1945 }
1946 
1947 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1948 {
1949 	struct e1000_hw *hw = &adapter->hw;
1950 	*data = 0;
1951 	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1952 		int i = 0;
1953 		hw->mac.serdes_has_link = false;
1954 
1955 		/* On some blade server designs, link establishment
1956 		 * could take as long as 2-3 minutes
1957 		 */
1958 		do {
1959 			hw->mac.ops.check_for_link(&adapter->hw);
1960 			if (hw->mac.serdes_has_link)
1961 				return *data;
1962 			msleep(20);
1963 		} while (i++ < 3750);
1964 
1965 		*data = 1;
1966 	} else {
1967 		hw->mac.ops.check_for_link(&adapter->hw);
1968 		if (hw->mac.autoneg)
1969 			msleep(5000);
1970 
1971 		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1972 			*data = 1;
1973 	}
1974 	return *data;
1975 }
1976 
1977 static void igb_diag_test(struct net_device *netdev,
1978 			  struct ethtool_test *eth_test, u64 *data)
1979 {
1980 	struct igb_adapter *adapter = netdev_priv(netdev);
1981 	u16 autoneg_advertised;
1982 	u8 forced_speed_duplex, autoneg;
1983 	bool if_running = netif_running(netdev);
1984 
1985 	set_bit(__IGB_TESTING, &adapter->state);
1986 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1987 		/* Offline tests */
1988 
1989 		/* save speed, duplex, autoneg settings */
1990 		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1991 		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1992 		autoneg = adapter->hw.mac.autoneg;
1993 
1994 		dev_info(&adapter->pdev->dev, "offline testing starting\n");
1995 
1996 		/* power up link for link test */
1997 		igb_power_up_link(adapter);
1998 
1999 		/* Link test performed before hardware reset so autoneg doesn't
2000 		 * interfere with test result
2001 		 */
2002 		if (igb_link_test(adapter, &data[4]))
2003 			eth_test->flags |= ETH_TEST_FL_FAILED;
2004 
2005 		if (if_running)
2006 			/* indicate we're in test mode */
2007 			dev_close(netdev);
2008 		else
2009 			igb_reset(adapter);
2010 
2011 		if (igb_reg_test(adapter, &data[0]))
2012 			eth_test->flags |= ETH_TEST_FL_FAILED;
2013 
2014 		igb_reset(adapter);
2015 		if (igb_eeprom_test(adapter, &data[1]))
2016 			eth_test->flags |= ETH_TEST_FL_FAILED;
2017 
2018 		igb_reset(adapter);
2019 		if (igb_intr_test(adapter, &data[2]))
2020 			eth_test->flags |= ETH_TEST_FL_FAILED;
2021 
2022 		igb_reset(adapter);
2023 		/* power up link for loopback test */
2024 		igb_power_up_link(adapter);
2025 		if (igb_loopback_test(adapter, &data[3]))
2026 			eth_test->flags |= ETH_TEST_FL_FAILED;
2027 
2028 		/* restore speed, duplex, autoneg settings */
2029 		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2030 		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2031 		adapter->hw.mac.autoneg = autoneg;
2032 
2033 		/* force this routine to wait until autoneg complete/timeout */
2034 		adapter->hw.phy.autoneg_wait_to_complete = true;
2035 		igb_reset(adapter);
2036 		adapter->hw.phy.autoneg_wait_to_complete = false;
2037 
2038 		clear_bit(__IGB_TESTING, &adapter->state);
2039 		if (if_running)
2040 			dev_open(netdev);
2041 	} else {
2042 		dev_info(&adapter->pdev->dev, "online testing starting\n");
2043 
2044 		/* PHY is powered down when interface is down */
2045 		if (if_running && igb_link_test(adapter, &data[4]))
2046 			eth_test->flags |= ETH_TEST_FL_FAILED;
2047 		else
2048 			data[4] = 0;
2049 
2050 		/* Online tests aren't run; pass by default */
2051 		data[0] = 0;
2052 		data[1] = 0;
2053 		data[2] = 0;
2054 		data[3] = 0;
2055 
2056 		clear_bit(__IGB_TESTING, &adapter->state);
2057 	}
2058 	msleep_interruptible(4 * 1000);
2059 }
2060 
2061 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2062 {
2063 	struct igb_adapter *adapter = netdev_priv(netdev);
2064 
2065 	wol->wolopts = 0;
2066 
2067 	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2068 		return;
2069 
2070 	wol->supported = WAKE_UCAST | WAKE_MCAST |
2071 			 WAKE_BCAST | WAKE_MAGIC |
2072 			 WAKE_PHY;
2073 
2074 	/* apply any specific unsupported masks here */
2075 	switch (adapter->hw.device_id) {
2076 	default:
2077 		break;
2078 	}
2079 
2080 	if (adapter->wol & E1000_WUFC_EX)
2081 		wol->wolopts |= WAKE_UCAST;
2082 	if (adapter->wol & E1000_WUFC_MC)
2083 		wol->wolopts |= WAKE_MCAST;
2084 	if (adapter->wol & E1000_WUFC_BC)
2085 		wol->wolopts |= WAKE_BCAST;
2086 	if (adapter->wol & E1000_WUFC_MAG)
2087 		wol->wolopts |= WAKE_MAGIC;
2088 	if (adapter->wol & E1000_WUFC_LNKC)
2089 		wol->wolopts |= WAKE_PHY;
2090 }
2091 
2092 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2093 {
2094 	struct igb_adapter *adapter = netdev_priv(netdev);
2095 
2096 	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2097 		return -EOPNOTSUPP;
2098 
2099 	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2100 		return wol->wolopts ? -EOPNOTSUPP : 0;
2101 
2102 	/* these settings will always override what we currently have */
2103 	adapter->wol = 0;
2104 
2105 	if (wol->wolopts & WAKE_UCAST)
2106 		adapter->wol |= E1000_WUFC_EX;
2107 	if (wol->wolopts & WAKE_MCAST)
2108 		adapter->wol |= E1000_WUFC_MC;
2109 	if (wol->wolopts & WAKE_BCAST)
2110 		adapter->wol |= E1000_WUFC_BC;
2111 	if (wol->wolopts & WAKE_MAGIC)
2112 		adapter->wol |= E1000_WUFC_MAG;
2113 	if (wol->wolopts & WAKE_PHY)
2114 		adapter->wol |= E1000_WUFC_LNKC;
2115 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2116 
2117 	return 0;
2118 }
2119 
2120 /* bit defines for adapter->led_status */
2121 #define IGB_LED_ON		0
2122 
2123 static int igb_set_phys_id(struct net_device *netdev,
2124 			   enum ethtool_phys_id_state state)
2125 {
2126 	struct igb_adapter *adapter = netdev_priv(netdev);
2127 	struct e1000_hw *hw = &adapter->hw;
2128 
2129 	switch (state) {
2130 	case ETHTOOL_ID_ACTIVE:
2131 		igb_blink_led(hw);
2132 		return 2;
2133 	case ETHTOOL_ID_ON:
2134 		igb_blink_led(hw);
2135 		break;
2136 	case ETHTOOL_ID_OFF:
2137 		igb_led_off(hw);
2138 		break;
2139 	case ETHTOOL_ID_INACTIVE:
2140 		igb_led_off(hw);
2141 		clear_bit(IGB_LED_ON, &adapter->led_status);
2142 		igb_cleanup_led(hw);
2143 		break;
2144 	}
2145 
2146 	return 0;
2147 }
2148 
2149 static int igb_set_coalesce(struct net_device *netdev,
2150 			    struct ethtool_coalesce *ec)
2151 {
2152 	struct igb_adapter *adapter = netdev_priv(netdev);
2153 	int i;
2154 
2155 	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2156 	    ((ec->rx_coalesce_usecs > 3) &&
2157 	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2158 	    (ec->rx_coalesce_usecs == 2))
2159 		return -EINVAL;
2160 
2161 	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2162 	    ((ec->tx_coalesce_usecs > 3) &&
2163 	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2164 	    (ec->tx_coalesce_usecs == 2))
2165 		return -EINVAL;
2166 
2167 	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2168 		return -EINVAL;
2169 
2170 	/* If ITR is disabled, disable DMAC */
2171 	if (ec->rx_coalesce_usecs == 0) {
2172 		if (adapter->flags & IGB_FLAG_DMAC)
2173 			adapter->flags &= ~IGB_FLAG_DMAC;
2174 	}
2175 
2176 	/* convert to rate of irq's per second */
2177 	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2178 		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2179 	else
2180 		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2181 
2182 	/* convert to rate of irq's per second */
2183 	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2184 		adapter->tx_itr_setting = adapter->rx_itr_setting;
2185 	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2186 		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2187 	else
2188 		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2189 
2190 	for (i = 0; i < adapter->num_q_vectors; i++) {
2191 		struct igb_q_vector *q_vector = adapter->q_vector[i];
2192 		q_vector->tx.work_limit = adapter->tx_work_limit;
2193 		if (q_vector->rx.ring)
2194 			q_vector->itr_val = adapter->rx_itr_setting;
2195 		else
2196 			q_vector->itr_val = adapter->tx_itr_setting;
2197 		if (q_vector->itr_val && q_vector->itr_val <= 3)
2198 			q_vector->itr_val = IGB_START_ITR;
2199 		q_vector->set_itr = 1;
2200 	}
2201 
2202 	return 0;
2203 }
2204 
2205 static int igb_get_coalesce(struct net_device *netdev,
2206 			    struct ethtool_coalesce *ec)
2207 {
2208 	struct igb_adapter *adapter = netdev_priv(netdev);
2209 
2210 	if (adapter->rx_itr_setting <= 3)
2211 		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2212 	else
2213 		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2214 
2215 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2216 		if (adapter->tx_itr_setting <= 3)
2217 			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2218 		else
2219 			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2220 	}
2221 
2222 	return 0;
2223 }
2224 
2225 static int igb_nway_reset(struct net_device *netdev)
2226 {
2227 	struct igb_adapter *adapter = netdev_priv(netdev);
2228 	if (netif_running(netdev))
2229 		igb_reinit_locked(adapter);
2230 	return 0;
2231 }
2232 
2233 static int igb_get_sset_count(struct net_device *netdev, int sset)
2234 {
2235 	switch (sset) {
2236 	case ETH_SS_STATS:
2237 		return IGB_STATS_LEN;
2238 	case ETH_SS_TEST:
2239 		return IGB_TEST_LEN;
2240 	default:
2241 		return -ENOTSUPP;
2242 	}
2243 }
2244 
2245 static void igb_get_ethtool_stats(struct net_device *netdev,
2246 				  struct ethtool_stats *stats, u64 *data)
2247 {
2248 	struct igb_adapter *adapter = netdev_priv(netdev);
2249 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2250 	unsigned int start;
2251 	struct igb_ring *ring;
2252 	int i, j;
2253 	char *p;
2254 
2255 	spin_lock(&adapter->stats64_lock);
2256 	igb_update_stats(adapter, net_stats);
2257 
2258 	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2259 		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2260 		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2261 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2262 	}
2263 	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2264 		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2265 		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2266 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2267 	}
2268 	for (j = 0; j < adapter->num_tx_queues; j++) {
2269 		u64	restart2;
2270 
2271 		ring = adapter->tx_ring[j];
2272 		do {
2273 			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
2274 			data[i]   = ring->tx_stats.packets;
2275 			data[i+1] = ring->tx_stats.bytes;
2276 			data[i+2] = ring->tx_stats.restart_queue;
2277 		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
2278 		do {
2279 			start = u64_stats_fetch_begin_bh(&ring->tx_syncp2);
2280 			restart2  = ring->tx_stats.restart_queue2;
2281 		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start));
2282 		data[i+2] += restart2;
2283 
2284 		i += IGB_TX_QUEUE_STATS_LEN;
2285 	}
2286 	for (j = 0; j < adapter->num_rx_queues; j++) {
2287 		ring = adapter->rx_ring[j];
2288 		do {
2289 			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
2290 			data[i]   = ring->rx_stats.packets;
2291 			data[i+1] = ring->rx_stats.bytes;
2292 			data[i+2] = ring->rx_stats.drops;
2293 			data[i+3] = ring->rx_stats.csum_err;
2294 			data[i+4] = ring->rx_stats.alloc_failed;
2295 		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
2296 		i += IGB_RX_QUEUE_STATS_LEN;
2297 	}
2298 	spin_unlock(&adapter->stats64_lock);
2299 }
2300 
2301 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2302 {
2303 	struct igb_adapter *adapter = netdev_priv(netdev);
2304 	u8 *p = data;
2305 	int i;
2306 
2307 	switch (stringset) {
2308 	case ETH_SS_TEST:
2309 		memcpy(data, *igb_gstrings_test,
2310 			IGB_TEST_LEN*ETH_GSTRING_LEN);
2311 		break;
2312 	case ETH_SS_STATS:
2313 		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2314 			memcpy(p, igb_gstrings_stats[i].stat_string,
2315 			       ETH_GSTRING_LEN);
2316 			p += ETH_GSTRING_LEN;
2317 		}
2318 		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2319 			memcpy(p, igb_gstrings_net_stats[i].stat_string,
2320 			       ETH_GSTRING_LEN);
2321 			p += ETH_GSTRING_LEN;
2322 		}
2323 		for (i = 0; i < adapter->num_tx_queues; i++) {
2324 			sprintf(p, "tx_queue_%u_packets", i);
2325 			p += ETH_GSTRING_LEN;
2326 			sprintf(p, "tx_queue_%u_bytes", i);
2327 			p += ETH_GSTRING_LEN;
2328 			sprintf(p, "tx_queue_%u_restart", i);
2329 			p += ETH_GSTRING_LEN;
2330 		}
2331 		for (i = 0; i < adapter->num_rx_queues; i++) {
2332 			sprintf(p, "rx_queue_%u_packets", i);
2333 			p += ETH_GSTRING_LEN;
2334 			sprintf(p, "rx_queue_%u_bytes", i);
2335 			p += ETH_GSTRING_LEN;
2336 			sprintf(p, "rx_queue_%u_drops", i);
2337 			p += ETH_GSTRING_LEN;
2338 			sprintf(p, "rx_queue_%u_csum_err", i);
2339 			p += ETH_GSTRING_LEN;
2340 			sprintf(p, "rx_queue_%u_alloc_failed", i);
2341 			p += ETH_GSTRING_LEN;
2342 		}
2343 		/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2344 		break;
2345 	}
2346 }
2347 
2348 static int igb_get_ts_info(struct net_device *dev,
2349 			   struct ethtool_ts_info *info)
2350 {
2351 	struct igb_adapter *adapter = netdev_priv(dev);
2352 
2353 	switch (adapter->hw.mac.type) {
2354 	case e1000_82575:
2355 		info->so_timestamping =
2356 			SOF_TIMESTAMPING_TX_SOFTWARE |
2357 			SOF_TIMESTAMPING_RX_SOFTWARE |
2358 			SOF_TIMESTAMPING_SOFTWARE;
2359 		return 0;
2360 	case e1000_82576:
2361 	case e1000_82580:
2362 	case e1000_i350:
2363 	case e1000_i354:
2364 	case e1000_i210:
2365 	case e1000_i211:
2366 		info->so_timestamping =
2367 			SOF_TIMESTAMPING_TX_SOFTWARE |
2368 			SOF_TIMESTAMPING_RX_SOFTWARE |
2369 			SOF_TIMESTAMPING_SOFTWARE |
2370 			SOF_TIMESTAMPING_TX_HARDWARE |
2371 			SOF_TIMESTAMPING_RX_HARDWARE |
2372 			SOF_TIMESTAMPING_RAW_HARDWARE;
2373 
2374 		if (adapter->ptp_clock)
2375 			info->phc_index = ptp_clock_index(adapter->ptp_clock);
2376 		else
2377 			info->phc_index = -1;
2378 
2379 		info->tx_types =
2380 			(1 << HWTSTAMP_TX_OFF) |
2381 			(1 << HWTSTAMP_TX_ON);
2382 
2383 		info->rx_filters = 1 << HWTSTAMP_FILTER_NONE;
2384 
2385 		/* 82576 does not support timestamping all packets. */
2386 		if (adapter->hw.mac.type >= e1000_82580)
2387 			info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL;
2388 		else
2389 			info->rx_filters |=
2390 				(1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2391 				(1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2392 				(1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2393 				(1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2394 				(1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2395 				(1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2396 				(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2397 
2398 		return 0;
2399 	default:
2400 		return -EOPNOTSUPP;
2401 	}
2402 }
2403 
2404 static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2405 				 struct ethtool_rxnfc *cmd)
2406 {
2407 	cmd->data = 0;
2408 
2409 	/* Report default options for RSS on igb */
2410 	switch (cmd->flow_type) {
2411 	case TCP_V4_FLOW:
2412 		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2413 	case UDP_V4_FLOW:
2414 		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2415 			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2416 	case SCTP_V4_FLOW:
2417 	case AH_ESP_V4_FLOW:
2418 	case AH_V4_FLOW:
2419 	case ESP_V4_FLOW:
2420 	case IPV4_FLOW:
2421 		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2422 		break;
2423 	case TCP_V6_FLOW:
2424 		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2425 	case UDP_V6_FLOW:
2426 		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2427 			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2428 	case SCTP_V6_FLOW:
2429 	case AH_ESP_V6_FLOW:
2430 	case AH_V6_FLOW:
2431 	case ESP_V6_FLOW:
2432 	case IPV6_FLOW:
2433 		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2434 		break;
2435 	default:
2436 		return -EINVAL;
2437 	}
2438 
2439 	return 0;
2440 }
2441 
2442 static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2443 			 u32 *rule_locs)
2444 {
2445 	struct igb_adapter *adapter = netdev_priv(dev);
2446 	int ret = -EOPNOTSUPP;
2447 
2448 	switch (cmd->cmd) {
2449 	case ETHTOOL_GRXRINGS:
2450 		cmd->data = adapter->num_rx_queues;
2451 		ret = 0;
2452 		break;
2453 	case ETHTOOL_GRXFH:
2454 		ret = igb_get_rss_hash_opts(adapter, cmd);
2455 		break;
2456 	default:
2457 		break;
2458 	}
2459 
2460 	return ret;
2461 }
2462 
2463 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2464 		       IGB_FLAG_RSS_FIELD_IPV6_UDP)
2465 static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2466 				struct ethtool_rxnfc *nfc)
2467 {
2468 	u32 flags = adapter->flags;
2469 
2470 	/* RSS does not support anything other than hashing
2471 	 * to queues on src and dst IPs and ports
2472 	 */
2473 	if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2474 			  RXH_L4_B_0_1 | RXH_L4_B_2_3))
2475 		return -EINVAL;
2476 
2477 	switch (nfc->flow_type) {
2478 	case TCP_V4_FLOW:
2479 	case TCP_V6_FLOW:
2480 		if (!(nfc->data & RXH_IP_SRC) ||
2481 		    !(nfc->data & RXH_IP_DST) ||
2482 		    !(nfc->data & RXH_L4_B_0_1) ||
2483 		    !(nfc->data & RXH_L4_B_2_3))
2484 			return -EINVAL;
2485 		break;
2486 	case UDP_V4_FLOW:
2487 		if (!(nfc->data & RXH_IP_SRC) ||
2488 		    !(nfc->data & RXH_IP_DST))
2489 			return -EINVAL;
2490 		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2491 		case 0:
2492 			flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2493 			break;
2494 		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2495 			flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2496 			break;
2497 		default:
2498 			return -EINVAL;
2499 		}
2500 		break;
2501 	case UDP_V6_FLOW:
2502 		if (!(nfc->data & RXH_IP_SRC) ||
2503 		    !(nfc->data & RXH_IP_DST))
2504 			return -EINVAL;
2505 		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2506 		case 0:
2507 			flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2508 			break;
2509 		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2510 			flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2511 			break;
2512 		default:
2513 			return -EINVAL;
2514 		}
2515 		break;
2516 	case AH_ESP_V4_FLOW:
2517 	case AH_V4_FLOW:
2518 	case ESP_V4_FLOW:
2519 	case SCTP_V4_FLOW:
2520 	case AH_ESP_V6_FLOW:
2521 	case AH_V6_FLOW:
2522 	case ESP_V6_FLOW:
2523 	case SCTP_V6_FLOW:
2524 		if (!(nfc->data & RXH_IP_SRC) ||
2525 		    !(nfc->data & RXH_IP_DST) ||
2526 		    (nfc->data & RXH_L4_B_0_1) ||
2527 		    (nfc->data & RXH_L4_B_2_3))
2528 			return -EINVAL;
2529 		break;
2530 	default:
2531 		return -EINVAL;
2532 	}
2533 
2534 	/* if we changed something we need to update flags */
2535 	if (flags != adapter->flags) {
2536 		struct e1000_hw *hw = &adapter->hw;
2537 		u32 mrqc = rd32(E1000_MRQC);
2538 
2539 		if ((flags & UDP_RSS_FLAGS) &&
2540 		    !(adapter->flags & UDP_RSS_FLAGS))
2541 			dev_err(&adapter->pdev->dev,
2542 				"enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2543 
2544 		adapter->flags = flags;
2545 
2546 		/* Perform hash on these packet types */
2547 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2548 			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2549 			E1000_MRQC_RSS_FIELD_IPV6 |
2550 			E1000_MRQC_RSS_FIELD_IPV6_TCP;
2551 
2552 		mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2553 			  E1000_MRQC_RSS_FIELD_IPV6_UDP);
2554 
2555 		if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2556 			mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2557 
2558 		if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2559 			mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2560 
2561 		wr32(E1000_MRQC, mrqc);
2562 	}
2563 
2564 	return 0;
2565 }
2566 
2567 static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
2568 {
2569 	struct igb_adapter *adapter = netdev_priv(dev);
2570 	int ret = -EOPNOTSUPP;
2571 
2572 	switch (cmd->cmd) {
2573 	case ETHTOOL_SRXFH:
2574 		ret = igb_set_rss_hash_opt(adapter, cmd);
2575 		break;
2576 	default:
2577 		break;
2578 	}
2579 
2580 	return ret;
2581 }
2582 
2583 static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2584 {
2585 	struct igb_adapter *adapter = netdev_priv(netdev);
2586 	struct e1000_hw *hw = &adapter->hw;
2587 	u32 ipcnfg, eeer, ret_val;
2588 	u16 phy_data;
2589 
2590 	if ((hw->mac.type < e1000_i350) ||
2591 	    (hw->phy.media_type != e1000_media_type_copper))
2592 		return -EOPNOTSUPP;
2593 
2594 	edata->supported = (SUPPORTED_1000baseT_Full |
2595 			    SUPPORTED_100baseT_Full);
2596 
2597 	ipcnfg = rd32(E1000_IPCNFG);
2598 	eeer = rd32(E1000_EEER);
2599 
2600 	/* EEE status on negotiated link */
2601 	if (ipcnfg & E1000_IPCNFG_EEE_1G_AN)
2602 		edata->advertised = ADVERTISED_1000baseT_Full;
2603 
2604 	if (ipcnfg & E1000_IPCNFG_EEE_100M_AN)
2605 		edata->advertised |= ADVERTISED_100baseT_Full;
2606 
2607 	/* EEE Link Partner Advertised */
2608 	switch (hw->mac.type) {
2609 	case e1000_i350:
2610 		ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
2611 					   &phy_data);
2612 		if (ret_val)
2613 			return -ENODATA;
2614 
2615 		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2616 
2617 		break;
2618 	case e1000_i210:
2619 	case e1000_i211:
2620 		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
2621 					     E1000_EEE_LP_ADV_DEV_I210,
2622 					     &phy_data);
2623 		if (ret_val)
2624 			return -ENODATA;
2625 
2626 		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2627 
2628 		break;
2629 	default:
2630 		break;
2631 	}
2632 
2633 	if (eeer & E1000_EEER_EEE_NEG)
2634 		edata->eee_active = true;
2635 
2636 	edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
2637 
2638 	if (eeer & E1000_EEER_TX_LPI_EN)
2639 		edata->tx_lpi_enabled = true;
2640 
2641 	/* Report correct negotiated EEE status for devices that
2642 	 * wrongly report EEE at half-duplex
2643 	 */
2644 	if (adapter->link_duplex == HALF_DUPLEX) {
2645 		edata->eee_enabled = false;
2646 		edata->eee_active = false;
2647 		edata->tx_lpi_enabled = false;
2648 		edata->advertised &= ~edata->advertised;
2649 	}
2650 
2651 	return 0;
2652 }
2653 
2654 static int igb_set_eee(struct net_device *netdev,
2655 		       struct ethtool_eee *edata)
2656 {
2657 	struct igb_adapter *adapter = netdev_priv(netdev);
2658 	struct e1000_hw *hw = &adapter->hw;
2659 	struct ethtool_eee eee_curr;
2660 	s32 ret_val;
2661 
2662 	if ((hw->mac.type < e1000_i350) ||
2663 	    (hw->phy.media_type != e1000_media_type_copper))
2664 		return -EOPNOTSUPP;
2665 
2666 	memset(&eee_curr, 0, sizeof(struct ethtool_eee));
2667 
2668 	ret_val = igb_get_eee(netdev, &eee_curr);
2669 	if (ret_val)
2670 		return ret_val;
2671 
2672 	if (eee_curr.eee_enabled) {
2673 		if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2674 			dev_err(&adapter->pdev->dev,
2675 				"Setting EEE tx-lpi is not supported\n");
2676 			return -EINVAL;
2677 		}
2678 
2679 		/* Tx LPI timer is not implemented currently */
2680 		if (edata->tx_lpi_timer) {
2681 			dev_err(&adapter->pdev->dev,
2682 				"Setting EEE Tx LPI timer is not supported\n");
2683 			return -EINVAL;
2684 		}
2685 
2686 		if (eee_curr.advertised != edata->advertised) {
2687 			dev_err(&adapter->pdev->dev,
2688 				"Setting EEE Advertisement is not supported\n");
2689 			return -EINVAL;
2690 		}
2691 
2692 	} else if (!edata->eee_enabled) {
2693 		dev_err(&adapter->pdev->dev,
2694 			"Setting EEE options are not supported with EEE disabled\n");
2695 			return -EINVAL;
2696 		}
2697 
2698 	if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
2699 		hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
2700 		igb_set_eee_i350(hw);
2701 
2702 		/* reset link */
2703 		if (netif_running(netdev))
2704 			igb_reinit_locked(adapter);
2705 		else
2706 			igb_reset(adapter);
2707 	}
2708 
2709 	return 0;
2710 }
2711 
2712 static int igb_get_module_info(struct net_device *netdev,
2713 			       struct ethtool_modinfo *modinfo)
2714 {
2715 	struct igb_adapter *adapter = netdev_priv(netdev);
2716 	struct e1000_hw *hw = &adapter->hw;
2717 	u32 status = E1000_SUCCESS;
2718 	u16 sff8472_rev, addr_mode;
2719 	bool page_swap = false;
2720 
2721 	if ((hw->phy.media_type == e1000_media_type_copper) ||
2722 	    (hw->phy.media_type == e1000_media_type_unknown))
2723 		return -EOPNOTSUPP;
2724 
2725 	/* Check whether we support SFF-8472 or not */
2726 	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
2727 	if (status != E1000_SUCCESS)
2728 		return -EIO;
2729 
2730 	/* addressing mode is not supported */
2731 	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
2732 	if (status != E1000_SUCCESS)
2733 		return -EIO;
2734 
2735 	/* addressing mode is not supported */
2736 	if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
2737 		hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
2738 		page_swap = true;
2739 	}
2740 
2741 	if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
2742 		/* We have an SFP, but it does not support SFF-8472 */
2743 		modinfo->type = ETH_MODULE_SFF_8079;
2744 		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2745 	} else {
2746 		/* We have an SFP which supports a revision of SFF-8472 */
2747 		modinfo->type = ETH_MODULE_SFF_8472;
2748 		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2749 	}
2750 
2751 	return 0;
2752 }
2753 
2754 static int igb_get_module_eeprom(struct net_device *netdev,
2755 				 struct ethtool_eeprom *ee, u8 *data)
2756 {
2757 	struct igb_adapter *adapter = netdev_priv(netdev);
2758 	struct e1000_hw *hw = &adapter->hw;
2759 	u32 status = E1000_SUCCESS;
2760 	u16 *dataword;
2761 	u16 first_word, last_word;
2762 	int i = 0;
2763 
2764 	if (ee->len == 0)
2765 		return -EINVAL;
2766 
2767 	first_word = ee->offset >> 1;
2768 	last_word = (ee->offset + ee->len - 1) >> 1;
2769 
2770 	dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1),
2771 			   GFP_KERNEL);
2772 	if (!dataword)
2773 		return -ENOMEM;
2774 
2775 	/* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
2776 	for (i = 0; i < last_word - first_word + 1; i++) {
2777 		status = igb_read_phy_reg_i2c(hw, first_word + i, &dataword[i]);
2778 		if (status != E1000_SUCCESS)
2779 			/* Error occurred while reading module */
2780 			return -EIO;
2781 
2782 		be16_to_cpus(&dataword[i]);
2783 	}
2784 
2785 	memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
2786 	kfree(dataword);
2787 
2788 	return 0;
2789 }
2790 
2791 static int igb_ethtool_begin(struct net_device *netdev)
2792 {
2793 	struct igb_adapter *adapter = netdev_priv(netdev);
2794 	pm_runtime_get_sync(&adapter->pdev->dev);
2795 	return 0;
2796 }
2797 
2798 static void igb_ethtool_complete(struct net_device *netdev)
2799 {
2800 	struct igb_adapter *adapter = netdev_priv(netdev);
2801 	pm_runtime_put(&adapter->pdev->dev);
2802 }
2803 
2804 static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
2805 {
2806 	return IGB_RETA_SIZE;
2807 }
2808 
2809 static int igb_get_rxfh_indir(struct net_device *netdev, u32 *indir)
2810 {
2811 	struct igb_adapter *adapter = netdev_priv(netdev);
2812 	int i;
2813 
2814 	for (i = 0; i < IGB_RETA_SIZE; i++)
2815 		indir[i] = adapter->rss_indir_tbl[i];
2816 
2817 	return 0;
2818 }
2819 
2820 void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
2821 {
2822 	struct e1000_hw *hw = &adapter->hw;
2823 	u32 reg = E1000_RETA(0);
2824 	u32 shift = 0;
2825 	int i = 0;
2826 
2827 	switch (hw->mac.type) {
2828 	case e1000_82575:
2829 		shift = 6;
2830 		break;
2831 	case e1000_82576:
2832 		/* 82576 supports 2 RSS queues for SR-IOV */
2833 		if (adapter->vfs_allocated_count)
2834 			shift = 3;
2835 		break;
2836 	default:
2837 		break;
2838 	}
2839 
2840 	while (i < IGB_RETA_SIZE) {
2841 		u32 val = 0;
2842 		int j;
2843 
2844 		for (j = 3; j >= 0; j--) {
2845 			val <<= 8;
2846 			val |= adapter->rss_indir_tbl[i + j];
2847 		}
2848 
2849 		wr32(reg, val << shift);
2850 		reg += 4;
2851 		i += 4;
2852 	}
2853 }
2854 
2855 static int igb_set_rxfh_indir(struct net_device *netdev, const u32 *indir)
2856 {
2857 	struct igb_adapter *adapter = netdev_priv(netdev);
2858 	struct e1000_hw *hw = &adapter->hw;
2859 	int i;
2860 	u32 num_queues;
2861 
2862 	num_queues = adapter->rss_queues;
2863 
2864 	switch (hw->mac.type) {
2865 	case e1000_82576:
2866 		/* 82576 supports 2 RSS queues for SR-IOV */
2867 		if (adapter->vfs_allocated_count)
2868 			num_queues = 2;
2869 		break;
2870 	default:
2871 		break;
2872 	}
2873 
2874 	/* Verify user input. */
2875 	for (i = 0; i < IGB_RETA_SIZE; i++)
2876 		if (indir[i] >= num_queues)
2877 			return -EINVAL;
2878 
2879 
2880 	for (i = 0; i < IGB_RETA_SIZE; i++)
2881 		adapter->rss_indir_tbl[i] = indir[i];
2882 
2883 	igb_write_rss_indir_tbl(adapter);
2884 
2885 	return 0;
2886 }
2887 
2888 static unsigned int igb_max_channels(struct igb_adapter *adapter)
2889 {
2890 	struct e1000_hw *hw = &adapter->hw;
2891 	unsigned int max_combined = 0;
2892 
2893 	switch (hw->mac.type) {
2894 	case e1000_i211:
2895 		max_combined = IGB_MAX_RX_QUEUES_I211;
2896 		break;
2897 	case e1000_82575:
2898 	case e1000_i210:
2899 		max_combined = IGB_MAX_RX_QUEUES_82575;
2900 		break;
2901 	case e1000_i350:
2902 		if (!!adapter->vfs_allocated_count) {
2903 			max_combined = 1;
2904 			break;
2905 		}
2906 		/* fall through */
2907 	case e1000_82576:
2908 		if (!!adapter->vfs_allocated_count) {
2909 			max_combined = 2;
2910 			break;
2911 		}
2912 		/* fall through */
2913 	case e1000_82580:
2914 	case e1000_i354:
2915 	default:
2916 		max_combined = IGB_MAX_RX_QUEUES;
2917 		break;
2918 	}
2919 
2920 	return max_combined;
2921 }
2922 
2923 static void igb_get_channels(struct net_device *netdev,
2924 			     struct ethtool_channels *ch)
2925 {
2926 	struct igb_adapter *adapter = netdev_priv(netdev);
2927 
2928 	/* Report maximum channels */
2929 	ch->max_combined = igb_max_channels(adapter);
2930 
2931 	/* Report info for other vector */
2932 	if (adapter->msix_entries) {
2933 		ch->max_other = NON_Q_VECTORS;
2934 		ch->other_count = NON_Q_VECTORS;
2935 	}
2936 
2937 	ch->combined_count = adapter->rss_queues;
2938 }
2939 
2940 static int igb_set_channels(struct net_device *netdev,
2941 			    struct ethtool_channels *ch)
2942 {
2943 	struct igb_adapter *adapter = netdev_priv(netdev);
2944 	unsigned int count = ch->combined_count;
2945 
2946 	/* Verify they are not requesting separate vectors */
2947 	if (!count || ch->rx_count || ch->tx_count)
2948 		return -EINVAL;
2949 
2950 	/* Verify other_count is valid and has not been changed */
2951 	if (ch->other_count != NON_Q_VECTORS)
2952 		return -EINVAL;
2953 
2954 	/* Verify the number of channels doesn't exceed hw limits */
2955 	if (count > igb_max_channels(adapter))
2956 		return -EINVAL;
2957 
2958 	if (count != adapter->rss_queues) {
2959 		adapter->rss_queues = count;
2960 
2961 		/* Hardware has to reinitialize queues and interrupts to
2962 		 * match the new configuration.
2963 		 */
2964 		return igb_reinit_queues(adapter);
2965 	}
2966 
2967 	return 0;
2968 }
2969 
2970 static const struct ethtool_ops igb_ethtool_ops = {
2971 	.get_settings		= igb_get_settings,
2972 	.set_settings		= igb_set_settings,
2973 	.get_drvinfo		= igb_get_drvinfo,
2974 	.get_regs_len		= igb_get_regs_len,
2975 	.get_regs		= igb_get_regs,
2976 	.get_wol		= igb_get_wol,
2977 	.set_wol		= igb_set_wol,
2978 	.get_msglevel		= igb_get_msglevel,
2979 	.set_msglevel		= igb_set_msglevel,
2980 	.nway_reset		= igb_nway_reset,
2981 	.get_link		= igb_get_link,
2982 	.get_eeprom_len		= igb_get_eeprom_len,
2983 	.get_eeprom		= igb_get_eeprom,
2984 	.set_eeprom		= igb_set_eeprom,
2985 	.get_ringparam		= igb_get_ringparam,
2986 	.set_ringparam		= igb_set_ringparam,
2987 	.get_pauseparam		= igb_get_pauseparam,
2988 	.set_pauseparam		= igb_set_pauseparam,
2989 	.self_test		= igb_diag_test,
2990 	.get_strings		= igb_get_strings,
2991 	.set_phys_id		= igb_set_phys_id,
2992 	.get_sset_count		= igb_get_sset_count,
2993 	.get_ethtool_stats	= igb_get_ethtool_stats,
2994 	.get_coalesce		= igb_get_coalesce,
2995 	.set_coalesce		= igb_set_coalesce,
2996 	.get_ts_info		= igb_get_ts_info,
2997 	.get_rxnfc		= igb_get_rxnfc,
2998 	.set_rxnfc		= igb_set_rxnfc,
2999 	.get_eee		= igb_get_eee,
3000 	.set_eee		= igb_set_eee,
3001 	.get_module_info	= igb_get_module_info,
3002 	.get_module_eeprom	= igb_get_module_eeprom,
3003 	.get_rxfh_indir_size	= igb_get_rxfh_indir_size,
3004 	.get_rxfh_indir		= igb_get_rxfh_indir,
3005 	.set_rxfh_indir		= igb_set_rxfh_indir,
3006 	.get_channels		= igb_get_channels,
3007 	.set_channels		= igb_set_channels,
3008 	.begin			= igb_ethtool_begin,
3009 	.complete		= igb_ethtool_complete,
3010 };
3011 
3012 void igb_set_ethtool_ops(struct net_device *netdev)
3013 {
3014 	SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
3015 }
3016