1 /******************************************************************************* 2 3 Intel(R) Gigabit Ethernet Linux driver 4 Copyright(c) 2007-2012 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 25 26 *******************************************************************************/ 27 28 /* ethtool support for igb */ 29 30 #include <linux/vmalloc.h> 31 #include <linux/netdevice.h> 32 #include <linux/pci.h> 33 #include <linux/delay.h> 34 #include <linux/interrupt.h> 35 #include <linux/if_ether.h> 36 #include <linux/ethtool.h> 37 #include <linux/sched.h> 38 #include <linux/slab.h> 39 #include <linux/pm_runtime.h> 40 #include <linux/highmem.h> 41 42 #include "igb.h" 43 44 struct igb_stats { 45 char stat_string[ETH_GSTRING_LEN]; 46 int sizeof_stat; 47 int stat_offset; 48 }; 49 50 #define IGB_STAT(_name, _stat) { \ 51 .stat_string = _name, \ 52 .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \ 53 .stat_offset = offsetof(struct igb_adapter, _stat) \ 54 } 55 static const struct igb_stats igb_gstrings_stats[] = { 56 IGB_STAT("rx_packets", stats.gprc), 57 IGB_STAT("tx_packets", stats.gptc), 58 IGB_STAT("rx_bytes", stats.gorc), 59 IGB_STAT("tx_bytes", stats.gotc), 60 IGB_STAT("rx_broadcast", stats.bprc), 61 IGB_STAT("tx_broadcast", stats.bptc), 62 IGB_STAT("rx_multicast", stats.mprc), 63 IGB_STAT("tx_multicast", stats.mptc), 64 IGB_STAT("multicast", stats.mprc), 65 IGB_STAT("collisions", stats.colc), 66 IGB_STAT("rx_crc_errors", stats.crcerrs), 67 IGB_STAT("rx_no_buffer_count", stats.rnbc), 68 IGB_STAT("rx_missed_errors", stats.mpc), 69 IGB_STAT("tx_aborted_errors", stats.ecol), 70 IGB_STAT("tx_carrier_errors", stats.tncrs), 71 IGB_STAT("tx_window_errors", stats.latecol), 72 IGB_STAT("tx_abort_late_coll", stats.latecol), 73 IGB_STAT("tx_deferred_ok", stats.dc), 74 IGB_STAT("tx_single_coll_ok", stats.scc), 75 IGB_STAT("tx_multi_coll_ok", stats.mcc), 76 IGB_STAT("tx_timeout_count", tx_timeout_count), 77 IGB_STAT("rx_long_length_errors", stats.roc), 78 IGB_STAT("rx_short_length_errors", stats.ruc), 79 IGB_STAT("rx_align_errors", stats.algnerrc), 80 IGB_STAT("tx_tcp_seg_good", stats.tsctc), 81 IGB_STAT("tx_tcp_seg_failed", stats.tsctfc), 82 IGB_STAT("rx_flow_control_xon", stats.xonrxc), 83 IGB_STAT("rx_flow_control_xoff", stats.xoffrxc), 84 IGB_STAT("tx_flow_control_xon", stats.xontxc), 85 IGB_STAT("tx_flow_control_xoff", stats.xofftxc), 86 IGB_STAT("rx_long_byte_count", stats.gorc), 87 IGB_STAT("tx_dma_out_of_sync", stats.doosync), 88 IGB_STAT("tx_smbus", stats.mgptc), 89 IGB_STAT("rx_smbus", stats.mgprc), 90 IGB_STAT("dropped_smbus", stats.mgpdc), 91 IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc), 92 IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc), 93 IGB_STAT("os2bmc_tx_by_host", stats.o2bspc), 94 IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc), 95 }; 96 97 #define IGB_NETDEV_STAT(_net_stat) { \ 98 .stat_string = __stringify(_net_stat), \ 99 .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \ 100 .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \ 101 } 102 static const struct igb_stats igb_gstrings_net_stats[] = { 103 IGB_NETDEV_STAT(rx_errors), 104 IGB_NETDEV_STAT(tx_errors), 105 IGB_NETDEV_STAT(tx_dropped), 106 IGB_NETDEV_STAT(rx_length_errors), 107 IGB_NETDEV_STAT(rx_over_errors), 108 IGB_NETDEV_STAT(rx_frame_errors), 109 IGB_NETDEV_STAT(rx_fifo_errors), 110 IGB_NETDEV_STAT(tx_fifo_errors), 111 IGB_NETDEV_STAT(tx_heartbeat_errors) 112 }; 113 114 #define IGB_GLOBAL_STATS_LEN \ 115 (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats)) 116 #define IGB_NETDEV_STATS_LEN \ 117 (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats)) 118 #define IGB_RX_QUEUE_STATS_LEN \ 119 (sizeof(struct igb_rx_queue_stats) / sizeof(u64)) 120 121 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */ 122 123 #define IGB_QUEUE_STATS_LEN \ 124 ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \ 125 IGB_RX_QUEUE_STATS_LEN) + \ 126 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \ 127 IGB_TX_QUEUE_STATS_LEN)) 128 #define IGB_STATS_LEN \ 129 (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN) 130 131 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = { 132 "Register test (offline)", "Eeprom test (offline)", 133 "Interrupt test (offline)", "Loopback test (offline)", 134 "Link test (on/offline)" 135 }; 136 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN) 137 138 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) 139 { 140 struct igb_adapter *adapter = netdev_priv(netdev); 141 struct e1000_hw *hw = &adapter->hw; 142 u32 status; 143 144 if (hw->phy.media_type == e1000_media_type_copper) { 145 146 ecmd->supported = (SUPPORTED_10baseT_Half | 147 SUPPORTED_10baseT_Full | 148 SUPPORTED_100baseT_Half | 149 SUPPORTED_100baseT_Full | 150 SUPPORTED_1000baseT_Full| 151 SUPPORTED_Autoneg | 152 SUPPORTED_TP | 153 SUPPORTED_Pause); 154 ecmd->advertising = ADVERTISED_TP; 155 156 if (hw->mac.autoneg == 1) { 157 ecmd->advertising |= ADVERTISED_Autoneg; 158 /* the e1000 autoneg seems to match ethtool nicely */ 159 ecmd->advertising |= hw->phy.autoneg_advertised; 160 } 161 162 if (hw->mac.autoneg != 1) 163 ecmd->advertising &= ~(ADVERTISED_Pause | 164 ADVERTISED_Asym_Pause); 165 166 if (hw->fc.requested_mode == e1000_fc_full) 167 ecmd->advertising |= ADVERTISED_Pause; 168 else if (hw->fc.requested_mode == e1000_fc_rx_pause) 169 ecmd->advertising |= (ADVERTISED_Pause | 170 ADVERTISED_Asym_Pause); 171 else if (hw->fc.requested_mode == e1000_fc_tx_pause) 172 ecmd->advertising |= ADVERTISED_Asym_Pause; 173 else 174 ecmd->advertising &= ~(ADVERTISED_Pause | 175 ADVERTISED_Asym_Pause); 176 177 ecmd->port = PORT_TP; 178 ecmd->phy_address = hw->phy.addr; 179 } else { 180 ecmd->supported = (SUPPORTED_1000baseT_Full | 181 SUPPORTED_FIBRE | 182 SUPPORTED_Autoneg); 183 184 ecmd->advertising = (ADVERTISED_1000baseT_Full | 185 ADVERTISED_FIBRE | 186 ADVERTISED_Autoneg | 187 ADVERTISED_Pause); 188 189 ecmd->port = PORT_FIBRE; 190 } 191 192 ecmd->transceiver = XCVR_INTERNAL; 193 194 status = rd32(E1000_STATUS); 195 196 if (status & E1000_STATUS_LU) { 197 198 if ((status & E1000_STATUS_SPEED_1000) || 199 hw->phy.media_type != e1000_media_type_copper) 200 ethtool_cmd_speed_set(ecmd, SPEED_1000); 201 else if (status & E1000_STATUS_SPEED_100) 202 ethtool_cmd_speed_set(ecmd, SPEED_100); 203 else 204 ethtool_cmd_speed_set(ecmd, SPEED_10); 205 206 if ((status & E1000_STATUS_FD) || 207 hw->phy.media_type != e1000_media_type_copper) 208 ecmd->duplex = DUPLEX_FULL; 209 else 210 ecmd->duplex = DUPLEX_HALF; 211 } else { 212 ethtool_cmd_speed_set(ecmd, -1); 213 ecmd->duplex = -1; 214 } 215 216 ecmd->autoneg = hw->mac.autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE; 217 218 /* MDI-X => 2; MDI =>1; Invalid =>0 */ 219 if (hw->phy.media_type == e1000_media_type_copper) 220 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : 221 ETH_TP_MDI; 222 else 223 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID; 224 225 if (hw->phy.mdix == AUTO_ALL_MODES) 226 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; 227 else 228 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix; 229 230 return 0; 231 } 232 233 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) 234 { 235 struct igb_adapter *adapter = netdev_priv(netdev); 236 struct e1000_hw *hw = &adapter->hw; 237 238 /* When SoL/IDER sessions are active, autoneg/speed/duplex 239 * cannot be changed */ 240 if (igb_check_reset_block(hw)) { 241 dev_err(&adapter->pdev->dev, 242 "Cannot change link characteristics when SoL/IDER is active.\n"); 243 return -EINVAL; 244 } 245 246 /* 247 * MDI setting is only allowed when autoneg enabled because 248 * some hardware doesn't allow MDI setting when speed or 249 * duplex is forced. 250 */ 251 if (ecmd->eth_tp_mdix_ctrl) { 252 if (hw->phy.media_type != e1000_media_type_copper) 253 return -EOPNOTSUPP; 254 255 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && 256 (ecmd->autoneg != AUTONEG_ENABLE)) { 257 dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); 258 return -EINVAL; 259 } 260 } 261 262 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 263 msleep(1); 264 265 if (ecmd->autoneg == AUTONEG_ENABLE) { 266 hw->mac.autoneg = 1; 267 hw->phy.autoneg_advertised = ecmd->advertising | 268 ADVERTISED_TP | 269 ADVERTISED_Autoneg; 270 ecmd->advertising = hw->phy.autoneg_advertised; 271 if (adapter->fc_autoneg) 272 hw->fc.requested_mode = e1000_fc_default; 273 } else { 274 u32 speed = ethtool_cmd_speed(ecmd); 275 /* calling this overrides forced MDI setting */ 276 if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) { 277 clear_bit(__IGB_RESETTING, &adapter->state); 278 return -EINVAL; 279 } 280 } 281 282 /* MDI-X => 2; MDI => 1; Auto => 3 */ 283 if (ecmd->eth_tp_mdix_ctrl) { 284 /* 285 * fix up the value for auto (3 => 0) as zero is mapped 286 * internally to auto 287 */ 288 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) 289 hw->phy.mdix = AUTO_ALL_MODES; 290 else 291 hw->phy.mdix = ecmd->eth_tp_mdix_ctrl; 292 } 293 294 /* reset the link */ 295 if (netif_running(adapter->netdev)) { 296 igb_down(adapter); 297 igb_up(adapter); 298 } else 299 igb_reset(adapter); 300 301 clear_bit(__IGB_RESETTING, &adapter->state); 302 return 0; 303 } 304 305 static u32 igb_get_link(struct net_device *netdev) 306 { 307 struct igb_adapter *adapter = netdev_priv(netdev); 308 struct e1000_mac_info *mac = &adapter->hw.mac; 309 310 /* 311 * If the link is not reported up to netdev, interrupts are disabled, 312 * and so the physical link state may have changed since we last 313 * looked. Set get_link_status to make sure that the true link 314 * state is interrogated, rather than pulling a cached and possibly 315 * stale link state from the driver. 316 */ 317 if (!netif_carrier_ok(netdev)) 318 mac->get_link_status = 1; 319 320 return igb_has_link(adapter); 321 } 322 323 static void igb_get_pauseparam(struct net_device *netdev, 324 struct ethtool_pauseparam *pause) 325 { 326 struct igb_adapter *adapter = netdev_priv(netdev); 327 struct e1000_hw *hw = &adapter->hw; 328 329 pause->autoneg = 330 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 331 332 if (hw->fc.current_mode == e1000_fc_rx_pause) 333 pause->rx_pause = 1; 334 else if (hw->fc.current_mode == e1000_fc_tx_pause) 335 pause->tx_pause = 1; 336 else if (hw->fc.current_mode == e1000_fc_full) { 337 pause->rx_pause = 1; 338 pause->tx_pause = 1; 339 } 340 } 341 342 static int igb_set_pauseparam(struct net_device *netdev, 343 struct ethtool_pauseparam *pause) 344 { 345 struct igb_adapter *adapter = netdev_priv(netdev); 346 struct e1000_hw *hw = &adapter->hw; 347 int retval = 0; 348 349 adapter->fc_autoneg = pause->autoneg; 350 351 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 352 msleep(1); 353 354 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 355 hw->fc.requested_mode = e1000_fc_default; 356 if (netif_running(adapter->netdev)) { 357 igb_down(adapter); 358 igb_up(adapter); 359 } else { 360 igb_reset(adapter); 361 } 362 } else { 363 if (pause->rx_pause && pause->tx_pause) 364 hw->fc.requested_mode = e1000_fc_full; 365 else if (pause->rx_pause && !pause->tx_pause) 366 hw->fc.requested_mode = e1000_fc_rx_pause; 367 else if (!pause->rx_pause && pause->tx_pause) 368 hw->fc.requested_mode = e1000_fc_tx_pause; 369 else if (!pause->rx_pause && !pause->tx_pause) 370 hw->fc.requested_mode = e1000_fc_none; 371 372 hw->fc.current_mode = hw->fc.requested_mode; 373 374 retval = ((hw->phy.media_type == e1000_media_type_copper) ? 375 igb_force_mac_fc(hw) : igb_setup_link(hw)); 376 } 377 378 clear_bit(__IGB_RESETTING, &adapter->state); 379 return retval; 380 } 381 382 static u32 igb_get_msglevel(struct net_device *netdev) 383 { 384 struct igb_adapter *adapter = netdev_priv(netdev); 385 return adapter->msg_enable; 386 } 387 388 static void igb_set_msglevel(struct net_device *netdev, u32 data) 389 { 390 struct igb_adapter *adapter = netdev_priv(netdev); 391 adapter->msg_enable = data; 392 } 393 394 static int igb_get_regs_len(struct net_device *netdev) 395 { 396 #define IGB_REGS_LEN 739 397 return IGB_REGS_LEN * sizeof(u32); 398 } 399 400 static void igb_get_regs(struct net_device *netdev, 401 struct ethtool_regs *regs, void *p) 402 { 403 struct igb_adapter *adapter = netdev_priv(netdev); 404 struct e1000_hw *hw = &adapter->hw; 405 u32 *regs_buff = p; 406 u8 i; 407 408 memset(p, 0, IGB_REGS_LEN * sizeof(u32)); 409 410 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id; 411 412 /* General Registers */ 413 regs_buff[0] = rd32(E1000_CTRL); 414 regs_buff[1] = rd32(E1000_STATUS); 415 regs_buff[2] = rd32(E1000_CTRL_EXT); 416 regs_buff[3] = rd32(E1000_MDIC); 417 regs_buff[4] = rd32(E1000_SCTL); 418 regs_buff[5] = rd32(E1000_CONNSW); 419 regs_buff[6] = rd32(E1000_VET); 420 regs_buff[7] = rd32(E1000_LEDCTL); 421 regs_buff[8] = rd32(E1000_PBA); 422 regs_buff[9] = rd32(E1000_PBS); 423 regs_buff[10] = rd32(E1000_FRTIMER); 424 regs_buff[11] = rd32(E1000_TCPTIMER); 425 426 /* NVM Register */ 427 regs_buff[12] = rd32(E1000_EECD); 428 429 /* Interrupt */ 430 /* Reading EICS for EICR because they read the 431 * same but EICS does not clear on read */ 432 regs_buff[13] = rd32(E1000_EICS); 433 regs_buff[14] = rd32(E1000_EICS); 434 regs_buff[15] = rd32(E1000_EIMS); 435 regs_buff[16] = rd32(E1000_EIMC); 436 regs_buff[17] = rd32(E1000_EIAC); 437 regs_buff[18] = rd32(E1000_EIAM); 438 /* Reading ICS for ICR because they read the 439 * same but ICS does not clear on read */ 440 regs_buff[19] = rd32(E1000_ICS); 441 regs_buff[20] = rd32(E1000_ICS); 442 regs_buff[21] = rd32(E1000_IMS); 443 regs_buff[22] = rd32(E1000_IMC); 444 regs_buff[23] = rd32(E1000_IAC); 445 regs_buff[24] = rd32(E1000_IAM); 446 regs_buff[25] = rd32(E1000_IMIRVP); 447 448 /* Flow Control */ 449 regs_buff[26] = rd32(E1000_FCAL); 450 regs_buff[27] = rd32(E1000_FCAH); 451 regs_buff[28] = rd32(E1000_FCTTV); 452 regs_buff[29] = rd32(E1000_FCRTL); 453 regs_buff[30] = rd32(E1000_FCRTH); 454 regs_buff[31] = rd32(E1000_FCRTV); 455 456 /* Receive */ 457 regs_buff[32] = rd32(E1000_RCTL); 458 regs_buff[33] = rd32(E1000_RXCSUM); 459 regs_buff[34] = rd32(E1000_RLPML); 460 regs_buff[35] = rd32(E1000_RFCTL); 461 regs_buff[36] = rd32(E1000_MRQC); 462 regs_buff[37] = rd32(E1000_VT_CTL); 463 464 /* Transmit */ 465 regs_buff[38] = rd32(E1000_TCTL); 466 regs_buff[39] = rd32(E1000_TCTL_EXT); 467 regs_buff[40] = rd32(E1000_TIPG); 468 regs_buff[41] = rd32(E1000_DTXCTL); 469 470 /* Wake Up */ 471 regs_buff[42] = rd32(E1000_WUC); 472 regs_buff[43] = rd32(E1000_WUFC); 473 regs_buff[44] = rd32(E1000_WUS); 474 regs_buff[45] = rd32(E1000_IPAV); 475 regs_buff[46] = rd32(E1000_WUPL); 476 477 /* MAC */ 478 regs_buff[47] = rd32(E1000_PCS_CFG0); 479 regs_buff[48] = rd32(E1000_PCS_LCTL); 480 regs_buff[49] = rd32(E1000_PCS_LSTAT); 481 regs_buff[50] = rd32(E1000_PCS_ANADV); 482 regs_buff[51] = rd32(E1000_PCS_LPAB); 483 regs_buff[52] = rd32(E1000_PCS_NPTX); 484 regs_buff[53] = rd32(E1000_PCS_LPABNP); 485 486 /* Statistics */ 487 regs_buff[54] = adapter->stats.crcerrs; 488 regs_buff[55] = adapter->stats.algnerrc; 489 regs_buff[56] = adapter->stats.symerrs; 490 regs_buff[57] = adapter->stats.rxerrc; 491 regs_buff[58] = adapter->stats.mpc; 492 regs_buff[59] = adapter->stats.scc; 493 regs_buff[60] = adapter->stats.ecol; 494 regs_buff[61] = adapter->stats.mcc; 495 regs_buff[62] = adapter->stats.latecol; 496 regs_buff[63] = adapter->stats.colc; 497 regs_buff[64] = adapter->stats.dc; 498 regs_buff[65] = adapter->stats.tncrs; 499 regs_buff[66] = adapter->stats.sec; 500 regs_buff[67] = adapter->stats.htdpmc; 501 regs_buff[68] = adapter->stats.rlec; 502 regs_buff[69] = adapter->stats.xonrxc; 503 regs_buff[70] = adapter->stats.xontxc; 504 regs_buff[71] = adapter->stats.xoffrxc; 505 regs_buff[72] = adapter->stats.xofftxc; 506 regs_buff[73] = adapter->stats.fcruc; 507 regs_buff[74] = adapter->stats.prc64; 508 regs_buff[75] = adapter->stats.prc127; 509 regs_buff[76] = adapter->stats.prc255; 510 regs_buff[77] = adapter->stats.prc511; 511 regs_buff[78] = adapter->stats.prc1023; 512 regs_buff[79] = adapter->stats.prc1522; 513 regs_buff[80] = adapter->stats.gprc; 514 regs_buff[81] = adapter->stats.bprc; 515 regs_buff[82] = adapter->stats.mprc; 516 regs_buff[83] = adapter->stats.gptc; 517 regs_buff[84] = adapter->stats.gorc; 518 regs_buff[86] = adapter->stats.gotc; 519 regs_buff[88] = adapter->stats.rnbc; 520 regs_buff[89] = adapter->stats.ruc; 521 regs_buff[90] = adapter->stats.rfc; 522 regs_buff[91] = adapter->stats.roc; 523 regs_buff[92] = adapter->stats.rjc; 524 regs_buff[93] = adapter->stats.mgprc; 525 regs_buff[94] = adapter->stats.mgpdc; 526 regs_buff[95] = adapter->stats.mgptc; 527 regs_buff[96] = adapter->stats.tor; 528 regs_buff[98] = adapter->stats.tot; 529 regs_buff[100] = adapter->stats.tpr; 530 regs_buff[101] = adapter->stats.tpt; 531 regs_buff[102] = adapter->stats.ptc64; 532 regs_buff[103] = adapter->stats.ptc127; 533 regs_buff[104] = adapter->stats.ptc255; 534 regs_buff[105] = adapter->stats.ptc511; 535 regs_buff[106] = adapter->stats.ptc1023; 536 regs_buff[107] = adapter->stats.ptc1522; 537 regs_buff[108] = adapter->stats.mptc; 538 regs_buff[109] = adapter->stats.bptc; 539 regs_buff[110] = adapter->stats.tsctc; 540 regs_buff[111] = adapter->stats.iac; 541 regs_buff[112] = adapter->stats.rpthc; 542 regs_buff[113] = adapter->stats.hgptc; 543 regs_buff[114] = adapter->stats.hgorc; 544 regs_buff[116] = adapter->stats.hgotc; 545 regs_buff[118] = adapter->stats.lenerrs; 546 regs_buff[119] = adapter->stats.scvpc; 547 regs_buff[120] = adapter->stats.hrmpc; 548 549 for (i = 0; i < 4; i++) 550 regs_buff[121 + i] = rd32(E1000_SRRCTL(i)); 551 for (i = 0; i < 4; i++) 552 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i)); 553 for (i = 0; i < 4; i++) 554 regs_buff[129 + i] = rd32(E1000_RDBAL(i)); 555 for (i = 0; i < 4; i++) 556 regs_buff[133 + i] = rd32(E1000_RDBAH(i)); 557 for (i = 0; i < 4; i++) 558 regs_buff[137 + i] = rd32(E1000_RDLEN(i)); 559 for (i = 0; i < 4; i++) 560 regs_buff[141 + i] = rd32(E1000_RDH(i)); 561 for (i = 0; i < 4; i++) 562 regs_buff[145 + i] = rd32(E1000_RDT(i)); 563 for (i = 0; i < 4; i++) 564 regs_buff[149 + i] = rd32(E1000_RXDCTL(i)); 565 566 for (i = 0; i < 10; i++) 567 regs_buff[153 + i] = rd32(E1000_EITR(i)); 568 for (i = 0; i < 8; i++) 569 regs_buff[163 + i] = rd32(E1000_IMIR(i)); 570 for (i = 0; i < 8; i++) 571 regs_buff[171 + i] = rd32(E1000_IMIREXT(i)); 572 for (i = 0; i < 16; i++) 573 regs_buff[179 + i] = rd32(E1000_RAL(i)); 574 for (i = 0; i < 16; i++) 575 regs_buff[195 + i] = rd32(E1000_RAH(i)); 576 577 for (i = 0; i < 4; i++) 578 regs_buff[211 + i] = rd32(E1000_TDBAL(i)); 579 for (i = 0; i < 4; i++) 580 regs_buff[215 + i] = rd32(E1000_TDBAH(i)); 581 for (i = 0; i < 4; i++) 582 regs_buff[219 + i] = rd32(E1000_TDLEN(i)); 583 for (i = 0; i < 4; i++) 584 regs_buff[223 + i] = rd32(E1000_TDH(i)); 585 for (i = 0; i < 4; i++) 586 regs_buff[227 + i] = rd32(E1000_TDT(i)); 587 for (i = 0; i < 4; i++) 588 regs_buff[231 + i] = rd32(E1000_TXDCTL(i)); 589 for (i = 0; i < 4; i++) 590 regs_buff[235 + i] = rd32(E1000_TDWBAL(i)); 591 for (i = 0; i < 4; i++) 592 regs_buff[239 + i] = rd32(E1000_TDWBAH(i)); 593 for (i = 0; i < 4; i++) 594 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i)); 595 596 for (i = 0; i < 4; i++) 597 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i)); 598 for (i = 0; i < 4; i++) 599 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i)); 600 for (i = 0; i < 32; i++) 601 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i)); 602 for (i = 0; i < 128; i++) 603 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i)); 604 for (i = 0; i < 128; i++) 605 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i)); 606 for (i = 0; i < 4; i++) 607 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i)); 608 609 regs_buff[547] = rd32(E1000_TDFH); 610 regs_buff[548] = rd32(E1000_TDFT); 611 regs_buff[549] = rd32(E1000_TDFHS); 612 regs_buff[550] = rd32(E1000_TDFPC); 613 614 if (hw->mac.type > e1000_82580) { 615 regs_buff[551] = adapter->stats.o2bgptc; 616 regs_buff[552] = adapter->stats.b2ospc; 617 regs_buff[553] = adapter->stats.o2bspc; 618 regs_buff[554] = adapter->stats.b2ogprc; 619 } 620 621 if (hw->mac.type != e1000_82576) 622 return; 623 for (i = 0; i < 12; i++) 624 regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4)); 625 for (i = 0; i < 4; i++) 626 regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4)); 627 for (i = 0; i < 12; i++) 628 regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4)); 629 for (i = 0; i < 12; i++) 630 regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4)); 631 for (i = 0; i < 12; i++) 632 regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4)); 633 for (i = 0; i < 12; i++) 634 regs_buff[607 + i] = rd32(E1000_RDH(i + 4)); 635 for (i = 0; i < 12; i++) 636 regs_buff[619 + i] = rd32(E1000_RDT(i + 4)); 637 for (i = 0; i < 12; i++) 638 regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4)); 639 640 for (i = 0; i < 12; i++) 641 regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4)); 642 for (i = 0; i < 12; i++) 643 regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4)); 644 for (i = 0; i < 12; i++) 645 regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4)); 646 for (i = 0; i < 12; i++) 647 regs_buff[679 + i] = rd32(E1000_TDH(i + 4)); 648 for (i = 0; i < 12; i++) 649 regs_buff[691 + i] = rd32(E1000_TDT(i + 4)); 650 for (i = 0; i < 12; i++) 651 regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4)); 652 for (i = 0; i < 12; i++) 653 regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4)); 654 for (i = 0; i < 12; i++) 655 regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4)); 656 } 657 658 static int igb_get_eeprom_len(struct net_device *netdev) 659 { 660 struct igb_adapter *adapter = netdev_priv(netdev); 661 return adapter->hw.nvm.word_size * 2; 662 } 663 664 static int igb_get_eeprom(struct net_device *netdev, 665 struct ethtool_eeprom *eeprom, u8 *bytes) 666 { 667 struct igb_adapter *adapter = netdev_priv(netdev); 668 struct e1000_hw *hw = &adapter->hw; 669 u16 *eeprom_buff; 670 int first_word, last_word; 671 int ret_val = 0; 672 u16 i; 673 674 if (eeprom->len == 0) 675 return -EINVAL; 676 677 eeprom->magic = hw->vendor_id | (hw->device_id << 16); 678 679 first_word = eeprom->offset >> 1; 680 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 681 682 eeprom_buff = kmalloc(sizeof(u16) * 683 (last_word - first_word + 1), GFP_KERNEL); 684 if (!eeprom_buff) 685 return -ENOMEM; 686 687 if (hw->nvm.type == e1000_nvm_eeprom_spi) 688 ret_val = hw->nvm.ops.read(hw, first_word, 689 last_word - first_word + 1, 690 eeprom_buff); 691 else { 692 for (i = 0; i < last_word - first_word + 1; i++) { 693 ret_val = hw->nvm.ops.read(hw, first_word + i, 1, 694 &eeprom_buff[i]); 695 if (ret_val) 696 break; 697 } 698 } 699 700 /* Device's eeprom is always little-endian, word addressable */ 701 for (i = 0; i < last_word - first_word + 1; i++) 702 le16_to_cpus(&eeprom_buff[i]); 703 704 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), 705 eeprom->len); 706 kfree(eeprom_buff); 707 708 return ret_val; 709 } 710 711 static int igb_set_eeprom(struct net_device *netdev, 712 struct ethtool_eeprom *eeprom, u8 *bytes) 713 { 714 struct igb_adapter *adapter = netdev_priv(netdev); 715 struct e1000_hw *hw = &adapter->hw; 716 u16 *eeprom_buff; 717 void *ptr; 718 int max_len, first_word, last_word, ret_val = 0; 719 u16 i; 720 721 if (eeprom->len == 0) 722 return -EOPNOTSUPP; 723 724 if (hw->mac.type == e1000_i211) 725 return -EOPNOTSUPP; 726 727 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16))) 728 return -EFAULT; 729 730 max_len = hw->nvm.word_size * 2; 731 732 first_word = eeprom->offset >> 1; 733 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 734 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 735 if (!eeprom_buff) 736 return -ENOMEM; 737 738 ptr = (void *)eeprom_buff; 739 740 if (eeprom->offset & 1) { 741 /* need read/modify/write of first changed EEPROM word */ 742 /* only the second byte of the word is being modified */ 743 ret_val = hw->nvm.ops.read(hw, first_word, 1, 744 &eeprom_buff[0]); 745 ptr++; 746 } 747 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) { 748 /* need read/modify/write of last changed EEPROM word */ 749 /* only the first byte of the word is being modified */ 750 ret_val = hw->nvm.ops.read(hw, last_word, 1, 751 &eeprom_buff[last_word - first_word]); 752 } 753 754 /* Device's eeprom is always little-endian, word addressable */ 755 for (i = 0; i < last_word - first_word + 1; i++) 756 le16_to_cpus(&eeprom_buff[i]); 757 758 memcpy(ptr, bytes, eeprom->len); 759 760 for (i = 0; i < last_word - first_word + 1; i++) 761 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]); 762 763 ret_val = hw->nvm.ops.write(hw, first_word, 764 last_word - first_word + 1, eeprom_buff); 765 766 /* Update the checksum over the first part of the EEPROM if needed 767 * and flush shadow RAM for 82573 controllers */ 768 if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG))) 769 hw->nvm.ops.update(hw); 770 771 igb_set_fw_version(adapter); 772 kfree(eeprom_buff); 773 return ret_val; 774 } 775 776 static void igb_get_drvinfo(struct net_device *netdev, 777 struct ethtool_drvinfo *drvinfo) 778 { 779 struct igb_adapter *adapter = netdev_priv(netdev); 780 781 strlcpy(drvinfo->driver, igb_driver_name, sizeof(drvinfo->driver)); 782 strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version)); 783 784 /* 785 * EEPROM image version # is reported as firmware version # for 786 * 82575 controllers 787 */ 788 strlcpy(drvinfo->fw_version, adapter->fw_version, 789 sizeof(drvinfo->fw_version)); 790 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 791 sizeof(drvinfo->bus_info)); 792 drvinfo->n_stats = IGB_STATS_LEN; 793 drvinfo->testinfo_len = IGB_TEST_LEN; 794 drvinfo->regdump_len = igb_get_regs_len(netdev); 795 drvinfo->eedump_len = igb_get_eeprom_len(netdev); 796 } 797 798 static void igb_get_ringparam(struct net_device *netdev, 799 struct ethtool_ringparam *ring) 800 { 801 struct igb_adapter *adapter = netdev_priv(netdev); 802 803 ring->rx_max_pending = IGB_MAX_RXD; 804 ring->tx_max_pending = IGB_MAX_TXD; 805 ring->rx_pending = adapter->rx_ring_count; 806 ring->tx_pending = adapter->tx_ring_count; 807 } 808 809 static int igb_set_ringparam(struct net_device *netdev, 810 struct ethtool_ringparam *ring) 811 { 812 struct igb_adapter *adapter = netdev_priv(netdev); 813 struct igb_ring *temp_ring; 814 int i, err = 0; 815 u16 new_rx_count, new_tx_count; 816 817 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 818 return -EINVAL; 819 820 new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD); 821 new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD); 822 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE); 823 824 new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD); 825 new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD); 826 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE); 827 828 if ((new_tx_count == adapter->tx_ring_count) && 829 (new_rx_count == adapter->rx_ring_count)) { 830 /* nothing to do */ 831 return 0; 832 } 833 834 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 835 msleep(1); 836 837 if (!netif_running(adapter->netdev)) { 838 for (i = 0; i < adapter->num_tx_queues; i++) 839 adapter->tx_ring[i]->count = new_tx_count; 840 for (i = 0; i < adapter->num_rx_queues; i++) 841 adapter->rx_ring[i]->count = new_rx_count; 842 adapter->tx_ring_count = new_tx_count; 843 adapter->rx_ring_count = new_rx_count; 844 goto clear_reset; 845 } 846 847 if (adapter->num_tx_queues > adapter->num_rx_queues) 848 temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring)); 849 else 850 temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring)); 851 852 if (!temp_ring) { 853 err = -ENOMEM; 854 goto clear_reset; 855 } 856 857 igb_down(adapter); 858 859 /* 860 * We can't just free everything and then setup again, 861 * because the ISRs in MSI-X mode get passed pointers 862 * to the tx and rx ring structs. 863 */ 864 if (new_tx_count != adapter->tx_ring_count) { 865 for (i = 0; i < adapter->num_tx_queues; i++) { 866 memcpy(&temp_ring[i], adapter->tx_ring[i], 867 sizeof(struct igb_ring)); 868 869 temp_ring[i].count = new_tx_count; 870 err = igb_setup_tx_resources(&temp_ring[i]); 871 if (err) { 872 while (i) { 873 i--; 874 igb_free_tx_resources(&temp_ring[i]); 875 } 876 goto err_setup; 877 } 878 } 879 880 for (i = 0; i < adapter->num_tx_queues; i++) { 881 igb_free_tx_resources(adapter->tx_ring[i]); 882 883 memcpy(adapter->tx_ring[i], &temp_ring[i], 884 sizeof(struct igb_ring)); 885 } 886 887 adapter->tx_ring_count = new_tx_count; 888 } 889 890 if (new_rx_count != adapter->rx_ring_count) { 891 for (i = 0; i < adapter->num_rx_queues; i++) { 892 memcpy(&temp_ring[i], adapter->rx_ring[i], 893 sizeof(struct igb_ring)); 894 895 temp_ring[i].count = new_rx_count; 896 err = igb_setup_rx_resources(&temp_ring[i]); 897 if (err) { 898 while (i) { 899 i--; 900 igb_free_rx_resources(&temp_ring[i]); 901 } 902 goto err_setup; 903 } 904 905 } 906 907 for (i = 0; i < adapter->num_rx_queues; i++) { 908 igb_free_rx_resources(adapter->rx_ring[i]); 909 910 memcpy(adapter->rx_ring[i], &temp_ring[i], 911 sizeof(struct igb_ring)); 912 } 913 914 adapter->rx_ring_count = new_rx_count; 915 } 916 err_setup: 917 igb_up(adapter); 918 vfree(temp_ring); 919 clear_reset: 920 clear_bit(__IGB_RESETTING, &adapter->state); 921 return err; 922 } 923 924 /* ethtool register test data */ 925 struct igb_reg_test { 926 u16 reg; 927 u16 reg_offset; 928 u16 array_len; 929 u16 test_type; 930 u32 mask; 931 u32 write; 932 }; 933 934 /* In the hardware, registers are laid out either singly, in arrays 935 * spaced 0x100 bytes apart, or in contiguous tables. We assume 936 * most tests take place on arrays or single registers (handled 937 * as a single-element array) and special-case the tables. 938 * Table tests are always pattern tests. 939 * 940 * We also make provision for some required setup steps by specifying 941 * registers to be written without any read-back testing. 942 */ 943 944 #define PATTERN_TEST 1 945 #define SET_READ_TEST 2 946 #define WRITE_NO_TEST 3 947 #define TABLE32_TEST 4 948 #define TABLE64_TEST_LO 5 949 #define TABLE64_TEST_HI 6 950 951 /* i210 reg test */ 952 static struct igb_reg_test reg_test_i210[] = { 953 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 954 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 955 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 956 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 957 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 958 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 959 /* RDH is read-only for i210, only test RDT. */ 960 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 961 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 962 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 963 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 964 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 965 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 966 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 967 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 968 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 969 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, 970 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, 971 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 972 { E1000_RA, 0, 16, TABLE64_TEST_LO, 973 0xFFFFFFFF, 0xFFFFFFFF }, 974 { E1000_RA, 0, 16, TABLE64_TEST_HI, 975 0x900FFFFF, 0xFFFFFFFF }, 976 { E1000_MTA, 0, 128, TABLE32_TEST, 977 0xFFFFFFFF, 0xFFFFFFFF }, 978 { 0, 0, 0, 0, 0 } 979 }; 980 981 /* i350 reg test */ 982 static struct igb_reg_test reg_test_i350[] = { 983 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 984 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 985 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 986 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 }, 987 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 988 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 989 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 990 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 991 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 992 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 993 /* RDH is read-only for i350, only test RDT. */ 994 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 995 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 996 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 997 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 998 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 999 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1000 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1001 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1002 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1003 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1004 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1005 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1006 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1007 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1008 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, 1009 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, 1010 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1011 { E1000_RA, 0, 16, TABLE64_TEST_LO, 1012 0xFFFFFFFF, 0xFFFFFFFF }, 1013 { E1000_RA, 0, 16, TABLE64_TEST_HI, 1014 0xC3FFFFFF, 0xFFFFFFFF }, 1015 { E1000_RA2, 0, 16, TABLE64_TEST_LO, 1016 0xFFFFFFFF, 0xFFFFFFFF }, 1017 { E1000_RA2, 0, 16, TABLE64_TEST_HI, 1018 0xC3FFFFFF, 0xFFFFFFFF }, 1019 { E1000_MTA, 0, 128, TABLE32_TEST, 1020 0xFFFFFFFF, 0xFFFFFFFF }, 1021 { 0, 0, 0, 0 } 1022 }; 1023 1024 /* 82580 reg test */ 1025 static struct igb_reg_test reg_test_82580[] = { 1026 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1027 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1028 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1029 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1030 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1031 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1032 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1033 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1034 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1035 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1036 /* RDH is read-only for 82580, only test RDT. */ 1037 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1038 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1039 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1040 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1041 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1042 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1043 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1044 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1045 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1046 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1047 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1048 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1049 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1050 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1051 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, 1052 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, 1053 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1054 { E1000_RA, 0, 16, TABLE64_TEST_LO, 1055 0xFFFFFFFF, 0xFFFFFFFF }, 1056 { E1000_RA, 0, 16, TABLE64_TEST_HI, 1057 0x83FFFFFF, 0xFFFFFFFF }, 1058 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 1059 0xFFFFFFFF, 0xFFFFFFFF }, 1060 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 1061 0x83FFFFFF, 0xFFFFFFFF }, 1062 { E1000_MTA, 0, 128, TABLE32_TEST, 1063 0xFFFFFFFF, 0xFFFFFFFF }, 1064 { 0, 0, 0, 0 } 1065 }; 1066 1067 /* 82576 reg test */ 1068 static struct igb_reg_test reg_test_82576[] = { 1069 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1070 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1071 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1072 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1073 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1074 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1075 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1076 { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1077 { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1078 { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1079 /* Enable all RX queues before testing. */ 1080 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE }, 1081 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE }, 1082 /* RDH is read-only for 82576, only test RDT. */ 1083 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1084 { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1085 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 }, 1086 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 }, 1087 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1088 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1089 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1090 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1091 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1092 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1093 { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1094 { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1095 { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1096 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1097 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, 1098 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, 1099 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1100 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, 1101 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF }, 1102 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, 1103 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF }, 1104 { E1000_MTA, 0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1105 { 0, 0, 0, 0 } 1106 }; 1107 1108 /* 82575 register test */ 1109 static struct igb_reg_test reg_test_82575[] = { 1110 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1111 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1112 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1113 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1114 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1115 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1116 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1117 /* Enable all four RX queues before testing. */ 1118 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE }, 1119 /* RDH is read-only for 82575, only test RDT. */ 1120 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1121 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 }, 1122 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1123 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1124 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1125 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1126 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1127 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1128 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1129 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB }, 1130 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF }, 1131 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1132 { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF }, 1133 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, 1134 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF }, 1135 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1136 { 0, 0, 0, 0 } 1137 }; 1138 1139 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data, 1140 int reg, u32 mask, u32 write) 1141 { 1142 struct e1000_hw *hw = &adapter->hw; 1143 u32 pat, val; 1144 static const u32 _test[] = 1145 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; 1146 for (pat = 0; pat < ARRAY_SIZE(_test); pat++) { 1147 wr32(reg, (_test[pat] & write)); 1148 val = rd32(reg) & mask; 1149 if (val != (_test[pat] & write & mask)) { 1150 dev_err(&adapter->pdev->dev, 1151 "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n", 1152 reg, val, (_test[pat] & write & mask)); 1153 *data = reg; 1154 return 1; 1155 } 1156 } 1157 1158 return 0; 1159 } 1160 1161 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data, 1162 int reg, u32 mask, u32 write) 1163 { 1164 struct e1000_hw *hw = &adapter->hw; 1165 u32 val; 1166 wr32(reg, write & mask); 1167 val = rd32(reg); 1168 if ((write & mask) != (val & mask)) { 1169 dev_err(&adapter->pdev->dev, 1170 "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", reg, 1171 (val & mask), (write & mask)); 1172 *data = reg; 1173 return 1; 1174 } 1175 1176 return 0; 1177 } 1178 1179 #define REG_PATTERN_TEST(reg, mask, write) \ 1180 do { \ 1181 if (reg_pattern_test(adapter, data, reg, mask, write)) \ 1182 return 1; \ 1183 } while (0) 1184 1185 #define REG_SET_AND_CHECK(reg, mask, write) \ 1186 do { \ 1187 if (reg_set_and_check(adapter, data, reg, mask, write)) \ 1188 return 1; \ 1189 } while (0) 1190 1191 static int igb_reg_test(struct igb_adapter *adapter, u64 *data) 1192 { 1193 struct e1000_hw *hw = &adapter->hw; 1194 struct igb_reg_test *test; 1195 u32 value, before, after; 1196 u32 i, toggle; 1197 1198 switch (adapter->hw.mac.type) { 1199 case e1000_i350: 1200 test = reg_test_i350; 1201 toggle = 0x7FEFF3FF; 1202 break; 1203 case e1000_i210: 1204 case e1000_i211: 1205 test = reg_test_i210; 1206 toggle = 0x7FEFF3FF; 1207 break; 1208 case e1000_82580: 1209 test = reg_test_82580; 1210 toggle = 0x7FEFF3FF; 1211 break; 1212 case e1000_82576: 1213 test = reg_test_82576; 1214 toggle = 0x7FFFF3FF; 1215 break; 1216 default: 1217 test = reg_test_82575; 1218 toggle = 0x7FFFF3FF; 1219 break; 1220 } 1221 1222 /* Because the status register is such a special case, 1223 * we handle it separately from the rest of the register 1224 * tests. Some bits are read-only, some toggle, and some 1225 * are writable on newer MACs. 1226 */ 1227 before = rd32(E1000_STATUS); 1228 value = (rd32(E1000_STATUS) & toggle); 1229 wr32(E1000_STATUS, toggle); 1230 after = rd32(E1000_STATUS) & toggle; 1231 if (value != after) { 1232 dev_err(&adapter->pdev->dev, 1233 "failed STATUS register test got: 0x%08X expected: 0x%08X\n", 1234 after, value); 1235 *data = 1; 1236 return 1; 1237 } 1238 /* restore previous status */ 1239 wr32(E1000_STATUS, before); 1240 1241 /* Perform the remainder of the register test, looping through 1242 * the test table until we either fail or reach the null entry. 1243 */ 1244 while (test->reg) { 1245 for (i = 0; i < test->array_len; i++) { 1246 switch (test->test_type) { 1247 case PATTERN_TEST: 1248 REG_PATTERN_TEST(test->reg + 1249 (i * test->reg_offset), 1250 test->mask, 1251 test->write); 1252 break; 1253 case SET_READ_TEST: 1254 REG_SET_AND_CHECK(test->reg + 1255 (i * test->reg_offset), 1256 test->mask, 1257 test->write); 1258 break; 1259 case WRITE_NO_TEST: 1260 writel(test->write, 1261 (adapter->hw.hw_addr + test->reg) 1262 + (i * test->reg_offset)); 1263 break; 1264 case TABLE32_TEST: 1265 REG_PATTERN_TEST(test->reg + (i * 4), 1266 test->mask, 1267 test->write); 1268 break; 1269 case TABLE64_TEST_LO: 1270 REG_PATTERN_TEST(test->reg + (i * 8), 1271 test->mask, 1272 test->write); 1273 break; 1274 case TABLE64_TEST_HI: 1275 REG_PATTERN_TEST((test->reg + 4) + (i * 8), 1276 test->mask, 1277 test->write); 1278 break; 1279 } 1280 } 1281 test++; 1282 } 1283 1284 *data = 0; 1285 return 0; 1286 } 1287 1288 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data) 1289 { 1290 *data = 0; 1291 1292 /* Validate eeprom on all parts but i211 */ 1293 if (adapter->hw.mac.type != e1000_i211) { 1294 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0) 1295 *data = 2; 1296 } 1297 1298 return *data; 1299 } 1300 1301 static irqreturn_t igb_test_intr(int irq, void *data) 1302 { 1303 struct igb_adapter *adapter = (struct igb_adapter *) data; 1304 struct e1000_hw *hw = &adapter->hw; 1305 1306 adapter->test_icr |= rd32(E1000_ICR); 1307 1308 return IRQ_HANDLED; 1309 } 1310 1311 static int igb_intr_test(struct igb_adapter *adapter, u64 *data) 1312 { 1313 struct e1000_hw *hw = &adapter->hw; 1314 struct net_device *netdev = adapter->netdev; 1315 u32 mask, ics_mask, i = 0, shared_int = true; 1316 u32 irq = adapter->pdev->irq; 1317 1318 *data = 0; 1319 1320 /* Hook up test interrupt handler just for this test */ 1321 if (adapter->msix_entries) { 1322 if (request_irq(adapter->msix_entries[0].vector, 1323 igb_test_intr, 0, netdev->name, adapter)) { 1324 *data = 1; 1325 return -1; 1326 } 1327 } else if (adapter->flags & IGB_FLAG_HAS_MSI) { 1328 shared_int = false; 1329 if (request_irq(irq, 1330 igb_test_intr, 0, netdev->name, adapter)) { 1331 *data = 1; 1332 return -1; 1333 } 1334 } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED, 1335 netdev->name, adapter)) { 1336 shared_int = false; 1337 } else if (request_irq(irq, igb_test_intr, IRQF_SHARED, 1338 netdev->name, adapter)) { 1339 *data = 1; 1340 return -1; 1341 } 1342 dev_info(&adapter->pdev->dev, "testing %s interrupt\n", 1343 (shared_int ? "shared" : "unshared")); 1344 1345 /* Disable all the interrupts */ 1346 wr32(E1000_IMC, ~0); 1347 wrfl(); 1348 msleep(10); 1349 1350 /* Define all writable bits for ICS */ 1351 switch (hw->mac.type) { 1352 case e1000_82575: 1353 ics_mask = 0x37F47EDD; 1354 break; 1355 case e1000_82576: 1356 ics_mask = 0x77D4FBFD; 1357 break; 1358 case e1000_82580: 1359 ics_mask = 0x77DCFED5; 1360 break; 1361 case e1000_i350: 1362 case e1000_i210: 1363 case e1000_i211: 1364 ics_mask = 0x77DCFED5; 1365 break; 1366 default: 1367 ics_mask = 0x7FFFFFFF; 1368 break; 1369 } 1370 1371 /* Test each interrupt */ 1372 for (; i < 31; i++) { 1373 /* Interrupt to test */ 1374 mask = 1 << i; 1375 1376 if (!(mask & ics_mask)) 1377 continue; 1378 1379 if (!shared_int) { 1380 /* Disable the interrupt to be reported in 1381 * the cause register and then force the same 1382 * interrupt and see if one gets posted. If 1383 * an interrupt was posted to the bus, the 1384 * test failed. 1385 */ 1386 adapter->test_icr = 0; 1387 1388 /* Flush any pending interrupts */ 1389 wr32(E1000_ICR, ~0); 1390 1391 wr32(E1000_IMC, mask); 1392 wr32(E1000_ICS, mask); 1393 wrfl(); 1394 msleep(10); 1395 1396 if (adapter->test_icr & mask) { 1397 *data = 3; 1398 break; 1399 } 1400 } 1401 1402 /* Enable the interrupt to be reported in 1403 * the cause register and then force the same 1404 * interrupt and see if one gets posted. If 1405 * an interrupt was not posted to the bus, the 1406 * test failed. 1407 */ 1408 adapter->test_icr = 0; 1409 1410 /* Flush any pending interrupts */ 1411 wr32(E1000_ICR, ~0); 1412 1413 wr32(E1000_IMS, mask); 1414 wr32(E1000_ICS, mask); 1415 wrfl(); 1416 msleep(10); 1417 1418 if (!(adapter->test_icr & mask)) { 1419 *data = 4; 1420 break; 1421 } 1422 1423 if (!shared_int) { 1424 /* Disable the other interrupts to be reported in 1425 * the cause register and then force the other 1426 * interrupts and see if any get posted. If 1427 * an interrupt was posted to the bus, the 1428 * test failed. 1429 */ 1430 adapter->test_icr = 0; 1431 1432 /* Flush any pending interrupts */ 1433 wr32(E1000_ICR, ~0); 1434 1435 wr32(E1000_IMC, ~mask); 1436 wr32(E1000_ICS, ~mask); 1437 wrfl(); 1438 msleep(10); 1439 1440 if (adapter->test_icr & mask) { 1441 *data = 5; 1442 break; 1443 } 1444 } 1445 } 1446 1447 /* Disable all the interrupts */ 1448 wr32(E1000_IMC, ~0); 1449 wrfl(); 1450 msleep(10); 1451 1452 /* Unhook test interrupt handler */ 1453 if (adapter->msix_entries) 1454 free_irq(adapter->msix_entries[0].vector, adapter); 1455 else 1456 free_irq(irq, adapter); 1457 1458 return *data; 1459 } 1460 1461 static void igb_free_desc_rings(struct igb_adapter *adapter) 1462 { 1463 igb_free_tx_resources(&adapter->test_tx_ring); 1464 igb_free_rx_resources(&adapter->test_rx_ring); 1465 } 1466 1467 static int igb_setup_desc_rings(struct igb_adapter *adapter) 1468 { 1469 struct igb_ring *tx_ring = &adapter->test_tx_ring; 1470 struct igb_ring *rx_ring = &adapter->test_rx_ring; 1471 struct e1000_hw *hw = &adapter->hw; 1472 int ret_val; 1473 1474 /* Setup Tx descriptor ring and Tx buffers */ 1475 tx_ring->count = IGB_DEFAULT_TXD; 1476 tx_ring->dev = &adapter->pdev->dev; 1477 tx_ring->netdev = adapter->netdev; 1478 tx_ring->reg_idx = adapter->vfs_allocated_count; 1479 1480 if (igb_setup_tx_resources(tx_ring)) { 1481 ret_val = 1; 1482 goto err_nomem; 1483 } 1484 1485 igb_setup_tctl(adapter); 1486 igb_configure_tx_ring(adapter, tx_ring); 1487 1488 /* Setup Rx descriptor ring and Rx buffers */ 1489 rx_ring->count = IGB_DEFAULT_RXD; 1490 rx_ring->dev = &adapter->pdev->dev; 1491 rx_ring->netdev = adapter->netdev; 1492 rx_ring->reg_idx = adapter->vfs_allocated_count; 1493 1494 if (igb_setup_rx_resources(rx_ring)) { 1495 ret_val = 3; 1496 goto err_nomem; 1497 } 1498 1499 /* set the default queue to queue 0 of PF */ 1500 wr32(E1000_MRQC, adapter->vfs_allocated_count << 3); 1501 1502 /* enable receive ring */ 1503 igb_setup_rctl(adapter); 1504 igb_configure_rx_ring(adapter, rx_ring); 1505 1506 igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring)); 1507 1508 return 0; 1509 1510 err_nomem: 1511 igb_free_desc_rings(adapter); 1512 return ret_val; 1513 } 1514 1515 static void igb_phy_disable_receiver(struct igb_adapter *adapter) 1516 { 1517 struct e1000_hw *hw = &adapter->hw; 1518 1519 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1520 igb_write_phy_reg(hw, 29, 0x001F); 1521 igb_write_phy_reg(hw, 30, 0x8FFC); 1522 igb_write_phy_reg(hw, 29, 0x001A); 1523 igb_write_phy_reg(hw, 30, 0x8FF0); 1524 } 1525 1526 static int igb_integrated_phy_loopback(struct igb_adapter *adapter) 1527 { 1528 struct e1000_hw *hw = &adapter->hw; 1529 u32 ctrl_reg = 0; 1530 1531 hw->mac.autoneg = false; 1532 1533 if (hw->phy.type == e1000_phy_m88) { 1534 if (hw->phy.id != I210_I_PHY_ID) { 1535 /* Auto-MDI/MDIX Off */ 1536 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); 1537 /* reset to update Auto-MDI/MDIX */ 1538 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140); 1539 /* autoneg off */ 1540 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140); 1541 } else { 1542 /* force 1000, set loopback */ 1543 igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0); 1544 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140); 1545 } 1546 } 1547 1548 /* add small delay to avoid loopback test failure */ 1549 msleep(50); 1550 1551 /* force 1000, set loopback */ 1552 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140); 1553 1554 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1555 ctrl_reg = rd32(E1000_CTRL); 1556 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1557 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1558 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1559 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1560 E1000_CTRL_FD | /* Force Duplex to FULL */ 1561 E1000_CTRL_SLU); /* Set link up enable bit */ 1562 1563 if (hw->phy.type == e1000_phy_m88) 1564 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1565 1566 wr32(E1000_CTRL, ctrl_reg); 1567 1568 /* Disable the receiver on the PHY so when a cable is plugged in, the 1569 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1570 */ 1571 if (hw->phy.type == e1000_phy_m88) 1572 igb_phy_disable_receiver(adapter); 1573 1574 mdelay(500); 1575 return 0; 1576 } 1577 1578 static int igb_set_phy_loopback(struct igb_adapter *adapter) 1579 { 1580 return igb_integrated_phy_loopback(adapter); 1581 } 1582 1583 static int igb_setup_loopback_test(struct igb_adapter *adapter) 1584 { 1585 struct e1000_hw *hw = &adapter->hw; 1586 u32 reg; 1587 1588 reg = rd32(E1000_CTRL_EXT); 1589 1590 /* use CTRL_EXT to identify link type as SGMII can appear as copper */ 1591 if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) { 1592 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) || 1593 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) || 1594 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) || 1595 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) { 1596 1597 /* Enable DH89xxCC MPHY for near end loopback */ 1598 reg = rd32(E1000_MPHY_ADDR_CTL); 1599 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) | 1600 E1000_MPHY_PCS_CLK_REG_OFFSET; 1601 wr32(E1000_MPHY_ADDR_CTL, reg); 1602 1603 reg = rd32(E1000_MPHY_DATA); 1604 reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN; 1605 wr32(E1000_MPHY_DATA, reg); 1606 } 1607 1608 reg = rd32(E1000_RCTL); 1609 reg |= E1000_RCTL_LBM_TCVR; 1610 wr32(E1000_RCTL, reg); 1611 1612 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK); 1613 1614 reg = rd32(E1000_CTRL); 1615 reg &= ~(E1000_CTRL_RFCE | 1616 E1000_CTRL_TFCE | 1617 E1000_CTRL_LRST); 1618 reg |= E1000_CTRL_SLU | 1619 E1000_CTRL_FD; 1620 wr32(E1000_CTRL, reg); 1621 1622 /* Unset switch control to serdes energy detect */ 1623 reg = rd32(E1000_CONNSW); 1624 reg &= ~E1000_CONNSW_ENRGSRC; 1625 wr32(E1000_CONNSW, reg); 1626 1627 /* Unset sigdetect for SERDES loopback on 1628 * 82580 and i350 devices. 1629 */ 1630 switch (hw->mac.type) { 1631 case e1000_82580: 1632 case e1000_i350: 1633 reg = rd32(E1000_PCS_CFG0); 1634 reg |= E1000_PCS_CFG_IGN_SD; 1635 wr32(E1000_PCS_CFG0, reg); 1636 break; 1637 default: 1638 break; 1639 } 1640 1641 /* Set PCS register for forced speed */ 1642 reg = rd32(E1000_PCS_LCTL); 1643 reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/ 1644 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */ 1645 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */ 1646 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */ 1647 E1000_PCS_LCTL_FSD | /* Force Speed */ 1648 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */ 1649 wr32(E1000_PCS_LCTL, reg); 1650 1651 return 0; 1652 } 1653 1654 return igb_set_phy_loopback(adapter); 1655 } 1656 1657 static void igb_loopback_cleanup(struct igb_adapter *adapter) 1658 { 1659 struct e1000_hw *hw = &adapter->hw; 1660 u32 rctl; 1661 u16 phy_reg; 1662 1663 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) || 1664 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) || 1665 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) || 1666 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) { 1667 u32 reg; 1668 1669 /* Disable near end loopback on DH89xxCC */ 1670 reg = rd32(E1000_MPHY_ADDR_CTL); 1671 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) | 1672 E1000_MPHY_PCS_CLK_REG_OFFSET; 1673 wr32(E1000_MPHY_ADDR_CTL, reg); 1674 1675 reg = rd32(E1000_MPHY_DATA); 1676 reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN; 1677 wr32(E1000_MPHY_DATA, reg); 1678 } 1679 1680 rctl = rd32(E1000_RCTL); 1681 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1682 wr32(E1000_RCTL, rctl); 1683 1684 hw->mac.autoneg = true; 1685 igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg); 1686 if (phy_reg & MII_CR_LOOPBACK) { 1687 phy_reg &= ~MII_CR_LOOPBACK; 1688 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg); 1689 igb_phy_sw_reset(hw); 1690 } 1691 } 1692 1693 static void igb_create_lbtest_frame(struct sk_buff *skb, 1694 unsigned int frame_size) 1695 { 1696 memset(skb->data, 0xFF, frame_size); 1697 frame_size /= 2; 1698 memset(&skb->data[frame_size], 0xAA, frame_size - 1); 1699 memset(&skb->data[frame_size + 10], 0xBE, 1); 1700 memset(&skb->data[frame_size + 12], 0xAF, 1); 1701 } 1702 1703 static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer, 1704 unsigned int frame_size) 1705 { 1706 unsigned char *data; 1707 bool match = true; 1708 1709 frame_size >>= 1; 1710 1711 data = kmap(rx_buffer->page); 1712 1713 if (data[3] != 0xFF || 1714 data[frame_size + 10] != 0xBE || 1715 data[frame_size + 12] != 0xAF) 1716 match = false; 1717 1718 kunmap(rx_buffer->page); 1719 1720 return match; 1721 } 1722 1723 static int igb_clean_test_rings(struct igb_ring *rx_ring, 1724 struct igb_ring *tx_ring, 1725 unsigned int size) 1726 { 1727 union e1000_adv_rx_desc *rx_desc; 1728 struct igb_rx_buffer *rx_buffer_info; 1729 struct igb_tx_buffer *tx_buffer_info; 1730 u16 rx_ntc, tx_ntc, count = 0; 1731 1732 /* initialize next to clean and descriptor values */ 1733 rx_ntc = rx_ring->next_to_clean; 1734 tx_ntc = tx_ring->next_to_clean; 1735 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc); 1736 1737 while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) { 1738 /* check rx buffer */ 1739 rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc]; 1740 1741 /* sync Rx buffer for CPU read */ 1742 dma_sync_single_for_cpu(rx_ring->dev, 1743 rx_buffer_info->dma, 1744 IGB_RX_BUFSZ, 1745 DMA_FROM_DEVICE); 1746 1747 /* verify contents of skb */ 1748 if (igb_check_lbtest_frame(rx_buffer_info, size)) 1749 count++; 1750 1751 /* sync Rx buffer for device write */ 1752 dma_sync_single_for_device(rx_ring->dev, 1753 rx_buffer_info->dma, 1754 IGB_RX_BUFSZ, 1755 DMA_FROM_DEVICE); 1756 1757 /* unmap buffer on tx side */ 1758 tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc]; 1759 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info); 1760 1761 /* increment rx/tx next to clean counters */ 1762 rx_ntc++; 1763 if (rx_ntc == rx_ring->count) 1764 rx_ntc = 0; 1765 tx_ntc++; 1766 if (tx_ntc == tx_ring->count) 1767 tx_ntc = 0; 1768 1769 /* fetch next descriptor */ 1770 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc); 1771 } 1772 1773 netdev_tx_reset_queue(txring_txq(tx_ring)); 1774 1775 /* re-map buffers to ring, store next to clean values */ 1776 igb_alloc_rx_buffers(rx_ring, count); 1777 rx_ring->next_to_clean = rx_ntc; 1778 tx_ring->next_to_clean = tx_ntc; 1779 1780 return count; 1781 } 1782 1783 static int igb_run_loopback_test(struct igb_adapter *adapter) 1784 { 1785 struct igb_ring *tx_ring = &adapter->test_tx_ring; 1786 struct igb_ring *rx_ring = &adapter->test_rx_ring; 1787 u16 i, j, lc, good_cnt; 1788 int ret_val = 0; 1789 unsigned int size = IGB_RX_HDR_LEN; 1790 netdev_tx_t tx_ret_val; 1791 struct sk_buff *skb; 1792 1793 /* allocate test skb */ 1794 skb = alloc_skb(size, GFP_KERNEL); 1795 if (!skb) 1796 return 11; 1797 1798 /* place data into test skb */ 1799 igb_create_lbtest_frame(skb, size); 1800 skb_put(skb, size); 1801 1802 /* 1803 * Calculate the loop count based on the largest descriptor ring 1804 * The idea is to wrap the largest ring a number of times using 64 1805 * send/receive pairs during each loop 1806 */ 1807 1808 if (rx_ring->count <= tx_ring->count) 1809 lc = ((tx_ring->count / 64) * 2) + 1; 1810 else 1811 lc = ((rx_ring->count / 64) * 2) + 1; 1812 1813 for (j = 0; j <= lc; j++) { /* loop count loop */ 1814 /* reset count of good packets */ 1815 good_cnt = 0; 1816 1817 /* place 64 packets on the transmit queue*/ 1818 for (i = 0; i < 64; i++) { 1819 skb_get(skb); 1820 tx_ret_val = igb_xmit_frame_ring(skb, tx_ring); 1821 if (tx_ret_val == NETDEV_TX_OK) 1822 good_cnt++; 1823 } 1824 1825 if (good_cnt != 64) { 1826 ret_val = 12; 1827 break; 1828 } 1829 1830 /* allow 200 milliseconds for packets to go from tx to rx */ 1831 msleep(200); 1832 1833 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size); 1834 if (good_cnt != 64) { 1835 ret_val = 13; 1836 break; 1837 } 1838 } /* end loop count loop */ 1839 1840 /* free the original skb */ 1841 kfree_skb(skb); 1842 1843 return ret_val; 1844 } 1845 1846 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data) 1847 { 1848 /* PHY loopback cannot be performed if SoL/IDER 1849 * sessions are active */ 1850 if (igb_check_reset_block(&adapter->hw)) { 1851 dev_err(&adapter->pdev->dev, 1852 "Cannot do PHY loopback test when SoL/IDER is active.\n"); 1853 *data = 0; 1854 goto out; 1855 } 1856 *data = igb_setup_desc_rings(adapter); 1857 if (*data) 1858 goto out; 1859 *data = igb_setup_loopback_test(adapter); 1860 if (*data) 1861 goto err_loopback; 1862 *data = igb_run_loopback_test(adapter); 1863 igb_loopback_cleanup(adapter); 1864 1865 err_loopback: 1866 igb_free_desc_rings(adapter); 1867 out: 1868 return *data; 1869 } 1870 1871 static int igb_link_test(struct igb_adapter *adapter, u64 *data) 1872 { 1873 struct e1000_hw *hw = &adapter->hw; 1874 *data = 0; 1875 if (hw->phy.media_type == e1000_media_type_internal_serdes) { 1876 int i = 0; 1877 hw->mac.serdes_has_link = false; 1878 1879 /* On some blade server designs, link establishment 1880 * could take as long as 2-3 minutes */ 1881 do { 1882 hw->mac.ops.check_for_link(&adapter->hw); 1883 if (hw->mac.serdes_has_link) 1884 return *data; 1885 msleep(20); 1886 } while (i++ < 3750); 1887 1888 *data = 1; 1889 } else { 1890 hw->mac.ops.check_for_link(&adapter->hw); 1891 if (hw->mac.autoneg) 1892 msleep(4000); 1893 1894 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) 1895 *data = 1; 1896 } 1897 return *data; 1898 } 1899 1900 static void igb_diag_test(struct net_device *netdev, 1901 struct ethtool_test *eth_test, u64 *data) 1902 { 1903 struct igb_adapter *adapter = netdev_priv(netdev); 1904 u16 autoneg_advertised; 1905 u8 forced_speed_duplex, autoneg; 1906 bool if_running = netif_running(netdev); 1907 1908 set_bit(__IGB_TESTING, &adapter->state); 1909 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1910 /* Offline tests */ 1911 1912 /* save speed, duplex, autoneg settings */ 1913 autoneg_advertised = adapter->hw.phy.autoneg_advertised; 1914 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; 1915 autoneg = adapter->hw.mac.autoneg; 1916 1917 dev_info(&adapter->pdev->dev, "offline testing starting\n"); 1918 1919 /* power up link for link test */ 1920 igb_power_up_link(adapter); 1921 1922 /* Link test performed before hardware reset so autoneg doesn't 1923 * interfere with test result */ 1924 if (igb_link_test(adapter, &data[4])) 1925 eth_test->flags |= ETH_TEST_FL_FAILED; 1926 1927 if (if_running) 1928 /* indicate we're in test mode */ 1929 dev_close(netdev); 1930 else 1931 igb_reset(adapter); 1932 1933 if (igb_reg_test(adapter, &data[0])) 1934 eth_test->flags |= ETH_TEST_FL_FAILED; 1935 1936 igb_reset(adapter); 1937 if (igb_eeprom_test(adapter, &data[1])) 1938 eth_test->flags |= ETH_TEST_FL_FAILED; 1939 1940 igb_reset(adapter); 1941 if (igb_intr_test(adapter, &data[2])) 1942 eth_test->flags |= ETH_TEST_FL_FAILED; 1943 1944 igb_reset(adapter); 1945 /* power up link for loopback test */ 1946 igb_power_up_link(adapter); 1947 if (igb_loopback_test(adapter, &data[3])) 1948 eth_test->flags |= ETH_TEST_FL_FAILED; 1949 1950 /* restore speed, duplex, autoneg settings */ 1951 adapter->hw.phy.autoneg_advertised = autoneg_advertised; 1952 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; 1953 adapter->hw.mac.autoneg = autoneg; 1954 1955 /* force this routine to wait until autoneg complete/timeout */ 1956 adapter->hw.phy.autoneg_wait_to_complete = true; 1957 igb_reset(adapter); 1958 adapter->hw.phy.autoneg_wait_to_complete = false; 1959 1960 clear_bit(__IGB_TESTING, &adapter->state); 1961 if (if_running) 1962 dev_open(netdev); 1963 } else { 1964 dev_info(&adapter->pdev->dev, "online testing starting\n"); 1965 1966 /* PHY is powered down when interface is down */ 1967 if (if_running && igb_link_test(adapter, &data[4])) 1968 eth_test->flags |= ETH_TEST_FL_FAILED; 1969 else 1970 data[4] = 0; 1971 1972 /* Online tests aren't run; pass by default */ 1973 data[0] = 0; 1974 data[1] = 0; 1975 data[2] = 0; 1976 data[3] = 0; 1977 1978 clear_bit(__IGB_TESTING, &adapter->state); 1979 } 1980 msleep_interruptible(4 * 1000); 1981 } 1982 1983 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 1984 { 1985 struct igb_adapter *adapter = netdev_priv(netdev); 1986 1987 wol->supported = WAKE_UCAST | WAKE_MCAST | 1988 WAKE_BCAST | WAKE_MAGIC | 1989 WAKE_PHY; 1990 wol->wolopts = 0; 1991 1992 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED)) 1993 return; 1994 1995 /* apply any specific unsupported masks here */ 1996 switch (adapter->hw.device_id) { 1997 default: 1998 break; 1999 } 2000 2001 if (adapter->wol & E1000_WUFC_EX) 2002 wol->wolopts |= WAKE_UCAST; 2003 if (adapter->wol & E1000_WUFC_MC) 2004 wol->wolopts |= WAKE_MCAST; 2005 if (adapter->wol & E1000_WUFC_BC) 2006 wol->wolopts |= WAKE_BCAST; 2007 if (adapter->wol & E1000_WUFC_MAG) 2008 wol->wolopts |= WAKE_MAGIC; 2009 if (adapter->wol & E1000_WUFC_LNKC) 2010 wol->wolopts |= WAKE_PHY; 2011 } 2012 2013 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 2014 { 2015 struct igb_adapter *adapter = netdev_priv(netdev); 2016 2017 if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE)) 2018 return -EOPNOTSUPP; 2019 2020 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED)) 2021 return wol->wolopts ? -EOPNOTSUPP : 0; 2022 2023 /* these settings will always override what we currently have */ 2024 adapter->wol = 0; 2025 2026 if (wol->wolopts & WAKE_UCAST) 2027 adapter->wol |= E1000_WUFC_EX; 2028 if (wol->wolopts & WAKE_MCAST) 2029 adapter->wol |= E1000_WUFC_MC; 2030 if (wol->wolopts & WAKE_BCAST) 2031 adapter->wol |= E1000_WUFC_BC; 2032 if (wol->wolopts & WAKE_MAGIC) 2033 adapter->wol |= E1000_WUFC_MAG; 2034 if (wol->wolopts & WAKE_PHY) 2035 adapter->wol |= E1000_WUFC_LNKC; 2036 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 2037 2038 return 0; 2039 } 2040 2041 /* bit defines for adapter->led_status */ 2042 #define IGB_LED_ON 0 2043 2044 static int igb_set_phys_id(struct net_device *netdev, 2045 enum ethtool_phys_id_state state) 2046 { 2047 struct igb_adapter *adapter = netdev_priv(netdev); 2048 struct e1000_hw *hw = &adapter->hw; 2049 2050 switch (state) { 2051 case ETHTOOL_ID_ACTIVE: 2052 igb_blink_led(hw); 2053 return 2; 2054 case ETHTOOL_ID_ON: 2055 igb_blink_led(hw); 2056 break; 2057 case ETHTOOL_ID_OFF: 2058 igb_led_off(hw); 2059 break; 2060 case ETHTOOL_ID_INACTIVE: 2061 igb_led_off(hw); 2062 clear_bit(IGB_LED_ON, &adapter->led_status); 2063 igb_cleanup_led(hw); 2064 break; 2065 } 2066 2067 return 0; 2068 } 2069 2070 static int igb_set_coalesce(struct net_device *netdev, 2071 struct ethtool_coalesce *ec) 2072 { 2073 struct igb_adapter *adapter = netdev_priv(netdev); 2074 int i; 2075 2076 if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) || 2077 ((ec->rx_coalesce_usecs > 3) && 2078 (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) || 2079 (ec->rx_coalesce_usecs == 2)) 2080 return -EINVAL; 2081 2082 if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) || 2083 ((ec->tx_coalesce_usecs > 3) && 2084 (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) || 2085 (ec->tx_coalesce_usecs == 2)) 2086 return -EINVAL; 2087 2088 if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs) 2089 return -EINVAL; 2090 2091 /* If ITR is disabled, disable DMAC */ 2092 if (ec->rx_coalesce_usecs == 0) { 2093 if (adapter->flags & IGB_FLAG_DMAC) 2094 adapter->flags &= ~IGB_FLAG_DMAC; 2095 } 2096 2097 /* convert to rate of irq's per second */ 2098 if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3) 2099 adapter->rx_itr_setting = ec->rx_coalesce_usecs; 2100 else 2101 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2; 2102 2103 /* convert to rate of irq's per second */ 2104 if (adapter->flags & IGB_FLAG_QUEUE_PAIRS) 2105 adapter->tx_itr_setting = adapter->rx_itr_setting; 2106 else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3) 2107 adapter->tx_itr_setting = ec->tx_coalesce_usecs; 2108 else 2109 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2; 2110 2111 for (i = 0; i < adapter->num_q_vectors; i++) { 2112 struct igb_q_vector *q_vector = adapter->q_vector[i]; 2113 q_vector->tx.work_limit = adapter->tx_work_limit; 2114 if (q_vector->rx.ring) 2115 q_vector->itr_val = adapter->rx_itr_setting; 2116 else 2117 q_vector->itr_val = adapter->tx_itr_setting; 2118 if (q_vector->itr_val && q_vector->itr_val <= 3) 2119 q_vector->itr_val = IGB_START_ITR; 2120 q_vector->set_itr = 1; 2121 } 2122 2123 return 0; 2124 } 2125 2126 static int igb_get_coalesce(struct net_device *netdev, 2127 struct ethtool_coalesce *ec) 2128 { 2129 struct igb_adapter *adapter = netdev_priv(netdev); 2130 2131 if (adapter->rx_itr_setting <= 3) 2132 ec->rx_coalesce_usecs = adapter->rx_itr_setting; 2133 else 2134 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2; 2135 2136 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) { 2137 if (adapter->tx_itr_setting <= 3) 2138 ec->tx_coalesce_usecs = adapter->tx_itr_setting; 2139 else 2140 ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2; 2141 } 2142 2143 return 0; 2144 } 2145 2146 static int igb_nway_reset(struct net_device *netdev) 2147 { 2148 struct igb_adapter *adapter = netdev_priv(netdev); 2149 if (netif_running(netdev)) 2150 igb_reinit_locked(adapter); 2151 return 0; 2152 } 2153 2154 static int igb_get_sset_count(struct net_device *netdev, int sset) 2155 { 2156 switch (sset) { 2157 case ETH_SS_STATS: 2158 return IGB_STATS_LEN; 2159 case ETH_SS_TEST: 2160 return IGB_TEST_LEN; 2161 default: 2162 return -ENOTSUPP; 2163 } 2164 } 2165 2166 static void igb_get_ethtool_stats(struct net_device *netdev, 2167 struct ethtool_stats *stats, u64 *data) 2168 { 2169 struct igb_adapter *adapter = netdev_priv(netdev); 2170 struct rtnl_link_stats64 *net_stats = &adapter->stats64; 2171 unsigned int start; 2172 struct igb_ring *ring; 2173 int i, j; 2174 char *p; 2175 2176 spin_lock(&adapter->stats64_lock); 2177 igb_update_stats(adapter, net_stats); 2178 2179 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) { 2180 p = (char *)adapter + igb_gstrings_stats[i].stat_offset; 2181 data[i] = (igb_gstrings_stats[i].sizeof_stat == 2182 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 2183 } 2184 for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) { 2185 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset; 2186 data[i] = (igb_gstrings_net_stats[j].sizeof_stat == 2187 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 2188 } 2189 for (j = 0; j < adapter->num_tx_queues; j++) { 2190 u64 restart2; 2191 2192 ring = adapter->tx_ring[j]; 2193 do { 2194 start = u64_stats_fetch_begin_bh(&ring->tx_syncp); 2195 data[i] = ring->tx_stats.packets; 2196 data[i+1] = ring->tx_stats.bytes; 2197 data[i+2] = ring->tx_stats.restart_queue; 2198 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start)); 2199 do { 2200 start = u64_stats_fetch_begin_bh(&ring->tx_syncp2); 2201 restart2 = ring->tx_stats.restart_queue2; 2202 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start)); 2203 data[i+2] += restart2; 2204 2205 i += IGB_TX_QUEUE_STATS_LEN; 2206 } 2207 for (j = 0; j < adapter->num_rx_queues; j++) { 2208 ring = adapter->rx_ring[j]; 2209 do { 2210 start = u64_stats_fetch_begin_bh(&ring->rx_syncp); 2211 data[i] = ring->rx_stats.packets; 2212 data[i+1] = ring->rx_stats.bytes; 2213 data[i+2] = ring->rx_stats.drops; 2214 data[i+3] = ring->rx_stats.csum_err; 2215 data[i+4] = ring->rx_stats.alloc_failed; 2216 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start)); 2217 i += IGB_RX_QUEUE_STATS_LEN; 2218 } 2219 spin_unlock(&adapter->stats64_lock); 2220 } 2221 2222 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data) 2223 { 2224 struct igb_adapter *adapter = netdev_priv(netdev); 2225 u8 *p = data; 2226 int i; 2227 2228 switch (stringset) { 2229 case ETH_SS_TEST: 2230 memcpy(data, *igb_gstrings_test, 2231 IGB_TEST_LEN*ETH_GSTRING_LEN); 2232 break; 2233 case ETH_SS_STATS: 2234 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) { 2235 memcpy(p, igb_gstrings_stats[i].stat_string, 2236 ETH_GSTRING_LEN); 2237 p += ETH_GSTRING_LEN; 2238 } 2239 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) { 2240 memcpy(p, igb_gstrings_net_stats[i].stat_string, 2241 ETH_GSTRING_LEN); 2242 p += ETH_GSTRING_LEN; 2243 } 2244 for (i = 0; i < adapter->num_tx_queues; i++) { 2245 sprintf(p, "tx_queue_%u_packets", i); 2246 p += ETH_GSTRING_LEN; 2247 sprintf(p, "tx_queue_%u_bytes", i); 2248 p += ETH_GSTRING_LEN; 2249 sprintf(p, "tx_queue_%u_restart", i); 2250 p += ETH_GSTRING_LEN; 2251 } 2252 for (i = 0; i < adapter->num_rx_queues; i++) { 2253 sprintf(p, "rx_queue_%u_packets", i); 2254 p += ETH_GSTRING_LEN; 2255 sprintf(p, "rx_queue_%u_bytes", i); 2256 p += ETH_GSTRING_LEN; 2257 sprintf(p, "rx_queue_%u_drops", i); 2258 p += ETH_GSTRING_LEN; 2259 sprintf(p, "rx_queue_%u_csum_err", i); 2260 p += ETH_GSTRING_LEN; 2261 sprintf(p, "rx_queue_%u_alloc_failed", i); 2262 p += ETH_GSTRING_LEN; 2263 } 2264 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */ 2265 break; 2266 } 2267 } 2268 2269 static int igb_get_ts_info(struct net_device *dev, 2270 struct ethtool_ts_info *info) 2271 { 2272 struct igb_adapter *adapter = netdev_priv(dev); 2273 2274 switch (adapter->hw.mac.type) { 2275 case e1000_82576: 2276 case e1000_82580: 2277 case e1000_i350: 2278 case e1000_i210: 2279 case e1000_i211: 2280 info->so_timestamping = 2281 SOF_TIMESTAMPING_TX_HARDWARE | 2282 SOF_TIMESTAMPING_RX_HARDWARE | 2283 SOF_TIMESTAMPING_RAW_HARDWARE; 2284 2285 if (adapter->ptp_clock) 2286 info->phc_index = ptp_clock_index(adapter->ptp_clock); 2287 else 2288 info->phc_index = -1; 2289 2290 info->tx_types = 2291 (1 << HWTSTAMP_TX_OFF) | 2292 (1 << HWTSTAMP_TX_ON); 2293 2294 info->rx_filters = 1 << HWTSTAMP_FILTER_NONE; 2295 2296 /* 82576 does not support timestamping all packets. */ 2297 if (adapter->hw.mac.type >= e1000_82580) 2298 info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL; 2299 else 2300 info->rx_filters |= 2301 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) | 2302 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) | 2303 (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) | 2304 (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) | 2305 (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) | 2306 (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) | 2307 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 2308 2309 return 0; 2310 default: 2311 return -EOPNOTSUPP; 2312 } 2313 } 2314 2315 static int igb_get_rss_hash_opts(struct igb_adapter *adapter, 2316 struct ethtool_rxnfc *cmd) 2317 { 2318 cmd->data = 0; 2319 2320 /* Report default options for RSS on igb */ 2321 switch (cmd->flow_type) { 2322 case TCP_V4_FLOW: 2323 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2324 case UDP_V4_FLOW: 2325 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP) 2326 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2327 case SCTP_V4_FLOW: 2328 case AH_ESP_V4_FLOW: 2329 case AH_V4_FLOW: 2330 case ESP_V4_FLOW: 2331 case IPV4_FLOW: 2332 cmd->data |= RXH_IP_SRC | RXH_IP_DST; 2333 break; 2334 case TCP_V6_FLOW: 2335 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2336 case UDP_V6_FLOW: 2337 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP) 2338 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2339 case SCTP_V6_FLOW: 2340 case AH_ESP_V6_FLOW: 2341 case AH_V6_FLOW: 2342 case ESP_V6_FLOW: 2343 case IPV6_FLOW: 2344 cmd->data |= RXH_IP_SRC | RXH_IP_DST; 2345 break; 2346 default: 2347 return -EINVAL; 2348 } 2349 2350 return 0; 2351 } 2352 2353 static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd, 2354 u32 *rule_locs) 2355 { 2356 struct igb_adapter *adapter = netdev_priv(dev); 2357 int ret = -EOPNOTSUPP; 2358 2359 switch (cmd->cmd) { 2360 case ETHTOOL_GRXRINGS: 2361 cmd->data = adapter->num_rx_queues; 2362 ret = 0; 2363 break; 2364 case ETHTOOL_GRXFH: 2365 ret = igb_get_rss_hash_opts(adapter, cmd); 2366 break; 2367 default: 2368 break; 2369 } 2370 2371 return ret; 2372 } 2373 2374 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \ 2375 IGB_FLAG_RSS_FIELD_IPV6_UDP) 2376 static int igb_set_rss_hash_opt(struct igb_adapter *adapter, 2377 struct ethtool_rxnfc *nfc) 2378 { 2379 u32 flags = adapter->flags; 2380 2381 /* RSS does not support anything other than hashing 2382 * to queues on src and dst IPs and ports 2383 */ 2384 if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST | 2385 RXH_L4_B_0_1 | RXH_L4_B_2_3)) 2386 return -EINVAL; 2387 2388 switch (nfc->flow_type) { 2389 case TCP_V4_FLOW: 2390 case TCP_V6_FLOW: 2391 if (!(nfc->data & RXH_IP_SRC) || 2392 !(nfc->data & RXH_IP_DST) || 2393 !(nfc->data & RXH_L4_B_0_1) || 2394 !(nfc->data & RXH_L4_B_2_3)) 2395 return -EINVAL; 2396 break; 2397 case UDP_V4_FLOW: 2398 if (!(nfc->data & RXH_IP_SRC) || 2399 !(nfc->data & RXH_IP_DST)) 2400 return -EINVAL; 2401 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 2402 case 0: 2403 flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP; 2404 break; 2405 case (RXH_L4_B_0_1 | RXH_L4_B_2_3): 2406 flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP; 2407 break; 2408 default: 2409 return -EINVAL; 2410 } 2411 break; 2412 case UDP_V6_FLOW: 2413 if (!(nfc->data & RXH_IP_SRC) || 2414 !(nfc->data & RXH_IP_DST)) 2415 return -EINVAL; 2416 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 2417 case 0: 2418 flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP; 2419 break; 2420 case (RXH_L4_B_0_1 | RXH_L4_B_2_3): 2421 flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP; 2422 break; 2423 default: 2424 return -EINVAL; 2425 } 2426 break; 2427 case AH_ESP_V4_FLOW: 2428 case AH_V4_FLOW: 2429 case ESP_V4_FLOW: 2430 case SCTP_V4_FLOW: 2431 case AH_ESP_V6_FLOW: 2432 case AH_V6_FLOW: 2433 case ESP_V6_FLOW: 2434 case SCTP_V6_FLOW: 2435 if (!(nfc->data & RXH_IP_SRC) || 2436 !(nfc->data & RXH_IP_DST) || 2437 (nfc->data & RXH_L4_B_0_1) || 2438 (nfc->data & RXH_L4_B_2_3)) 2439 return -EINVAL; 2440 break; 2441 default: 2442 return -EINVAL; 2443 } 2444 2445 /* if we changed something we need to update flags */ 2446 if (flags != adapter->flags) { 2447 struct e1000_hw *hw = &adapter->hw; 2448 u32 mrqc = rd32(E1000_MRQC); 2449 2450 if ((flags & UDP_RSS_FLAGS) && 2451 !(adapter->flags & UDP_RSS_FLAGS)) 2452 dev_err(&adapter->pdev->dev, 2453 "enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n"); 2454 2455 adapter->flags = flags; 2456 2457 /* Perform hash on these packet types */ 2458 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 | 2459 E1000_MRQC_RSS_FIELD_IPV4_TCP | 2460 E1000_MRQC_RSS_FIELD_IPV6 | 2461 E1000_MRQC_RSS_FIELD_IPV6_TCP; 2462 2463 mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP | 2464 E1000_MRQC_RSS_FIELD_IPV6_UDP); 2465 2466 if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP) 2467 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP; 2468 2469 if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP) 2470 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP; 2471 2472 wr32(E1000_MRQC, mrqc); 2473 } 2474 2475 return 0; 2476 } 2477 2478 static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd) 2479 { 2480 struct igb_adapter *adapter = netdev_priv(dev); 2481 int ret = -EOPNOTSUPP; 2482 2483 switch (cmd->cmd) { 2484 case ETHTOOL_SRXFH: 2485 ret = igb_set_rss_hash_opt(adapter, cmd); 2486 break; 2487 default: 2488 break; 2489 } 2490 2491 return ret; 2492 } 2493 2494 static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata) 2495 { 2496 struct igb_adapter *adapter = netdev_priv(netdev); 2497 struct e1000_hw *hw = &adapter->hw; 2498 u32 ipcnfg, eeer; 2499 2500 if ((hw->mac.type < e1000_i350) || 2501 (hw->phy.media_type != e1000_media_type_copper)) 2502 return -EOPNOTSUPP; 2503 2504 edata->supported = (SUPPORTED_1000baseT_Full | 2505 SUPPORTED_100baseT_Full); 2506 2507 ipcnfg = rd32(E1000_IPCNFG); 2508 eeer = rd32(E1000_EEER); 2509 2510 /* EEE status on negotiated link */ 2511 if (ipcnfg & E1000_IPCNFG_EEE_1G_AN) 2512 edata->advertised = ADVERTISED_1000baseT_Full; 2513 2514 if (ipcnfg & E1000_IPCNFG_EEE_100M_AN) 2515 edata->advertised |= ADVERTISED_100baseT_Full; 2516 2517 if (eeer & E1000_EEER_EEE_NEG) 2518 edata->eee_active = true; 2519 2520 edata->eee_enabled = !hw->dev_spec._82575.eee_disable; 2521 2522 if (eeer & E1000_EEER_TX_LPI_EN) 2523 edata->tx_lpi_enabled = true; 2524 2525 /* Report correct negotiated EEE status for devices that 2526 * wrongly report EEE at half-duplex 2527 */ 2528 if (adapter->link_duplex == HALF_DUPLEX) { 2529 edata->eee_enabled = false; 2530 edata->eee_active = false; 2531 edata->tx_lpi_enabled = false; 2532 edata->advertised &= ~edata->advertised; 2533 } 2534 2535 return 0; 2536 } 2537 2538 static int igb_set_eee(struct net_device *netdev, 2539 struct ethtool_eee *edata) 2540 { 2541 struct igb_adapter *adapter = netdev_priv(netdev); 2542 struct e1000_hw *hw = &adapter->hw; 2543 struct ethtool_eee eee_curr; 2544 s32 ret_val; 2545 2546 if ((hw->mac.type < e1000_i350) || 2547 (hw->phy.media_type != e1000_media_type_copper)) 2548 return -EOPNOTSUPP; 2549 2550 ret_val = igb_get_eee(netdev, &eee_curr); 2551 if (ret_val) 2552 return ret_val; 2553 2554 if (eee_curr.eee_enabled) { 2555 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) { 2556 dev_err(&adapter->pdev->dev, 2557 "Setting EEE tx-lpi is not supported\n"); 2558 return -EINVAL; 2559 } 2560 2561 /* Tx LPI timer is not implemented currently */ 2562 if (edata->tx_lpi_timer) { 2563 dev_err(&adapter->pdev->dev, 2564 "Setting EEE Tx LPI timer is not supported\n"); 2565 return -EINVAL; 2566 } 2567 2568 if (eee_curr.advertised != edata->advertised) { 2569 dev_err(&adapter->pdev->dev, 2570 "Setting EEE Advertisement is not supported\n"); 2571 return -EINVAL; 2572 } 2573 2574 } else if (!edata->eee_enabled) { 2575 dev_err(&adapter->pdev->dev, 2576 "Setting EEE options are not supported with EEE disabled\n"); 2577 return -EINVAL; 2578 } 2579 2580 if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) { 2581 hw->dev_spec._82575.eee_disable = !edata->eee_enabled; 2582 igb_set_eee_i350(hw); 2583 2584 /* reset link */ 2585 if (!netif_running(netdev)) 2586 igb_reset(adapter); 2587 } 2588 2589 return 0; 2590 } 2591 2592 static int igb_ethtool_begin(struct net_device *netdev) 2593 { 2594 struct igb_adapter *adapter = netdev_priv(netdev); 2595 pm_runtime_get_sync(&adapter->pdev->dev); 2596 return 0; 2597 } 2598 2599 static void igb_ethtool_complete(struct net_device *netdev) 2600 { 2601 struct igb_adapter *adapter = netdev_priv(netdev); 2602 pm_runtime_put(&adapter->pdev->dev); 2603 } 2604 2605 static const struct ethtool_ops igb_ethtool_ops = { 2606 .get_settings = igb_get_settings, 2607 .set_settings = igb_set_settings, 2608 .get_drvinfo = igb_get_drvinfo, 2609 .get_regs_len = igb_get_regs_len, 2610 .get_regs = igb_get_regs, 2611 .get_wol = igb_get_wol, 2612 .set_wol = igb_set_wol, 2613 .get_msglevel = igb_get_msglevel, 2614 .set_msglevel = igb_set_msglevel, 2615 .nway_reset = igb_nway_reset, 2616 .get_link = igb_get_link, 2617 .get_eeprom_len = igb_get_eeprom_len, 2618 .get_eeprom = igb_get_eeprom, 2619 .set_eeprom = igb_set_eeprom, 2620 .get_ringparam = igb_get_ringparam, 2621 .set_ringparam = igb_set_ringparam, 2622 .get_pauseparam = igb_get_pauseparam, 2623 .set_pauseparam = igb_set_pauseparam, 2624 .self_test = igb_diag_test, 2625 .get_strings = igb_get_strings, 2626 .set_phys_id = igb_set_phys_id, 2627 .get_sset_count = igb_get_sset_count, 2628 .get_ethtool_stats = igb_get_ethtool_stats, 2629 .get_coalesce = igb_get_coalesce, 2630 .set_coalesce = igb_set_coalesce, 2631 .get_ts_info = igb_get_ts_info, 2632 .get_rxnfc = igb_get_rxnfc, 2633 .set_rxnfc = igb_set_rxnfc, 2634 .get_eee = igb_get_eee, 2635 .set_eee = igb_set_eee, 2636 .begin = igb_ethtool_begin, 2637 .complete = igb_ethtool_complete, 2638 }; 2639 2640 void igb_set_ethtool_ops(struct net_device *netdev) 2641 { 2642 SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops); 2643 } 2644