1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2007 - 2018 Intel Corporation. */ 3 4 /* ethtool support for igb */ 5 6 #include <linux/vmalloc.h> 7 #include <linux/netdevice.h> 8 #include <linux/pci.h> 9 #include <linux/delay.h> 10 #include <linux/interrupt.h> 11 #include <linux/if_ether.h> 12 #include <linux/ethtool.h> 13 #include <linux/sched.h> 14 #include <linux/slab.h> 15 #include <linux/pm_runtime.h> 16 #include <linux/highmem.h> 17 #include <linux/mdio.h> 18 19 #include "igb.h" 20 21 struct igb_stats { 22 char stat_string[ETH_GSTRING_LEN]; 23 int sizeof_stat; 24 int stat_offset; 25 }; 26 27 #define IGB_STAT(_name, _stat) { \ 28 .stat_string = _name, \ 29 .sizeof_stat = sizeof_field(struct igb_adapter, _stat), \ 30 .stat_offset = offsetof(struct igb_adapter, _stat) \ 31 } 32 static const struct igb_stats igb_gstrings_stats[] = { 33 IGB_STAT("rx_packets", stats.gprc), 34 IGB_STAT("tx_packets", stats.gptc), 35 IGB_STAT("rx_bytes", stats.gorc), 36 IGB_STAT("tx_bytes", stats.gotc), 37 IGB_STAT("rx_broadcast", stats.bprc), 38 IGB_STAT("tx_broadcast", stats.bptc), 39 IGB_STAT("rx_multicast", stats.mprc), 40 IGB_STAT("tx_multicast", stats.mptc), 41 IGB_STAT("multicast", stats.mprc), 42 IGB_STAT("collisions", stats.colc), 43 IGB_STAT("rx_crc_errors", stats.crcerrs), 44 IGB_STAT("rx_no_buffer_count", stats.rnbc), 45 IGB_STAT("rx_missed_errors", stats.mpc), 46 IGB_STAT("tx_aborted_errors", stats.ecol), 47 IGB_STAT("tx_carrier_errors", stats.tncrs), 48 IGB_STAT("tx_window_errors", stats.latecol), 49 IGB_STAT("tx_abort_late_coll", stats.latecol), 50 IGB_STAT("tx_deferred_ok", stats.dc), 51 IGB_STAT("tx_single_coll_ok", stats.scc), 52 IGB_STAT("tx_multi_coll_ok", stats.mcc), 53 IGB_STAT("tx_timeout_count", tx_timeout_count), 54 IGB_STAT("rx_long_length_errors", stats.roc), 55 IGB_STAT("rx_short_length_errors", stats.ruc), 56 IGB_STAT("rx_align_errors", stats.algnerrc), 57 IGB_STAT("tx_tcp_seg_good", stats.tsctc), 58 IGB_STAT("tx_tcp_seg_failed", stats.tsctfc), 59 IGB_STAT("rx_flow_control_xon", stats.xonrxc), 60 IGB_STAT("rx_flow_control_xoff", stats.xoffrxc), 61 IGB_STAT("tx_flow_control_xon", stats.xontxc), 62 IGB_STAT("tx_flow_control_xoff", stats.xofftxc), 63 IGB_STAT("rx_long_byte_count", stats.gorc), 64 IGB_STAT("tx_dma_out_of_sync", stats.doosync), 65 IGB_STAT("tx_smbus", stats.mgptc), 66 IGB_STAT("rx_smbus", stats.mgprc), 67 IGB_STAT("dropped_smbus", stats.mgpdc), 68 IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc), 69 IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc), 70 IGB_STAT("os2bmc_tx_by_host", stats.o2bspc), 71 IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc), 72 IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts), 73 IGB_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped), 74 IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared), 75 }; 76 77 #define IGB_NETDEV_STAT(_net_stat) { \ 78 .stat_string = __stringify(_net_stat), \ 79 .sizeof_stat = sizeof_field(struct rtnl_link_stats64, _net_stat), \ 80 .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \ 81 } 82 static const struct igb_stats igb_gstrings_net_stats[] = { 83 IGB_NETDEV_STAT(rx_errors), 84 IGB_NETDEV_STAT(tx_errors), 85 IGB_NETDEV_STAT(tx_dropped), 86 IGB_NETDEV_STAT(rx_length_errors), 87 IGB_NETDEV_STAT(rx_over_errors), 88 IGB_NETDEV_STAT(rx_frame_errors), 89 IGB_NETDEV_STAT(rx_fifo_errors), 90 IGB_NETDEV_STAT(tx_fifo_errors), 91 IGB_NETDEV_STAT(tx_heartbeat_errors) 92 }; 93 94 #define IGB_GLOBAL_STATS_LEN \ 95 (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats)) 96 #define IGB_NETDEV_STATS_LEN \ 97 (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats)) 98 #define IGB_RX_QUEUE_STATS_LEN \ 99 (sizeof(struct igb_rx_queue_stats) / sizeof(u64)) 100 101 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */ 102 103 #define IGB_QUEUE_STATS_LEN \ 104 ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \ 105 IGB_RX_QUEUE_STATS_LEN) + \ 106 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \ 107 IGB_TX_QUEUE_STATS_LEN)) 108 #define IGB_STATS_LEN \ 109 (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN) 110 111 enum igb_diagnostics_results { 112 TEST_REG = 0, 113 TEST_EEP, 114 TEST_IRQ, 115 TEST_LOOP, 116 TEST_LINK 117 }; 118 119 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = { 120 [TEST_REG] = "Register test (offline)", 121 [TEST_EEP] = "Eeprom test (offline)", 122 [TEST_IRQ] = "Interrupt test (offline)", 123 [TEST_LOOP] = "Loopback test (offline)", 124 [TEST_LINK] = "Link test (on/offline)" 125 }; 126 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN) 127 128 static const char igb_priv_flags_strings[][ETH_GSTRING_LEN] = { 129 #define IGB_PRIV_FLAGS_LEGACY_RX BIT(0) 130 "legacy-rx", 131 }; 132 133 #define IGB_PRIV_FLAGS_STR_LEN ARRAY_SIZE(igb_priv_flags_strings) 134 135 static int igb_get_link_ksettings(struct net_device *netdev, 136 struct ethtool_link_ksettings *cmd) 137 { 138 struct igb_adapter *adapter = netdev_priv(netdev); 139 struct e1000_hw *hw = &adapter->hw; 140 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; 141 struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags; 142 u32 status; 143 u32 speed; 144 u32 supported, advertising; 145 146 status = rd32(E1000_STATUS); 147 if (hw->phy.media_type == e1000_media_type_copper) { 148 149 supported = (SUPPORTED_10baseT_Half | 150 SUPPORTED_10baseT_Full | 151 SUPPORTED_100baseT_Half | 152 SUPPORTED_100baseT_Full | 153 SUPPORTED_1000baseT_Full| 154 SUPPORTED_Autoneg | 155 SUPPORTED_TP | 156 SUPPORTED_Pause); 157 advertising = ADVERTISED_TP; 158 159 if (hw->mac.autoneg == 1) { 160 advertising |= ADVERTISED_Autoneg; 161 /* the e1000 autoneg seems to match ethtool nicely */ 162 advertising |= hw->phy.autoneg_advertised; 163 } 164 165 cmd->base.port = PORT_TP; 166 cmd->base.phy_address = hw->phy.addr; 167 } else { 168 supported = (SUPPORTED_FIBRE | 169 SUPPORTED_1000baseKX_Full | 170 SUPPORTED_Autoneg | 171 SUPPORTED_Pause); 172 advertising = (ADVERTISED_FIBRE | 173 ADVERTISED_1000baseKX_Full); 174 if (hw->mac.type == e1000_i354) { 175 if ((hw->device_id == 176 E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) && 177 !(status & E1000_STATUS_2P5_SKU_OVER)) { 178 supported |= SUPPORTED_2500baseX_Full; 179 supported &= ~SUPPORTED_1000baseKX_Full; 180 advertising |= ADVERTISED_2500baseX_Full; 181 advertising &= ~ADVERTISED_1000baseKX_Full; 182 } 183 } 184 if (eth_flags->e100_base_fx) { 185 supported |= SUPPORTED_100baseT_Full; 186 advertising |= ADVERTISED_100baseT_Full; 187 } 188 if (hw->mac.autoneg == 1) 189 advertising |= ADVERTISED_Autoneg; 190 191 cmd->base.port = PORT_FIBRE; 192 } 193 if (hw->mac.autoneg != 1) 194 advertising &= ~(ADVERTISED_Pause | 195 ADVERTISED_Asym_Pause); 196 197 switch (hw->fc.requested_mode) { 198 case e1000_fc_full: 199 advertising |= ADVERTISED_Pause; 200 break; 201 case e1000_fc_rx_pause: 202 advertising |= (ADVERTISED_Pause | 203 ADVERTISED_Asym_Pause); 204 break; 205 case e1000_fc_tx_pause: 206 advertising |= ADVERTISED_Asym_Pause; 207 break; 208 default: 209 advertising &= ~(ADVERTISED_Pause | 210 ADVERTISED_Asym_Pause); 211 } 212 if (status & E1000_STATUS_LU) { 213 if ((status & E1000_STATUS_2P5_SKU) && 214 !(status & E1000_STATUS_2P5_SKU_OVER)) { 215 speed = SPEED_2500; 216 } else if (status & E1000_STATUS_SPEED_1000) { 217 speed = SPEED_1000; 218 } else if (status & E1000_STATUS_SPEED_100) { 219 speed = SPEED_100; 220 } else { 221 speed = SPEED_10; 222 } 223 if ((status & E1000_STATUS_FD) || 224 hw->phy.media_type != e1000_media_type_copper) 225 cmd->base.duplex = DUPLEX_FULL; 226 else 227 cmd->base.duplex = DUPLEX_HALF; 228 } else { 229 speed = SPEED_UNKNOWN; 230 cmd->base.duplex = DUPLEX_UNKNOWN; 231 } 232 cmd->base.speed = speed; 233 if ((hw->phy.media_type == e1000_media_type_fiber) || 234 hw->mac.autoneg) 235 cmd->base.autoneg = AUTONEG_ENABLE; 236 else 237 cmd->base.autoneg = AUTONEG_DISABLE; 238 239 /* MDI-X => 2; MDI =>1; Invalid =>0 */ 240 if (hw->phy.media_type == e1000_media_type_copper) 241 cmd->base.eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : 242 ETH_TP_MDI; 243 else 244 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID; 245 246 if (hw->phy.mdix == AUTO_ALL_MODES) 247 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; 248 else 249 cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix; 250 251 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 252 supported); 253 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 254 advertising); 255 256 return 0; 257 } 258 259 static int igb_set_link_ksettings(struct net_device *netdev, 260 const struct ethtool_link_ksettings *cmd) 261 { 262 struct igb_adapter *adapter = netdev_priv(netdev); 263 struct e1000_hw *hw = &adapter->hw; 264 u32 advertising; 265 266 /* When SoL/IDER sessions are active, autoneg/speed/duplex 267 * cannot be changed 268 */ 269 if (igb_check_reset_block(hw)) { 270 dev_err(&adapter->pdev->dev, 271 "Cannot change link characteristics when SoL/IDER is active.\n"); 272 return -EINVAL; 273 } 274 275 /* MDI setting is only allowed when autoneg enabled because 276 * some hardware doesn't allow MDI setting when speed or 277 * duplex is forced. 278 */ 279 if (cmd->base.eth_tp_mdix_ctrl) { 280 if (hw->phy.media_type != e1000_media_type_copper) 281 return -EOPNOTSUPP; 282 283 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && 284 (cmd->base.autoneg != AUTONEG_ENABLE)) { 285 dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); 286 return -EINVAL; 287 } 288 } 289 290 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 291 usleep_range(1000, 2000); 292 293 ethtool_convert_link_mode_to_legacy_u32(&advertising, 294 cmd->link_modes.advertising); 295 296 if (cmd->base.autoneg == AUTONEG_ENABLE) { 297 hw->mac.autoneg = 1; 298 if (hw->phy.media_type == e1000_media_type_fiber) { 299 hw->phy.autoneg_advertised = advertising | 300 ADVERTISED_FIBRE | 301 ADVERTISED_Autoneg; 302 switch (adapter->link_speed) { 303 case SPEED_2500: 304 hw->phy.autoneg_advertised = 305 ADVERTISED_2500baseX_Full; 306 break; 307 case SPEED_1000: 308 hw->phy.autoneg_advertised = 309 ADVERTISED_1000baseT_Full; 310 break; 311 case SPEED_100: 312 hw->phy.autoneg_advertised = 313 ADVERTISED_100baseT_Full; 314 break; 315 default: 316 break; 317 } 318 } else { 319 hw->phy.autoneg_advertised = advertising | 320 ADVERTISED_TP | 321 ADVERTISED_Autoneg; 322 } 323 advertising = hw->phy.autoneg_advertised; 324 if (adapter->fc_autoneg) 325 hw->fc.requested_mode = e1000_fc_default; 326 } else { 327 u32 speed = cmd->base.speed; 328 /* calling this overrides forced MDI setting */ 329 if (igb_set_spd_dplx(adapter, speed, cmd->base.duplex)) { 330 clear_bit(__IGB_RESETTING, &adapter->state); 331 return -EINVAL; 332 } 333 } 334 335 /* MDI-X => 2; MDI => 1; Auto => 3 */ 336 if (cmd->base.eth_tp_mdix_ctrl) { 337 /* fix up the value for auto (3 => 0) as zero is mapped 338 * internally to auto 339 */ 340 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) 341 hw->phy.mdix = AUTO_ALL_MODES; 342 else 343 hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl; 344 } 345 346 /* reset the link */ 347 if (netif_running(adapter->netdev)) { 348 igb_down(adapter); 349 igb_up(adapter); 350 } else 351 igb_reset(adapter); 352 353 clear_bit(__IGB_RESETTING, &adapter->state); 354 return 0; 355 } 356 357 static u32 igb_get_link(struct net_device *netdev) 358 { 359 struct igb_adapter *adapter = netdev_priv(netdev); 360 struct e1000_mac_info *mac = &adapter->hw.mac; 361 362 /* If the link is not reported up to netdev, interrupts are disabled, 363 * and so the physical link state may have changed since we last 364 * looked. Set get_link_status to make sure that the true link 365 * state is interrogated, rather than pulling a cached and possibly 366 * stale link state from the driver. 367 */ 368 if (!netif_carrier_ok(netdev)) 369 mac->get_link_status = 1; 370 371 return igb_has_link(adapter); 372 } 373 374 static void igb_get_pauseparam(struct net_device *netdev, 375 struct ethtool_pauseparam *pause) 376 { 377 struct igb_adapter *adapter = netdev_priv(netdev); 378 struct e1000_hw *hw = &adapter->hw; 379 380 pause->autoneg = 381 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 382 383 if (hw->fc.current_mode == e1000_fc_rx_pause) 384 pause->rx_pause = 1; 385 else if (hw->fc.current_mode == e1000_fc_tx_pause) 386 pause->tx_pause = 1; 387 else if (hw->fc.current_mode == e1000_fc_full) { 388 pause->rx_pause = 1; 389 pause->tx_pause = 1; 390 } 391 } 392 393 static int igb_set_pauseparam(struct net_device *netdev, 394 struct ethtool_pauseparam *pause) 395 { 396 struct igb_adapter *adapter = netdev_priv(netdev); 397 struct e1000_hw *hw = &adapter->hw; 398 int retval = 0; 399 400 /* 100basefx does not support setting link flow control */ 401 if (hw->dev_spec._82575.eth_flags.e100_base_fx) 402 return -EINVAL; 403 404 adapter->fc_autoneg = pause->autoneg; 405 406 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 407 usleep_range(1000, 2000); 408 409 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 410 hw->fc.requested_mode = e1000_fc_default; 411 if (netif_running(adapter->netdev)) { 412 igb_down(adapter); 413 igb_up(adapter); 414 } else { 415 igb_reset(adapter); 416 } 417 } else { 418 if (pause->rx_pause && pause->tx_pause) 419 hw->fc.requested_mode = e1000_fc_full; 420 else if (pause->rx_pause && !pause->tx_pause) 421 hw->fc.requested_mode = e1000_fc_rx_pause; 422 else if (!pause->rx_pause && pause->tx_pause) 423 hw->fc.requested_mode = e1000_fc_tx_pause; 424 else if (!pause->rx_pause && !pause->tx_pause) 425 hw->fc.requested_mode = e1000_fc_none; 426 427 hw->fc.current_mode = hw->fc.requested_mode; 428 429 retval = ((hw->phy.media_type == e1000_media_type_copper) ? 430 igb_force_mac_fc(hw) : igb_setup_link(hw)); 431 } 432 433 clear_bit(__IGB_RESETTING, &adapter->state); 434 return retval; 435 } 436 437 static u32 igb_get_msglevel(struct net_device *netdev) 438 { 439 struct igb_adapter *adapter = netdev_priv(netdev); 440 return adapter->msg_enable; 441 } 442 443 static void igb_set_msglevel(struct net_device *netdev, u32 data) 444 { 445 struct igb_adapter *adapter = netdev_priv(netdev); 446 adapter->msg_enable = data; 447 } 448 449 static int igb_get_regs_len(struct net_device *netdev) 450 { 451 #define IGB_REGS_LEN 740 452 return IGB_REGS_LEN * sizeof(u32); 453 } 454 455 static void igb_get_regs(struct net_device *netdev, 456 struct ethtool_regs *regs, void *p) 457 { 458 struct igb_adapter *adapter = netdev_priv(netdev); 459 struct e1000_hw *hw = &adapter->hw; 460 u32 *regs_buff = p; 461 u8 i; 462 463 memset(p, 0, IGB_REGS_LEN * sizeof(u32)); 464 465 regs->version = (1u << 24) | (hw->revision_id << 16) | hw->device_id; 466 467 /* General Registers */ 468 regs_buff[0] = rd32(E1000_CTRL); 469 regs_buff[1] = rd32(E1000_STATUS); 470 regs_buff[2] = rd32(E1000_CTRL_EXT); 471 regs_buff[3] = rd32(E1000_MDIC); 472 regs_buff[4] = rd32(E1000_SCTL); 473 regs_buff[5] = rd32(E1000_CONNSW); 474 regs_buff[6] = rd32(E1000_VET); 475 regs_buff[7] = rd32(E1000_LEDCTL); 476 regs_buff[8] = rd32(E1000_PBA); 477 regs_buff[9] = rd32(E1000_PBS); 478 regs_buff[10] = rd32(E1000_FRTIMER); 479 regs_buff[11] = rd32(E1000_TCPTIMER); 480 481 /* NVM Register */ 482 regs_buff[12] = rd32(E1000_EECD); 483 484 /* Interrupt */ 485 /* Reading EICS for EICR because they read the 486 * same but EICS does not clear on read 487 */ 488 regs_buff[13] = rd32(E1000_EICS); 489 regs_buff[14] = rd32(E1000_EICS); 490 regs_buff[15] = rd32(E1000_EIMS); 491 regs_buff[16] = rd32(E1000_EIMC); 492 regs_buff[17] = rd32(E1000_EIAC); 493 regs_buff[18] = rd32(E1000_EIAM); 494 /* Reading ICS for ICR because they read the 495 * same but ICS does not clear on read 496 */ 497 regs_buff[19] = rd32(E1000_ICS); 498 regs_buff[20] = rd32(E1000_ICS); 499 regs_buff[21] = rd32(E1000_IMS); 500 regs_buff[22] = rd32(E1000_IMC); 501 regs_buff[23] = rd32(E1000_IAC); 502 regs_buff[24] = rd32(E1000_IAM); 503 regs_buff[25] = rd32(E1000_IMIRVP); 504 505 /* Flow Control */ 506 regs_buff[26] = rd32(E1000_FCAL); 507 regs_buff[27] = rd32(E1000_FCAH); 508 regs_buff[28] = rd32(E1000_FCTTV); 509 regs_buff[29] = rd32(E1000_FCRTL); 510 regs_buff[30] = rd32(E1000_FCRTH); 511 regs_buff[31] = rd32(E1000_FCRTV); 512 513 /* Receive */ 514 regs_buff[32] = rd32(E1000_RCTL); 515 regs_buff[33] = rd32(E1000_RXCSUM); 516 regs_buff[34] = rd32(E1000_RLPML); 517 regs_buff[35] = rd32(E1000_RFCTL); 518 regs_buff[36] = rd32(E1000_MRQC); 519 regs_buff[37] = rd32(E1000_VT_CTL); 520 521 /* Transmit */ 522 regs_buff[38] = rd32(E1000_TCTL); 523 regs_buff[39] = rd32(E1000_TCTL_EXT); 524 regs_buff[40] = rd32(E1000_TIPG); 525 regs_buff[41] = rd32(E1000_DTXCTL); 526 527 /* Wake Up */ 528 regs_buff[42] = rd32(E1000_WUC); 529 regs_buff[43] = rd32(E1000_WUFC); 530 regs_buff[44] = rd32(E1000_WUS); 531 regs_buff[45] = rd32(E1000_IPAV); 532 regs_buff[46] = rd32(E1000_WUPL); 533 534 /* MAC */ 535 regs_buff[47] = rd32(E1000_PCS_CFG0); 536 regs_buff[48] = rd32(E1000_PCS_LCTL); 537 regs_buff[49] = rd32(E1000_PCS_LSTAT); 538 regs_buff[50] = rd32(E1000_PCS_ANADV); 539 regs_buff[51] = rd32(E1000_PCS_LPAB); 540 regs_buff[52] = rd32(E1000_PCS_NPTX); 541 regs_buff[53] = rd32(E1000_PCS_LPABNP); 542 543 /* Statistics */ 544 regs_buff[54] = adapter->stats.crcerrs; 545 regs_buff[55] = adapter->stats.algnerrc; 546 regs_buff[56] = adapter->stats.symerrs; 547 regs_buff[57] = adapter->stats.rxerrc; 548 regs_buff[58] = adapter->stats.mpc; 549 regs_buff[59] = adapter->stats.scc; 550 regs_buff[60] = adapter->stats.ecol; 551 regs_buff[61] = adapter->stats.mcc; 552 regs_buff[62] = adapter->stats.latecol; 553 regs_buff[63] = adapter->stats.colc; 554 regs_buff[64] = adapter->stats.dc; 555 regs_buff[65] = adapter->stats.tncrs; 556 regs_buff[66] = adapter->stats.sec; 557 regs_buff[67] = adapter->stats.htdpmc; 558 regs_buff[68] = adapter->stats.rlec; 559 regs_buff[69] = adapter->stats.xonrxc; 560 regs_buff[70] = adapter->stats.xontxc; 561 regs_buff[71] = adapter->stats.xoffrxc; 562 regs_buff[72] = adapter->stats.xofftxc; 563 regs_buff[73] = adapter->stats.fcruc; 564 regs_buff[74] = adapter->stats.prc64; 565 regs_buff[75] = adapter->stats.prc127; 566 regs_buff[76] = adapter->stats.prc255; 567 regs_buff[77] = adapter->stats.prc511; 568 regs_buff[78] = adapter->stats.prc1023; 569 regs_buff[79] = adapter->stats.prc1522; 570 regs_buff[80] = adapter->stats.gprc; 571 regs_buff[81] = adapter->stats.bprc; 572 regs_buff[82] = adapter->stats.mprc; 573 regs_buff[83] = adapter->stats.gptc; 574 regs_buff[84] = adapter->stats.gorc; 575 regs_buff[86] = adapter->stats.gotc; 576 regs_buff[88] = adapter->stats.rnbc; 577 regs_buff[89] = adapter->stats.ruc; 578 regs_buff[90] = adapter->stats.rfc; 579 regs_buff[91] = adapter->stats.roc; 580 regs_buff[92] = adapter->stats.rjc; 581 regs_buff[93] = adapter->stats.mgprc; 582 regs_buff[94] = adapter->stats.mgpdc; 583 regs_buff[95] = adapter->stats.mgptc; 584 regs_buff[96] = adapter->stats.tor; 585 regs_buff[98] = adapter->stats.tot; 586 regs_buff[100] = adapter->stats.tpr; 587 regs_buff[101] = adapter->stats.tpt; 588 regs_buff[102] = adapter->stats.ptc64; 589 regs_buff[103] = adapter->stats.ptc127; 590 regs_buff[104] = adapter->stats.ptc255; 591 regs_buff[105] = adapter->stats.ptc511; 592 regs_buff[106] = adapter->stats.ptc1023; 593 regs_buff[107] = adapter->stats.ptc1522; 594 regs_buff[108] = adapter->stats.mptc; 595 regs_buff[109] = adapter->stats.bptc; 596 regs_buff[110] = adapter->stats.tsctc; 597 regs_buff[111] = adapter->stats.iac; 598 regs_buff[112] = adapter->stats.rpthc; 599 regs_buff[113] = adapter->stats.hgptc; 600 regs_buff[114] = adapter->stats.hgorc; 601 regs_buff[116] = adapter->stats.hgotc; 602 regs_buff[118] = adapter->stats.lenerrs; 603 regs_buff[119] = adapter->stats.scvpc; 604 regs_buff[120] = adapter->stats.hrmpc; 605 606 for (i = 0; i < 4; i++) 607 regs_buff[121 + i] = rd32(E1000_SRRCTL(i)); 608 for (i = 0; i < 4; i++) 609 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i)); 610 for (i = 0; i < 4; i++) 611 regs_buff[129 + i] = rd32(E1000_RDBAL(i)); 612 for (i = 0; i < 4; i++) 613 regs_buff[133 + i] = rd32(E1000_RDBAH(i)); 614 for (i = 0; i < 4; i++) 615 regs_buff[137 + i] = rd32(E1000_RDLEN(i)); 616 for (i = 0; i < 4; i++) 617 regs_buff[141 + i] = rd32(E1000_RDH(i)); 618 for (i = 0; i < 4; i++) 619 regs_buff[145 + i] = rd32(E1000_RDT(i)); 620 for (i = 0; i < 4; i++) 621 regs_buff[149 + i] = rd32(E1000_RXDCTL(i)); 622 623 for (i = 0; i < 10; i++) 624 regs_buff[153 + i] = rd32(E1000_EITR(i)); 625 for (i = 0; i < 8; i++) 626 regs_buff[163 + i] = rd32(E1000_IMIR(i)); 627 for (i = 0; i < 8; i++) 628 regs_buff[171 + i] = rd32(E1000_IMIREXT(i)); 629 for (i = 0; i < 16; i++) 630 regs_buff[179 + i] = rd32(E1000_RAL(i)); 631 for (i = 0; i < 16; i++) 632 regs_buff[195 + i] = rd32(E1000_RAH(i)); 633 634 for (i = 0; i < 4; i++) 635 regs_buff[211 + i] = rd32(E1000_TDBAL(i)); 636 for (i = 0; i < 4; i++) 637 regs_buff[215 + i] = rd32(E1000_TDBAH(i)); 638 for (i = 0; i < 4; i++) 639 regs_buff[219 + i] = rd32(E1000_TDLEN(i)); 640 for (i = 0; i < 4; i++) 641 regs_buff[223 + i] = rd32(E1000_TDH(i)); 642 for (i = 0; i < 4; i++) 643 regs_buff[227 + i] = rd32(E1000_TDT(i)); 644 for (i = 0; i < 4; i++) 645 regs_buff[231 + i] = rd32(E1000_TXDCTL(i)); 646 for (i = 0; i < 4; i++) 647 regs_buff[235 + i] = rd32(E1000_TDWBAL(i)); 648 for (i = 0; i < 4; i++) 649 regs_buff[239 + i] = rd32(E1000_TDWBAH(i)); 650 for (i = 0; i < 4; i++) 651 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i)); 652 653 for (i = 0; i < 4; i++) 654 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i)); 655 for (i = 0; i < 4; i++) 656 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i)); 657 for (i = 0; i < 32; i++) 658 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i)); 659 for (i = 0; i < 128; i++) 660 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i)); 661 for (i = 0; i < 128; i++) 662 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i)); 663 for (i = 0; i < 4; i++) 664 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i)); 665 666 regs_buff[547] = rd32(E1000_TDFH); 667 regs_buff[548] = rd32(E1000_TDFT); 668 regs_buff[549] = rd32(E1000_TDFHS); 669 regs_buff[550] = rd32(E1000_TDFPC); 670 671 if (hw->mac.type > e1000_82580) { 672 regs_buff[551] = adapter->stats.o2bgptc; 673 regs_buff[552] = adapter->stats.b2ospc; 674 regs_buff[553] = adapter->stats.o2bspc; 675 regs_buff[554] = adapter->stats.b2ogprc; 676 } 677 678 if (hw->mac.type == e1000_82576) { 679 for (i = 0; i < 12; i++) 680 regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4)); 681 for (i = 0; i < 4; i++) 682 regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4)); 683 for (i = 0; i < 12; i++) 684 regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4)); 685 for (i = 0; i < 12; i++) 686 regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4)); 687 for (i = 0; i < 12; i++) 688 regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4)); 689 for (i = 0; i < 12; i++) 690 regs_buff[607 + i] = rd32(E1000_RDH(i + 4)); 691 for (i = 0; i < 12; i++) 692 regs_buff[619 + i] = rd32(E1000_RDT(i + 4)); 693 for (i = 0; i < 12; i++) 694 regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4)); 695 696 for (i = 0; i < 12; i++) 697 regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4)); 698 for (i = 0; i < 12; i++) 699 regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4)); 700 for (i = 0; i < 12; i++) 701 regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4)); 702 for (i = 0; i < 12; i++) 703 regs_buff[679 + i] = rd32(E1000_TDH(i + 4)); 704 for (i = 0; i < 12; i++) 705 regs_buff[691 + i] = rd32(E1000_TDT(i + 4)); 706 for (i = 0; i < 12; i++) 707 regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4)); 708 for (i = 0; i < 12; i++) 709 regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4)); 710 for (i = 0; i < 12; i++) 711 regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4)); 712 } 713 714 if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) 715 regs_buff[739] = rd32(E1000_I210_RR2DCDELAY); 716 } 717 718 static int igb_get_eeprom_len(struct net_device *netdev) 719 { 720 struct igb_adapter *adapter = netdev_priv(netdev); 721 return adapter->hw.nvm.word_size * 2; 722 } 723 724 static int igb_get_eeprom(struct net_device *netdev, 725 struct ethtool_eeprom *eeprom, u8 *bytes) 726 { 727 struct igb_adapter *adapter = netdev_priv(netdev); 728 struct e1000_hw *hw = &adapter->hw; 729 u16 *eeprom_buff; 730 int first_word, last_word; 731 int ret_val = 0; 732 u16 i; 733 734 if (eeprom->len == 0) 735 return -EINVAL; 736 737 eeprom->magic = hw->vendor_id | (hw->device_id << 16); 738 739 first_word = eeprom->offset >> 1; 740 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 741 742 eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16), 743 GFP_KERNEL); 744 if (!eeprom_buff) 745 return -ENOMEM; 746 747 if (hw->nvm.type == e1000_nvm_eeprom_spi) 748 ret_val = hw->nvm.ops.read(hw, first_word, 749 last_word - first_word + 1, 750 eeprom_buff); 751 else { 752 for (i = 0; i < last_word - first_word + 1; i++) { 753 ret_val = hw->nvm.ops.read(hw, first_word + i, 1, 754 &eeprom_buff[i]); 755 if (ret_val) 756 break; 757 } 758 } 759 760 /* Device's eeprom is always little-endian, word addressable */ 761 for (i = 0; i < last_word - first_word + 1; i++) 762 le16_to_cpus(&eeprom_buff[i]); 763 764 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), 765 eeprom->len); 766 kfree(eeprom_buff); 767 768 return ret_val; 769 } 770 771 static int igb_set_eeprom(struct net_device *netdev, 772 struct ethtool_eeprom *eeprom, u8 *bytes) 773 { 774 struct igb_adapter *adapter = netdev_priv(netdev); 775 struct e1000_hw *hw = &adapter->hw; 776 u16 *eeprom_buff; 777 void *ptr; 778 int max_len, first_word, last_word, ret_val = 0; 779 u16 i; 780 781 if (eeprom->len == 0) 782 return -EOPNOTSUPP; 783 784 if ((hw->mac.type >= e1000_i210) && 785 !igb_get_flash_presence_i210(hw)) { 786 return -EOPNOTSUPP; 787 } 788 789 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16))) 790 return -EFAULT; 791 792 max_len = hw->nvm.word_size * 2; 793 794 first_word = eeprom->offset >> 1; 795 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 796 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 797 if (!eeprom_buff) 798 return -ENOMEM; 799 800 ptr = (void *)eeprom_buff; 801 802 if (eeprom->offset & 1) { 803 /* need read/modify/write of first changed EEPROM word 804 * only the second byte of the word is being modified 805 */ 806 ret_val = hw->nvm.ops.read(hw, first_word, 1, 807 &eeprom_buff[0]); 808 ptr++; 809 } 810 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) { 811 /* need read/modify/write of last changed EEPROM word 812 * only the first byte of the word is being modified 813 */ 814 ret_val = hw->nvm.ops.read(hw, last_word, 1, 815 &eeprom_buff[last_word - first_word]); 816 } 817 818 /* Device's eeprom is always little-endian, word addressable */ 819 for (i = 0; i < last_word - first_word + 1; i++) 820 le16_to_cpus(&eeprom_buff[i]); 821 822 memcpy(ptr, bytes, eeprom->len); 823 824 for (i = 0; i < last_word - first_word + 1; i++) 825 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]); 826 827 ret_val = hw->nvm.ops.write(hw, first_word, 828 last_word - first_word + 1, eeprom_buff); 829 830 /* Update the checksum if nvm write succeeded */ 831 if (ret_val == 0) 832 hw->nvm.ops.update(hw); 833 834 igb_set_fw_version(adapter); 835 kfree(eeprom_buff); 836 return ret_val; 837 } 838 839 static void igb_get_drvinfo(struct net_device *netdev, 840 struct ethtool_drvinfo *drvinfo) 841 { 842 struct igb_adapter *adapter = netdev_priv(netdev); 843 844 strlcpy(drvinfo->driver, igb_driver_name, sizeof(drvinfo->driver)); 845 strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version)); 846 847 /* EEPROM image version # is reported as firmware version # for 848 * 82575 controllers 849 */ 850 strlcpy(drvinfo->fw_version, adapter->fw_version, 851 sizeof(drvinfo->fw_version)); 852 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 853 sizeof(drvinfo->bus_info)); 854 855 drvinfo->n_priv_flags = IGB_PRIV_FLAGS_STR_LEN; 856 } 857 858 static void igb_get_ringparam(struct net_device *netdev, 859 struct ethtool_ringparam *ring) 860 { 861 struct igb_adapter *adapter = netdev_priv(netdev); 862 863 ring->rx_max_pending = IGB_MAX_RXD; 864 ring->tx_max_pending = IGB_MAX_TXD; 865 ring->rx_pending = adapter->rx_ring_count; 866 ring->tx_pending = adapter->tx_ring_count; 867 } 868 869 static int igb_set_ringparam(struct net_device *netdev, 870 struct ethtool_ringparam *ring) 871 { 872 struct igb_adapter *adapter = netdev_priv(netdev); 873 struct igb_ring *temp_ring; 874 int i, err = 0; 875 u16 new_rx_count, new_tx_count; 876 877 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 878 return -EINVAL; 879 880 new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD); 881 new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD); 882 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE); 883 884 new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD); 885 new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD); 886 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE); 887 888 if ((new_tx_count == adapter->tx_ring_count) && 889 (new_rx_count == adapter->rx_ring_count)) { 890 /* nothing to do */ 891 return 0; 892 } 893 894 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 895 usleep_range(1000, 2000); 896 897 if (!netif_running(adapter->netdev)) { 898 for (i = 0; i < adapter->num_tx_queues; i++) 899 adapter->tx_ring[i]->count = new_tx_count; 900 for (i = 0; i < adapter->num_rx_queues; i++) 901 adapter->rx_ring[i]->count = new_rx_count; 902 adapter->tx_ring_count = new_tx_count; 903 adapter->rx_ring_count = new_rx_count; 904 goto clear_reset; 905 } 906 907 if (adapter->num_tx_queues > adapter->num_rx_queues) 908 temp_ring = vmalloc(array_size(sizeof(struct igb_ring), 909 adapter->num_tx_queues)); 910 else 911 temp_ring = vmalloc(array_size(sizeof(struct igb_ring), 912 adapter->num_rx_queues)); 913 914 if (!temp_ring) { 915 err = -ENOMEM; 916 goto clear_reset; 917 } 918 919 igb_down(adapter); 920 921 /* We can't just free everything and then setup again, 922 * because the ISRs in MSI-X mode get passed pointers 923 * to the Tx and Rx ring structs. 924 */ 925 if (new_tx_count != adapter->tx_ring_count) { 926 for (i = 0; i < adapter->num_tx_queues; i++) { 927 memcpy(&temp_ring[i], adapter->tx_ring[i], 928 sizeof(struct igb_ring)); 929 930 temp_ring[i].count = new_tx_count; 931 err = igb_setup_tx_resources(&temp_ring[i]); 932 if (err) { 933 while (i) { 934 i--; 935 igb_free_tx_resources(&temp_ring[i]); 936 } 937 goto err_setup; 938 } 939 } 940 941 for (i = 0; i < adapter->num_tx_queues; i++) { 942 igb_free_tx_resources(adapter->tx_ring[i]); 943 944 memcpy(adapter->tx_ring[i], &temp_ring[i], 945 sizeof(struct igb_ring)); 946 } 947 948 adapter->tx_ring_count = new_tx_count; 949 } 950 951 if (new_rx_count != adapter->rx_ring_count) { 952 for (i = 0; i < adapter->num_rx_queues; i++) { 953 memcpy(&temp_ring[i], adapter->rx_ring[i], 954 sizeof(struct igb_ring)); 955 956 temp_ring[i].count = new_rx_count; 957 err = igb_setup_rx_resources(&temp_ring[i]); 958 if (err) { 959 while (i) { 960 i--; 961 igb_free_rx_resources(&temp_ring[i]); 962 } 963 goto err_setup; 964 } 965 966 } 967 968 for (i = 0; i < adapter->num_rx_queues; i++) { 969 igb_free_rx_resources(adapter->rx_ring[i]); 970 971 memcpy(adapter->rx_ring[i], &temp_ring[i], 972 sizeof(struct igb_ring)); 973 } 974 975 adapter->rx_ring_count = new_rx_count; 976 } 977 err_setup: 978 igb_up(adapter); 979 vfree(temp_ring); 980 clear_reset: 981 clear_bit(__IGB_RESETTING, &adapter->state); 982 return err; 983 } 984 985 /* ethtool register test data */ 986 struct igb_reg_test { 987 u16 reg; 988 u16 reg_offset; 989 u16 array_len; 990 u16 test_type; 991 u32 mask; 992 u32 write; 993 }; 994 995 /* In the hardware, registers are laid out either singly, in arrays 996 * spaced 0x100 bytes apart, or in contiguous tables. We assume 997 * most tests take place on arrays or single registers (handled 998 * as a single-element array) and special-case the tables. 999 * Table tests are always pattern tests. 1000 * 1001 * We also make provision for some required setup steps by specifying 1002 * registers to be written without any read-back testing. 1003 */ 1004 1005 #define PATTERN_TEST 1 1006 #define SET_READ_TEST 2 1007 #define WRITE_NO_TEST 3 1008 #define TABLE32_TEST 4 1009 #define TABLE64_TEST_LO 5 1010 #define TABLE64_TEST_HI 6 1011 1012 /* i210 reg test */ 1013 static struct igb_reg_test reg_test_i210[] = { 1014 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1015 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1016 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1017 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1018 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1019 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1020 /* RDH is read-only for i210, only test RDT. */ 1021 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1022 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1023 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1024 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1025 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1026 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1027 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1028 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1029 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1030 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, 1031 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, 1032 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1033 { E1000_RA, 0, 16, TABLE64_TEST_LO, 1034 0xFFFFFFFF, 0xFFFFFFFF }, 1035 { E1000_RA, 0, 16, TABLE64_TEST_HI, 1036 0x900FFFFF, 0xFFFFFFFF }, 1037 { E1000_MTA, 0, 128, TABLE32_TEST, 1038 0xFFFFFFFF, 0xFFFFFFFF }, 1039 { 0, 0, 0, 0, 0 } 1040 }; 1041 1042 /* i350 reg test */ 1043 static struct igb_reg_test reg_test_i350[] = { 1044 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1045 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1046 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1047 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 }, 1048 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1049 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1050 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1051 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1052 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1053 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1054 /* RDH is read-only for i350, only test RDT. */ 1055 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1056 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1057 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1058 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1059 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1060 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1061 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1062 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1063 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1064 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1065 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1066 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1067 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1068 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1069 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, 1070 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, 1071 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1072 { E1000_RA, 0, 16, TABLE64_TEST_LO, 1073 0xFFFFFFFF, 0xFFFFFFFF }, 1074 { E1000_RA, 0, 16, TABLE64_TEST_HI, 1075 0xC3FFFFFF, 0xFFFFFFFF }, 1076 { E1000_RA2, 0, 16, TABLE64_TEST_LO, 1077 0xFFFFFFFF, 0xFFFFFFFF }, 1078 { E1000_RA2, 0, 16, TABLE64_TEST_HI, 1079 0xC3FFFFFF, 0xFFFFFFFF }, 1080 { E1000_MTA, 0, 128, TABLE32_TEST, 1081 0xFFFFFFFF, 0xFFFFFFFF }, 1082 { 0, 0, 0, 0 } 1083 }; 1084 1085 /* 82580 reg test */ 1086 static struct igb_reg_test reg_test_82580[] = { 1087 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1088 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1089 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1090 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1091 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1092 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1093 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1094 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1095 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1096 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1097 /* RDH is read-only for 82580, only test RDT. */ 1098 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1099 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1100 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1101 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1102 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1103 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1104 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1105 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1106 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1107 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1108 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1109 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1110 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1111 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1112 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, 1113 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, 1114 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1115 { E1000_RA, 0, 16, TABLE64_TEST_LO, 1116 0xFFFFFFFF, 0xFFFFFFFF }, 1117 { E1000_RA, 0, 16, TABLE64_TEST_HI, 1118 0x83FFFFFF, 0xFFFFFFFF }, 1119 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 1120 0xFFFFFFFF, 0xFFFFFFFF }, 1121 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 1122 0x83FFFFFF, 0xFFFFFFFF }, 1123 { E1000_MTA, 0, 128, TABLE32_TEST, 1124 0xFFFFFFFF, 0xFFFFFFFF }, 1125 { 0, 0, 0, 0 } 1126 }; 1127 1128 /* 82576 reg test */ 1129 static struct igb_reg_test reg_test_82576[] = { 1130 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1131 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1132 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1133 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1134 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1135 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1136 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1137 { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1138 { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1139 { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1140 /* Enable all RX queues before testing. */ 1141 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 1142 E1000_RXDCTL_QUEUE_ENABLE }, 1143 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 1144 E1000_RXDCTL_QUEUE_ENABLE }, 1145 /* RDH is read-only for 82576, only test RDT. */ 1146 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1147 { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1148 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 }, 1149 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 }, 1150 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1151 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1152 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1153 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1154 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1155 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1156 { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1157 { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1158 { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1159 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1160 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, 1161 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, 1162 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1163 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, 1164 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF }, 1165 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, 1166 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF }, 1167 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1168 { 0, 0, 0, 0 } 1169 }; 1170 1171 /* 82575 register test */ 1172 static struct igb_reg_test reg_test_82575[] = { 1173 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1174 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1175 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1176 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1177 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1178 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1179 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1180 /* Enable all four RX queues before testing. */ 1181 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 1182 E1000_RXDCTL_QUEUE_ENABLE }, 1183 /* RDH is read-only for 82575, only test RDT. */ 1184 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1185 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 }, 1186 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1187 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1188 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1189 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1190 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1191 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1192 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1193 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB }, 1194 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF }, 1195 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1196 { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF }, 1197 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, 1198 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF }, 1199 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1200 { 0, 0, 0, 0 } 1201 }; 1202 1203 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data, 1204 int reg, u32 mask, u32 write) 1205 { 1206 struct e1000_hw *hw = &adapter->hw; 1207 u32 pat, val; 1208 static const u32 _test[] = { 1209 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; 1210 for (pat = 0; pat < ARRAY_SIZE(_test); pat++) { 1211 wr32(reg, (_test[pat] & write)); 1212 val = rd32(reg) & mask; 1213 if (val != (_test[pat] & write & mask)) { 1214 dev_err(&adapter->pdev->dev, 1215 "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n", 1216 reg, val, (_test[pat] & write & mask)); 1217 *data = reg; 1218 return true; 1219 } 1220 } 1221 1222 return false; 1223 } 1224 1225 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data, 1226 int reg, u32 mask, u32 write) 1227 { 1228 struct e1000_hw *hw = &adapter->hw; 1229 u32 val; 1230 1231 wr32(reg, write & mask); 1232 val = rd32(reg); 1233 if ((write & mask) != (val & mask)) { 1234 dev_err(&adapter->pdev->dev, 1235 "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", 1236 reg, (val & mask), (write & mask)); 1237 *data = reg; 1238 return true; 1239 } 1240 1241 return false; 1242 } 1243 1244 #define REG_PATTERN_TEST(reg, mask, write) \ 1245 do { \ 1246 if (reg_pattern_test(adapter, data, reg, mask, write)) \ 1247 return 1; \ 1248 } while (0) 1249 1250 #define REG_SET_AND_CHECK(reg, mask, write) \ 1251 do { \ 1252 if (reg_set_and_check(adapter, data, reg, mask, write)) \ 1253 return 1; \ 1254 } while (0) 1255 1256 static int igb_reg_test(struct igb_adapter *adapter, u64 *data) 1257 { 1258 struct e1000_hw *hw = &adapter->hw; 1259 struct igb_reg_test *test; 1260 u32 value, before, after; 1261 u32 i, toggle; 1262 1263 switch (adapter->hw.mac.type) { 1264 case e1000_i350: 1265 case e1000_i354: 1266 test = reg_test_i350; 1267 toggle = 0x7FEFF3FF; 1268 break; 1269 case e1000_i210: 1270 case e1000_i211: 1271 test = reg_test_i210; 1272 toggle = 0x7FEFF3FF; 1273 break; 1274 case e1000_82580: 1275 test = reg_test_82580; 1276 toggle = 0x7FEFF3FF; 1277 break; 1278 case e1000_82576: 1279 test = reg_test_82576; 1280 toggle = 0x7FFFF3FF; 1281 break; 1282 default: 1283 test = reg_test_82575; 1284 toggle = 0x7FFFF3FF; 1285 break; 1286 } 1287 1288 /* Because the status register is such a special case, 1289 * we handle it separately from the rest of the register 1290 * tests. Some bits are read-only, some toggle, and some 1291 * are writable on newer MACs. 1292 */ 1293 before = rd32(E1000_STATUS); 1294 value = (rd32(E1000_STATUS) & toggle); 1295 wr32(E1000_STATUS, toggle); 1296 after = rd32(E1000_STATUS) & toggle; 1297 if (value != after) { 1298 dev_err(&adapter->pdev->dev, 1299 "failed STATUS register test got: 0x%08X expected: 0x%08X\n", 1300 after, value); 1301 *data = 1; 1302 return 1; 1303 } 1304 /* restore previous status */ 1305 wr32(E1000_STATUS, before); 1306 1307 /* Perform the remainder of the register test, looping through 1308 * the test table until we either fail or reach the null entry. 1309 */ 1310 while (test->reg) { 1311 for (i = 0; i < test->array_len; i++) { 1312 switch (test->test_type) { 1313 case PATTERN_TEST: 1314 REG_PATTERN_TEST(test->reg + 1315 (i * test->reg_offset), 1316 test->mask, 1317 test->write); 1318 break; 1319 case SET_READ_TEST: 1320 REG_SET_AND_CHECK(test->reg + 1321 (i * test->reg_offset), 1322 test->mask, 1323 test->write); 1324 break; 1325 case WRITE_NO_TEST: 1326 writel(test->write, 1327 (adapter->hw.hw_addr + test->reg) 1328 + (i * test->reg_offset)); 1329 break; 1330 case TABLE32_TEST: 1331 REG_PATTERN_TEST(test->reg + (i * 4), 1332 test->mask, 1333 test->write); 1334 break; 1335 case TABLE64_TEST_LO: 1336 REG_PATTERN_TEST(test->reg + (i * 8), 1337 test->mask, 1338 test->write); 1339 break; 1340 case TABLE64_TEST_HI: 1341 REG_PATTERN_TEST((test->reg + 4) + (i * 8), 1342 test->mask, 1343 test->write); 1344 break; 1345 } 1346 } 1347 test++; 1348 } 1349 1350 *data = 0; 1351 return 0; 1352 } 1353 1354 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data) 1355 { 1356 struct e1000_hw *hw = &adapter->hw; 1357 1358 *data = 0; 1359 1360 /* Validate eeprom on all parts but flashless */ 1361 switch (hw->mac.type) { 1362 case e1000_i210: 1363 case e1000_i211: 1364 if (igb_get_flash_presence_i210(hw)) { 1365 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0) 1366 *data = 2; 1367 } 1368 break; 1369 default: 1370 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0) 1371 *data = 2; 1372 break; 1373 } 1374 1375 return *data; 1376 } 1377 1378 static irqreturn_t igb_test_intr(int irq, void *data) 1379 { 1380 struct igb_adapter *adapter = (struct igb_adapter *) data; 1381 struct e1000_hw *hw = &adapter->hw; 1382 1383 adapter->test_icr |= rd32(E1000_ICR); 1384 1385 return IRQ_HANDLED; 1386 } 1387 1388 static int igb_intr_test(struct igb_adapter *adapter, u64 *data) 1389 { 1390 struct e1000_hw *hw = &adapter->hw; 1391 struct net_device *netdev = adapter->netdev; 1392 u32 mask, ics_mask, i = 0, shared_int = true; 1393 u32 irq = adapter->pdev->irq; 1394 1395 *data = 0; 1396 1397 /* Hook up test interrupt handler just for this test */ 1398 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1399 if (request_irq(adapter->msix_entries[0].vector, 1400 igb_test_intr, 0, netdev->name, adapter)) { 1401 *data = 1; 1402 return -1; 1403 } 1404 } else if (adapter->flags & IGB_FLAG_HAS_MSI) { 1405 shared_int = false; 1406 if (request_irq(irq, 1407 igb_test_intr, 0, netdev->name, adapter)) { 1408 *data = 1; 1409 return -1; 1410 } 1411 } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED, 1412 netdev->name, adapter)) { 1413 shared_int = false; 1414 } else if (request_irq(irq, igb_test_intr, IRQF_SHARED, 1415 netdev->name, adapter)) { 1416 *data = 1; 1417 return -1; 1418 } 1419 dev_info(&adapter->pdev->dev, "testing %s interrupt\n", 1420 (shared_int ? "shared" : "unshared")); 1421 1422 /* Disable all the interrupts */ 1423 wr32(E1000_IMC, ~0); 1424 wrfl(); 1425 usleep_range(10000, 11000); 1426 1427 /* Define all writable bits for ICS */ 1428 switch (hw->mac.type) { 1429 case e1000_82575: 1430 ics_mask = 0x37F47EDD; 1431 break; 1432 case e1000_82576: 1433 ics_mask = 0x77D4FBFD; 1434 break; 1435 case e1000_82580: 1436 ics_mask = 0x77DCFED5; 1437 break; 1438 case e1000_i350: 1439 case e1000_i354: 1440 case e1000_i210: 1441 case e1000_i211: 1442 ics_mask = 0x77DCFED5; 1443 break; 1444 default: 1445 ics_mask = 0x7FFFFFFF; 1446 break; 1447 } 1448 1449 /* Test each interrupt */ 1450 for (; i < 31; i++) { 1451 /* Interrupt to test */ 1452 mask = BIT(i); 1453 1454 if (!(mask & ics_mask)) 1455 continue; 1456 1457 if (!shared_int) { 1458 /* Disable the interrupt to be reported in 1459 * the cause register and then force the same 1460 * interrupt and see if one gets posted. If 1461 * an interrupt was posted to the bus, the 1462 * test failed. 1463 */ 1464 adapter->test_icr = 0; 1465 1466 /* Flush any pending interrupts */ 1467 wr32(E1000_ICR, ~0); 1468 1469 wr32(E1000_IMC, mask); 1470 wr32(E1000_ICS, mask); 1471 wrfl(); 1472 usleep_range(10000, 11000); 1473 1474 if (adapter->test_icr & mask) { 1475 *data = 3; 1476 break; 1477 } 1478 } 1479 1480 /* Enable the interrupt to be reported in 1481 * the cause register and then force the same 1482 * interrupt and see if one gets posted. If 1483 * an interrupt was not posted to the bus, the 1484 * test failed. 1485 */ 1486 adapter->test_icr = 0; 1487 1488 /* Flush any pending interrupts */ 1489 wr32(E1000_ICR, ~0); 1490 1491 wr32(E1000_IMS, mask); 1492 wr32(E1000_ICS, mask); 1493 wrfl(); 1494 usleep_range(10000, 11000); 1495 1496 if (!(adapter->test_icr & mask)) { 1497 *data = 4; 1498 break; 1499 } 1500 1501 if (!shared_int) { 1502 /* Disable the other interrupts to be reported in 1503 * the cause register and then force the other 1504 * interrupts and see if any get posted. If 1505 * an interrupt was posted to the bus, the 1506 * test failed. 1507 */ 1508 adapter->test_icr = 0; 1509 1510 /* Flush any pending interrupts */ 1511 wr32(E1000_ICR, ~0); 1512 1513 wr32(E1000_IMC, ~mask); 1514 wr32(E1000_ICS, ~mask); 1515 wrfl(); 1516 usleep_range(10000, 11000); 1517 1518 if (adapter->test_icr & mask) { 1519 *data = 5; 1520 break; 1521 } 1522 } 1523 } 1524 1525 /* Disable all the interrupts */ 1526 wr32(E1000_IMC, ~0); 1527 wrfl(); 1528 usleep_range(10000, 11000); 1529 1530 /* Unhook test interrupt handler */ 1531 if (adapter->flags & IGB_FLAG_HAS_MSIX) 1532 free_irq(adapter->msix_entries[0].vector, adapter); 1533 else 1534 free_irq(irq, adapter); 1535 1536 return *data; 1537 } 1538 1539 static void igb_free_desc_rings(struct igb_adapter *adapter) 1540 { 1541 igb_free_tx_resources(&adapter->test_tx_ring); 1542 igb_free_rx_resources(&adapter->test_rx_ring); 1543 } 1544 1545 static int igb_setup_desc_rings(struct igb_adapter *adapter) 1546 { 1547 struct igb_ring *tx_ring = &adapter->test_tx_ring; 1548 struct igb_ring *rx_ring = &adapter->test_rx_ring; 1549 struct e1000_hw *hw = &adapter->hw; 1550 int ret_val; 1551 1552 /* Setup Tx descriptor ring and Tx buffers */ 1553 tx_ring->count = IGB_DEFAULT_TXD; 1554 tx_ring->dev = &adapter->pdev->dev; 1555 tx_ring->netdev = adapter->netdev; 1556 tx_ring->reg_idx = adapter->vfs_allocated_count; 1557 1558 if (igb_setup_tx_resources(tx_ring)) { 1559 ret_val = 1; 1560 goto err_nomem; 1561 } 1562 1563 igb_setup_tctl(adapter); 1564 igb_configure_tx_ring(adapter, tx_ring); 1565 1566 /* Setup Rx descriptor ring and Rx buffers */ 1567 rx_ring->count = IGB_DEFAULT_RXD; 1568 rx_ring->dev = &adapter->pdev->dev; 1569 rx_ring->netdev = adapter->netdev; 1570 rx_ring->reg_idx = adapter->vfs_allocated_count; 1571 1572 if (igb_setup_rx_resources(rx_ring)) { 1573 ret_val = 3; 1574 goto err_nomem; 1575 } 1576 1577 /* set the default queue to queue 0 of PF */ 1578 wr32(E1000_MRQC, adapter->vfs_allocated_count << 3); 1579 1580 /* enable receive ring */ 1581 igb_setup_rctl(adapter); 1582 igb_configure_rx_ring(adapter, rx_ring); 1583 1584 igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring)); 1585 1586 return 0; 1587 1588 err_nomem: 1589 igb_free_desc_rings(adapter); 1590 return ret_val; 1591 } 1592 1593 static void igb_phy_disable_receiver(struct igb_adapter *adapter) 1594 { 1595 struct e1000_hw *hw = &adapter->hw; 1596 1597 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1598 igb_write_phy_reg(hw, 29, 0x001F); 1599 igb_write_phy_reg(hw, 30, 0x8FFC); 1600 igb_write_phy_reg(hw, 29, 0x001A); 1601 igb_write_phy_reg(hw, 30, 0x8FF0); 1602 } 1603 1604 static int igb_integrated_phy_loopback(struct igb_adapter *adapter) 1605 { 1606 struct e1000_hw *hw = &adapter->hw; 1607 u32 ctrl_reg = 0; 1608 1609 hw->mac.autoneg = false; 1610 1611 if (hw->phy.type == e1000_phy_m88) { 1612 if (hw->phy.id != I210_I_PHY_ID) { 1613 /* Auto-MDI/MDIX Off */ 1614 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); 1615 /* reset to update Auto-MDI/MDIX */ 1616 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140); 1617 /* autoneg off */ 1618 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140); 1619 } else { 1620 /* force 1000, set loopback */ 1621 igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0); 1622 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140); 1623 } 1624 } else if (hw->phy.type == e1000_phy_82580) { 1625 /* enable MII loopback */ 1626 igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041); 1627 } 1628 1629 /* add small delay to avoid loopback test failure */ 1630 msleep(50); 1631 1632 /* force 1000, set loopback */ 1633 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140); 1634 1635 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1636 ctrl_reg = rd32(E1000_CTRL); 1637 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1638 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1639 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1640 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1641 E1000_CTRL_FD | /* Force Duplex to FULL */ 1642 E1000_CTRL_SLU); /* Set link up enable bit */ 1643 1644 if (hw->phy.type == e1000_phy_m88) 1645 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1646 1647 wr32(E1000_CTRL, ctrl_reg); 1648 1649 /* Disable the receiver on the PHY so when a cable is plugged in, the 1650 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1651 */ 1652 if (hw->phy.type == e1000_phy_m88) 1653 igb_phy_disable_receiver(adapter); 1654 1655 msleep(500); 1656 return 0; 1657 } 1658 1659 static int igb_set_phy_loopback(struct igb_adapter *adapter) 1660 { 1661 return igb_integrated_phy_loopback(adapter); 1662 } 1663 1664 static int igb_setup_loopback_test(struct igb_adapter *adapter) 1665 { 1666 struct e1000_hw *hw = &adapter->hw; 1667 u32 reg; 1668 1669 reg = rd32(E1000_CTRL_EXT); 1670 1671 /* use CTRL_EXT to identify link type as SGMII can appear as copper */ 1672 if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) { 1673 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) || 1674 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) || 1675 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) || 1676 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) || 1677 (hw->device_id == E1000_DEV_ID_I354_SGMII) || 1678 (hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) { 1679 /* Enable DH89xxCC MPHY for near end loopback */ 1680 reg = rd32(E1000_MPHY_ADDR_CTL); 1681 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) | 1682 E1000_MPHY_PCS_CLK_REG_OFFSET; 1683 wr32(E1000_MPHY_ADDR_CTL, reg); 1684 1685 reg = rd32(E1000_MPHY_DATA); 1686 reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN; 1687 wr32(E1000_MPHY_DATA, reg); 1688 } 1689 1690 reg = rd32(E1000_RCTL); 1691 reg |= E1000_RCTL_LBM_TCVR; 1692 wr32(E1000_RCTL, reg); 1693 1694 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK); 1695 1696 reg = rd32(E1000_CTRL); 1697 reg &= ~(E1000_CTRL_RFCE | 1698 E1000_CTRL_TFCE | 1699 E1000_CTRL_LRST); 1700 reg |= E1000_CTRL_SLU | 1701 E1000_CTRL_FD; 1702 wr32(E1000_CTRL, reg); 1703 1704 /* Unset switch control to serdes energy detect */ 1705 reg = rd32(E1000_CONNSW); 1706 reg &= ~E1000_CONNSW_ENRGSRC; 1707 wr32(E1000_CONNSW, reg); 1708 1709 /* Unset sigdetect for SERDES loopback on 1710 * 82580 and newer devices. 1711 */ 1712 if (hw->mac.type >= e1000_82580) { 1713 reg = rd32(E1000_PCS_CFG0); 1714 reg |= E1000_PCS_CFG_IGN_SD; 1715 wr32(E1000_PCS_CFG0, reg); 1716 } 1717 1718 /* Set PCS register for forced speed */ 1719 reg = rd32(E1000_PCS_LCTL); 1720 reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/ 1721 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */ 1722 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */ 1723 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */ 1724 E1000_PCS_LCTL_FSD | /* Force Speed */ 1725 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */ 1726 wr32(E1000_PCS_LCTL, reg); 1727 1728 return 0; 1729 } 1730 1731 return igb_set_phy_loopback(adapter); 1732 } 1733 1734 static void igb_loopback_cleanup(struct igb_adapter *adapter) 1735 { 1736 struct e1000_hw *hw = &adapter->hw; 1737 u32 rctl; 1738 u16 phy_reg; 1739 1740 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) || 1741 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) || 1742 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) || 1743 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) || 1744 (hw->device_id == E1000_DEV_ID_I354_SGMII)) { 1745 u32 reg; 1746 1747 /* Disable near end loopback on DH89xxCC */ 1748 reg = rd32(E1000_MPHY_ADDR_CTL); 1749 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) | 1750 E1000_MPHY_PCS_CLK_REG_OFFSET; 1751 wr32(E1000_MPHY_ADDR_CTL, reg); 1752 1753 reg = rd32(E1000_MPHY_DATA); 1754 reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN; 1755 wr32(E1000_MPHY_DATA, reg); 1756 } 1757 1758 rctl = rd32(E1000_RCTL); 1759 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1760 wr32(E1000_RCTL, rctl); 1761 1762 hw->mac.autoneg = true; 1763 igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg); 1764 if (phy_reg & MII_CR_LOOPBACK) { 1765 phy_reg &= ~MII_CR_LOOPBACK; 1766 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg); 1767 igb_phy_sw_reset(hw); 1768 } 1769 } 1770 1771 static void igb_create_lbtest_frame(struct sk_buff *skb, 1772 unsigned int frame_size) 1773 { 1774 memset(skb->data, 0xFF, frame_size); 1775 frame_size /= 2; 1776 memset(&skb->data[frame_size], 0xAA, frame_size - 1); 1777 memset(&skb->data[frame_size + 10], 0xBE, 1); 1778 memset(&skb->data[frame_size + 12], 0xAF, 1); 1779 } 1780 1781 static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer, 1782 unsigned int frame_size) 1783 { 1784 unsigned char *data; 1785 bool match = true; 1786 1787 frame_size >>= 1; 1788 1789 data = kmap(rx_buffer->page); 1790 1791 if (data[3] != 0xFF || 1792 data[frame_size + 10] != 0xBE || 1793 data[frame_size + 12] != 0xAF) 1794 match = false; 1795 1796 kunmap(rx_buffer->page); 1797 1798 return match; 1799 } 1800 1801 static int igb_clean_test_rings(struct igb_ring *rx_ring, 1802 struct igb_ring *tx_ring, 1803 unsigned int size) 1804 { 1805 union e1000_adv_rx_desc *rx_desc; 1806 struct igb_rx_buffer *rx_buffer_info; 1807 struct igb_tx_buffer *tx_buffer_info; 1808 u16 rx_ntc, tx_ntc, count = 0; 1809 1810 /* initialize next to clean and descriptor values */ 1811 rx_ntc = rx_ring->next_to_clean; 1812 tx_ntc = tx_ring->next_to_clean; 1813 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc); 1814 1815 while (rx_desc->wb.upper.length) { 1816 /* check Rx buffer */ 1817 rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc]; 1818 1819 /* sync Rx buffer for CPU read */ 1820 dma_sync_single_for_cpu(rx_ring->dev, 1821 rx_buffer_info->dma, 1822 size, 1823 DMA_FROM_DEVICE); 1824 1825 /* verify contents of skb */ 1826 if (igb_check_lbtest_frame(rx_buffer_info, size)) 1827 count++; 1828 1829 /* sync Rx buffer for device write */ 1830 dma_sync_single_for_device(rx_ring->dev, 1831 rx_buffer_info->dma, 1832 size, 1833 DMA_FROM_DEVICE); 1834 1835 /* unmap buffer on Tx side */ 1836 tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc]; 1837 1838 /* Free all the Tx ring sk_buffs */ 1839 dev_kfree_skb_any(tx_buffer_info->skb); 1840 1841 /* unmap skb header data */ 1842 dma_unmap_single(tx_ring->dev, 1843 dma_unmap_addr(tx_buffer_info, dma), 1844 dma_unmap_len(tx_buffer_info, len), 1845 DMA_TO_DEVICE); 1846 dma_unmap_len_set(tx_buffer_info, len, 0); 1847 1848 /* increment Rx/Tx next to clean counters */ 1849 rx_ntc++; 1850 if (rx_ntc == rx_ring->count) 1851 rx_ntc = 0; 1852 tx_ntc++; 1853 if (tx_ntc == tx_ring->count) 1854 tx_ntc = 0; 1855 1856 /* fetch next descriptor */ 1857 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc); 1858 } 1859 1860 netdev_tx_reset_queue(txring_txq(tx_ring)); 1861 1862 /* re-map buffers to ring, store next to clean values */ 1863 igb_alloc_rx_buffers(rx_ring, count); 1864 rx_ring->next_to_clean = rx_ntc; 1865 tx_ring->next_to_clean = tx_ntc; 1866 1867 return count; 1868 } 1869 1870 static int igb_run_loopback_test(struct igb_adapter *adapter) 1871 { 1872 struct igb_ring *tx_ring = &adapter->test_tx_ring; 1873 struct igb_ring *rx_ring = &adapter->test_rx_ring; 1874 u16 i, j, lc, good_cnt; 1875 int ret_val = 0; 1876 unsigned int size = IGB_RX_HDR_LEN; 1877 netdev_tx_t tx_ret_val; 1878 struct sk_buff *skb; 1879 1880 /* allocate test skb */ 1881 skb = alloc_skb(size, GFP_KERNEL); 1882 if (!skb) 1883 return 11; 1884 1885 /* place data into test skb */ 1886 igb_create_lbtest_frame(skb, size); 1887 skb_put(skb, size); 1888 1889 /* Calculate the loop count based on the largest descriptor ring 1890 * The idea is to wrap the largest ring a number of times using 64 1891 * send/receive pairs during each loop 1892 */ 1893 1894 if (rx_ring->count <= tx_ring->count) 1895 lc = ((tx_ring->count / 64) * 2) + 1; 1896 else 1897 lc = ((rx_ring->count / 64) * 2) + 1; 1898 1899 for (j = 0; j <= lc; j++) { /* loop count loop */ 1900 /* reset count of good packets */ 1901 good_cnt = 0; 1902 1903 /* place 64 packets on the transmit queue*/ 1904 for (i = 0; i < 64; i++) { 1905 skb_get(skb); 1906 tx_ret_val = igb_xmit_frame_ring(skb, tx_ring); 1907 if (tx_ret_val == NETDEV_TX_OK) 1908 good_cnt++; 1909 } 1910 1911 if (good_cnt != 64) { 1912 ret_val = 12; 1913 break; 1914 } 1915 1916 /* allow 200 milliseconds for packets to go from Tx to Rx */ 1917 msleep(200); 1918 1919 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size); 1920 if (good_cnt != 64) { 1921 ret_val = 13; 1922 break; 1923 } 1924 } /* end loop count loop */ 1925 1926 /* free the original skb */ 1927 kfree_skb(skb); 1928 1929 return ret_val; 1930 } 1931 1932 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data) 1933 { 1934 /* PHY loopback cannot be performed if SoL/IDER 1935 * sessions are active 1936 */ 1937 if (igb_check_reset_block(&adapter->hw)) { 1938 dev_err(&adapter->pdev->dev, 1939 "Cannot do PHY loopback test when SoL/IDER is active.\n"); 1940 *data = 0; 1941 goto out; 1942 } 1943 1944 if (adapter->hw.mac.type == e1000_i354) { 1945 dev_info(&adapter->pdev->dev, 1946 "Loopback test not supported on i354.\n"); 1947 *data = 0; 1948 goto out; 1949 } 1950 *data = igb_setup_desc_rings(adapter); 1951 if (*data) 1952 goto out; 1953 *data = igb_setup_loopback_test(adapter); 1954 if (*data) 1955 goto err_loopback; 1956 *data = igb_run_loopback_test(adapter); 1957 igb_loopback_cleanup(adapter); 1958 1959 err_loopback: 1960 igb_free_desc_rings(adapter); 1961 out: 1962 return *data; 1963 } 1964 1965 static int igb_link_test(struct igb_adapter *adapter, u64 *data) 1966 { 1967 struct e1000_hw *hw = &adapter->hw; 1968 *data = 0; 1969 if (hw->phy.media_type == e1000_media_type_internal_serdes) { 1970 int i = 0; 1971 1972 hw->mac.serdes_has_link = false; 1973 1974 /* On some blade server designs, link establishment 1975 * could take as long as 2-3 minutes 1976 */ 1977 do { 1978 hw->mac.ops.check_for_link(&adapter->hw); 1979 if (hw->mac.serdes_has_link) 1980 return *data; 1981 msleep(20); 1982 } while (i++ < 3750); 1983 1984 *data = 1; 1985 } else { 1986 hw->mac.ops.check_for_link(&adapter->hw); 1987 if (hw->mac.autoneg) 1988 msleep(5000); 1989 1990 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) 1991 *data = 1; 1992 } 1993 return *data; 1994 } 1995 1996 static void igb_diag_test(struct net_device *netdev, 1997 struct ethtool_test *eth_test, u64 *data) 1998 { 1999 struct igb_adapter *adapter = netdev_priv(netdev); 2000 u16 autoneg_advertised; 2001 u8 forced_speed_duplex, autoneg; 2002 bool if_running = netif_running(netdev); 2003 2004 set_bit(__IGB_TESTING, &adapter->state); 2005 2006 /* can't do offline tests on media switching devices */ 2007 if (adapter->hw.dev_spec._82575.mas_capable) 2008 eth_test->flags &= ~ETH_TEST_FL_OFFLINE; 2009 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 2010 /* Offline tests */ 2011 2012 /* save speed, duplex, autoneg settings */ 2013 autoneg_advertised = adapter->hw.phy.autoneg_advertised; 2014 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; 2015 autoneg = adapter->hw.mac.autoneg; 2016 2017 dev_info(&adapter->pdev->dev, "offline testing starting\n"); 2018 2019 /* power up link for link test */ 2020 igb_power_up_link(adapter); 2021 2022 /* Link test performed before hardware reset so autoneg doesn't 2023 * interfere with test result 2024 */ 2025 if (igb_link_test(adapter, &data[TEST_LINK])) 2026 eth_test->flags |= ETH_TEST_FL_FAILED; 2027 2028 if (if_running) 2029 /* indicate we're in test mode */ 2030 igb_close(netdev); 2031 else 2032 igb_reset(adapter); 2033 2034 if (igb_reg_test(adapter, &data[TEST_REG])) 2035 eth_test->flags |= ETH_TEST_FL_FAILED; 2036 2037 igb_reset(adapter); 2038 if (igb_eeprom_test(adapter, &data[TEST_EEP])) 2039 eth_test->flags |= ETH_TEST_FL_FAILED; 2040 2041 igb_reset(adapter); 2042 if (igb_intr_test(adapter, &data[TEST_IRQ])) 2043 eth_test->flags |= ETH_TEST_FL_FAILED; 2044 2045 igb_reset(adapter); 2046 /* power up link for loopback test */ 2047 igb_power_up_link(adapter); 2048 if (igb_loopback_test(adapter, &data[TEST_LOOP])) 2049 eth_test->flags |= ETH_TEST_FL_FAILED; 2050 2051 /* restore speed, duplex, autoneg settings */ 2052 adapter->hw.phy.autoneg_advertised = autoneg_advertised; 2053 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; 2054 adapter->hw.mac.autoneg = autoneg; 2055 2056 /* force this routine to wait until autoneg complete/timeout */ 2057 adapter->hw.phy.autoneg_wait_to_complete = true; 2058 igb_reset(adapter); 2059 adapter->hw.phy.autoneg_wait_to_complete = false; 2060 2061 clear_bit(__IGB_TESTING, &adapter->state); 2062 if (if_running) 2063 igb_open(netdev); 2064 } else { 2065 dev_info(&adapter->pdev->dev, "online testing starting\n"); 2066 2067 /* PHY is powered down when interface is down */ 2068 if (if_running && igb_link_test(adapter, &data[TEST_LINK])) 2069 eth_test->flags |= ETH_TEST_FL_FAILED; 2070 else 2071 data[TEST_LINK] = 0; 2072 2073 /* Online tests aren't run; pass by default */ 2074 data[TEST_REG] = 0; 2075 data[TEST_EEP] = 0; 2076 data[TEST_IRQ] = 0; 2077 data[TEST_LOOP] = 0; 2078 2079 clear_bit(__IGB_TESTING, &adapter->state); 2080 } 2081 msleep_interruptible(4 * 1000); 2082 } 2083 2084 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 2085 { 2086 struct igb_adapter *adapter = netdev_priv(netdev); 2087 2088 wol->wolopts = 0; 2089 2090 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED)) 2091 return; 2092 2093 wol->supported = WAKE_UCAST | WAKE_MCAST | 2094 WAKE_BCAST | WAKE_MAGIC | 2095 WAKE_PHY; 2096 2097 /* apply any specific unsupported masks here */ 2098 switch (adapter->hw.device_id) { 2099 default: 2100 break; 2101 } 2102 2103 if (adapter->wol & E1000_WUFC_EX) 2104 wol->wolopts |= WAKE_UCAST; 2105 if (adapter->wol & E1000_WUFC_MC) 2106 wol->wolopts |= WAKE_MCAST; 2107 if (adapter->wol & E1000_WUFC_BC) 2108 wol->wolopts |= WAKE_BCAST; 2109 if (adapter->wol & E1000_WUFC_MAG) 2110 wol->wolopts |= WAKE_MAGIC; 2111 if (adapter->wol & E1000_WUFC_LNKC) 2112 wol->wolopts |= WAKE_PHY; 2113 } 2114 2115 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 2116 { 2117 struct igb_adapter *adapter = netdev_priv(netdev); 2118 2119 if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_FILTER)) 2120 return -EOPNOTSUPP; 2121 2122 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED)) 2123 return wol->wolopts ? -EOPNOTSUPP : 0; 2124 2125 /* these settings will always override what we currently have */ 2126 adapter->wol = 0; 2127 2128 if (wol->wolopts & WAKE_UCAST) 2129 adapter->wol |= E1000_WUFC_EX; 2130 if (wol->wolopts & WAKE_MCAST) 2131 adapter->wol |= E1000_WUFC_MC; 2132 if (wol->wolopts & WAKE_BCAST) 2133 adapter->wol |= E1000_WUFC_BC; 2134 if (wol->wolopts & WAKE_MAGIC) 2135 adapter->wol |= E1000_WUFC_MAG; 2136 if (wol->wolopts & WAKE_PHY) 2137 adapter->wol |= E1000_WUFC_LNKC; 2138 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 2139 2140 return 0; 2141 } 2142 2143 /* bit defines for adapter->led_status */ 2144 #define IGB_LED_ON 0 2145 2146 static int igb_set_phys_id(struct net_device *netdev, 2147 enum ethtool_phys_id_state state) 2148 { 2149 struct igb_adapter *adapter = netdev_priv(netdev); 2150 struct e1000_hw *hw = &adapter->hw; 2151 2152 switch (state) { 2153 case ETHTOOL_ID_ACTIVE: 2154 igb_blink_led(hw); 2155 return 2; 2156 case ETHTOOL_ID_ON: 2157 igb_blink_led(hw); 2158 break; 2159 case ETHTOOL_ID_OFF: 2160 igb_led_off(hw); 2161 break; 2162 case ETHTOOL_ID_INACTIVE: 2163 igb_led_off(hw); 2164 clear_bit(IGB_LED_ON, &adapter->led_status); 2165 igb_cleanup_led(hw); 2166 break; 2167 } 2168 2169 return 0; 2170 } 2171 2172 static int igb_set_coalesce(struct net_device *netdev, 2173 struct ethtool_coalesce *ec) 2174 { 2175 struct igb_adapter *adapter = netdev_priv(netdev); 2176 int i; 2177 2178 if (ec->rx_max_coalesced_frames || 2179 ec->rx_coalesce_usecs_irq || 2180 ec->rx_max_coalesced_frames_irq || 2181 ec->tx_max_coalesced_frames || 2182 ec->tx_coalesce_usecs_irq || 2183 ec->stats_block_coalesce_usecs || 2184 ec->use_adaptive_rx_coalesce || 2185 ec->use_adaptive_tx_coalesce || 2186 ec->pkt_rate_low || 2187 ec->rx_coalesce_usecs_low || 2188 ec->rx_max_coalesced_frames_low || 2189 ec->tx_coalesce_usecs_low || 2190 ec->tx_max_coalesced_frames_low || 2191 ec->pkt_rate_high || 2192 ec->rx_coalesce_usecs_high || 2193 ec->rx_max_coalesced_frames_high || 2194 ec->tx_coalesce_usecs_high || 2195 ec->tx_max_coalesced_frames_high || 2196 ec->rate_sample_interval) 2197 return -ENOTSUPP; 2198 2199 if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) || 2200 ((ec->rx_coalesce_usecs > 3) && 2201 (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) || 2202 (ec->rx_coalesce_usecs == 2)) 2203 return -EINVAL; 2204 2205 if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) || 2206 ((ec->tx_coalesce_usecs > 3) && 2207 (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) || 2208 (ec->tx_coalesce_usecs == 2)) 2209 return -EINVAL; 2210 2211 if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs) 2212 return -EINVAL; 2213 2214 /* If ITR is disabled, disable DMAC */ 2215 if (ec->rx_coalesce_usecs == 0) { 2216 if (adapter->flags & IGB_FLAG_DMAC) 2217 adapter->flags &= ~IGB_FLAG_DMAC; 2218 } 2219 2220 /* convert to rate of irq's per second */ 2221 if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3) 2222 adapter->rx_itr_setting = ec->rx_coalesce_usecs; 2223 else 2224 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2; 2225 2226 /* convert to rate of irq's per second */ 2227 if (adapter->flags & IGB_FLAG_QUEUE_PAIRS) 2228 adapter->tx_itr_setting = adapter->rx_itr_setting; 2229 else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3) 2230 adapter->tx_itr_setting = ec->tx_coalesce_usecs; 2231 else 2232 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2; 2233 2234 for (i = 0; i < adapter->num_q_vectors; i++) { 2235 struct igb_q_vector *q_vector = adapter->q_vector[i]; 2236 q_vector->tx.work_limit = adapter->tx_work_limit; 2237 if (q_vector->rx.ring) 2238 q_vector->itr_val = adapter->rx_itr_setting; 2239 else 2240 q_vector->itr_val = adapter->tx_itr_setting; 2241 if (q_vector->itr_val && q_vector->itr_val <= 3) 2242 q_vector->itr_val = IGB_START_ITR; 2243 q_vector->set_itr = 1; 2244 } 2245 2246 return 0; 2247 } 2248 2249 static int igb_get_coalesce(struct net_device *netdev, 2250 struct ethtool_coalesce *ec) 2251 { 2252 struct igb_adapter *adapter = netdev_priv(netdev); 2253 2254 if (adapter->rx_itr_setting <= 3) 2255 ec->rx_coalesce_usecs = adapter->rx_itr_setting; 2256 else 2257 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2; 2258 2259 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) { 2260 if (adapter->tx_itr_setting <= 3) 2261 ec->tx_coalesce_usecs = adapter->tx_itr_setting; 2262 else 2263 ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2; 2264 } 2265 2266 return 0; 2267 } 2268 2269 static int igb_nway_reset(struct net_device *netdev) 2270 { 2271 struct igb_adapter *adapter = netdev_priv(netdev); 2272 if (netif_running(netdev)) 2273 igb_reinit_locked(adapter); 2274 return 0; 2275 } 2276 2277 static int igb_get_sset_count(struct net_device *netdev, int sset) 2278 { 2279 switch (sset) { 2280 case ETH_SS_STATS: 2281 return IGB_STATS_LEN; 2282 case ETH_SS_TEST: 2283 return IGB_TEST_LEN; 2284 case ETH_SS_PRIV_FLAGS: 2285 return IGB_PRIV_FLAGS_STR_LEN; 2286 default: 2287 return -ENOTSUPP; 2288 } 2289 } 2290 2291 static void igb_get_ethtool_stats(struct net_device *netdev, 2292 struct ethtool_stats *stats, u64 *data) 2293 { 2294 struct igb_adapter *adapter = netdev_priv(netdev); 2295 struct rtnl_link_stats64 *net_stats = &adapter->stats64; 2296 unsigned int start; 2297 struct igb_ring *ring; 2298 int i, j; 2299 char *p; 2300 2301 spin_lock(&adapter->stats64_lock); 2302 igb_update_stats(adapter); 2303 2304 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) { 2305 p = (char *)adapter + igb_gstrings_stats[i].stat_offset; 2306 data[i] = (igb_gstrings_stats[i].sizeof_stat == 2307 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 2308 } 2309 for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) { 2310 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset; 2311 data[i] = (igb_gstrings_net_stats[j].sizeof_stat == 2312 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 2313 } 2314 for (j = 0; j < adapter->num_tx_queues; j++) { 2315 u64 restart2; 2316 2317 ring = adapter->tx_ring[j]; 2318 do { 2319 start = u64_stats_fetch_begin_irq(&ring->tx_syncp); 2320 data[i] = ring->tx_stats.packets; 2321 data[i+1] = ring->tx_stats.bytes; 2322 data[i+2] = ring->tx_stats.restart_queue; 2323 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start)); 2324 do { 2325 start = u64_stats_fetch_begin_irq(&ring->tx_syncp2); 2326 restart2 = ring->tx_stats.restart_queue2; 2327 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start)); 2328 data[i+2] += restart2; 2329 2330 i += IGB_TX_QUEUE_STATS_LEN; 2331 } 2332 for (j = 0; j < adapter->num_rx_queues; j++) { 2333 ring = adapter->rx_ring[j]; 2334 do { 2335 start = u64_stats_fetch_begin_irq(&ring->rx_syncp); 2336 data[i] = ring->rx_stats.packets; 2337 data[i+1] = ring->rx_stats.bytes; 2338 data[i+2] = ring->rx_stats.drops; 2339 data[i+3] = ring->rx_stats.csum_err; 2340 data[i+4] = ring->rx_stats.alloc_failed; 2341 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start)); 2342 i += IGB_RX_QUEUE_STATS_LEN; 2343 } 2344 spin_unlock(&adapter->stats64_lock); 2345 } 2346 2347 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data) 2348 { 2349 struct igb_adapter *adapter = netdev_priv(netdev); 2350 u8 *p = data; 2351 int i; 2352 2353 switch (stringset) { 2354 case ETH_SS_TEST: 2355 memcpy(data, *igb_gstrings_test, 2356 IGB_TEST_LEN*ETH_GSTRING_LEN); 2357 break; 2358 case ETH_SS_STATS: 2359 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) { 2360 memcpy(p, igb_gstrings_stats[i].stat_string, 2361 ETH_GSTRING_LEN); 2362 p += ETH_GSTRING_LEN; 2363 } 2364 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) { 2365 memcpy(p, igb_gstrings_net_stats[i].stat_string, 2366 ETH_GSTRING_LEN); 2367 p += ETH_GSTRING_LEN; 2368 } 2369 for (i = 0; i < adapter->num_tx_queues; i++) { 2370 sprintf(p, "tx_queue_%u_packets", i); 2371 p += ETH_GSTRING_LEN; 2372 sprintf(p, "tx_queue_%u_bytes", i); 2373 p += ETH_GSTRING_LEN; 2374 sprintf(p, "tx_queue_%u_restart", i); 2375 p += ETH_GSTRING_LEN; 2376 } 2377 for (i = 0; i < adapter->num_rx_queues; i++) { 2378 sprintf(p, "rx_queue_%u_packets", i); 2379 p += ETH_GSTRING_LEN; 2380 sprintf(p, "rx_queue_%u_bytes", i); 2381 p += ETH_GSTRING_LEN; 2382 sprintf(p, "rx_queue_%u_drops", i); 2383 p += ETH_GSTRING_LEN; 2384 sprintf(p, "rx_queue_%u_csum_err", i); 2385 p += ETH_GSTRING_LEN; 2386 sprintf(p, "rx_queue_%u_alloc_failed", i); 2387 p += ETH_GSTRING_LEN; 2388 } 2389 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */ 2390 break; 2391 case ETH_SS_PRIV_FLAGS: 2392 memcpy(data, igb_priv_flags_strings, 2393 IGB_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN); 2394 break; 2395 } 2396 } 2397 2398 static int igb_get_ts_info(struct net_device *dev, 2399 struct ethtool_ts_info *info) 2400 { 2401 struct igb_adapter *adapter = netdev_priv(dev); 2402 2403 if (adapter->ptp_clock) 2404 info->phc_index = ptp_clock_index(adapter->ptp_clock); 2405 else 2406 info->phc_index = -1; 2407 2408 switch (adapter->hw.mac.type) { 2409 case e1000_82575: 2410 info->so_timestamping = 2411 SOF_TIMESTAMPING_TX_SOFTWARE | 2412 SOF_TIMESTAMPING_RX_SOFTWARE | 2413 SOF_TIMESTAMPING_SOFTWARE; 2414 return 0; 2415 case e1000_82576: 2416 case e1000_82580: 2417 case e1000_i350: 2418 case e1000_i354: 2419 case e1000_i210: 2420 case e1000_i211: 2421 info->so_timestamping = 2422 SOF_TIMESTAMPING_TX_SOFTWARE | 2423 SOF_TIMESTAMPING_RX_SOFTWARE | 2424 SOF_TIMESTAMPING_SOFTWARE | 2425 SOF_TIMESTAMPING_TX_HARDWARE | 2426 SOF_TIMESTAMPING_RX_HARDWARE | 2427 SOF_TIMESTAMPING_RAW_HARDWARE; 2428 2429 info->tx_types = 2430 BIT(HWTSTAMP_TX_OFF) | 2431 BIT(HWTSTAMP_TX_ON); 2432 2433 info->rx_filters = BIT(HWTSTAMP_FILTER_NONE); 2434 2435 /* 82576 does not support timestamping all packets. */ 2436 if (adapter->hw.mac.type >= e1000_82580) 2437 info->rx_filters |= BIT(HWTSTAMP_FILTER_ALL); 2438 else 2439 info->rx_filters |= 2440 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) | 2441 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) | 2442 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT); 2443 2444 return 0; 2445 default: 2446 return -EOPNOTSUPP; 2447 } 2448 } 2449 2450 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0) 2451 static int igb_get_ethtool_nfc_entry(struct igb_adapter *adapter, 2452 struct ethtool_rxnfc *cmd) 2453 { 2454 struct ethtool_rx_flow_spec *fsp = &cmd->fs; 2455 struct igb_nfc_filter *rule = NULL; 2456 2457 /* report total rule count */ 2458 cmd->data = IGB_MAX_RXNFC_FILTERS; 2459 2460 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) { 2461 if (fsp->location <= rule->sw_idx) 2462 break; 2463 } 2464 2465 if (!rule || fsp->location != rule->sw_idx) 2466 return -EINVAL; 2467 2468 if (rule->filter.match_flags) { 2469 fsp->flow_type = ETHER_FLOW; 2470 fsp->ring_cookie = rule->action; 2471 if (rule->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) { 2472 fsp->h_u.ether_spec.h_proto = rule->filter.etype; 2473 fsp->m_u.ether_spec.h_proto = ETHER_TYPE_FULL_MASK; 2474 } 2475 if (rule->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI) { 2476 fsp->flow_type |= FLOW_EXT; 2477 fsp->h_ext.vlan_tci = rule->filter.vlan_tci; 2478 fsp->m_ext.vlan_tci = htons(VLAN_PRIO_MASK); 2479 } 2480 if (rule->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) { 2481 ether_addr_copy(fsp->h_u.ether_spec.h_dest, 2482 rule->filter.dst_addr); 2483 /* As we only support matching by the full 2484 * mask, return the mask to userspace 2485 */ 2486 eth_broadcast_addr(fsp->m_u.ether_spec.h_dest); 2487 } 2488 if (rule->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) { 2489 ether_addr_copy(fsp->h_u.ether_spec.h_source, 2490 rule->filter.src_addr); 2491 /* As we only support matching by the full 2492 * mask, return the mask to userspace 2493 */ 2494 eth_broadcast_addr(fsp->m_u.ether_spec.h_source); 2495 } 2496 2497 return 0; 2498 } 2499 return -EINVAL; 2500 } 2501 2502 static int igb_get_ethtool_nfc_all(struct igb_adapter *adapter, 2503 struct ethtool_rxnfc *cmd, 2504 u32 *rule_locs) 2505 { 2506 struct igb_nfc_filter *rule; 2507 int cnt = 0; 2508 2509 /* report total rule count */ 2510 cmd->data = IGB_MAX_RXNFC_FILTERS; 2511 2512 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) { 2513 if (cnt == cmd->rule_cnt) 2514 return -EMSGSIZE; 2515 rule_locs[cnt] = rule->sw_idx; 2516 cnt++; 2517 } 2518 2519 cmd->rule_cnt = cnt; 2520 2521 return 0; 2522 } 2523 2524 static int igb_get_rss_hash_opts(struct igb_adapter *adapter, 2525 struct ethtool_rxnfc *cmd) 2526 { 2527 cmd->data = 0; 2528 2529 /* Report default options for RSS on igb */ 2530 switch (cmd->flow_type) { 2531 case TCP_V4_FLOW: 2532 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2533 /* Fall through */ 2534 case UDP_V4_FLOW: 2535 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP) 2536 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2537 /* Fall through */ 2538 case SCTP_V4_FLOW: 2539 case AH_ESP_V4_FLOW: 2540 case AH_V4_FLOW: 2541 case ESP_V4_FLOW: 2542 case IPV4_FLOW: 2543 cmd->data |= RXH_IP_SRC | RXH_IP_DST; 2544 break; 2545 case TCP_V6_FLOW: 2546 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2547 /* Fall through */ 2548 case UDP_V6_FLOW: 2549 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP) 2550 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2551 /* Fall through */ 2552 case SCTP_V6_FLOW: 2553 case AH_ESP_V6_FLOW: 2554 case AH_V6_FLOW: 2555 case ESP_V6_FLOW: 2556 case IPV6_FLOW: 2557 cmd->data |= RXH_IP_SRC | RXH_IP_DST; 2558 break; 2559 default: 2560 return -EINVAL; 2561 } 2562 2563 return 0; 2564 } 2565 2566 static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd, 2567 u32 *rule_locs) 2568 { 2569 struct igb_adapter *adapter = netdev_priv(dev); 2570 int ret = -EOPNOTSUPP; 2571 2572 switch (cmd->cmd) { 2573 case ETHTOOL_GRXRINGS: 2574 cmd->data = adapter->num_rx_queues; 2575 ret = 0; 2576 break; 2577 case ETHTOOL_GRXCLSRLCNT: 2578 cmd->rule_cnt = adapter->nfc_filter_count; 2579 ret = 0; 2580 break; 2581 case ETHTOOL_GRXCLSRULE: 2582 ret = igb_get_ethtool_nfc_entry(adapter, cmd); 2583 break; 2584 case ETHTOOL_GRXCLSRLALL: 2585 ret = igb_get_ethtool_nfc_all(adapter, cmd, rule_locs); 2586 break; 2587 case ETHTOOL_GRXFH: 2588 ret = igb_get_rss_hash_opts(adapter, cmd); 2589 break; 2590 default: 2591 break; 2592 } 2593 2594 return ret; 2595 } 2596 2597 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \ 2598 IGB_FLAG_RSS_FIELD_IPV6_UDP) 2599 static int igb_set_rss_hash_opt(struct igb_adapter *adapter, 2600 struct ethtool_rxnfc *nfc) 2601 { 2602 u32 flags = adapter->flags; 2603 2604 /* RSS does not support anything other than hashing 2605 * to queues on src and dst IPs and ports 2606 */ 2607 if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST | 2608 RXH_L4_B_0_1 | RXH_L4_B_2_3)) 2609 return -EINVAL; 2610 2611 switch (nfc->flow_type) { 2612 case TCP_V4_FLOW: 2613 case TCP_V6_FLOW: 2614 if (!(nfc->data & RXH_IP_SRC) || 2615 !(nfc->data & RXH_IP_DST) || 2616 !(nfc->data & RXH_L4_B_0_1) || 2617 !(nfc->data & RXH_L4_B_2_3)) 2618 return -EINVAL; 2619 break; 2620 case UDP_V4_FLOW: 2621 if (!(nfc->data & RXH_IP_SRC) || 2622 !(nfc->data & RXH_IP_DST)) 2623 return -EINVAL; 2624 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 2625 case 0: 2626 flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP; 2627 break; 2628 case (RXH_L4_B_0_1 | RXH_L4_B_2_3): 2629 flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP; 2630 break; 2631 default: 2632 return -EINVAL; 2633 } 2634 break; 2635 case UDP_V6_FLOW: 2636 if (!(nfc->data & RXH_IP_SRC) || 2637 !(nfc->data & RXH_IP_DST)) 2638 return -EINVAL; 2639 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 2640 case 0: 2641 flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP; 2642 break; 2643 case (RXH_L4_B_0_1 | RXH_L4_B_2_3): 2644 flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP; 2645 break; 2646 default: 2647 return -EINVAL; 2648 } 2649 break; 2650 case AH_ESP_V4_FLOW: 2651 case AH_V4_FLOW: 2652 case ESP_V4_FLOW: 2653 case SCTP_V4_FLOW: 2654 case AH_ESP_V6_FLOW: 2655 case AH_V6_FLOW: 2656 case ESP_V6_FLOW: 2657 case SCTP_V6_FLOW: 2658 if (!(nfc->data & RXH_IP_SRC) || 2659 !(nfc->data & RXH_IP_DST) || 2660 (nfc->data & RXH_L4_B_0_1) || 2661 (nfc->data & RXH_L4_B_2_3)) 2662 return -EINVAL; 2663 break; 2664 default: 2665 return -EINVAL; 2666 } 2667 2668 /* if we changed something we need to update flags */ 2669 if (flags != adapter->flags) { 2670 struct e1000_hw *hw = &adapter->hw; 2671 u32 mrqc = rd32(E1000_MRQC); 2672 2673 if ((flags & UDP_RSS_FLAGS) && 2674 !(adapter->flags & UDP_RSS_FLAGS)) 2675 dev_err(&adapter->pdev->dev, 2676 "enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n"); 2677 2678 adapter->flags = flags; 2679 2680 /* Perform hash on these packet types */ 2681 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 | 2682 E1000_MRQC_RSS_FIELD_IPV4_TCP | 2683 E1000_MRQC_RSS_FIELD_IPV6 | 2684 E1000_MRQC_RSS_FIELD_IPV6_TCP; 2685 2686 mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP | 2687 E1000_MRQC_RSS_FIELD_IPV6_UDP); 2688 2689 if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP) 2690 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP; 2691 2692 if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP) 2693 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP; 2694 2695 wr32(E1000_MRQC, mrqc); 2696 } 2697 2698 return 0; 2699 } 2700 2701 static int igb_rxnfc_write_etype_filter(struct igb_adapter *adapter, 2702 struct igb_nfc_filter *input) 2703 { 2704 struct e1000_hw *hw = &adapter->hw; 2705 u8 i; 2706 u32 etqf; 2707 u16 etype; 2708 2709 /* find an empty etype filter register */ 2710 for (i = 0; i < MAX_ETYPE_FILTER; ++i) { 2711 if (!adapter->etype_bitmap[i]) 2712 break; 2713 } 2714 if (i == MAX_ETYPE_FILTER) { 2715 dev_err(&adapter->pdev->dev, "ethtool -N: etype filters are all used.\n"); 2716 return -EINVAL; 2717 } 2718 2719 adapter->etype_bitmap[i] = true; 2720 2721 etqf = rd32(E1000_ETQF(i)); 2722 etype = ntohs(input->filter.etype & ETHER_TYPE_FULL_MASK); 2723 2724 etqf |= E1000_ETQF_FILTER_ENABLE; 2725 etqf &= ~E1000_ETQF_ETYPE_MASK; 2726 etqf |= (etype & E1000_ETQF_ETYPE_MASK); 2727 2728 etqf &= ~E1000_ETQF_QUEUE_MASK; 2729 etqf |= ((input->action << E1000_ETQF_QUEUE_SHIFT) 2730 & E1000_ETQF_QUEUE_MASK); 2731 etqf |= E1000_ETQF_QUEUE_ENABLE; 2732 2733 wr32(E1000_ETQF(i), etqf); 2734 2735 input->etype_reg_index = i; 2736 2737 return 0; 2738 } 2739 2740 static int igb_rxnfc_write_vlan_prio_filter(struct igb_adapter *adapter, 2741 struct igb_nfc_filter *input) 2742 { 2743 struct e1000_hw *hw = &adapter->hw; 2744 u8 vlan_priority; 2745 u16 queue_index; 2746 u32 vlapqf; 2747 2748 vlapqf = rd32(E1000_VLAPQF); 2749 vlan_priority = (ntohs(input->filter.vlan_tci) & VLAN_PRIO_MASK) 2750 >> VLAN_PRIO_SHIFT; 2751 queue_index = (vlapqf >> (vlan_priority * 4)) & E1000_VLAPQF_QUEUE_MASK; 2752 2753 /* check whether this vlan prio is already set */ 2754 if ((vlapqf & E1000_VLAPQF_P_VALID(vlan_priority)) && 2755 (queue_index != input->action)) { 2756 dev_err(&adapter->pdev->dev, "ethtool rxnfc set vlan prio filter failed.\n"); 2757 return -EEXIST; 2758 } 2759 2760 vlapqf |= E1000_VLAPQF_P_VALID(vlan_priority); 2761 vlapqf |= E1000_VLAPQF_QUEUE_SEL(vlan_priority, input->action); 2762 2763 wr32(E1000_VLAPQF, vlapqf); 2764 2765 return 0; 2766 } 2767 2768 int igb_add_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input) 2769 { 2770 struct e1000_hw *hw = &adapter->hw; 2771 int err = -EINVAL; 2772 2773 if (hw->mac.type == e1000_i210 && 2774 !(input->filter.match_flags & ~IGB_FILTER_FLAG_SRC_MAC_ADDR)) { 2775 dev_err(&adapter->pdev->dev, 2776 "i210 doesn't support flow classification rules specifying only source addresses.\n"); 2777 return -EOPNOTSUPP; 2778 } 2779 2780 if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) { 2781 err = igb_rxnfc_write_etype_filter(adapter, input); 2782 if (err) 2783 return err; 2784 } 2785 2786 if (input->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) { 2787 err = igb_add_mac_steering_filter(adapter, 2788 input->filter.dst_addr, 2789 input->action, 0); 2790 err = min_t(int, err, 0); 2791 if (err) 2792 return err; 2793 } 2794 2795 if (input->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) { 2796 err = igb_add_mac_steering_filter(adapter, 2797 input->filter.src_addr, 2798 input->action, 2799 IGB_MAC_STATE_SRC_ADDR); 2800 err = min_t(int, err, 0); 2801 if (err) 2802 return err; 2803 } 2804 2805 if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI) 2806 err = igb_rxnfc_write_vlan_prio_filter(adapter, input); 2807 2808 return err; 2809 } 2810 2811 static void igb_clear_etype_filter_regs(struct igb_adapter *adapter, 2812 u16 reg_index) 2813 { 2814 struct e1000_hw *hw = &adapter->hw; 2815 u32 etqf = rd32(E1000_ETQF(reg_index)); 2816 2817 etqf &= ~E1000_ETQF_QUEUE_ENABLE; 2818 etqf &= ~E1000_ETQF_QUEUE_MASK; 2819 etqf &= ~E1000_ETQF_FILTER_ENABLE; 2820 2821 wr32(E1000_ETQF(reg_index), etqf); 2822 2823 adapter->etype_bitmap[reg_index] = false; 2824 } 2825 2826 static void igb_clear_vlan_prio_filter(struct igb_adapter *adapter, 2827 u16 vlan_tci) 2828 { 2829 struct e1000_hw *hw = &adapter->hw; 2830 u8 vlan_priority; 2831 u32 vlapqf; 2832 2833 vlan_priority = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 2834 2835 vlapqf = rd32(E1000_VLAPQF); 2836 vlapqf &= ~E1000_VLAPQF_P_VALID(vlan_priority); 2837 vlapqf &= ~E1000_VLAPQF_QUEUE_SEL(vlan_priority, 2838 E1000_VLAPQF_QUEUE_MASK); 2839 2840 wr32(E1000_VLAPQF, vlapqf); 2841 } 2842 2843 int igb_erase_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input) 2844 { 2845 if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) 2846 igb_clear_etype_filter_regs(adapter, 2847 input->etype_reg_index); 2848 2849 if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI) 2850 igb_clear_vlan_prio_filter(adapter, 2851 ntohs(input->filter.vlan_tci)); 2852 2853 if (input->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) 2854 igb_del_mac_steering_filter(adapter, input->filter.src_addr, 2855 input->action, 2856 IGB_MAC_STATE_SRC_ADDR); 2857 2858 if (input->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) 2859 igb_del_mac_steering_filter(adapter, input->filter.dst_addr, 2860 input->action, 0); 2861 2862 return 0; 2863 } 2864 2865 static int igb_update_ethtool_nfc_entry(struct igb_adapter *adapter, 2866 struct igb_nfc_filter *input, 2867 u16 sw_idx) 2868 { 2869 struct igb_nfc_filter *rule, *parent; 2870 int err = -EINVAL; 2871 2872 parent = NULL; 2873 rule = NULL; 2874 2875 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) { 2876 /* hash found, or no matching entry */ 2877 if (rule->sw_idx >= sw_idx) 2878 break; 2879 parent = rule; 2880 } 2881 2882 /* if there is an old rule occupying our place remove it */ 2883 if (rule && (rule->sw_idx == sw_idx)) { 2884 if (!input) 2885 err = igb_erase_filter(adapter, rule); 2886 2887 hlist_del(&rule->nfc_node); 2888 kfree(rule); 2889 adapter->nfc_filter_count--; 2890 } 2891 2892 /* If no input this was a delete, err should be 0 if a rule was 2893 * successfully found and removed from the list else -EINVAL 2894 */ 2895 if (!input) 2896 return err; 2897 2898 /* initialize node */ 2899 INIT_HLIST_NODE(&input->nfc_node); 2900 2901 /* add filter to the list */ 2902 if (parent) 2903 hlist_add_behind(&input->nfc_node, &parent->nfc_node); 2904 else 2905 hlist_add_head(&input->nfc_node, &adapter->nfc_filter_list); 2906 2907 /* update counts */ 2908 adapter->nfc_filter_count++; 2909 2910 return 0; 2911 } 2912 2913 static int igb_add_ethtool_nfc_entry(struct igb_adapter *adapter, 2914 struct ethtool_rxnfc *cmd) 2915 { 2916 struct net_device *netdev = adapter->netdev; 2917 struct ethtool_rx_flow_spec *fsp = 2918 (struct ethtool_rx_flow_spec *)&cmd->fs; 2919 struct igb_nfc_filter *input, *rule; 2920 int err = 0; 2921 2922 if (!(netdev->hw_features & NETIF_F_NTUPLE)) 2923 return -EOPNOTSUPP; 2924 2925 /* Don't allow programming if the action is a queue greater than 2926 * the number of online Rx queues. 2927 */ 2928 if ((fsp->ring_cookie == RX_CLS_FLOW_DISC) || 2929 (fsp->ring_cookie >= adapter->num_rx_queues)) { 2930 dev_err(&adapter->pdev->dev, "ethtool -N: The specified action is invalid\n"); 2931 return -EINVAL; 2932 } 2933 2934 /* Don't allow indexes to exist outside of available space */ 2935 if (fsp->location >= IGB_MAX_RXNFC_FILTERS) { 2936 dev_err(&adapter->pdev->dev, "Location out of range\n"); 2937 return -EINVAL; 2938 } 2939 2940 if ((fsp->flow_type & ~FLOW_EXT) != ETHER_FLOW) 2941 return -EINVAL; 2942 2943 input = kzalloc(sizeof(*input), GFP_KERNEL); 2944 if (!input) 2945 return -ENOMEM; 2946 2947 if (fsp->m_u.ether_spec.h_proto == ETHER_TYPE_FULL_MASK) { 2948 input->filter.etype = fsp->h_u.ether_spec.h_proto; 2949 input->filter.match_flags = IGB_FILTER_FLAG_ETHER_TYPE; 2950 } 2951 2952 /* Only support matching addresses by the full mask */ 2953 if (is_broadcast_ether_addr(fsp->m_u.ether_spec.h_source)) { 2954 input->filter.match_flags |= IGB_FILTER_FLAG_SRC_MAC_ADDR; 2955 ether_addr_copy(input->filter.src_addr, 2956 fsp->h_u.ether_spec.h_source); 2957 } 2958 2959 /* Only support matching addresses by the full mask */ 2960 if (is_broadcast_ether_addr(fsp->m_u.ether_spec.h_dest)) { 2961 input->filter.match_flags |= IGB_FILTER_FLAG_DST_MAC_ADDR; 2962 ether_addr_copy(input->filter.dst_addr, 2963 fsp->h_u.ether_spec.h_dest); 2964 } 2965 2966 if ((fsp->flow_type & FLOW_EXT) && fsp->m_ext.vlan_tci) { 2967 if (fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK)) { 2968 err = -EINVAL; 2969 goto err_out; 2970 } 2971 input->filter.vlan_tci = fsp->h_ext.vlan_tci; 2972 input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI; 2973 } 2974 2975 input->action = fsp->ring_cookie; 2976 input->sw_idx = fsp->location; 2977 2978 spin_lock(&adapter->nfc_lock); 2979 2980 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) { 2981 if (!memcmp(&input->filter, &rule->filter, 2982 sizeof(input->filter))) { 2983 err = -EEXIST; 2984 dev_err(&adapter->pdev->dev, 2985 "ethtool: this filter is already set\n"); 2986 goto err_out_w_lock; 2987 } 2988 } 2989 2990 err = igb_add_filter(adapter, input); 2991 if (err) 2992 goto err_out_w_lock; 2993 2994 igb_update_ethtool_nfc_entry(adapter, input, input->sw_idx); 2995 2996 spin_unlock(&adapter->nfc_lock); 2997 return 0; 2998 2999 err_out_w_lock: 3000 spin_unlock(&adapter->nfc_lock); 3001 err_out: 3002 kfree(input); 3003 return err; 3004 } 3005 3006 static int igb_del_ethtool_nfc_entry(struct igb_adapter *adapter, 3007 struct ethtool_rxnfc *cmd) 3008 { 3009 struct ethtool_rx_flow_spec *fsp = 3010 (struct ethtool_rx_flow_spec *)&cmd->fs; 3011 int err; 3012 3013 spin_lock(&adapter->nfc_lock); 3014 err = igb_update_ethtool_nfc_entry(adapter, NULL, fsp->location); 3015 spin_unlock(&adapter->nfc_lock); 3016 3017 return err; 3018 } 3019 3020 static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd) 3021 { 3022 struct igb_adapter *adapter = netdev_priv(dev); 3023 int ret = -EOPNOTSUPP; 3024 3025 switch (cmd->cmd) { 3026 case ETHTOOL_SRXFH: 3027 ret = igb_set_rss_hash_opt(adapter, cmd); 3028 break; 3029 case ETHTOOL_SRXCLSRLINS: 3030 ret = igb_add_ethtool_nfc_entry(adapter, cmd); 3031 break; 3032 case ETHTOOL_SRXCLSRLDEL: 3033 ret = igb_del_ethtool_nfc_entry(adapter, cmd); 3034 default: 3035 break; 3036 } 3037 3038 return ret; 3039 } 3040 3041 static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata) 3042 { 3043 struct igb_adapter *adapter = netdev_priv(netdev); 3044 struct e1000_hw *hw = &adapter->hw; 3045 u32 ret_val; 3046 u16 phy_data; 3047 3048 if ((hw->mac.type < e1000_i350) || 3049 (hw->phy.media_type != e1000_media_type_copper)) 3050 return -EOPNOTSUPP; 3051 3052 edata->supported = (SUPPORTED_1000baseT_Full | 3053 SUPPORTED_100baseT_Full); 3054 if (!hw->dev_spec._82575.eee_disable) 3055 edata->advertised = 3056 mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert); 3057 3058 /* The IPCNFG and EEER registers are not supported on I354. */ 3059 if (hw->mac.type == e1000_i354) { 3060 igb_get_eee_status_i354(hw, (bool *)&edata->eee_active); 3061 } else { 3062 u32 eeer; 3063 3064 eeer = rd32(E1000_EEER); 3065 3066 /* EEE status on negotiated link */ 3067 if (eeer & E1000_EEER_EEE_NEG) 3068 edata->eee_active = true; 3069 3070 if (eeer & E1000_EEER_TX_LPI_EN) 3071 edata->tx_lpi_enabled = true; 3072 } 3073 3074 /* EEE Link Partner Advertised */ 3075 switch (hw->mac.type) { 3076 case e1000_i350: 3077 ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350, 3078 &phy_data); 3079 if (ret_val) 3080 return -ENODATA; 3081 3082 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data); 3083 break; 3084 case e1000_i354: 3085 case e1000_i210: 3086 case e1000_i211: 3087 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210, 3088 E1000_EEE_LP_ADV_DEV_I210, 3089 &phy_data); 3090 if (ret_val) 3091 return -ENODATA; 3092 3093 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data); 3094 3095 break; 3096 default: 3097 break; 3098 } 3099 3100 edata->eee_enabled = !hw->dev_spec._82575.eee_disable; 3101 3102 if ((hw->mac.type == e1000_i354) && 3103 (edata->eee_enabled)) 3104 edata->tx_lpi_enabled = true; 3105 3106 /* Report correct negotiated EEE status for devices that 3107 * wrongly report EEE at half-duplex 3108 */ 3109 if (adapter->link_duplex == HALF_DUPLEX) { 3110 edata->eee_enabled = false; 3111 edata->eee_active = false; 3112 edata->tx_lpi_enabled = false; 3113 edata->advertised &= ~edata->advertised; 3114 } 3115 3116 return 0; 3117 } 3118 3119 static int igb_set_eee(struct net_device *netdev, 3120 struct ethtool_eee *edata) 3121 { 3122 struct igb_adapter *adapter = netdev_priv(netdev); 3123 struct e1000_hw *hw = &adapter->hw; 3124 struct ethtool_eee eee_curr; 3125 bool adv1g_eee = true, adv100m_eee = true; 3126 s32 ret_val; 3127 3128 if ((hw->mac.type < e1000_i350) || 3129 (hw->phy.media_type != e1000_media_type_copper)) 3130 return -EOPNOTSUPP; 3131 3132 memset(&eee_curr, 0, sizeof(struct ethtool_eee)); 3133 3134 ret_val = igb_get_eee(netdev, &eee_curr); 3135 if (ret_val) 3136 return ret_val; 3137 3138 if (eee_curr.eee_enabled) { 3139 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) { 3140 dev_err(&adapter->pdev->dev, 3141 "Setting EEE tx-lpi is not supported\n"); 3142 return -EINVAL; 3143 } 3144 3145 /* Tx LPI timer is not implemented currently */ 3146 if (edata->tx_lpi_timer) { 3147 dev_err(&adapter->pdev->dev, 3148 "Setting EEE Tx LPI timer is not supported\n"); 3149 return -EINVAL; 3150 } 3151 3152 if (!edata->advertised || (edata->advertised & 3153 ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL))) { 3154 dev_err(&adapter->pdev->dev, 3155 "EEE Advertisement supports only 100Tx and/or 100T full duplex\n"); 3156 return -EINVAL; 3157 } 3158 adv100m_eee = !!(edata->advertised & ADVERTISE_100_FULL); 3159 adv1g_eee = !!(edata->advertised & ADVERTISE_1000_FULL); 3160 3161 } else if (!edata->eee_enabled) { 3162 dev_err(&adapter->pdev->dev, 3163 "Setting EEE options are not supported with EEE disabled\n"); 3164 return -EINVAL; 3165 } 3166 3167 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised); 3168 if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) { 3169 hw->dev_spec._82575.eee_disable = !edata->eee_enabled; 3170 adapter->flags |= IGB_FLAG_EEE; 3171 3172 /* reset link */ 3173 if (netif_running(netdev)) 3174 igb_reinit_locked(adapter); 3175 else 3176 igb_reset(adapter); 3177 } 3178 3179 if (hw->mac.type == e1000_i354) 3180 ret_val = igb_set_eee_i354(hw, adv1g_eee, adv100m_eee); 3181 else 3182 ret_val = igb_set_eee_i350(hw, adv1g_eee, adv100m_eee); 3183 3184 if (ret_val) { 3185 dev_err(&adapter->pdev->dev, 3186 "Problem setting EEE advertisement options\n"); 3187 return -EINVAL; 3188 } 3189 3190 return 0; 3191 } 3192 3193 static int igb_get_module_info(struct net_device *netdev, 3194 struct ethtool_modinfo *modinfo) 3195 { 3196 struct igb_adapter *adapter = netdev_priv(netdev); 3197 struct e1000_hw *hw = &adapter->hw; 3198 u32 status = 0; 3199 u16 sff8472_rev, addr_mode; 3200 bool page_swap = false; 3201 3202 if ((hw->phy.media_type == e1000_media_type_copper) || 3203 (hw->phy.media_type == e1000_media_type_unknown)) 3204 return -EOPNOTSUPP; 3205 3206 /* Check whether we support SFF-8472 or not */ 3207 status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev); 3208 if (status) 3209 return -EIO; 3210 3211 /* addressing mode is not supported */ 3212 status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode); 3213 if (status) 3214 return -EIO; 3215 3216 /* addressing mode is not supported */ 3217 if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) { 3218 hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n"); 3219 page_swap = true; 3220 } 3221 3222 if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) { 3223 /* We have an SFP, but it does not support SFF-8472 */ 3224 modinfo->type = ETH_MODULE_SFF_8079; 3225 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; 3226 } else { 3227 /* We have an SFP which supports a revision of SFF-8472 */ 3228 modinfo->type = ETH_MODULE_SFF_8472; 3229 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; 3230 } 3231 3232 return 0; 3233 } 3234 3235 static int igb_get_module_eeprom(struct net_device *netdev, 3236 struct ethtool_eeprom *ee, u8 *data) 3237 { 3238 struct igb_adapter *adapter = netdev_priv(netdev); 3239 struct e1000_hw *hw = &adapter->hw; 3240 u32 status = 0; 3241 u16 *dataword; 3242 u16 first_word, last_word; 3243 int i = 0; 3244 3245 if (ee->len == 0) 3246 return -EINVAL; 3247 3248 first_word = ee->offset >> 1; 3249 last_word = (ee->offset + ee->len - 1) >> 1; 3250 3251 dataword = kmalloc_array(last_word - first_word + 1, sizeof(u16), 3252 GFP_KERNEL); 3253 if (!dataword) 3254 return -ENOMEM; 3255 3256 /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */ 3257 for (i = 0; i < last_word - first_word + 1; i++) { 3258 status = igb_read_phy_reg_i2c(hw, (first_word + i) * 2, 3259 &dataword[i]); 3260 if (status) { 3261 /* Error occurred while reading module */ 3262 kfree(dataword); 3263 return -EIO; 3264 } 3265 3266 be16_to_cpus(&dataword[i]); 3267 } 3268 3269 memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len); 3270 kfree(dataword); 3271 3272 return 0; 3273 } 3274 3275 static int igb_ethtool_begin(struct net_device *netdev) 3276 { 3277 struct igb_adapter *adapter = netdev_priv(netdev); 3278 pm_runtime_get_sync(&adapter->pdev->dev); 3279 return 0; 3280 } 3281 3282 static void igb_ethtool_complete(struct net_device *netdev) 3283 { 3284 struct igb_adapter *adapter = netdev_priv(netdev); 3285 pm_runtime_put(&adapter->pdev->dev); 3286 } 3287 3288 static u32 igb_get_rxfh_indir_size(struct net_device *netdev) 3289 { 3290 return IGB_RETA_SIZE; 3291 } 3292 3293 static int igb_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key, 3294 u8 *hfunc) 3295 { 3296 struct igb_adapter *adapter = netdev_priv(netdev); 3297 int i; 3298 3299 if (hfunc) 3300 *hfunc = ETH_RSS_HASH_TOP; 3301 if (!indir) 3302 return 0; 3303 for (i = 0; i < IGB_RETA_SIZE; i++) 3304 indir[i] = adapter->rss_indir_tbl[i]; 3305 3306 return 0; 3307 } 3308 3309 void igb_write_rss_indir_tbl(struct igb_adapter *adapter) 3310 { 3311 struct e1000_hw *hw = &adapter->hw; 3312 u32 reg = E1000_RETA(0); 3313 u32 shift = 0; 3314 int i = 0; 3315 3316 switch (hw->mac.type) { 3317 case e1000_82575: 3318 shift = 6; 3319 break; 3320 case e1000_82576: 3321 /* 82576 supports 2 RSS queues for SR-IOV */ 3322 if (adapter->vfs_allocated_count) 3323 shift = 3; 3324 break; 3325 default: 3326 break; 3327 } 3328 3329 while (i < IGB_RETA_SIZE) { 3330 u32 val = 0; 3331 int j; 3332 3333 for (j = 3; j >= 0; j--) { 3334 val <<= 8; 3335 val |= adapter->rss_indir_tbl[i + j]; 3336 } 3337 3338 wr32(reg, val << shift); 3339 reg += 4; 3340 i += 4; 3341 } 3342 } 3343 3344 static int igb_set_rxfh(struct net_device *netdev, const u32 *indir, 3345 const u8 *key, const u8 hfunc) 3346 { 3347 struct igb_adapter *adapter = netdev_priv(netdev); 3348 struct e1000_hw *hw = &adapter->hw; 3349 int i; 3350 u32 num_queues; 3351 3352 /* We do not allow change in unsupported parameters */ 3353 if (key || 3354 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)) 3355 return -EOPNOTSUPP; 3356 if (!indir) 3357 return 0; 3358 3359 num_queues = adapter->rss_queues; 3360 3361 switch (hw->mac.type) { 3362 case e1000_82576: 3363 /* 82576 supports 2 RSS queues for SR-IOV */ 3364 if (adapter->vfs_allocated_count) 3365 num_queues = 2; 3366 break; 3367 default: 3368 break; 3369 } 3370 3371 /* Verify user input. */ 3372 for (i = 0; i < IGB_RETA_SIZE; i++) 3373 if (indir[i] >= num_queues) 3374 return -EINVAL; 3375 3376 3377 for (i = 0; i < IGB_RETA_SIZE; i++) 3378 adapter->rss_indir_tbl[i] = indir[i]; 3379 3380 igb_write_rss_indir_tbl(adapter); 3381 3382 return 0; 3383 } 3384 3385 static unsigned int igb_max_channels(struct igb_adapter *adapter) 3386 { 3387 return igb_get_max_rss_queues(adapter); 3388 } 3389 3390 static void igb_get_channels(struct net_device *netdev, 3391 struct ethtool_channels *ch) 3392 { 3393 struct igb_adapter *adapter = netdev_priv(netdev); 3394 3395 /* Report maximum channels */ 3396 ch->max_combined = igb_max_channels(adapter); 3397 3398 /* Report info for other vector */ 3399 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 3400 ch->max_other = NON_Q_VECTORS; 3401 ch->other_count = NON_Q_VECTORS; 3402 } 3403 3404 ch->combined_count = adapter->rss_queues; 3405 } 3406 3407 static int igb_set_channels(struct net_device *netdev, 3408 struct ethtool_channels *ch) 3409 { 3410 struct igb_adapter *adapter = netdev_priv(netdev); 3411 unsigned int count = ch->combined_count; 3412 unsigned int max_combined = 0; 3413 3414 /* Verify they are not requesting separate vectors */ 3415 if (!count || ch->rx_count || ch->tx_count) 3416 return -EINVAL; 3417 3418 /* Verify other_count is valid and has not been changed */ 3419 if (ch->other_count != NON_Q_VECTORS) 3420 return -EINVAL; 3421 3422 /* Verify the number of channels doesn't exceed hw limits */ 3423 max_combined = igb_max_channels(adapter); 3424 if (count > max_combined) 3425 return -EINVAL; 3426 3427 if (count != adapter->rss_queues) { 3428 adapter->rss_queues = count; 3429 igb_set_flag_queue_pairs(adapter, max_combined); 3430 3431 /* Hardware has to reinitialize queues and interrupts to 3432 * match the new configuration. 3433 */ 3434 return igb_reinit_queues(adapter); 3435 } 3436 3437 return 0; 3438 } 3439 3440 static u32 igb_get_priv_flags(struct net_device *netdev) 3441 { 3442 struct igb_adapter *adapter = netdev_priv(netdev); 3443 u32 priv_flags = 0; 3444 3445 if (adapter->flags & IGB_FLAG_RX_LEGACY) 3446 priv_flags |= IGB_PRIV_FLAGS_LEGACY_RX; 3447 3448 return priv_flags; 3449 } 3450 3451 static int igb_set_priv_flags(struct net_device *netdev, u32 priv_flags) 3452 { 3453 struct igb_adapter *adapter = netdev_priv(netdev); 3454 unsigned int flags = adapter->flags; 3455 3456 flags &= ~IGB_FLAG_RX_LEGACY; 3457 if (priv_flags & IGB_PRIV_FLAGS_LEGACY_RX) 3458 flags |= IGB_FLAG_RX_LEGACY; 3459 3460 if (flags != adapter->flags) { 3461 adapter->flags = flags; 3462 3463 /* reset interface to repopulate queues */ 3464 if (netif_running(netdev)) 3465 igb_reinit_locked(adapter); 3466 } 3467 3468 return 0; 3469 } 3470 3471 static const struct ethtool_ops igb_ethtool_ops = { 3472 .get_drvinfo = igb_get_drvinfo, 3473 .get_regs_len = igb_get_regs_len, 3474 .get_regs = igb_get_regs, 3475 .get_wol = igb_get_wol, 3476 .set_wol = igb_set_wol, 3477 .get_msglevel = igb_get_msglevel, 3478 .set_msglevel = igb_set_msglevel, 3479 .nway_reset = igb_nway_reset, 3480 .get_link = igb_get_link, 3481 .get_eeprom_len = igb_get_eeprom_len, 3482 .get_eeprom = igb_get_eeprom, 3483 .set_eeprom = igb_set_eeprom, 3484 .get_ringparam = igb_get_ringparam, 3485 .set_ringparam = igb_set_ringparam, 3486 .get_pauseparam = igb_get_pauseparam, 3487 .set_pauseparam = igb_set_pauseparam, 3488 .self_test = igb_diag_test, 3489 .get_strings = igb_get_strings, 3490 .set_phys_id = igb_set_phys_id, 3491 .get_sset_count = igb_get_sset_count, 3492 .get_ethtool_stats = igb_get_ethtool_stats, 3493 .get_coalesce = igb_get_coalesce, 3494 .set_coalesce = igb_set_coalesce, 3495 .get_ts_info = igb_get_ts_info, 3496 .get_rxnfc = igb_get_rxnfc, 3497 .set_rxnfc = igb_set_rxnfc, 3498 .get_eee = igb_get_eee, 3499 .set_eee = igb_set_eee, 3500 .get_module_info = igb_get_module_info, 3501 .get_module_eeprom = igb_get_module_eeprom, 3502 .get_rxfh_indir_size = igb_get_rxfh_indir_size, 3503 .get_rxfh = igb_get_rxfh, 3504 .set_rxfh = igb_set_rxfh, 3505 .get_channels = igb_get_channels, 3506 .set_channels = igb_set_channels, 3507 .get_priv_flags = igb_get_priv_flags, 3508 .set_priv_flags = igb_set_priv_flags, 3509 .begin = igb_ethtool_begin, 3510 .complete = igb_ethtool_complete, 3511 .get_link_ksettings = igb_get_link_ksettings, 3512 .set_link_ksettings = igb_set_link_ksettings, 3513 }; 3514 3515 void igb_set_ethtool_ops(struct net_device *netdev) 3516 { 3517 netdev->ethtool_ops = &igb_ethtool_ops; 3518 } 3519