1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3 
4 /* ethtool support for igb */
5 
6 #include <linux/vmalloc.h>
7 #include <linux/netdevice.h>
8 #include <linux/pci.h>
9 #include <linux/delay.h>
10 #include <linux/interrupt.h>
11 #include <linux/if_ether.h>
12 #include <linux/ethtool.h>
13 #include <linux/sched.h>
14 #include <linux/slab.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/highmem.h>
17 #include <linux/mdio.h>
18 
19 #include "igb.h"
20 
21 struct igb_stats {
22 	char stat_string[ETH_GSTRING_LEN];
23 	int sizeof_stat;
24 	int stat_offset;
25 };
26 
27 #define IGB_STAT(_name, _stat) { \
28 	.stat_string = _name, \
29 	.sizeof_stat = sizeof_field(struct igb_adapter, _stat), \
30 	.stat_offset = offsetof(struct igb_adapter, _stat) \
31 }
32 static const struct igb_stats igb_gstrings_stats[] = {
33 	IGB_STAT("rx_packets", stats.gprc),
34 	IGB_STAT("tx_packets", stats.gptc),
35 	IGB_STAT("rx_bytes", stats.gorc),
36 	IGB_STAT("tx_bytes", stats.gotc),
37 	IGB_STAT("rx_broadcast", stats.bprc),
38 	IGB_STAT("tx_broadcast", stats.bptc),
39 	IGB_STAT("rx_multicast", stats.mprc),
40 	IGB_STAT("tx_multicast", stats.mptc),
41 	IGB_STAT("multicast", stats.mprc),
42 	IGB_STAT("collisions", stats.colc),
43 	IGB_STAT("rx_crc_errors", stats.crcerrs),
44 	IGB_STAT("rx_no_buffer_count", stats.rnbc),
45 	IGB_STAT("rx_missed_errors", stats.mpc),
46 	IGB_STAT("tx_aborted_errors", stats.ecol),
47 	IGB_STAT("tx_carrier_errors", stats.tncrs),
48 	IGB_STAT("tx_window_errors", stats.latecol),
49 	IGB_STAT("tx_abort_late_coll", stats.latecol),
50 	IGB_STAT("tx_deferred_ok", stats.dc),
51 	IGB_STAT("tx_single_coll_ok", stats.scc),
52 	IGB_STAT("tx_multi_coll_ok", stats.mcc),
53 	IGB_STAT("tx_timeout_count", tx_timeout_count),
54 	IGB_STAT("rx_long_length_errors", stats.roc),
55 	IGB_STAT("rx_short_length_errors", stats.ruc),
56 	IGB_STAT("rx_align_errors", stats.algnerrc),
57 	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
58 	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
59 	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
60 	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
61 	IGB_STAT("tx_flow_control_xon", stats.xontxc),
62 	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
63 	IGB_STAT("rx_long_byte_count", stats.gorc),
64 	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
65 	IGB_STAT("tx_smbus", stats.mgptc),
66 	IGB_STAT("rx_smbus", stats.mgprc),
67 	IGB_STAT("dropped_smbus", stats.mgpdc),
68 	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
69 	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
70 	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
71 	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
72 	IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
73 	IGB_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
74 	IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
75 };
76 
77 #define IGB_NETDEV_STAT(_net_stat) { \
78 	.stat_string = __stringify(_net_stat), \
79 	.sizeof_stat = sizeof_field(struct rtnl_link_stats64, _net_stat), \
80 	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
81 }
82 static const struct igb_stats igb_gstrings_net_stats[] = {
83 	IGB_NETDEV_STAT(rx_errors),
84 	IGB_NETDEV_STAT(tx_errors),
85 	IGB_NETDEV_STAT(tx_dropped),
86 	IGB_NETDEV_STAT(rx_length_errors),
87 	IGB_NETDEV_STAT(rx_over_errors),
88 	IGB_NETDEV_STAT(rx_frame_errors),
89 	IGB_NETDEV_STAT(rx_fifo_errors),
90 	IGB_NETDEV_STAT(tx_fifo_errors),
91 	IGB_NETDEV_STAT(tx_heartbeat_errors)
92 };
93 
94 #define IGB_GLOBAL_STATS_LEN	\
95 	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
96 #define IGB_NETDEV_STATS_LEN	\
97 	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
98 #define IGB_RX_QUEUE_STATS_LEN \
99 	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
100 
101 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
102 
103 #define IGB_QUEUE_STATS_LEN \
104 	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
105 	  IGB_RX_QUEUE_STATS_LEN) + \
106 	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
107 	  IGB_TX_QUEUE_STATS_LEN))
108 #define IGB_STATS_LEN \
109 	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
110 
111 enum igb_diagnostics_results {
112 	TEST_REG = 0,
113 	TEST_EEP,
114 	TEST_IRQ,
115 	TEST_LOOP,
116 	TEST_LINK
117 };
118 
119 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
120 	[TEST_REG]  = "Register test  (offline)",
121 	[TEST_EEP]  = "Eeprom test    (offline)",
122 	[TEST_IRQ]  = "Interrupt test (offline)",
123 	[TEST_LOOP] = "Loopback test  (offline)",
124 	[TEST_LINK] = "Link test   (on/offline)"
125 };
126 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
127 
128 static const char igb_priv_flags_strings[][ETH_GSTRING_LEN] = {
129 #define IGB_PRIV_FLAGS_LEGACY_RX	BIT(0)
130 	"legacy-rx",
131 };
132 
133 #define IGB_PRIV_FLAGS_STR_LEN ARRAY_SIZE(igb_priv_flags_strings)
134 
135 static int igb_get_link_ksettings(struct net_device *netdev,
136 				  struct ethtool_link_ksettings *cmd)
137 {
138 	struct igb_adapter *adapter = netdev_priv(netdev);
139 	struct e1000_hw *hw = &adapter->hw;
140 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
141 	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
142 	u32 status;
143 	u32 speed;
144 	u32 supported, advertising;
145 
146 	status = rd32(E1000_STATUS);
147 	if (hw->phy.media_type == e1000_media_type_copper) {
148 
149 		supported = (SUPPORTED_10baseT_Half |
150 			     SUPPORTED_10baseT_Full |
151 			     SUPPORTED_100baseT_Half |
152 			     SUPPORTED_100baseT_Full |
153 			     SUPPORTED_1000baseT_Full|
154 			     SUPPORTED_Autoneg |
155 			     SUPPORTED_TP |
156 			     SUPPORTED_Pause);
157 		advertising = ADVERTISED_TP;
158 
159 		if (hw->mac.autoneg == 1) {
160 			advertising |= ADVERTISED_Autoneg;
161 			/* the e1000 autoneg seems to match ethtool nicely */
162 			advertising |= hw->phy.autoneg_advertised;
163 		}
164 
165 		cmd->base.port = PORT_TP;
166 		cmd->base.phy_address = hw->phy.addr;
167 	} else {
168 		supported = (SUPPORTED_FIBRE |
169 			     SUPPORTED_1000baseKX_Full |
170 			     SUPPORTED_Autoneg |
171 			     SUPPORTED_Pause);
172 		advertising = (ADVERTISED_FIBRE |
173 			       ADVERTISED_1000baseKX_Full);
174 		if (hw->mac.type == e1000_i354) {
175 			if ((hw->device_id ==
176 			     E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
177 			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
178 				supported |= SUPPORTED_2500baseX_Full;
179 				supported &= ~SUPPORTED_1000baseKX_Full;
180 				advertising |= ADVERTISED_2500baseX_Full;
181 				advertising &= ~ADVERTISED_1000baseKX_Full;
182 			}
183 		}
184 		if (eth_flags->e100_base_fx) {
185 			supported |= SUPPORTED_100baseT_Full;
186 			advertising |= ADVERTISED_100baseT_Full;
187 		}
188 		if (hw->mac.autoneg == 1)
189 			advertising |= ADVERTISED_Autoneg;
190 
191 		cmd->base.port = PORT_FIBRE;
192 	}
193 	if (hw->mac.autoneg != 1)
194 		advertising &= ~(ADVERTISED_Pause |
195 				 ADVERTISED_Asym_Pause);
196 
197 	switch (hw->fc.requested_mode) {
198 	case e1000_fc_full:
199 		advertising |= ADVERTISED_Pause;
200 		break;
201 	case e1000_fc_rx_pause:
202 		advertising |= (ADVERTISED_Pause |
203 				ADVERTISED_Asym_Pause);
204 		break;
205 	case e1000_fc_tx_pause:
206 		advertising |=  ADVERTISED_Asym_Pause;
207 		break;
208 	default:
209 		advertising &= ~(ADVERTISED_Pause |
210 				 ADVERTISED_Asym_Pause);
211 	}
212 	if (status & E1000_STATUS_LU) {
213 		if ((status & E1000_STATUS_2P5_SKU) &&
214 		    !(status & E1000_STATUS_2P5_SKU_OVER)) {
215 			speed = SPEED_2500;
216 		} else if (status & E1000_STATUS_SPEED_1000) {
217 			speed = SPEED_1000;
218 		} else if (status & E1000_STATUS_SPEED_100) {
219 			speed = SPEED_100;
220 		} else {
221 			speed = SPEED_10;
222 		}
223 		if ((status & E1000_STATUS_FD) ||
224 		    hw->phy.media_type != e1000_media_type_copper)
225 			cmd->base.duplex = DUPLEX_FULL;
226 		else
227 			cmd->base.duplex = DUPLEX_HALF;
228 	} else {
229 		speed = SPEED_UNKNOWN;
230 		cmd->base.duplex = DUPLEX_UNKNOWN;
231 	}
232 	cmd->base.speed = speed;
233 	if ((hw->phy.media_type == e1000_media_type_fiber) ||
234 	    hw->mac.autoneg)
235 		cmd->base.autoneg = AUTONEG_ENABLE;
236 	else
237 		cmd->base.autoneg = AUTONEG_DISABLE;
238 
239 	/* MDI-X => 2; MDI =>1; Invalid =>0 */
240 	if (hw->phy.media_type == e1000_media_type_copper)
241 		cmd->base.eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
242 						      ETH_TP_MDI;
243 	else
244 		cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
245 
246 	if (hw->phy.mdix == AUTO_ALL_MODES)
247 		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
248 	else
249 		cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
250 
251 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
252 						supported);
253 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
254 						advertising);
255 
256 	return 0;
257 }
258 
259 static int igb_set_link_ksettings(struct net_device *netdev,
260 				  const struct ethtool_link_ksettings *cmd)
261 {
262 	struct igb_adapter *adapter = netdev_priv(netdev);
263 	struct e1000_hw *hw = &adapter->hw;
264 	u32 advertising;
265 
266 	/* When SoL/IDER sessions are active, autoneg/speed/duplex
267 	 * cannot be changed
268 	 */
269 	if (igb_check_reset_block(hw)) {
270 		dev_err(&adapter->pdev->dev,
271 			"Cannot change link characteristics when SoL/IDER is active.\n");
272 		return -EINVAL;
273 	}
274 
275 	/* MDI setting is only allowed when autoneg enabled because
276 	 * some hardware doesn't allow MDI setting when speed or
277 	 * duplex is forced.
278 	 */
279 	if (cmd->base.eth_tp_mdix_ctrl) {
280 		if (hw->phy.media_type != e1000_media_type_copper)
281 			return -EOPNOTSUPP;
282 
283 		if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
284 		    (cmd->base.autoneg != AUTONEG_ENABLE)) {
285 			dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
286 			return -EINVAL;
287 		}
288 	}
289 
290 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
291 		usleep_range(1000, 2000);
292 
293 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
294 						cmd->link_modes.advertising);
295 
296 	if (cmd->base.autoneg == AUTONEG_ENABLE) {
297 		hw->mac.autoneg = 1;
298 		if (hw->phy.media_type == e1000_media_type_fiber) {
299 			hw->phy.autoneg_advertised = advertising |
300 						     ADVERTISED_FIBRE |
301 						     ADVERTISED_Autoneg;
302 			switch (adapter->link_speed) {
303 			case SPEED_2500:
304 				hw->phy.autoneg_advertised =
305 					ADVERTISED_2500baseX_Full;
306 				break;
307 			case SPEED_1000:
308 				hw->phy.autoneg_advertised =
309 					ADVERTISED_1000baseT_Full;
310 				break;
311 			case SPEED_100:
312 				hw->phy.autoneg_advertised =
313 					ADVERTISED_100baseT_Full;
314 				break;
315 			default:
316 				break;
317 			}
318 		} else {
319 			hw->phy.autoneg_advertised = advertising |
320 						     ADVERTISED_TP |
321 						     ADVERTISED_Autoneg;
322 		}
323 		advertising = hw->phy.autoneg_advertised;
324 		if (adapter->fc_autoneg)
325 			hw->fc.requested_mode = e1000_fc_default;
326 	} else {
327 		u32 speed = cmd->base.speed;
328 		/* calling this overrides forced MDI setting */
329 		if (igb_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
330 			clear_bit(__IGB_RESETTING, &adapter->state);
331 			return -EINVAL;
332 		}
333 	}
334 
335 	/* MDI-X => 2; MDI => 1; Auto => 3 */
336 	if (cmd->base.eth_tp_mdix_ctrl) {
337 		/* fix up the value for auto (3 => 0) as zero is mapped
338 		 * internally to auto
339 		 */
340 		if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
341 			hw->phy.mdix = AUTO_ALL_MODES;
342 		else
343 			hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
344 	}
345 
346 	/* reset the link */
347 	if (netif_running(adapter->netdev)) {
348 		igb_down(adapter);
349 		igb_up(adapter);
350 	} else
351 		igb_reset(adapter);
352 
353 	clear_bit(__IGB_RESETTING, &adapter->state);
354 	return 0;
355 }
356 
357 static u32 igb_get_link(struct net_device *netdev)
358 {
359 	struct igb_adapter *adapter = netdev_priv(netdev);
360 	struct e1000_mac_info *mac = &adapter->hw.mac;
361 
362 	/* If the link is not reported up to netdev, interrupts are disabled,
363 	 * and so the physical link state may have changed since we last
364 	 * looked. Set get_link_status to make sure that the true link
365 	 * state is interrogated, rather than pulling a cached and possibly
366 	 * stale link state from the driver.
367 	 */
368 	if (!netif_carrier_ok(netdev))
369 		mac->get_link_status = 1;
370 
371 	return igb_has_link(adapter);
372 }
373 
374 static void igb_get_pauseparam(struct net_device *netdev,
375 			       struct ethtool_pauseparam *pause)
376 {
377 	struct igb_adapter *adapter = netdev_priv(netdev);
378 	struct e1000_hw *hw = &adapter->hw;
379 
380 	pause->autoneg =
381 		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
382 
383 	if (hw->fc.current_mode == e1000_fc_rx_pause)
384 		pause->rx_pause = 1;
385 	else if (hw->fc.current_mode == e1000_fc_tx_pause)
386 		pause->tx_pause = 1;
387 	else if (hw->fc.current_mode == e1000_fc_full) {
388 		pause->rx_pause = 1;
389 		pause->tx_pause = 1;
390 	}
391 }
392 
393 static int igb_set_pauseparam(struct net_device *netdev,
394 			      struct ethtool_pauseparam *pause)
395 {
396 	struct igb_adapter *adapter = netdev_priv(netdev);
397 	struct e1000_hw *hw = &adapter->hw;
398 	int retval = 0;
399 
400 	/* 100basefx does not support setting link flow control */
401 	if (hw->dev_spec._82575.eth_flags.e100_base_fx)
402 		return -EINVAL;
403 
404 	adapter->fc_autoneg = pause->autoneg;
405 
406 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
407 		usleep_range(1000, 2000);
408 
409 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
410 		hw->fc.requested_mode = e1000_fc_default;
411 		if (netif_running(adapter->netdev)) {
412 			igb_down(adapter);
413 			igb_up(adapter);
414 		} else {
415 			igb_reset(adapter);
416 		}
417 	} else {
418 		if (pause->rx_pause && pause->tx_pause)
419 			hw->fc.requested_mode = e1000_fc_full;
420 		else if (pause->rx_pause && !pause->tx_pause)
421 			hw->fc.requested_mode = e1000_fc_rx_pause;
422 		else if (!pause->rx_pause && pause->tx_pause)
423 			hw->fc.requested_mode = e1000_fc_tx_pause;
424 		else if (!pause->rx_pause && !pause->tx_pause)
425 			hw->fc.requested_mode = e1000_fc_none;
426 
427 		hw->fc.current_mode = hw->fc.requested_mode;
428 
429 		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
430 			  igb_force_mac_fc(hw) : igb_setup_link(hw));
431 	}
432 
433 	clear_bit(__IGB_RESETTING, &adapter->state);
434 	return retval;
435 }
436 
437 static u32 igb_get_msglevel(struct net_device *netdev)
438 {
439 	struct igb_adapter *adapter = netdev_priv(netdev);
440 	return adapter->msg_enable;
441 }
442 
443 static void igb_set_msglevel(struct net_device *netdev, u32 data)
444 {
445 	struct igb_adapter *adapter = netdev_priv(netdev);
446 	adapter->msg_enable = data;
447 }
448 
449 static int igb_get_regs_len(struct net_device *netdev)
450 {
451 #define IGB_REGS_LEN 740
452 	return IGB_REGS_LEN * sizeof(u32);
453 }
454 
455 static void igb_get_regs(struct net_device *netdev,
456 			 struct ethtool_regs *regs, void *p)
457 {
458 	struct igb_adapter *adapter = netdev_priv(netdev);
459 	struct e1000_hw *hw = &adapter->hw;
460 	u32 *regs_buff = p;
461 	u8 i;
462 
463 	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
464 
465 	regs->version = (1u << 24) | (hw->revision_id << 16) | hw->device_id;
466 
467 	/* General Registers */
468 	regs_buff[0] = rd32(E1000_CTRL);
469 	regs_buff[1] = rd32(E1000_STATUS);
470 	regs_buff[2] = rd32(E1000_CTRL_EXT);
471 	regs_buff[3] = rd32(E1000_MDIC);
472 	regs_buff[4] = rd32(E1000_SCTL);
473 	regs_buff[5] = rd32(E1000_CONNSW);
474 	regs_buff[6] = rd32(E1000_VET);
475 	regs_buff[7] = rd32(E1000_LEDCTL);
476 	regs_buff[8] = rd32(E1000_PBA);
477 	regs_buff[9] = rd32(E1000_PBS);
478 	regs_buff[10] = rd32(E1000_FRTIMER);
479 	regs_buff[11] = rd32(E1000_TCPTIMER);
480 
481 	/* NVM Register */
482 	regs_buff[12] = rd32(E1000_EECD);
483 
484 	/* Interrupt */
485 	/* Reading EICS for EICR because they read the
486 	 * same but EICS does not clear on read
487 	 */
488 	regs_buff[13] = rd32(E1000_EICS);
489 	regs_buff[14] = rd32(E1000_EICS);
490 	regs_buff[15] = rd32(E1000_EIMS);
491 	regs_buff[16] = rd32(E1000_EIMC);
492 	regs_buff[17] = rd32(E1000_EIAC);
493 	regs_buff[18] = rd32(E1000_EIAM);
494 	/* Reading ICS for ICR because they read the
495 	 * same but ICS does not clear on read
496 	 */
497 	regs_buff[19] = rd32(E1000_ICS);
498 	regs_buff[20] = rd32(E1000_ICS);
499 	regs_buff[21] = rd32(E1000_IMS);
500 	regs_buff[22] = rd32(E1000_IMC);
501 	regs_buff[23] = rd32(E1000_IAC);
502 	regs_buff[24] = rd32(E1000_IAM);
503 	regs_buff[25] = rd32(E1000_IMIRVP);
504 
505 	/* Flow Control */
506 	regs_buff[26] = rd32(E1000_FCAL);
507 	regs_buff[27] = rd32(E1000_FCAH);
508 	regs_buff[28] = rd32(E1000_FCTTV);
509 	regs_buff[29] = rd32(E1000_FCRTL);
510 	regs_buff[30] = rd32(E1000_FCRTH);
511 	regs_buff[31] = rd32(E1000_FCRTV);
512 
513 	/* Receive */
514 	regs_buff[32] = rd32(E1000_RCTL);
515 	regs_buff[33] = rd32(E1000_RXCSUM);
516 	regs_buff[34] = rd32(E1000_RLPML);
517 	regs_buff[35] = rd32(E1000_RFCTL);
518 	regs_buff[36] = rd32(E1000_MRQC);
519 	regs_buff[37] = rd32(E1000_VT_CTL);
520 
521 	/* Transmit */
522 	regs_buff[38] = rd32(E1000_TCTL);
523 	regs_buff[39] = rd32(E1000_TCTL_EXT);
524 	regs_buff[40] = rd32(E1000_TIPG);
525 	regs_buff[41] = rd32(E1000_DTXCTL);
526 
527 	/* Wake Up */
528 	regs_buff[42] = rd32(E1000_WUC);
529 	regs_buff[43] = rd32(E1000_WUFC);
530 	regs_buff[44] = rd32(E1000_WUS);
531 	regs_buff[45] = rd32(E1000_IPAV);
532 	regs_buff[46] = rd32(E1000_WUPL);
533 
534 	/* MAC */
535 	regs_buff[47] = rd32(E1000_PCS_CFG0);
536 	regs_buff[48] = rd32(E1000_PCS_LCTL);
537 	regs_buff[49] = rd32(E1000_PCS_LSTAT);
538 	regs_buff[50] = rd32(E1000_PCS_ANADV);
539 	regs_buff[51] = rd32(E1000_PCS_LPAB);
540 	regs_buff[52] = rd32(E1000_PCS_NPTX);
541 	regs_buff[53] = rd32(E1000_PCS_LPABNP);
542 
543 	/* Statistics */
544 	regs_buff[54] = adapter->stats.crcerrs;
545 	regs_buff[55] = adapter->stats.algnerrc;
546 	regs_buff[56] = adapter->stats.symerrs;
547 	regs_buff[57] = adapter->stats.rxerrc;
548 	regs_buff[58] = adapter->stats.mpc;
549 	regs_buff[59] = adapter->stats.scc;
550 	regs_buff[60] = adapter->stats.ecol;
551 	regs_buff[61] = adapter->stats.mcc;
552 	regs_buff[62] = adapter->stats.latecol;
553 	regs_buff[63] = adapter->stats.colc;
554 	regs_buff[64] = adapter->stats.dc;
555 	regs_buff[65] = adapter->stats.tncrs;
556 	regs_buff[66] = adapter->stats.sec;
557 	regs_buff[67] = adapter->stats.htdpmc;
558 	regs_buff[68] = adapter->stats.rlec;
559 	regs_buff[69] = adapter->stats.xonrxc;
560 	regs_buff[70] = adapter->stats.xontxc;
561 	regs_buff[71] = adapter->stats.xoffrxc;
562 	regs_buff[72] = adapter->stats.xofftxc;
563 	regs_buff[73] = adapter->stats.fcruc;
564 	regs_buff[74] = adapter->stats.prc64;
565 	regs_buff[75] = adapter->stats.prc127;
566 	regs_buff[76] = adapter->stats.prc255;
567 	regs_buff[77] = adapter->stats.prc511;
568 	regs_buff[78] = adapter->stats.prc1023;
569 	regs_buff[79] = adapter->stats.prc1522;
570 	regs_buff[80] = adapter->stats.gprc;
571 	regs_buff[81] = adapter->stats.bprc;
572 	regs_buff[82] = adapter->stats.mprc;
573 	regs_buff[83] = adapter->stats.gptc;
574 	regs_buff[84] = adapter->stats.gorc;
575 	regs_buff[86] = adapter->stats.gotc;
576 	regs_buff[88] = adapter->stats.rnbc;
577 	regs_buff[89] = adapter->stats.ruc;
578 	regs_buff[90] = adapter->stats.rfc;
579 	regs_buff[91] = adapter->stats.roc;
580 	regs_buff[92] = adapter->stats.rjc;
581 	regs_buff[93] = adapter->stats.mgprc;
582 	regs_buff[94] = adapter->stats.mgpdc;
583 	regs_buff[95] = adapter->stats.mgptc;
584 	regs_buff[96] = adapter->stats.tor;
585 	regs_buff[98] = adapter->stats.tot;
586 	regs_buff[100] = adapter->stats.tpr;
587 	regs_buff[101] = adapter->stats.tpt;
588 	regs_buff[102] = adapter->stats.ptc64;
589 	regs_buff[103] = adapter->stats.ptc127;
590 	regs_buff[104] = adapter->stats.ptc255;
591 	regs_buff[105] = adapter->stats.ptc511;
592 	regs_buff[106] = adapter->stats.ptc1023;
593 	regs_buff[107] = adapter->stats.ptc1522;
594 	regs_buff[108] = adapter->stats.mptc;
595 	regs_buff[109] = adapter->stats.bptc;
596 	regs_buff[110] = adapter->stats.tsctc;
597 	regs_buff[111] = adapter->stats.iac;
598 	regs_buff[112] = adapter->stats.rpthc;
599 	regs_buff[113] = adapter->stats.hgptc;
600 	regs_buff[114] = adapter->stats.hgorc;
601 	regs_buff[116] = adapter->stats.hgotc;
602 	regs_buff[118] = adapter->stats.lenerrs;
603 	regs_buff[119] = adapter->stats.scvpc;
604 	regs_buff[120] = adapter->stats.hrmpc;
605 
606 	for (i = 0; i < 4; i++)
607 		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
608 	for (i = 0; i < 4; i++)
609 		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
610 	for (i = 0; i < 4; i++)
611 		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
612 	for (i = 0; i < 4; i++)
613 		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
614 	for (i = 0; i < 4; i++)
615 		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
616 	for (i = 0; i < 4; i++)
617 		regs_buff[141 + i] = rd32(E1000_RDH(i));
618 	for (i = 0; i < 4; i++)
619 		regs_buff[145 + i] = rd32(E1000_RDT(i));
620 	for (i = 0; i < 4; i++)
621 		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
622 
623 	for (i = 0; i < 10; i++)
624 		regs_buff[153 + i] = rd32(E1000_EITR(i));
625 	for (i = 0; i < 8; i++)
626 		regs_buff[163 + i] = rd32(E1000_IMIR(i));
627 	for (i = 0; i < 8; i++)
628 		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
629 	for (i = 0; i < 16; i++)
630 		regs_buff[179 + i] = rd32(E1000_RAL(i));
631 	for (i = 0; i < 16; i++)
632 		regs_buff[195 + i] = rd32(E1000_RAH(i));
633 
634 	for (i = 0; i < 4; i++)
635 		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
636 	for (i = 0; i < 4; i++)
637 		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
638 	for (i = 0; i < 4; i++)
639 		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
640 	for (i = 0; i < 4; i++)
641 		regs_buff[223 + i] = rd32(E1000_TDH(i));
642 	for (i = 0; i < 4; i++)
643 		regs_buff[227 + i] = rd32(E1000_TDT(i));
644 	for (i = 0; i < 4; i++)
645 		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
646 	for (i = 0; i < 4; i++)
647 		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
648 	for (i = 0; i < 4; i++)
649 		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
650 	for (i = 0; i < 4; i++)
651 		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
652 
653 	for (i = 0; i < 4; i++)
654 		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
655 	for (i = 0; i < 4; i++)
656 		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
657 	for (i = 0; i < 32; i++)
658 		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
659 	for (i = 0; i < 128; i++)
660 		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
661 	for (i = 0; i < 128; i++)
662 		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
663 	for (i = 0; i < 4; i++)
664 		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
665 
666 	regs_buff[547] = rd32(E1000_TDFH);
667 	regs_buff[548] = rd32(E1000_TDFT);
668 	regs_buff[549] = rd32(E1000_TDFHS);
669 	regs_buff[550] = rd32(E1000_TDFPC);
670 
671 	if (hw->mac.type > e1000_82580) {
672 		regs_buff[551] = adapter->stats.o2bgptc;
673 		regs_buff[552] = adapter->stats.b2ospc;
674 		regs_buff[553] = adapter->stats.o2bspc;
675 		regs_buff[554] = adapter->stats.b2ogprc;
676 	}
677 
678 	if (hw->mac.type == e1000_82576) {
679 		for (i = 0; i < 12; i++)
680 			regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
681 		for (i = 0; i < 4; i++)
682 			regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
683 		for (i = 0; i < 12; i++)
684 			regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
685 		for (i = 0; i < 12; i++)
686 			regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
687 		for (i = 0; i < 12; i++)
688 			regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
689 		for (i = 0; i < 12; i++)
690 			regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
691 		for (i = 0; i < 12; i++)
692 			regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
693 		for (i = 0; i < 12; i++)
694 			regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
695 
696 		for (i = 0; i < 12; i++)
697 			regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
698 		for (i = 0; i < 12; i++)
699 			regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
700 		for (i = 0; i < 12; i++)
701 			regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
702 		for (i = 0; i < 12; i++)
703 			regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
704 		for (i = 0; i < 12; i++)
705 			regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
706 		for (i = 0; i < 12; i++)
707 			regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
708 		for (i = 0; i < 12; i++)
709 			regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
710 		for (i = 0; i < 12; i++)
711 			regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
712 	}
713 
714 	if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211)
715 		regs_buff[739] = rd32(E1000_I210_RR2DCDELAY);
716 }
717 
718 static int igb_get_eeprom_len(struct net_device *netdev)
719 {
720 	struct igb_adapter *adapter = netdev_priv(netdev);
721 	return adapter->hw.nvm.word_size * 2;
722 }
723 
724 static int igb_get_eeprom(struct net_device *netdev,
725 			  struct ethtool_eeprom *eeprom, u8 *bytes)
726 {
727 	struct igb_adapter *adapter = netdev_priv(netdev);
728 	struct e1000_hw *hw = &adapter->hw;
729 	u16 *eeprom_buff;
730 	int first_word, last_word;
731 	int ret_val = 0;
732 	u16 i;
733 
734 	if (eeprom->len == 0)
735 		return -EINVAL;
736 
737 	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
738 
739 	first_word = eeprom->offset >> 1;
740 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
741 
742 	eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
743 				    GFP_KERNEL);
744 	if (!eeprom_buff)
745 		return -ENOMEM;
746 
747 	if (hw->nvm.type == e1000_nvm_eeprom_spi)
748 		ret_val = hw->nvm.ops.read(hw, first_word,
749 					   last_word - first_word + 1,
750 					   eeprom_buff);
751 	else {
752 		for (i = 0; i < last_word - first_word + 1; i++) {
753 			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
754 						   &eeprom_buff[i]);
755 			if (ret_val)
756 				break;
757 		}
758 	}
759 
760 	/* Device's eeprom is always little-endian, word addressable */
761 	for (i = 0; i < last_word - first_word + 1; i++)
762 		le16_to_cpus(&eeprom_buff[i]);
763 
764 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
765 			eeprom->len);
766 	kfree(eeprom_buff);
767 
768 	return ret_val;
769 }
770 
771 static int igb_set_eeprom(struct net_device *netdev,
772 			  struct ethtool_eeprom *eeprom, u8 *bytes)
773 {
774 	struct igb_adapter *adapter = netdev_priv(netdev);
775 	struct e1000_hw *hw = &adapter->hw;
776 	u16 *eeprom_buff;
777 	void *ptr;
778 	int max_len, first_word, last_word, ret_val = 0;
779 	u16 i;
780 
781 	if (eeprom->len == 0)
782 		return -EOPNOTSUPP;
783 
784 	if ((hw->mac.type >= e1000_i210) &&
785 	    !igb_get_flash_presence_i210(hw)) {
786 		return -EOPNOTSUPP;
787 	}
788 
789 	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
790 		return -EFAULT;
791 
792 	max_len = hw->nvm.word_size * 2;
793 
794 	first_word = eeprom->offset >> 1;
795 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
796 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
797 	if (!eeprom_buff)
798 		return -ENOMEM;
799 
800 	ptr = (void *)eeprom_buff;
801 
802 	if (eeprom->offset & 1) {
803 		/* need read/modify/write of first changed EEPROM word
804 		 * only the second byte of the word is being modified
805 		 */
806 		ret_val = hw->nvm.ops.read(hw, first_word, 1,
807 					    &eeprom_buff[0]);
808 		ptr++;
809 	}
810 	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
811 		/* need read/modify/write of last changed EEPROM word
812 		 * only the first byte of the word is being modified
813 		 */
814 		ret_val = hw->nvm.ops.read(hw, last_word, 1,
815 				   &eeprom_buff[last_word - first_word]);
816 	}
817 
818 	/* Device's eeprom is always little-endian, word addressable */
819 	for (i = 0; i < last_word - first_word + 1; i++)
820 		le16_to_cpus(&eeprom_buff[i]);
821 
822 	memcpy(ptr, bytes, eeprom->len);
823 
824 	for (i = 0; i < last_word - first_word + 1; i++)
825 		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
826 
827 	ret_val = hw->nvm.ops.write(hw, first_word,
828 				    last_word - first_word + 1, eeprom_buff);
829 
830 	/* Update the checksum if nvm write succeeded */
831 	if (ret_val == 0)
832 		hw->nvm.ops.update(hw);
833 
834 	igb_set_fw_version(adapter);
835 	kfree(eeprom_buff);
836 	return ret_val;
837 }
838 
839 static void igb_get_drvinfo(struct net_device *netdev,
840 			    struct ethtool_drvinfo *drvinfo)
841 {
842 	struct igb_adapter *adapter = netdev_priv(netdev);
843 
844 	strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
845 	strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
846 
847 	/* EEPROM image version # is reported as firmware version # for
848 	 * 82575 controllers
849 	 */
850 	strlcpy(drvinfo->fw_version, adapter->fw_version,
851 		sizeof(drvinfo->fw_version));
852 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
853 		sizeof(drvinfo->bus_info));
854 
855 	drvinfo->n_priv_flags = IGB_PRIV_FLAGS_STR_LEN;
856 }
857 
858 static void igb_get_ringparam(struct net_device *netdev,
859 			      struct ethtool_ringparam *ring)
860 {
861 	struct igb_adapter *adapter = netdev_priv(netdev);
862 
863 	ring->rx_max_pending = IGB_MAX_RXD;
864 	ring->tx_max_pending = IGB_MAX_TXD;
865 	ring->rx_pending = adapter->rx_ring_count;
866 	ring->tx_pending = adapter->tx_ring_count;
867 }
868 
869 static int igb_set_ringparam(struct net_device *netdev,
870 			     struct ethtool_ringparam *ring)
871 {
872 	struct igb_adapter *adapter = netdev_priv(netdev);
873 	struct igb_ring *temp_ring;
874 	int i, err = 0;
875 	u16 new_rx_count, new_tx_count;
876 
877 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
878 		return -EINVAL;
879 
880 	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
881 	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
882 	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
883 
884 	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
885 	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
886 	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
887 
888 	if ((new_tx_count == adapter->tx_ring_count) &&
889 	    (new_rx_count == adapter->rx_ring_count)) {
890 		/* nothing to do */
891 		return 0;
892 	}
893 
894 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
895 		usleep_range(1000, 2000);
896 
897 	if (!netif_running(adapter->netdev)) {
898 		for (i = 0; i < adapter->num_tx_queues; i++)
899 			adapter->tx_ring[i]->count = new_tx_count;
900 		for (i = 0; i < adapter->num_rx_queues; i++)
901 			adapter->rx_ring[i]->count = new_rx_count;
902 		adapter->tx_ring_count = new_tx_count;
903 		adapter->rx_ring_count = new_rx_count;
904 		goto clear_reset;
905 	}
906 
907 	if (adapter->num_tx_queues > adapter->num_rx_queues)
908 		temp_ring = vmalloc(array_size(sizeof(struct igb_ring),
909 					       adapter->num_tx_queues));
910 	else
911 		temp_ring = vmalloc(array_size(sizeof(struct igb_ring),
912 					       adapter->num_rx_queues));
913 
914 	if (!temp_ring) {
915 		err = -ENOMEM;
916 		goto clear_reset;
917 	}
918 
919 	igb_down(adapter);
920 
921 	/* We can't just free everything and then setup again,
922 	 * because the ISRs in MSI-X mode get passed pointers
923 	 * to the Tx and Rx ring structs.
924 	 */
925 	if (new_tx_count != adapter->tx_ring_count) {
926 		for (i = 0; i < adapter->num_tx_queues; i++) {
927 			memcpy(&temp_ring[i], adapter->tx_ring[i],
928 			       sizeof(struct igb_ring));
929 
930 			temp_ring[i].count = new_tx_count;
931 			err = igb_setup_tx_resources(&temp_ring[i]);
932 			if (err) {
933 				while (i) {
934 					i--;
935 					igb_free_tx_resources(&temp_ring[i]);
936 				}
937 				goto err_setup;
938 			}
939 		}
940 
941 		for (i = 0; i < adapter->num_tx_queues; i++) {
942 			igb_free_tx_resources(adapter->tx_ring[i]);
943 
944 			memcpy(adapter->tx_ring[i], &temp_ring[i],
945 			       sizeof(struct igb_ring));
946 		}
947 
948 		adapter->tx_ring_count = new_tx_count;
949 	}
950 
951 	if (new_rx_count != adapter->rx_ring_count) {
952 		for (i = 0; i < adapter->num_rx_queues; i++) {
953 			memcpy(&temp_ring[i], adapter->rx_ring[i],
954 			       sizeof(struct igb_ring));
955 
956 			temp_ring[i].count = new_rx_count;
957 			err = igb_setup_rx_resources(&temp_ring[i]);
958 			if (err) {
959 				while (i) {
960 					i--;
961 					igb_free_rx_resources(&temp_ring[i]);
962 				}
963 				goto err_setup;
964 			}
965 
966 		}
967 
968 		for (i = 0; i < adapter->num_rx_queues; i++) {
969 			igb_free_rx_resources(adapter->rx_ring[i]);
970 
971 			memcpy(adapter->rx_ring[i], &temp_ring[i],
972 			       sizeof(struct igb_ring));
973 		}
974 
975 		adapter->rx_ring_count = new_rx_count;
976 	}
977 err_setup:
978 	igb_up(adapter);
979 	vfree(temp_ring);
980 clear_reset:
981 	clear_bit(__IGB_RESETTING, &adapter->state);
982 	return err;
983 }
984 
985 /* ethtool register test data */
986 struct igb_reg_test {
987 	u16 reg;
988 	u16 reg_offset;
989 	u16 array_len;
990 	u16 test_type;
991 	u32 mask;
992 	u32 write;
993 };
994 
995 /* In the hardware, registers are laid out either singly, in arrays
996  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
997  * most tests take place on arrays or single registers (handled
998  * as a single-element array) and special-case the tables.
999  * Table tests are always pattern tests.
1000  *
1001  * We also make provision for some required setup steps by specifying
1002  * registers to be written without any read-back testing.
1003  */
1004 
1005 #define PATTERN_TEST	1
1006 #define SET_READ_TEST	2
1007 #define WRITE_NO_TEST	3
1008 #define TABLE32_TEST	4
1009 #define TABLE64_TEST_LO	5
1010 #define TABLE64_TEST_HI	6
1011 
1012 /* i210 reg test */
1013 static struct igb_reg_test reg_test_i210[] = {
1014 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1015 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1016 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1017 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1018 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1019 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1020 	/* RDH is read-only for i210, only test RDT. */
1021 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1022 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1023 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1024 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1025 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1026 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1027 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1028 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1029 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1030 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1031 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1032 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1033 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1034 						0xFFFFFFFF, 0xFFFFFFFF },
1035 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1036 						0x900FFFFF, 0xFFFFFFFF },
1037 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1038 						0xFFFFFFFF, 0xFFFFFFFF },
1039 	{ 0, 0, 0, 0, 0 }
1040 };
1041 
1042 /* i350 reg test */
1043 static struct igb_reg_test reg_test_i350[] = {
1044 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1045 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1046 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1047 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1048 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1049 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1050 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1051 	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1052 	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1053 	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1054 	/* RDH is read-only for i350, only test RDT. */
1055 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1056 	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1057 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1058 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1059 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1060 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1061 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1062 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1063 	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1064 	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1065 	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1066 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1067 	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1068 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1069 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1070 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1071 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1072 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1073 						0xFFFFFFFF, 0xFFFFFFFF },
1074 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1075 						0xC3FFFFFF, 0xFFFFFFFF },
1076 	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
1077 						0xFFFFFFFF, 0xFFFFFFFF },
1078 	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
1079 						0xC3FFFFFF, 0xFFFFFFFF },
1080 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1081 						0xFFFFFFFF, 0xFFFFFFFF },
1082 	{ 0, 0, 0, 0 }
1083 };
1084 
1085 /* 82580 reg test */
1086 static struct igb_reg_test reg_test_82580[] = {
1087 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1088 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1089 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1090 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1091 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1092 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1093 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1094 	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1095 	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1096 	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1097 	/* RDH is read-only for 82580, only test RDT. */
1098 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1099 	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1100 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1101 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1102 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1103 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1104 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1105 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1106 	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1107 	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1108 	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1109 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1110 	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1111 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1112 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1113 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1114 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1115 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1116 						0xFFFFFFFF, 0xFFFFFFFF },
1117 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1118 						0x83FFFFFF, 0xFFFFFFFF },
1119 	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
1120 						0xFFFFFFFF, 0xFFFFFFFF },
1121 	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
1122 						0x83FFFFFF, 0xFFFFFFFF },
1123 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1124 						0xFFFFFFFF, 0xFFFFFFFF },
1125 	{ 0, 0, 0, 0 }
1126 };
1127 
1128 /* 82576 reg test */
1129 static struct igb_reg_test reg_test_82576[] = {
1130 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1131 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1132 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1133 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1134 	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1135 	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1136 	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1137 	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1138 	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1139 	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1140 	/* Enable all RX queues before testing. */
1141 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1142 	  E1000_RXDCTL_QUEUE_ENABLE },
1143 	{ E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0,
1144 	  E1000_RXDCTL_QUEUE_ENABLE },
1145 	/* RDH is read-only for 82576, only test RDT. */
1146 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1147 	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1148 	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1149 	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1150 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1151 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1152 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1153 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1154 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1155 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1156 	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1157 	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1158 	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1159 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1160 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1161 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1162 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1163 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1164 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1165 	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1166 	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1167 	{ E1000_MTA,	   0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1168 	{ 0, 0, 0, 0 }
1169 };
1170 
1171 /* 82575 register test */
1172 static struct igb_reg_test reg_test_82575[] = {
1173 	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1174 	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1175 	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1176 	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1177 	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1178 	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1179 	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1180 	/* Enable all four RX queues before testing. */
1181 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1182 	  E1000_RXDCTL_QUEUE_ENABLE },
1183 	/* RDH is read-only for 82575, only test RDT. */
1184 	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1185 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1186 	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1187 	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1188 	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1189 	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1190 	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1191 	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1192 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1193 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1194 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1195 	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1196 	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1197 	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1198 	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1199 	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1200 	{ 0, 0, 0, 0 }
1201 };
1202 
1203 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1204 			     int reg, u32 mask, u32 write)
1205 {
1206 	struct e1000_hw *hw = &adapter->hw;
1207 	u32 pat, val;
1208 	static const u32 _test[] = {
1209 		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1210 	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1211 		wr32(reg, (_test[pat] & write));
1212 		val = rd32(reg) & mask;
1213 		if (val != (_test[pat] & write & mask)) {
1214 			dev_err(&adapter->pdev->dev,
1215 				"pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1216 				reg, val, (_test[pat] & write & mask));
1217 			*data = reg;
1218 			return true;
1219 		}
1220 	}
1221 
1222 	return false;
1223 }
1224 
1225 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1226 			      int reg, u32 mask, u32 write)
1227 {
1228 	struct e1000_hw *hw = &adapter->hw;
1229 	u32 val;
1230 
1231 	wr32(reg, write & mask);
1232 	val = rd32(reg);
1233 	if ((write & mask) != (val & mask)) {
1234 		dev_err(&adapter->pdev->dev,
1235 			"set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
1236 			reg, (val & mask), (write & mask));
1237 		*data = reg;
1238 		return true;
1239 	}
1240 
1241 	return false;
1242 }
1243 
1244 #define REG_PATTERN_TEST(reg, mask, write) \
1245 	do { \
1246 		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1247 			return 1; \
1248 	} while (0)
1249 
1250 #define REG_SET_AND_CHECK(reg, mask, write) \
1251 	do { \
1252 		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1253 			return 1; \
1254 	} while (0)
1255 
1256 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1257 {
1258 	struct e1000_hw *hw = &adapter->hw;
1259 	struct igb_reg_test *test;
1260 	u32 value, before, after;
1261 	u32 i, toggle;
1262 
1263 	switch (adapter->hw.mac.type) {
1264 	case e1000_i350:
1265 	case e1000_i354:
1266 		test = reg_test_i350;
1267 		toggle = 0x7FEFF3FF;
1268 		break;
1269 	case e1000_i210:
1270 	case e1000_i211:
1271 		test = reg_test_i210;
1272 		toggle = 0x7FEFF3FF;
1273 		break;
1274 	case e1000_82580:
1275 		test = reg_test_82580;
1276 		toggle = 0x7FEFF3FF;
1277 		break;
1278 	case e1000_82576:
1279 		test = reg_test_82576;
1280 		toggle = 0x7FFFF3FF;
1281 		break;
1282 	default:
1283 		test = reg_test_82575;
1284 		toggle = 0x7FFFF3FF;
1285 		break;
1286 	}
1287 
1288 	/* Because the status register is such a special case,
1289 	 * we handle it separately from the rest of the register
1290 	 * tests.  Some bits are read-only, some toggle, and some
1291 	 * are writable on newer MACs.
1292 	 */
1293 	before = rd32(E1000_STATUS);
1294 	value = (rd32(E1000_STATUS) & toggle);
1295 	wr32(E1000_STATUS, toggle);
1296 	after = rd32(E1000_STATUS) & toggle;
1297 	if (value != after) {
1298 		dev_err(&adapter->pdev->dev,
1299 			"failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1300 			after, value);
1301 		*data = 1;
1302 		return 1;
1303 	}
1304 	/* restore previous status */
1305 	wr32(E1000_STATUS, before);
1306 
1307 	/* Perform the remainder of the register test, looping through
1308 	 * the test table until we either fail or reach the null entry.
1309 	 */
1310 	while (test->reg) {
1311 		for (i = 0; i < test->array_len; i++) {
1312 			switch (test->test_type) {
1313 			case PATTERN_TEST:
1314 				REG_PATTERN_TEST(test->reg +
1315 						(i * test->reg_offset),
1316 						test->mask,
1317 						test->write);
1318 				break;
1319 			case SET_READ_TEST:
1320 				REG_SET_AND_CHECK(test->reg +
1321 						(i * test->reg_offset),
1322 						test->mask,
1323 						test->write);
1324 				break;
1325 			case WRITE_NO_TEST:
1326 				writel(test->write,
1327 				    (adapter->hw.hw_addr + test->reg)
1328 					+ (i * test->reg_offset));
1329 				break;
1330 			case TABLE32_TEST:
1331 				REG_PATTERN_TEST(test->reg + (i * 4),
1332 						test->mask,
1333 						test->write);
1334 				break;
1335 			case TABLE64_TEST_LO:
1336 				REG_PATTERN_TEST(test->reg + (i * 8),
1337 						test->mask,
1338 						test->write);
1339 				break;
1340 			case TABLE64_TEST_HI:
1341 				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1342 						test->mask,
1343 						test->write);
1344 				break;
1345 			}
1346 		}
1347 		test++;
1348 	}
1349 
1350 	*data = 0;
1351 	return 0;
1352 }
1353 
1354 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1355 {
1356 	struct e1000_hw *hw = &adapter->hw;
1357 
1358 	*data = 0;
1359 
1360 	/* Validate eeprom on all parts but flashless */
1361 	switch (hw->mac.type) {
1362 	case e1000_i210:
1363 	case e1000_i211:
1364 		if (igb_get_flash_presence_i210(hw)) {
1365 			if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1366 				*data = 2;
1367 		}
1368 		break;
1369 	default:
1370 		if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1371 			*data = 2;
1372 		break;
1373 	}
1374 
1375 	return *data;
1376 }
1377 
1378 static irqreturn_t igb_test_intr(int irq, void *data)
1379 {
1380 	struct igb_adapter *adapter = (struct igb_adapter *) data;
1381 	struct e1000_hw *hw = &adapter->hw;
1382 
1383 	adapter->test_icr |= rd32(E1000_ICR);
1384 
1385 	return IRQ_HANDLED;
1386 }
1387 
1388 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1389 {
1390 	struct e1000_hw *hw = &adapter->hw;
1391 	struct net_device *netdev = adapter->netdev;
1392 	u32 mask, ics_mask, i = 0, shared_int = true;
1393 	u32 irq = adapter->pdev->irq;
1394 
1395 	*data = 0;
1396 
1397 	/* Hook up test interrupt handler just for this test */
1398 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1399 		if (request_irq(adapter->msix_entries[0].vector,
1400 				igb_test_intr, 0, netdev->name, adapter)) {
1401 			*data = 1;
1402 			return -1;
1403 		}
1404 	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1405 		shared_int = false;
1406 		if (request_irq(irq,
1407 				igb_test_intr, 0, netdev->name, adapter)) {
1408 			*data = 1;
1409 			return -1;
1410 		}
1411 	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1412 				netdev->name, adapter)) {
1413 		shared_int = false;
1414 	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1415 		 netdev->name, adapter)) {
1416 		*data = 1;
1417 		return -1;
1418 	}
1419 	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1420 		(shared_int ? "shared" : "unshared"));
1421 
1422 	/* Disable all the interrupts */
1423 	wr32(E1000_IMC, ~0);
1424 	wrfl();
1425 	usleep_range(10000, 11000);
1426 
1427 	/* Define all writable bits for ICS */
1428 	switch (hw->mac.type) {
1429 	case e1000_82575:
1430 		ics_mask = 0x37F47EDD;
1431 		break;
1432 	case e1000_82576:
1433 		ics_mask = 0x77D4FBFD;
1434 		break;
1435 	case e1000_82580:
1436 		ics_mask = 0x77DCFED5;
1437 		break;
1438 	case e1000_i350:
1439 	case e1000_i354:
1440 	case e1000_i210:
1441 	case e1000_i211:
1442 		ics_mask = 0x77DCFED5;
1443 		break;
1444 	default:
1445 		ics_mask = 0x7FFFFFFF;
1446 		break;
1447 	}
1448 
1449 	/* Test each interrupt */
1450 	for (; i < 31; i++) {
1451 		/* Interrupt to test */
1452 		mask = BIT(i);
1453 
1454 		if (!(mask & ics_mask))
1455 			continue;
1456 
1457 		if (!shared_int) {
1458 			/* Disable the interrupt to be reported in
1459 			 * the cause register and then force the same
1460 			 * interrupt and see if one gets posted.  If
1461 			 * an interrupt was posted to the bus, the
1462 			 * test failed.
1463 			 */
1464 			adapter->test_icr = 0;
1465 
1466 			/* Flush any pending interrupts */
1467 			wr32(E1000_ICR, ~0);
1468 
1469 			wr32(E1000_IMC, mask);
1470 			wr32(E1000_ICS, mask);
1471 			wrfl();
1472 			usleep_range(10000, 11000);
1473 
1474 			if (adapter->test_icr & mask) {
1475 				*data = 3;
1476 				break;
1477 			}
1478 		}
1479 
1480 		/* Enable the interrupt to be reported in
1481 		 * the cause register and then force the same
1482 		 * interrupt and see if one gets posted.  If
1483 		 * an interrupt was not posted to the bus, the
1484 		 * test failed.
1485 		 */
1486 		adapter->test_icr = 0;
1487 
1488 		/* Flush any pending interrupts */
1489 		wr32(E1000_ICR, ~0);
1490 
1491 		wr32(E1000_IMS, mask);
1492 		wr32(E1000_ICS, mask);
1493 		wrfl();
1494 		usleep_range(10000, 11000);
1495 
1496 		if (!(adapter->test_icr & mask)) {
1497 			*data = 4;
1498 			break;
1499 		}
1500 
1501 		if (!shared_int) {
1502 			/* Disable the other interrupts to be reported in
1503 			 * the cause register and then force the other
1504 			 * interrupts and see if any get posted.  If
1505 			 * an interrupt was posted to the bus, the
1506 			 * test failed.
1507 			 */
1508 			adapter->test_icr = 0;
1509 
1510 			/* Flush any pending interrupts */
1511 			wr32(E1000_ICR, ~0);
1512 
1513 			wr32(E1000_IMC, ~mask);
1514 			wr32(E1000_ICS, ~mask);
1515 			wrfl();
1516 			usleep_range(10000, 11000);
1517 
1518 			if (adapter->test_icr & mask) {
1519 				*data = 5;
1520 				break;
1521 			}
1522 		}
1523 	}
1524 
1525 	/* Disable all the interrupts */
1526 	wr32(E1000_IMC, ~0);
1527 	wrfl();
1528 	usleep_range(10000, 11000);
1529 
1530 	/* Unhook test interrupt handler */
1531 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1532 		free_irq(adapter->msix_entries[0].vector, adapter);
1533 	else
1534 		free_irq(irq, adapter);
1535 
1536 	return *data;
1537 }
1538 
1539 static void igb_free_desc_rings(struct igb_adapter *adapter)
1540 {
1541 	igb_free_tx_resources(&adapter->test_tx_ring);
1542 	igb_free_rx_resources(&adapter->test_rx_ring);
1543 }
1544 
1545 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1546 {
1547 	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1548 	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1549 	struct e1000_hw *hw = &adapter->hw;
1550 	int ret_val;
1551 
1552 	/* Setup Tx descriptor ring and Tx buffers */
1553 	tx_ring->count = IGB_DEFAULT_TXD;
1554 	tx_ring->dev = &adapter->pdev->dev;
1555 	tx_ring->netdev = adapter->netdev;
1556 	tx_ring->reg_idx = adapter->vfs_allocated_count;
1557 
1558 	if (igb_setup_tx_resources(tx_ring)) {
1559 		ret_val = 1;
1560 		goto err_nomem;
1561 	}
1562 
1563 	igb_setup_tctl(adapter);
1564 	igb_configure_tx_ring(adapter, tx_ring);
1565 
1566 	/* Setup Rx descriptor ring and Rx buffers */
1567 	rx_ring->count = IGB_DEFAULT_RXD;
1568 	rx_ring->dev = &adapter->pdev->dev;
1569 	rx_ring->netdev = adapter->netdev;
1570 	rx_ring->reg_idx = adapter->vfs_allocated_count;
1571 
1572 	if (igb_setup_rx_resources(rx_ring)) {
1573 		ret_val = 3;
1574 		goto err_nomem;
1575 	}
1576 
1577 	/* set the default queue to queue 0 of PF */
1578 	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1579 
1580 	/* enable receive ring */
1581 	igb_setup_rctl(adapter);
1582 	igb_configure_rx_ring(adapter, rx_ring);
1583 
1584 	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1585 
1586 	return 0;
1587 
1588 err_nomem:
1589 	igb_free_desc_rings(adapter);
1590 	return ret_val;
1591 }
1592 
1593 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1594 {
1595 	struct e1000_hw *hw = &adapter->hw;
1596 
1597 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1598 	igb_write_phy_reg(hw, 29, 0x001F);
1599 	igb_write_phy_reg(hw, 30, 0x8FFC);
1600 	igb_write_phy_reg(hw, 29, 0x001A);
1601 	igb_write_phy_reg(hw, 30, 0x8FF0);
1602 }
1603 
1604 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1605 {
1606 	struct e1000_hw *hw = &adapter->hw;
1607 	u32 ctrl_reg = 0;
1608 
1609 	hw->mac.autoneg = false;
1610 
1611 	if (hw->phy.type == e1000_phy_m88) {
1612 		if (hw->phy.id != I210_I_PHY_ID) {
1613 			/* Auto-MDI/MDIX Off */
1614 			igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1615 			/* reset to update Auto-MDI/MDIX */
1616 			igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1617 			/* autoneg off */
1618 			igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1619 		} else {
1620 			/* force 1000, set loopback  */
1621 			igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1622 			igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1623 		}
1624 	} else if (hw->phy.type == e1000_phy_82580) {
1625 		/* enable MII loopback */
1626 		igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1627 	}
1628 
1629 	/* add small delay to avoid loopback test failure */
1630 	msleep(50);
1631 
1632 	/* force 1000, set loopback */
1633 	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1634 
1635 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1636 	ctrl_reg = rd32(E1000_CTRL);
1637 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1638 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1639 		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1640 		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1641 		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1642 		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1643 
1644 	if (hw->phy.type == e1000_phy_m88)
1645 		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1646 
1647 	wr32(E1000_CTRL, ctrl_reg);
1648 
1649 	/* Disable the receiver on the PHY so when a cable is plugged in, the
1650 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1651 	 */
1652 	if (hw->phy.type == e1000_phy_m88)
1653 		igb_phy_disable_receiver(adapter);
1654 
1655 	msleep(500);
1656 	return 0;
1657 }
1658 
1659 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1660 {
1661 	return igb_integrated_phy_loopback(adapter);
1662 }
1663 
1664 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1665 {
1666 	struct e1000_hw *hw = &adapter->hw;
1667 	u32 reg;
1668 
1669 	reg = rd32(E1000_CTRL_EXT);
1670 
1671 	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1672 	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1673 		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1674 		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1675 		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1676 		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1677 		(hw->device_id == E1000_DEV_ID_I354_SGMII) ||
1678 		(hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) {
1679 			/* Enable DH89xxCC MPHY for near end loopback */
1680 			reg = rd32(E1000_MPHY_ADDR_CTL);
1681 			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1682 			E1000_MPHY_PCS_CLK_REG_OFFSET;
1683 			wr32(E1000_MPHY_ADDR_CTL, reg);
1684 
1685 			reg = rd32(E1000_MPHY_DATA);
1686 			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1687 			wr32(E1000_MPHY_DATA, reg);
1688 		}
1689 
1690 		reg = rd32(E1000_RCTL);
1691 		reg |= E1000_RCTL_LBM_TCVR;
1692 		wr32(E1000_RCTL, reg);
1693 
1694 		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1695 
1696 		reg = rd32(E1000_CTRL);
1697 		reg &= ~(E1000_CTRL_RFCE |
1698 			 E1000_CTRL_TFCE |
1699 			 E1000_CTRL_LRST);
1700 		reg |= E1000_CTRL_SLU |
1701 		       E1000_CTRL_FD;
1702 		wr32(E1000_CTRL, reg);
1703 
1704 		/* Unset switch control to serdes energy detect */
1705 		reg = rd32(E1000_CONNSW);
1706 		reg &= ~E1000_CONNSW_ENRGSRC;
1707 		wr32(E1000_CONNSW, reg);
1708 
1709 		/* Unset sigdetect for SERDES loopback on
1710 		 * 82580 and newer devices.
1711 		 */
1712 		if (hw->mac.type >= e1000_82580) {
1713 			reg = rd32(E1000_PCS_CFG0);
1714 			reg |= E1000_PCS_CFG_IGN_SD;
1715 			wr32(E1000_PCS_CFG0, reg);
1716 		}
1717 
1718 		/* Set PCS register for forced speed */
1719 		reg = rd32(E1000_PCS_LCTL);
1720 		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1721 		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1722 		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1723 		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1724 		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1725 		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1726 		wr32(E1000_PCS_LCTL, reg);
1727 
1728 		return 0;
1729 	}
1730 
1731 	return igb_set_phy_loopback(adapter);
1732 }
1733 
1734 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1735 {
1736 	struct e1000_hw *hw = &adapter->hw;
1737 	u32 rctl;
1738 	u16 phy_reg;
1739 
1740 	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1741 	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1742 	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1743 	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1744 	(hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1745 		u32 reg;
1746 
1747 		/* Disable near end loopback on DH89xxCC */
1748 		reg = rd32(E1000_MPHY_ADDR_CTL);
1749 		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1750 		E1000_MPHY_PCS_CLK_REG_OFFSET;
1751 		wr32(E1000_MPHY_ADDR_CTL, reg);
1752 
1753 		reg = rd32(E1000_MPHY_DATA);
1754 		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1755 		wr32(E1000_MPHY_DATA, reg);
1756 	}
1757 
1758 	rctl = rd32(E1000_RCTL);
1759 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1760 	wr32(E1000_RCTL, rctl);
1761 
1762 	hw->mac.autoneg = true;
1763 	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1764 	if (phy_reg & MII_CR_LOOPBACK) {
1765 		phy_reg &= ~MII_CR_LOOPBACK;
1766 		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1767 		igb_phy_sw_reset(hw);
1768 	}
1769 }
1770 
1771 static void igb_create_lbtest_frame(struct sk_buff *skb,
1772 				    unsigned int frame_size)
1773 {
1774 	memset(skb->data, 0xFF, frame_size);
1775 	frame_size /= 2;
1776 	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1777 	memset(&skb->data[frame_size + 10], 0xBE, 1);
1778 	memset(&skb->data[frame_size + 12], 0xAF, 1);
1779 }
1780 
1781 static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1782 				  unsigned int frame_size)
1783 {
1784 	unsigned char *data;
1785 	bool match = true;
1786 
1787 	frame_size >>= 1;
1788 
1789 	data = kmap(rx_buffer->page);
1790 
1791 	if (data[3] != 0xFF ||
1792 	    data[frame_size + 10] != 0xBE ||
1793 	    data[frame_size + 12] != 0xAF)
1794 		match = false;
1795 
1796 	kunmap(rx_buffer->page);
1797 
1798 	return match;
1799 }
1800 
1801 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1802 				struct igb_ring *tx_ring,
1803 				unsigned int size)
1804 {
1805 	union e1000_adv_rx_desc *rx_desc;
1806 	struct igb_rx_buffer *rx_buffer_info;
1807 	struct igb_tx_buffer *tx_buffer_info;
1808 	u16 rx_ntc, tx_ntc, count = 0;
1809 
1810 	/* initialize next to clean and descriptor values */
1811 	rx_ntc = rx_ring->next_to_clean;
1812 	tx_ntc = tx_ring->next_to_clean;
1813 	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1814 
1815 	while (rx_desc->wb.upper.length) {
1816 		/* check Rx buffer */
1817 		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1818 
1819 		/* sync Rx buffer for CPU read */
1820 		dma_sync_single_for_cpu(rx_ring->dev,
1821 					rx_buffer_info->dma,
1822 					size,
1823 					DMA_FROM_DEVICE);
1824 
1825 		/* verify contents of skb */
1826 		if (igb_check_lbtest_frame(rx_buffer_info, size))
1827 			count++;
1828 
1829 		/* sync Rx buffer for device write */
1830 		dma_sync_single_for_device(rx_ring->dev,
1831 					   rx_buffer_info->dma,
1832 					   size,
1833 					   DMA_FROM_DEVICE);
1834 
1835 		/* unmap buffer on Tx side */
1836 		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1837 
1838 		/* Free all the Tx ring sk_buffs */
1839 		dev_kfree_skb_any(tx_buffer_info->skb);
1840 
1841 		/* unmap skb header data */
1842 		dma_unmap_single(tx_ring->dev,
1843 				 dma_unmap_addr(tx_buffer_info, dma),
1844 				 dma_unmap_len(tx_buffer_info, len),
1845 				 DMA_TO_DEVICE);
1846 		dma_unmap_len_set(tx_buffer_info, len, 0);
1847 
1848 		/* increment Rx/Tx next to clean counters */
1849 		rx_ntc++;
1850 		if (rx_ntc == rx_ring->count)
1851 			rx_ntc = 0;
1852 		tx_ntc++;
1853 		if (tx_ntc == tx_ring->count)
1854 			tx_ntc = 0;
1855 
1856 		/* fetch next descriptor */
1857 		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1858 	}
1859 
1860 	netdev_tx_reset_queue(txring_txq(tx_ring));
1861 
1862 	/* re-map buffers to ring, store next to clean values */
1863 	igb_alloc_rx_buffers(rx_ring, count);
1864 	rx_ring->next_to_clean = rx_ntc;
1865 	tx_ring->next_to_clean = tx_ntc;
1866 
1867 	return count;
1868 }
1869 
1870 static int igb_run_loopback_test(struct igb_adapter *adapter)
1871 {
1872 	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1873 	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1874 	u16 i, j, lc, good_cnt;
1875 	int ret_val = 0;
1876 	unsigned int size = IGB_RX_HDR_LEN;
1877 	netdev_tx_t tx_ret_val;
1878 	struct sk_buff *skb;
1879 
1880 	/* allocate test skb */
1881 	skb = alloc_skb(size, GFP_KERNEL);
1882 	if (!skb)
1883 		return 11;
1884 
1885 	/* place data into test skb */
1886 	igb_create_lbtest_frame(skb, size);
1887 	skb_put(skb, size);
1888 
1889 	/* Calculate the loop count based on the largest descriptor ring
1890 	 * The idea is to wrap the largest ring a number of times using 64
1891 	 * send/receive pairs during each loop
1892 	 */
1893 
1894 	if (rx_ring->count <= tx_ring->count)
1895 		lc = ((tx_ring->count / 64) * 2) + 1;
1896 	else
1897 		lc = ((rx_ring->count / 64) * 2) + 1;
1898 
1899 	for (j = 0; j <= lc; j++) { /* loop count loop */
1900 		/* reset count of good packets */
1901 		good_cnt = 0;
1902 
1903 		/* place 64 packets on the transmit queue*/
1904 		for (i = 0; i < 64; i++) {
1905 			skb_get(skb);
1906 			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1907 			if (tx_ret_val == NETDEV_TX_OK)
1908 				good_cnt++;
1909 		}
1910 
1911 		if (good_cnt != 64) {
1912 			ret_val = 12;
1913 			break;
1914 		}
1915 
1916 		/* allow 200 milliseconds for packets to go from Tx to Rx */
1917 		msleep(200);
1918 
1919 		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1920 		if (good_cnt != 64) {
1921 			ret_val = 13;
1922 			break;
1923 		}
1924 	} /* end loop count loop */
1925 
1926 	/* free the original skb */
1927 	kfree_skb(skb);
1928 
1929 	return ret_val;
1930 }
1931 
1932 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1933 {
1934 	/* PHY loopback cannot be performed if SoL/IDER
1935 	 * sessions are active
1936 	 */
1937 	if (igb_check_reset_block(&adapter->hw)) {
1938 		dev_err(&adapter->pdev->dev,
1939 			"Cannot do PHY loopback test when SoL/IDER is active.\n");
1940 		*data = 0;
1941 		goto out;
1942 	}
1943 
1944 	if (adapter->hw.mac.type == e1000_i354) {
1945 		dev_info(&adapter->pdev->dev,
1946 			"Loopback test not supported on i354.\n");
1947 		*data = 0;
1948 		goto out;
1949 	}
1950 	*data = igb_setup_desc_rings(adapter);
1951 	if (*data)
1952 		goto out;
1953 	*data = igb_setup_loopback_test(adapter);
1954 	if (*data)
1955 		goto err_loopback;
1956 	*data = igb_run_loopback_test(adapter);
1957 	igb_loopback_cleanup(adapter);
1958 
1959 err_loopback:
1960 	igb_free_desc_rings(adapter);
1961 out:
1962 	return *data;
1963 }
1964 
1965 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1966 {
1967 	struct e1000_hw *hw = &adapter->hw;
1968 	*data = 0;
1969 	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1970 		int i = 0;
1971 
1972 		hw->mac.serdes_has_link = false;
1973 
1974 		/* On some blade server designs, link establishment
1975 		 * could take as long as 2-3 minutes
1976 		 */
1977 		do {
1978 			hw->mac.ops.check_for_link(&adapter->hw);
1979 			if (hw->mac.serdes_has_link)
1980 				return *data;
1981 			msleep(20);
1982 		} while (i++ < 3750);
1983 
1984 		*data = 1;
1985 	} else {
1986 		hw->mac.ops.check_for_link(&adapter->hw);
1987 		if (hw->mac.autoneg)
1988 			msleep(5000);
1989 
1990 		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1991 			*data = 1;
1992 	}
1993 	return *data;
1994 }
1995 
1996 static void igb_diag_test(struct net_device *netdev,
1997 			  struct ethtool_test *eth_test, u64 *data)
1998 {
1999 	struct igb_adapter *adapter = netdev_priv(netdev);
2000 	u16 autoneg_advertised;
2001 	u8 forced_speed_duplex, autoneg;
2002 	bool if_running = netif_running(netdev);
2003 
2004 	set_bit(__IGB_TESTING, &adapter->state);
2005 
2006 	/* can't do offline tests on media switching devices */
2007 	if (adapter->hw.dev_spec._82575.mas_capable)
2008 		eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
2009 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
2010 		/* Offline tests */
2011 
2012 		/* save speed, duplex, autoneg settings */
2013 		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
2014 		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
2015 		autoneg = adapter->hw.mac.autoneg;
2016 
2017 		dev_info(&adapter->pdev->dev, "offline testing starting\n");
2018 
2019 		/* power up link for link test */
2020 		igb_power_up_link(adapter);
2021 
2022 		/* Link test performed before hardware reset so autoneg doesn't
2023 		 * interfere with test result
2024 		 */
2025 		if (igb_link_test(adapter, &data[TEST_LINK]))
2026 			eth_test->flags |= ETH_TEST_FL_FAILED;
2027 
2028 		if (if_running)
2029 			/* indicate we're in test mode */
2030 			igb_close(netdev);
2031 		else
2032 			igb_reset(adapter);
2033 
2034 		if (igb_reg_test(adapter, &data[TEST_REG]))
2035 			eth_test->flags |= ETH_TEST_FL_FAILED;
2036 
2037 		igb_reset(adapter);
2038 		if (igb_eeprom_test(adapter, &data[TEST_EEP]))
2039 			eth_test->flags |= ETH_TEST_FL_FAILED;
2040 
2041 		igb_reset(adapter);
2042 		if (igb_intr_test(adapter, &data[TEST_IRQ]))
2043 			eth_test->flags |= ETH_TEST_FL_FAILED;
2044 
2045 		igb_reset(adapter);
2046 		/* power up link for loopback test */
2047 		igb_power_up_link(adapter);
2048 		if (igb_loopback_test(adapter, &data[TEST_LOOP]))
2049 			eth_test->flags |= ETH_TEST_FL_FAILED;
2050 
2051 		/* restore speed, duplex, autoneg settings */
2052 		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2053 		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2054 		adapter->hw.mac.autoneg = autoneg;
2055 
2056 		/* force this routine to wait until autoneg complete/timeout */
2057 		adapter->hw.phy.autoneg_wait_to_complete = true;
2058 		igb_reset(adapter);
2059 		adapter->hw.phy.autoneg_wait_to_complete = false;
2060 
2061 		clear_bit(__IGB_TESTING, &adapter->state);
2062 		if (if_running)
2063 			igb_open(netdev);
2064 	} else {
2065 		dev_info(&adapter->pdev->dev, "online testing starting\n");
2066 
2067 		/* PHY is powered down when interface is down */
2068 		if (if_running && igb_link_test(adapter, &data[TEST_LINK]))
2069 			eth_test->flags |= ETH_TEST_FL_FAILED;
2070 		else
2071 			data[TEST_LINK] = 0;
2072 
2073 		/* Online tests aren't run; pass by default */
2074 		data[TEST_REG] = 0;
2075 		data[TEST_EEP] = 0;
2076 		data[TEST_IRQ] = 0;
2077 		data[TEST_LOOP] = 0;
2078 
2079 		clear_bit(__IGB_TESTING, &adapter->state);
2080 	}
2081 	msleep_interruptible(4 * 1000);
2082 }
2083 
2084 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2085 {
2086 	struct igb_adapter *adapter = netdev_priv(netdev);
2087 
2088 	wol->wolopts = 0;
2089 
2090 	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2091 		return;
2092 
2093 	wol->supported = WAKE_UCAST | WAKE_MCAST |
2094 			 WAKE_BCAST | WAKE_MAGIC |
2095 			 WAKE_PHY;
2096 
2097 	/* apply any specific unsupported masks here */
2098 	switch (adapter->hw.device_id) {
2099 	default:
2100 		break;
2101 	}
2102 
2103 	if (adapter->wol & E1000_WUFC_EX)
2104 		wol->wolopts |= WAKE_UCAST;
2105 	if (adapter->wol & E1000_WUFC_MC)
2106 		wol->wolopts |= WAKE_MCAST;
2107 	if (adapter->wol & E1000_WUFC_BC)
2108 		wol->wolopts |= WAKE_BCAST;
2109 	if (adapter->wol & E1000_WUFC_MAG)
2110 		wol->wolopts |= WAKE_MAGIC;
2111 	if (adapter->wol & E1000_WUFC_LNKC)
2112 		wol->wolopts |= WAKE_PHY;
2113 }
2114 
2115 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2116 {
2117 	struct igb_adapter *adapter = netdev_priv(netdev);
2118 
2119 	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_FILTER))
2120 		return -EOPNOTSUPP;
2121 
2122 	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2123 		return wol->wolopts ? -EOPNOTSUPP : 0;
2124 
2125 	/* these settings will always override what we currently have */
2126 	adapter->wol = 0;
2127 
2128 	if (wol->wolopts & WAKE_UCAST)
2129 		adapter->wol |= E1000_WUFC_EX;
2130 	if (wol->wolopts & WAKE_MCAST)
2131 		adapter->wol |= E1000_WUFC_MC;
2132 	if (wol->wolopts & WAKE_BCAST)
2133 		adapter->wol |= E1000_WUFC_BC;
2134 	if (wol->wolopts & WAKE_MAGIC)
2135 		adapter->wol |= E1000_WUFC_MAG;
2136 	if (wol->wolopts & WAKE_PHY)
2137 		adapter->wol |= E1000_WUFC_LNKC;
2138 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2139 
2140 	return 0;
2141 }
2142 
2143 /* bit defines for adapter->led_status */
2144 #define IGB_LED_ON		0
2145 
2146 static int igb_set_phys_id(struct net_device *netdev,
2147 			   enum ethtool_phys_id_state state)
2148 {
2149 	struct igb_adapter *adapter = netdev_priv(netdev);
2150 	struct e1000_hw *hw = &adapter->hw;
2151 
2152 	switch (state) {
2153 	case ETHTOOL_ID_ACTIVE:
2154 		igb_blink_led(hw);
2155 		return 2;
2156 	case ETHTOOL_ID_ON:
2157 		igb_blink_led(hw);
2158 		break;
2159 	case ETHTOOL_ID_OFF:
2160 		igb_led_off(hw);
2161 		break;
2162 	case ETHTOOL_ID_INACTIVE:
2163 		igb_led_off(hw);
2164 		clear_bit(IGB_LED_ON, &adapter->led_status);
2165 		igb_cleanup_led(hw);
2166 		break;
2167 	}
2168 
2169 	return 0;
2170 }
2171 
2172 static int igb_set_coalesce(struct net_device *netdev,
2173 			    struct ethtool_coalesce *ec)
2174 {
2175 	struct igb_adapter *adapter = netdev_priv(netdev);
2176 	int i;
2177 
2178 	if (ec->rx_max_coalesced_frames ||
2179 	    ec->rx_coalesce_usecs_irq ||
2180 	    ec->rx_max_coalesced_frames_irq ||
2181 	    ec->tx_max_coalesced_frames ||
2182 	    ec->tx_coalesce_usecs_irq ||
2183 	    ec->stats_block_coalesce_usecs ||
2184 	    ec->use_adaptive_rx_coalesce ||
2185 	    ec->use_adaptive_tx_coalesce ||
2186 	    ec->pkt_rate_low ||
2187 	    ec->rx_coalesce_usecs_low ||
2188 	    ec->rx_max_coalesced_frames_low ||
2189 	    ec->tx_coalesce_usecs_low ||
2190 	    ec->tx_max_coalesced_frames_low ||
2191 	    ec->pkt_rate_high ||
2192 	    ec->rx_coalesce_usecs_high ||
2193 	    ec->rx_max_coalesced_frames_high ||
2194 	    ec->tx_coalesce_usecs_high ||
2195 	    ec->tx_max_coalesced_frames_high ||
2196 	    ec->rate_sample_interval)
2197 		return -ENOTSUPP;
2198 
2199 	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2200 	    ((ec->rx_coalesce_usecs > 3) &&
2201 	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2202 	    (ec->rx_coalesce_usecs == 2))
2203 		return -EINVAL;
2204 
2205 	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2206 	    ((ec->tx_coalesce_usecs > 3) &&
2207 	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2208 	    (ec->tx_coalesce_usecs == 2))
2209 		return -EINVAL;
2210 
2211 	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2212 		return -EINVAL;
2213 
2214 	/* If ITR is disabled, disable DMAC */
2215 	if (ec->rx_coalesce_usecs == 0) {
2216 		if (adapter->flags & IGB_FLAG_DMAC)
2217 			adapter->flags &= ~IGB_FLAG_DMAC;
2218 	}
2219 
2220 	/* convert to rate of irq's per second */
2221 	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2222 		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2223 	else
2224 		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2225 
2226 	/* convert to rate of irq's per second */
2227 	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2228 		adapter->tx_itr_setting = adapter->rx_itr_setting;
2229 	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2230 		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2231 	else
2232 		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2233 
2234 	for (i = 0; i < adapter->num_q_vectors; i++) {
2235 		struct igb_q_vector *q_vector = adapter->q_vector[i];
2236 		q_vector->tx.work_limit = adapter->tx_work_limit;
2237 		if (q_vector->rx.ring)
2238 			q_vector->itr_val = adapter->rx_itr_setting;
2239 		else
2240 			q_vector->itr_val = adapter->tx_itr_setting;
2241 		if (q_vector->itr_val && q_vector->itr_val <= 3)
2242 			q_vector->itr_val = IGB_START_ITR;
2243 		q_vector->set_itr = 1;
2244 	}
2245 
2246 	return 0;
2247 }
2248 
2249 static int igb_get_coalesce(struct net_device *netdev,
2250 			    struct ethtool_coalesce *ec)
2251 {
2252 	struct igb_adapter *adapter = netdev_priv(netdev);
2253 
2254 	if (adapter->rx_itr_setting <= 3)
2255 		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2256 	else
2257 		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2258 
2259 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2260 		if (adapter->tx_itr_setting <= 3)
2261 			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2262 		else
2263 			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2264 	}
2265 
2266 	return 0;
2267 }
2268 
2269 static int igb_nway_reset(struct net_device *netdev)
2270 {
2271 	struct igb_adapter *adapter = netdev_priv(netdev);
2272 	if (netif_running(netdev))
2273 		igb_reinit_locked(adapter);
2274 	return 0;
2275 }
2276 
2277 static int igb_get_sset_count(struct net_device *netdev, int sset)
2278 {
2279 	switch (sset) {
2280 	case ETH_SS_STATS:
2281 		return IGB_STATS_LEN;
2282 	case ETH_SS_TEST:
2283 		return IGB_TEST_LEN;
2284 	case ETH_SS_PRIV_FLAGS:
2285 		return IGB_PRIV_FLAGS_STR_LEN;
2286 	default:
2287 		return -ENOTSUPP;
2288 	}
2289 }
2290 
2291 static void igb_get_ethtool_stats(struct net_device *netdev,
2292 				  struct ethtool_stats *stats, u64 *data)
2293 {
2294 	struct igb_adapter *adapter = netdev_priv(netdev);
2295 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2296 	unsigned int start;
2297 	struct igb_ring *ring;
2298 	int i, j;
2299 	char *p;
2300 
2301 	spin_lock(&adapter->stats64_lock);
2302 	igb_update_stats(adapter);
2303 
2304 	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2305 		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2306 		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2307 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2308 	}
2309 	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2310 		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2311 		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2312 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2313 	}
2314 	for (j = 0; j < adapter->num_tx_queues; j++) {
2315 		u64	restart2;
2316 
2317 		ring = adapter->tx_ring[j];
2318 		do {
2319 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
2320 			data[i]   = ring->tx_stats.packets;
2321 			data[i+1] = ring->tx_stats.bytes;
2322 			data[i+2] = ring->tx_stats.restart_queue;
2323 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
2324 		do {
2325 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp2);
2326 			restart2  = ring->tx_stats.restart_queue2;
2327 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start));
2328 		data[i+2] += restart2;
2329 
2330 		i += IGB_TX_QUEUE_STATS_LEN;
2331 	}
2332 	for (j = 0; j < adapter->num_rx_queues; j++) {
2333 		ring = adapter->rx_ring[j];
2334 		do {
2335 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
2336 			data[i]   = ring->rx_stats.packets;
2337 			data[i+1] = ring->rx_stats.bytes;
2338 			data[i+2] = ring->rx_stats.drops;
2339 			data[i+3] = ring->rx_stats.csum_err;
2340 			data[i+4] = ring->rx_stats.alloc_failed;
2341 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
2342 		i += IGB_RX_QUEUE_STATS_LEN;
2343 	}
2344 	spin_unlock(&adapter->stats64_lock);
2345 }
2346 
2347 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2348 {
2349 	struct igb_adapter *adapter = netdev_priv(netdev);
2350 	u8 *p = data;
2351 	int i;
2352 
2353 	switch (stringset) {
2354 	case ETH_SS_TEST:
2355 		memcpy(data, *igb_gstrings_test,
2356 			IGB_TEST_LEN*ETH_GSTRING_LEN);
2357 		break;
2358 	case ETH_SS_STATS:
2359 		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2360 			memcpy(p, igb_gstrings_stats[i].stat_string,
2361 			       ETH_GSTRING_LEN);
2362 			p += ETH_GSTRING_LEN;
2363 		}
2364 		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2365 			memcpy(p, igb_gstrings_net_stats[i].stat_string,
2366 			       ETH_GSTRING_LEN);
2367 			p += ETH_GSTRING_LEN;
2368 		}
2369 		for (i = 0; i < adapter->num_tx_queues; i++) {
2370 			sprintf(p, "tx_queue_%u_packets", i);
2371 			p += ETH_GSTRING_LEN;
2372 			sprintf(p, "tx_queue_%u_bytes", i);
2373 			p += ETH_GSTRING_LEN;
2374 			sprintf(p, "tx_queue_%u_restart", i);
2375 			p += ETH_GSTRING_LEN;
2376 		}
2377 		for (i = 0; i < adapter->num_rx_queues; i++) {
2378 			sprintf(p, "rx_queue_%u_packets", i);
2379 			p += ETH_GSTRING_LEN;
2380 			sprintf(p, "rx_queue_%u_bytes", i);
2381 			p += ETH_GSTRING_LEN;
2382 			sprintf(p, "rx_queue_%u_drops", i);
2383 			p += ETH_GSTRING_LEN;
2384 			sprintf(p, "rx_queue_%u_csum_err", i);
2385 			p += ETH_GSTRING_LEN;
2386 			sprintf(p, "rx_queue_%u_alloc_failed", i);
2387 			p += ETH_GSTRING_LEN;
2388 		}
2389 		/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2390 		break;
2391 	case ETH_SS_PRIV_FLAGS:
2392 		memcpy(data, igb_priv_flags_strings,
2393 		       IGB_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN);
2394 		break;
2395 	}
2396 }
2397 
2398 static int igb_get_ts_info(struct net_device *dev,
2399 			   struct ethtool_ts_info *info)
2400 {
2401 	struct igb_adapter *adapter = netdev_priv(dev);
2402 
2403 	if (adapter->ptp_clock)
2404 		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2405 	else
2406 		info->phc_index = -1;
2407 
2408 	switch (adapter->hw.mac.type) {
2409 	case e1000_82575:
2410 		info->so_timestamping =
2411 			SOF_TIMESTAMPING_TX_SOFTWARE |
2412 			SOF_TIMESTAMPING_RX_SOFTWARE |
2413 			SOF_TIMESTAMPING_SOFTWARE;
2414 		return 0;
2415 	case e1000_82576:
2416 	case e1000_82580:
2417 	case e1000_i350:
2418 	case e1000_i354:
2419 	case e1000_i210:
2420 	case e1000_i211:
2421 		info->so_timestamping =
2422 			SOF_TIMESTAMPING_TX_SOFTWARE |
2423 			SOF_TIMESTAMPING_RX_SOFTWARE |
2424 			SOF_TIMESTAMPING_SOFTWARE |
2425 			SOF_TIMESTAMPING_TX_HARDWARE |
2426 			SOF_TIMESTAMPING_RX_HARDWARE |
2427 			SOF_TIMESTAMPING_RAW_HARDWARE;
2428 
2429 		info->tx_types =
2430 			BIT(HWTSTAMP_TX_OFF) |
2431 			BIT(HWTSTAMP_TX_ON);
2432 
2433 		info->rx_filters = BIT(HWTSTAMP_FILTER_NONE);
2434 
2435 		/* 82576 does not support timestamping all packets. */
2436 		if (adapter->hw.mac.type >= e1000_82580)
2437 			info->rx_filters |= BIT(HWTSTAMP_FILTER_ALL);
2438 		else
2439 			info->rx_filters |=
2440 				BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2441 				BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2442 				BIT(HWTSTAMP_FILTER_PTP_V2_EVENT);
2443 
2444 		return 0;
2445 	default:
2446 		return -EOPNOTSUPP;
2447 	}
2448 }
2449 
2450 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2451 static int igb_get_ethtool_nfc_entry(struct igb_adapter *adapter,
2452 				     struct ethtool_rxnfc *cmd)
2453 {
2454 	struct ethtool_rx_flow_spec *fsp = &cmd->fs;
2455 	struct igb_nfc_filter *rule = NULL;
2456 
2457 	/* report total rule count */
2458 	cmd->data = IGB_MAX_RXNFC_FILTERS;
2459 
2460 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2461 		if (fsp->location <= rule->sw_idx)
2462 			break;
2463 	}
2464 
2465 	if (!rule || fsp->location != rule->sw_idx)
2466 		return -EINVAL;
2467 
2468 	if (rule->filter.match_flags) {
2469 		fsp->flow_type = ETHER_FLOW;
2470 		fsp->ring_cookie = rule->action;
2471 		if (rule->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2472 			fsp->h_u.ether_spec.h_proto = rule->filter.etype;
2473 			fsp->m_u.ether_spec.h_proto = ETHER_TYPE_FULL_MASK;
2474 		}
2475 		if (rule->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI) {
2476 			fsp->flow_type |= FLOW_EXT;
2477 			fsp->h_ext.vlan_tci = rule->filter.vlan_tci;
2478 			fsp->m_ext.vlan_tci = htons(VLAN_PRIO_MASK);
2479 		}
2480 		if (rule->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) {
2481 			ether_addr_copy(fsp->h_u.ether_spec.h_dest,
2482 					rule->filter.dst_addr);
2483 			/* As we only support matching by the full
2484 			 * mask, return the mask to userspace
2485 			 */
2486 			eth_broadcast_addr(fsp->m_u.ether_spec.h_dest);
2487 		}
2488 		if (rule->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) {
2489 			ether_addr_copy(fsp->h_u.ether_spec.h_source,
2490 					rule->filter.src_addr);
2491 			/* As we only support matching by the full
2492 			 * mask, return the mask to userspace
2493 			 */
2494 			eth_broadcast_addr(fsp->m_u.ether_spec.h_source);
2495 		}
2496 
2497 		return 0;
2498 	}
2499 	return -EINVAL;
2500 }
2501 
2502 static int igb_get_ethtool_nfc_all(struct igb_adapter *adapter,
2503 				   struct ethtool_rxnfc *cmd,
2504 				   u32 *rule_locs)
2505 {
2506 	struct igb_nfc_filter *rule;
2507 	int cnt = 0;
2508 
2509 	/* report total rule count */
2510 	cmd->data = IGB_MAX_RXNFC_FILTERS;
2511 
2512 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2513 		if (cnt == cmd->rule_cnt)
2514 			return -EMSGSIZE;
2515 		rule_locs[cnt] = rule->sw_idx;
2516 		cnt++;
2517 	}
2518 
2519 	cmd->rule_cnt = cnt;
2520 
2521 	return 0;
2522 }
2523 
2524 static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2525 				 struct ethtool_rxnfc *cmd)
2526 {
2527 	cmd->data = 0;
2528 
2529 	/* Report default options for RSS on igb */
2530 	switch (cmd->flow_type) {
2531 	case TCP_V4_FLOW:
2532 		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2533 		/* Fall through */
2534 	case UDP_V4_FLOW:
2535 		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2536 			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2537 		/* Fall through */
2538 	case SCTP_V4_FLOW:
2539 	case AH_ESP_V4_FLOW:
2540 	case AH_V4_FLOW:
2541 	case ESP_V4_FLOW:
2542 	case IPV4_FLOW:
2543 		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2544 		break;
2545 	case TCP_V6_FLOW:
2546 		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2547 		/* Fall through */
2548 	case UDP_V6_FLOW:
2549 		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2550 			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2551 		/* Fall through */
2552 	case SCTP_V6_FLOW:
2553 	case AH_ESP_V6_FLOW:
2554 	case AH_V6_FLOW:
2555 	case ESP_V6_FLOW:
2556 	case IPV6_FLOW:
2557 		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2558 		break;
2559 	default:
2560 		return -EINVAL;
2561 	}
2562 
2563 	return 0;
2564 }
2565 
2566 static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2567 			 u32 *rule_locs)
2568 {
2569 	struct igb_adapter *adapter = netdev_priv(dev);
2570 	int ret = -EOPNOTSUPP;
2571 
2572 	switch (cmd->cmd) {
2573 	case ETHTOOL_GRXRINGS:
2574 		cmd->data = adapter->num_rx_queues;
2575 		ret = 0;
2576 		break;
2577 	case ETHTOOL_GRXCLSRLCNT:
2578 		cmd->rule_cnt = adapter->nfc_filter_count;
2579 		ret = 0;
2580 		break;
2581 	case ETHTOOL_GRXCLSRULE:
2582 		ret = igb_get_ethtool_nfc_entry(adapter, cmd);
2583 		break;
2584 	case ETHTOOL_GRXCLSRLALL:
2585 		ret = igb_get_ethtool_nfc_all(adapter, cmd, rule_locs);
2586 		break;
2587 	case ETHTOOL_GRXFH:
2588 		ret = igb_get_rss_hash_opts(adapter, cmd);
2589 		break;
2590 	default:
2591 		break;
2592 	}
2593 
2594 	return ret;
2595 }
2596 
2597 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2598 		       IGB_FLAG_RSS_FIELD_IPV6_UDP)
2599 static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2600 				struct ethtool_rxnfc *nfc)
2601 {
2602 	u32 flags = adapter->flags;
2603 
2604 	/* RSS does not support anything other than hashing
2605 	 * to queues on src and dst IPs and ports
2606 	 */
2607 	if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2608 			  RXH_L4_B_0_1 | RXH_L4_B_2_3))
2609 		return -EINVAL;
2610 
2611 	switch (nfc->flow_type) {
2612 	case TCP_V4_FLOW:
2613 	case TCP_V6_FLOW:
2614 		if (!(nfc->data & RXH_IP_SRC) ||
2615 		    !(nfc->data & RXH_IP_DST) ||
2616 		    !(nfc->data & RXH_L4_B_0_1) ||
2617 		    !(nfc->data & RXH_L4_B_2_3))
2618 			return -EINVAL;
2619 		break;
2620 	case UDP_V4_FLOW:
2621 		if (!(nfc->data & RXH_IP_SRC) ||
2622 		    !(nfc->data & RXH_IP_DST))
2623 			return -EINVAL;
2624 		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2625 		case 0:
2626 			flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2627 			break;
2628 		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2629 			flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2630 			break;
2631 		default:
2632 			return -EINVAL;
2633 		}
2634 		break;
2635 	case UDP_V6_FLOW:
2636 		if (!(nfc->data & RXH_IP_SRC) ||
2637 		    !(nfc->data & RXH_IP_DST))
2638 			return -EINVAL;
2639 		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2640 		case 0:
2641 			flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2642 			break;
2643 		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2644 			flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2645 			break;
2646 		default:
2647 			return -EINVAL;
2648 		}
2649 		break;
2650 	case AH_ESP_V4_FLOW:
2651 	case AH_V4_FLOW:
2652 	case ESP_V4_FLOW:
2653 	case SCTP_V4_FLOW:
2654 	case AH_ESP_V6_FLOW:
2655 	case AH_V6_FLOW:
2656 	case ESP_V6_FLOW:
2657 	case SCTP_V6_FLOW:
2658 		if (!(nfc->data & RXH_IP_SRC) ||
2659 		    !(nfc->data & RXH_IP_DST) ||
2660 		    (nfc->data & RXH_L4_B_0_1) ||
2661 		    (nfc->data & RXH_L4_B_2_3))
2662 			return -EINVAL;
2663 		break;
2664 	default:
2665 		return -EINVAL;
2666 	}
2667 
2668 	/* if we changed something we need to update flags */
2669 	if (flags != adapter->flags) {
2670 		struct e1000_hw *hw = &adapter->hw;
2671 		u32 mrqc = rd32(E1000_MRQC);
2672 
2673 		if ((flags & UDP_RSS_FLAGS) &&
2674 		    !(adapter->flags & UDP_RSS_FLAGS))
2675 			dev_err(&adapter->pdev->dev,
2676 				"enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2677 
2678 		adapter->flags = flags;
2679 
2680 		/* Perform hash on these packet types */
2681 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2682 			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2683 			E1000_MRQC_RSS_FIELD_IPV6 |
2684 			E1000_MRQC_RSS_FIELD_IPV6_TCP;
2685 
2686 		mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2687 			  E1000_MRQC_RSS_FIELD_IPV6_UDP);
2688 
2689 		if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2690 			mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2691 
2692 		if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2693 			mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2694 
2695 		wr32(E1000_MRQC, mrqc);
2696 	}
2697 
2698 	return 0;
2699 }
2700 
2701 static int igb_rxnfc_write_etype_filter(struct igb_adapter *adapter,
2702 					struct igb_nfc_filter *input)
2703 {
2704 	struct e1000_hw *hw = &adapter->hw;
2705 	u8 i;
2706 	u32 etqf;
2707 	u16 etype;
2708 
2709 	/* find an empty etype filter register */
2710 	for (i = 0; i < MAX_ETYPE_FILTER; ++i) {
2711 		if (!adapter->etype_bitmap[i])
2712 			break;
2713 	}
2714 	if (i == MAX_ETYPE_FILTER) {
2715 		dev_err(&adapter->pdev->dev, "ethtool -N: etype filters are all used.\n");
2716 		return -EINVAL;
2717 	}
2718 
2719 	adapter->etype_bitmap[i] = true;
2720 
2721 	etqf = rd32(E1000_ETQF(i));
2722 	etype = ntohs(input->filter.etype & ETHER_TYPE_FULL_MASK);
2723 
2724 	etqf |= E1000_ETQF_FILTER_ENABLE;
2725 	etqf &= ~E1000_ETQF_ETYPE_MASK;
2726 	etqf |= (etype & E1000_ETQF_ETYPE_MASK);
2727 
2728 	etqf &= ~E1000_ETQF_QUEUE_MASK;
2729 	etqf |= ((input->action << E1000_ETQF_QUEUE_SHIFT)
2730 		& E1000_ETQF_QUEUE_MASK);
2731 	etqf |= E1000_ETQF_QUEUE_ENABLE;
2732 
2733 	wr32(E1000_ETQF(i), etqf);
2734 
2735 	input->etype_reg_index = i;
2736 
2737 	return 0;
2738 }
2739 
2740 static int igb_rxnfc_write_vlan_prio_filter(struct igb_adapter *adapter,
2741 					    struct igb_nfc_filter *input)
2742 {
2743 	struct e1000_hw *hw = &adapter->hw;
2744 	u8 vlan_priority;
2745 	u16 queue_index;
2746 	u32 vlapqf;
2747 
2748 	vlapqf = rd32(E1000_VLAPQF);
2749 	vlan_priority = (ntohs(input->filter.vlan_tci) & VLAN_PRIO_MASK)
2750 				>> VLAN_PRIO_SHIFT;
2751 	queue_index = (vlapqf >> (vlan_priority * 4)) & E1000_VLAPQF_QUEUE_MASK;
2752 
2753 	/* check whether this vlan prio is already set */
2754 	if ((vlapqf & E1000_VLAPQF_P_VALID(vlan_priority)) &&
2755 	    (queue_index != input->action)) {
2756 		dev_err(&adapter->pdev->dev, "ethtool rxnfc set vlan prio filter failed.\n");
2757 		return -EEXIST;
2758 	}
2759 
2760 	vlapqf |= E1000_VLAPQF_P_VALID(vlan_priority);
2761 	vlapqf |= E1000_VLAPQF_QUEUE_SEL(vlan_priority, input->action);
2762 
2763 	wr32(E1000_VLAPQF, vlapqf);
2764 
2765 	return 0;
2766 }
2767 
2768 int igb_add_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2769 {
2770 	struct e1000_hw *hw = &adapter->hw;
2771 	int err = -EINVAL;
2772 
2773 	if (hw->mac.type == e1000_i210 &&
2774 	    !(input->filter.match_flags & ~IGB_FILTER_FLAG_SRC_MAC_ADDR)) {
2775 		dev_err(&adapter->pdev->dev,
2776 			"i210 doesn't support flow classification rules specifying only source addresses.\n");
2777 		return -EOPNOTSUPP;
2778 	}
2779 
2780 	if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2781 		err = igb_rxnfc_write_etype_filter(adapter, input);
2782 		if (err)
2783 			return err;
2784 	}
2785 
2786 	if (input->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) {
2787 		err = igb_add_mac_steering_filter(adapter,
2788 						  input->filter.dst_addr,
2789 						  input->action, 0);
2790 		err = min_t(int, err, 0);
2791 		if (err)
2792 			return err;
2793 	}
2794 
2795 	if (input->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) {
2796 		err = igb_add_mac_steering_filter(adapter,
2797 						  input->filter.src_addr,
2798 						  input->action,
2799 						  IGB_MAC_STATE_SRC_ADDR);
2800 		err = min_t(int, err, 0);
2801 		if (err)
2802 			return err;
2803 	}
2804 
2805 	if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2806 		err = igb_rxnfc_write_vlan_prio_filter(adapter, input);
2807 
2808 	return err;
2809 }
2810 
2811 static void igb_clear_etype_filter_regs(struct igb_adapter *adapter,
2812 					u16 reg_index)
2813 {
2814 	struct e1000_hw *hw = &adapter->hw;
2815 	u32 etqf = rd32(E1000_ETQF(reg_index));
2816 
2817 	etqf &= ~E1000_ETQF_QUEUE_ENABLE;
2818 	etqf &= ~E1000_ETQF_QUEUE_MASK;
2819 	etqf &= ~E1000_ETQF_FILTER_ENABLE;
2820 
2821 	wr32(E1000_ETQF(reg_index), etqf);
2822 
2823 	adapter->etype_bitmap[reg_index] = false;
2824 }
2825 
2826 static void igb_clear_vlan_prio_filter(struct igb_adapter *adapter,
2827 				       u16 vlan_tci)
2828 {
2829 	struct e1000_hw *hw = &adapter->hw;
2830 	u8 vlan_priority;
2831 	u32 vlapqf;
2832 
2833 	vlan_priority = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
2834 
2835 	vlapqf = rd32(E1000_VLAPQF);
2836 	vlapqf &= ~E1000_VLAPQF_P_VALID(vlan_priority);
2837 	vlapqf &= ~E1000_VLAPQF_QUEUE_SEL(vlan_priority,
2838 						E1000_VLAPQF_QUEUE_MASK);
2839 
2840 	wr32(E1000_VLAPQF, vlapqf);
2841 }
2842 
2843 int igb_erase_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2844 {
2845 	if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE)
2846 		igb_clear_etype_filter_regs(adapter,
2847 					    input->etype_reg_index);
2848 
2849 	if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2850 		igb_clear_vlan_prio_filter(adapter,
2851 					   ntohs(input->filter.vlan_tci));
2852 
2853 	if (input->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR)
2854 		igb_del_mac_steering_filter(adapter, input->filter.src_addr,
2855 					    input->action,
2856 					    IGB_MAC_STATE_SRC_ADDR);
2857 
2858 	if (input->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR)
2859 		igb_del_mac_steering_filter(adapter, input->filter.dst_addr,
2860 					    input->action, 0);
2861 
2862 	return 0;
2863 }
2864 
2865 static int igb_update_ethtool_nfc_entry(struct igb_adapter *adapter,
2866 					struct igb_nfc_filter *input,
2867 					u16 sw_idx)
2868 {
2869 	struct igb_nfc_filter *rule, *parent;
2870 	int err = -EINVAL;
2871 
2872 	parent = NULL;
2873 	rule = NULL;
2874 
2875 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2876 		/* hash found, or no matching entry */
2877 		if (rule->sw_idx >= sw_idx)
2878 			break;
2879 		parent = rule;
2880 	}
2881 
2882 	/* if there is an old rule occupying our place remove it */
2883 	if (rule && (rule->sw_idx == sw_idx)) {
2884 		if (!input)
2885 			err = igb_erase_filter(adapter, rule);
2886 
2887 		hlist_del(&rule->nfc_node);
2888 		kfree(rule);
2889 		adapter->nfc_filter_count--;
2890 	}
2891 
2892 	/* If no input this was a delete, err should be 0 if a rule was
2893 	 * successfully found and removed from the list else -EINVAL
2894 	 */
2895 	if (!input)
2896 		return err;
2897 
2898 	/* initialize node */
2899 	INIT_HLIST_NODE(&input->nfc_node);
2900 
2901 	/* add filter to the list */
2902 	if (parent)
2903 		hlist_add_behind(&input->nfc_node, &parent->nfc_node);
2904 	else
2905 		hlist_add_head(&input->nfc_node, &adapter->nfc_filter_list);
2906 
2907 	/* update counts */
2908 	adapter->nfc_filter_count++;
2909 
2910 	return 0;
2911 }
2912 
2913 static int igb_add_ethtool_nfc_entry(struct igb_adapter *adapter,
2914 				     struct ethtool_rxnfc *cmd)
2915 {
2916 	struct net_device *netdev = adapter->netdev;
2917 	struct ethtool_rx_flow_spec *fsp =
2918 		(struct ethtool_rx_flow_spec *)&cmd->fs;
2919 	struct igb_nfc_filter *input, *rule;
2920 	int err = 0;
2921 
2922 	if (!(netdev->hw_features & NETIF_F_NTUPLE))
2923 		return -EOPNOTSUPP;
2924 
2925 	/* Don't allow programming if the action is a queue greater than
2926 	 * the number of online Rx queues.
2927 	 */
2928 	if ((fsp->ring_cookie == RX_CLS_FLOW_DISC) ||
2929 	    (fsp->ring_cookie >= adapter->num_rx_queues)) {
2930 		dev_err(&adapter->pdev->dev, "ethtool -N: The specified action is invalid\n");
2931 		return -EINVAL;
2932 	}
2933 
2934 	/* Don't allow indexes to exist outside of available space */
2935 	if (fsp->location >= IGB_MAX_RXNFC_FILTERS) {
2936 		dev_err(&adapter->pdev->dev, "Location out of range\n");
2937 		return -EINVAL;
2938 	}
2939 
2940 	if ((fsp->flow_type & ~FLOW_EXT) != ETHER_FLOW)
2941 		return -EINVAL;
2942 
2943 	input = kzalloc(sizeof(*input), GFP_KERNEL);
2944 	if (!input)
2945 		return -ENOMEM;
2946 
2947 	if (fsp->m_u.ether_spec.h_proto == ETHER_TYPE_FULL_MASK) {
2948 		input->filter.etype = fsp->h_u.ether_spec.h_proto;
2949 		input->filter.match_flags = IGB_FILTER_FLAG_ETHER_TYPE;
2950 	}
2951 
2952 	/* Only support matching addresses by the full mask */
2953 	if (is_broadcast_ether_addr(fsp->m_u.ether_spec.h_source)) {
2954 		input->filter.match_flags |= IGB_FILTER_FLAG_SRC_MAC_ADDR;
2955 		ether_addr_copy(input->filter.src_addr,
2956 				fsp->h_u.ether_spec.h_source);
2957 	}
2958 
2959 	/* Only support matching addresses by the full mask */
2960 	if (is_broadcast_ether_addr(fsp->m_u.ether_spec.h_dest)) {
2961 		input->filter.match_flags |= IGB_FILTER_FLAG_DST_MAC_ADDR;
2962 		ether_addr_copy(input->filter.dst_addr,
2963 				fsp->h_u.ether_spec.h_dest);
2964 	}
2965 
2966 	if ((fsp->flow_type & FLOW_EXT) && fsp->m_ext.vlan_tci) {
2967 		if (fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK)) {
2968 			err = -EINVAL;
2969 			goto err_out;
2970 		}
2971 		input->filter.vlan_tci = fsp->h_ext.vlan_tci;
2972 		input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2973 	}
2974 
2975 	input->action = fsp->ring_cookie;
2976 	input->sw_idx = fsp->location;
2977 
2978 	spin_lock(&adapter->nfc_lock);
2979 
2980 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2981 		if (!memcmp(&input->filter, &rule->filter,
2982 			    sizeof(input->filter))) {
2983 			err = -EEXIST;
2984 			dev_err(&adapter->pdev->dev,
2985 				"ethtool: this filter is already set\n");
2986 			goto err_out_w_lock;
2987 		}
2988 	}
2989 
2990 	err = igb_add_filter(adapter, input);
2991 	if (err)
2992 		goto err_out_w_lock;
2993 
2994 	igb_update_ethtool_nfc_entry(adapter, input, input->sw_idx);
2995 
2996 	spin_unlock(&adapter->nfc_lock);
2997 	return 0;
2998 
2999 err_out_w_lock:
3000 	spin_unlock(&adapter->nfc_lock);
3001 err_out:
3002 	kfree(input);
3003 	return err;
3004 }
3005 
3006 static int igb_del_ethtool_nfc_entry(struct igb_adapter *adapter,
3007 				     struct ethtool_rxnfc *cmd)
3008 {
3009 	struct ethtool_rx_flow_spec *fsp =
3010 		(struct ethtool_rx_flow_spec *)&cmd->fs;
3011 	int err;
3012 
3013 	spin_lock(&adapter->nfc_lock);
3014 	err = igb_update_ethtool_nfc_entry(adapter, NULL, fsp->location);
3015 	spin_unlock(&adapter->nfc_lock);
3016 
3017 	return err;
3018 }
3019 
3020 static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
3021 {
3022 	struct igb_adapter *adapter = netdev_priv(dev);
3023 	int ret = -EOPNOTSUPP;
3024 
3025 	switch (cmd->cmd) {
3026 	case ETHTOOL_SRXFH:
3027 		ret = igb_set_rss_hash_opt(adapter, cmd);
3028 		break;
3029 	case ETHTOOL_SRXCLSRLINS:
3030 		ret = igb_add_ethtool_nfc_entry(adapter, cmd);
3031 		break;
3032 	case ETHTOOL_SRXCLSRLDEL:
3033 		ret = igb_del_ethtool_nfc_entry(adapter, cmd);
3034 	default:
3035 		break;
3036 	}
3037 
3038 	return ret;
3039 }
3040 
3041 static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
3042 {
3043 	struct igb_adapter *adapter = netdev_priv(netdev);
3044 	struct e1000_hw *hw = &adapter->hw;
3045 	u32 ret_val;
3046 	u16 phy_data;
3047 
3048 	if ((hw->mac.type < e1000_i350) ||
3049 	    (hw->phy.media_type != e1000_media_type_copper))
3050 		return -EOPNOTSUPP;
3051 
3052 	edata->supported = (SUPPORTED_1000baseT_Full |
3053 			    SUPPORTED_100baseT_Full);
3054 	if (!hw->dev_spec._82575.eee_disable)
3055 		edata->advertised =
3056 			mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
3057 
3058 	/* The IPCNFG and EEER registers are not supported on I354. */
3059 	if (hw->mac.type == e1000_i354) {
3060 		igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
3061 	} else {
3062 		u32 eeer;
3063 
3064 		eeer = rd32(E1000_EEER);
3065 
3066 		/* EEE status on negotiated link */
3067 		if (eeer & E1000_EEER_EEE_NEG)
3068 			edata->eee_active = true;
3069 
3070 		if (eeer & E1000_EEER_TX_LPI_EN)
3071 			edata->tx_lpi_enabled = true;
3072 	}
3073 
3074 	/* EEE Link Partner Advertised */
3075 	switch (hw->mac.type) {
3076 	case e1000_i350:
3077 		ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
3078 					   &phy_data);
3079 		if (ret_val)
3080 			return -ENODATA;
3081 
3082 		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
3083 		break;
3084 	case e1000_i354:
3085 	case e1000_i210:
3086 	case e1000_i211:
3087 		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
3088 					     E1000_EEE_LP_ADV_DEV_I210,
3089 					     &phy_data);
3090 		if (ret_val)
3091 			return -ENODATA;
3092 
3093 		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
3094 
3095 		break;
3096 	default:
3097 		break;
3098 	}
3099 
3100 	edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
3101 
3102 	if ((hw->mac.type == e1000_i354) &&
3103 	    (edata->eee_enabled))
3104 		edata->tx_lpi_enabled = true;
3105 
3106 	/* Report correct negotiated EEE status for devices that
3107 	 * wrongly report EEE at half-duplex
3108 	 */
3109 	if (adapter->link_duplex == HALF_DUPLEX) {
3110 		edata->eee_enabled = false;
3111 		edata->eee_active = false;
3112 		edata->tx_lpi_enabled = false;
3113 		edata->advertised &= ~edata->advertised;
3114 	}
3115 
3116 	return 0;
3117 }
3118 
3119 static int igb_set_eee(struct net_device *netdev,
3120 		       struct ethtool_eee *edata)
3121 {
3122 	struct igb_adapter *adapter = netdev_priv(netdev);
3123 	struct e1000_hw *hw = &adapter->hw;
3124 	struct ethtool_eee eee_curr;
3125 	bool adv1g_eee = true, adv100m_eee = true;
3126 	s32 ret_val;
3127 
3128 	if ((hw->mac.type < e1000_i350) ||
3129 	    (hw->phy.media_type != e1000_media_type_copper))
3130 		return -EOPNOTSUPP;
3131 
3132 	memset(&eee_curr, 0, sizeof(struct ethtool_eee));
3133 
3134 	ret_val = igb_get_eee(netdev, &eee_curr);
3135 	if (ret_val)
3136 		return ret_val;
3137 
3138 	if (eee_curr.eee_enabled) {
3139 		if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
3140 			dev_err(&adapter->pdev->dev,
3141 				"Setting EEE tx-lpi is not supported\n");
3142 			return -EINVAL;
3143 		}
3144 
3145 		/* Tx LPI timer is not implemented currently */
3146 		if (edata->tx_lpi_timer) {
3147 			dev_err(&adapter->pdev->dev,
3148 				"Setting EEE Tx LPI timer is not supported\n");
3149 			return -EINVAL;
3150 		}
3151 
3152 		if (!edata->advertised || (edata->advertised &
3153 		    ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL))) {
3154 			dev_err(&adapter->pdev->dev,
3155 				"EEE Advertisement supports only 100Tx and/or 100T full duplex\n");
3156 			return -EINVAL;
3157 		}
3158 		adv100m_eee = !!(edata->advertised & ADVERTISE_100_FULL);
3159 		adv1g_eee = !!(edata->advertised & ADVERTISE_1000_FULL);
3160 
3161 	} else if (!edata->eee_enabled) {
3162 		dev_err(&adapter->pdev->dev,
3163 			"Setting EEE options are not supported with EEE disabled\n");
3164 		return -EINVAL;
3165 	}
3166 
3167 	adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
3168 	if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
3169 		hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
3170 		adapter->flags |= IGB_FLAG_EEE;
3171 
3172 		/* reset link */
3173 		if (netif_running(netdev))
3174 			igb_reinit_locked(adapter);
3175 		else
3176 			igb_reset(adapter);
3177 	}
3178 
3179 	if (hw->mac.type == e1000_i354)
3180 		ret_val = igb_set_eee_i354(hw, adv1g_eee, adv100m_eee);
3181 	else
3182 		ret_val = igb_set_eee_i350(hw, adv1g_eee, adv100m_eee);
3183 
3184 	if (ret_val) {
3185 		dev_err(&adapter->pdev->dev,
3186 			"Problem setting EEE advertisement options\n");
3187 		return -EINVAL;
3188 	}
3189 
3190 	return 0;
3191 }
3192 
3193 static int igb_get_module_info(struct net_device *netdev,
3194 			       struct ethtool_modinfo *modinfo)
3195 {
3196 	struct igb_adapter *adapter = netdev_priv(netdev);
3197 	struct e1000_hw *hw = &adapter->hw;
3198 	u32 status = 0;
3199 	u16 sff8472_rev, addr_mode;
3200 	bool page_swap = false;
3201 
3202 	if ((hw->phy.media_type == e1000_media_type_copper) ||
3203 	    (hw->phy.media_type == e1000_media_type_unknown))
3204 		return -EOPNOTSUPP;
3205 
3206 	/* Check whether we support SFF-8472 or not */
3207 	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
3208 	if (status)
3209 		return -EIO;
3210 
3211 	/* addressing mode is not supported */
3212 	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
3213 	if (status)
3214 		return -EIO;
3215 
3216 	/* addressing mode is not supported */
3217 	if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
3218 		hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
3219 		page_swap = true;
3220 	}
3221 
3222 	if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
3223 		/* We have an SFP, but it does not support SFF-8472 */
3224 		modinfo->type = ETH_MODULE_SFF_8079;
3225 		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
3226 	} else {
3227 		/* We have an SFP which supports a revision of SFF-8472 */
3228 		modinfo->type = ETH_MODULE_SFF_8472;
3229 		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
3230 	}
3231 
3232 	return 0;
3233 }
3234 
3235 static int igb_get_module_eeprom(struct net_device *netdev,
3236 				 struct ethtool_eeprom *ee, u8 *data)
3237 {
3238 	struct igb_adapter *adapter = netdev_priv(netdev);
3239 	struct e1000_hw *hw = &adapter->hw;
3240 	u32 status = 0;
3241 	u16 *dataword;
3242 	u16 first_word, last_word;
3243 	int i = 0;
3244 
3245 	if (ee->len == 0)
3246 		return -EINVAL;
3247 
3248 	first_word = ee->offset >> 1;
3249 	last_word = (ee->offset + ee->len - 1) >> 1;
3250 
3251 	dataword = kmalloc_array(last_word - first_word + 1, sizeof(u16),
3252 				 GFP_KERNEL);
3253 	if (!dataword)
3254 		return -ENOMEM;
3255 
3256 	/* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
3257 	for (i = 0; i < last_word - first_word + 1; i++) {
3258 		status = igb_read_phy_reg_i2c(hw, (first_word + i) * 2,
3259 					      &dataword[i]);
3260 		if (status) {
3261 			/* Error occurred while reading module */
3262 			kfree(dataword);
3263 			return -EIO;
3264 		}
3265 
3266 		be16_to_cpus(&dataword[i]);
3267 	}
3268 
3269 	memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
3270 	kfree(dataword);
3271 
3272 	return 0;
3273 }
3274 
3275 static int igb_ethtool_begin(struct net_device *netdev)
3276 {
3277 	struct igb_adapter *adapter = netdev_priv(netdev);
3278 	pm_runtime_get_sync(&adapter->pdev->dev);
3279 	return 0;
3280 }
3281 
3282 static void igb_ethtool_complete(struct net_device *netdev)
3283 {
3284 	struct igb_adapter *adapter = netdev_priv(netdev);
3285 	pm_runtime_put(&adapter->pdev->dev);
3286 }
3287 
3288 static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
3289 {
3290 	return IGB_RETA_SIZE;
3291 }
3292 
3293 static int igb_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key,
3294 			u8 *hfunc)
3295 {
3296 	struct igb_adapter *adapter = netdev_priv(netdev);
3297 	int i;
3298 
3299 	if (hfunc)
3300 		*hfunc = ETH_RSS_HASH_TOP;
3301 	if (!indir)
3302 		return 0;
3303 	for (i = 0; i < IGB_RETA_SIZE; i++)
3304 		indir[i] = adapter->rss_indir_tbl[i];
3305 
3306 	return 0;
3307 }
3308 
3309 void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
3310 {
3311 	struct e1000_hw *hw = &adapter->hw;
3312 	u32 reg = E1000_RETA(0);
3313 	u32 shift = 0;
3314 	int i = 0;
3315 
3316 	switch (hw->mac.type) {
3317 	case e1000_82575:
3318 		shift = 6;
3319 		break;
3320 	case e1000_82576:
3321 		/* 82576 supports 2 RSS queues for SR-IOV */
3322 		if (adapter->vfs_allocated_count)
3323 			shift = 3;
3324 		break;
3325 	default:
3326 		break;
3327 	}
3328 
3329 	while (i < IGB_RETA_SIZE) {
3330 		u32 val = 0;
3331 		int j;
3332 
3333 		for (j = 3; j >= 0; j--) {
3334 			val <<= 8;
3335 			val |= adapter->rss_indir_tbl[i + j];
3336 		}
3337 
3338 		wr32(reg, val << shift);
3339 		reg += 4;
3340 		i += 4;
3341 	}
3342 }
3343 
3344 static int igb_set_rxfh(struct net_device *netdev, const u32 *indir,
3345 			const u8 *key, const u8 hfunc)
3346 {
3347 	struct igb_adapter *adapter = netdev_priv(netdev);
3348 	struct e1000_hw *hw = &adapter->hw;
3349 	int i;
3350 	u32 num_queues;
3351 
3352 	/* We do not allow change in unsupported parameters */
3353 	if (key ||
3354 	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
3355 		return -EOPNOTSUPP;
3356 	if (!indir)
3357 		return 0;
3358 
3359 	num_queues = adapter->rss_queues;
3360 
3361 	switch (hw->mac.type) {
3362 	case e1000_82576:
3363 		/* 82576 supports 2 RSS queues for SR-IOV */
3364 		if (adapter->vfs_allocated_count)
3365 			num_queues = 2;
3366 		break;
3367 	default:
3368 		break;
3369 	}
3370 
3371 	/* Verify user input. */
3372 	for (i = 0; i < IGB_RETA_SIZE; i++)
3373 		if (indir[i] >= num_queues)
3374 			return -EINVAL;
3375 
3376 
3377 	for (i = 0; i < IGB_RETA_SIZE; i++)
3378 		adapter->rss_indir_tbl[i] = indir[i];
3379 
3380 	igb_write_rss_indir_tbl(adapter);
3381 
3382 	return 0;
3383 }
3384 
3385 static unsigned int igb_max_channels(struct igb_adapter *adapter)
3386 {
3387 	return igb_get_max_rss_queues(adapter);
3388 }
3389 
3390 static void igb_get_channels(struct net_device *netdev,
3391 			     struct ethtool_channels *ch)
3392 {
3393 	struct igb_adapter *adapter = netdev_priv(netdev);
3394 
3395 	/* Report maximum channels */
3396 	ch->max_combined = igb_max_channels(adapter);
3397 
3398 	/* Report info for other vector */
3399 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
3400 		ch->max_other = NON_Q_VECTORS;
3401 		ch->other_count = NON_Q_VECTORS;
3402 	}
3403 
3404 	ch->combined_count = adapter->rss_queues;
3405 }
3406 
3407 static int igb_set_channels(struct net_device *netdev,
3408 			    struct ethtool_channels *ch)
3409 {
3410 	struct igb_adapter *adapter = netdev_priv(netdev);
3411 	unsigned int count = ch->combined_count;
3412 	unsigned int max_combined = 0;
3413 
3414 	/* Verify they are not requesting separate vectors */
3415 	if (!count || ch->rx_count || ch->tx_count)
3416 		return -EINVAL;
3417 
3418 	/* Verify other_count is valid and has not been changed */
3419 	if (ch->other_count != NON_Q_VECTORS)
3420 		return -EINVAL;
3421 
3422 	/* Verify the number of channels doesn't exceed hw limits */
3423 	max_combined = igb_max_channels(adapter);
3424 	if (count > max_combined)
3425 		return -EINVAL;
3426 
3427 	if (count != adapter->rss_queues) {
3428 		adapter->rss_queues = count;
3429 		igb_set_flag_queue_pairs(adapter, max_combined);
3430 
3431 		/* Hardware has to reinitialize queues and interrupts to
3432 		 * match the new configuration.
3433 		 */
3434 		return igb_reinit_queues(adapter);
3435 	}
3436 
3437 	return 0;
3438 }
3439 
3440 static u32 igb_get_priv_flags(struct net_device *netdev)
3441 {
3442 	struct igb_adapter *adapter = netdev_priv(netdev);
3443 	u32 priv_flags = 0;
3444 
3445 	if (adapter->flags & IGB_FLAG_RX_LEGACY)
3446 		priv_flags |= IGB_PRIV_FLAGS_LEGACY_RX;
3447 
3448 	return priv_flags;
3449 }
3450 
3451 static int igb_set_priv_flags(struct net_device *netdev, u32 priv_flags)
3452 {
3453 	struct igb_adapter *adapter = netdev_priv(netdev);
3454 	unsigned int flags = adapter->flags;
3455 
3456 	flags &= ~IGB_FLAG_RX_LEGACY;
3457 	if (priv_flags & IGB_PRIV_FLAGS_LEGACY_RX)
3458 		flags |= IGB_FLAG_RX_LEGACY;
3459 
3460 	if (flags != adapter->flags) {
3461 		adapter->flags = flags;
3462 
3463 		/* reset interface to repopulate queues */
3464 		if (netif_running(netdev))
3465 			igb_reinit_locked(adapter);
3466 	}
3467 
3468 	return 0;
3469 }
3470 
3471 static const struct ethtool_ops igb_ethtool_ops = {
3472 	.get_drvinfo		= igb_get_drvinfo,
3473 	.get_regs_len		= igb_get_regs_len,
3474 	.get_regs		= igb_get_regs,
3475 	.get_wol		= igb_get_wol,
3476 	.set_wol		= igb_set_wol,
3477 	.get_msglevel		= igb_get_msglevel,
3478 	.set_msglevel		= igb_set_msglevel,
3479 	.nway_reset		= igb_nway_reset,
3480 	.get_link		= igb_get_link,
3481 	.get_eeprom_len		= igb_get_eeprom_len,
3482 	.get_eeprom		= igb_get_eeprom,
3483 	.set_eeprom		= igb_set_eeprom,
3484 	.get_ringparam		= igb_get_ringparam,
3485 	.set_ringparam		= igb_set_ringparam,
3486 	.get_pauseparam		= igb_get_pauseparam,
3487 	.set_pauseparam		= igb_set_pauseparam,
3488 	.self_test		= igb_diag_test,
3489 	.get_strings		= igb_get_strings,
3490 	.set_phys_id		= igb_set_phys_id,
3491 	.get_sset_count		= igb_get_sset_count,
3492 	.get_ethtool_stats	= igb_get_ethtool_stats,
3493 	.get_coalesce		= igb_get_coalesce,
3494 	.set_coalesce		= igb_set_coalesce,
3495 	.get_ts_info		= igb_get_ts_info,
3496 	.get_rxnfc		= igb_get_rxnfc,
3497 	.set_rxnfc		= igb_set_rxnfc,
3498 	.get_eee		= igb_get_eee,
3499 	.set_eee		= igb_set_eee,
3500 	.get_module_info	= igb_get_module_info,
3501 	.get_module_eeprom	= igb_get_module_eeprom,
3502 	.get_rxfh_indir_size	= igb_get_rxfh_indir_size,
3503 	.get_rxfh		= igb_get_rxfh,
3504 	.set_rxfh		= igb_set_rxfh,
3505 	.get_channels		= igb_get_channels,
3506 	.set_channels		= igb_set_channels,
3507 	.get_priv_flags		= igb_get_priv_flags,
3508 	.set_priv_flags		= igb_set_priv_flags,
3509 	.begin			= igb_ethtool_begin,
3510 	.complete		= igb_ethtool_complete,
3511 	.get_link_ksettings	= igb_get_link_ksettings,
3512 	.set_link_ksettings	= igb_set_link_ksettings,
3513 };
3514 
3515 void igb_set_ethtool_ops(struct net_device *netdev)
3516 {
3517 	netdev->ethtool_ops = &igb_ethtool_ops;
3518 }
3519