1 /* Intel(R) Gigabit Ethernet Linux driver 2 * Copyright(c) 2007-2014 Intel Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, see <http://www.gnu.org/licenses/>. 15 * 16 * The full GNU General Public License is included in this distribution in 17 * the file called "COPYING". 18 * 19 * Contact Information: 20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 22 */ 23 24 /* ethtool support for igb */ 25 26 #include <linux/vmalloc.h> 27 #include <linux/netdevice.h> 28 #include <linux/pci.h> 29 #include <linux/delay.h> 30 #include <linux/interrupt.h> 31 #include <linux/if_ether.h> 32 #include <linux/ethtool.h> 33 #include <linux/sched.h> 34 #include <linux/slab.h> 35 #include <linux/pm_runtime.h> 36 #include <linux/highmem.h> 37 #include <linux/mdio.h> 38 39 #include "igb.h" 40 41 struct igb_stats { 42 char stat_string[ETH_GSTRING_LEN]; 43 int sizeof_stat; 44 int stat_offset; 45 }; 46 47 #define IGB_STAT(_name, _stat) { \ 48 .stat_string = _name, \ 49 .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \ 50 .stat_offset = offsetof(struct igb_adapter, _stat) \ 51 } 52 static const struct igb_stats igb_gstrings_stats[] = { 53 IGB_STAT("rx_packets", stats.gprc), 54 IGB_STAT("tx_packets", stats.gptc), 55 IGB_STAT("rx_bytes", stats.gorc), 56 IGB_STAT("tx_bytes", stats.gotc), 57 IGB_STAT("rx_broadcast", stats.bprc), 58 IGB_STAT("tx_broadcast", stats.bptc), 59 IGB_STAT("rx_multicast", stats.mprc), 60 IGB_STAT("tx_multicast", stats.mptc), 61 IGB_STAT("multicast", stats.mprc), 62 IGB_STAT("collisions", stats.colc), 63 IGB_STAT("rx_crc_errors", stats.crcerrs), 64 IGB_STAT("rx_no_buffer_count", stats.rnbc), 65 IGB_STAT("rx_missed_errors", stats.mpc), 66 IGB_STAT("tx_aborted_errors", stats.ecol), 67 IGB_STAT("tx_carrier_errors", stats.tncrs), 68 IGB_STAT("tx_window_errors", stats.latecol), 69 IGB_STAT("tx_abort_late_coll", stats.latecol), 70 IGB_STAT("tx_deferred_ok", stats.dc), 71 IGB_STAT("tx_single_coll_ok", stats.scc), 72 IGB_STAT("tx_multi_coll_ok", stats.mcc), 73 IGB_STAT("tx_timeout_count", tx_timeout_count), 74 IGB_STAT("rx_long_length_errors", stats.roc), 75 IGB_STAT("rx_short_length_errors", stats.ruc), 76 IGB_STAT("rx_align_errors", stats.algnerrc), 77 IGB_STAT("tx_tcp_seg_good", stats.tsctc), 78 IGB_STAT("tx_tcp_seg_failed", stats.tsctfc), 79 IGB_STAT("rx_flow_control_xon", stats.xonrxc), 80 IGB_STAT("rx_flow_control_xoff", stats.xoffrxc), 81 IGB_STAT("tx_flow_control_xon", stats.xontxc), 82 IGB_STAT("tx_flow_control_xoff", stats.xofftxc), 83 IGB_STAT("rx_long_byte_count", stats.gorc), 84 IGB_STAT("tx_dma_out_of_sync", stats.doosync), 85 IGB_STAT("tx_smbus", stats.mgptc), 86 IGB_STAT("rx_smbus", stats.mgprc), 87 IGB_STAT("dropped_smbus", stats.mgpdc), 88 IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc), 89 IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc), 90 IGB_STAT("os2bmc_tx_by_host", stats.o2bspc), 91 IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc), 92 IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts), 93 IGB_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped), 94 IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared), 95 }; 96 97 #define IGB_NETDEV_STAT(_net_stat) { \ 98 .stat_string = __stringify(_net_stat), \ 99 .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \ 100 .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \ 101 } 102 static const struct igb_stats igb_gstrings_net_stats[] = { 103 IGB_NETDEV_STAT(rx_errors), 104 IGB_NETDEV_STAT(tx_errors), 105 IGB_NETDEV_STAT(tx_dropped), 106 IGB_NETDEV_STAT(rx_length_errors), 107 IGB_NETDEV_STAT(rx_over_errors), 108 IGB_NETDEV_STAT(rx_frame_errors), 109 IGB_NETDEV_STAT(rx_fifo_errors), 110 IGB_NETDEV_STAT(tx_fifo_errors), 111 IGB_NETDEV_STAT(tx_heartbeat_errors) 112 }; 113 114 #define IGB_GLOBAL_STATS_LEN \ 115 (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats)) 116 #define IGB_NETDEV_STATS_LEN \ 117 (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats)) 118 #define IGB_RX_QUEUE_STATS_LEN \ 119 (sizeof(struct igb_rx_queue_stats) / sizeof(u64)) 120 121 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */ 122 123 #define IGB_QUEUE_STATS_LEN \ 124 ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \ 125 IGB_RX_QUEUE_STATS_LEN) + \ 126 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \ 127 IGB_TX_QUEUE_STATS_LEN)) 128 #define IGB_STATS_LEN \ 129 (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN) 130 131 enum igb_diagnostics_results { 132 TEST_REG = 0, 133 TEST_EEP, 134 TEST_IRQ, 135 TEST_LOOP, 136 TEST_LINK 137 }; 138 139 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = { 140 [TEST_REG] = "Register test (offline)", 141 [TEST_EEP] = "Eeprom test (offline)", 142 [TEST_IRQ] = "Interrupt test (offline)", 143 [TEST_LOOP] = "Loopback test (offline)", 144 [TEST_LINK] = "Link test (on/offline)" 145 }; 146 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN) 147 148 static const char igb_priv_flags_strings[][ETH_GSTRING_LEN] = { 149 #define IGB_PRIV_FLAGS_LEGACY_RX BIT(0) 150 "legacy-rx", 151 }; 152 153 #define IGB_PRIV_FLAGS_STR_LEN ARRAY_SIZE(igb_priv_flags_strings) 154 155 static int igb_get_link_ksettings(struct net_device *netdev, 156 struct ethtool_link_ksettings *cmd) 157 { 158 struct igb_adapter *adapter = netdev_priv(netdev); 159 struct e1000_hw *hw = &adapter->hw; 160 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; 161 struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags; 162 u32 status; 163 u32 speed; 164 u32 supported, advertising; 165 166 status = rd32(E1000_STATUS); 167 if (hw->phy.media_type == e1000_media_type_copper) { 168 169 supported = (SUPPORTED_10baseT_Half | 170 SUPPORTED_10baseT_Full | 171 SUPPORTED_100baseT_Half | 172 SUPPORTED_100baseT_Full | 173 SUPPORTED_1000baseT_Full| 174 SUPPORTED_Autoneg | 175 SUPPORTED_TP | 176 SUPPORTED_Pause); 177 advertising = ADVERTISED_TP; 178 179 if (hw->mac.autoneg == 1) { 180 advertising |= ADVERTISED_Autoneg; 181 /* the e1000 autoneg seems to match ethtool nicely */ 182 advertising |= hw->phy.autoneg_advertised; 183 } 184 185 cmd->base.port = PORT_TP; 186 cmd->base.phy_address = hw->phy.addr; 187 } else { 188 supported = (SUPPORTED_FIBRE | 189 SUPPORTED_1000baseKX_Full | 190 SUPPORTED_Autoneg | 191 SUPPORTED_Pause); 192 advertising = (ADVERTISED_FIBRE | 193 ADVERTISED_1000baseKX_Full); 194 if (hw->mac.type == e1000_i354) { 195 if ((hw->device_id == 196 E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) && 197 !(status & E1000_STATUS_2P5_SKU_OVER)) { 198 supported |= SUPPORTED_2500baseX_Full; 199 supported &= ~SUPPORTED_1000baseKX_Full; 200 advertising |= ADVERTISED_2500baseX_Full; 201 advertising &= ~ADVERTISED_1000baseKX_Full; 202 } 203 } 204 if (eth_flags->e100_base_fx) { 205 supported |= SUPPORTED_100baseT_Full; 206 advertising |= ADVERTISED_100baseT_Full; 207 } 208 if (hw->mac.autoneg == 1) 209 advertising |= ADVERTISED_Autoneg; 210 211 cmd->base.port = PORT_FIBRE; 212 } 213 if (hw->mac.autoneg != 1) 214 advertising &= ~(ADVERTISED_Pause | 215 ADVERTISED_Asym_Pause); 216 217 switch (hw->fc.requested_mode) { 218 case e1000_fc_full: 219 advertising |= ADVERTISED_Pause; 220 break; 221 case e1000_fc_rx_pause: 222 advertising |= (ADVERTISED_Pause | 223 ADVERTISED_Asym_Pause); 224 break; 225 case e1000_fc_tx_pause: 226 advertising |= ADVERTISED_Asym_Pause; 227 break; 228 default: 229 advertising &= ~(ADVERTISED_Pause | 230 ADVERTISED_Asym_Pause); 231 } 232 if (status & E1000_STATUS_LU) { 233 if ((status & E1000_STATUS_2P5_SKU) && 234 !(status & E1000_STATUS_2P5_SKU_OVER)) { 235 speed = SPEED_2500; 236 } else if (status & E1000_STATUS_SPEED_1000) { 237 speed = SPEED_1000; 238 } else if (status & E1000_STATUS_SPEED_100) { 239 speed = SPEED_100; 240 } else { 241 speed = SPEED_10; 242 } 243 if ((status & E1000_STATUS_FD) || 244 hw->phy.media_type != e1000_media_type_copper) 245 cmd->base.duplex = DUPLEX_FULL; 246 else 247 cmd->base.duplex = DUPLEX_HALF; 248 } else { 249 speed = SPEED_UNKNOWN; 250 cmd->base.duplex = DUPLEX_UNKNOWN; 251 } 252 cmd->base.speed = speed; 253 if ((hw->phy.media_type == e1000_media_type_fiber) || 254 hw->mac.autoneg) 255 cmd->base.autoneg = AUTONEG_ENABLE; 256 else 257 cmd->base.autoneg = AUTONEG_DISABLE; 258 259 /* MDI-X => 2; MDI =>1; Invalid =>0 */ 260 if (hw->phy.media_type == e1000_media_type_copper) 261 cmd->base.eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : 262 ETH_TP_MDI; 263 else 264 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID; 265 266 if (hw->phy.mdix == AUTO_ALL_MODES) 267 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; 268 else 269 cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix; 270 271 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 272 supported); 273 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 274 advertising); 275 276 return 0; 277 } 278 279 static int igb_set_link_ksettings(struct net_device *netdev, 280 const struct ethtool_link_ksettings *cmd) 281 { 282 struct igb_adapter *adapter = netdev_priv(netdev); 283 struct e1000_hw *hw = &adapter->hw; 284 u32 advertising; 285 286 /* When SoL/IDER sessions are active, autoneg/speed/duplex 287 * cannot be changed 288 */ 289 if (igb_check_reset_block(hw)) { 290 dev_err(&adapter->pdev->dev, 291 "Cannot change link characteristics when SoL/IDER is active.\n"); 292 return -EINVAL; 293 } 294 295 /* MDI setting is only allowed when autoneg enabled because 296 * some hardware doesn't allow MDI setting when speed or 297 * duplex is forced. 298 */ 299 if (cmd->base.eth_tp_mdix_ctrl) { 300 if (hw->phy.media_type != e1000_media_type_copper) 301 return -EOPNOTSUPP; 302 303 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && 304 (cmd->base.autoneg != AUTONEG_ENABLE)) { 305 dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); 306 return -EINVAL; 307 } 308 } 309 310 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 311 usleep_range(1000, 2000); 312 313 ethtool_convert_link_mode_to_legacy_u32(&advertising, 314 cmd->link_modes.advertising); 315 316 if (cmd->base.autoneg == AUTONEG_ENABLE) { 317 hw->mac.autoneg = 1; 318 if (hw->phy.media_type == e1000_media_type_fiber) { 319 hw->phy.autoneg_advertised = advertising | 320 ADVERTISED_FIBRE | 321 ADVERTISED_Autoneg; 322 switch (adapter->link_speed) { 323 case SPEED_2500: 324 hw->phy.autoneg_advertised = 325 ADVERTISED_2500baseX_Full; 326 break; 327 case SPEED_1000: 328 hw->phy.autoneg_advertised = 329 ADVERTISED_1000baseT_Full; 330 break; 331 case SPEED_100: 332 hw->phy.autoneg_advertised = 333 ADVERTISED_100baseT_Full; 334 break; 335 default: 336 break; 337 } 338 } else { 339 hw->phy.autoneg_advertised = advertising | 340 ADVERTISED_TP | 341 ADVERTISED_Autoneg; 342 } 343 advertising = hw->phy.autoneg_advertised; 344 if (adapter->fc_autoneg) 345 hw->fc.requested_mode = e1000_fc_default; 346 } else { 347 u32 speed = cmd->base.speed; 348 /* calling this overrides forced MDI setting */ 349 if (igb_set_spd_dplx(adapter, speed, cmd->base.duplex)) { 350 clear_bit(__IGB_RESETTING, &adapter->state); 351 return -EINVAL; 352 } 353 } 354 355 /* MDI-X => 2; MDI => 1; Auto => 3 */ 356 if (cmd->base.eth_tp_mdix_ctrl) { 357 /* fix up the value for auto (3 => 0) as zero is mapped 358 * internally to auto 359 */ 360 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) 361 hw->phy.mdix = AUTO_ALL_MODES; 362 else 363 hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl; 364 } 365 366 /* reset the link */ 367 if (netif_running(adapter->netdev)) { 368 igb_down(adapter); 369 igb_up(adapter); 370 } else 371 igb_reset(adapter); 372 373 clear_bit(__IGB_RESETTING, &adapter->state); 374 return 0; 375 } 376 377 static u32 igb_get_link(struct net_device *netdev) 378 { 379 struct igb_adapter *adapter = netdev_priv(netdev); 380 struct e1000_mac_info *mac = &adapter->hw.mac; 381 382 /* If the link is not reported up to netdev, interrupts are disabled, 383 * and so the physical link state may have changed since we last 384 * looked. Set get_link_status to make sure that the true link 385 * state is interrogated, rather than pulling a cached and possibly 386 * stale link state from the driver. 387 */ 388 if (!netif_carrier_ok(netdev)) 389 mac->get_link_status = 1; 390 391 return igb_has_link(adapter); 392 } 393 394 static void igb_get_pauseparam(struct net_device *netdev, 395 struct ethtool_pauseparam *pause) 396 { 397 struct igb_adapter *adapter = netdev_priv(netdev); 398 struct e1000_hw *hw = &adapter->hw; 399 400 pause->autoneg = 401 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 402 403 if (hw->fc.current_mode == e1000_fc_rx_pause) 404 pause->rx_pause = 1; 405 else if (hw->fc.current_mode == e1000_fc_tx_pause) 406 pause->tx_pause = 1; 407 else if (hw->fc.current_mode == e1000_fc_full) { 408 pause->rx_pause = 1; 409 pause->tx_pause = 1; 410 } 411 } 412 413 static int igb_set_pauseparam(struct net_device *netdev, 414 struct ethtool_pauseparam *pause) 415 { 416 struct igb_adapter *adapter = netdev_priv(netdev); 417 struct e1000_hw *hw = &adapter->hw; 418 int retval = 0; 419 420 /* 100basefx does not support setting link flow control */ 421 if (hw->dev_spec._82575.eth_flags.e100_base_fx) 422 return -EINVAL; 423 424 adapter->fc_autoneg = pause->autoneg; 425 426 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 427 usleep_range(1000, 2000); 428 429 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 430 hw->fc.requested_mode = e1000_fc_default; 431 if (netif_running(adapter->netdev)) { 432 igb_down(adapter); 433 igb_up(adapter); 434 } else { 435 igb_reset(adapter); 436 } 437 } else { 438 if (pause->rx_pause && pause->tx_pause) 439 hw->fc.requested_mode = e1000_fc_full; 440 else if (pause->rx_pause && !pause->tx_pause) 441 hw->fc.requested_mode = e1000_fc_rx_pause; 442 else if (!pause->rx_pause && pause->tx_pause) 443 hw->fc.requested_mode = e1000_fc_tx_pause; 444 else if (!pause->rx_pause && !pause->tx_pause) 445 hw->fc.requested_mode = e1000_fc_none; 446 447 hw->fc.current_mode = hw->fc.requested_mode; 448 449 retval = ((hw->phy.media_type == e1000_media_type_copper) ? 450 igb_force_mac_fc(hw) : igb_setup_link(hw)); 451 } 452 453 clear_bit(__IGB_RESETTING, &adapter->state); 454 return retval; 455 } 456 457 static u32 igb_get_msglevel(struct net_device *netdev) 458 { 459 struct igb_adapter *adapter = netdev_priv(netdev); 460 return adapter->msg_enable; 461 } 462 463 static void igb_set_msglevel(struct net_device *netdev, u32 data) 464 { 465 struct igb_adapter *adapter = netdev_priv(netdev); 466 adapter->msg_enable = data; 467 } 468 469 static int igb_get_regs_len(struct net_device *netdev) 470 { 471 #define IGB_REGS_LEN 739 472 return IGB_REGS_LEN * sizeof(u32); 473 } 474 475 static void igb_get_regs(struct net_device *netdev, 476 struct ethtool_regs *regs, void *p) 477 { 478 struct igb_adapter *adapter = netdev_priv(netdev); 479 struct e1000_hw *hw = &adapter->hw; 480 u32 *regs_buff = p; 481 u8 i; 482 483 memset(p, 0, IGB_REGS_LEN * sizeof(u32)); 484 485 regs->version = (1u << 24) | (hw->revision_id << 16) | hw->device_id; 486 487 /* General Registers */ 488 regs_buff[0] = rd32(E1000_CTRL); 489 regs_buff[1] = rd32(E1000_STATUS); 490 regs_buff[2] = rd32(E1000_CTRL_EXT); 491 regs_buff[3] = rd32(E1000_MDIC); 492 regs_buff[4] = rd32(E1000_SCTL); 493 regs_buff[5] = rd32(E1000_CONNSW); 494 regs_buff[6] = rd32(E1000_VET); 495 regs_buff[7] = rd32(E1000_LEDCTL); 496 regs_buff[8] = rd32(E1000_PBA); 497 regs_buff[9] = rd32(E1000_PBS); 498 regs_buff[10] = rd32(E1000_FRTIMER); 499 regs_buff[11] = rd32(E1000_TCPTIMER); 500 501 /* NVM Register */ 502 regs_buff[12] = rd32(E1000_EECD); 503 504 /* Interrupt */ 505 /* Reading EICS for EICR because they read the 506 * same but EICS does not clear on read 507 */ 508 regs_buff[13] = rd32(E1000_EICS); 509 regs_buff[14] = rd32(E1000_EICS); 510 regs_buff[15] = rd32(E1000_EIMS); 511 regs_buff[16] = rd32(E1000_EIMC); 512 regs_buff[17] = rd32(E1000_EIAC); 513 regs_buff[18] = rd32(E1000_EIAM); 514 /* Reading ICS for ICR because they read the 515 * same but ICS does not clear on read 516 */ 517 regs_buff[19] = rd32(E1000_ICS); 518 regs_buff[20] = rd32(E1000_ICS); 519 regs_buff[21] = rd32(E1000_IMS); 520 regs_buff[22] = rd32(E1000_IMC); 521 regs_buff[23] = rd32(E1000_IAC); 522 regs_buff[24] = rd32(E1000_IAM); 523 regs_buff[25] = rd32(E1000_IMIRVP); 524 525 /* Flow Control */ 526 regs_buff[26] = rd32(E1000_FCAL); 527 regs_buff[27] = rd32(E1000_FCAH); 528 regs_buff[28] = rd32(E1000_FCTTV); 529 regs_buff[29] = rd32(E1000_FCRTL); 530 regs_buff[30] = rd32(E1000_FCRTH); 531 regs_buff[31] = rd32(E1000_FCRTV); 532 533 /* Receive */ 534 regs_buff[32] = rd32(E1000_RCTL); 535 regs_buff[33] = rd32(E1000_RXCSUM); 536 regs_buff[34] = rd32(E1000_RLPML); 537 regs_buff[35] = rd32(E1000_RFCTL); 538 regs_buff[36] = rd32(E1000_MRQC); 539 regs_buff[37] = rd32(E1000_VT_CTL); 540 541 /* Transmit */ 542 regs_buff[38] = rd32(E1000_TCTL); 543 regs_buff[39] = rd32(E1000_TCTL_EXT); 544 regs_buff[40] = rd32(E1000_TIPG); 545 regs_buff[41] = rd32(E1000_DTXCTL); 546 547 /* Wake Up */ 548 regs_buff[42] = rd32(E1000_WUC); 549 regs_buff[43] = rd32(E1000_WUFC); 550 regs_buff[44] = rd32(E1000_WUS); 551 regs_buff[45] = rd32(E1000_IPAV); 552 regs_buff[46] = rd32(E1000_WUPL); 553 554 /* MAC */ 555 regs_buff[47] = rd32(E1000_PCS_CFG0); 556 regs_buff[48] = rd32(E1000_PCS_LCTL); 557 regs_buff[49] = rd32(E1000_PCS_LSTAT); 558 regs_buff[50] = rd32(E1000_PCS_ANADV); 559 regs_buff[51] = rd32(E1000_PCS_LPAB); 560 regs_buff[52] = rd32(E1000_PCS_NPTX); 561 regs_buff[53] = rd32(E1000_PCS_LPABNP); 562 563 /* Statistics */ 564 regs_buff[54] = adapter->stats.crcerrs; 565 regs_buff[55] = adapter->stats.algnerrc; 566 regs_buff[56] = adapter->stats.symerrs; 567 regs_buff[57] = adapter->stats.rxerrc; 568 regs_buff[58] = adapter->stats.mpc; 569 regs_buff[59] = adapter->stats.scc; 570 regs_buff[60] = adapter->stats.ecol; 571 regs_buff[61] = adapter->stats.mcc; 572 regs_buff[62] = adapter->stats.latecol; 573 regs_buff[63] = adapter->stats.colc; 574 regs_buff[64] = adapter->stats.dc; 575 regs_buff[65] = adapter->stats.tncrs; 576 regs_buff[66] = adapter->stats.sec; 577 regs_buff[67] = adapter->stats.htdpmc; 578 regs_buff[68] = adapter->stats.rlec; 579 regs_buff[69] = adapter->stats.xonrxc; 580 regs_buff[70] = adapter->stats.xontxc; 581 regs_buff[71] = adapter->stats.xoffrxc; 582 regs_buff[72] = adapter->stats.xofftxc; 583 regs_buff[73] = adapter->stats.fcruc; 584 regs_buff[74] = adapter->stats.prc64; 585 regs_buff[75] = adapter->stats.prc127; 586 regs_buff[76] = adapter->stats.prc255; 587 regs_buff[77] = adapter->stats.prc511; 588 regs_buff[78] = adapter->stats.prc1023; 589 regs_buff[79] = adapter->stats.prc1522; 590 regs_buff[80] = adapter->stats.gprc; 591 regs_buff[81] = adapter->stats.bprc; 592 regs_buff[82] = adapter->stats.mprc; 593 regs_buff[83] = adapter->stats.gptc; 594 regs_buff[84] = adapter->stats.gorc; 595 regs_buff[86] = adapter->stats.gotc; 596 regs_buff[88] = adapter->stats.rnbc; 597 regs_buff[89] = adapter->stats.ruc; 598 regs_buff[90] = adapter->stats.rfc; 599 regs_buff[91] = adapter->stats.roc; 600 regs_buff[92] = adapter->stats.rjc; 601 regs_buff[93] = adapter->stats.mgprc; 602 regs_buff[94] = adapter->stats.mgpdc; 603 regs_buff[95] = adapter->stats.mgptc; 604 regs_buff[96] = adapter->stats.tor; 605 regs_buff[98] = adapter->stats.tot; 606 regs_buff[100] = adapter->stats.tpr; 607 regs_buff[101] = adapter->stats.tpt; 608 regs_buff[102] = adapter->stats.ptc64; 609 regs_buff[103] = adapter->stats.ptc127; 610 regs_buff[104] = adapter->stats.ptc255; 611 regs_buff[105] = adapter->stats.ptc511; 612 regs_buff[106] = adapter->stats.ptc1023; 613 regs_buff[107] = adapter->stats.ptc1522; 614 regs_buff[108] = adapter->stats.mptc; 615 regs_buff[109] = adapter->stats.bptc; 616 regs_buff[110] = adapter->stats.tsctc; 617 regs_buff[111] = adapter->stats.iac; 618 regs_buff[112] = adapter->stats.rpthc; 619 regs_buff[113] = adapter->stats.hgptc; 620 regs_buff[114] = adapter->stats.hgorc; 621 regs_buff[116] = adapter->stats.hgotc; 622 regs_buff[118] = adapter->stats.lenerrs; 623 regs_buff[119] = adapter->stats.scvpc; 624 regs_buff[120] = adapter->stats.hrmpc; 625 626 for (i = 0; i < 4; i++) 627 regs_buff[121 + i] = rd32(E1000_SRRCTL(i)); 628 for (i = 0; i < 4; i++) 629 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i)); 630 for (i = 0; i < 4; i++) 631 regs_buff[129 + i] = rd32(E1000_RDBAL(i)); 632 for (i = 0; i < 4; i++) 633 regs_buff[133 + i] = rd32(E1000_RDBAH(i)); 634 for (i = 0; i < 4; i++) 635 regs_buff[137 + i] = rd32(E1000_RDLEN(i)); 636 for (i = 0; i < 4; i++) 637 regs_buff[141 + i] = rd32(E1000_RDH(i)); 638 for (i = 0; i < 4; i++) 639 regs_buff[145 + i] = rd32(E1000_RDT(i)); 640 for (i = 0; i < 4; i++) 641 regs_buff[149 + i] = rd32(E1000_RXDCTL(i)); 642 643 for (i = 0; i < 10; i++) 644 regs_buff[153 + i] = rd32(E1000_EITR(i)); 645 for (i = 0; i < 8; i++) 646 regs_buff[163 + i] = rd32(E1000_IMIR(i)); 647 for (i = 0; i < 8; i++) 648 regs_buff[171 + i] = rd32(E1000_IMIREXT(i)); 649 for (i = 0; i < 16; i++) 650 regs_buff[179 + i] = rd32(E1000_RAL(i)); 651 for (i = 0; i < 16; i++) 652 regs_buff[195 + i] = rd32(E1000_RAH(i)); 653 654 for (i = 0; i < 4; i++) 655 regs_buff[211 + i] = rd32(E1000_TDBAL(i)); 656 for (i = 0; i < 4; i++) 657 regs_buff[215 + i] = rd32(E1000_TDBAH(i)); 658 for (i = 0; i < 4; i++) 659 regs_buff[219 + i] = rd32(E1000_TDLEN(i)); 660 for (i = 0; i < 4; i++) 661 regs_buff[223 + i] = rd32(E1000_TDH(i)); 662 for (i = 0; i < 4; i++) 663 regs_buff[227 + i] = rd32(E1000_TDT(i)); 664 for (i = 0; i < 4; i++) 665 regs_buff[231 + i] = rd32(E1000_TXDCTL(i)); 666 for (i = 0; i < 4; i++) 667 regs_buff[235 + i] = rd32(E1000_TDWBAL(i)); 668 for (i = 0; i < 4; i++) 669 regs_buff[239 + i] = rd32(E1000_TDWBAH(i)); 670 for (i = 0; i < 4; i++) 671 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i)); 672 673 for (i = 0; i < 4; i++) 674 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i)); 675 for (i = 0; i < 4; i++) 676 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i)); 677 for (i = 0; i < 32; i++) 678 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i)); 679 for (i = 0; i < 128; i++) 680 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i)); 681 for (i = 0; i < 128; i++) 682 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i)); 683 for (i = 0; i < 4; i++) 684 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i)); 685 686 regs_buff[547] = rd32(E1000_TDFH); 687 regs_buff[548] = rd32(E1000_TDFT); 688 regs_buff[549] = rd32(E1000_TDFHS); 689 regs_buff[550] = rd32(E1000_TDFPC); 690 691 if (hw->mac.type > e1000_82580) { 692 regs_buff[551] = adapter->stats.o2bgptc; 693 regs_buff[552] = adapter->stats.b2ospc; 694 regs_buff[553] = adapter->stats.o2bspc; 695 regs_buff[554] = adapter->stats.b2ogprc; 696 } 697 698 if (hw->mac.type != e1000_82576) 699 return; 700 for (i = 0; i < 12; i++) 701 regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4)); 702 for (i = 0; i < 4; i++) 703 regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4)); 704 for (i = 0; i < 12; i++) 705 regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4)); 706 for (i = 0; i < 12; i++) 707 regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4)); 708 for (i = 0; i < 12; i++) 709 regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4)); 710 for (i = 0; i < 12; i++) 711 regs_buff[607 + i] = rd32(E1000_RDH(i + 4)); 712 for (i = 0; i < 12; i++) 713 regs_buff[619 + i] = rd32(E1000_RDT(i + 4)); 714 for (i = 0; i < 12; i++) 715 regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4)); 716 717 for (i = 0; i < 12; i++) 718 regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4)); 719 for (i = 0; i < 12; i++) 720 regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4)); 721 for (i = 0; i < 12; i++) 722 regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4)); 723 for (i = 0; i < 12; i++) 724 regs_buff[679 + i] = rd32(E1000_TDH(i + 4)); 725 for (i = 0; i < 12; i++) 726 regs_buff[691 + i] = rd32(E1000_TDT(i + 4)); 727 for (i = 0; i < 12; i++) 728 regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4)); 729 for (i = 0; i < 12; i++) 730 regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4)); 731 for (i = 0; i < 12; i++) 732 regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4)); 733 } 734 735 static int igb_get_eeprom_len(struct net_device *netdev) 736 { 737 struct igb_adapter *adapter = netdev_priv(netdev); 738 return adapter->hw.nvm.word_size * 2; 739 } 740 741 static int igb_get_eeprom(struct net_device *netdev, 742 struct ethtool_eeprom *eeprom, u8 *bytes) 743 { 744 struct igb_adapter *adapter = netdev_priv(netdev); 745 struct e1000_hw *hw = &adapter->hw; 746 u16 *eeprom_buff; 747 int first_word, last_word; 748 int ret_val = 0; 749 u16 i; 750 751 if (eeprom->len == 0) 752 return -EINVAL; 753 754 eeprom->magic = hw->vendor_id | (hw->device_id << 16); 755 756 first_word = eeprom->offset >> 1; 757 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 758 759 eeprom_buff = kmalloc(sizeof(u16) * 760 (last_word - first_word + 1), GFP_KERNEL); 761 if (!eeprom_buff) 762 return -ENOMEM; 763 764 if (hw->nvm.type == e1000_nvm_eeprom_spi) 765 ret_val = hw->nvm.ops.read(hw, first_word, 766 last_word - first_word + 1, 767 eeprom_buff); 768 else { 769 for (i = 0; i < last_word - first_word + 1; i++) { 770 ret_val = hw->nvm.ops.read(hw, first_word + i, 1, 771 &eeprom_buff[i]); 772 if (ret_val) 773 break; 774 } 775 } 776 777 /* Device's eeprom is always little-endian, word addressable */ 778 for (i = 0; i < last_word - first_word + 1; i++) 779 le16_to_cpus(&eeprom_buff[i]); 780 781 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), 782 eeprom->len); 783 kfree(eeprom_buff); 784 785 return ret_val; 786 } 787 788 static int igb_set_eeprom(struct net_device *netdev, 789 struct ethtool_eeprom *eeprom, u8 *bytes) 790 { 791 struct igb_adapter *adapter = netdev_priv(netdev); 792 struct e1000_hw *hw = &adapter->hw; 793 u16 *eeprom_buff; 794 void *ptr; 795 int max_len, first_word, last_word, ret_val = 0; 796 u16 i; 797 798 if (eeprom->len == 0) 799 return -EOPNOTSUPP; 800 801 if ((hw->mac.type >= e1000_i210) && 802 !igb_get_flash_presence_i210(hw)) { 803 return -EOPNOTSUPP; 804 } 805 806 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16))) 807 return -EFAULT; 808 809 max_len = hw->nvm.word_size * 2; 810 811 first_word = eeprom->offset >> 1; 812 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 813 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 814 if (!eeprom_buff) 815 return -ENOMEM; 816 817 ptr = (void *)eeprom_buff; 818 819 if (eeprom->offset & 1) { 820 /* need read/modify/write of first changed EEPROM word 821 * only the second byte of the word is being modified 822 */ 823 ret_val = hw->nvm.ops.read(hw, first_word, 1, 824 &eeprom_buff[0]); 825 ptr++; 826 } 827 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) { 828 /* need read/modify/write of last changed EEPROM word 829 * only the first byte of the word is being modified 830 */ 831 ret_val = hw->nvm.ops.read(hw, last_word, 1, 832 &eeprom_buff[last_word - first_word]); 833 } 834 835 /* Device's eeprom is always little-endian, word addressable */ 836 for (i = 0; i < last_word - first_word + 1; i++) 837 le16_to_cpus(&eeprom_buff[i]); 838 839 memcpy(ptr, bytes, eeprom->len); 840 841 for (i = 0; i < last_word - first_word + 1; i++) 842 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]); 843 844 ret_val = hw->nvm.ops.write(hw, first_word, 845 last_word - first_word + 1, eeprom_buff); 846 847 /* Update the checksum if nvm write succeeded */ 848 if (ret_val == 0) 849 hw->nvm.ops.update(hw); 850 851 igb_set_fw_version(adapter); 852 kfree(eeprom_buff); 853 return ret_val; 854 } 855 856 static void igb_get_drvinfo(struct net_device *netdev, 857 struct ethtool_drvinfo *drvinfo) 858 { 859 struct igb_adapter *adapter = netdev_priv(netdev); 860 861 strlcpy(drvinfo->driver, igb_driver_name, sizeof(drvinfo->driver)); 862 strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version)); 863 864 /* EEPROM image version # is reported as firmware version # for 865 * 82575 controllers 866 */ 867 strlcpy(drvinfo->fw_version, adapter->fw_version, 868 sizeof(drvinfo->fw_version)); 869 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 870 sizeof(drvinfo->bus_info)); 871 872 drvinfo->n_priv_flags = IGB_PRIV_FLAGS_STR_LEN; 873 } 874 875 static void igb_get_ringparam(struct net_device *netdev, 876 struct ethtool_ringparam *ring) 877 { 878 struct igb_adapter *adapter = netdev_priv(netdev); 879 880 ring->rx_max_pending = IGB_MAX_RXD; 881 ring->tx_max_pending = IGB_MAX_TXD; 882 ring->rx_pending = adapter->rx_ring_count; 883 ring->tx_pending = adapter->tx_ring_count; 884 } 885 886 static int igb_set_ringparam(struct net_device *netdev, 887 struct ethtool_ringparam *ring) 888 { 889 struct igb_adapter *adapter = netdev_priv(netdev); 890 struct igb_ring *temp_ring; 891 int i, err = 0; 892 u16 new_rx_count, new_tx_count; 893 894 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 895 return -EINVAL; 896 897 new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD); 898 new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD); 899 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE); 900 901 new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD); 902 new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD); 903 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE); 904 905 if ((new_tx_count == adapter->tx_ring_count) && 906 (new_rx_count == adapter->rx_ring_count)) { 907 /* nothing to do */ 908 return 0; 909 } 910 911 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 912 usleep_range(1000, 2000); 913 914 if (!netif_running(adapter->netdev)) { 915 for (i = 0; i < adapter->num_tx_queues; i++) 916 adapter->tx_ring[i]->count = new_tx_count; 917 for (i = 0; i < adapter->num_rx_queues; i++) 918 adapter->rx_ring[i]->count = new_rx_count; 919 adapter->tx_ring_count = new_tx_count; 920 adapter->rx_ring_count = new_rx_count; 921 goto clear_reset; 922 } 923 924 if (adapter->num_tx_queues > adapter->num_rx_queues) 925 temp_ring = vmalloc(adapter->num_tx_queues * 926 sizeof(struct igb_ring)); 927 else 928 temp_ring = vmalloc(adapter->num_rx_queues * 929 sizeof(struct igb_ring)); 930 931 if (!temp_ring) { 932 err = -ENOMEM; 933 goto clear_reset; 934 } 935 936 igb_down(adapter); 937 938 /* We can't just free everything and then setup again, 939 * because the ISRs in MSI-X mode get passed pointers 940 * to the Tx and Rx ring structs. 941 */ 942 if (new_tx_count != adapter->tx_ring_count) { 943 for (i = 0; i < adapter->num_tx_queues; i++) { 944 memcpy(&temp_ring[i], adapter->tx_ring[i], 945 sizeof(struct igb_ring)); 946 947 temp_ring[i].count = new_tx_count; 948 err = igb_setup_tx_resources(&temp_ring[i]); 949 if (err) { 950 while (i) { 951 i--; 952 igb_free_tx_resources(&temp_ring[i]); 953 } 954 goto err_setup; 955 } 956 } 957 958 for (i = 0; i < adapter->num_tx_queues; i++) { 959 igb_free_tx_resources(adapter->tx_ring[i]); 960 961 memcpy(adapter->tx_ring[i], &temp_ring[i], 962 sizeof(struct igb_ring)); 963 } 964 965 adapter->tx_ring_count = new_tx_count; 966 } 967 968 if (new_rx_count != adapter->rx_ring_count) { 969 for (i = 0; i < adapter->num_rx_queues; i++) { 970 memcpy(&temp_ring[i], adapter->rx_ring[i], 971 sizeof(struct igb_ring)); 972 973 temp_ring[i].count = new_rx_count; 974 err = igb_setup_rx_resources(&temp_ring[i]); 975 if (err) { 976 while (i) { 977 i--; 978 igb_free_rx_resources(&temp_ring[i]); 979 } 980 goto err_setup; 981 } 982 983 } 984 985 for (i = 0; i < adapter->num_rx_queues; i++) { 986 igb_free_rx_resources(adapter->rx_ring[i]); 987 988 memcpy(adapter->rx_ring[i], &temp_ring[i], 989 sizeof(struct igb_ring)); 990 } 991 992 adapter->rx_ring_count = new_rx_count; 993 } 994 err_setup: 995 igb_up(adapter); 996 vfree(temp_ring); 997 clear_reset: 998 clear_bit(__IGB_RESETTING, &adapter->state); 999 return err; 1000 } 1001 1002 /* ethtool register test data */ 1003 struct igb_reg_test { 1004 u16 reg; 1005 u16 reg_offset; 1006 u16 array_len; 1007 u16 test_type; 1008 u32 mask; 1009 u32 write; 1010 }; 1011 1012 /* In the hardware, registers are laid out either singly, in arrays 1013 * spaced 0x100 bytes apart, or in contiguous tables. We assume 1014 * most tests take place on arrays or single registers (handled 1015 * as a single-element array) and special-case the tables. 1016 * Table tests are always pattern tests. 1017 * 1018 * We also make provision for some required setup steps by specifying 1019 * registers to be written without any read-back testing. 1020 */ 1021 1022 #define PATTERN_TEST 1 1023 #define SET_READ_TEST 2 1024 #define WRITE_NO_TEST 3 1025 #define TABLE32_TEST 4 1026 #define TABLE64_TEST_LO 5 1027 #define TABLE64_TEST_HI 6 1028 1029 /* i210 reg test */ 1030 static struct igb_reg_test reg_test_i210[] = { 1031 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1032 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1033 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1034 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1035 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1036 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1037 /* RDH is read-only for i210, only test RDT. */ 1038 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1039 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1040 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1041 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1042 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1043 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1044 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1045 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1046 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1047 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, 1048 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, 1049 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1050 { E1000_RA, 0, 16, TABLE64_TEST_LO, 1051 0xFFFFFFFF, 0xFFFFFFFF }, 1052 { E1000_RA, 0, 16, TABLE64_TEST_HI, 1053 0x900FFFFF, 0xFFFFFFFF }, 1054 { E1000_MTA, 0, 128, TABLE32_TEST, 1055 0xFFFFFFFF, 0xFFFFFFFF }, 1056 { 0, 0, 0, 0, 0 } 1057 }; 1058 1059 /* i350 reg test */ 1060 static struct igb_reg_test reg_test_i350[] = { 1061 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1062 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1063 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1064 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 }, 1065 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1066 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1067 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1068 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1069 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1070 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1071 /* RDH is read-only for i350, only test RDT. */ 1072 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1073 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1074 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1075 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1076 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1077 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1078 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1079 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1080 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1081 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1082 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1083 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1084 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1085 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1086 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, 1087 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, 1088 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1089 { E1000_RA, 0, 16, TABLE64_TEST_LO, 1090 0xFFFFFFFF, 0xFFFFFFFF }, 1091 { E1000_RA, 0, 16, TABLE64_TEST_HI, 1092 0xC3FFFFFF, 0xFFFFFFFF }, 1093 { E1000_RA2, 0, 16, TABLE64_TEST_LO, 1094 0xFFFFFFFF, 0xFFFFFFFF }, 1095 { E1000_RA2, 0, 16, TABLE64_TEST_HI, 1096 0xC3FFFFFF, 0xFFFFFFFF }, 1097 { E1000_MTA, 0, 128, TABLE32_TEST, 1098 0xFFFFFFFF, 0xFFFFFFFF }, 1099 { 0, 0, 0, 0 } 1100 }; 1101 1102 /* 82580 reg test */ 1103 static struct igb_reg_test reg_test_82580[] = { 1104 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1105 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1106 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1107 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1108 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1109 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1110 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1111 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1112 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1113 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1114 /* RDH is read-only for 82580, only test RDT. */ 1115 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1116 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1117 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1118 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1119 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1120 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1121 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1122 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1123 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1124 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1125 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1126 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1127 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1128 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1129 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, 1130 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, 1131 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1132 { E1000_RA, 0, 16, TABLE64_TEST_LO, 1133 0xFFFFFFFF, 0xFFFFFFFF }, 1134 { E1000_RA, 0, 16, TABLE64_TEST_HI, 1135 0x83FFFFFF, 0xFFFFFFFF }, 1136 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 1137 0xFFFFFFFF, 0xFFFFFFFF }, 1138 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 1139 0x83FFFFFF, 0xFFFFFFFF }, 1140 { E1000_MTA, 0, 128, TABLE32_TEST, 1141 0xFFFFFFFF, 0xFFFFFFFF }, 1142 { 0, 0, 0, 0 } 1143 }; 1144 1145 /* 82576 reg test */ 1146 static struct igb_reg_test reg_test_82576[] = { 1147 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1148 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1149 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1150 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1151 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1152 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1153 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1154 { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1155 { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1156 { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1157 /* Enable all RX queues before testing. */ 1158 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 1159 E1000_RXDCTL_QUEUE_ENABLE }, 1160 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 1161 E1000_RXDCTL_QUEUE_ENABLE }, 1162 /* RDH is read-only for 82576, only test RDT. */ 1163 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1164 { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1165 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 }, 1166 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 }, 1167 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1168 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1169 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1170 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1171 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1172 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1173 { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1174 { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1175 { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1176 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1177 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, 1178 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, 1179 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1180 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, 1181 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF }, 1182 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, 1183 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF }, 1184 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1185 { 0, 0, 0, 0 } 1186 }; 1187 1188 /* 82575 register test */ 1189 static struct igb_reg_test reg_test_82575[] = { 1190 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1191 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1192 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1193 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1194 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1195 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1196 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1197 /* Enable all four RX queues before testing. */ 1198 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 1199 E1000_RXDCTL_QUEUE_ENABLE }, 1200 /* RDH is read-only for 82575, only test RDT. */ 1201 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1202 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 }, 1203 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1204 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1205 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1206 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1207 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1208 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1209 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1210 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB }, 1211 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF }, 1212 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1213 { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF }, 1214 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, 1215 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF }, 1216 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1217 { 0, 0, 0, 0 } 1218 }; 1219 1220 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data, 1221 int reg, u32 mask, u32 write) 1222 { 1223 struct e1000_hw *hw = &adapter->hw; 1224 u32 pat, val; 1225 static const u32 _test[] = { 1226 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; 1227 for (pat = 0; pat < ARRAY_SIZE(_test); pat++) { 1228 wr32(reg, (_test[pat] & write)); 1229 val = rd32(reg) & mask; 1230 if (val != (_test[pat] & write & mask)) { 1231 dev_err(&adapter->pdev->dev, 1232 "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n", 1233 reg, val, (_test[pat] & write & mask)); 1234 *data = reg; 1235 return true; 1236 } 1237 } 1238 1239 return false; 1240 } 1241 1242 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data, 1243 int reg, u32 mask, u32 write) 1244 { 1245 struct e1000_hw *hw = &adapter->hw; 1246 u32 val; 1247 1248 wr32(reg, write & mask); 1249 val = rd32(reg); 1250 if ((write & mask) != (val & mask)) { 1251 dev_err(&adapter->pdev->dev, 1252 "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", 1253 reg, (val & mask), (write & mask)); 1254 *data = reg; 1255 return true; 1256 } 1257 1258 return false; 1259 } 1260 1261 #define REG_PATTERN_TEST(reg, mask, write) \ 1262 do { \ 1263 if (reg_pattern_test(adapter, data, reg, mask, write)) \ 1264 return 1; \ 1265 } while (0) 1266 1267 #define REG_SET_AND_CHECK(reg, mask, write) \ 1268 do { \ 1269 if (reg_set_and_check(adapter, data, reg, mask, write)) \ 1270 return 1; \ 1271 } while (0) 1272 1273 static int igb_reg_test(struct igb_adapter *adapter, u64 *data) 1274 { 1275 struct e1000_hw *hw = &adapter->hw; 1276 struct igb_reg_test *test; 1277 u32 value, before, after; 1278 u32 i, toggle; 1279 1280 switch (adapter->hw.mac.type) { 1281 case e1000_i350: 1282 case e1000_i354: 1283 test = reg_test_i350; 1284 toggle = 0x7FEFF3FF; 1285 break; 1286 case e1000_i210: 1287 case e1000_i211: 1288 test = reg_test_i210; 1289 toggle = 0x7FEFF3FF; 1290 break; 1291 case e1000_82580: 1292 test = reg_test_82580; 1293 toggle = 0x7FEFF3FF; 1294 break; 1295 case e1000_82576: 1296 test = reg_test_82576; 1297 toggle = 0x7FFFF3FF; 1298 break; 1299 default: 1300 test = reg_test_82575; 1301 toggle = 0x7FFFF3FF; 1302 break; 1303 } 1304 1305 /* Because the status register is such a special case, 1306 * we handle it separately from the rest of the register 1307 * tests. Some bits are read-only, some toggle, and some 1308 * are writable on newer MACs. 1309 */ 1310 before = rd32(E1000_STATUS); 1311 value = (rd32(E1000_STATUS) & toggle); 1312 wr32(E1000_STATUS, toggle); 1313 after = rd32(E1000_STATUS) & toggle; 1314 if (value != after) { 1315 dev_err(&adapter->pdev->dev, 1316 "failed STATUS register test got: 0x%08X expected: 0x%08X\n", 1317 after, value); 1318 *data = 1; 1319 return 1; 1320 } 1321 /* restore previous status */ 1322 wr32(E1000_STATUS, before); 1323 1324 /* Perform the remainder of the register test, looping through 1325 * the test table until we either fail or reach the null entry. 1326 */ 1327 while (test->reg) { 1328 for (i = 0; i < test->array_len; i++) { 1329 switch (test->test_type) { 1330 case PATTERN_TEST: 1331 REG_PATTERN_TEST(test->reg + 1332 (i * test->reg_offset), 1333 test->mask, 1334 test->write); 1335 break; 1336 case SET_READ_TEST: 1337 REG_SET_AND_CHECK(test->reg + 1338 (i * test->reg_offset), 1339 test->mask, 1340 test->write); 1341 break; 1342 case WRITE_NO_TEST: 1343 writel(test->write, 1344 (adapter->hw.hw_addr + test->reg) 1345 + (i * test->reg_offset)); 1346 break; 1347 case TABLE32_TEST: 1348 REG_PATTERN_TEST(test->reg + (i * 4), 1349 test->mask, 1350 test->write); 1351 break; 1352 case TABLE64_TEST_LO: 1353 REG_PATTERN_TEST(test->reg + (i * 8), 1354 test->mask, 1355 test->write); 1356 break; 1357 case TABLE64_TEST_HI: 1358 REG_PATTERN_TEST((test->reg + 4) + (i * 8), 1359 test->mask, 1360 test->write); 1361 break; 1362 } 1363 } 1364 test++; 1365 } 1366 1367 *data = 0; 1368 return 0; 1369 } 1370 1371 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data) 1372 { 1373 struct e1000_hw *hw = &adapter->hw; 1374 1375 *data = 0; 1376 1377 /* Validate eeprom on all parts but flashless */ 1378 switch (hw->mac.type) { 1379 case e1000_i210: 1380 case e1000_i211: 1381 if (igb_get_flash_presence_i210(hw)) { 1382 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0) 1383 *data = 2; 1384 } 1385 break; 1386 default: 1387 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0) 1388 *data = 2; 1389 break; 1390 } 1391 1392 return *data; 1393 } 1394 1395 static irqreturn_t igb_test_intr(int irq, void *data) 1396 { 1397 struct igb_adapter *adapter = (struct igb_adapter *) data; 1398 struct e1000_hw *hw = &adapter->hw; 1399 1400 adapter->test_icr |= rd32(E1000_ICR); 1401 1402 return IRQ_HANDLED; 1403 } 1404 1405 static int igb_intr_test(struct igb_adapter *adapter, u64 *data) 1406 { 1407 struct e1000_hw *hw = &adapter->hw; 1408 struct net_device *netdev = adapter->netdev; 1409 u32 mask, ics_mask, i = 0, shared_int = true; 1410 u32 irq = adapter->pdev->irq; 1411 1412 *data = 0; 1413 1414 /* Hook up test interrupt handler just for this test */ 1415 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1416 if (request_irq(adapter->msix_entries[0].vector, 1417 igb_test_intr, 0, netdev->name, adapter)) { 1418 *data = 1; 1419 return -1; 1420 } 1421 } else if (adapter->flags & IGB_FLAG_HAS_MSI) { 1422 shared_int = false; 1423 if (request_irq(irq, 1424 igb_test_intr, 0, netdev->name, adapter)) { 1425 *data = 1; 1426 return -1; 1427 } 1428 } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED, 1429 netdev->name, adapter)) { 1430 shared_int = false; 1431 } else if (request_irq(irq, igb_test_intr, IRQF_SHARED, 1432 netdev->name, adapter)) { 1433 *data = 1; 1434 return -1; 1435 } 1436 dev_info(&adapter->pdev->dev, "testing %s interrupt\n", 1437 (shared_int ? "shared" : "unshared")); 1438 1439 /* Disable all the interrupts */ 1440 wr32(E1000_IMC, ~0); 1441 wrfl(); 1442 usleep_range(10000, 11000); 1443 1444 /* Define all writable bits for ICS */ 1445 switch (hw->mac.type) { 1446 case e1000_82575: 1447 ics_mask = 0x37F47EDD; 1448 break; 1449 case e1000_82576: 1450 ics_mask = 0x77D4FBFD; 1451 break; 1452 case e1000_82580: 1453 ics_mask = 0x77DCFED5; 1454 break; 1455 case e1000_i350: 1456 case e1000_i354: 1457 case e1000_i210: 1458 case e1000_i211: 1459 ics_mask = 0x77DCFED5; 1460 break; 1461 default: 1462 ics_mask = 0x7FFFFFFF; 1463 break; 1464 } 1465 1466 /* Test each interrupt */ 1467 for (; i < 31; i++) { 1468 /* Interrupt to test */ 1469 mask = BIT(i); 1470 1471 if (!(mask & ics_mask)) 1472 continue; 1473 1474 if (!shared_int) { 1475 /* Disable the interrupt to be reported in 1476 * the cause register and then force the same 1477 * interrupt and see if one gets posted. If 1478 * an interrupt was posted to the bus, the 1479 * test failed. 1480 */ 1481 adapter->test_icr = 0; 1482 1483 /* Flush any pending interrupts */ 1484 wr32(E1000_ICR, ~0); 1485 1486 wr32(E1000_IMC, mask); 1487 wr32(E1000_ICS, mask); 1488 wrfl(); 1489 usleep_range(10000, 11000); 1490 1491 if (adapter->test_icr & mask) { 1492 *data = 3; 1493 break; 1494 } 1495 } 1496 1497 /* Enable the interrupt to be reported in 1498 * the cause register and then force the same 1499 * interrupt and see if one gets posted. If 1500 * an interrupt was not posted to the bus, the 1501 * test failed. 1502 */ 1503 adapter->test_icr = 0; 1504 1505 /* Flush any pending interrupts */ 1506 wr32(E1000_ICR, ~0); 1507 1508 wr32(E1000_IMS, mask); 1509 wr32(E1000_ICS, mask); 1510 wrfl(); 1511 usleep_range(10000, 11000); 1512 1513 if (!(adapter->test_icr & mask)) { 1514 *data = 4; 1515 break; 1516 } 1517 1518 if (!shared_int) { 1519 /* Disable the other interrupts to be reported in 1520 * the cause register and then force the other 1521 * interrupts and see if any get posted. If 1522 * an interrupt was posted to the bus, the 1523 * test failed. 1524 */ 1525 adapter->test_icr = 0; 1526 1527 /* Flush any pending interrupts */ 1528 wr32(E1000_ICR, ~0); 1529 1530 wr32(E1000_IMC, ~mask); 1531 wr32(E1000_ICS, ~mask); 1532 wrfl(); 1533 usleep_range(10000, 11000); 1534 1535 if (adapter->test_icr & mask) { 1536 *data = 5; 1537 break; 1538 } 1539 } 1540 } 1541 1542 /* Disable all the interrupts */ 1543 wr32(E1000_IMC, ~0); 1544 wrfl(); 1545 usleep_range(10000, 11000); 1546 1547 /* Unhook test interrupt handler */ 1548 if (adapter->flags & IGB_FLAG_HAS_MSIX) 1549 free_irq(adapter->msix_entries[0].vector, adapter); 1550 else 1551 free_irq(irq, adapter); 1552 1553 return *data; 1554 } 1555 1556 static void igb_free_desc_rings(struct igb_adapter *adapter) 1557 { 1558 igb_free_tx_resources(&adapter->test_tx_ring); 1559 igb_free_rx_resources(&adapter->test_rx_ring); 1560 } 1561 1562 static int igb_setup_desc_rings(struct igb_adapter *adapter) 1563 { 1564 struct igb_ring *tx_ring = &adapter->test_tx_ring; 1565 struct igb_ring *rx_ring = &adapter->test_rx_ring; 1566 struct e1000_hw *hw = &adapter->hw; 1567 int ret_val; 1568 1569 /* Setup Tx descriptor ring and Tx buffers */ 1570 tx_ring->count = IGB_DEFAULT_TXD; 1571 tx_ring->dev = &adapter->pdev->dev; 1572 tx_ring->netdev = adapter->netdev; 1573 tx_ring->reg_idx = adapter->vfs_allocated_count; 1574 1575 if (igb_setup_tx_resources(tx_ring)) { 1576 ret_val = 1; 1577 goto err_nomem; 1578 } 1579 1580 igb_setup_tctl(adapter); 1581 igb_configure_tx_ring(adapter, tx_ring); 1582 1583 /* Setup Rx descriptor ring and Rx buffers */ 1584 rx_ring->count = IGB_DEFAULT_RXD; 1585 rx_ring->dev = &adapter->pdev->dev; 1586 rx_ring->netdev = adapter->netdev; 1587 rx_ring->reg_idx = adapter->vfs_allocated_count; 1588 1589 if (igb_setup_rx_resources(rx_ring)) { 1590 ret_val = 3; 1591 goto err_nomem; 1592 } 1593 1594 /* set the default queue to queue 0 of PF */ 1595 wr32(E1000_MRQC, adapter->vfs_allocated_count << 3); 1596 1597 /* enable receive ring */ 1598 igb_setup_rctl(adapter); 1599 igb_configure_rx_ring(adapter, rx_ring); 1600 1601 igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring)); 1602 1603 return 0; 1604 1605 err_nomem: 1606 igb_free_desc_rings(adapter); 1607 return ret_val; 1608 } 1609 1610 static void igb_phy_disable_receiver(struct igb_adapter *adapter) 1611 { 1612 struct e1000_hw *hw = &adapter->hw; 1613 1614 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1615 igb_write_phy_reg(hw, 29, 0x001F); 1616 igb_write_phy_reg(hw, 30, 0x8FFC); 1617 igb_write_phy_reg(hw, 29, 0x001A); 1618 igb_write_phy_reg(hw, 30, 0x8FF0); 1619 } 1620 1621 static int igb_integrated_phy_loopback(struct igb_adapter *adapter) 1622 { 1623 struct e1000_hw *hw = &adapter->hw; 1624 u32 ctrl_reg = 0; 1625 1626 hw->mac.autoneg = false; 1627 1628 if (hw->phy.type == e1000_phy_m88) { 1629 if (hw->phy.id != I210_I_PHY_ID) { 1630 /* Auto-MDI/MDIX Off */ 1631 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); 1632 /* reset to update Auto-MDI/MDIX */ 1633 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140); 1634 /* autoneg off */ 1635 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140); 1636 } else { 1637 /* force 1000, set loopback */ 1638 igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0); 1639 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140); 1640 } 1641 } else if (hw->phy.type == e1000_phy_82580) { 1642 /* enable MII loopback */ 1643 igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041); 1644 } 1645 1646 /* add small delay to avoid loopback test failure */ 1647 msleep(50); 1648 1649 /* force 1000, set loopback */ 1650 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140); 1651 1652 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1653 ctrl_reg = rd32(E1000_CTRL); 1654 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1655 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1656 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1657 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1658 E1000_CTRL_FD | /* Force Duplex to FULL */ 1659 E1000_CTRL_SLU); /* Set link up enable bit */ 1660 1661 if (hw->phy.type == e1000_phy_m88) 1662 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1663 1664 wr32(E1000_CTRL, ctrl_reg); 1665 1666 /* Disable the receiver on the PHY so when a cable is plugged in, the 1667 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1668 */ 1669 if (hw->phy.type == e1000_phy_m88) 1670 igb_phy_disable_receiver(adapter); 1671 1672 mdelay(500); 1673 return 0; 1674 } 1675 1676 static int igb_set_phy_loopback(struct igb_adapter *adapter) 1677 { 1678 return igb_integrated_phy_loopback(adapter); 1679 } 1680 1681 static int igb_setup_loopback_test(struct igb_adapter *adapter) 1682 { 1683 struct e1000_hw *hw = &adapter->hw; 1684 u32 reg; 1685 1686 reg = rd32(E1000_CTRL_EXT); 1687 1688 /* use CTRL_EXT to identify link type as SGMII can appear as copper */ 1689 if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) { 1690 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) || 1691 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) || 1692 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) || 1693 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) || 1694 (hw->device_id == E1000_DEV_ID_I354_SGMII) || 1695 (hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) { 1696 /* Enable DH89xxCC MPHY for near end loopback */ 1697 reg = rd32(E1000_MPHY_ADDR_CTL); 1698 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) | 1699 E1000_MPHY_PCS_CLK_REG_OFFSET; 1700 wr32(E1000_MPHY_ADDR_CTL, reg); 1701 1702 reg = rd32(E1000_MPHY_DATA); 1703 reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN; 1704 wr32(E1000_MPHY_DATA, reg); 1705 } 1706 1707 reg = rd32(E1000_RCTL); 1708 reg |= E1000_RCTL_LBM_TCVR; 1709 wr32(E1000_RCTL, reg); 1710 1711 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK); 1712 1713 reg = rd32(E1000_CTRL); 1714 reg &= ~(E1000_CTRL_RFCE | 1715 E1000_CTRL_TFCE | 1716 E1000_CTRL_LRST); 1717 reg |= E1000_CTRL_SLU | 1718 E1000_CTRL_FD; 1719 wr32(E1000_CTRL, reg); 1720 1721 /* Unset switch control to serdes energy detect */ 1722 reg = rd32(E1000_CONNSW); 1723 reg &= ~E1000_CONNSW_ENRGSRC; 1724 wr32(E1000_CONNSW, reg); 1725 1726 /* Unset sigdetect for SERDES loopback on 1727 * 82580 and newer devices. 1728 */ 1729 if (hw->mac.type >= e1000_82580) { 1730 reg = rd32(E1000_PCS_CFG0); 1731 reg |= E1000_PCS_CFG_IGN_SD; 1732 wr32(E1000_PCS_CFG0, reg); 1733 } 1734 1735 /* Set PCS register for forced speed */ 1736 reg = rd32(E1000_PCS_LCTL); 1737 reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/ 1738 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */ 1739 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */ 1740 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */ 1741 E1000_PCS_LCTL_FSD | /* Force Speed */ 1742 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */ 1743 wr32(E1000_PCS_LCTL, reg); 1744 1745 return 0; 1746 } 1747 1748 return igb_set_phy_loopback(adapter); 1749 } 1750 1751 static void igb_loopback_cleanup(struct igb_adapter *adapter) 1752 { 1753 struct e1000_hw *hw = &adapter->hw; 1754 u32 rctl; 1755 u16 phy_reg; 1756 1757 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) || 1758 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) || 1759 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) || 1760 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) || 1761 (hw->device_id == E1000_DEV_ID_I354_SGMII)) { 1762 u32 reg; 1763 1764 /* Disable near end loopback on DH89xxCC */ 1765 reg = rd32(E1000_MPHY_ADDR_CTL); 1766 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) | 1767 E1000_MPHY_PCS_CLK_REG_OFFSET; 1768 wr32(E1000_MPHY_ADDR_CTL, reg); 1769 1770 reg = rd32(E1000_MPHY_DATA); 1771 reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN; 1772 wr32(E1000_MPHY_DATA, reg); 1773 } 1774 1775 rctl = rd32(E1000_RCTL); 1776 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1777 wr32(E1000_RCTL, rctl); 1778 1779 hw->mac.autoneg = true; 1780 igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg); 1781 if (phy_reg & MII_CR_LOOPBACK) { 1782 phy_reg &= ~MII_CR_LOOPBACK; 1783 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg); 1784 igb_phy_sw_reset(hw); 1785 } 1786 } 1787 1788 static void igb_create_lbtest_frame(struct sk_buff *skb, 1789 unsigned int frame_size) 1790 { 1791 memset(skb->data, 0xFF, frame_size); 1792 frame_size /= 2; 1793 memset(&skb->data[frame_size], 0xAA, frame_size - 1); 1794 memset(&skb->data[frame_size + 10], 0xBE, 1); 1795 memset(&skb->data[frame_size + 12], 0xAF, 1); 1796 } 1797 1798 static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer, 1799 unsigned int frame_size) 1800 { 1801 unsigned char *data; 1802 bool match = true; 1803 1804 frame_size >>= 1; 1805 1806 data = kmap(rx_buffer->page); 1807 1808 if (data[3] != 0xFF || 1809 data[frame_size + 10] != 0xBE || 1810 data[frame_size + 12] != 0xAF) 1811 match = false; 1812 1813 kunmap(rx_buffer->page); 1814 1815 return match; 1816 } 1817 1818 static int igb_clean_test_rings(struct igb_ring *rx_ring, 1819 struct igb_ring *tx_ring, 1820 unsigned int size) 1821 { 1822 union e1000_adv_rx_desc *rx_desc; 1823 struct igb_rx_buffer *rx_buffer_info; 1824 struct igb_tx_buffer *tx_buffer_info; 1825 u16 rx_ntc, tx_ntc, count = 0; 1826 1827 /* initialize next to clean and descriptor values */ 1828 rx_ntc = rx_ring->next_to_clean; 1829 tx_ntc = tx_ring->next_to_clean; 1830 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc); 1831 1832 while (rx_desc->wb.upper.length) { 1833 /* check Rx buffer */ 1834 rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc]; 1835 1836 /* sync Rx buffer for CPU read */ 1837 dma_sync_single_for_cpu(rx_ring->dev, 1838 rx_buffer_info->dma, 1839 size, 1840 DMA_FROM_DEVICE); 1841 1842 /* verify contents of skb */ 1843 if (igb_check_lbtest_frame(rx_buffer_info, size)) 1844 count++; 1845 1846 /* sync Rx buffer for device write */ 1847 dma_sync_single_for_device(rx_ring->dev, 1848 rx_buffer_info->dma, 1849 size, 1850 DMA_FROM_DEVICE); 1851 1852 /* unmap buffer on Tx side */ 1853 tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc]; 1854 1855 /* Free all the Tx ring sk_buffs */ 1856 dev_kfree_skb_any(tx_buffer_info->skb); 1857 1858 /* unmap skb header data */ 1859 dma_unmap_single(tx_ring->dev, 1860 dma_unmap_addr(tx_buffer_info, dma), 1861 dma_unmap_len(tx_buffer_info, len), 1862 DMA_TO_DEVICE); 1863 dma_unmap_len_set(tx_buffer_info, len, 0); 1864 1865 /* increment Rx/Tx next to clean counters */ 1866 rx_ntc++; 1867 if (rx_ntc == rx_ring->count) 1868 rx_ntc = 0; 1869 tx_ntc++; 1870 if (tx_ntc == tx_ring->count) 1871 tx_ntc = 0; 1872 1873 /* fetch next descriptor */ 1874 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc); 1875 } 1876 1877 netdev_tx_reset_queue(txring_txq(tx_ring)); 1878 1879 /* re-map buffers to ring, store next to clean values */ 1880 igb_alloc_rx_buffers(rx_ring, count); 1881 rx_ring->next_to_clean = rx_ntc; 1882 tx_ring->next_to_clean = tx_ntc; 1883 1884 return count; 1885 } 1886 1887 static int igb_run_loopback_test(struct igb_adapter *adapter) 1888 { 1889 struct igb_ring *tx_ring = &adapter->test_tx_ring; 1890 struct igb_ring *rx_ring = &adapter->test_rx_ring; 1891 u16 i, j, lc, good_cnt; 1892 int ret_val = 0; 1893 unsigned int size = IGB_RX_HDR_LEN; 1894 netdev_tx_t tx_ret_val; 1895 struct sk_buff *skb; 1896 1897 /* allocate test skb */ 1898 skb = alloc_skb(size, GFP_KERNEL); 1899 if (!skb) 1900 return 11; 1901 1902 /* place data into test skb */ 1903 igb_create_lbtest_frame(skb, size); 1904 skb_put(skb, size); 1905 1906 /* Calculate the loop count based on the largest descriptor ring 1907 * The idea is to wrap the largest ring a number of times using 64 1908 * send/receive pairs during each loop 1909 */ 1910 1911 if (rx_ring->count <= tx_ring->count) 1912 lc = ((tx_ring->count / 64) * 2) + 1; 1913 else 1914 lc = ((rx_ring->count / 64) * 2) + 1; 1915 1916 for (j = 0; j <= lc; j++) { /* loop count loop */ 1917 /* reset count of good packets */ 1918 good_cnt = 0; 1919 1920 /* place 64 packets on the transmit queue*/ 1921 for (i = 0; i < 64; i++) { 1922 skb_get(skb); 1923 tx_ret_val = igb_xmit_frame_ring(skb, tx_ring); 1924 if (tx_ret_val == NETDEV_TX_OK) 1925 good_cnt++; 1926 } 1927 1928 if (good_cnt != 64) { 1929 ret_val = 12; 1930 break; 1931 } 1932 1933 /* allow 200 milliseconds for packets to go from Tx to Rx */ 1934 msleep(200); 1935 1936 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size); 1937 if (good_cnt != 64) { 1938 ret_val = 13; 1939 break; 1940 } 1941 } /* end loop count loop */ 1942 1943 /* free the original skb */ 1944 kfree_skb(skb); 1945 1946 return ret_val; 1947 } 1948 1949 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data) 1950 { 1951 /* PHY loopback cannot be performed if SoL/IDER 1952 * sessions are active 1953 */ 1954 if (igb_check_reset_block(&adapter->hw)) { 1955 dev_err(&adapter->pdev->dev, 1956 "Cannot do PHY loopback test when SoL/IDER is active.\n"); 1957 *data = 0; 1958 goto out; 1959 } 1960 1961 if (adapter->hw.mac.type == e1000_i354) { 1962 dev_info(&adapter->pdev->dev, 1963 "Loopback test not supported on i354.\n"); 1964 *data = 0; 1965 goto out; 1966 } 1967 *data = igb_setup_desc_rings(adapter); 1968 if (*data) 1969 goto out; 1970 *data = igb_setup_loopback_test(adapter); 1971 if (*data) 1972 goto err_loopback; 1973 *data = igb_run_loopback_test(adapter); 1974 igb_loopback_cleanup(adapter); 1975 1976 err_loopback: 1977 igb_free_desc_rings(adapter); 1978 out: 1979 return *data; 1980 } 1981 1982 static int igb_link_test(struct igb_adapter *adapter, u64 *data) 1983 { 1984 struct e1000_hw *hw = &adapter->hw; 1985 *data = 0; 1986 if (hw->phy.media_type == e1000_media_type_internal_serdes) { 1987 int i = 0; 1988 1989 hw->mac.serdes_has_link = false; 1990 1991 /* On some blade server designs, link establishment 1992 * could take as long as 2-3 minutes 1993 */ 1994 do { 1995 hw->mac.ops.check_for_link(&adapter->hw); 1996 if (hw->mac.serdes_has_link) 1997 return *data; 1998 msleep(20); 1999 } while (i++ < 3750); 2000 2001 *data = 1; 2002 } else { 2003 hw->mac.ops.check_for_link(&adapter->hw); 2004 if (hw->mac.autoneg) 2005 msleep(5000); 2006 2007 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) 2008 *data = 1; 2009 } 2010 return *data; 2011 } 2012 2013 static void igb_diag_test(struct net_device *netdev, 2014 struct ethtool_test *eth_test, u64 *data) 2015 { 2016 struct igb_adapter *adapter = netdev_priv(netdev); 2017 u16 autoneg_advertised; 2018 u8 forced_speed_duplex, autoneg; 2019 bool if_running = netif_running(netdev); 2020 2021 set_bit(__IGB_TESTING, &adapter->state); 2022 2023 /* can't do offline tests on media switching devices */ 2024 if (adapter->hw.dev_spec._82575.mas_capable) 2025 eth_test->flags &= ~ETH_TEST_FL_OFFLINE; 2026 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 2027 /* Offline tests */ 2028 2029 /* save speed, duplex, autoneg settings */ 2030 autoneg_advertised = adapter->hw.phy.autoneg_advertised; 2031 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; 2032 autoneg = adapter->hw.mac.autoneg; 2033 2034 dev_info(&adapter->pdev->dev, "offline testing starting\n"); 2035 2036 /* power up link for link test */ 2037 igb_power_up_link(adapter); 2038 2039 /* Link test performed before hardware reset so autoneg doesn't 2040 * interfere with test result 2041 */ 2042 if (igb_link_test(adapter, &data[TEST_LINK])) 2043 eth_test->flags |= ETH_TEST_FL_FAILED; 2044 2045 if (if_running) 2046 /* indicate we're in test mode */ 2047 igb_close(netdev); 2048 else 2049 igb_reset(adapter); 2050 2051 if (igb_reg_test(adapter, &data[TEST_REG])) 2052 eth_test->flags |= ETH_TEST_FL_FAILED; 2053 2054 igb_reset(adapter); 2055 if (igb_eeprom_test(adapter, &data[TEST_EEP])) 2056 eth_test->flags |= ETH_TEST_FL_FAILED; 2057 2058 igb_reset(adapter); 2059 if (igb_intr_test(adapter, &data[TEST_IRQ])) 2060 eth_test->flags |= ETH_TEST_FL_FAILED; 2061 2062 igb_reset(adapter); 2063 /* power up link for loopback test */ 2064 igb_power_up_link(adapter); 2065 if (igb_loopback_test(adapter, &data[TEST_LOOP])) 2066 eth_test->flags |= ETH_TEST_FL_FAILED; 2067 2068 /* restore speed, duplex, autoneg settings */ 2069 adapter->hw.phy.autoneg_advertised = autoneg_advertised; 2070 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; 2071 adapter->hw.mac.autoneg = autoneg; 2072 2073 /* force this routine to wait until autoneg complete/timeout */ 2074 adapter->hw.phy.autoneg_wait_to_complete = true; 2075 igb_reset(adapter); 2076 adapter->hw.phy.autoneg_wait_to_complete = false; 2077 2078 clear_bit(__IGB_TESTING, &adapter->state); 2079 if (if_running) 2080 igb_open(netdev); 2081 } else { 2082 dev_info(&adapter->pdev->dev, "online testing starting\n"); 2083 2084 /* PHY is powered down when interface is down */ 2085 if (if_running && igb_link_test(adapter, &data[TEST_LINK])) 2086 eth_test->flags |= ETH_TEST_FL_FAILED; 2087 else 2088 data[TEST_LINK] = 0; 2089 2090 /* Online tests aren't run; pass by default */ 2091 data[TEST_REG] = 0; 2092 data[TEST_EEP] = 0; 2093 data[TEST_IRQ] = 0; 2094 data[TEST_LOOP] = 0; 2095 2096 clear_bit(__IGB_TESTING, &adapter->state); 2097 } 2098 msleep_interruptible(4 * 1000); 2099 } 2100 2101 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 2102 { 2103 struct igb_adapter *adapter = netdev_priv(netdev); 2104 2105 wol->wolopts = 0; 2106 2107 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED)) 2108 return; 2109 2110 wol->supported = WAKE_UCAST | WAKE_MCAST | 2111 WAKE_BCAST | WAKE_MAGIC | 2112 WAKE_PHY; 2113 2114 /* apply any specific unsupported masks here */ 2115 switch (adapter->hw.device_id) { 2116 default: 2117 break; 2118 } 2119 2120 if (adapter->wol & E1000_WUFC_EX) 2121 wol->wolopts |= WAKE_UCAST; 2122 if (adapter->wol & E1000_WUFC_MC) 2123 wol->wolopts |= WAKE_MCAST; 2124 if (adapter->wol & E1000_WUFC_BC) 2125 wol->wolopts |= WAKE_BCAST; 2126 if (adapter->wol & E1000_WUFC_MAG) 2127 wol->wolopts |= WAKE_MAGIC; 2128 if (adapter->wol & E1000_WUFC_LNKC) 2129 wol->wolopts |= WAKE_PHY; 2130 } 2131 2132 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 2133 { 2134 struct igb_adapter *adapter = netdev_priv(netdev); 2135 2136 if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE)) 2137 return -EOPNOTSUPP; 2138 2139 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED)) 2140 return wol->wolopts ? -EOPNOTSUPP : 0; 2141 2142 /* these settings will always override what we currently have */ 2143 adapter->wol = 0; 2144 2145 if (wol->wolopts & WAKE_UCAST) 2146 adapter->wol |= E1000_WUFC_EX; 2147 if (wol->wolopts & WAKE_MCAST) 2148 adapter->wol |= E1000_WUFC_MC; 2149 if (wol->wolopts & WAKE_BCAST) 2150 adapter->wol |= E1000_WUFC_BC; 2151 if (wol->wolopts & WAKE_MAGIC) 2152 adapter->wol |= E1000_WUFC_MAG; 2153 if (wol->wolopts & WAKE_PHY) 2154 adapter->wol |= E1000_WUFC_LNKC; 2155 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 2156 2157 return 0; 2158 } 2159 2160 /* bit defines for adapter->led_status */ 2161 #define IGB_LED_ON 0 2162 2163 static int igb_set_phys_id(struct net_device *netdev, 2164 enum ethtool_phys_id_state state) 2165 { 2166 struct igb_adapter *adapter = netdev_priv(netdev); 2167 struct e1000_hw *hw = &adapter->hw; 2168 2169 switch (state) { 2170 case ETHTOOL_ID_ACTIVE: 2171 igb_blink_led(hw); 2172 return 2; 2173 case ETHTOOL_ID_ON: 2174 igb_blink_led(hw); 2175 break; 2176 case ETHTOOL_ID_OFF: 2177 igb_led_off(hw); 2178 break; 2179 case ETHTOOL_ID_INACTIVE: 2180 igb_led_off(hw); 2181 clear_bit(IGB_LED_ON, &adapter->led_status); 2182 igb_cleanup_led(hw); 2183 break; 2184 } 2185 2186 return 0; 2187 } 2188 2189 static int igb_set_coalesce(struct net_device *netdev, 2190 struct ethtool_coalesce *ec) 2191 { 2192 struct igb_adapter *adapter = netdev_priv(netdev); 2193 int i; 2194 2195 if (ec->rx_max_coalesced_frames || 2196 ec->rx_coalesce_usecs_irq || 2197 ec->rx_max_coalesced_frames_irq || 2198 ec->tx_max_coalesced_frames || 2199 ec->tx_coalesce_usecs_irq || 2200 ec->stats_block_coalesce_usecs || 2201 ec->use_adaptive_rx_coalesce || 2202 ec->use_adaptive_tx_coalesce || 2203 ec->pkt_rate_low || 2204 ec->rx_coalesce_usecs_low || 2205 ec->rx_max_coalesced_frames_low || 2206 ec->tx_coalesce_usecs_low || 2207 ec->tx_max_coalesced_frames_low || 2208 ec->pkt_rate_high || 2209 ec->rx_coalesce_usecs_high || 2210 ec->rx_max_coalesced_frames_high || 2211 ec->tx_coalesce_usecs_high || 2212 ec->tx_max_coalesced_frames_high || 2213 ec->rate_sample_interval) 2214 return -ENOTSUPP; 2215 2216 if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) || 2217 ((ec->rx_coalesce_usecs > 3) && 2218 (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) || 2219 (ec->rx_coalesce_usecs == 2)) 2220 return -EINVAL; 2221 2222 if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) || 2223 ((ec->tx_coalesce_usecs > 3) && 2224 (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) || 2225 (ec->tx_coalesce_usecs == 2)) 2226 return -EINVAL; 2227 2228 if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs) 2229 return -EINVAL; 2230 2231 /* If ITR is disabled, disable DMAC */ 2232 if (ec->rx_coalesce_usecs == 0) { 2233 if (adapter->flags & IGB_FLAG_DMAC) 2234 adapter->flags &= ~IGB_FLAG_DMAC; 2235 } 2236 2237 /* convert to rate of irq's per second */ 2238 if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3) 2239 adapter->rx_itr_setting = ec->rx_coalesce_usecs; 2240 else 2241 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2; 2242 2243 /* convert to rate of irq's per second */ 2244 if (adapter->flags & IGB_FLAG_QUEUE_PAIRS) 2245 adapter->tx_itr_setting = adapter->rx_itr_setting; 2246 else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3) 2247 adapter->tx_itr_setting = ec->tx_coalesce_usecs; 2248 else 2249 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2; 2250 2251 for (i = 0; i < adapter->num_q_vectors; i++) { 2252 struct igb_q_vector *q_vector = adapter->q_vector[i]; 2253 q_vector->tx.work_limit = adapter->tx_work_limit; 2254 if (q_vector->rx.ring) 2255 q_vector->itr_val = adapter->rx_itr_setting; 2256 else 2257 q_vector->itr_val = adapter->tx_itr_setting; 2258 if (q_vector->itr_val && q_vector->itr_val <= 3) 2259 q_vector->itr_val = IGB_START_ITR; 2260 q_vector->set_itr = 1; 2261 } 2262 2263 return 0; 2264 } 2265 2266 static int igb_get_coalesce(struct net_device *netdev, 2267 struct ethtool_coalesce *ec) 2268 { 2269 struct igb_adapter *adapter = netdev_priv(netdev); 2270 2271 if (adapter->rx_itr_setting <= 3) 2272 ec->rx_coalesce_usecs = adapter->rx_itr_setting; 2273 else 2274 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2; 2275 2276 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) { 2277 if (adapter->tx_itr_setting <= 3) 2278 ec->tx_coalesce_usecs = adapter->tx_itr_setting; 2279 else 2280 ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2; 2281 } 2282 2283 return 0; 2284 } 2285 2286 static int igb_nway_reset(struct net_device *netdev) 2287 { 2288 struct igb_adapter *adapter = netdev_priv(netdev); 2289 if (netif_running(netdev)) 2290 igb_reinit_locked(adapter); 2291 return 0; 2292 } 2293 2294 static int igb_get_sset_count(struct net_device *netdev, int sset) 2295 { 2296 switch (sset) { 2297 case ETH_SS_STATS: 2298 return IGB_STATS_LEN; 2299 case ETH_SS_TEST: 2300 return IGB_TEST_LEN; 2301 case ETH_SS_PRIV_FLAGS: 2302 return IGB_PRIV_FLAGS_STR_LEN; 2303 default: 2304 return -ENOTSUPP; 2305 } 2306 } 2307 2308 static void igb_get_ethtool_stats(struct net_device *netdev, 2309 struct ethtool_stats *stats, u64 *data) 2310 { 2311 struct igb_adapter *adapter = netdev_priv(netdev); 2312 struct rtnl_link_stats64 *net_stats = &adapter->stats64; 2313 unsigned int start; 2314 struct igb_ring *ring; 2315 int i, j; 2316 char *p; 2317 2318 spin_lock(&adapter->stats64_lock); 2319 igb_update_stats(adapter); 2320 2321 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) { 2322 p = (char *)adapter + igb_gstrings_stats[i].stat_offset; 2323 data[i] = (igb_gstrings_stats[i].sizeof_stat == 2324 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 2325 } 2326 for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) { 2327 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset; 2328 data[i] = (igb_gstrings_net_stats[j].sizeof_stat == 2329 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 2330 } 2331 for (j = 0; j < adapter->num_tx_queues; j++) { 2332 u64 restart2; 2333 2334 ring = adapter->tx_ring[j]; 2335 do { 2336 start = u64_stats_fetch_begin_irq(&ring->tx_syncp); 2337 data[i] = ring->tx_stats.packets; 2338 data[i+1] = ring->tx_stats.bytes; 2339 data[i+2] = ring->tx_stats.restart_queue; 2340 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start)); 2341 do { 2342 start = u64_stats_fetch_begin_irq(&ring->tx_syncp2); 2343 restart2 = ring->tx_stats.restart_queue2; 2344 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start)); 2345 data[i+2] += restart2; 2346 2347 i += IGB_TX_QUEUE_STATS_LEN; 2348 } 2349 for (j = 0; j < adapter->num_rx_queues; j++) { 2350 ring = adapter->rx_ring[j]; 2351 do { 2352 start = u64_stats_fetch_begin_irq(&ring->rx_syncp); 2353 data[i] = ring->rx_stats.packets; 2354 data[i+1] = ring->rx_stats.bytes; 2355 data[i+2] = ring->rx_stats.drops; 2356 data[i+3] = ring->rx_stats.csum_err; 2357 data[i+4] = ring->rx_stats.alloc_failed; 2358 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start)); 2359 i += IGB_RX_QUEUE_STATS_LEN; 2360 } 2361 spin_unlock(&adapter->stats64_lock); 2362 } 2363 2364 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data) 2365 { 2366 struct igb_adapter *adapter = netdev_priv(netdev); 2367 u8 *p = data; 2368 int i; 2369 2370 switch (stringset) { 2371 case ETH_SS_TEST: 2372 memcpy(data, *igb_gstrings_test, 2373 IGB_TEST_LEN*ETH_GSTRING_LEN); 2374 break; 2375 case ETH_SS_STATS: 2376 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) { 2377 memcpy(p, igb_gstrings_stats[i].stat_string, 2378 ETH_GSTRING_LEN); 2379 p += ETH_GSTRING_LEN; 2380 } 2381 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) { 2382 memcpy(p, igb_gstrings_net_stats[i].stat_string, 2383 ETH_GSTRING_LEN); 2384 p += ETH_GSTRING_LEN; 2385 } 2386 for (i = 0; i < adapter->num_tx_queues; i++) { 2387 sprintf(p, "tx_queue_%u_packets", i); 2388 p += ETH_GSTRING_LEN; 2389 sprintf(p, "tx_queue_%u_bytes", i); 2390 p += ETH_GSTRING_LEN; 2391 sprintf(p, "tx_queue_%u_restart", i); 2392 p += ETH_GSTRING_LEN; 2393 } 2394 for (i = 0; i < adapter->num_rx_queues; i++) { 2395 sprintf(p, "rx_queue_%u_packets", i); 2396 p += ETH_GSTRING_LEN; 2397 sprintf(p, "rx_queue_%u_bytes", i); 2398 p += ETH_GSTRING_LEN; 2399 sprintf(p, "rx_queue_%u_drops", i); 2400 p += ETH_GSTRING_LEN; 2401 sprintf(p, "rx_queue_%u_csum_err", i); 2402 p += ETH_GSTRING_LEN; 2403 sprintf(p, "rx_queue_%u_alloc_failed", i); 2404 p += ETH_GSTRING_LEN; 2405 } 2406 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */ 2407 break; 2408 case ETH_SS_PRIV_FLAGS: 2409 memcpy(data, igb_priv_flags_strings, 2410 IGB_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN); 2411 break; 2412 } 2413 } 2414 2415 static int igb_get_ts_info(struct net_device *dev, 2416 struct ethtool_ts_info *info) 2417 { 2418 struct igb_adapter *adapter = netdev_priv(dev); 2419 2420 if (adapter->ptp_clock) 2421 info->phc_index = ptp_clock_index(adapter->ptp_clock); 2422 else 2423 info->phc_index = -1; 2424 2425 switch (adapter->hw.mac.type) { 2426 case e1000_82575: 2427 info->so_timestamping = 2428 SOF_TIMESTAMPING_TX_SOFTWARE | 2429 SOF_TIMESTAMPING_RX_SOFTWARE | 2430 SOF_TIMESTAMPING_SOFTWARE; 2431 return 0; 2432 case e1000_82576: 2433 case e1000_82580: 2434 case e1000_i350: 2435 case e1000_i354: 2436 case e1000_i210: 2437 case e1000_i211: 2438 info->so_timestamping = 2439 SOF_TIMESTAMPING_TX_SOFTWARE | 2440 SOF_TIMESTAMPING_RX_SOFTWARE | 2441 SOF_TIMESTAMPING_SOFTWARE | 2442 SOF_TIMESTAMPING_TX_HARDWARE | 2443 SOF_TIMESTAMPING_RX_HARDWARE | 2444 SOF_TIMESTAMPING_RAW_HARDWARE; 2445 2446 info->tx_types = 2447 BIT(HWTSTAMP_TX_OFF) | 2448 BIT(HWTSTAMP_TX_ON); 2449 2450 info->rx_filters = BIT(HWTSTAMP_FILTER_NONE); 2451 2452 /* 82576 does not support timestamping all packets. */ 2453 if (adapter->hw.mac.type >= e1000_82580) 2454 info->rx_filters |= BIT(HWTSTAMP_FILTER_ALL); 2455 else 2456 info->rx_filters |= 2457 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) | 2458 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) | 2459 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT); 2460 2461 return 0; 2462 default: 2463 return -EOPNOTSUPP; 2464 } 2465 } 2466 2467 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0) 2468 static int igb_get_ethtool_nfc_entry(struct igb_adapter *adapter, 2469 struct ethtool_rxnfc *cmd) 2470 { 2471 struct ethtool_rx_flow_spec *fsp = &cmd->fs; 2472 struct igb_nfc_filter *rule = NULL; 2473 2474 /* report total rule count */ 2475 cmd->data = IGB_MAX_RXNFC_FILTERS; 2476 2477 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) { 2478 if (fsp->location <= rule->sw_idx) 2479 break; 2480 } 2481 2482 if (!rule || fsp->location != rule->sw_idx) 2483 return -EINVAL; 2484 2485 if (rule->filter.match_flags) { 2486 fsp->flow_type = ETHER_FLOW; 2487 fsp->ring_cookie = rule->action; 2488 if (rule->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) { 2489 fsp->h_u.ether_spec.h_proto = rule->filter.etype; 2490 fsp->m_u.ether_spec.h_proto = ETHER_TYPE_FULL_MASK; 2491 } 2492 if (rule->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI) { 2493 fsp->flow_type |= FLOW_EXT; 2494 fsp->h_ext.vlan_tci = rule->filter.vlan_tci; 2495 fsp->m_ext.vlan_tci = htons(VLAN_PRIO_MASK); 2496 } 2497 return 0; 2498 } 2499 return -EINVAL; 2500 } 2501 2502 static int igb_get_ethtool_nfc_all(struct igb_adapter *adapter, 2503 struct ethtool_rxnfc *cmd, 2504 u32 *rule_locs) 2505 { 2506 struct igb_nfc_filter *rule; 2507 int cnt = 0; 2508 2509 /* report total rule count */ 2510 cmd->data = IGB_MAX_RXNFC_FILTERS; 2511 2512 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) { 2513 if (cnt == cmd->rule_cnt) 2514 return -EMSGSIZE; 2515 rule_locs[cnt] = rule->sw_idx; 2516 cnt++; 2517 } 2518 2519 cmd->rule_cnt = cnt; 2520 2521 return 0; 2522 } 2523 2524 static int igb_get_rss_hash_opts(struct igb_adapter *adapter, 2525 struct ethtool_rxnfc *cmd) 2526 { 2527 cmd->data = 0; 2528 2529 /* Report default options for RSS on igb */ 2530 switch (cmd->flow_type) { 2531 case TCP_V4_FLOW: 2532 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2533 /* Fall through */ 2534 case UDP_V4_FLOW: 2535 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP) 2536 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2537 /* Fall through */ 2538 case SCTP_V4_FLOW: 2539 case AH_ESP_V4_FLOW: 2540 case AH_V4_FLOW: 2541 case ESP_V4_FLOW: 2542 case IPV4_FLOW: 2543 cmd->data |= RXH_IP_SRC | RXH_IP_DST; 2544 break; 2545 case TCP_V6_FLOW: 2546 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2547 /* Fall through */ 2548 case UDP_V6_FLOW: 2549 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP) 2550 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2551 /* Fall through */ 2552 case SCTP_V6_FLOW: 2553 case AH_ESP_V6_FLOW: 2554 case AH_V6_FLOW: 2555 case ESP_V6_FLOW: 2556 case IPV6_FLOW: 2557 cmd->data |= RXH_IP_SRC | RXH_IP_DST; 2558 break; 2559 default: 2560 return -EINVAL; 2561 } 2562 2563 return 0; 2564 } 2565 2566 static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd, 2567 u32 *rule_locs) 2568 { 2569 struct igb_adapter *adapter = netdev_priv(dev); 2570 int ret = -EOPNOTSUPP; 2571 2572 switch (cmd->cmd) { 2573 case ETHTOOL_GRXRINGS: 2574 cmd->data = adapter->num_rx_queues; 2575 ret = 0; 2576 break; 2577 case ETHTOOL_GRXCLSRLCNT: 2578 cmd->rule_cnt = adapter->nfc_filter_count; 2579 ret = 0; 2580 break; 2581 case ETHTOOL_GRXCLSRULE: 2582 ret = igb_get_ethtool_nfc_entry(adapter, cmd); 2583 break; 2584 case ETHTOOL_GRXCLSRLALL: 2585 ret = igb_get_ethtool_nfc_all(adapter, cmd, rule_locs); 2586 break; 2587 case ETHTOOL_GRXFH: 2588 ret = igb_get_rss_hash_opts(adapter, cmd); 2589 break; 2590 default: 2591 break; 2592 } 2593 2594 return ret; 2595 } 2596 2597 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \ 2598 IGB_FLAG_RSS_FIELD_IPV6_UDP) 2599 static int igb_set_rss_hash_opt(struct igb_adapter *adapter, 2600 struct ethtool_rxnfc *nfc) 2601 { 2602 u32 flags = adapter->flags; 2603 2604 /* RSS does not support anything other than hashing 2605 * to queues on src and dst IPs and ports 2606 */ 2607 if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST | 2608 RXH_L4_B_0_1 | RXH_L4_B_2_3)) 2609 return -EINVAL; 2610 2611 switch (nfc->flow_type) { 2612 case TCP_V4_FLOW: 2613 case TCP_V6_FLOW: 2614 if (!(nfc->data & RXH_IP_SRC) || 2615 !(nfc->data & RXH_IP_DST) || 2616 !(nfc->data & RXH_L4_B_0_1) || 2617 !(nfc->data & RXH_L4_B_2_3)) 2618 return -EINVAL; 2619 break; 2620 case UDP_V4_FLOW: 2621 if (!(nfc->data & RXH_IP_SRC) || 2622 !(nfc->data & RXH_IP_DST)) 2623 return -EINVAL; 2624 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 2625 case 0: 2626 flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP; 2627 break; 2628 case (RXH_L4_B_0_1 | RXH_L4_B_2_3): 2629 flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP; 2630 break; 2631 default: 2632 return -EINVAL; 2633 } 2634 break; 2635 case UDP_V6_FLOW: 2636 if (!(nfc->data & RXH_IP_SRC) || 2637 !(nfc->data & RXH_IP_DST)) 2638 return -EINVAL; 2639 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 2640 case 0: 2641 flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP; 2642 break; 2643 case (RXH_L4_B_0_1 | RXH_L4_B_2_3): 2644 flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP; 2645 break; 2646 default: 2647 return -EINVAL; 2648 } 2649 break; 2650 case AH_ESP_V4_FLOW: 2651 case AH_V4_FLOW: 2652 case ESP_V4_FLOW: 2653 case SCTP_V4_FLOW: 2654 case AH_ESP_V6_FLOW: 2655 case AH_V6_FLOW: 2656 case ESP_V6_FLOW: 2657 case SCTP_V6_FLOW: 2658 if (!(nfc->data & RXH_IP_SRC) || 2659 !(nfc->data & RXH_IP_DST) || 2660 (nfc->data & RXH_L4_B_0_1) || 2661 (nfc->data & RXH_L4_B_2_3)) 2662 return -EINVAL; 2663 break; 2664 default: 2665 return -EINVAL; 2666 } 2667 2668 /* if we changed something we need to update flags */ 2669 if (flags != adapter->flags) { 2670 struct e1000_hw *hw = &adapter->hw; 2671 u32 mrqc = rd32(E1000_MRQC); 2672 2673 if ((flags & UDP_RSS_FLAGS) && 2674 !(adapter->flags & UDP_RSS_FLAGS)) 2675 dev_err(&adapter->pdev->dev, 2676 "enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n"); 2677 2678 adapter->flags = flags; 2679 2680 /* Perform hash on these packet types */ 2681 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 | 2682 E1000_MRQC_RSS_FIELD_IPV4_TCP | 2683 E1000_MRQC_RSS_FIELD_IPV6 | 2684 E1000_MRQC_RSS_FIELD_IPV6_TCP; 2685 2686 mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP | 2687 E1000_MRQC_RSS_FIELD_IPV6_UDP); 2688 2689 if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP) 2690 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP; 2691 2692 if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP) 2693 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP; 2694 2695 wr32(E1000_MRQC, mrqc); 2696 } 2697 2698 return 0; 2699 } 2700 2701 static int igb_rxnfc_write_etype_filter(struct igb_adapter *adapter, 2702 struct igb_nfc_filter *input) 2703 { 2704 struct e1000_hw *hw = &adapter->hw; 2705 u8 i; 2706 u32 etqf; 2707 u16 etype; 2708 2709 /* find an empty etype filter register */ 2710 for (i = 0; i < MAX_ETYPE_FILTER; ++i) { 2711 if (!adapter->etype_bitmap[i]) 2712 break; 2713 } 2714 if (i == MAX_ETYPE_FILTER) { 2715 dev_err(&adapter->pdev->dev, "ethtool -N: etype filters are all used.\n"); 2716 return -EINVAL; 2717 } 2718 2719 adapter->etype_bitmap[i] = true; 2720 2721 etqf = rd32(E1000_ETQF(i)); 2722 etype = ntohs(input->filter.etype & ETHER_TYPE_FULL_MASK); 2723 2724 etqf |= E1000_ETQF_FILTER_ENABLE; 2725 etqf &= ~E1000_ETQF_ETYPE_MASK; 2726 etqf |= (etype & E1000_ETQF_ETYPE_MASK); 2727 2728 etqf &= ~E1000_ETQF_QUEUE_MASK; 2729 etqf |= ((input->action << E1000_ETQF_QUEUE_SHIFT) 2730 & E1000_ETQF_QUEUE_MASK); 2731 etqf |= E1000_ETQF_QUEUE_ENABLE; 2732 2733 wr32(E1000_ETQF(i), etqf); 2734 2735 input->etype_reg_index = i; 2736 2737 return 0; 2738 } 2739 2740 static int igb_rxnfc_write_vlan_prio_filter(struct igb_adapter *adapter, 2741 struct igb_nfc_filter *input) 2742 { 2743 struct e1000_hw *hw = &adapter->hw; 2744 u8 vlan_priority; 2745 u16 queue_index; 2746 u32 vlapqf; 2747 2748 vlapqf = rd32(E1000_VLAPQF); 2749 vlan_priority = (ntohs(input->filter.vlan_tci) & VLAN_PRIO_MASK) 2750 >> VLAN_PRIO_SHIFT; 2751 queue_index = (vlapqf >> (vlan_priority * 4)) & E1000_VLAPQF_QUEUE_MASK; 2752 2753 /* check whether this vlan prio is already set */ 2754 if ((vlapqf & E1000_VLAPQF_P_VALID(vlan_priority)) && 2755 (queue_index != input->action)) { 2756 dev_err(&adapter->pdev->dev, "ethtool rxnfc set vlan prio filter failed.\n"); 2757 return -EEXIST; 2758 } 2759 2760 vlapqf |= E1000_VLAPQF_P_VALID(vlan_priority); 2761 vlapqf |= E1000_VLAPQF_QUEUE_SEL(vlan_priority, input->action); 2762 2763 wr32(E1000_VLAPQF, vlapqf); 2764 2765 return 0; 2766 } 2767 2768 int igb_add_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input) 2769 { 2770 int err = -EINVAL; 2771 2772 if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) { 2773 err = igb_rxnfc_write_etype_filter(adapter, input); 2774 if (err) 2775 return err; 2776 } 2777 2778 if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI) 2779 err = igb_rxnfc_write_vlan_prio_filter(adapter, input); 2780 2781 return err; 2782 } 2783 2784 static void igb_clear_etype_filter_regs(struct igb_adapter *adapter, 2785 u16 reg_index) 2786 { 2787 struct e1000_hw *hw = &adapter->hw; 2788 u32 etqf = rd32(E1000_ETQF(reg_index)); 2789 2790 etqf &= ~E1000_ETQF_QUEUE_ENABLE; 2791 etqf &= ~E1000_ETQF_QUEUE_MASK; 2792 etqf &= ~E1000_ETQF_FILTER_ENABLE; 2793 2794 wr32(E1000_ETQF(reg_index), etqf); 2795 2796 adapter->etype_bitmap[reg_index] = false; 2797 } 2798 2799 static void igb_clear_vlan_prio_filter(struct igb_adapter *adapter, 2800 u16 vlan_tci) 2801 { 2802 struct e1000_hw *hw = &adapter->hw; 2803 u8 vlan_priority; 2804 u32 vlapqf; 2805 2806 vlan_priority = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 2807 2808 vlapqf = rd32(E1000_VLAPQF); 2809 vlapqf &= ~E1000_VLAPQF_P_VALID(vlan_priority); 2810 vlapqf &= ~E1000_VLAPQF_QUEUE_SEL(vlan_priority, 2811 E1000_VLAPQF_QUEUE_MASK); 2812 2813 wr32(E1000_VLAPQF, vlapqf); 2814 } 2815 2816 int igb_erase_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input) 2817 { 2818 if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) 2819 igb_clear_etype_filter_regs(adapter, 2820 input->etype_reg_index); 2821 2822 if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI) 2823 igb_clear_vlan_prio_filter(adapter, 2824 ntohs(input->filter.vlan_tci)); 2825 2826 return 0; 2827 } 2828 2829 static int igb_update_ethtool_nfc_entry(struct igb_adapter *adapter, 2830 struct igb_nfc_filter *input, 2831 u16 sw_idx) 2832 { 2833 struct igb_nfc_filter *rule, *parent; 2834 int err = -EINVAL; 2835 2836 parent = NULL; 2837 rule = NULL; 2838 2839 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) { 2840 /* hash found, or no matching entry */ 2841 if (rule->sw_idx >= sw_idx) 2842 break; 2843 parent = rule; 2844 } 2845 2846 /* if there is an old rule occupying our place remove it */ 2847 if (rule && (rule->sw_idx == sw_idx)) { 2848 if (!input) 2849 err = igb_erase_filter(adapter, rule); 2850 2851 hlist_del(&rule->nfc_node); 2852 kfree(rule); 2853 adapter->nfc_filter_count--; 2854 } 2855 2856 /* If no input this was a delete, err should be 0 if a rule was 2857 * successfully found and removed from the list else -EINVAL 2858 */ 2859 if (!input) 2860 return err; 2861 2862 /* initialize node */ 2863 INIT_HLIST_NODE(&input->nfc_node); 2864 2865 /* add filter to the list */ 2866 if (parent) 2867 hlist_add_behind(&parent->nfc_node, &input->nfc_node); 2868 else 2869 hlist_add_head(&input->nfc_node, &adapter->nfc_filter_list); 2870 2871 /* update counts */ 2872 adapter->nfc_filter_count++; 2873 2874 return 0; 2875 } 2876 2877 static int igb_add_ethtool_nfc_entry(struct igb_adapter *adapter, 2878 struct ethtool_rxnfc *cmd) 2879 { 2880 struct net_device *netdev = adapter->netdev; 2881 struct ethtool_rx_flow_spec *fsp = 2882 (struct ethtool_rx_flow_spec *)&cmd->fs; 2883 struct igb_nfc_filter *input, *rule; 2884 int err = 0; 2885 2886 if (!(netdev->hw_features & NETIF_F_NTUPLE)) 2887 return -EOPNOTSUPP; 2888 2889 /* Don't allow programming if the action is a queue greater than 2890 * the number of online Rx queues. 2891 */ 2892 if ((fsp->ring_cookie == RX_CLS_FLOW_DISC) || 2893 (fsp->ring_cookie >= adapter->num_rx_queues)) { 2894 dev_err(&adapter->pdev->dev, "ethtool -N: The specified action is invalid\n"); 2895 return -EINVAL; 2896 } 2897 2898 /* Don't allow indexes to exist outside of available space */ 2899 if (fsp->location >= IGB_MAX_RXNFC_FILTERS) { 2900 dev_err(&adapter->pdev->dev, "Location out of range\n"); 2901 return -EINVAL; 2902 } 2903 2904 if ((fsp->flow_type & ~FLOW_EXT) != ETHER_FLOW) 2905 return -EINVAL; 2906 2907 if (fsp->m_u.ether_spec.h_proto != ETHER_TYPE_FULL_MASK && 2908 fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK)) 2909 return -EINVAL; 2910 2911 input = kzalloc(sizeof(*input), GFP_KERNEL); 2912 if (!input) 2913 return -ENOMEM; 2914 2915 if (fsp->m_u.ether_spec.h_proto == ETHER_TYPE_FULL_MASK) { 2916 input->filter.etype = fsp->h_u.ether_spec.h_proto; 2917 input->filter.match_flags = IGB_FILTER_FLAG_ETHER_TYPE; 2918 } 2919 2920 if ((fsp->flow_type & FLOW_EXT) && fsp->m_ext.vlan_tci) { 2921 if (fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK)) { 2922 err = -EINVAL; 2923 goto err_out; 2924 } 2925 input->filter.vlan_tci = fsp->h_ext.vlan_tci; 2926 input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI; 2927 } 2928 2929 input->action = fsp->ring_cookie; 2930 input->sw_idx = fsp->location; 2931 2932 spin_lock(&adapter->nfc_lock); 2933 2934 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) { 2935 if (!memcmp(&input->filter, &rule->filter, 2936 sizeof(input->filter))) { 2937 err = -EEXIST; 2938 dev_err(&adapter->pdev->dev, 2939 "ethtool: this filter is already set\n"); 2940 goto err_out_w_lock; 2941 } 2942 } 2943 2944 err = igb_add_filter(adapter, input); 2945 if (err) 2946 goto err_out_w_lock; 2947 2948 igb_update_ethtool_nfc_entry(adapter, input, input->sw_idx); 2949 2950 spin_unlock(&adapter->nfc_lock); 2951 return 0; 2952 2953 err_out_w_lock: 2954 spin_unlock(&adapter->nfc_lock); 2955 err_out: 2956 kfree(input); 2957 return err; 2958 } 2959 2960 static int igb_del_ethtool_nfc_entry(struct igb_adapter *adapter, 2961 struct ethtool_rxnfc *cmd) 2962 { 2963 struct ethtool_rx_flow_spec *fsp = 2964 (struct ethtool_rx_flow_spec *)&cmd->fs; 2965 int err; 2966 2967 spin_lock(&adapter->nfc_lock); 2968 err = igb_update_ethtool_nfc_entry(adapter, NULL, fsp->location); 2969 spin_unlock(&adapter->nfc_lock); 2970 2971 return err; 2972 } 2973 2974 static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd) 2975 { 2976 struct igb_adapter *adapter = netdev_priv(dev); 2977 int ret = -EOPNOTSUPP; 2978 2979 switch (cmd->cmd) { 2980 case ETHTOOL_SRXFH: 2981 ret = igb_set_rss_hash_opt(adapter, cmd); 2982 break; 2983 case ETHTOOL_SRXCLSRLINS: 2984 ret = igb_add_ethtool_nfc_entry(adapter, cmd); 2985 break; 2986 case ETHTOOL_SRXCLSRLDEL: 2987 ret = igb_del_ethtool_nfc_entry(adapter, cmd); 2988 default: 2989 break; 2990 } 2991 2992 return ret; 2993 } 2994 2995 static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata) 2996 { 2997 struct igb_adapter *adapter = netdev_priv(netdev); 2998 struct e1000_hw *hw = &adapter->hw; 2999 u32 ret_val; 3000 u16 phy_data; 3001 3002 if ((hw->mac.type < e1000_i350) || 3003 (hw->phy.media_type != e1000_media_type_copper)) 3004 return -EOPNOTSUPP; 3005 3006 edata->supported = (SUPPORTED_1000baseT_Full | 3007 SUPPORTED_100baseT_Full); 3008 if (!hw->dev_spec._82575.eee_disable) 3009 edata->advertised = 3010 mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert); 3011 3012 /* The IPCNFG and EEER registers are not supported on I354. */ 3013 if (hw->mac.type == e1000_i354) { 3014 igb_get_eee_status_i354(hw, (bool *)&edata->eee_active); 3015 } else { 3016 u32 eeer; 3017 3018 eeer = rd32(E1000_EEER); 3019 3020 /* EEE status on negotiated link */ 3021 if (eeer & E1000_EEER_EEE_NEG) 3022 edata->eee_active = true; 3023 3024 if (eeer & E1000_EEER_TX_LPI_EN) 3025 edata->tx_lpi_enabled = true; 3026 } 3027 3028 /* EEE Link Partner Advertised */ 3029 switch (hw->mac.type) { 3030 case e1000_i350: 3031 ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350, 3032 &phy_data); 3033 if (ret_val) 3034 return -ENODATA; 3035 3036 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data); 3037 break; 3038 case e1000_i354: 3039 case e1000_i210: 3040 case e1000_i211: 3041 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210, 3042 E1000_EEE_LP_ADV_DEV_I210, 3043 &phy_data); 3044 if (ret_val) 3045 return -ENODATA; 3046 3047 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data); 3048 3049 break; 3050 default: 3051 break; 3052 } 3053 3054 edata->eee_enabled = !hw->dev_spec._82575.eee_disable; 3055 3056 if ((hw->mac.type == e1000_i354) && 3057 (edata->eee_enabled)) 3058 edata->tx_lpi_enabled = true; 3059 3060 /* Report correct negotiated EEE status for devices that 3061 * wrongly report EEE at half-duplex 3062 */ 3063 if (adapter->link_duplex == HALF_DUPLEX) { 3064 edata->eee_enabled = false; 3065 edata->eee_active = false; 3066 edata->tx_lpi_enabled = false; 3067 edata->advertised &= ~edata->advertised; 3068 } 3069 3070 return 0; 3071 } 3072 3073 static int igb_set_eee(struct net_device *netdev, 3074 struct ethtool_eee *edata) 3075 { 3076 struct igb_adapter *adapter = netdev_priv(netdev); 3077 struct e1000_hw *hw = &adapter->hw; 3078 struct ethtool_eee eee_curr; 3079 bool adv1g_eee = true, adv100m_eee = true; 3080 s32 ret_val; 3081 3082 if ((hw->mac.type < e1000_i350) || 3083 (hw->phy.media_type != e1000_media_type_copper)) 3084 return -EOPNOTSUPP; 3085 3086 memset(&eee_curr, 0, sizeof(struct ethtool_eee)); 3087 3088 ret_val = igb_get_eee(netdev, &eee_curr); 3089 if (ret_val) 3090 return ret_val; 3091 3092 if (eee_curr.eee_enabled) { 3093 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) { 3094 dev_err(&adapter->pdev->dev, 3095 "Setting EEE tx-lpi is not supported\n"); 3096 return -EINVAL; 3097 } 3098 3099 /* Tx LPI timer is not implemented currently */ 3100 if (edata->tx_lpi_timer) { 3101 dev_err(&adapter->pdev->dev, 3102 "Setting EEE Tx LPI timer is not supported\n"); 3103 return -EINVAL; 3104 } 3105 3106 if (!edata->advertised || (edata->advertised & 3107 ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL))) { 3108 dev_err(&adapter->pdev->dev, 3109 "EEE Advertisement supports only 100Tx and/or 100T full duplex\n"); 3110 return -EINVAL; 3111 } 3112 adv100m_eee = !!(edata->advertised & ADVERTISE_100_FULL); 3113 adv1g_eee = !!(edata->advertised & ADVERTISE_1000_FULL); 3114 3115 } else if (!edata->eee_enabled) { 3116 dev_err(&adapter->pdev->dev, 3117 "Setting EEE options are not supported with EEE disabled\n"); 3118 return -EINVAL; 3119 } 3120 3121 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised); 3122 if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) { 3123 hw->dev_spec._82575.eee_disable = !edata->eee_enabled; 3124 adapter->flags |= IGB_FLAG_EEE; 3125 3126 /* reset link */ 3127 if (netif_running(netdev)) 3128 igb_reinit_locked(adapter); 3129 else 3130 igb_reset(adapter); 3131 } 3132 3133 if (hw->mac.type == e1000_i354) 3134 ret_val = igb_set_eee_i354(hw, adv1g_eee, adv100m_eee); 3135 else 3136 ret_val = igb_set_eee_i350(hw, adv1g_eee, adv100m_eee); 3137 3138 if (ret_val) { 3139 dev_err(&adapter->pdev->dev, 3140 "Problem setting EEE advertisement options\n"); 3141 return -EINVAL; 3142 } 3143 3144 return 0; 3145 } 3146 3147 static int igb_get_module_info(struct net_device *netdev, 3148 struct ethtool_modinfo *modinfo) 3149 { 3150 struct igb_adapter *adapter = netdev_priv(netdev); 3151 struct e1000_hw *hw = &adapter->hw; 3152 u32 status = 0; 3153 u16 sff8472_rev, addr_mode; 3154 bool page_swap = false; 3155 3156 if ((hw->phy.media_type == e1000_media_type_copper) || 3157 (hw->phy.media_type == e1000_media_type_unknown)) 3158 return -EOPNOTSUPP; 3159 3160 /* Check whether we support SFF-8472 or not */ 3161 status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev); 3162 if (status) 3163 return -EIO; 3164 3165 /* addressing mode is not supported */ 3166 status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode); 3167 if (status) 3168 return -EIO; 3169 3170 /* addressing mode is not supported */ 3171 if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) { 3172 hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n"); 3173 page_swap = true; 3174 } 3175 3176 if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) { 3177 /* We have an SFP, but it does not support SFF-8472 */ 3178 modinfo->type = ETH_MODULE_SFF_8079; 3179 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; 3180 } else { 3181 /* We have an SFP which supports a revision of SFF-8472 */ 3182 modinfo->type = ETH_MODULE_SFF_8472; 3183 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; 3184 } 3185 3186 return 0; 3187 } 3188 3189 static int igb_get_module_eeprom(struct net_device *netdev, 3190 struct ethtool_eeprom *ee, u8 *data) 3191 { 3192 struct igb_adapter *adapter = netdev_priv(netdev); 3193 struct e1000_hw *hw = &adapter->hw; 3194 u32 status = 0; 3195 u16 *dataword; 3196 u16 first_word, last_word; 3197 int i = 0; 3198 3199 if (ee->len == 0) 3200 return -EINVAL; 3201 3202 first_word = ee->offset >> 1; 3203 last_word = (ee->offset + ee->len - 1) >> 1; 3204 3205 dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1), 3206 GFP_KERNEL); 3207 if (!dataword) 3208 return -ENOMEM; 3209 3210 /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */ 3211 for (i = 0; i < last_word - first_word + 1; i++) { 3212 status = igb_read_phy_reg_i2c(hw, (first_word + i) * 2, 3213 &dataword[i]); 3214 if (status) { 3215 /* Error occurred while reading module */ 3216 kfree(dataword); 3217 return -EIO; 3218 } 3219 3220 be16_to_cpus(&dataword[i]); 3221 } 3222 3223 memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len); 3224 kfree(dataword); 3225 3226 return 0; 3227 } 3228 3229 static int igb_ethtool_begin(struct net_device *netdev) 3230 { 3231 struct igb_adapter *adapter = netdev_priv(netdev); 3232 pm_runtime_get_sync(&adapter->pdev->dev); 3233 return 0; 3234 } 3235 3236 static void igb_ethtool_complete(struct net_device *netdev) 3237 { 3238 struct igb_adapter *adapter = netdev_priv(netdev); 3239 pm_runtime_put(&adapter->pdev->dev); 3240 } 3241 3242 static u32 igb_get_rxfh_indir_size(struct net_device *netdev) 3243 { 3244 return IGB_RETA_SIZE; 3245 } 3246 3247 static int igb_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key, 3248 u8 *hfunc) 3249 { 3250 struct igb_adapter *adapter = netdev_priv(netdev); 3251 int i; 3252 3253 if (hfunc) 3254 *hfunc = ETH_RSS_HASH_TOP; 3255 if (!indir) 3256 return 0; 3257 for (i = 0; i < IGB_RETA_SIZE; i++) 3258 indir[i] = adapter->rss_indir_tbl[i]; 3259 3260 return 0; 3261 } 3262 3263 void igb_write_rss_indir_tbl(struct igb_adapter *adapter) 3264 { 3265 struct e1000_hw *hw = &adapter->hw; 3266 u32 reg = E1000_RETA(0); 3267 u32 shift = 0; 3268 int i = 0; 3269 3270 switch (hw->mac.type) { 3271 case e1000_82575: 3272 shift = 6; 3273 break; 3274 case e1000_82576: 3275 /* 82576 supports 2 RSS queues for SR-IOV */ 3276 if (adapter->vfs_allocated_count) 3277 shift = 3; 3278 break; 3279 default: 3280 break; 3281 } 3282 3283 while (i < IGB_RETA_SIZE) { 3284 u32 val = 0; 3285 int j; 3286 3287 for (j = 3; j >= 0; j--) { 3288 val <<= 8; 3289 val |= adapter->rss_indir_tbl[i + j]; 3290 } 3291 3292 wr32(reg, val << shift); 3293 reg += 4; 3294 i += 4; 3295 } 3296 } 3297 3298 static int igb_set_rxfh(struct net_device *netdev, const u32 *indir, 3299 const u8 *key, const u8 hfunc) 3300 { 3301 struct igb_adapter *adapter = netdev_priv(netdev); 3302 struct e1000_hw *hw = &adapter->hw; 3303 int i; 3304 u32 num_queues; 3305 3306 /* We do not allow change in unsupported parameters */ 3307 if (key || 3308 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)) 3309 return -EOPNOTSUPP; 3310 if (!indir) 3311 return 0; 3312 3313 num_queues = adapter->rss_queues; 3314 3315 switch (hw->mac.type) { 3316 case e1000_82576: 3317 /* 82576 supports 2 RSS queues for SR-IOV */ 3318 if (adapter->vfs_allocated_count) 3319 num_queues = 2; 3320 break; 3321 default: 3322 break; 3323 } 3324 3325 /* Verify user input. */ 3326 for (i = 0; i < IGB_RETA_SIZE; i++) 3327 if (indir[i] >= num_queues) 3328 return -EINVAL; 3329 3330 3331 for (i = 0; i < IGB_RETA_SIZE; i++) 3332 adapter->rss_indir_tbl[i] = indir[i]; 3333 3334 igb_write_rss_indir_tbl(adapter); 3335 3336 return 0; 3337 } 3338 3339 static unsigned int igb_max_channels(struct igb_adapter *adapter) 3340 { 3341 struct e1000_hw *hw = &adapter->hw; 3342 unsigned int max_combined = 0; 3343 3344 switch (hw->mac.type) { 3345 case e1000_i211: 3346 max_combined = IGB_MAX_RX_QUEUES_I211; 3347 break; 3348 case e1000_82575: 3349 case e1000_i210: 3350 max_combined = IGB_MAX_RX_QUEUES_82575; 3351 break; 3352 case e1000_i350: 3353 if (!!adapter->vfs_allocated_count) { 3354 max_combined = 1; 3355 break; 3356 } 3357 /* fall through */ 3358 case e1000_82576: 3359 if (!!adapter->vfs_allocated_count) { 3360 max_combined = 2; 3361 break; 3362 } 3363 /* fall through */ 3364 case e1000_82580: 3365 case e1000_i354: 3366 default: 3367 max_combined = IGB_MAX_RX_QUEUES; 3368 break; 3369 } 3370 3371 return max_combined; 3372 } 3373 3374 static void igb_get_channels(struct net_device *netdev, 3375 struct ethtool_channels *ch) 3376 { 3377 struct igb_adapter *adapter = netdev_priv(netdev); 3378 3379 /* Report maximum channels */ 3380 ch->max_combined = igb_max_channels(adapter); 3381 3382 /* Report info for other vector */ 3383 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 3384 ch->max_other = NON_Q_VECTORS; 3385 ch->other_count = NON_Q_VECTORS; 3386 } 3387 3388 ch->combined_count = adapter->rss_queues; 3389 } 3390 3391 static int igb_set_channels(struct net_device *netdev, 3392 struct ethtool_channels *ch) 3393 { 3394 struct igb_adapter *adapter = netdev_priv(netdev); 3395 unsigned int count = ch->combined_count; 3396 unsigned int max_combined = 0; 3397 3398 /* Verify they are not requesting separate vectors */ 3399 if (!count || ch->rx_count || ch->tx_count) 3400 return -EINVAL; 3401 3402 /* Verify other_count is valid and has not been changed */ 3403 if (ch->other_count != NON_Q_VECTORS) 3404 return -EINVAL; 3405 3406 /* Verify the number of channels doesn't exceed hw limits */ 3407 max_combined = igb_max_channels(adapter); 3408 if (count > max_combined) 3409 return -EINVAL; 3410 3411 if (count != adapter->rss_queues) { 3412 adapter->rss_queues = count; 3413 igb_set_flag_queue_pairs(adapter, max_combined); 3414 3415 /* Hardware has to reinitialize queues and interrupts to 3416 * match the new configuration. 3417 */ 3418 return igb_reinit_queues(adapter); 3419 } 3420 3421 return 0; 3422 } 3423 3424 static u32 igb_get_priv_flags(struct net_device *netdev) 3425 { 3426 struct igb_adapter *adapter = netdev_priv(netdev); 3427 u32 priv_flags = 0; 3428 3429 if (adapter->flags & IGB_FLAG_RX_LEGACY) 3430 priv_flags |= IGB_PRIV_FLAGS_LEGACY_RX; 3431 3432 return priv_flags; 3433 } 3434 3435 static int igb_set_priv_flags(struct net_device *netdev, u32 priv_flags) 3436 { 3437 struct igb_adapter *adapter = netdev_priv(netdev); 3438 unsigned int flags = adapter->flags; 3439 3440 flags &= ~IGB_FLAG_RX_LEGACY; 3441 if (priv_flags & IGB_PRIV_FLAGS_LEGACY_RX) 3442 flags |= IGB_FLAG_RX_LEGACY; 3443 3444 if (flags != adapter->flags) { 3445 adapter->flags = flags; 3446 3447 /* reset interface to repopulate queues */ 3448 if (netif_running(netdev)) 3449 igb_reinit_locked(adapter); 3450 } 3451 3452 return 0; 3453 } 3454 3455 static const struct ethtool_ops igb_ethtool_ops = { 3456 .get_drvinfo = igb_get_drvinfo, 3457 .get_regs_len = igb_get_regs_len, 3458 .get_regs = igb_get_regs, 3459 .get_wol = igb_get_wol, 3460 .set_wol = igb_set_wol, 3461 .get_msglevel = igb_get_msglevel, 3462 .set_msglevel = igb_set_msglevel, 3463 .nway_reset = igb_nway_reset, 3464 .get_link = igb_get_link, 3465 .get_eeprom_len = igb_get_eeprom_len, 3466 .get_eeprom = igb_get_eeprom, 3467 .set_eeprom = igb_set_eeprom, 3468 .get_ringparam = igb_get_ringparam, 3469 .set_ringparam = igb_set_ringparam, 3470 .get_pauseparam = igb_get_pauseparam, 3471 .set_pauseparam = igb_set_pauseparam, 3472 .self_test = igb_diag_test, 3473 .get_strings = igb_get_strings, 3474 .set_phys_id = igb_set_phys_id, 3475 .get_sset_count = igb_get_sset_count, 3476 .get_ethtool_stats = igb_get_ethtool_stats, 3477 .get_coalesce = igb_get_coalesce, 3478 .set_coalesce = igb_set_coalesce, 3479 .get_ts_info = igb_get_ts_info, 3480 .get_rxnfc = igb_get_rxnfc, 3481 .set_rxnfc = igb_set_rxnfc, 3482 .get_eee = igb_get_eee, 3483 .set_eee = igb_set_eee, 3484 .get_module_info = igb_get_module_info, 3485 .get_module_eeprom = igb_get_module_eeprom, 3486 .get_rxfh_indir_size = igb_get_rxfh_indir_size, 3487 .get_rxfh = igb_get_rxfh, 3488 .set_rxfh = igb_set_rxfh, 3489 .get_channels = igb_get_channels, 3490 .set_channels = igb_set_channels, 3491 .get_priv_flags = igb_get_priv_flags, 3492 .set_priv_flags = igb_set_priv_flags, 3493 .begin = igb_ethtool_begin, 3494 .complete = igb_ethtool_complete, 3495 .get_link_ksettings = igb_get_link_ksettings, 3496 .set_link_ksettings = igb_set_link_ksettings, 3497 }; 3498 3499 void igb_set_ethtool_ops(struct net_device *netdev) 3500 { 3501 netdev->ethtool_ops = &igb_ethtool_ops; 3502 } 3503