1 /*******************************************************************************
2 
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2012 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 /* ethtool support for igb */
29 
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
37 #include <linux/sched.h>
38 #include <linux/slab.h>
39 #include <linux/pm_runtime.h>
40 
41 #include "igb.h"
42 
43 struct igb_stats {
44 	char stat_string[ETH_GSTRING_LEN];
45 	int sizeof_stat;
46 	int stat_offset;
47 };
48 
49 #define IGB_STAT(_name, _stat) { \
50 	.stat_string = _name, \
51 	.sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
52 	.stat_offset = offsetof(struct igb_adapter, _stat) \
53 }
54 static const struct igb_stats igb_gstrings_stats[] = {
55 	IGB_STAT("rx_packets", stats.gprc),
56 	IGB_STAT("tx_packets", stats.gptc),
57 	IGB_STAT("rx_bytes", stats.gorc),
58 	IGB_STAT("tx_bytes", stats.gotc),
59 	IGB_STAT("rx_broadcast", stats.bprc),
60 	IGB_STAT("tx_broadcast", stats.bptc),
61 	IGB_STAT("rx_multicast", stats.mprc),
62 	IGB_STAT("tx_multicast", stats.mptc),
63 	IGB_STAT("multicast", stats.mprc),
64 	IGB_STAT("collisions", stats.colc),
65 	IGB_STAT("rx_crc_errors", stats.crcerrs),
66 	IGB_STAT("rx_no_buffer_count", stats.rnbc),
67 	IGB_STAT("rx_missed_errors", stats.mpc),
68 	IGB_STAT("tx_aborted_errors", stats.ecol),
69 	IGB_STAT("tx_carrier_errors", stats.tncrs),
70 	IGB_STAT("tx_window_errors", stats.latecol),
71 	IGB_STAT("tx_abort_late_coll", stats.latecol),
72 	IGB_STAT("tx_deferred_ok", stats.dc),
73 	IGB_STAT("tx_single_coll_ok", stats.scc),
74 	IGB_STAT("tx_multi_coll_ok", stats.mcc),
75 	IGB_STAT("tx_timeout_count", tx_timeout_count),
76 	IGB_STAT("rx_long_length_errors", stats.roc),
77 	IGB_STAT("rx_short_length_errors", stats.ruc),
78 	IGB_STAT("rx_align_errors", stats.algnerrc),
79 	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
80 	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
81 	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
82 	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
83 	IGB_STAT("tx_flow_control_xon", stats.xontxc),
84 	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
85 	IGB_STAT("rx_long_byte_count", stats.gorc),
86 	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
87 	IGB_STAT("tx_smbus", stats.mgptc),
88 	IGB_STAT("rx_smbus", stats.mgprc),
89 	IGB_STAT("dropped_smbus", stats.mgpdc),
90 	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
91 	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
92 	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
93 	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
94 };
95 
96 #define IGB_NETDEV_STAT(_net_stat) { \
97 	.stat_string = __stringify(_net_stat), \
98 	.sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
99 	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
100 }
101 static const struct igb_stats igb_gstrings_net_stats[] = {
102 	IGB_NETDEV_STAT(rx_errors),
103 	IGB_NETDEV_STAT(tx_errors),
104 	IGB_NETDEV_STAT(tx_dropped),
105 	IGB_NETDEV_STAT(rx_length_errors),
106 	IGB_NETDEV_STAT(rx_over_errors),
107 	IGB_NETDEV_STAT(rx_frame_errors),
108 	IGB_NETDEV_STAT(rx_fifo_errors),
109 	IGB_NETDEV_STAT(tx_fifo_errors),
110 	IGB_NETDEV_STAT(tx_heartbeat_errors)
111 };
112 
113 #define IGB_GLOBAL_STATS_LEN	\
114 	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
115 #define IGB_NETDEV_STATS_LEN	\
116 	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
117 #define IGB_RX_QUEUE_STATS_LEN \
118 	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
119 
120 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
121 
122 #define IGB_QUEUE_STATS_LEN \
123 	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
124 	  IGB_RX_QUEUE_STATS_LEN) + \
125 	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
126 	  IGB_TX_QUEUE_STATS_LEN))
127 #define IGB_STATS_LEN \
128 	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
129 
130 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
131 	"Register test  (offline)", "Eeprom test    (offline)",
132 	"Interrupt test (offline)", "Loopback test  (offline)",
133 	"Link test   (on/offline)"
134 };
135 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
136 
137 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
138 {
139 	struct igb_adapter *adapter = netdev_priv(netdev);
140 	struct e1000_hw *hw = &adapter->hw;
141 	u32 status;
142 
143 	if (hw->phy.media_type == e1000_media_type_copper) {
144 
145 		ecmd->supported = (SUPPORTED_10baseT_Half |
146 				   SUPPORTED_10baseT_Full |
147 				   SUPPORTED_100baseT_Half |
148 				   SUPPORTED_100baseT_Full |
149 				   SUPPORTED_1000baseT_Full|
150 				   SUPPORTED_Autoneg |
151 				   SUPPORTED_TP);
152 		ecmd->advertising = (ADVERTISED_TP |
153 				     ADVERTISED_Pause);
154 
155 		if (hw->mac.autoneg == 1) {
156 			ecmd->advertising |= ADVERTISED_Autoneg;
157 			/* the e1000 autoneg seems to match ethtool nicely */
158 			ecmd->advertising |= hw->phy.autoneg_advertised;
159 		}
160 
161 		ecmd->port = PORT_TP;
162 		ecmd->phy_address = hw->phy.addr;
163 	} else {
164 		ecmd->supported   = (SUPPORTED_1000baseT_Full |
165 				     SUPPORTED_FIBRE |
166 				     SUPPORTED_Autoneg);
167 
168 		ecmd->advertising = (ADVERTISED_1000baseT_Full |
169 				     ADVERTISED_FIBRE |
170 				     ADVERTISED_Autoneg |
171 				     ADVERTISED_Pause);
172 
173 		ecmd->port = PORT_FIBRE;
174 	}
175 
176 	ecmd->transceiver = XCVR_INTERNAL;
177 
178 	status = rd32(E1000_STATUS);
179 
180 	if (status & E1000_STATUS_LU) {
181 
182 		if ((status & E1000_STATUS_SPEED_1000) ||
183 		    hw->phy.media_type != e1000_media_type_copper)
184 			ethtool_cmd_speed_set(ecmd, SPEED_1000);
185 		else if (status & E1000_STATUS_SPEED_100)
186 			ethtool_cmd_speed_set(ecmd, SPEED_100);
187 		else
188 			ethtool_cmd_speed_set(ecmd, SPEED_10);
189 
190 		if ((status & E1000_STATUS_FD) ||
191 		    hw->phy.media_type != e1000_media_type_copper)
192 			ecmd->duplex = DUPLEX_FULL;
193 		else
194 			ecmd->duplex = DUPLEX_HALF;
195 	} else {
196 		ethtool_cmd_speed_set(ecmd, -1);
197 		ecmd->duplex = -1;
198 	}
199 
200 	ecmd->autoneg = hw->mac.autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
201 	return 0;
202 }
203 
204 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
205 {
206 	struct igb_adapter *adapter = netdev_priv(netdev);
207 	struct e1000_hw *hw = &adapter->hw;
208 
209 	/* When SoL/IDER sessions are active, autoneg/speed/duplex
210 	 * cannot be changed */
211 	if (igb_check_reset_block(hw)) {
212 		dev_err(&adapter->pdev->dev, "Cannot change link "
213 			"characteristics when SoL/IDER is active.\n");
214 		return -EINVAL;
215 	}
216 
217 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
218 		msleep(1);
219 
220 	if (ecmd->autoneg == AUTONEG_ENABLE) {
221 		hw->mac.autoneg = 1;
222 		hw->phy.autoneg_advertised = ecmd->advertising |
223 					     ADVERTISED_TP |
224 					     ADVERTISED_Autoneg;
225 		ecmd->advertising = hw->phy.autoneg_advertised;
226 		if (adapter->fc_autoneg)
227 			hw->fc.requested_mode = e1000_fc_default;
228 	} else {
229 		u32 speed = ethtool_cmd_speed(ecmd);
230 		if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
231 			clear_bit(__IGB_RESETTING, &adapter->state);
232 			return -EINVAL;
233 		}
234 	}
235 
236 	/* reset the link */
237 	if (netif_running(adapter->netdev)) {
238 		igb_down(adapter);
239 		igb_up(adapter);
240 	} else
241 		igb_reset(adapter);
242 
243 	clear_bit(__IGB_RESETTING, &adapter->state);
244 	return 0;
245 }
246 
247 static u32 igb_get_link(struct net_device *netdev)
248 {
249 	struct igb_adapter *adapter = netdev_priv(netdev);
250 	struct e1000_mac_info *mac = &adapter->hw.mac;
251 
252 	/*
253 	 * If the link is not reported up to netdev, interrupts are disabled,
254 	 * and so the physical link state may have changed since we last
255 	 * looked. Set get_link_status to make sure that the true link
256 	 * state is interrogated, rather than pulling a cached and possibly
257 	 * stale link state from the driver.
258 	 */
259 	if (!netif_carrier_ok(netdev))
260 		mac->get_link_status = 1;
261 
262 	return igb_has_link(adapter);
263 }
264 
265 static void igb_get_pauseparam(struct net_device *netdev,
266 			       struct ethtool_pauseparam *pause)
267 {
268 	struct igb_adapter *adapter = netdev_priv(netdev);
269 	struct e1000_hw *hw = &adapter->hw;
270 
271 	pause->autoneg =
272 		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
273 
274 	if (hw->fc.current_mode == e1000_fc_rx_pause)
275 		pause->rx_pause = 1;
276 	else if (hw->fc.current_mode == e1000_fc_tx_pause)
277 		pause->tx_pause = 1;
278 	else if (hw->fc.current_mode == e1000_fc_full) {
279 		pause->rx_pause = 1;
280 		pause->tx_pause = 1;
281 	}
282 }
283 
284 static int igb_set_pauseparam(struct net_device *netdev,
285 			      struct ethtool_pauseparam *pause)
286 {
287 	struct igb_adapter *adapter = netdev_priv(netdev);
288 	struct e1000_hw *hw = &adapter->hw;
289 	int retval = 0;
290 
291 	adapter->fc_autoneg = pause->autoneg;
292 
293 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
294 		msleep(1);
295 
296 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
297 		hw->fc.requested_mode = e1000_fc_default;
298 		if (netif_running(adapter->netdev)) {
299 			igb_down(adapter);
300 			igb_up(adapter);
301 		} else {
302 			igb_reset(adapter);
303 		}
304 	} else {
305 		if (pause->rx_pause && pause->tx_pause)
306 			hw->fc.requested_mode = e1000_fc_full;
307 		else if (pause->rx_pause && !pause->tx_pause)
308 			hw->fc.requested_mode = e1000_fc_rx_pause;
309 		else if (!pause->rx_pause && pause->tx_pause)
310 			hw->fc.requested_mode = e1000_fc_tx_pause;
311 		else if (!pause->rx_pause && !pause->tx_pause)
312 			hw->fc.requested_mode = e1000_fc_none;
313 
314 		hw->fc.current_mode = hw->fc.requested_mode;
315 
316 		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
317 			  igb_force_mac_fc(hw) : igb_setup_link(hw));
318 	}
319 
320 	clear_bit(__IGB_RESETTING, &adapter->state);
321 	return retval;
322 }
323 
324 static u32 igb_get_msglevel(struct net_device *netdev)
325 {
326 	struct igb_adapter *adapter = netdev_priv(netdev);
327 	return adapter->msg_enable;
328 }
329 
330 static void igb_set_msglevel(struct net_device *netdev, u32 data)
331 {
332 	struct igb_adapter *adapter = netdev_priv(netdev);
333 	adapter->msg_enable = data;
334 }
335 
336 static int igb_get_regs_len(struct net_device *netdev)
337 {
338 #define IGB_REGS_LEN 551
339 	return IGB_REGS_LEN * sizeof(u32);
340 }
341 
342 static void igb_get_regs(struct net_device *netdev,
343 			 struct ethtool_regs *regs, void *p)
344 {
345 	struct igb_adapter *adapter = netdev_priv(netdev);
346 	struct e1000_hw *hw = &adapter->hw;
347 	u32 *regs_buff = p;
348 	u8 i;
349 
350 	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
351 
352 	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
353 
354 	/* General Registers */
355 	regs_buff[0] = rd32(E1000_CTRL);
356 	regs_buff[1] = rd32(E1000_STATUS);
357 	regs_buff[2] = rd32(E1000_CTRL_EXT);
358 	regs_buff[3] = rd32(E1000_MDIC);
359 	regs_buff[4] = rd32(E1000_SCTL);
360 	regs_buff[5] = rd32(E1000_CONNSW);
361 	regs_buff[6] = rd32(E1000_VET);
362 	regs_buff[7] = rd32(E1000_LEDCTL);
363 	regs_buff[8] = rd32(E1000_PBA);
364 	regs_buff[9] = rd32(E1000_PBS);
365 	regs_buff[10] = rd32(E1000_FRTIMER);
366 	regs_buff[11] = rd32(E1000_TCPTIMER);
367 
368 	/* NVM Register */
369 	regs_buff[12] = rd32(E1000_EECD);
370 
371 	/* Interrupt */
372 	/* Reading EICS for EICR because they read the
373 	 * same but EICS does not clear on read */
374 	regs_buff[13] = rd32(E1000_EICS);
375 	regs_buff[14] = rd32(E1000_EICS);
376 	regs_buff[15] = rd32(E1000_EIMS);
377 	regs_buff[16] = rd32(E1000_EIMC);
378 	regs_buff[17] = rd32(E1000_EIAC);
379 	regs_buff[18] = rd32(E1000_EIAM);
380 	/* Reading ICS for ICR because they read the
381 	 * same but ICS does not clear on read */
382 	regs_buff[19] = rd32(E1000_ICS);
383 	regs_buff[20] = rd32(E1000_ICS);
384 	regs_buff[21] = rd32(E1000_IMS);
385 	regs_buff[22] = rd32(E1000_IMC);
386 	regs_buff[23] = rd32(E1000_IAC);
387 	regs_buff[24] = rd32(E1000_IAM);
388 	regs_buff[25] = rd32(E1000_IMIRVP);
389 
390 	/* Flow Control */
391 	regs_buff[26] = rd32(E1000_FCAL);
392 	regs_buff[27] = rd32(E1000_FCAH);
393 	regs_buff[28] = rd32(E1000_FCTTV);
394 	regs_buff[29] = rd32(E1000_FCRTL);
395 	regs_buff[30] = rd32(E1000_FCRTH);
396 	regs_buff[31] = rd32(E1000_FCRTV);
397 
398 	/* Receive */
399 	regs_buff[32] = rd32(E1000_RCTL);
400 	regs_buff[33] = rd32(E1000_RXCSUM);
401 	regs_buff[34] = rd32(E1000_RLPML);
402 	regs_buff[35] = rd32(E1000_RFCTL);
403 	regs_buff[36] = rd32(E1000_MRQC);
404 	regs_buff[37] = rd32(E1000_VT_CTL);
405 
406 	/* Transmit */
407 	regs_buff[38] = rd32(E1000_TCTL);
408 	regs_buff[39] = rd32(E1000_TCTL_EXT);
409 	regs_buff[40] = rd32(E1000_TIPG);
410 	regs_buff[41] = rd32(E1000_DTXCTL);
411 
412 	/* Wake Up */
413 	regs_buff[42] = rd32(E1000_WUC);
414 	regs_buff[43] = rd32(E1000_WUFC);
415 	regs_buff[44] = rd32(E1000_WUS);
416 	regs_buff[45] = rd32(E1000_IPAV);
417 	regs_buff[46] = rd32(E1000_WUPL);
418 
419 	/* MAC */
420 	regs_buff[47] = rd32(E1000_PCS_CFG0);
421 	regs_buff[48] = rd32(E1000_PCS_LCTL);
422 	regs_buff[49] = rd32(E1000_PCS_LSTAT);
423 	regs_buff[50] = rd32(E1000_PCS_ANADV);
424 	regs_buff[51] = rd32(E1000_PCS_LPAB);
425 	regs_buff[52] = rd32(E1000_PCS_NPTX);
426 	regs_buff[53] = rd32(E1000_PCS_LPABNP);
427 
428 	/* Statistics */
429 	regs_buff[54] = adapter->stats.crcerrs;
430 	regs_buff[55] = adapter->stats.algnerrc;
431 	regs_buff[56] = adapter->stats.symerrs;
432 	regs_buff[57] = adapter->stats.rxerrc;
433 	regs_buff[58] = adapter->stats.mpc;
434 	regs_buff[59] = adapter->stats.scc;
435 	regs_buff[60] = adapter->stats.ecol;
436 	regs_buff[61] = adapter->stats.mcc;
437 	regs_buff[62] = adapter->stats.latecol;
438 	regs_buff[63] = adapter->stats.colc;
439 	regs_buff[64] = adapter->stats.dc;
440 	regs_buff[65] = adapter->stats.tncrs;
441 	regs_buff[66] = adapter->stats.sec;
442 	regs_buff[67] = adapter->stats.htdpmc;
443 	regs_buff[68] = adapter->stats.rlec;
444 	regs_buff[69] = adapter->stats.xonrxc;
445 	regs_buff[70] = adapter->stats.xontxc;
446 	regs_buff[71] = adapter->stats.xoffrxc;
447 	regs_buff[72] = adapter->stats.xofftxc;
448 	regs_buff[73] = adapter->stats.fcruc;
449 	regs_buff[74] = adapter->stats.prc64;
450 	regs_buff[75] = adapter->stats.prc127;
451 	regs_buff[76] = adapter->stats.prc255;
452 	regs_buff[77] = adapter->stats.prc511;
453 	regs_buff[78] = adapter->stats.prc1023;
454 	regs_buff[79] = adapter->stats.prc1522;
455 	regs_buff[80] = adapter->stats.gprc;
456 	regs_buff[81] = adapter->stats.bprc;
457 	regs_buff[82] = adapter->stats.mprc;
458 	regs_buff[83] = adapter->stats.gptc;
459 	regs_buff[84] = adapter->stats.gorc;
460 	regs_buff[86] = adapter->stats.gotc;
461 	regs_buff[88] = adapter->stats.rnbc;
462 	regs_buff[89] = adapter->stats.ruc;
463 	regs_buff[90] = adapter->stats.rfc;
464 	regs_buff[91] = adapter->stats.roc;
465 	regs_buff[92] = adapter->stats.rjc;
466 	regs_buff[93] = adapter->stats.mgprc;
467 	regs_buff[94] = adapter->stats.mgpdc;
468 	regs_buff[95] = adapter->stats.mgptc;
469 	regs_buff[96] = adapter->stats.tor;
470 	regs_buff[98] = adapter->stats.tot;
471 	regs_buff[100] = adapter->stats.tpr;
472 	regs_buff[101] = adapter->stats.tpt;
473 	regs_buff[102] = adapter->stats.ptc64;
474 	regs_buff[103] = adapter->stats.ptc127;
475 	regs_buff[104] = adapter->stats.ptc255;
476 	regs_buff[105] = adapter->stats.ptc511;
477 	regs_buff[106] = adapter->stats.ptc1023;
478 	regs_buff[107] = adapter->stats.ptc1522;
479 	regs_buff[108] = adapter->stats.mptc;
480 	regs_buff[109] = adapter->stats.bptc;
481 	regs_buff[110] = adapter->stats.tsctc;
482 	regs_buff[111] = adapter->stats.iac;
483 	regs_buff[112] = adapter->stats.rpthc;
484 	regs_buff[113] = adapter->stats.hgptc;
485 	regs_buff[114] = adapter->stats.hgorc;
486 	regs_buff[116] = adapter->stats.hgotc;
487 	regs_buff[118] = adapter->stats.lenerrs;
488 	regs_buff[119] = adapter->stats.scvpc;
489 	regs_buff[120] = adapter->stats.hrmpc;
490 
491 	for (i = 0; i < 4; i++)
492 		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
493 	for (i = 0; i < 4; i++)
494 		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
495 	for (i = 0; i < 4; i++)
496 		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
497 	for (i = 0; i < 4; i++)
498 		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
499 	for (i = 0; i < 4; i++)
500 		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
501 	for (i = 0; i < 4; i++)
502 		regs_buff[141 + i] = rd32(E1000_RDH(i));
503 	for (i = 0; i < 4; i++)
504 		regs_buff[145 + i] = rd32(E1000_RDT(i));
505 	for (i = 0; i < 4; i++)
506 		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
507 
508 	for (i = 0; i < 10; i++)
509 		regs_buff[153 + i] = rd32(E1000_EITR(i));
510 	for (i = 0; i < 8; i++)
511 		regs_buff[163 + i] = rd32(E1000_IMIR(i));
512 	for (i = 0; i < 8; i++)
513 		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
514 	for (i = 0; i < 16; i++)
515 		regs_buff[179 + i] = rd32(E1000_RAL(i));
516 	for (i = 0; i < 16; i++)
517 		regs_buff[195 + i] = rd32(E1000_RAH(i));
518 
519 	for (i = 0; i < 4; i++)
520 		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
521 	for (i = 0; i < 4; i++)
522 		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
523 	for (i = 0; i < 4; i++)
524 		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
525 	for (i = 0; i < 4; i++)
526 		regs_buff[223 + i] = rd32(E1000_TDH(i));
527 	for (i = 0; i < 4; i++)
528 		regs_buff[227 + i] = rd32(E1000_TDT(i));
529 	for (i = 0; i < 4; i++)
530 		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
531 	for (i = 0; i < 4; i++)
532 		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
533 	for (i = 0; i < 4; i++)
534 		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
535 	for (i = 0; i < 4; i++)
536 		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
537 
538 	for (i = 0; i < 4; i++)
539 		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
540 	for (i = 0; i < 4; i++)
541 		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
542 	for (i = 0; i < 32; i++)
543 		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
544 	for (i = 0; i < 128; i++)
545 		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
546 	for (i = 0; i < 128; i++)
547 		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
548 	for (i = 0; i < 4; i++)
549 		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
550 
551 	regs_buff[547] = rd32(E1000_TDFH);
552 	regs_buff[548] = rd32(E1000_TDFT);
553 	regs_buff[549] = rd32(E1000_TDFHS);
554 	regs_buff[550] = rd32(E1000_TDFPC);
555 	regs_buff[551] = adapter->stats.o2bgptc;
556 	regs_buff[552] = adapter->stats.b2ospc;
557 	regs_buff[553] = adapter->stats.o2bspc;
558 	regs_buff[554] = adapter->stats.b2ogprc;
559 }
560 
561 static int igb_get_eeprom_len(struct net_device *netdev)
562 {
563 	struct igb_adapter *adapter = netdev_priv(netdev);
564 	return adapter->hw.nvm.word_size * 2;
565 }
566 
567 static int igb_get_eeprom(struct net_device *netdev,
568 			  struct ethtool_eeprom *eeprom, u8 *bytes)
569 {
570 	struct igb_adapter *adapter = netdev_priv(netdev);
571 	struct e1000_hw *hw = &adapter->hw;
572 	u16 *eeprom_buff;
573 	int first_word, last_word;
574 	int ret_val = 0;
575 	u16 i;
576 
577 	if (eeprom->len == 0)
578 		return -EINVAL;
579 
580 	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
581 
582 	first_word = eeprom->offset >> 1;
583 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
584 
585 	eeprom_buff = kmalloc(sizeof(u16) *
586 			(last_word - first_word + 1), GFP_KERNEL);
587 	if (!eeprom_buff)
588 		return -ENOMEM;
589 
590 	if (hw->nvm.type == e1000_nvm_eeprom_spi)
591 		ret_val = hw->nvm.ops.read(hw, first_word,
592 					    last_word - first_word + 1,
593 					    eeprom_buff);
594 	else {
595 		for (i = 0; i < last_word - first_word + 1; i++) {
596 			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
597 						    &eeprom_buff[i]);
598 			if (ret_val)
599 				break;
600 		}
601 	}
602 
603 	/* Device's eeprom is always little-endian, word addressable */
604 	for (i = 0; i < last_word - first_word + 1; i++)
605 		le16_to_cpus(&eeprom_buff[i]);
606 
607 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
608 			eeprom->len);
609 	kfree(eeprom_buff);
610 
611 	return ret_val;
612 }
613 
614 static int igb_set_eeprom(struct net_device *netdev,
615 			  struct ethtool_eeprom *eeprom, u8 *bytes)
616 {
617 	struct igb_adapter *adapter = netdev_priv(netdev);
618 	struct e1000_hw *hw = &adapter->hw;
619 	u16 *eeprom_buff;
620 	void *ptr;
621 	int max_len, first_word, last_word, ret_val = 0;
622 	u16 i;
623 
624 	if (eeprom->len == 0)
625 		return -EOPNOTSUPP;
626 
627 	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
628 		return -EFAULT;
629 
630 	max_len = hw->nvm.word_size * 2;
631 
632 	first_word = eeprom->offset >> 1;
633 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
634 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
635 	if (!eeprom_buff)
636 		return -ENOMEM;
637 
638 	ptr = (void *)eeprom_buff;
639 
640 	if (eeprom->offset & 1) {
641 		/* need read/modify/write of first changed EEPROM word */
642 		/* only the second byte of the word is being modified */
643 		ret_val = hw->nvm.ops.read(hw, first_word, 1,
644 					    &eeprom_buff[0]);
645 		ptr++;
646 	}
647 	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
648 		/* need read/modify/write of last changed EEPROM word */
649 		/* only the first byte of the word is being modified */
650 		ret_val = hw->nvm.ops.read(hw, last_word, 1,
651 				   &eeprom_buff[last_word - first_word]);
652 	}
653 
654 	/* Device's eeprom is always little-endian, word addressable */
655 	for (i = 0; i < last_word - first_word + 1; i++)
656 		le16_to_cpus(&eeprom_buff[i]);
657 
658 	memcpy(ptr, bytes, eeprom->len);
659 
660 	for (i = 0; i < last_word - first_word + 1; i++)
661 		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
662 
663 	ret_val = hw->nvm.ops.write(hw, first_word,
664 				     last_word - first_word + 1, eeprom_buff);
665 
666 	/* Update the checksum over the first part of the EEPROM if needed
667 	 * and flush shadow RAM for 82573 controllers */
668 	if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
669 		hw->nvm.ops.update(hw);
670 
671 	kfree(eeprom_buff);
672 	return ret_val;
673 }
674 
675 static void igb_get_drvinfo(struct net_device *netdev,
676 			    struct ethtool_drvinfo *drvinfo)
677 {
678 	struct igb_adapter *adapter = netdev_priv(netdev);
679 	u16 eeprom_data;
680 
681 	strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
682 	strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
683 
684 	/* EEPROM image version # is reported as firmware version # for
685 	 * 82575 controllers */
686 	adapter->hw.nvm.ops.read(&adapter->hw, 5, 1, &eeprom_data);
687 	snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
688 		"%d.%d-%d",
689 		(eeprom_data & 0xF000) >> 12,
690 		(eeprom_data & 0x0FF0) >> 4,
691 		eeprom_data & 0x000F);
692 
693 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
694 		sizeof(drvinfo->bus_info));
695 	drvinfo->n_stats = IGB_STATS_LEN;
696 	drvinfo->testinfo_len = IGB_TEST_LEN;
697 	drvinfo->regdump_len = igb_get_regs_len(netdev);
698 	drvinfo->eedump_len = igb_get_eeprom_len(netdev);
699 }
700 
701 static void igb_get_ringparam(struct net_device *netdev,
702 			      struct ethtool_ringparam *ring)
703 {
704 	struct igb_adapter *adapter = netdev_priv(netdev);
705 
706 	ring->rx_max_pending = IGB_MAX_RXD;
707 	ring->tx_max_pending = IGB_MAX_TXD;
708 	ring->rx_pending = adapter->rx_ring_count;
709 	ring->tx_pending = adapter->tx_ring_count;
710 }
711 
712 static int igb_set_ringparam(struct net_device *netdev,
713 			     struct ethtool_ringparam *ring)
714 {
715 	struct igb_adapter *adapter = netdev_priv(netdev);
716 	struct igb_ring *temp_ring;
717 	int i, err = 0;
718 	u16 new_rx_count, new_tx_count;
719 
720 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
721 		return -EINVAL;
722 
723 	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
724 	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
725 	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
726 
727 	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
728 	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
729 	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
730 
731 	if ((new_tx_count == adapter->tx_ring_count) &&
732 	    (new_rx_count == adapter->rx_ring_count)) {
733 		/* nothing to do */
734 		return 0;
735 	}
736 
737 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
738 		msleep(1);
739 
740 	if (!netif_running(adapter->netdev)) {
741 		for (i = 0; i < adapter->num_tx_queues; i++)
742 			adapter->tx_ring[i]->count = new_tx_count;
743 		for (i = 0; i < adapter->num_rx_queues; i++)
744 			adapter->rx_ring[i]->count = new_rx_count;
745 		adapter->tx_ring_count = new_tx_count;
746 		adapter->rx_ring_count = new_rx_count;
747 		goto clear_reset;
748 	}
749 
750 	if (adapter->num_tx_queues > adapter->num_rx_queues)
751 		temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
752 	else
753 		temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
754 
755 	if (!temp_ring) {
756 		err = -ENOMEM;
757 		goto clear_reset;
758 	}
759 
760 	igb_down(adapter);
761 
762 	/*
763 	 * We can't just free everything and then setup again,
764 	 * because the ISRs in MSI-X mode get passed pointers
765 	 * to the tx and rx ring structs.
766 	 */
767 	if (new_tx_count != adapter->tx_ring_count) {
768 		for (i = 0; i < adapter->num_tx_queues; i++) {
769 			memcpy(&temp_ring[i], adapter->tx_ring[i],
770 			       sizeof(struct igb_ring));
771 
772 			temp_ring[i].count = new_tx_count;
773 			err = igb_setup_tx_resources(&temp_ring[i]);
774 			if (err) {
775 				while (i) {
776 					i--;
777 					igb_free_tx_resources(&temp_ring[i]);
778 				}
779 				goto err_setup;
780 			}
781 		}
782 
783 		for (i = 0; i < adapter->num_tx_queues; i++) {
784 			igb_free_tx_resources(adapter->tx_ring[i]);
785 
786 			memcpy(adapter->tx_ring[i], &temp_ring[i],
787 			       sizeof(struct igb_ring));
788 		}
789 
790 		adapter->tx_ring_count = new_tx_count;
791 	}
792 
793 	if (new_rx_count != adapter->rx_ring_count) {
794 		for (i = 0; i < adapter->num_rx_queues; i++) {
795 			memcpy(&temp_ring[i], adapter->rx_ring[i],
796 			       sizeof(struct igb_ring));
797 
798 			temp_ring[i].count = new_rx_count;
799 			err = igb_setup_rx_resources(&temp_ring[i]);
800 			if (err) {
801 				while (i) {
802 					i--;
803 					igb_free_rx_resources(&temp_ring[i]);
804 				}
805 				goto err_setup;
806 			}
807 
808 		}
809 
810 		for (i = 0; i < adapter->num_rx_queues; i++) {
811 			igb_free_rx_resources(adapter->rx_ring[i]);
812 
813 			memcpy(adapter->rx_ring[i], &temp_ring[i],
814 			       sizeof(struct igb_ring));
815 		}
816 
817 		adapter->rx_ring_count = new_rx_count;
818 	}
819 err_setup:
820 	igb_up(adapter);
821 	vfree(temp_ring);
822 clear_reset:
823 	clear_bit(__IGB_RESETTING, &adapter->state);
824 	return err;
825 }
826 
827 /* ethtool register test data */
828 struct igb_reg_test {
829 	u16 reg;
830 	u16 reg_offset;
831 	u16 array_len;
832 	u16 test_type;
833 	u32 mask;
834 	u32 write;
835 };
836 
837 /* In the hardware, registers are laid out either singly, in arrays
838  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
839  * most tests take place on arrays or single registers (handled
840  * as a single-element array) and special-case the tables.
841  * Table tests are always pattern tests.
842  *
843  * We also make provision for some required setup steps by specifying
844  * registers to be written without any read-back testing.
845  */
846 
847 #define PATTERN_TEST	1
848 #define SET_READ_TEST	2
849 #define WRITE_NO_TEST	3
850 #define TABLE32_TEST	4
851 #define TABLE64_TEST_LO	5
852 #define TABLE64_TEST_HI	6
853 
854 /* i350 reg test */
855 static struct igb_reg_test reg_test_i350[] = {
856 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
857 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
858 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
859 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
860 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
861 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
862 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
863 	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
864 	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
865 	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
866 	/* RDH is read-only for i350, only test RDT. */
867 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
868 	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
869 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
870 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
871 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
872 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
873 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
874 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
875 	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
876 	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
877 	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
878 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
879 	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
880 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
881 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
882 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
883 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
884 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
885 						0xFFFFFFFF, 0xFFFFFFFF },
886 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
887 						0xC3FFFFFF, 0xFFFFFFFF },
888 	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
889 						0xFFFFFFFF, 0xFFFFFFFF },
890 	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
891 						0xC3FFFFFF, 0xFFFFFFFF },
892 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
893 						0xFFFFFFFF, 0xFFFFFFFF },
894 	{ 0, 0, 0, 0 }
895 };
896 
897 /* 82580 reg test */
898 static struct igb_reg_test reg_test_82580[] = {
899 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
900 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
901 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
902 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
903 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
904 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
905 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
906 	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
907 	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
908 	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
909 	/* RDH is read-only for 82580, only test RDT. */
910 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
911 	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
912 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
913 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
914 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
915 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
916 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
917 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
918 	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
919 	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
920 	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
921 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
922 	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
923 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
924 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
925 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
926 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
927 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
928 						0xFFFFFFFF, 0xFFFFFFFF },
929 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
930 						0x83FFFFFF, 0xFFFFFFFF },
931 	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
932 						0xFFFFFFFF, 0xFFFFFFFF },
933 	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
934 						0x83FFFFFF, 0xFFFFFFFF },
935 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
936 						0xFFFFFFFF, 0xFFFFFFFF },
937 	{ 0, 0, 0, 0 }
938 };
939 
940 /* 82576 reg test */
941 static struct igb_reg_test reg_test_82576[] = {
942 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
943 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
944 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
945 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
946 	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
947 	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
948 	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
949 	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
950 	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
951 	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
952 	/* Enable all RX queues before testing. */
953 	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
954 	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
955 	/* RDH is read-only for 82576, only test RDT. */
956 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
957 	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
958 	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
959 	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
960 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
961 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
962 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
963 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
964 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
965 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
966 	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
967 	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
968 	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
969 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
970 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
971 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
972 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
973 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
974 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
975 	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
976 	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
977 	{ E1000_MTA,	   0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
978 	{ 0, 0, 0, 0 }
979 };
980 
981 /* 82575 register test */
982 static struct igb_reg_test reg_test_82575[] = {
983 	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
984 	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
985 	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
986 	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
987 	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
988 	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
989 	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
990 	/* Enable all four RX queues before testing. */
991 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
992 	/* RDH is read-only for 82575, only test RDT. */
993 	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
994 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
995 	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
996 	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
997 	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
998 	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
999 	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1000 	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1001 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1002 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1003 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1004 	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1005 	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1006 	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1007 	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1008 	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1009 	{ 0, 0, 0, 0 }
1010 };
1011 
1012 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1013 			     int reg, u32 mask, u32 write)
1014 {
1015 	struct e1000_hw *hw = &adapter->hw;
1016 	u32 pat, val;
1017 	static const u32 _test[] =
1018 		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1019 	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1020 		wr32(reg, (_test[pat] & write));
1021 		val = rd32(reg) & mask;
1022 		if (val != (_test[pat] & write & mask)) {
1023 			dev_err(&adapter->pdev->dev, "pattern test reg %04X "
1024 				"failed: got 0x%08X expected 0x%08X\n",
1025 				reg, val, (_test[pat] & write & mask));
1026 			*data = reg;
1027 			return 1;
1028 		}
1029 	}
1030 
1031 	return 0;
1032 }
1033 
1034 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1035 			      int reg, u32 mask, u32 write)
1036 {
1037 	struct e1000_hw *hw = &adapter->hw;
1038 	u32 val;
1039 	wr32(reg, write & mask);
1040 	val = rd32(reg);
1041 	if ((write & mask) != (val & mask)) {
1042 		dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:"
1043 			" got 0x%08X expected 0x%08X\n", reg,
1044 			(val & mask), (write & mask));
1045 		*data = reg;
1046 		return 1;
1047 	}
1048 
1049 	return 0;
1050 }
1051 
1052 #define REG_PATTERN_TEST(reg, mask, write) \
1053 	do { \
1054 		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1055 			return 1; \
1056 	} while (0)
1057 
1058 #define REG_SET_AND_CHECK(reg, mask, write) \
1059 	do { \
1060 		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1061 			return 1; \
1062 	} while (0)
1063 
1064 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1065 {
1066 	struct e1000_hw *hw = &adapter->hw;
1067 	struct igb_reg_test *test;
1068 	u32 value, before, after;
1069 	u32 i, toggle;
1070 
1071 	switch (adapter->hw.mac.type) {
1072 	case e1000_i350:
1073 		test = reg_test_i350;
1074 		toggle = 0x7FEFF3FF;
1075 		break;
1076 	case e1000_82580:
1077 		test = reg_test_82580;
1078 		toggle = 0x7FEFF3FF;
1079 		break;
1080 	case e1000_82576:
1081 		test = reg_test_82576;
1082 		toggle = 0x7FFFF3FF;
1083 		break;
1084 	default:
1085 		test = reg_test_82575;
1086 		toggle = 0x7FFFF3FF;
1087 		break;
1088 	}
1089 
1090 	/* Because the status register is such a special case,
1091 	 * we handle it separately from the rest of the register
1092 	 * tests.  Some bits are read-only, some toggle, and some
1093 	 * are writable on newer MACs.
1094 	 */
1095 	before = rd32(E1000_STATUS);
1096 	value = (rd32(E1000_STATUS) & toggle);
1097 	wr32(E1000_STATUS, toggle);
1098 	after = rd32(E1000_STATUS) & toggle;
1099 	if (value != after) {
1100 		dev_err(&adapter->pdev->dev, "failed STATUS register test "
1101 			"got: 0x%08X expected: 0x%08X\n", after, value);
1102 		*data = 1;
1103 		return 1;
1104 	}
1105 	/* restore previous status */
1106 	wr32(E1000_STATUS, before);
1107 
1108 	/* Perform the remainder of the register test, looping through
1109 	 * the test table until we either fail or reach the null entry.
1110 	 */
1111 	while (test->reg) {
1112 		for (i = 0; i < test->array_len; i++) {
1113 			switch (test->test_type) {
1114 			case PATTERN_TEST:
1115 				REG_PATTERN_TEST(test->reg +
1116 						(i * test->reg_offset),
1117 						test->mask,
1118 						test->write);
1119 				break;
1120 			case SET_READ_TEST:
1121 				REG_SET_AND_CHECK(test->reg +
1122 						(i * test->reg_offset),
1123 						test->mask,
1124 						test->write);
1125 				break;
1126 			case WRITE_NO_TEST:
1127 				writel(test->write,
1128 				    (adapter->hw.hw_addr + test->reg)
1129 					+ (i * test->reg_offset));
1130 				break;
1131 			case TABLE32_TEST:
1132 				REG_PATTERN_TEST(test->reg + (i * 4),
1133 						test->mask,
1134 						test->write);
1135 				break;
1136 			case TABLE64_TEST_LO:
1137 				REG_PATTERN_TEST(test->reg + (i * 8),
1138 						test->mask,
1139 						test->write);
1140 				break;
1141 			case TABLE64_TEST_HI:
1142 				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1143 						test->mask,
1144 						test->write);
1145 				break;
1146 			}
1147 		}
1148 		test++;
1149 	}
1150 
1151 	*data = 0;
1152 	return 0;
1153 }
1154 
1155 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1156 {
1157 	u16 temp;
1158 	u16 checksum = 0;
1159 	u16 i;
1160 
1161 	*data = 0;
1162 	/* Read and add up the contents of the EEPROM */
1163 	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
1164 		if ((adapter->hw.nvm.ops.read(&adapter->hw, i, 1, &temp)) < 0) {
1165 			*data = 1;
1166 			break;
1167 		}
1168 		checksum += temp;
1169 	}
1170 
1171 	/* If Checksum is not Correct return error else test passed */
1172 	if ((checksum != (u16) NVM_SUM) && !(*data))
1173 		*data = 2;
1174 
1175 	return *data;
1176 }
1177 
1178 static irqreturn_t igb_test_intr(int irq, void *data)
1179 {
1180 	struct igb_adapter *adapter = (struct igb_adapter *) data;
1181 	struct e1000_hw *hw = &adapter->hw;
1182 
1183 	adapter->test_icr |= rd32(E1000_ICR);
1184 
1185 	return IRQ_HANDLED;
1186 }
1187 
1188 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1189 {
1190 	struct e1000_hw *hw = &adapter->hw;
1191 	struct net_device *netdev = adapter->netdev;
1192 	u32 mask, ics_mask, i = 0, shared_int = true;
1193 	u32 irq = adapter->pdev->irq;
1194 
1195 	*data = 0;
1196 
1197 	/* Hook up test interrupt handler just for this test */
1198 	if (adapter->msix_entries) {
1199 		if (request_irq(adapter->msix_entries[0].vector,
1200 		                igb_test_intr, 0, netdev->name, adapter)) {
1201 			*data = 1;
1202 			return -1;
1203 		}
1204 	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1205 		shared_int = false;
1206 		if (request_irq(irq,
1207 		                igb_test_intr, 0, netdev->name, adapter)) {
1208 			*data = 1;
1209 			return -1;
1210 		}
1211 	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1212 				netdev->name, adapter)) {
1213 		shared_int = false;
1214 	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1215 		 netdev->name, adapter)) {
1216 		*data = 1;
1217 		return -1;
1218 	}
1219 	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1220 		(shared_int ? "shared" : "unshared"));
1221 
1222 	/* Disable all the interrupts */
1223 	wr32(E1000_IMC, ~0);
1224 	wrfl();
1225 	msleep(10);
1226 
1227 	/* Define all writable bits for ICS */
1228 	switch (hw->mac.type) {
1229 	case e1000_82575:
1230 		ics_mask = 0x37F47EDD;
1231 		break;
1232 	case e1000_82576:
1233 		ics_mask = 0x77D4FBFD;
1234 		break;
1235 	case e1000_82580:
1236 		ics_mask = 0x77DCFED5;
1237 		break;
1238 	case e1000_i350:
1239 		ics_mask = 0x77DCFED5;
1240 		break;
1241 	default:
1242 		ics_mask = 0x7FFFFFFF;
1243 		break;
1244 	}
1245 
1246 	/* Test each interrupt */
1247 	for (; i < 31; i++) {
1248 		/* Interrupt to test */
1249 		mask = 1 << i;
1250 
1251 		if (!(mask & ics_mask))
1252 			continue;
1253 
1254 		if (!shared_int) {
1255 			/* Disable the interrupt to be reported in
1256 			 * the cause register and then force the same
1257 			 * interrupt and see if one gets posted.  If
1258 			 * an interrupt was posted to the bus, the
1259 			 * test failed.
1260 			 */
1261 			adapter->test_icr = 0;
1262 
1263 			/* Flush any pending interrupts */
1264 			wr32(E1000_ICR, ~0);
1265 
1266 			wr32(E1000_IMC, mask);
1267 			wr32(E1000_ICS, mask);
1268 			wrfl();
1269 			msleep(10);
1270 
1271 			if (adapter->test_icr & mask) {
1272 				*data = 3;
1273 				break;
1274 			}
1275 		}
1276 
1277 		/* Enable the interrupt to be reported in
1278 		 * the cause register and then force the same
1279 		 * interrupt and see if one gets posted.  If
1280 		 * an interrupt was not posted to the bus, the
1281 		 * test failed.
1282 		 */
1283 		adapter->test_icr = 0;
1284 
1285 		/* Flush any pending interrupts */
1286 		wr32(E1000_ICR, ~0);
1287 
1288 		wr32(E1000_IMS, mask);
1289 		wr32(E1000_ICS, mask);
1290 		wrfl();
1291 		msleep(10);
1292 
1293 		if (!(adapter->test_icr & mask)) {
1294 			*data = 4;
1295 			break;
1296 		}
1297 
1298 		if (!shared_int) {
1299 			/* Disable the other interrupts to be reported in
1300 			 * the cause register and then force the other
1301 			 * interrupts and see if any get posted.  If
1302 			 * an interrupt was posted to the bus, the
1303 			 * test failed.
1304 			 */
1305 			adapter->test_icr = 0;
1306 
1307 			/* Flush any pending interrupts */
1308 			wr32(E1000_ICR, ~0);
1309 
1310 			wr32(E1000_IMC, ~mask);
1311 			wr32(E1000_ICS, ~mask);
1312 			wrfl();
1313 			msleep(10);
1314 
1315 			if (adapter->test_icr & mask) {
1316 				*data = 5;
1317 				break;
1318 			}
1319 		}
1320 	}
1321 
1322 	/* Disable all the interrupts */
1323 	wr32(E1000_IMC, ~0);
1324 	wrfl();
1325 	msleep(10);
1326 
1327 	/* Unhook test interrupt handler */
1328 	if (adapter->msix_entries)
1329 		free_irq(adapter->msix_entries[0].vector, adapter);
1330 	else
1331 		free_irq(irq, adapter);
1332 
1333 	return *data;
1334 }
1335 
1336 static void igb_free_desc_rings(struct igb_adapter *adapter)
1337 {
1338 	igb_free_tx_resources(&adapter->test_tx_ring);
1339 	igb_free_rx_resources(&adapter->test_rx_ring);
1340 }
1341 
1342 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1343 {
1344 	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1345 	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1346 	struct e1000_hw *hw = &adapter->hw;
1347 	int ret_val;
1348 
1349 	/* Setup Tx descriptor ring and Tx buffers */
1350 	tx_ring->count = IGB_DEFAULT_TXD;
1351 	tx_ring->dev = &adapter->pdev->dev;
1352 	tx_ring->netdev = adapter->netdev;
1353 	tx_ring->reg_idx = adapter->vfs_allocated_count;
1354 
1355 	if (igb_setup_tx_resources(tx_ring)) {
1356 		ret_val = 1;
1357 		goto err_nomem;
1358 	}
1359 
1360 	igb_setup_tctl(adapter);
1361 	igb_configure_tx_ring(adapter, tx_ring);
1362 
1363 	/* Setup Rx descriptor ring and Rx buffers */
1364 	rx_ring->count = IGB_DEFAULT_RXD;
1365 	rx_ring->dev = &adapter->pdev->dev;
1366 	rx_ring->netdev = adapter->netdev;
1367 	rx_ring->reg_idx = adapter->vfs_allocated_count;
1368 
1369 	if (igb_setup_rx_resources(rx_ring)) {
1370 		ret_val = 3;
1371 		goto err_nomem;
1372 	}
1373 
1374 	/* set the default queue to queue 0 of PF */
1375 	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1376 
1377 	/* enable receive ring */
1378 	igb_setup_rctl(adapter);
1379 	igb_configure_rx_ring(adapter, rx_ring);
1380 
1381 	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1382 
1383 	return 0;
1384 
1385 err_nomem:
1386 	igb_free_desc_rings(adapter);
1387 	return ret_val;
1388 }
1389 
1390 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1391 {
1392 	struct e1000_hw *hw = &adapter->hw;
1393 
1394 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1395 	igb_write_phy_reg(hw, 29, 0x001F);
1396 	igb_write_phy_reg(hw, 30, 0x8FFC);
1397 	igb_write_phy_reg(hw, 29, 0x001A);
1398 	igb_write_phy_reg(hw, 30, 0x8FF0);
1399 }
1400 
1401 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1402 {
1403 	struct e1000_hw *hw = &adapter->hw;
1404 	u32 ctrl_reg = 0;
1405 
1406 	hw->mac.autoneg = false;
1407 
1408 	if (hw->phy.type == e1000_phy_m88) {
1409 		/* Auto-MDI/MDIX Off */
1410 		igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1411 		/* reset to update Auto-MDI/MDIX */
1412 		igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1413 		/* autoneg off */
1414 		igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1415 	} else if (hw->phy.type == e1000_phy_82580) {
1416 		/* enable MII loopback */
1417 		igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1418 	}
1419 
1420 	ctrl_reg = rd32(E1000_CTRL);
1421 
1422 	/* force 1000, set loopback */
1423 	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1424 
1425 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1426 	ctrl_reg = rd32(E1000_CTRL);
1427 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1428 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1429 		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1430 		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1431 		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1432 		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1433 
1434 	if (hw->phy.type == e1000_phy_m88)
1435 		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1436 
1437 	wr32(E1000_CTRL, ctrl_reg);
1438 
1439 	/* Disable the receiver on the PHY so when a cable is plugged in, the
1440 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1441 	 */
1442 	if (hw->phy.type == e1000_phy_m88)
1443 		igb_phy_disable_receiver(adapter);
1444 
1445 	udelay(500);
1446 
1447 	return 0;
1448 }
1449 
1450 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1451 {
1452 	return igb_integrated_phy_loopback(adapter);
1453 }
1454 
1455 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1456 {
1457 	struct e1000_hw *hw = &adapter->hw;
1458 	u32 reg;
1459 
1460 	reg = rd32(E1000_CTRL_EXT);
1461 
1462 	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1463 	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1464 		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1465 		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1466 		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1467 		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1468 
1469 			/* Enable DH89xxCC MPHY for near end loopback */
1470 			reg = rd32(E1000_MPHY_ADDR_CTL);
1471 			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1472 			E1000_MPHY_PCS_CLK_REG_OFFSET;
1473 			wr32(E1000_MPHY_ADDR_CTL, reg);
1474 
1475 			reg = rd32(E1000_MPHY_DATA);
1476 			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1477 			wr32(E1000_MPHY_DATA, reg);
1478 		}
1479 
1480 		reg = rd32(E1000_RCTL);
1481 		reg |= E1000_RCTL_LBM_TCVR;
1482 		wr32(E1000_RCTL, reg);
1483 
1484 		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1485 
1486 		reg = rd32(E1000_CTRL);
1487 		reg &= ~(E1000_CTRL_RFCE |
1488 			 E1000_CTRL_TFCE |
1489 			 E1000_CTRL_LRST);
1490 		reg |= E1000_CTRL_SLU |
1491 		       E1000_CTRL_FD;
1492 		wr32(E1000_CTRL, reg);
1493 
1494 		/* Unset switch control to serdes energy detect */
1495 		reg = rd32(E1000_CONNSW);
1496 		reg &= ~E1000_CONNSW_ENRGSRC;
1497 		wr32(E1000_CONNSW, reg);
1498 
1499 		/* Set PCS register for forced speed */
1500 		reg = rd32(E1000_PCS_LCTL);
1501 		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1502 		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1503 		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1504 		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1505 		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1506 		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1507 		wr32(E1000_PCS_LCTL, reg);
1508 
1509 		return 0;
1510 	}
1511 
1512 	return igb_set_phy_loopback(adapter);
1513 }
1514 
1515 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1516 {
1517 	struct e1000_hw *hw = &adapter->hw;
1518 	u32 rctl;
1519 	u16 phy_reg;
1520 
1521 	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1522 	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1523 	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1524 	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1525 		u32 reg;
1526 
1527 		/* Disable near end loopback on DH89xxCC */
1528 		reg = rd32(E1000_MPHY_ADDR_CTL);
1529 		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1530 		E1000_MPHY_PCS_CLK_REG_OFFSET;
1531 		wr32(E1000_MPHY_ADDR_CTL, reg);
1532 
1533 		reg = rd32(E1000_MPHY_DATA);
1534 		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1535 		wr32(E1000_MPHY_DATA, reg);
1536 	}
1537 
1538 	rctl = rd32(E1000_RCTL);
1539 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1540 	wr32(E1000_RCTL, rctl);
1541 
1542 	hw->mac.autoneg = true;
1543 	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1544 	if (phy_reg & MII_CR_LOOPBACK) {
1545 		phy_reg &= ~MII_CR_LOOPBACK;
1546 		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1547 		igb_phy_sw_reset(hw);
1548 	}
1549 }
1550 
1551 static void igb_create_lbtest_frame(struct sk_buff *skb,
1552 				    unsigned int frame_size)
1553 {
1554 	memset(skb->data, 0xFF, frame_size);
1555 	frame_size /= 2;
1556 	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1557 	memset(&skb->data[frame_size + 10], 0xBE, 1);
1558 	memset(&skb->data[frame_size + 12], 0xAF, 1);
1559 }
1560 
1561 static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1562 {
1563 	frame_size /= 2;
1564 	if (*(skb->data + 3) == 0xFF) {
1565 		if ((*(skb->data + frame_size + 10) == 0xBE) &&
1566 		   (*(skb->data + frame_size + 12) == 0xAF)) {
1567 			return 0;
1568 		}
1569 	}
1570 	return 13;
1571 }
1572 
1573 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1574                                 struct igb_ring *tx_ring,
1575                                 unsigned int size)
1576 {
1577 	union e1000_adv_rx_desc *rx_desc;
1578 	struct igb_rx_buffer *rx_buffer_info;
1579 	struct igb_tx_buffer *tx_buffer_info;
1580 	struct netdev_queue *txq;
1581 	u16 rx_ntc, tx_ntc, count = 0;
1582 	unsigned int total_bytes = 0, total_packets = 0;
1583 
1584 	/* initialize next to clean and descriptor values */
1585 	rx_ntc = rx_ring->next_to_clean;
1586 	tx_ntc = tx_ring->next_to_clean;
1587 	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1588 
1589 	while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1590 		/* check rx buffer */
1591 		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1592 
1593 		/* unmap rx buffer, will be remapped by alloc_rx_buffers */
1594 		dma_unmap_single(rx_ring->dev,
1595 				 rx_buffer_info->dma,
1596 				 IGB_RX_HDR_LEN,
1597 				 DMA_FROM_DEVICE);
1598 		rx_buffer_info->dma = 0;
1599 
1600 		/* verify contents of skb */
1601 		if (!igb_check_lbtest_frame(rx_buffer_info->skb, size))
1602 			count++;
1603 
1604 		/* unmap buffer on tx side */
1605 		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1606 		total_bytes += tx_buffer_info->bytecount;
1607 		total_packets += tx_buffer_info->gso_segs;
1608 		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1609 
1610 		/* increment rx/tx next to clean counters */
1611 		rx_ntc++;
1612 		if (rx_ntc == rx_ring->count)
1613 			rx_ntc = 0;
1614 		tx_ntc++;
1615 		if (tx_ntc == tx_ring->count)
1616 			tx_ntc = 0;
1617 
1618 		/* fetch next descriptor */
1619 		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1620 	}
1621 
1622 	txq = netdev_get_tx_queue(tx_ring->netdev, tx_ring->queue_index);
1623 	netdev_tx_completed_queue(txq, total_packets, total_bytes);
1624 
1625 	/* re-map buffers to ring, store next to clean values */
1626 	igb_alloc_rx_buffers(rx_ring, count);
1627 	rx_ring->next_to_clean = rx_ntc;
1628 	tx_ring->next_to_clean = tx_ntc;
1629 
1630 	return count;
1631 }
1632 
1633 static int igb_run_loopback_test(struct igb_adapter *adapter)
1634 {
1635 	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1636 	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1637 	u16 i, j, lc, good_cnt;
1638 	int ret_val = 0;
1639 	unsigned int size = IGB_RX_HDR_LEN;
1640 	netdev_tx_t tx_ret_val;
1641 	struct sk_buff *skb;
1642 
1643 	/* allocate test skb */
1644 	skb = alloc_skb(size, GFP_KERNEL);
1645 	if (!skb)
1646 		return 11;
1647 
1648 	/* place data into test skb */
1649 	igb_create_lbtest_frame(skb, size);
1650 	skb_put(skb, size);
1651 
1652 	/*
1653 	 * Calculate the loop count based on the largest descriptor ring
1654 	 * The idea is to wrap the largest ring a number of times using 64
1655 	 * send/receive pairs during each loop
1656 	 */
1657 
1658 	if (rx_ring->count <= tx_ring->count)
1659 		lc = ((tx_ring->count / 64) * 2) + 1;
1660 	else
1661 		lc = ((rx_ring->count / 64) * 2) + 1;
1662 
1663 	for (j = 0; j <= lc; j++) { /* loop count loop */
1664 		/* reset count of good packets */
1665 		good_cnt = 0;
1666 
1667 		/* place 64 packets on the transmit queue*/
1668 		for (i = 0; i < 64; i++) {
1669 			skb_get(skb);
1670 			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1671 			if (tx_ret_val == NETDEV_TX_OK)
1672 				good_cnt++;
1673 		}
1674 
1675 		if (good_cnt != 64) {
1676 			ret_val = 12;
1677 			break;
1678 		}
1679 
1680 		/* allow 200 milliseconds for packets to go from tx to rx */
1681 		msleep(200);
1682 
1683 		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1684 		if (good_cnt != 64) {
1685 			ret_val = 13;
1686 			break;
1687 		}
1688 	} /* end loop count loop */
1689 
1690 	/* free the original skb */
1691 	kfree_skb(skb);
1692 
1693 	return ret_val;
1694 }
1695 
1696 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1697 {
1698 	/* PHY loopback cannot be performed if SoL/IDER
1699 	 * sessions are active */
1700 	if (igb_check_reset_block(&adapter->hw)) {
1701 		dev_err(&adapter->pdev->dev,
1702 			"Cannot do PHY loopback test "
1703 			"when SoL/IDER is active.\n");
1704 		*data = 0;
1705 		goto out;
1706 	}
1707 	*data = igb_setup_desc_rings(adapter);
1708 	if (*data)
1709 		goto out;
1710 	*data = igb_setup_loopback_test(adapter);
1711 	if (*data)
1712 		goto err_loopback;
1713 	*data = igb_run_loopback_test(adapter);
1714 	igb_loopback_cleanup(adapter);
1715 
1716 err_loopback:
1717 	igb_free_desc_rings(adapter);
1718 out:
1719 	return *data;
1720 }
1721 
1722 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1723 {
1724 	struct e1000_hw *hw = &adapter->hw;
1725 	*data = 0;
1726 	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1727 		int i = 0;
1728 		hw->mac.serdes_has_link = false;
1729 
1730 		/* On some blade server designs, link establishment
1731 		 * could take as long as 2-3 minutes */
1732 		do {
1733 			hw->mac.ops.check_for_link(&adapter->hw);
1734 			if (hw->mac.serdes_has_link)
1735 				return *data;
1736 			msleep(20);
1737 		} while (i++ < 3750);
1738 
1739 		*data = 1;
1740 	} else {
1741 		hw->mac.ops.check_for_link(&adapter->hw);
1742 		if (hw->mac.autoneg)
1743 			msleep(4000);
1744 
1745 		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1746 			*data = 1;
1747 	}
1748 	return *data;
1749 }
1750 
1751 static void igb_diag_test(struct net_device *netdev,
1752 			  struct ethtool_test *eth_test, u64 *data)
1753 {
1754 	struct igb_adapter *adapter = netdev_priv(netdev);
1755 	u16 autoneg_advertised;
1756 	u8 forced_speed_duplex, autoneg;
1757 	bool if_running = netif_running(netdev);
1758 
1759 	set_bit(__IGB_TESTING, &adapter->state);
1760 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1761 		/* Offline tests */
1762 
1763 		/* save speed, duplex, autoneg settings */
1764 		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1765 		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1766 		autoneg = adapter->hw.mac.autoneg;
1767 
1768 		dev_info(&adapter->pdev->dev, "offline testing starting\n");
1769 
1770 		/* power up link for link test */
1771 		igb_power_up_link(adapter);
1772 
1773 		/* Link test performed before hardware reset so autoneg doesn't
1774 		 * interfere with test result */
1775 		if (igb_link_test(adapter, &data[4]))
1776 			eth_test->flags |= ETH_TEST_FL_FAILED;
1777 
1778 		if (if_running)
1779 			/* indicate we're in test mode */
1780 			dev_close(netdev);
1781 		else
1782 			igb_reset(adapter);
1783 
1784 		if (igb_reg_test(adapter, &data[0]))
1785 			eth_test->flags |= ETH_TEST_FL_FAILED;
1786 
1787 		igb_reset(adapter);
1788 		if (igb_eeprom_test(adapter, &data[1]))
1789 			eth_test->flags |= ETH_TEST_FL_FAILED;
1790 
1791 		igb_reset(adapter);
1792 		if (igb_intr_test(adapter, &data[2]))
1793 			eth_test->flags |= ETH_TEST_FL_FAILED;
1794 
1795 		igb_reset(adapter);
1796 		/* power up link for loopback test */
1797 		igb_power_up_link(adapter);
1798 		if (igb_loopback_test(adapter, &data[3]))
1799 			eth_test->flags |= ETH_TEST_FL_FAILED;
1800 
1801 		/* restore speed, duplex, autoneg settings */
1802 		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1803 		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1804 		adapter->hw.mac.autoneg = autoneg;
1805 
1806 		/* force this routine to wait until autoneg complete/timeout */
1807 		adapter->hw.phy.autoneg_wait_to_complete = true;
1808 		igb_reset(adapter);
1809 		adapter->hw.phy.autoneg_wait_to_complete = false;
1810 
1811 		clear_bit(__IGB_TESTING, &adapter->state);
1812 		if (if_running)
1813 			dev_open(netdev);
1814 	} else {
1815 		dev_info(&adapter->pdev->dev, "online testing starting\n");
1816 
1817 		/* PHY is powered down when interface is down */
1818 		if (if_running && igb_link_test(adapter, &data[4]))
1819 			eth_test->flags |= ETH_TEST_FL_FAILED;
1820 		else
1821 			data[4] = 0;
1822 
1823 		/* Online tests aren't run; pass by default */
1824 		data[0] = 0;
1825 		data[1] = 0;
1826 		data[2] = 0;
1827 		data[3] = 0;
1828 
1829 		clear_bit(__IGB_TESTING, &adapter->state);
1830 	}
1831 	msleep_interruptible(4 * 1000);
1832 }
1833 
1834 static int igb_wol_exclusion(struct igb_adapter *adapter,
1835 			     struct ethtool_wolinfo *wol)
1836 {
1837 	struct e1000_hw *hw = &adapter->hw;
1838 	int retval = 1; /* fail by default */
1839 
1840 	switch (hw->device_id) {
1841 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
1842 		/* WoL not supported */
1843 		wol->supported = 0;
1844 		break;
1845 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
1846 	case E1000_DEV_ID_82576_FIBER:
1847 	case E1000_DEV_ID_82576_SERDES:
1848 		/* Wake events not supported on port B */
1849 		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1850 			wol->supported = 0;
1851 			break;
1852 		}
1853 		/* return success for non excluded adapter ports */
1854 		retval = 0;
1855 		break;
1856 	case E1000_DEV_ID_82576_QUAD_COPPER:
1857 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
1858 		/* quad port adapters only support WoL on port A */
1859 		if (!(adapter->flags & IGB_FLAG_QUAD_PORT_A)) {
1860 			wol->supported = 0;
1861 			break;
1862 		}
1863 		/* return success for non excluded adapter ports */
1864 		retval = 0;
1865 		break;
1866 	default:
1867 		/* dual port cards only support WoL on port A from now on
1868 		 * unless it was enabled in the eeprom for port B
1869 		 * so exclude FUNC_1 ports from having WoL enabled */
1870 		if ((rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) &&
1871 		    !adapter->eeprom_wol) {
1872 			wol->supported = 0;
1873 			break;
1874 		}
1875 
1876 		retval = 0;
1877 	}
1878 
1879 	return retval;
1880 }
1881 
1882 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1883 {
1884 	struct igb_adapter *adapter = netdev_priv(netdev);
1885 
1886 	wol->supported = WAKE_UCAST | WAKE_MCAST |
1887 	                 WAKE_BCAST | WAKE_MAGIC |
1888 	                 WAKE_PHY;
1889 	wol->wolopts = 0;
1890 
1891 	/* this function will set ->supported = 0 and return 1 if wol is not
1892 	 * supported by this hardware */
1893 	if (igb_wol_exclusion(adapter, wol) ||
1894 	    !device_can_wakeup(&adapter->pdev->dev))
1895 		return;
1896 
1897 	/* apply any specific unsupported masks here */
1898 	switch (adapter->hw.device_id) {
1899 	default:
1900 		break;
1901 	}
1902 
1903 	if (adapter->wol & E1000_WUFC_EX)
1904 		wol->wolopts |= WAKE_UCAST;
1905 	if (adapter->wol & E1000_WUFC_MC)
1906 		wol->wolopts |= WAKE_MCAST;
1907 	if (adapter->wol & E1000_WUFC_BC)
1908 		wol->wolopts |= WAKE_BCAST;
1909 	if (adapter->wol & E1000_WUFC_MAG)
1910 		wol->wolopts |= WAKE_MAGIC;
1911 	if (adapter->wol & E1000_WUFC_LNKC)
1912 		wol->wolopts |= WAKE_PHY;
1913 }
1914 
1915 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1916 {
1917 	struct igb_adapter *adapter = netdev_priv(netdev);
1918 
1919 	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
1920 		return -EOPNOTSUPP;
1921 
1922 	if (igb_wol_exclusion(adapter, wol) ||
1923 	    !device_can_wakeup(&adapter->pdev->dev))
1924 		return wol->wolopts ? -EOPNOTSUPP : 0;
1925 
1926 	/* these settings will always override what we currently have */
1927 	adapter->wol = 0;
1928 
1929 	if (wol->wolopts & WAKE_UCAST)
1930 		adapter->wol |= E1000_WUFC_EX;
1931 	if (wol->wolopts & WAKE_MCAST)
1932 		adapter->wol |= E1000_WUFC_MC;
1933 	if (wol->wolopts & WAKE_BCAST)
1934 		adapter->wol |= E1000_WUFC_BC;
1935 	if (wol->wolopts & WAKE_MAGIC)
1936 		adapter->wol |= E1000_WUFC_MAG;
1937 	if (wol->wolopts & WAKE_PHY)
1938 		adapter->wol |= E1000_WUFC_LNKC;
1939 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1940 
1941 	return 0;
1942 }
1943 
1944 /* bit defines for adapter->led_status */
1945 #define IGB_LED_ON		0
1946 
1947 static int igb_set_phys_id(struct net_device *netdev,
1948 			   enum ethtool_phys_id_state state)
1949 {
1950 	struct igb_adapter *adapter = netdev_priv(netdev);
1951 	struct e1000_hw *hw = &adapter->hw;
1952 
1953 	switch (state) {
1954 	case ETHTOOL_ID_ACTIVE:
1955 		igb_blink_led(hw);
1956 		return 2;
1957 	case ETHTOOL_ID_ON:
1958 		igb_blink_led(hw);
1959 		break;
1960 	case ETHTOOL_ID_OFF:
1961 		igb_led_off(hw);
1962 		break;
1963 	case ETHTOOL_ID_INACTIVE:
1964 		igb_led_off(hw);
1965 		clear_bit(IGB_LED_ON, &adapter->led_status);
1966 		igb_cleanup_led(hw);
1967 		break;
1968 	}
1969 
1970 	return 0;
1971 }
1972 
1973 static int igb_set_coalesce(struct net_device *netdev,
1974 			    struct ethtool_coalesce *ec)
1975 {
1976 	struct igb_adapter *adapter = netdev_priv(netdev);
1977 	int i;
1978 
1979 	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
1980 	    ((ec->rx_coalesce_usecs > 3) &&
1981 	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
1982 	    (ec->rx_coalesce_usecs == 2))
1983 		return -EINVAL;
1984 
1985 	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
1986 	    ((ec->tx_coalesce_usecs > 3) &&
1987 	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
1988 	    (ec->tx_coalesce_usecs == 2))
1989 		return -EINVAL;
1990 
1991 	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
1992 		return -EINVAL;
1993 
1994 	/* If ITR is disabled, disable DMAC */
1995 	if (ec->rx_coalesce_usecs == 0) {
1996 		if (adapter->flags & IGB_FLAG_DMAC)
1997 			adapter->flags &= ~IGB_FLAG_DMAC;
1998 	}
1999 
2000 	/* convert to rate of irq's per second */
2001 	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2002 		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2003 	else
2004 		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2005 
2006 	/* convert to rate of irq's per second */
2007 	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2008 		adapter->tx_itr_setting = adapter->rx_itr_setting;
2009 	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2010 		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2011 	else
2012 		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2013 
2014 	for (i = 0; i < adapter->num_q_vectors; i++) {
2015 		struct igb_q_vector *q_vector = adapter->q_vector[i];
2016 		q_vector->tx.work_limit = adapter->tx_work_limit;
2017 		if (q_vector->rx.ring)
2018 			q_vector->itr_val = adapter->rx_itr_setting;
2019 		else
2020 			q_vector->itr_val = adapter->tx_itr_setting;
2021 		if (q_vector->itr_val && q_vector->itr_val <= 3)
2022 			q_vector->itr_val = IGB_START_ITR;
2023 		q_vector->set_itr = 1;
2024 	}
2025 
2026 	return 0;
2027 }
2028 
2029 static int igb_get_coalesce(struct net_device *netdev,
2030 			    struct ethtool_coalesce *ec)
2031 {
2032 	struct igb_adapter *adapter = netdev_priv(netdev);
2033 
2034 	if (adapter->rx_itr_setting <= 3)
2035 		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2036 	else
2037 		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2038 
2039 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2040 		if (adapter->tx_itr_setting <= 3)
2041 			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2042 		else
2043 			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2044 	}
2045 
2046 	return 0;
2047 }
2048 
2049 static int igb_nway_reset(struct net_device *netdev)
2050 {
2051 	struct igb_adapter *adapter = netdev_priv(netdev);
2052 	if (netif_running(netdev))
2053 		igb_reinit_locked(adapter);
2054 	return 0;
2055 }
2056 
2057 static int igb_get_sset_count(struct net_device *netdev, int sset)
2058 {
2059 	switch (sset) {
2060 	case ETH_SS_STATS:
2061 		return IGB_STATS_LEN;
2062 	case ETH_SS_TEST:
2063 		return IGB_TEST_LEN;
2064 	default:
2065 		return -ENOTSUPP;
2066 	}
2067 }
2068 
2069 static void igb_get_ethtool_stats(struct net_device *netdev,
2070 				  struct ethtool_stats *stats, u64 *data)
2071 {
2072 	struct igb_adapter *adapter = netdev_priv(netdev);
2073 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2074 	unsigned int start;
2075 	struct igb_ring *ring;
2076 	int i, j;
2077 	char *p;
2078 
2079 	spin_lock(&adapter->stats64_lock);
2080 	igb_update_stats(adapter, net_stats);
2081 
2082 	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2083 		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2084 		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2085 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2086 	}
2087 	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2088 		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2089 		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2090 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2091 	}
2092 	for (j = 0; j < adapter->num_tx_queues; j++) {
2093 		u64	restart2;
2094 
2095 		ring = adapter->tx_ring[j];
2096 		do {
2097 			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
2098 			data[i]   = ring->tx_stats.packets;
2099 			data[i+1] = ring->tx_stats.bytes;
2100 			data[i+2] = ring->tx_stats.restart_queue;
2101 		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
2102 		do {
2103 			start = u64_stats_fetch_begin_bh(&ring->tx_syncp2);
2104 			restart2  = ring->tx_stats.restart_queue2;
2105 		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start));
2106 		data[i+2] += restart2;
2107 
2108 		i += IGB_TX_QUEUE_STATS_LEN;
2109 	}
2110 	for (j = 0; j < adapter->num_rx_queues; j++) {
2111 		ring = adapter->rx_ring[j];
2112 		do {
2113 			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
2114 			data[i]   = ring->rx_stats.packets;
2115 			data[i+1] = ring->rx_stats.bytes;
2116 			data[i+2] = ring->rx_stats.drops;
2117 			data[i+3] = ring->rx_stats.csum_err;
2118 			data[i+4] = ring->rx_stats.alloc_failed;
2119 		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
2120 		i += IGB_RX_QUEUE_STATS_LEN;
2121 	}
2122 	spin_unlock(&adapter->stats64_lock);
2123 }
2124 
2125 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2126 {
2127 	struct igb_adapter *adapter = netdev_priv(netdev);
2128 	u8 *p = data;
2129 	int i;
2130 
2131 	switch (stringset) {
2132 	case ETH_SS_TEST:
2133 		memcpy(data, *igb_gstrings_test,
2134 			IGB_TEST_LEN*ETH_GSTRING_LEN);
2135 		break;
2136 	case ETH_SS_STATS:
2137 		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2138 			memcpy(p, igb_gstrings_stats[i].stat_string,
2139 			       ETH_GSTRING_LEN);
2140 			p += ETH_GSTRING_LEN;
2141 		}
2142 		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2143 			memcpy(p, igb_gstrings_net_stats[i].stat_string,
2144 			       ETH_GSTRING_LEN);
2145 			p += ETH_GSTRING_LEN;
2146 		}
2147 		for (i = 0; i < adapter->num_tx_queues; i++) {
2148 			sprintf(p, "tx_queue_%u_packets", i);
2149 			p += ETH_GSTRING_LEN;
2150 			sprintf(p, "tx_queue_%u_bytes", i);
2151 			p += ETH_GSTRING_LEN;
2152 			sprintf(p, "tx_queue_%u_restart", i);
2153 			p += ETH_GSTRING_LEN;
2154 		}
2155 		for (i = 0; i < adapter->num_rx_queues; i++) {
2156 			sprintf(p, "rx_queue_%u_packets", i);
2157 			p += ETH_GSTRING_LEN;
2158 			sprintf(p, "rx_queue_%u_bytes", i);
2159 			p += ETH_GSTRING_LEN;
2160 			sprintf(p, "rx_queue_%u_drops", i);
2161 			p += ETH_GSTRING_LEN;
2162 			sprintf(p, "rx_queue_%u_csum_err", i);
2163 			p += ETH_GSTRING_LEN;
2164 			sprintf(p, "rx_queue_%u_alloc_failed", i);
2165 			p += ETH_GSTRING_LEN;
2166 		}
2167 /*		BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2168 		break;
2169 	}
2170 }
2171 
2172 static int igb_ethtool_begin(struct net_device *netdev)
2173 {
2174 	struct igb_adapter *adapter = netdev_priv(netdev);
2175 	pm_runtime_get_sync(&adapter->pdev->dev);
2176 	return 0;
2177 }
2178 
2179 static void igb_ethtool_complete(struct net_device *netdev)
2180 {
2181 	struct igb_adapter *adapter = netdev_priv(netdev);
2182 	pm_runtime_put(&adapter->pdev->dev);
2183 }
2184 
2185 static const struct ethtool_ops igb_ethtool_ops = {
2186 	.get_settings           = igb_get_settings,
2187 	.set_settings           = igb_set_settings,
2188 	.get_drvinfo            = igb_get_drvinfo,
2189 	.get_regs_len           = igb_get_regs_len,
2190 	.get_regs               = igb_get_regs,
2191 	.get_wol                = igb_get_wol,
2192 	.set_wol                = igb_set_wol,
2193 	.get_msglevel           = igb_get_msglevel,
2194 	.set_msglevel           = igb_set_msglevel,
2195 	.nway_reset             = igb_nway_reset,
2196 	.get_link               = igb_get_link,
2197 	.get_eeprom_len         = igb_get_eeprom_len,
2198 	.get_eeprom             = igb_get_eeprom,
2199 	.set_eeprom             = igb_set_eeprom,
2200 	.get_ringparam          = igb_get_ringparam,
2201 	.set_ringparam          = igb_set_ringparam,
2202 	.get_pauseparam         = igb_get_pauseparam,
2203 	.set_pauseparam         = igb_set_pauseparam,
2204 	.self_test              = igb_diag_test,
2205 	.get_strings            = igb_get_strings,
2206 	.set_phys_id            = igb_set_phys_id,
2207 	.get_sset_count         = igb_get_sset_count,
2208 	.get_ethtool_stats      = igb_get_ethtool_stats,
2209 	.get_coalesce           = igb_get_coalesce,
2210 	.set_coalesce           = igb_set_coalesce,
2211 	.begin			= igb_ethtool_begin,
2212 	.complete		= igb_ethtool_complete,
2213 };
2214 
2215 void igb_set_ethtool_ops(struct net_device *netdev)
2216 {
2217 	SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2218 }
2219