1 /*******************************************************************************
2 
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2013 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 /* ethtool support for igb */
29 
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
37 #include <linux/sched.h>
38 #include <linux/slab.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/highmem.h>
41 #include <linux/mdio.h>
42 
43 #include "igb.h"
44 
45 struct igb_stats {
46 	char stat_string[ETH_GSTRING_LEN];
47 	int sizeof_stat;
48 	int stat_offset;
49 };
50 
51 #define IGB_STAT(_name, _stat) { \
52 	.stat_string = _name, \
53 	.sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
54 	.stat_offset = offsetof(struct igb_adapter, _stat) \
55 }
56 static const struct igb_stats igb_gstrings_stats[] = {
57 	IGB_STAT("rx_packets", stats.gprc),
58 	IGB_STAT("tx_packets", stats.gptc),
59 	IGB_STAT("rx_bytes", stats.gorc),
60 	IGB_STAT("tx_bytes", stats.gotc),
61 	IGB_STAT("rx_broadcast", stats.bprc),
62 	IGB_STAT("tx_broadcast", stats.bptc),
63 	IGB_STAT("rx_multicast", stats.mprc),
64 	IGB_STAT("tx_multicast", stats.mptc),
65 	IGB_STAT("multicast", stats.mprc),
66 	IGB_STAT("collisions", stats.colc),
67 	IGB_STAT("rx_crc_errors", stats.crcerrs),
68 	IGB_STAT("rx_no_buffer_count", stats.rnbc),
69 	IGB_STAT("rx_missed_errors", stats.mpc),
70 	IGB_STAT("tx_aborted_errors", stats.ecol),
71 	IGB_STAT("tx_carrier_errors", stats.tncrs),
72 	IGB_STAT("tx_window_errors", stats.latecol),
73 	IGB_STAT("tx_abort_late_coll", stats.latecol),
74 	IGB_STAT("tx_deferred_ok", stats.dc),
75 	IGB_STAT("tx_single_coll_ok", stats.scc),
76 	IGB_STAT("tx_multi_coll_ok", stats.mcc),
77 	IGB_STAT("tx_timeout_count", tx_timeout_count),
78 	IGB_STAT("rx_long_length_errors", stats.roc),
79 	IGB_STAT("rx_short_length_errors", stats.ruc),
80 	IGB_STAT("rx_align_errors", stats.algnerrc),
81 	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
82 	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
83 	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
84 	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
85 	IGB_STAT("tx_flow_control_xon", stats.xontxc),
86 	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
87 	IGB_STAT("rx_long_byte_count", stats.gorc),
88 	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
89 	IGB_STAT("tx_smbus", stats.mgptc),
90 	IGB_STAT("rx_smbus", stats.mgprc),
91 	IGB_STAT("dropped_smbus", stats.mgpdc),
92 	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
93 	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
94 	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
95 	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
96 	IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
97 	IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
98 };
99 
100 #define IGB_NETDEV_STAT(_net_stat) { \
101 	.stat_string = __stringify(_net_stat), \
102 	.sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
103 	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
104 }
105 static const struct igb_stats igb_gstrings_net_stats[] = {
106 	IGB_NETDEV_STAT(rx_errors),
107 	IGB_NETDEV_STAT(tx_errors),
108 	IGB_NETDEV_STAT(tx_dropped),
109 	IGB_NETDEV_STAT(rx_length_errors),
110 	IGB_NETDEV_STAT(rx_over_errors),
111 	IGB_NETDEV_STAT(rx_frame_errors),
112 	IGB_NETDEV_STAT(rx_fifo_errors),
113 	IGB_NETDEV_STAT(tx_fifo_errors),
114 	IGB_NETDEV_STAT(tx_heartbeat_errors)
115 };
116 
117 #define IGB_GLOBAL_STATS_LEN	\
118 	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
119 #define IGB_NETDEV_STATS_LEN	\
120 	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
121 #define IGB_RX_QUEUE_STATS_LEN \
122 	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
123 
124 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
125 
126 #define IGB_QUEUE_STATS_LEN \
127 	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
128 	  IGB_RX_QUEUE_STATS_LEN) + \
129 	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
130 	  IGB_TX_QUEUE_STATS_LEN))
131 #define IGB_STATS_LEN \
132 	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
133 
134 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
135 	"Register test  (offline)", "Eeprom test    (offline)",
136 	"Interrupt test (offline)", "Loopback test  (offline)",
137 	"Link test   (on/offline)"
138 };
139 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
140 
141 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
142 {
143 	struct igb_adapter *adapter = netdev_priv(netdev);
144 	struct e1000_hw *hw = &adapter->hw;
145 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
146 	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
147 	u32 status;
148 
149 	if (hw->phy.media_type == e1000_media_type_copper) {
150 
151 		ecmd->supported = (SUPPORTED_10baseT_Half |
152 				   SUPPORTED_10baseT_Full |
153 				   SUPPORTED_100baseT_Half |
154 				   SUPPORTED_100baseT_Full |
155 				   SUPPORTED_1000baseT_Full|
156 				   SUPPORTED_Autoneg |
157 				   SUPPORTED_TP |
158 				   SUPPORTED_Pause);
159 		ecmd->advertising = ADVERTISED_TP;
160 
161 		if (hw->mac.autoneg == 1) {
162 			ecmd->advertising |= ADVERTISED_Autoneg;
163 			/* the e1000 autoneg seems to match ethtool nicely */
164 			ecmd->advertising |= hw->phy.autoneg_advertised;
165 		}
166 
167 		ecmd->port = PORT_TP;
168 		ecmd->phy_address = hw->phy.addr;
169 		ecmd->transceiver = XCVR_INTERNAL;
170 	} else {
171 		ecmd->supported = (SUPPORTED_FIBRE |
172 				   SUPPORTED_Autoneg |
173 				   SUPPORTED_Pause);
174 		ecmd->advertising = ADVERTISED_FIBRE;
175 
176 		if ((eth_flags->e1000_base_lx) || (eth_flags->e1000_base_sx)) {
177 			ecmd->supported |= SUPPORTED_1000baseT_Full;
178 			ecmd->advertising |= ADVERTISED_1000baseT_Full;
179 		}
180 		if (eth_flags->e100_base_fx) {
181 			ecmd->supported |= SUPPORTED_100baseT_Full;
182 			ecmd->advertising |= ADVERTISED_100baseT_Full;
183 		}
184 		if (hw->mac.autoneg == 1)
185 			ecmd->advertising |= ADVERTISED_Autoneg;
186 
187 		ecmd->port = PORT_FIBRE;
188 		ecmd->transceiver = XCVR_EXTERNAL;
189 	}
190 
191 	if (hw->mac.autoneg != 1)
192 		ecmd->advertising &= ~(ADVERTISED_Pause |
193 				       ADVERTISED_Asym_Pause);
194 
195 	if (hw->fc.requested_mode == e1000_fc_full)
196 		ecmd->advertising |= ADVERTISED_Pause;
197 	else if (hw->fc.requested_mode == e1000_fc_rx_pause)
198 		ecmd->advertising |= (ADVERTISED_Pause |
199 				      ADVERTISED_Asym_Pause);
200 	else if (hw->fc.requested_mode == e1000_fc_tx_pause)
201 		ecmd->advertising |=  ADVERTISED_Asym_Pause;
202 	else
203 		ecmd->advertising &= ~(ADVERTISED_Pause |
204 				       ADVERTISED_Asym_Pause);
205 
206 	status = rd32(E1000_STATUS);
207 
208 	if (status & E1000_STATUS_LU) {
209 		if (hw->mac.type == e1000_i354) {
210 			if ((status & E1000_STATUS_2P5_SKU) &&
211 			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
212 				ecmd->supported = SUPPORTED_2500baseX_Full;
213 				ecmd->advertising = ADVERTISED_2500baseX_Full;
214 				ecmd->speed = SPEED_2500;
215 			} else {
216 				ecmd->supported = SUPPORTED_1000baseT_Full;
217 				ecmd->advertising = ADVERTISED_1000baseT_Full;
218 			}
219 		} else if (status & E1000_STATUS_SPEED_1000) {
220 			ecmd->speed = SPEED_1000;
221 		} else if (status & E1000_STATUS_SPEED_100) {
222 			ecmd->speed = SPEED_100;
223 		} else {
224 			ecmd->speed = SPEED_10;
225 		}
226 		if ((status & E1000_STATUS_FD) ||
227 		    hw->phy.media_type != e1000_media_type_copper)
228 			ecmd->duplex = DUPLEX_FULL;
229 		else
230 			ecmd->duplex = DUPLEX_HALF;
231 	} else {
232 		ecmd->speed = -1;
233 		ecmd->duplex = -1;
234 	}
235 
236 	if ((hw->phy.media_type == e1000_media_type_fiber) ||
237 	    hw->mac.autoneg)
238 		ecmd->autoneg = AUTONEG_ENABLE;
239 	else
240 		ecmd->autoneg = AUTONEG_DISABLE;
241 
242 	/* MDI-X => 2; MDI =>1; Invalid =>0 */
243 	if (hw->phy.media_type == e1000_media_type_copper)
244 		ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
245 						      ETH_TP_MDI;
246 	else
247 		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
248 
249 	if (hw->phy.mdix == AUTO_ALL_MODES)
250 		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
251 	else
252 		ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
253 
254 	return 0;
255 }
256 
257 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
258 {
259 	struct igb_adapter *adapter = netdev_priv(netdev);
260 	struct e1000_hw *hw = &adapter->hw;
261 
262 	/* When SoL/IDER sessions are active, autoneg/speed/duplex
263 	 * cannot be changed
264 	 */
265 	if (igb_check_reset_block(hw)) {
266 		dev_err(&adapter->pdev->dev,
267 			"Cannot change link characteristics when SoL/IDER is active.\n");
268 		return -EINVAL;
269 	}
270 
271 	/* MDI setting is only allowed when autoneg enabled because
272 	 * some hardware doesn't allow MDI setting when speed or
273 	 * duplex is forced.
274 	 */
275 	if (ecmd->eth_tp_mdix_ctrl) {
276 		if (hw->phy.media_type != e1000_media_type_copper)
277 			return -EOPNOTSUPP;
278 
279 		if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
280 		    (ecmd->autoneg != AUTONEG_ENABLE)) {
281 			dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
282 			return -EINVAL;
283 		}
284 	}
285 
286 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
287 		msleep(1);
288 
289 	if (ecmd->autoneg == AUTONEG_ENABLE) {
290 		hw->mac.autoneg = 1;
291 		if (hw->phy.media_type == e1000_media_type_fiber) {
292 			hw->phy.autoneg_advertised = ecmd->advertising |
293 						     ADVERTISED_FIBRE |
294 						     ADVERTISED_Autoneg;
295 			switch (adapter->link_speed) {
296 			case SPEED_2500:
297 				hw->phy.autoneg_advertised =
298 					ADVERTISED_2500baseX_Full;
299 				break;
300 			case SPEED_1000:
301 				hw->phy.autoneg_advertised =
302 					ADVERTISED_1000baseT_Full;
303 				break;
304 			case SPEED_100:
305 				hw->phy.autoneg_advertised =
306 					ADVERTISED_100baseT_Full;
307 				break;
308 			default:
309 				break;
310 			}
311 		} else {
312 			hw->phy.autoneg_advertised = ecmd->advertising |
313 						     ADVERTISED_TP |
314 						     ADVERTISED_Autoneg;
315 		}
316 		ecmd->advertising = hw->phy.autoneg_advertised;
317 		if (adapter->fc_autoneg)
318 			hw->fc.requested_mode = e1000_fc_default;
319 	} else {
320 		u32 speed = ethtool_cmd_speed(ecmd);
321 		/* calling this overrides forced MDI setting */
322 		if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
323 			clear_bit(__IGB_RESETTING, &adapter->state);
324 			return -EINVAL;
325 		}
326 	}
327 
328 	/* MDI-X => 2; MDI => 1; Auto => 3 */
329 	if (ecmd->eth_tp_mdix_ctrl) {
330 		/* fix up the value for auto (3 => 0) as zero is mapped
331 		 * internally to auto
332 		 */
333 		if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
334 			hw->phy.mdix = AUTO_ALL_MODES;
335 		else
336 			hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
337 	}
338 
339 	/* reset the link */
340 	if (netif_running(adapter->netdev)) {
341 		igb_down(adapter);
342 		igb_up(adapter);
343 	} else
344 		igb_reset(adapter);
345 
346 	clear_bit(__IGB_RESETTING, &adapter->state);
347 	return 0;
348 }
349 
350 static u32 igb_get_link(struct net_device *netdev)
351 {
352 	struct igb_adapter *adapter = netdev_priv(netdev);
353 	struct e1000_mac_info *mac = &adapter->hw.mac;
354 
355 	/* If the link is not reported up to netdev, interrupts are disabled,
356 	 * and so the physical link state may have changed since we last
357 	 * looked. Set get_link_status to make sure that the true link
358 	 * state is interrogated, rather than pulling a cached and possibly
359 	 * stale link state from the driver.
360 	 */
361 	if (!netif_carrier_ok(netdev))
362 		mac->get_link_status = 1;
363 
364 	return igb_has_link(adapter);
365 }
366 
367 static void igb_get_pauseparam(struct net_device *netdev,
368 			       struct ethtool_pauseparam *pause)
369 {
370 	struct igb_adapter *adapter = netdev_priv(netdev);
371 	struct e1000_hw *hw = &adapter->hw;
372 
373 	pause->autoneg =
374 		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
375 
376 	if (hw->fc.current_mode == e1000_fc_rx_pause)
377 		pause->rx_pause = 1;
378 	else if (hw->fc.current_mode == e1000_fc_tx_pause)
379 		pause->tx_pause = 1;
380 	else if (hw->fc.current_mode == e1000_fc_full) {
381 		pause->rx_pause = 1;
382 		pause->tx_pause = 1;
383 	}
384 }
385 
386 static int igb_set_pauseparam(struct net_device *netdev,
387 			      struct ethtool_pauseparam *pause)
388 {
389 	struct igb_adapter *adapter = netdev_priv(netdev);
390 	struct e1000_hw *hw = &adapter->hw;
391 	int retval = 0;
392 
393 	/* 100basefx does not support setting link flow control */
394 	if (hw->dev_spec._82575.eth_flags.e100_base_fx)
395 		return -EINVAL;
396 
397 	adapter->fc_autoneg = pause->autoneg;
398 
399 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
400 		msleep(1);
401 
402 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
403 		hw->fc.requested_mode = e1000_fc_default;
404 		if (netif_running(adapter->netdev)) {
405 			igb_down(adapter);
406 			igb_up(adapter);
407 		} else {
408 			igb_reset(adapter);
409 		}
410 	} else {
411 		if (pause->rx_pause && pause->tx_pause)
412 			hw->fc.requested_mode = e1000_fc_full;
413 		else if (pause->rx_pause && !pause->tx_pause)
414 			hw->fc.requested_mode = e1000_fc_rx_pause;
415 		else if (!pause->rx_pause && pause->tx_pause)
416 			hw->fc.requested_mode = e1000_fc_tx_pause;
417 		else if (!pause->rx_pause && !pause->tx_pause)
418 			hw->fc.requested_mode = e1000_fc_none;
419 
420 		hw->fc.current_mode = hw->fc.requested_mode;
421 
422 		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
423 			  igb_force_mac_fc(hw) : igb_setup_link(hw));
424 	}
425 
426 	clear_bit(__IGB_RESETTING, &adapter->state);
427 	return retval;
428 }
429 
430 static u32 igb_get_msglevel(struct net_device *netdev)
431 {
432 	struct igb_adapter *adapter = netdev_priv(netdev);
433 	return adapter->msg_enable;
434 }
435 
436 static void igb_set_msglevel(struct net_device *netdev, u32 data)
437 {
438 	struct igb_adapter *adapter = netdev_priv(netdev);
439 	adapter->msg_enable = data;
440 }
441 
442 static int igb_get_regs_len(struct net_device *netdev)
443 {
444 #define IGB_REGS_LEN 739
445 	return IGB_REGS_LEN * sizeof(u32);
446 }
447 
448 static void igb_get_regs(struct net_device *netdev,
449 			 struct ethtool_regs *regs, void *p)
450 {
451 	struct igb_adapter *adapter = netdev_priv(netdev);
452 	struct e1000_hw *hw = &adapter->hw;
453 	u32 *regs_buff = p;
454 	u8 i;
455 
456 	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
457 
458 	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
459 
460 	/* General Registers */
461 	regs_buff[0] = rd32(E1000_CTRL);
462 	regs_buff[1] = rd32(E1000_STATUS);
463 	regs_buff[2] = rd32(E1000_CTRL_EXT);
464 	regs_buff[3] = rd32(E1000_MDIC);
465 	regs_buff[4] = rd32(E1000_SCTL);
466 	regs_buff[5] = rd32(E1000_CONNSW);
467 	regs_buff[6] = rd32(E1000_VET);
468 	regs_buff[7] = rd32(E1000_LEDCTL);
469 	regs_buff[8] = rd32(E1000_PBA);
470 	regs_buff[9] = rd32(E1000_PBS);
471 	regs_buff[10] = rd32(E1000_FRTIMER);
472 	regs_buff[11] = rd32(E1000_TCPTIMER);
473 
474 	/* NVM Register */
475 	regs_buff[12] = rd32(E1000_EECD);
476 
477 	/* Interrupt */
478 	/* Reading EICS for EICR because they read the
479 	 * same but EICS does not clear on read
480 	 */
481 	regs_buff[13] = rd32(E1000_EICS);
482 	regs_buff[14] = rd32(E1000_EICS);
483 	regs_buff[15] = rd32(E1000_EIMS);
484 	regs_buff[16] = rd32(E1000_EIMC);
485 	regs_buff[17] = rd32(E1000_EIAC);
486 	regs_buff[18] = rd32(E1000_EIAM);
487 	/* Reading ICS for ICR because they read the
488 	 * same but ICS does not clear on read
489 	 */
490 	regs_buff[19] = rd32(E1000_ICS);
491 	regs_buff[20] = rd32(E1000_ICS);
492 	regs_buff[21] = rd32(E1000_IMS);
493 	regs_buff[22] = rd32(E1000_IMC);
494 	regs_buff[23] = rd32(E1000_IAC);
495 	regs_buff[24] = rd32(E1000_IAM);
496 	regs_buff[25] = rd32(E1000_IMIRVP);
497 
498 	/* Flow Control */
499 	regs_buff[26] = rd32(E1000_FCAL);
500 	regs_buff[27] = rd32(E1000_FCAH);
501 	regs_buff[28] = rd32(E1000_FCTTV);
502 	regs_buff[29] = rd32(E1000_FCRTL);
503 	regs_buff[30] = rd32(E1000_FCRTH);
504 	regs_buff[31] = rd32(E1000_FCRTV);
505 
506 	/* Receive */
507 	regs_buff[32] = rd32(E1000_RCTL);
508 	regs_buff[33] = rd32(E1000_RXCSUM);
509 	regs_buff[34] = rd32(E1000_RLPML);
510 	regs_buff[35] = rd32(E1000_RFCTL);
511 	regs_buff[36] = rd32(E1000_MRQC);
512 	regs_buff[37] = rd32(E1000_VT_CTL);
513 
514 	/* Transmit */
515 	regs_buff[38] = rd32(E1000_TCTL);
516 	regs_buff[39] = rd32(E1000_TCTL_EXT);
517 	regs_buff[40] = rd32(E1000_TIPG);
518 	regs_buff[41] = rd32(E1000_DTXCTL);
519 
520 	/* Wake Up */
521 	regs_buff[42] = rd32(E1000_WUC);
522 	regs_buff[43] = rd32(E1000_WUFC);
523 	regs_buff[44] = rd32(E1000_WUS);
524 	regs_buff[45] = rd32(E1000_IPAV);
525 	regs_buff[46] = rd32(E1000_WUPL);
526 
527 	/* MAC */
528 	regs_buff[47] = rd32(E1000_PCS_CFG0);
529 	regs_buff[48] = rd32(E1000_PCS_LCTL);
530 	regs_buff[49] = rd32(E1000_PCS_LSTAT);
531 	regs_buff[50] = rd32(E1000_PCS_ANADV);
532 	regs_buff[51] = rd32(E1000_PCS_LPAB);
533 	regs_buff[52] = rd32(E1000_PCS_NPTX);
534 	regs_buff[53] = rd32(E1000_PCS_LPABNP);
535 
536 	/* Statistics */
537 	regs_buff[54] = adapter->stats.crcerrs;
538 	regs_buff[55] = adapter->stats.algnerrc;
539 	regs_buff[56] = adapter->stats.symerrs;
540 	regs_buff[57] = adapter->stats.rxerrc;
541 	regs_buff[58] = adapter->stats.mpc;
542 	regs_buff[59] = adapter->stats.scc;
543 	regs_buff[60] = adapter->stats.ecol;
544 	regs_buff[61] = adapter->stats.mcc;
545 	regs_buff[62] = adapter->stats.latecol;
546 	regs_buff[63] = adapter->stats.colc;
547 	regs_buff[64] = adapter->stats.dc;
548 	regs_buff[65] = adapter->stats.tncrs;
549 	regs_buff[66] = adapter->stats.sec;
550 	regs_buff[67] = adapter->stats.htdpmc;
551 	regs_buff[68] = adapter->stats.rlec;
552 	regs_buff[69] = adapter->stats.xonrxc;
553 	regs_buff[70] = adapter->stats.xontxc;
554 	regs_buff[71] = adapter->stats.xoffrxc;
555 	regs_buff[72] = adapter->stats.xofftxc;
556 	regs_buff[73] = adapter->stats.fcruc;
557 	regs_buff[74] = adapter->stats.prc64;
558 	regs_buff[75] = adapter->stats.prc127;
559 	regs_buff[76] = adapter->stats.prc255;
560 	regs_buff[77] = adapter->stats.prc511;
561 	regs_buff[78] = adapter->stats.prc1023;
562 	regs_buff[79] = adapter->stats.prc1522;
563 	regs_buff[80] = adapter->stats.gprc;
564 	regs_buff[81] = adapter->stats.bprc;
565 	regs_buff[82] = adapter->stats.mprc;
566 	regs_buff[83] = adapter->stats.gptc;
567 	regs_buff[84] = adapter->stats.gorc;
568 	regs_buff[86] = adapter->stats.gotc;
569 	regs_buff[88] = adapter->stats.rnbc;
570 	regs_buff[89] = adapter->stats.ruc;
571 	regs_buff[90] = adapter->stats.rfc;
572 	regs_buff[91] = adapter->stats.roc;
573 	regs_buff[92] = adapter->stats.rjc;
574 	regs_buff[93] = adapter->stats.mgprc;
575 	regs_buff[94] = adapter->stats.mgpdc;
576 	regs_buff[95] = adapter->stats.mgptc;
577 	regs_buff[96] = adapter->stats.tor;
578 	regs_buff[98] = adapter->stats.tot;
579 	regs_buff[100] = adapter->stats.tpr;
580 	regs_buff[101] = adapter->stats.tpt;
581 	regs_buff[102] = adapter->stats.ptc64;
582 	regs_buff[103] = adapter->stats.ptc127;
583 	regs_buff[104] = adapter->stats.ptc255;
584 	regs_buff[105] = adapter->stats.ptc511;
585 	regs_buff[106] = adapter->stats.ptc1023;
586 	regs_buff[107] = adapter->stats.ptc1522;
587 	regs_buff[108] = adapter->stats.mptc;
588 	regs_buff[109] = adapter->stats.bptc;
589 	regs_buff[110] = adapter->stats.tsctc;
590 	regs_buff[111] = adapter->stats.iac;
591 	regs_buff[112] = adapter->stats.rpthc;
592 	regs_buff[113] = adapter->stats.hgptc;
593 	regs_buff[114] = adapter->stats.hgorc;
594 	regs_buff[116] = adapter->stats.hgotc;
595 	regs_buff[118] = adapter->stats.lenerrs;
596 	regs_buff[119] = adapter->stats.scvpc;
597 	regs_buff[120] = adapter->stats.hrmpc;
598 
599 	for (i = 0; i < 4; i++)
600 		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
601 	for (i = 0; i < 4; i++)
602 		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
603 	for (i = 0; i < 4; i++)
604 		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
605 	for (i = 0; i < 4; i++)
606 		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
607 	for (i = 0; i < 4; i++)
608 		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
609 	for (i = 0; i < 4; i++)
610 		regs_buff[141 + i] = rd32(E1000_RDH(i));
611 	for (i = 0; i < 4; i++)
612 		regs_buff[145 + i] = rd32(E1000_RDT(i));
613 	for (i = 0; i < 4; i++)
614 		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
615 
616 	for (i = 0; i < 10; i++)
617 		regs_buff[153 + i] = rd32(E1000_EITR(i));
618 	for (i = 0; i < 8; i++)
619 		regs_buff[163 + i] = rd32(E1000_IMIR(i));
620 	for (i = 0; i < 8; i++)
621 		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
622 	for (i = 0; i < 16; i++)
623 		regs_buff[179 + i] = rd32(E1000_RAL(i));
624 	for (i = 0; i < 16; i++)
625 		regs_buff[195 + i] = rd32(E1000_RAH(i));
626 
627 	for (i = 0; i < 4; i++)
628 		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
629 	for (i = 0; i < 4; i++)
630 		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
631 	for (i = 0; i < 4; i++)
632 		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
633 	for (i = 0; i < 4; i++)
634 		regs_buff[223 + i] = rd32(E1000_TDH(i));
635 	for (i = 0; i < 4; i++)
636 		regs_buff[227 + i] = rd32(E1000_TDT(i));
637 	for (i = 0; i < 4; i++)
638 		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
639 	for (i = 0; i < 4; i++)
640 		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
641 	for (i = 0; i < 4; i++)
642 		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
643 	for (i = 0; i < 4; i++)
644 		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
645 
646 	for (i = 0; i < 4; i++)
647 		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
648 	for (i = 0; i < 4; i++)
649 		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
650 	for (i = 0; i < 32; i++)
651 		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
652 	for (i = 0; i < 128; i++)
653 		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
654 	for (i = 0; i < 128; i++)
655 		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
656 	for (i = 0; i < 4; i++)
657 		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
658 
659 	regs_buff[547] = rd32(E1000_TDFH);
660 	regs_buff[548] = rd32(E1000_TDFT);
661 	regs_buff[549] = rd32(E1000_TDFHS);
662 	regs_buff[550] = rd32(E1000_TDFPC);
663 
664 	if (hw->mac.type > e1000_82580) {
665 		regs_buff[551] = adapter->stats.o2bgptc;
666 		regs_buff[552] = adapter->stats.b2ospc;
667 		regs_buff[553] = adapter->stats.o2bspc;
668 		regs_buff[554] = adapter->stats.b2ogprc;
669 	}
670 
671 	if (hw->mac.type != e1000_82576)
672 		return;
673 	for (i = 0; i < 12; i++)
674 		regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
675 	for (i = 0; i < 4; i++)
676 		regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
677 	for (i = 0; i < 12; i++)
678 		regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
679 	for (i = 0; i < 12; i++)
680 		regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
681 	for (i = 0; i < 12; i++)
682 		regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
683 	for (i = 0; i < 12; i++)
684 		regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
685 	for (i = 0; i < 12; i++)
686 		regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
687 	for (i = 0; i < 12; i++)
688 		regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
689 
690 	for (i = 0; i < 12; i++)
691 		regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
692 	for (i = 0; i < 12; i++)
693 		regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
694 	for (i = 0; i < 12; i++)
695 		regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
696 	for (i = 0; i < 12; i++)
697 		regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
698 	for (i = 0; i < 12; i++)
699 		regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
700 	for (i = 0; i < 12; i++)
701 		regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
702 	for (i = 0; i < 12; i++)
703 		regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
704 	for (i = 0; i < 12; i++)
705 		regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
706 }
707 
708 static int igb_get_eeprom_len(struct net_device *netdev)
709 {
710 	struct igb_adapter *adapter = netdev_priv(netdev);
711 	return adapter->hw.nvm.word_size * 2;
712 }
713 
714 static int igb_get_eeprom(struct net_device *netdev,
715 			  struct ethtool_eeprom *eeprom, u8 *bytes)
716 {
717 	struct igb_adapter *adapter = netdev_priv(netdev);
718 	struct e1000_hw *hw = &adapter->hw;
719 	u16 *eeprom_buff;
720 	int first_word, last_word;
721 	int ret_val = 0;
722 	u16 i;
723 
724 	if (eeprom->len == 0)
725 		return -EINVAL;
726 
727 	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
728 
729 	first_word = eeprom->offset >> 1;
730 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
731 
732 	eeprom_buff = kmalloc(sizeof(u16) *
733 			(last_word - first_word + 1), GFP_KERNEL);
734 	if (!eeprom_buff)
735 		return -ENOMEM;
736 
737 	if (hw->nvm.type == e1000_nvm_eeprom_spi)
738 		ret_val = hw->nvm.ops.read(hw, first_word,
739 					   last_word - first_word + 1,
740 					   eeprom_buff);
741 	else {
742 		for (i = 0; i < last_word - first_word + 1; i++) {
743 			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
744 						   &eeprom_buff[i]);
745 			if (ret_val)
746 				break;
747 		}
748 	}
749 
750 	/* Device's eeprom is always little-endian, word addressable */
751 	for (i = 0; i < last_word - first_word + 1; i++)
752 		le16_to_cpus(&eeprom_buff[i]);
753 
754 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
755 			eeprom->len);
756 	kfree(eeprom_buff);
757 
758 	return ret_val;
759 }
760 
761 static int igb_set_eeprom(struct net_device *netdev,
762 			  struct ethtool_eeprom *eeprom, u8 *bytes)
763 {
764 	struct igb_adapter *adapter = netdev_priv(netdev);
765 	struct e1000_hw *hw = &adapter->hw;
766 	u16 *eeprom_buff;
767 	void *ptr;
768 	int max_len, first_word, last_word, ret_val = 0;
769 	u16 i;
770 
771 	if (eeprom->len == 0)
772 		return -EOPNOTSUPP;
773 
774 	if (hw->mac.type == e1000_i211)
775 		return -EOPNOTSUPP;
776 
777 	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
778 		return -EFAULT;
779 
780 	max_len = hw->nvm.word_size * 2;
781 
782 	first_word = eeprom->offset >> 1;
783 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
784 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
785 	if (!eeprom_buff)
786 		return -ENOMEM;
787 
788 	ptr = (void *)eeprom_buff;
789 
790 	if (eeprom->offset & 1) {
791 		/* need read/modify/write of first changed EEPROM word
792 		 * only the second byte of the word is being modified
793 		 */
794 		ret_val = hw->nvm.ops.read(hw, first_word, 1,
795 					    &eeprom_buff[0]);
796 		ptr++;
797 	}
798 	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
799 		/* need read/modify/write of last changed EEPROM word
800 		 * only the first byte of the word is being modified
801 		 */
802 		ret_val = hw->nvm.ops.read(hw, last_word, 1,
803 				   &eeprom_buff[last_word - first_word]);
804 	}
805 
806 	/* Device's eeprom is always little-endian, word addressable */
807 	for (i = 0; i < last_word - first_word + 1; i++)
808 		le16_to_cpus(&eeprom_buff[i]);
809 
810 	memcpy(ptr, bytes, eeprom->len);
811 
812 	for (i = 0; i < last_word - first_word + 1; i++)
813 		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
814 
815 	ret_val = hw->nvm.ops.write(hw, first_word,
816 				    last_word - first_word + 1, eeprom_buff);
817 
818 	/* Update the checksum if nvm write succeeded */
819 	if (ret_val == 0)
820 		hw->nvm.ops.update(hw);
821 
822 	igb_set_fw_version(adapter);
823 	kfree(eeprom_buff);
824 	return ret_val;
825 }
826 
827 static void igb_get_drvinfo(struct net_device *netdev,
828 			    struct ethtool_drvinfo *drvinfo)
829 {
830 	struct igb_adapter *adapter = netdev_priv(netdev);
831 
832 	strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
833 	strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
834 
835 	/* EEPROM image version # is reported as firmware version # for
836 	 * 82575 controllers
837 	 */
838 	strlcpy(drvinfo->fw_version, adapter->fw_version,
839 		sizeof(drvinfo->fw_version));
840 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
841 		sizeof(drvinfo->bus_info));
842 	drvinfo->n_stats = IGB_STATS_LEN;
843 	drvinfo->testinfo_len = IGB_TEST_LEN;
844 	drvinfo->regdump_len = igb_get_regs_len(netdev);
845 	drvinfo->eedump_len = igb_get_eeprom_len(netdev);
846 }
847 
848 static void igb_get_ringparam(struct net_device *netdev,
849 			      struct ethtool_ringparam *ring)
850 {
851 	struct igb_adapter *adapter = netdev_priv(netdev);
852 
853 	ring->rx_max_pending = IGB_MAX_RXD;
854 	ring->tx_max_pending = IGB_MAX_TXD;
855 	ring->rx_pending = adapter->rx_ring_count;
856 	ring->tx_pending = adapter->tx_ring_count;
857 }
858 
859 static int igb_set_ringparam(struct net_device *netdev,
860 			     struct ethtool_ringparam *ring)
861 {
862 	struct igb_adapter *adapter = netdev_priv(netdev);
863 	struct igb_ring *temp_ring;
864 	int i, err = 0;
865 	u16 new_rx_count, new_tx_count;
866 
867 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
868 		return -EINVAL;
869 
870 	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
871 	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
872 	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
873 
874 	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
875 	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
876 	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
877 
878 	if ((new_tx_count == adapter->tx_ring_count) &&
879 	    (new_rx_count == adapter->rx_ring_count)) {
880 		/* nothing to do */
881 		return 0;
882 	}
883 
884 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
885 		msleep(1);
886 
887 	if (!netif_running(adapter->netdev)) {
888 		for (i = 0; i < adapter->num_tx_queues; i++)
889 			adapter->tx_ring[i]->count = new_tx_count;
890 		for (i = 0; i < adapter->num_rx_queues; i++)
891 			adapter->rx_ring[i]->count = new_rx_count;
892 		adapter->tx_ring_count = new_tx_count;
893 		adapter->rx_ring_count = new_rx_count;
894 		goto clear_reset;
895 	}
896 
897 	if (adapter->num_tx_queues > adapter->num_rx_queues)
898 		temp_ring = vmalloc(adapter->num_tx_queues *
899 				    sizeof(struct igb_ring));
900 	else
901 		temp_ring = vmalloc(adapter->num_rx_queues *
902 				    sizeof(struct igb_ring));
903 
904 	if (!temp_ring) {
905 		err = -ENOMEM;
906 		goto clear_reset;
907 	}
908 
909 	igb_down(adapter);
910 
911 	/* We can't just free everything and then setup again,
912 	 * because the ISRs in MSI-X mode get passed pointers
913 	 * to the Tx and Rx ring structs.
914 	 */
915 	if (new_tx_count != adapter->tx_ring_count) {
916 		for (i = 0; i < adapter->num_tx_queues; i++) {
917 			memcpy(&temp_ring[i], adapter->tx_ring[i],
918 			       sizeof(struct igb_ring));
919 
920 			temp_ring[i].count = new_tx_count;
921 			err = igb_setup_tx_resources(&temp_ring[i]);
922 			if (err) {
923 				while (i) {
924 					i--;
925 					igb_free_tx_resources(&temp_ring[i]);
926 				}
927 				goto err_setup;
928 			}
929 		}
930 
931 		for (i = 0; i < adapter->num_tx_queues; i++) {
932 			igb_free_tx_resources(adapter->tx_ring[i]);
933 
934 			memcpy(adapter->tx_ring[i], &temp_ring[i],
935 			       sizeof(struct igb_ring));
936 		}
937 
938 		adapter->tx_ring_count = new_tx_count;
939 	}
940 
941 	if (new_rx_count != adapter->rx_ring_count) {
942 		for (i = 0; i < adapter->num_rx_queues; i++) {
943 			memcpy(&temp_ring[i], adapter->rx_ring[i],
944 			       sizeof(struct igb_ring));
945 
946 			temp_ring[i].count = new_rx_count;
947 			err = igb_setup_rx_resources(&temp_ring[i]);
948 			if (err) {
949 				while (i) {
950 					i--;
951 					igb_free_rx_resources(&temp_ring[i]);
952 				}
953 				goto err_setup;
954 			}
955 
956 		}
957 
958 		for (i = 0; i < adapter->num_rx_queues; i++) {
959 			igb_free_rx_resources(adapter->rx_ring[i]);
960 
961 			memcpy(adapter->rx_ring[i], &temp_ring[i],
962 			       sizeof(struct igb_ring));
963 		}
964 
965 		adapter->rx_ring_count = new_rx_count;
966 	}
967 err_setup:
968 	igb_up(adapter);
969 	vfree(temp_ring);
970 clear_reset:
971 	clear_bit(__IGB_RESETTING, &adapter->state);
972 	return err;
973 }
974 
975 /* ethtool register test data */
976 struct igb_reg_test {
977 	u16 reg;
978 	u16 reg_offset;
979 	u16 array_len;
980 	u16 test_type;
981 	u32 mask;
982 	u32 write;
983 };
984 
985 /* In the hardware, registers are laid out either singly, in arrays
986  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
987  * most tests take place on arrays or single registers (handled
988  * as a single-element array) and special-case the tables.
989  * Table tests are always pattern tests.
990  *
991  * We also make provision for some required setup steps by specifying
992  * registers to be written without any read-back testing.
993  */
994 
995 #define PATTERN_TEST	1
996 #define SET_READ_TEST	2
997 #define WRITE_NO_TEST	3
998 #define TABLE32_TEST	4
999 #define TABLE64_TEST_LO	5
1000 #define TABLE64_TEST_HI	6
1001 
1002 /* i210 reg test */
1003 static struct igb_reg_test reg_test_i210[] = {
1004 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1005 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1006 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1007 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1008 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1009 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1010 	/* RDH is read-only for i210, only test RDT. */
1011 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1012 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1013 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1014 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1015 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1016 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1017 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1018 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1019 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1020 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1021 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1022 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1023 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1024 						0xFFFFFFFF, 0xFFFFFFFF },
1025 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1026 						0x900FFFFF, 0xFFFFFFFF },
1027 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1028 						0xFFFFFFFF, 0xFFFFFFFF },
1029 	{ 0, 0, 0, 0, 0 }
1030 };
1031 
1032 /* i350 reg test */
1033 static struct igb_reg_test reg_test_i350[] = {
1034 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1035 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1036 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1037 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1038 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1039 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1040 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1041 	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1042 	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1043 	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1044 	/* RDH is read-only for i350, only test RDT. */
1045 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1046 	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1047 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1048 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1049 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1050 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1051 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1052 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1053 	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1054 	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1055 	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1056 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1057 	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1058 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1059 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1060 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1061 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1062 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1063 						0xFFFFFFFF, 0xFFFFFFFF },
1064 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1065 						0xC3FFFFFF, 0xFFFFFFFF },
1066 	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
1067 						0xFFFFFFFF, 0xFFFFFFFF },
1068 	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
1069 						0xC3FFFFFF, 0xFFFFFFFF },
1070 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1071 						0xFFFFFFFF, 0xFFFFFFFF },
1072 	{ 0, 0, 0, 0 }
1073 };
1074 
1075 /* 82580 reg test */
1076 static struct igb_reg_test reg_test_82580[] = {
1077 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1078 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1079 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1080 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1081 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1082 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1083 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1084 	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1085 	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1086 	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1087 	/* RDH is read-only for 82580, only test RDT. */
1088 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1089 	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1090 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1091 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1092 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1093 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1094 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1095 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1096 	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1097 	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1098 	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1099 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1100 	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1101 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1102 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1103 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1104 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1105 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1106 						0xFFFFFFFF, 0xFFFFFFFF },
1107 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1108 						0x83FFFFFF, 0xFFFFFFFF },
1109 	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
1110 						0xFFFFFFFF, 0xFFFFFFFF },
1111 	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
1112 						0x83FFFFFF, 0xFFFFFFFF },
1113 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1114 						0xFFFFFFFF, 0xFFFFFFFF },
1115 	{ 0, 0, 0, 0 }
1116 };
1117 
1118 /* 82576 reg test */
1119 static struct igb_reg_test reg_test_82576[] = {
1120 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1121 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1122 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1123 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1124 	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1125 	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1126 	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1127 	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1128 	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1129 	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1130 	/* Enable all RX queues before testing. */
1131 	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1132 	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1133 	/* RDH is read-only for 82576, only test RDT. */
1134 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1135 	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1136 	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1137 	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1138 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1139 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1140 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1141 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1142 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1143 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1144 	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1145 	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1146 	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1147 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1148 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1149 	{ E1000_RCTL, 	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1150 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1151 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1152 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1153 	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1154 	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1155 	{ E1000_MTA,	   0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1156 	{ 0, 0, 0, 0 }
1157 };
1158 
1159 /* 82575 register test */
1160 static struct igb_reg_test reg_test_82575[] = {
1161 	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1162 	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1163 	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1164 	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1165 	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1166 	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1167 	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1168 	/* Enable all four RX queues before testing. */
1169 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1170 	/* RDH is read-only for 82575, only test RDT. */
1171 	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1172 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1173 	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1174 	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1175 	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1176 	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1177 	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1178 	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1179 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1180 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1181 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1182 	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1183 	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1184 	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1185 	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1186 	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1187 	{ 0, 0, 0, 0 }
1188 };
1189 
1190 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1191 			     int reg, u32 mask, u32 write)
1192 {
1193 	struct e1000_hw *hw = &adapter->hw;
1194 	u32 pat, val;
1195 	static const u32 _test[] =
1196 		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1197 	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1198 		wr32(reg, (_test[pat] & write));
1199 		val = rd32(reg) & mask;
1200 		if (val != (_test[pat] & write & mask)) {
1201 			dev_err(&adapter->pdev->dev,
1202 				"pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1203 				reg, val, (_test[pat] & write & mask));
1204 			*data = reg;
1205 			return 1;
1206 		}
1207 	}
1208 
1209 	return 0;
1210 }
1211 
1212 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1213 			      int reg, u32 mask, u32 write)
1214 {
1215 	struct e1000_hw *hw = &adapter->hw;
1216 	u32 val;
1217 	wr32(reg, write & mask);
1218 	val = rd32(reg);
1219 	if ((write & mask) != (val & mask)) {
1220 		dev_err(&adapter->pdev->dev,
1221 			"set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", reg,
1222 			(val & mask), (write & mask));
1223 		*data = reg;
1224 		return 1;
1225 	}
1226 
1227 	return 0;
1228 }
1229 
1230 #define REG_PATTERN_TEST(reg, mask, write) \
1231 	do { \
1232 		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1233 			return 1; \
1234 	} while (0)
1235 
1236 #define REG_SET_AND_CHECK(reg, mask, write) \
1237 	do { \
1238 		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1239 			return 1; \
1240 	} while (0)
1241 
1242 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1243 {
1244 	struct e1000_hw *hw = &adapter->hw;
1245 	struct igb_reg_test *test;
1246 	u32 value, before, after;
1247 	u32 i, toggle;
1248 
1249 	switch (adapter->hw.mac.type) {
1250 	case e1000_i350:
1251 	case e1000_i354:
1252 		test = reg_test_i350;
1253 		toggle = 0x7FEFF3FF;
1254 		break;
1255 	case e1000_i210:
1256 	case e1000_i211:
1257 		test = reg_test_i210;
1258 		toggle = 0x7FEFF3FF;
1259 		break;
1260 	case e1000_82580:
1261 		test = reg_test_82580;
1262 		toggle = 0x7FEFF3FF;
1263 		break;
1264 	case e1000_82576:
1265 		test = reg_test_82576;
1266 		toggle = 0x7FFFF3FF;
1267 		break;
1268 	default:
1269 		test = reg_test_82575;
1270 		toggle = 0x7FFFF3FF;
1271 		break;
1272 	}
1273 
1274 	/* Because the status register is such a special case,
1275 	 * we handle it separately from the rest of the register
1276 	 * tests.  Some bits are read-only, some toggle, and some
1277 	 * are writable on newer MACs.
1278 	 */
1279 	before = rd32(E1000_STATUS);
1280 	value = (rd32(E1000_STATUS) & toggle);
1281 	wr32(E1000_STATUS, toggle);
1282 	after = rd32(E1000_STATUS) & toggle;
1283 	if (value != after) {
1284 		dev_err(&adapter->pdev->dev,
1285 			"failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1286 			after, value);
1287 		*data = 1;
1288 		return 1;
1289 	}
1290 	/* restore previous status */
1291 	wr32(E1000_STATUS, before);
1292 
1293 	/* Perform the remainder of the register test, looping through
1294 	 * the test table until we either fail or reach the null entry.
1295 	 */
1296 	while (test->reg) {
1297 		for (i = 0; i < test->array_len; i++) {
1298 			switch (test->test_type) {
1299 			case PATTERN_TEST:
1300 				REG_PATTERN_TEST(test->reg +
1301 						(i * test->reg_offset),
1302 						test->mask,
1303 						test->write);
1304 				break;
1305 			case SET_READ_TEST:
1306 				REG_SET_AND_CHECK(test->reg +
1307 						(i * test->reg_offset),
1308 						test->mask,
1309 						test->write);
1310 				break;
1311 			case WRITE_NO_TEST:
1312 				writel(test->write,
1313 				    (adapter->hw.hw_addr + test->reg)
1314 					+ (i * test->reg_offset));
1315 				break;
1316 			case TABLE32_TEST:
1317 				REG_PATTERN_TEST(test->reg + (i * 4),
1318 						test->mask,
1319 						test->write);
1320 				break;
1321 			case TABLE64_TEST_LO:
1322 				REG_PATTERN_TEST(test->reg + (i * 8),
1323 						test->mask,
1324 						test->write);
1325 				break;
1326 			case TABLE64_TEST_HI:
1327 				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1328 						test->mask,
1329 						test->write);
1330 				break;
1331 			}
1332 		}
1333 		test++;
1334 	}
1335 
1336 	*data = 0;
1337 	return 0;
1338 }
1339 
1340 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1341 {
1342 	struct e1000_hw *hw = &adapter->hw;
1343 
1344 	*data = 0;
1345 
1346 	/* Validate eeprom on all parts but flashless */
1347 	switch (hw->mac.type) {
1348 	case e1000_i210:
1349 	case e1000_i211:
1350 		if (igb_get_flash_presence_i210(hw)) {
1351 			if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1352 				*data = 2;
1353 		}
1354 		break;
1355 	default:
1356 		if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1357 			*data = 2;
1358 		break;
1359 	}
1360 
1361 	return *data;
1362 }
1363 
1364 static irqreturn_t igb_test_intr(int irq, void *data)
1365 {
1366 	struct igb_adapter *adapter = (struct igb_adapter *) data;
1367 	struct e1000_hw *hw = &adapter->hw;
1368 
1369 	adapter->test_icr |= rd32(E1000_ICR);
1370 
1371 	return IRQ_HANDLED;
1372 }
1373 
1374 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1375 {
1376 	struct e1000_hw *hw = &adapter->hw;
1377 	struct net_device *netdev = adapter->netdev;
1378 	u32 mask, ics_mask, i = 0, shared_int = true;
1379 	u32 irq = adapter->pdev->irq;
1380 
1381 	*data = 0;
1382 
1383 	/* Hook up test interrupt handler just for this test */
1384 	if (adapter->msix_entries) {
1385 		if (request_irq(adapter->msix_entries[0].vector,
1386 		                igb_test_intr, 0, netdev->name, adapter)) {
1387 			*data = 1;
1388 			return -1;
1389 		}
1390 	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1391 		shared_int = false;
1392 		if (request_irq(irq,
1393 		                igb_test_intr, 0, netdev->name, adapter)) {
1394 			*data = 1;
1395 			return -1;
1396 		}
1397 	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1398 				netdev->name, adapter)) {
1399 		shared_int = false;
1400 	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1401 		 netdev->name, adapter)) {
1402 		*data = 1;
1403 		return -1;
1404 	}
1405 	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1406 		(shared_int ? "shared" : "unshared"));
1407 
1408 	/* Disable all the interrupts */
1409 	wr32(E1000_IMC, ~0);
1410 	wrfl();
1411 	msleep(10);
1412 
1413 	/* Define all writable bits for ICS */
1414 	switch (hw->mac.type) {
1415 	case e1000_82575:
1416 		ics_mask = 0x37F47EDD;
1417 		break;
1418 	case e1000_82576:
1419 		ics_mask = 0x77D4FBFD;
1420 		break;
1421 	case e1000_82580:
1422 		ics_mask = 0x77DCFED5;
1423 		break;
1424 	case e1000_i350:
1425 	case e1000_i354:
1426 	case e1000_i210:
1427 	case e1000_i211:
1428 		ics_mask = 0x77DCFED5;
1429 		break;
1430 	default:
1431 		ics_mask = 0x7FFFFFFF;
1432 		break;
1433 	}
1434 
1435 	/* Test each interrupt */
1436 	for (; i < 31; i++) {
1437 		/* Interrupt to test */
1438 		mask = 1 << i;
1439 
1440 		if (!(mask & ics_mask))
1441 			continue;
1442 
1443 		if (!shared_int) {
1444 			/* Disable the interrupt to be reported in
1445 			 * the cause register and then force the same
1446 			 * interrupt and see if one gets posted.  If
1447 			 * an interrupt was posted to the bus, the
1448 			 * test failed.
1449 			 */
1450 			adapter->test_icr = 0;
1451 
1452 			/* Flush any pending interrupts */
1453 			wr32(E1000_ICR, ~0);
1454 
1455 			wr32(E1000_IMC, mask);
1456 			wr32(E1000_ICS, mask);
1457 			wrfl();
1458 			msleep(10);
1459 
1460 			if (adapter->test_icr & mask) {
1461 				*data = 3;
1462 				break;
1463 			}
1464 		}
1465 
1466 		/* Enable the interrupt to be reported in
1467 		 * the cause register and then force the same
1468 		 * interrupt and see if one gets posted.  If
1469 		 * an interrupt was not posted to the bus, the
1470 		 * test failed.
1471 		 */
1472 		adapter->test_icr = 0;
1473 
1474 		/* Flush any pending interrupts */
1475 		wr32(E1000_ICR, ~0);
1476 
1477 		wr32(E1000_IMS, mask);
1478 		wr32(E1000_ICS, mask);
1479 		wrfl();
1480 		msleep(10);
1481 
1482 		if (!(adapter->test_icr & mask)) {
1483 			*data = 4;
1484 			break;
1485 		}
1486 
1487 		if (!shared_int) {
1488 			/* Disable the other interrupts to be reported in
1489 			 * the cause register and then force the other
1490 			 * interrupts and see if any get posted.  If
1491 			 * an interrupt was posted to the bus, the
1492 			 * test failed.
1493 			 */
1494 			adapter->test_icr = 0;
1495 
1496 			/* Flush any pending interrupts */
1497 			wr32(E1000_ICR, ~0);
1498 
1499 			wr32(E1000_IMC, ~mask);
1500 			wr32(E1000_ICS, ~mask);
1501 			wrfl();
1502 			msleep(10);
1503 
1504 			if (adapter->test_icr & mask) {
1505 				*data = 5;
1506 				break;
1507 			}
1508 		}
1509 	}
1510 
1511 	/* Disable all the interrupts */
1512 	wr32(E1000_IMC, ~0);
1513 	wrfl();
1514 	msleep(10);
1515 
1516 	/* Unhook test interrupt handler */
1517 	if (adapter->msix_entries)
1518 		free_irq(adapter->msix_entries[0].vector, adapter);
1519 	else
1520 		free_irq(irq, adapter);
1521 
1522 	return *data;
1523 }
1524 
1525 static void igb_free_desc_rings(struct igb_adapter *adapter)
1526 {
1527 	igb_free_tx_resources(&adapter->test_tx_ring);
1528 	igb_free_rx_resources(&adapter->test_rx_ring);
1529 }
1530 
1531 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1532 {
1533 	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1534 	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1535 	struct e1000_hw *hw = &adapter->hw;
1536 	int ret_val;
1537 
1538 	/* Setup Tx descriptor ring and Tx buffers */
1539 	tx_ring->count = IGB_DEFAULT_TXD;
1540 	tx_ring->dev = &adapter->pdev->dev;
1541 	tx_ring->netdev = adapter->netdev;
1542 	tx_ring->reg_idx = adapter->vfs_allocated_count;
1543 
1544 	if (igb_setup_tx_resources(tx_ring)) {
1545 		ret_val = 1;
1546 		goto err_nomem;
1547 	}
1548 
1549 	igb_setup_tctl(adapter);
1550 	igb_configure_tx_ring(adapter, tx_ring);
1551 
1552 	/* Setup Rx descriptor ring and Rx buffers */
1553 	rx_ring->count = IGB_DEFAULT_RXD;
1554 	rx_ring->dev = &adapter->pdev->dev;
1555 	rx_ring->netdev = adapter->netdev;
1556 	rx_ring->reg_idx = adapter->vfs_allocated_count;
1557 
1558 	if (igb_setup_rx_resources(rx_ring)) {
1559 		ret_val = 3;
1560 		goto err_nomem;
1561 	}
1562 
1563 	/* set the default queue to queue 0 of PF */
1564 	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1565 
1566 	/* enable receive ring */
1567 	igb_setup_rctl(adapter);
1568 	igb_configure_rx_ring(adapter, rx_ring);
1569 
1570 	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1571 
1572 	return 0;
1573 
1574 err_nomem:
1575 	igb_free_desc_rings(adapter);
1576 	return ret_val;
1577 }
1578 
1579 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1580 {
1581 	struct e1000_hw *hw = &adapter->hw;
1582 
1583 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1584 	igb_write_phy_reg(hw, 29, 0x001F);
1585 	igb_write_phy_reg(hw, 30, 0x8FFC);
1586 	igb_write_phy_reg(hw, 29, 0x001A);
1587 	igb_write_phy_reg(hw, 30, 0x8FF0);
1588 }
1589 
1590 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1591 {
1592 	struct e1000_hw *hw = &adapter->hw;
1593 	u32 ctrl_reg = 0;
1594 
1595 	hw->mac.autoneg = false;
1596 
1597 	if (hw->phy.type == e1000_phy_m88) {
1598 		if (hw->phy.id != I210_I_PHY_ID) {
1599 			/* Auto-MDI/MDIX Off */
1600 			igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1601 			/* reset to update Auto-MDI/MDIX */
1602 			igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1603 			/* autoneg off */
1604 			igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1605 		} else {
1606 			/* force 1000, set loopback  */
1607 			igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1608 			igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1609 		}
1610 	}
1611 
1612 	/* add small delay to avoid loopback test failure */
1613 	msleep(50);
1614 
1615 	/* force 1000, set loopback */
1616 	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1617 
1618 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1619 	ctrl_reg = rd32(E1000_CTRL);
1620 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1621 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1622 		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1623 		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1624 		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1625 		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1626 
1627 	if (hw->phy.type == e1000_phy_m88)
1628 		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1629 
1630 	wr32(E1000_CTRL, ctrl_reg);
1631 
1632 	/* Disable the receiver on the PHY so when a cable is plugged in, the
1633 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1634 	 */
1635 	if (hw->phy.type == e1000_phy_m88)
1636 		igb_phy_disable_receiver(adapter);
1637 
1638 	mdelay(500);
1639 	return 0;
1640 }
1641 
1642 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1643 {
1644 	return igb_integrated_phy_loopback(adapter);
1645 }
1646 
1647 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1648 {
1649 	struct e1000_hw *hw = &adapter->hw;
1650 	u32 reg;
1651 
1652 	reg = rd32(E1000_CTRL_EXT);
1653 
1654 	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1655 	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1656 		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1657 		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1658 		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1659 		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1660 
1661 			/* Enable DH89xxCC MPHY for near end loopback */
1662 			reg = rd32(E1000_MPHY_ADDR_CTL);
1663 			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1664 			E1000_MPHY_PCS_CLK_REG_OFFSET;
1665 			wr32(E1000_MPHY_ADDR_CTL, reg);
1666 
1667 			reg = rd32(E1000_MPHY_DATA);
1668 			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1669 			wr32(E1000_MPHY_DATA, reg);
1670 		}
1671 
1672 		reg = rd32(E1000_RCTL);
1673 		reg |= E1000_RCTL_LBM_TCVR;
1674 		wr32(E1000_RCTL, reg);
1675 
1676 		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1677 
1678 		reg = rd32(E1000_CTRL);
1679 		reg &= ~(E1000_CTRL_RFCE |
1680 			 E1000_CTRL_TFCE |
1681 			 E1000_CTRL_LRST);
1682 		reg |= E1000_CTRL_SLU |
1683 		       E1000_CTRL_FD;
1684 		wr32(E1000_CTRL, reg);
1685 
1686 		/* Unset switch control to serdes energy detect */
1687 		reg = rd32(E1000_CONNSW);
1688 		reg &= ~E1000_CONNSW_ENRGSRC;
1689 		wr32(E1000_CONNSW, reg);
1690 
1691 		/* Unset sigdetect for SERDES loopback on
1692 		 * 82580 and newer devices.
1693 		 */
1694 		if (hw->mac.type >= e1000_82580) {
1695 			reg = rd32(E1000_PCS_CFG0);
1696 			reg |= E1000_PCS_CFG_IGN_SD;
1697 			wr32(E1000_PCS_CFG0, reg);
1698 		}
1699 
1700 		/* Set PCS register for forced speed */
1701 		reg = rd32(E1000_PCS_LCTL);
1702 		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1703 		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1704 		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1705 		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1706 		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1707 		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1708 		wr32(E1000_PCS_LCTL, reg);
1709 
1710 		return 0;
1711 	}
1712 
1713 	return igb_set_phy_loopback(adapter);
1714 }
1715 
1716 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1717 {
1718 	struct e1000_hw *hw = &adapter->hw;
1719 	u32 rctl;
1720 	u16 phy_reg;
1721 
1722 	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1723 	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1724 	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1725 	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1726 		u32 reg;
1727 
1728 		/* Disable near end loopback on DH89xxCC */
1729 		reg = rd32(E1000_MPHY_ADDR_CTL);
1730 		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1731 		E1000_MPHY_PCS_CLK_REG_OFFSET;
1732 		wr32(E1000_MPHY_ADDR_CTL, reg);
1733 
1734 		reg = rd32(E1000_MPHY_DATA);
1735 		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1736 		wr32(E1000_MPHY_DATA, reg);
1737 	}
1738 
1739 	rctl = rd32(E1000_RCTL);
1740 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1741 	wr32(E1000_RCTL, rctl);
1742 
1743 	hw->mac.autoneg = true;
1744 	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1745 	if (phy_reg & MII_CR_LOOPBACK) {
1746 		phy_reg &= ~MII_CR_LOOPBACK;
1747 		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1748 		igb_phy_sw_reset(hw);
1749 	}
1750 }
1751 
1752 static void igb_create_lbtest_frame(struct sk_buff *skb,
1753 				    unsigned int frame_size)
1754 {
1755 	memset(skb->data, 0xFF, frame_size);
1756 	frame_size /= 2;
1757 	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1758 	memset(&skb->data[frame_size + 10], 0xBE, 1);
1759 	memset(&skb->data[frame_size + 12], 0xAF, 1);
1760 }
1761 
1762 static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1763 				  unsigned int frame_size)
1764 {
1765 	unsigned char *data;
1766 	bool match = true;
1767 
1768 	frame_size >>= 1;
1769 
1770 	data = kmap(rx_buffer->page);
1771 
1772 	if (data[3] != 0xFF ||
1773 	    data[frame_size + 10] != 0xBE ||
1774 	    data[frame_size + 12] != 0xAF)
1775 		match = false;
1776 
1777 	kunmap(rx_buffer->page);
1778 
1779 	return match;
1780 }
1781 
1782 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1783 				struct igb_ring *tx_ring,
1784 				unsigned int size)
1785 {
1786 	union e1000_adv_rx_desc *rx_desc;
1787 	struct igb_rx_buffer *rx_buffer_info;
1788 	struct igb_tx_buffer *tx_buffer_info;
1789 	u16 rx_ntc, tx_ntc, count = 0;
1790 
1791 	/* initialize next to clean and descriptor values */
1792 	rx_ntc = rx_ring->next_to_clean;
1793 	tx_ntc = tx_ring->next_to_clean;
1794 	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1795 
1796 	while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1797 		/* check Rx buffer */
1798 		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1799 
1800 		/* sync Rx buffer for CPU read */
1801 		dma_sync_single_for_cpu(rx_ring->dev,
1802 					rx_buffer_info->dma,
1803 					IGB_RX_BUFSZ,
1804 					DMA_FROM_DEVICE);
1805 
1806 		/* verify contents of skb */
1807 		if (igb_check_lbtest_frame(rx_buffer_info, size))
1808 			count++;
1809 
1810 		/* sync Rx buffer for device write */
1811 		dma_sync_single_for_device(rx_ring->dev,
1812 					   rx_buffer_info->dma,
1813 					   IGB_RX_BUFSZ,
1814 					   DMA_FROM_DEVICE);
1815 
1816 		/* unmap buffer on Tx side */
1817 		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1818 		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1819 
1820 		/* increment Rx/Tx next to clean counters */
1821 		rx_ntc++;
1822 		if (rx_ntc == rx_ring->count)
1823 			rx_ntc = 0;
1824 		tx_ntc++;
1825 		if (tx_ntc == tx_ring->count)
1826 			tx_ntc = 0;
1827 
1828 		/* fetch next descriptor */
1829 		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1830 	}
1831 
1832 	netdev_tx_reset_queue(txring_txq(tx_ring));
1833 
1834 	/* re-map buffers to ring, store next to clean values */
1835 	igb_alloc_rx_buffers(rx_ring, count);
1836 	rx_ring->next_to_clean = rx_ntc;
1837 	tx_ring->next_to_clean = tx_ntc;
1838 
1839 	return count;
1840 }
1841 
1842 static int igb_run_loopback_test(struct igb_adapter *adapter)
1843 {
1844 	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1845 	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1846 	u16 i, j, lc, good_cnt;
1847 	int ret_val = 0;
1848 	unsigned int size = IGB_RX_HDR_LEN;
1849 	netdev_tx_t tx_ret_val;
1850 	struct sk_buff *skb;
1851 
1852 	/* allocate test skb */
1853 	skb = alloc_skb(size, GFP_KERNEL);
1854 	if (!skb)
1855 		return 11;
1856 
1857 	/* place data into test skb */
1858 	igb_create_lbtest_frame(skb, size);
1859 	skb_put(skb, size);
1860 
1861 	/* Calculate the loop count based on the largest descriptor ring
1862 	 * The idea is to wrap the largest ring a number of times using 64
1863 	 * send/receive pairs during each loop
1864 	 */
1865 
1866 	if (rx_ring->count <= tx_ring->count)
1867 		lc = ((tx_ring->count / 64) * 2) + 1;
1868 	else
1869 		lc = ((rx_ring->count / 64) * 2) + 1;
1870 
1871 	for (j = 0; j <= lc; j++) { /* loop count loop */
1872 		/* reset count of good packets */
1873 		good_cnt = 0;
1874 
1875 		/* place 64 packets on the transmit queue*/
1876 		for (i = 0; i < 64; i++) {
1877 			skb_get(skb);
1878 			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1879 			if (tx_ret_val == NETDEV_TX_OK)
1880 				good_cnt++;
1881 		}
1882 
1883 		if (good_cnt != 64) {
1884 			ret_val = 12;
1885 			break;
1886 		}
1887 
1888 		/* allow 200 milliseconds for packets to go from Tx to Rx */
1889 		msleep(200);
1890 
1891 		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1892 		if (good_cnt != 64) {
1893 			ret_val = 13;
1894 			break;
1895 		}
1896 	} /* end loop count loop */
1897 
1898 	/* free the original skb */
1899 	kfree_skb(skb);
1900 
1901 	return ret_val;
1902 }
1903 
1904 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1905 {
1906 	/* PHY loopback cannot be performed if SoL/IDER
1907 	 * sessions are active
1908 	 */
1909 	if (igb_check_reset_block(&adapter->hw)) {
1910 		dev_err(&adapter->pdev->dev,
1911 			"Cannot do PHY loopback test when SoL/IDER is active.\n");
1912 		*data = 0;
1913 		goto out;
1914 	}
1915 
1916 	if (adapter->hw.mac.type == e1000_i354) {
1917 		dev_info(&adapter->pdev->dev,
1918 			"Loopback test not supported on i354.\n");
1919 		*data = 0;
1920 		goto out;
1921 	}
1922 	*data = igb_setup_desc_rings(adapter);
1923 	if (*data)
1924 		goto out;
1925 	*data = igb_setup_loopback_test(adapter);
1926 	if (*data)
1927 		goto err_loopback;
1928 	*data = igb_run_loopback_test(adapter);
1929 	igb_loopback_cleanup(adapter);
1930 
1931 err_loopback:
1932 	igb_free_desc_rings(adapter);
1933 out:
1934 	return *data;
1935 }
1936 
1937 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1938 {
1939 	struct e1000_hw *hw = &adapter->hw;
1940 	*data = 0;
1941 	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1942 		int i = 0;
1943 		hw->mac.serdes_has_link = false;
1944 
1945 		/* On some blade server designs, link establishment
1946 		 * could take as long as 2-3 minutes
1947 		 */
1948 		do {
1949 			hw->mac.ops.check_for_link(&adapter->hw);
1950 			if (hw->mac.serdes_has_link)
1951 				return *data;
1952 			msleep(20);
1953 		} while (i++ < 3750);
1954 
1955 		*data = 1;
1956 	} else {
1957 		hw->mac.ops.check_for_link(&adapter->hw);
1958 		if (hw->mac.autoneg)
1959 			msleep(5000);
1960 
1961 		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1962 			*data = 1;
1963 	}
1964 	return *data;
1965 }
1966 
1967 static void igb_diag_test(struct net_device *netdev,
1968 			  struct ethtool_test *eth_test, u64 *data)
1969 {
1970 	struct igb_adapter *adapter = netdev_priv(netdev);
1971 	u16 autoneg_advertised;
1972 	u8 forced_speed_duplex, autoneg;
1973 	bool if_running = netif_running(netdev);
1974 
1975 	set_bit(__IGB_TESTING, &adapter->state);
1976 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1977 		/* Offline tests */
1978 
1979 		/* save speed, duplex, autoneg settings */
1980 		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1981 		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1982 		autoneg = adapter->hw.mac.autoneg;
1983 
1984 		dev_info(&adapter->pdev->dev, "offline testing starting\n");
1985 
1986 		/* power up link for link test */
1987 		igb_power_up_link(adapter);
1988 
1989 		/* Link test performed before hardware reset so autoneg doesn't
1990 		 * interfere with test result
1991 		 */
1992 		if (igb_link_test(adapter, &data[4]))
1993 			eth_test->flags |= ETH_TEST_FL_FAILED;
1994 
1995 		if (if_running)
1996 			/* indicate we're in test mode */
1997 			dev_close(netdev);
1998 		else
1999 			igb_reset(adapter);
2000 
2001 		if (igb_reg_test(adapter, &data[0]))
2002 			eth_test->flags |= ETH_TEST_FL_FAILED;
2003 
2004 		igb_reset(adapter);
2005 		if (igb_eeprom_test(adapter, &data[1]))
2006 			eth_test->flags |= ETH_TEST_FL_FAILED;
2007 
2008 		igb_reset(adapter);
2009 		if (igb_intr_test(adapter, &data[2]))
2010 			eth_test->flags |= ETH_TEST_FL_FAILED;
2011 
2012 		igb_reset(adapter);
2013 		/* power up link for loopback test */
2014 		igb_power_up_link(adapter);
2015 		if (igb_loopback_test(adapter, &data[3]))
2016 			eth_test->flags |= ETH_TEST_FL_FAILED;
2017 
2018 		/* restore speed, duplex, autoneg settings */
2019 		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2020 		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2021 		adapter->hw.mac.autoneg = autoneg;
2022 
2023 		/* force this routine to wait until autoneg complete/timeout */
2024 		adapter->hw.phy.autoneg_wait_to_complete = true;
2025 		igb_reset(adapter);
2026 		adapter->hw.phy.autoneg_wait_to_complete = false;
2027 
2028 		clear_bit(__IGB_TESTING, &adapter->state);
2029 		if (if_running)
2030 			dev_open(netdev);
2031 	} else {
2032 		dev_info(&adapter->pdev->dev, "online testing starting\n");
2033 
2034 		/* PHY is powered down when interface is down */
2035 		if (if_running && igb_link_test(adapter, &data[4]))
2036 			eth_test->flags |= ETH_TEST_FL_FAILED;
2037 		else
2038 			data[4] = 0;
2039 
2040 		/* Online tests aren't run; pass by default */
2041 		data[0] = 0;
2042 		data[1] = 0;
2043 		data[2] = 0;
2044 		data[3] = 0;
2045 
2046 		clear_bit(__IGB_TESTING, &adapter->state);
2047 	}
2048 	msleep_interruptible(4 * 1000);
2049 }
2050 
2051 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2052 {
2053 	struct igb_adapter *adapter = netdev_priv(netdev);
2054 
2055 	wol->supported = WAKE_UCAST | WAKE_MCAST |
2056 			 WAKE_BCAST | WAKE_MAGIC |
2057 			 WAKE_PHY;
2058 	wol->wolopts = 0;
2059 
2060 	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2061 		return;
2062 
2063 	/* apply any specific unsupported masks here */
2064 	switch (adapter->hw.device_id) {
2065 	default:
2066 		break;
2067 	}
2068 
2069 	if (adapter->wol & E1000_WUFC_EX)
2070 		wol->wolopts |= WAKE_UCAST;
2071 	if (adapter->wol & E1000_WUFC_MC)
2072 		wol->wolopts |= WAKE_MCAST;
2073 	if (adapter->wol & E1000_WUFC_BC)
2074 		wol->wolopts |= WAKE_BCAST;
2075 	if (adapter->wol & E1000_WUFC_MAG)
2076 		wol->wolopts |= WAKE_MAGIC;
2077 	if (adapter->wol & E1000_WUFC_LNKC)
2078 		wol->wolopts |= WAKE_PHY;
2079 }
2080 
2081 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2082 {
2083 	struct igb_adapter *adapter = netdev_priv(netdev);
2084 
2085 	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2086 		return -EOPNOTSUPP;
2087 
2088 	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2089 		return wol->wolopts ? -EOPNOTSUPP : 0;
2090 
2091 	/* these settings will always override what we currently have */
2092 	adapter->wol = 0;
2093 
2094 	if (wol->wolopts & WAKE_UCAST)
2095 		adapter->wol |= E1000_WUFC_EX;
2096 	if (wol->wolopts & WAKE_MCAST)
2097 		adapter->wol |= E1000_WUFC_MC;
2098 	if (wol->wolopts & WAKE_BCAST)
2099 		adapter->wol |= E1000_WUFC_BC;
2100 	if (wol->wolopts & WAKE_MAGIC)
2101 		adapter->wol |= E1000_WUFC_MAG;
2102 	if (wol->wolopts & WAKE_PHY)
2103 		adapter->wol |= E1000_WUFC_LNKC;
2104 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2105 
2106 	return 0;
2107 }
2108 
2109 /* bit defines for adapter->led_status */
2110 #define IGB_LED_ON		0
2111 
2112 static int igb_set_phys_id(struct net_device *netdev,
2113 			   enum ethtool_phys_id_state state)
2114 {
2115 	struct igb_adapter *adapter = netdev_priv(netdev);
2116 	struct e1000_hw *hw = &adapter->hw;
2117 
2118 	switch (state) {
2119 	case ETHTOOL_ID_ACTIVE:
2120 		igb_blink_led(hw);
2121 		return 2;
2122 	case ETHTOOL_ID_ON:
2123 		igb_blink_led(hw);
2124 		break;
2125 	case ETHTOOL_ID_OFF:
2126 		igb_led_off(hw);
2127 		break;
2128 	case ETHTOOL_ID_INACTIVE:
2129 		igb_led_off(hw);
2130 		clear_bit(IGB_LED_ON, &adapter->led_status);
2131 		igb_cleanup_led(hw);
2132 		break;
2133 	}
2134 
2135 	return 0;
2136 }
2137 
2138 static int igb_set_coalesce(struct net_device *netdev,
2139 			    struct ethtool_coalesce *ec)
2140 {
2141 	struct igb_adapter *adapter = netdev_priv(netdev);
2142 	int i;
2143 
2144 	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2145 	    ((ec->rx_coalesce_usecs > 3) &&
2146 	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2147 	    (ec->rx_coalesce_usecs == 2))
2148 		return -EINVAL;
2149 
2150 	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2151 	    ((ec->tx_coalesce_usecs > 3) &&
2152 	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2153 	    (ec->tx_coalesce_usecs == 2))
2154 		return -EINVAL;
2155 
2156 	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2157 		return -EINVAL;
2158 
2159 	/* If ITR is disabled, disable DMAC */
2160 	if (ec->rx_coalesce_usecs == 0) {
2161 		if (adapter->flags & IGB_FLAG_DMAC)
2162 			adapter->flags &= ~IGB_FLAG_DMAC;
2163 	}
2164 
2165 	/* convert to rate of irq's per second */
2166 	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2167 		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2168 	else
2169 		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2170 
2171 	/* convert to rate of irq's per second */
2172 	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2173 		adapter->tx_itr_setting = adapter->rx_itr_setting;
2174 	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2175 		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2176 	else
2177 		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2178 
2179 	for (i = 0; i < adapter->num_q_vectors; i++) {
2180 		struct igb_q_vector *q_vector = adapter->q_vector[i];
2181 		q_vector->tx.work_limit = adapter->tx_work_limit;
2182 		if (q_vector->rx.ring)
2183 			q_vector->itr_val = adapter->rx_itr_setting;
2184 		else
2185 			q_vector->itr_val = adapter->tx_itr_setting;
2186 		if (q_vector->itr_val && q_vector->itr_val <= 3)
2187 			q_vector->itr_val = IGB_START_ITR;
2188 		q_vector->set_itr = 1;
2189 	}
2190 
2191 	return 0;
2192 }
2193 
2194 static int igb_get_coalesce(struct net_device *netdev,
2195 			    struct ethtool_coalesce *ec)
2196 {
2197 	struct igb_adapter *adapter = netdev_priv(netdev);
2198 
2199 	if (adapter->rx_itr_setting <= 3)
2200 		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2201 	else
2202 		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2203 
2204 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2205 		if (adapter->tx_itr_setting <= 3)
2206 			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2207 		else
2208 			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2209 	}
2210 
2211 	return 0;
2212 }
2213 
2214 static int igb_nway_reset(struct net_device *netdev)
2215 {
2216 	struct igb_adapter *adapter = netdev_priv(netdev);
2217 	if (netif_running(netdev))
2218 		igb_reinit_locked(adapter);
2219 	return 0;
2220 }
2221 
2222 static int igb_get_sset_count(struct net_device *netdev, int sset)
2223 {
2224 	switch (sset) {
2225 	case ETH_SS_STATS:
2226 		return IGB_STATS_LEN;
2227 	case ETH_SS_TEST:
2228 		return IGB_TEST_LEN;
2229 	default:
2230 		return -ENOTSUPP;
2231 	}
2232 }
2233 
2234 static void igb_get_ethtool_stats(struct net_device *netdev,
2235 				  struct ethtool_stats *stats, u64 *data)
2236 {
2237 	struct igb_adapter *adapter = netdev_priv(netdev);
2238 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2239 	unsigned int start;
2240 	struct igb_ring *ring;
2241 	int i, j;
2242 	char *p;
2243 
2244 	spin_lock(&adapter->stats64_lock);
2245 	igb_update_stats(adapter, net_stats);
2246 
2247 	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2248 		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2249 		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2250 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2251 	}
2252 	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2253 		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2254 		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2255 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2256 	}
2257 	for (j = 0; j < adapter->num_tx_queues; j++) {
2258 		u64	restart2;
2259 
2260 		ring = adapter->tx_ring[j];
2261 		do {
2262 			start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
2263 			data[i]   = ring->tx_stats.packets;
2264 			data[i+1] = ring->tx_stats.bytes;
2265 			data[i+2] = ring->tx_stats.restart_queue;
2266 		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
2267 		do {
2268 			start = u64_stats_fetch_begin_bh(&ring->tx_syncp2);
2269 			restart2  = ring->tx_stats.restart_queue2;
2270 		} while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start));
2271 		data[i+2] += restart2;
2272 
2273 		i += IGB_TX_QUEUE_STATS_LEN;
2274 	}
2275 	for (j = 0; j < adapter->num_rx_queues; j++) {
2276 		ring = adapter->rx_ring[j];
2277 		do {
2278 			start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
2279 			data[i]   = ring->rx_stats.packets;
2280 			data[i+1] = ring->rx_stats.bytes;
2281 			data[i+2] = ring->rx_stats.drops;
2282 			data[i+3] = ring->rx_stats.csum_err;
2283 			data[i+4] = ring->rx_stats.alloc_failed;
2284 		} while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
2285 		i += IGB_RX_QUEUE_STATS_LEN;
2286 	}
2287 	spin_unlock(&adapter->stats64_lock);
2288 }
2289 
2290 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2291 {
2292 	struct igb_adapter *adapter = netdev_priv(netdev);
2293 	u8 *p = data;
2294 	int i;
2295 
2296 	switch (stringset) {
2297 	case ETH_SS_TEST:
2298 		memcpy(data, *igb_gstrings_test,
2299 			IGB_TEST_LEN*ETH_GSTRING_LEN);
2300 		break;
2301 	case ETH_SS_STATS:
2302 		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2303 			memcpy(p, igb_gstrings_stats[i].stat_string,
2304 			       ETH_GSTRING_LEN);
2305 			p += ETH_GSTRING_LEN;
2306 		}
2307 		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2308 			memcpy(p, igb_gstrings_net_stats[i].stat_string,
2309 			       ETH_GSTRING_LEN);
2310 			p += ETH_GSTRING_LEN;
2311 		}
2312 		for (i = 0; i < adapter->num_tx_queues; i++) {
2313 			sprintf(p, "tx_queue_%u_packets", i);
2314 			p += ETH_GSTRING_LEN;
2315 			sprintf(p, "tx_queue_%u_bytes", i);
2316 			p += ETH_GSTRING_LEN;
2317 			sprintf(p, "tx_queue_%u_restart", i);
2318 			p += ETH_GSTRING_LEN;
2319 		}
2320 		for (i = 0; i < adapter->num_rx_queues; i++) {
2321 			sprintf(p, "rx_queue_%u_packets", i);
2322 			p += ETH_GSTRING_LEN;
2323 			sprintf(p, "rx_queue_%u_bytes", i);
2324 			p += ETH_GSTRING_LEN;
2325 			sprintf(p, "rx_queue_%u_drops", i);
2326 			p += ETH_GSTRING_LEN;
2327 			sprintf(p, "rx_queue_%u_csum_err", i);
2328 			p += ETH_GSTRING_LEN;
2329 			sprintf(p, "rx_queue_%u_alloc_failed", i);
2330 			p += ETH_GSTRING_LEN;
2331 		}
2332 		/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2333 		break;
2334 	}
2335 }
2336 
2337 static int igb_get_ts_info(struct net_device *dev,
2338 			   struct ethtool_ts_info *info)
2339 {
2340 	struct igb_adapter *adapter = netdev_priv(dev);
2341 
2342 	switch (adapter->hw.mac.type) {
2343 	case e1000_82575:
2344 		info->so_timestamping =
2345 			SOF_TIMESTAMPING_TX_SOFTWARE |
2346 			SOF_TIMESTAMPING_RX_SOFTWARE |
2347 			SOF_TIMESTAMPING_SOFTWARE;
2348 		return 0;
2349 	case e1000_82576:
2350 	case e1000_82580:
2351 	case e1000_i350:
2352 	case e1000_i354:
2353 	case e1000_i210:
2354 	case e1000_i211:
2355 		info->so_timestamping =
2356 			SOF_TIMESTAMPING_TX_SOFTWARE |
2357 			SOF_TIMESTAMPING_RX_SOFTWARE |
2358 			SOF_TIMESTAMPING_SOFTWARE |
2359 			SOF_TIMESTAMPING_TX_HARDWARE |
2360 			SOF_TIMESTAMPING_RX_HARDWARE |
2361 			SOF_TIMESTAMPING_RAW_HARDWARE;
2362 
2363 		if (adapter->ptp_clock)
2364 			info->phc_index = ptp_clock_index(adapter->ptp_clock);
2365 		else
2366 			info->phc_index = -1;
2367 
2368 		info->tx_types =
2369 			(1 << HWTSTAMP_TX_OFF) |
2370 			(1 << HWTSTAMP_TX_ON);
2371 
2372 		info->rx_filters = 1 << HWTSTAMP_FILTER_NONE;
2373 
2374 		/* 82576 does not support timestamping all packets. */
2375 		if (adapter->hw.mac.type >= e1000_82580)
2376 			info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL;
2377 		else
2378 			info->rx_filters |=
2379 				(1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2380 				(1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2381 				(1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2382 				(1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2383 				(1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2384 				(1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2385 				(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2386 
2387 		return 0;
2388 	default:
2389 		return -EOPNOTSUPP;
2390 	}
2391 }
2392 
2393 static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2394 				 struct ethtool_rxnfc *cmd)
2395 {
2396 	cmd->data = 0;
2397 
2398 	/* Report default options for RSS on igb */
2399 	switch (cmd->flow_type) {
2400 	case TCP_V4_FLOW:
2401 		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2402 	case UDP_V4_FLOW:
2403 		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2404 			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2405 	case SCTP_V4_FLOW:
2406 	case AH_ESP_V4_FLOW:
2407 	case AH_V4_FLOW:
2408 	case ESP_V4_FLOW:
2409 	case IPV4_FLOW:
2410 		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2411 		break;
2412 	case TCP_V6_FLOW:
2413 		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2414 	case UDP_V6_FLOW:
2415 		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2416 			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2417 	case SCTP_V6_FLOW:
2418 	case AH_ESP_V6_FLOW:
2419 	case AH_V6_FLOW:
2420 	case ESP_V6_FLOW:
2421 	case IPV6_FLOW:
2422 		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2423 		break;
2424 	default:
2425 		return -EINVAL;
2426 	}
2427 
2428 	return 0;
2429 }
2430 
2431 static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2432 			 u32 *rule_locs)
2433 {
2434 	struct igb_adapter *adapter = netdev_priv(dev);
2435 	int ret = -EOPNOTSUPP;
2436 
2437 	switch (cmd->cmd) {
2438 	case ETHTOOL_GRXRINGS:
2439 		cmd->data = adapter->num_rx_queues;
2440 		ret = 0;
2441 		break;
2442 	case ETHTOOL_GRXFH:
2443 		ret = igb_get_rss_hash_opts(adapter, cmd);
2444 		break;
2445 	default:
2446 		break;
2447 	}
2448 
2449 	return ret;
2450 }
2451 
2452 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2453 		       IGB_FLAG_RSS_FIELD_IPV6_UDP)
2454 static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2455 				struct ethtool_rxnfc *nfc)
2456 {
2457 	u32 flags = adapter->flags;
2458 
2459 	/* RSS does not support anything other than hashing
2460 	 * to queues on src and dst IPs and ports
2461 	 */
2462 	if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2463 			  RXH_L4_B_0_1 | RXH_L4_B_2_3))
2464 		return -EINVAL;
2465 
2466 	switch (nfc->flow_type) {
2467 	case TCP_V4_FLOW:
2468 	case TCP_V6_FLOW:
2469 		if (!(nfc->data & RXH_IP_SRC) ||
2470 		    !(nfc->data & RXH_IP_DST) ||
2471 		    !(nfc->data & RXH_L4_B_0_1) ||
2472 		    !(nfc->data & RXH_L4_B_2_3))
2473 			return -EINVAL;
2474 		break;
2475 	case UDP_V4_FLOW:
2476 		if (!(nfc->data & RXH_IP_SRC) ||
2477 		    !(nfc->data & RXH_IP_DST))
2478 			return -EINVAL;
2479 		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2480 		case 0:
2481 			flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2482 			break;
2483 		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2484 			flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2485 			break;
2486 		default:
2487 			return -EINVAL;
2488 		}
2489 		break;
2490 	case UDP_V6_FLOW:
2491 		if (!(nfc->data & RXH_IP_SRC) ||
2492 		    !(nfc->data & RXH_IP_DST))
2493 			return -EINVAL;
2494 		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2495 		case 0:
2496 			flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2497 			break;
2498 		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2499 			flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2500 			break;
2501 		default:
2502 			return -EINVAL;
2503 		}
2504 		break;
2505 	case AH_ESP_V4_FLOW:
2506 	case AH_V4_FLOW:
2507 	case ESP_V4_FLOW:
2508 	case SCTP_V4_FLOW:
2509 	case AH_ESP_V6_FLOW:
2510 	case AH_V6_FLOW:
2511 	case ESP_V6_FLOW:
2512 	case SCTP_V6_FLOW:
2513 		if (!(nfc->data & RXH_IP_SRC) ||
2514 		    !(nfc->data & RXH_IP_DST) ||
2515 		    (nfc->data & RXH_L4_B_0_1) ||
2516 		    (nfc->data & RXH_L4_B_2_3))
2517 			return -EINVAL;
2518 		break;
2519 	default:
2520 		return -EINVAL;
2521 	}
2522 
2523 	/* if we changed something we need to update flags */
2524 	if (flags != adapter->flags) {
2525 		struct e1000_hw *hw = &adapter->hw;
2526 		u32 mrqc = rd32(E1000_MRQC);
2527 
2528 		if ((flags & UDP_RSS_FLAGS) &&
2529 		    !(adapter->flags & UDP_RSS_FLAGS))
2530 			dev_err(&adapter->pdev->dev,
2531 				"enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2532 
2533 		adapter->flags = flags;
2534 
2535 		/* Perform hash on these packet types */
2536 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2537 			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2538 			E1000_MRQC_RSS_FIELD_IPV6 |
2539 			E1000_MRQC_RSS_FIELD_IPV6_TCP;
2540 
2541 		mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2542 			  E1000_MRQC_RSS_FIELD_IPV6_UDP);
2543 
2544 		if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2545 			mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2546 
2547 		if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2548 			mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2549 
2550 		wr32(E1000_MRQC, mrqc);
2551 	}
2552 
2553 	return 0;
2554 }
2555 
2556 static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
2557 {
2558 	struct igb_adapter *adapter = netdev_priv(dev);
2559 	int ret = -EOPNOTSUPP;
2560 
2561 	switch (cmd->cmd) {
2562 	case ETHTOOL_SRXFH:
2563 		ret = igb_set_rss_hash_opt(adapter, cmd);
2564 		break;
2565 	default:
2566 		break;
2567 	}
2568 
2569 	return ret;
2570 }
2571 
2572 static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2573 {
2574 	struct igb_adapter *adapter = netdev_priv(netdev);
2575 	struct e1000_hw *hw = &adapter->hw;
2576 	u32 ipcnfg, eeer, ret_val;
2577 	u16 phy_data;
2578 
2579 	if ((hw->mac.type < e1000_i350) ||
2580 	    (hw->phy.media_type != e1000_media_type_copper))
2581 		return -EOPNOTSUPP;
2582 
2583 	edata->supported = (SUPPORTED_1000baseT_Full |
2584 			    SUPPORTED_100baseT_Full);
2585 
2586 	ipcnfg = rd32(E1000_IPCNFG);
2587 	eeer = rd32(E1000_EEER);
2588 
2589 	/* EEE status on negotiated link */
2590 	if (ipcnfg & E1000_IPCNFG_EEE_1G_AN)
2591 		edata->advertised = ADVERTISED_1000baseT_Full;
2592 
2593 	if (ipcnfg & E1000_IPCNFG_EEE_100M_AN)
2594 		edata->advertised |= ADVERTISED_100baseT_Full;
2595 
2596 	/* EEE Link Partner Advertised */
2597 	switch (hw->mac.type) {
2598 	case e1000_i350:
2599 		ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
2600 					   &phy_data);
2601 		if (ret_val)
2602 			return -ENODATA;
2603 
2604 		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2605 
2606 		break;
2607 	case e1000_i210:
2608 	case e1000_i211:
2609 		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
2610 					     E1000_EEE_LP_ADV_DEV_I210,
2611 					     &phy_data);
2612 		if (ret_val)
2613 			return -ENODATA;
2614 
2615 		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2616 
2617 		break;
2618 	default:
2619 		break;
2620 	}
2621 
2622 	if (eeer & E1000_EEER_EEE_NEG)
2623 		edata->eee_active = true;
2624 
2625 	edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
2626 
2627 	if (eeer & E1000_EEER_TX_LPI_EN)
2628 		edata->tx_lpi_enabled = true;
2629 
2630 	/* Report correct negotiated EEE status for devices that
2631 	 * wrongly report EEE at half-duplex
2632 	 */
2633 	if (adapter->link_duplex == HALF_DUPLEX) {
2634 		edata->eee_enabled = false;
2635 		edata->eee_active = false;
2636 		edata->tx_lpi_enabled = false;
2637 		edata->advertised &= ~edata->advertised;
2638 	}
2639 
2640 	return 0;
2641 }
2642 
2643 static int igb_set_eee(struct net_device *netdev,
2644 		       struct ethtool_eee *edata)
2645 {
2646 	struct igb_adapter *adapter = netdev_priv(netdev);
2647 	struct e1000_hw *hw = &adapter->hw;
2648 	struct ethtool_eee eee_curr;
2649 	s32 ret_val;
2650 
2651 	if ((hw->mac.type < e1000_i350) ||
2652 	    (hw->phy.media_type != e1000_media_type_copper))
2653 		return -EOPNOTSUPP;
2654 
2655 	ret_val = igb_get_eee(netdev, &eee_curr);
2656 	if (ret_val)
2657 		return ret_val;
2658 
2659 	if (eee_curr.eee_enabled) {
2660 		if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2661 			dev_err(&adapter->pdev->dev,
2662 				"Setting EEE tx-lpi is not supported\n");
2663 			return -EINVAL;
2664 		}
2665 
2666 		/* Tx LPI timer is not implemented currently */
2667 		if (edata->tx_lpi_timer) {
2668 			dev_err(&adapter->pdev->dev,
2669 				"Setting EEE Tx LPI timer is not supported\n");
2670 			return -EINVAL;
2671 		}
2672 
2673 		if (eee_curr.advertised != edata->advertised) {
2674 			dev_err(&adapter->pdev->dev,
2675 				"Setting EEE Advertisement is not supported\n");
2676 			return -EINVAL;
2677 		}
2678 
2679 	} else if (!edata->eee_enabled) {
2680 		dev_err(&adapter->pdev->dev,
2681 			"Setting EEE options are not supported with EEE disabled\n");
2682 			return -EINVAL;
2683 		}
2684 
2685 	if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
2686 		hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
2687 		igb_set_eee_i350(hw);
2688 
2689 		/* reset link */
2690 		if (netif_running(netdev))
2691 			igb_reinit_locked(adapter);
2692 		else
2693 			igb_reset(adapter);
2694 	}
2695 
2696 	return 0;
2697 }
2698 
2699 static int igb_get_module_info(struct net_device *netdev,
2700 			       struct ethtool_modinfo *modinfo)
2701 {
2702 	struct igb_adapter *adapter = netdev_priv(netdev);
2703 	struct e1000_hw *hw = &adapter->hw;
2704 	u32 status = E1000_SUCCESS;
2705 	u16 sff8472_rev, addr_mode;
2706 	bool page_swap = false;
2707 
2708 	if ((hw->phy.media_type == e1000_media_type_copper) ||
2709 	    (hw->phy.media_type == e1000_media_type_unknown))
2710 		return -EOPNOTSUPP;
2711 
2712 	/* Check whether we support SFF-8472 or not */
2713 	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
2714 	if (status != E1000_SUCCESS)
2715 		return -EIO;
2716 
2717 	/* addressing mode is not supported */
2718 	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
2719 	if (status != E1000_SUCCESS)
2720 		return -EIO;
2721 
2722 	/* addressing mode is not supported */
2723 	if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
2724 		hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
2725 		page_swap = true;
2726 	}
2727 
2728 	if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
2729 		/* We have an SFP, but it does not support SFF-8472 */
2730 		modinfo->type = ETH_MODULE_SFF_8079;
2731 		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2732 	} else {
2733 		/* We have an SFP which supports a revision of SFF-8472 */
2734 		modinfo->type = ETH_MODULE_SFF_8472;
2735 		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2736 	}
2737 
2738 	return 0;
2739 }
2740 
2741 static int igb_get_module_eeprom(struct net_device *netdev,
2742 				 struct ethtool_eeprom *ee, u8 *data)
2743 {
2744 	struct igb_adapter *adapter = netdev_priv(netdev);
2745 	struct e1000_hw *hw = &adapter->hw;
2746 	u32 status = E1000_SUCCESS;
2747 	u16 *dataword;
2748 	u16 first_word, last_word;
2749 	int i = 0;
2750 
2751 	if (ee->len == 0)
2752 		return -EINVAL;
2753 
2754 	first_word = ee->offset >> 1;
2755 	last_word = (ee->offset + ee->len - 1) >> 1;
2756 
2757 	dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1),
2758 			   GFP_KERNEL);
2759 	if (!dataword)
2760 		return -ENOMEM;
2761 
2762 	/* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
2763 	for (i = 0; i < last_word - first_word + 1; i++) {
2764 		status = igb_read_phy_reg_i2c(hw, first_word + i, &dataword[i]);
2765 		if (status != E1000_SUCCESS)
2766 			/* Error occurred while reading module */
2767 			return -EIO;
2768 
2769 		be16_to_cpus(&dataword[i]);
2770 	}
2771 
2772 	memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
2773 	kfree(dataword);
2774 
2775 	return 0;
2776 }
2777 
2778 static int igb_ethtool_begin(struct net_device *netdev)
2779 {
2780 	struct igb_adapter *adapter = netdev_priv(netdev);
2781 	pm_runtime_get_sync(&adapter->pdev->dev);
2782 	return 0;
2783 }
2784 
2785 static void igb_ethtool_complete(struct net_device *netdev)
2786 {
2787 	struct igb_adapter *adapter = netdev_priv(netdev);
2788 	pm_runtime_put(&adapter->pdev->dev);
2789 }
2790 
2791 static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
2792 {
2793 	return IGB_RETA_SIZE;
2794 }
2795 
2796 static int igb_get_rxfh_indir(struct net_device *netdev, u32 *indir)
2797 {
2798 	struct igb_adapter *adapter = netdev_priv(netdev);
2799 	int i;
2800 
2801 	for (i = 0; i < IGB_RETA_SIZE; i++)
2802 		indir[i] = adapter->rss_indir_tbl[i];
2803 
2804 	return 0;
2805 }
2806 
2807 void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
2808 {
2809 	struct e1000_hw *hw = &adapter->hw;
2810 	u32 reg = E1000_RETA(0);
2811 	u32 shift = 0;
2812 	int i = 0;
2813 
2814 	switch (hw->mac.type) {
2815 	case e1000_82575:
2816 		shift = 6;
2817 		break;
2818 	case e1000_82576:
2819 		/* 82576 supports 2 RSS queues for SR-IOV */
2820 		if (adapter->vfs_allocated_count)
2821 			shift = 3;
2822 		break;
2823 	default:
2824 		break;
2825 	}
2826 
2827 	while (i < IGB_RETA_SIZE) {
2828 		u32 val = 0;
2829 		int j;
2830 
2831 		for (j = 3; j >= 0; j--) {
2832 			val <<= 8;
2833 			val |= adapter->rss_indir_tbl[i + j];
2834 		}
2835 
2836 		wr32(reg, val << shift);
2837 		reg += 4;
2838 		i += 4;
2839 	}
2840 }
2841 
2842 static int igb_set_rxfh_indir(struct net_device *netdev, const u32 *indir)
2843 {
2844 	struct igb_adapter *adapter = netdev_priv(netdev);
2845 	struct e1000_hw *hw = &adapter->hw;
2846 	int i;
2847 	u32 num_queues;
2848 
2849 	num_queues = adapter->rss_queues;
2850 
2851 	switch (hw->mac.type) {
2852 	case e1000_82576:
2853 		/* 82576 supports 2 RSS queues for SR-IOV */
2854 		if (adapter->vfs_allocated_count)
2855 			num_queues = 2;
2856 		break;
2857 	default:
2858 		break;
2859 	}
2860 
2861 	/* Verify user input. */
2862 	for (i = 0; i < IGB_RETA_SIZE; i++)
2863 		if (indir[i] >= num_queues)
2864 			return -EINVAL;
2865 
2866 
2867 	for (i = 0; i < IGB_RETA_SIZE; i++)
2868 		adapter->rss_indir_tbl[i] = indir[i];
2869 
2870 	igb_write_rss_indir_tbl(adapter);
2871 
2872 	return 0;
2873 }
2874 
2875 static const struct ethtool_ops igb_ethtool_ops = {
2876 	.get_settings		= igb_get_settings,
2877 	.set_settings		= igb_set_settings,
2878 	.get_drvinfo		= igb_get_drvinfo,
2879 	.get_regs_len		= igb_get_regs_len,
2880 	.get_regs		= igb_get_regs,
2881 	.get_wol		= igb_get_wol,
2882 	.set_wol		= igb_set_wol,
2883 	.get_msglevel		= igb_get_msglevel,
2884 	.set_msglevel		= igb_set_msglevel,
2885 	.nway_reset		= igb_nway_reset,
2886 	.get_link		= igb_get_link,
2887 	.get_eeprom_len		= igb_get_eeprom_len,
2888 	.get_eeprom		= igb_get_eeprom,
2889 	.set_eeprom		= igb_set_eeprom,
2890 	.get_ringparam		= igb_get_ringparam,
2891 	.set_ringparam		= igb_set_ringparam,
2892 	.get_pauseparam		= igb_get_pauseparam,
2893 	.set_pauseparam		= igb_set_pauseparam,
2894 	.self_test		= igb_diag_test,
2895 	.get_strings		= igb_get_strings,
2896 	.set_phys_id		= igb_set_phys_id,
2897 	.get_sset_count		= igb_get_sset_count,
2898 	.get_ethtool_stats	= igb_get_ethtool_stats,
2899 	.get_coalesce		= igb_get_coalesce,
2900 	.set_coalesce		= igb_set_coalesce,
2901 	.get_ts_info		= igb_get_ts_info,
2902 	.get_rxnfc		= igb_get_rxnfc,
2903 	.set_rxnfc		= igb_set_rxnfc,
2904 	.get_eee		= igb_get_eee,
2905 	.set_eee		= igb_set_eee,
2906 	.get_module_info	= igb_get_module_info,
2907 	.get_module_eeprom	= igb_get_module_eeprom,
2908 	.get_rxfh_indir_size	= igb_get_rxfh_indir_size,
2909 	.get_rxfh_indir		= igb_get_rxfh_indir,
2910 	.set_rxfh_indir		= igb_set_rxfh_indir,
2911 	.begin			= igb_ethtool_begin,
2912 	.complete		= igb_ethtool_complete,
2913 };
2914 
2915 void igb_set_ethtool_ops(struct net_device *netdev)
2916 {
2917 	SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2918 }
2919