1 /* Intel(R) Gigabit Ethernet Linux driver 2 * Copyright(c) 2007-2014 Intel Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, see <http://www.gnu.org/licenses/>. 15 * 16 * The full GNU General Public License is included in this distribution in 17 * the file called "COPYING". 18 * 19 * Contact Information: 20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 22 */ 23 24 /* ethtool support for igb */ 25 26 #include <linux/vmalloc.h> 27 #include <linux/netdevice.h> 28 #include <linux/pci.h> 29 #include <linux/delay.h> 30 #include <linux/interrupt.h> 31 #include <linux/if_ether.h> 32 #include <linux/ethtool.h> 33 #include <linux/sched.h> 34 #include <linux/slab.h> 35 #include <linux/pm_runtime.h> 36 #include <linux/highmem.h> 37 #include <linux/mdio.h> 38 39 #include "igb.h" 40 41 struct igb_stats { 42 char stat_string[ETH_GSTRING_LEN]; 43 int sizeof_stat; 44 int stat_offset; 45 }; 46 47 #define IGB_STAT(_name, _stat) { \ 48 .stat_string = _name, \ 49 .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \ 50 .stat_offset = offsetof(struct igb_adapter, _stat) \ 51 } 52 static const struct igb_stats igb_gstrings_stats[] = { 53 IGB_STAT("rx_packets", stats.gprc), 54 IGB_STAT("tx_packets", stats.gptc), 55 IGB_STAT("rx_bytes", stats.gorc), 56 IGB_STAT("tx_bytes", stats.gotc), 57 IGB_STAT("rx_broadcast", stats.bprc), 58 IGB_STAT("tx_broadcast", stats.bptc), 59 IGB_STAT("rx_multicast", stats.mprc), 60 IGB_STAT("tx_multicast", stats.mptc), 61 IGB_STAT("multicast", stats.mprc), 62 IGB_STAT("collisions", stats.colc), 63 IGB_STAT("rx_crc_errors", stats.crcerrs), 64 IGB_STAT("rx_no_buffer_count", stats.rnbc), 65 IGB_STAT("rx_missed_errors", stats.mpc), 66 IGB_STAT("tx_aborted_errors", stats.ecol), 67 IGB_STAT("tx_carrier_errors", stats.tncrs), 68 IGB_STAT("tx_window_errors", stats.latecol), 69 IGB_STAT("tx_abort_late_coll", stats.latecol), 70 IGB_STAT("tx_deferred_ok", stats.dc), 71 IGB_STAT("tx_single_coll_ok", stats.scc), 72 IGB_STAT("tx_multi_coll_ok", stats.mcc), 73 IGB_STAT("tx_timeout_count", tx_timeout_count), 74 IGB_STAT("rx_long_length_errors", stats.roc), 75 IGB_STAT("rx_short_length_errors", stats.ruc), 76 IGB_STAT("rx_align_errors", stats.algnerrc), 77 IGB_STAT("tx_tcp_seg_good", stats.tsctc), 78 IGB_STAT("tx_tcp_seg_failed", stats.tsctfc), 79 IGB_STAT("rx_flow_control_xon", stats.xonrxc), 80 IGB_STAT("rx_flow_control_xoff", stats.xoffrxc), 81 IGB_STAT("tx_flow_control_xon", stats.xontxc), 82 IGB_STAT("tx_flow_control_xoff", stats.xofftxc), 83 IGB_STAT("rx_long_byte_count", stats.gorc), 84 IGB_STAT("tx_dma_out_of_sync", stats.doosync), 85 IGB_STAT("tx_smbus", stats.mgptc), 86 IGB_STAT("rx_smbus", stats.mgprc), 87 IGB_STAT("dropped_smbus", stats.mgpdc), 88 IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc), 89 IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc), 90 IGB_STAT("os2bmc_tx_by_host", stats.o2bspc), 91 IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc), 92 IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts), 93 IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared), 94 }; 95 96 #define IGB_NETDEV_STAT(_net_stat) { \ 97 .stat_string = __stringify(_net_stat), \ 98 .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \ 99 .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \ 100 } 101 static const struct igb_stats igb_gstrings_net_stats[] = { 102 IGB_NETDEV_STAT(rx_errors), 103 IGB_NETDEV_STAT(tx_errors), 104 IGB_NETDEV_STAT(tx_dropped), 105 IGB_NETDEV_STAT(rx_length_errors), 106 IGB_NETDEV_STAT(rx_over_errors), 107 IGB_NETDEV_STAT(rx_frame_errors), 108 IGB_NETDEV_STAT(rx_fifo_errors), 109 IGB_NETDEV_STAT(tx_fifo_errors), 110 IGB_NETDEV_STAT(tx_heartbeat_errors) 111 }; 112 113 #define IGB_GLOBAL_STATS_LEN \ 114 (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats)) 115 #define IGB_NETDEV_STATS_LEN \ 116 (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats)) 117 #define IGB_RX_QUEUE_STATS_LEN \ 118 (sizeof(struct igb_rx_queue_stats) / sizeof(u64)) 119 120 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */ 121 122 #define IGB_QUEUE_STATS_LEN \ 123 ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \ 124 IGB_RX_QUEUE_STATS_LEN) + \ 125 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \ 126 IGB_TX_QUEUE_STATS_LEN)) 127 #define IGB_STATS_LEN \ 128 (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN) 129 130 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = { 131 "Register test (offline)", "Eeprom test (offline)", 132 "Interrupt test (offline)", "Loopback test (offline)", 133 "Link test (on/offline)" 134 }; 135 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN) 136 137 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) 138 { 139 struct igb_adapter *adapter = netdev_priv(netdev); 140 struct e1000_hw *hw = &adapter->hw; 141 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; 142 struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags; 143 u32 status; 144 u32 speed; 145 146 status = rd32(E1000_STATUS); 147 if (hw->phy.media_type == e1000_media_type_copper) { 148 149 ecmd->supported = (SUPPORTED_10baseT_Half | 150 SUPPORTED_10baseT_Full | 151 SUPPORTED_100baseT_Half | 152 SUPPORTED_100baseT_Full | 153 SUPPORTED_1000baseT_Full| 154 SUPPORTED_Autoneg | 155 SUPPORTED_TP | 156 SUPPORTED_Pause); 157 ecmd->advertising = ADVERTISED_TP; 158 159 if (hw->mac.autoneg == 1) { 160 ecmd->advertising |= ADVERTISED_Autoneg; 161 /* the e1000 autoneg seems to match ethtool nicely */ 162 ecmd->advertising |= hw->phy.autoneg_advertised; 163 } 164 165 ecmd->port = PORT_TP; 166 ecmd->phy_address = hw->phy.addr; 167 ecmd->transceiver = XCVR_INTERNAL; 168 } else { 169 ecmd->supported = (SUPPORTED_FIBRE | 170 SUPPORTED_1000baseKX_Full | 171 SUPPORTED_Autoneg | 172 SUPPORTED_Pause); 173 ecmd->advertising = (ADVERTISED_FIBRE | 174 ADVERTISED_1000baseKX_Full); 175 if (hw->mac.type == e1000_i354) { 176 if ((hw->device_id == 177 E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) && 178 !(status & E1000_STATUS_2P5_SKU_OVER)) { 179 ecmd->supported |= SUPPORTED_2500baseX_Full; 180 ecmd->supported &= 181 ~SUPPORTED_1000baseKX_Full; 182 ecmd->advertising |= ADVERTISED_2500baseX_Full; 183 ecmd->advertising &= 184 ~ADVERTISED_1000baseKX_Full; 185 } 186 } 187 if (eth_flags->e100_base_fx) { 188 ecmd->supported |= SUPPORTED_100baseT_Full; 189 ecmd->advertising |= ADVERTISED_100baseT_Full; 190 } 191 if (hw->mac.autoneg == 1) 192 ecmd->advertising |= ADVERTISED_Autoneg; 193 194 ecmd->port = PORT_FIBRE; 195 ecmd->transceiver = XCVR_EXTERNAL; 196 } 197 if (hw->mac.autoneg != 1) 198 ecmd->advertising &= ~(ADVERTISED_Pause | 199 ADVERTISED_Asym_Pause); 200 201 switch (hw->fc.requested_mode) { 202 case e1000_fc_full: 203 ecmd->advertising |= ADVERTISED_Pause; 204 break; 205 case e1000_fc_rx_pause: 206 ecmd->advertising |= (ADVERTISED_Pause | 207 ADVERTISED_Asym_Pause); 208 break; 209 case e1000_fc_tx_pause: 210 ecmd->advertising |= ADVERTISED_Asym_Pause; 211 break; 212 default: 213 ecmd->advertising &= ~(ADVERTISED_Pause | 214 ADVERTISED_Asym_Pause); 215 } 216 if (status & E1000_STATUS_LU) { 217 if ((status & E1000_STATUS_2P5_SKU) && 218 !(status & E1000_STATUS_2P5_SKU_OVER)) { 219 speed = SPEED_2500; 220 } else if (status & E1000_STATUS_SPEED_1000) { 221 speed = SPEED_1000; 222 } else if (status & E1000_STATUS_SPEED_100) { 223 speed = SPEED_100; 224 } else { 225 speed = SPEED_10; 226 } 227 if ((status & E1000_STATUS_FD) || 228 hw->phy.media_type != e1000_media_type_copper) 229 ecmd->duplex = DUPLEX_FULL; 230 else 231 ecmd->duplex = DUPLEX_HALF; 232 } else { 233 speed = SPEED_UNKNOWN; 234 ecmd->duplex = DUPLEX_UNKNOWN; 235 } 236 ethtool_cmd_speed_set(ecmd, speed); 237 if ((hw->phy.media_type == e1000_media_type_fiber) || 238 hw->mac.autoneg) 239 ecmd->autoneg = AUTONEG_ENABLE; 240 else 241 ecmd->autoneg = AUTONEG_DISABLE; 242 243 /* MDI-X => 2; MDI =>1; Invalid =>0 */ 244 if (hw->phy.media_type == e1000_media_type_copper) 245 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : 246 ETH_TP_MDI; 247 else 248 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID; 249 250 if (hw->phy.mdix == AUTO_ALL_MODES) 251 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; 252 else 253 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix; 254 255 return 0; 256 } 257 258 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) 259 { 260 struct igb_adapter *adapter = netdev_priv(netdev); 261 struct e1000_hw *hw = &adapter->hw; 262 263 /* When SoL/IDER sessions are active, autoneg/speed/duplex 264 * cannot be changed 265 */ 266 if (igb_check_reset_block(hw)) { 267 dev_err(&adapter->pdev->dev, 268 "Cannot change link characteristics when SoL/IDER is active.\n"); 269 return -EINVAL; 270 } 271 272 /* MDI setting is only allowed when autoneg enabled because 273 * some hardware doesn't allow MDI setting when speed or 274 * duplex is forced. 275 */ 276 if (ecmd->eth_tp_mdix_ctrl) { 277 if (hw->phy.media_type != e1000_media_type_copper) 278 return -EOPNOTSUPP; 279 280 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && 281 (ecmd->autoneg != AUTONEG_ENABLE)) { 282 dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); 283 return -EINVAL; 284 } 285 } 286 287 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 288 usleep_range(1000, 2000); 289 290 if (ecmd->autoneg == AUTONEG_ENABLE) { 291 hw->mac.autoneg = 1; 292 if (hw->phy.media_type == e1000_media_type_fiber) { 293 hw->phy.autoneg_advertised = ecmd->advertising | 294 ADVERTISED_FIBRE | 295 ADVERTISED_Autoneg; 296 switch (adapter->link_speed) { 297 case SPEED_2500: 298 hw->phy.autoneg_advertised = 299 ADVERTISED_2500baseX_Full; 300 break; 301 case SPEED_1000: 302 hw->phy.autoneg_advertised = 303 ADVERTISED_1000baseT_Full; 304 break; 305 case SPEED_100: 306 hw->phy.autoneg_advertised = 307 ADVERTISED_100baseT_Full; 308 break; 309 default: 310 break; 311 } 312 } else { 313 hw->phy.autoneg_advertised = ecmd->advertising | 314 ADVERTISED_TP | 315 ADVERTISED_Autoneg; 316 } 317 ecmd->advertising = hw->phy.autoneg_advertised; 318 if (adapter->fc_autoneg) 319 hw->fc.requested_mode = e1000_fc_default; 320 } else { 321 u32 speed = ethtool_cmd_speed(ecmd); 322 /* calling this overrides forced MDI setting */ 323 if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) { 324 clear_bit(__IGB_RESETTING, &adapter->state); 325 return -EINVAL; 326 } 327 } 328 329 /* MDI-X => 2; MDI => 1; Auto => 3 */ 330 if (ecmd->eth_tp_mdix_ctrl) { 331 /* fix up the value for auto (3 => 0) as zero is mapped 332 * internally to auto 333 */ 334 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) 335 hw->phy.mdix = AUTO_ALL_MODES; 336 else 337 hw->phy.mdix = ecmd->eth_tp_mdix_ctrl; 338 } 339 340 /* reset the link */ 341 if (netif_running(adapter->netdev)) { 342 igb_down(adapter); 343 igb_up(adapter); 344 } else 345 igb_reset(adapter); 346 347 clear_bit(__IGB_RESETTING, &adapter->state); 348 return 0; 349 } 350 351 static u32 igb_get_link(struct net_device *netdev) 352 { 353 struct igb_adapter *adapter = netdev_priv(netdev); 354 struct e1000_mac_info *mac = &adapter->hw.mac; 355 356 /* If the link is not reported up to netdev, interrupts are disabled, 357 * and so the physical link state may have changed since we last 358 * looked. Set get_link_status to make sure that the true link 359 * state is interrogated, rather than pulling a cached and possibly 360 * stale link state from the driver. 361 */ 362 if (!netif_carrier_ok(netdev)) 363 mac->get_link_status = 1; 364 365 return igb_has_link(adapter); 366 } 367 368 static void igb_get_pauseparam(struct net_device *netdev, 369 struct ethtool_pauseparam *pause) 370 { 371 struct igb_adapter *adapter = netdev_priv(netdev); 372 struct e1000_hw *hw = &adapter->hw; 373 374 pause->autoneg = 375 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 376 377 if (hw->fc.current_mode == e1000_fc_rx_pause) 378 pause->rx_pause = 1; 379 else if (hw->fc.current_mode == e1000_fc_tx_pause) 380 pause->tx_pause = 1; 381 else if (hw->fc.current_mode == e1000_fc_full) { 382 pause->rx_pause = 1; 383 pause->tx_pause = 1; 384 } 385 } 386 387 static int igb_set_pauseparam(struct net_device *netdev, 388 struct ethtool_pauseparam *pause) 389 { 390 struct igb_adapter *adapter = netdev_priv(netdev); 391 struct e1000_hw *hw = &adapter->hw; 392 int retval = 0; 393 394 /* 100basefx does not support setting link flow control */ 395 if (hw->dev_spec._82575.eth_flags.e100_base_fx) 396 return -EINVAL; 397 398 adapter->fc_autoneg = pause->autoneg; 399 400 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 401 usleep_range(1000, 2000); 402 403 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 404 hw->fc.requested_mode = e1000_fc_default; 405 if (netif_running(adapter->netdev)) { 406 igb_down(adapter); 407 igb_up(adapter); 408 } else { 409 igb_reset(adapter); 410 } 411 } else { 412 if (pause->rx_pause && pause->tx_pause) 413 hw->fc.requested_mode = e1000_fc_full; 414 else if (pause->rx_pause && !pause->tx_pause) 415 hw->fc.requested_mode = e1000_fc_rx_pause; 416 else if (!pause->rx_pause && pause->tx_pause) 417 hw->fc.requested_mode = e1000_fc_tx_pause; 418 else if (!pause->rx_pause && !pause->tx_pause) 419 hw->fc.requested_mode = e1000_fc_none; 420 421 hw->fc.current_mode = hw->fc.requested_mode; 422 423 retval = ((hw->phy.media_type == e1000_media_type_copper) ? 424 igb_force_mac_fc(hw) : igb_setup_link(hw)); 425 } 426 427 clear_bit(__IGB_RESETTING, &adapter->state); 428 return retval; 429 } 430 431 static u32 igb_get_msglevel(struct net_device *netdev) 432 { 433 struct igb_adapter *adapter = netdev_priv(netdev); 434 return adapter->msg_enable; 435 } 436 437 static void igb_set_msglevel(struct net_device *netdev, u32 data) 438 { 439 struct igb_adapter *adapter = netdev_priv(netdev); 440 adapter->msg_enable = data; 441 } 442 443 static int igb_get_regs_len(struct net_device *netdev) 444 { 445 #define IGB_REGS_LEN 739 446 return IGB_REGS_LEN * sizeof(u32); 447 } 448 449 static void igb_get_regs(struct net_device *netdev, 450 struct ethtool_regs *regs, void *p) 451 { 452 struct igb_adapter *adapter = netdev_priv(netdev); 453 struct e1000_hw *hw = &adapter->hw; 454 u32 *regs_buff = p; 455 u8 i; 456 457 memset(p, 0, IGB_REGS_LEN * sizeof(u32)); 458 459 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id; 460 461 /* General Registers */ 462 regs_buff[0] = rd32(E1000_CTRL); 463 regs_buff[1] = rd32(E1000_STATUS); 464 regs_buff[2] = rd32(E1000_CTRL_EXT); 465 regs_buff[3] = rd32(E1000_MDIC); 466 regs_buff[4] = rd32(E1000_SCTL); 467 regs_buff[5] = rd32(E1000_CONNSW); 468 regs_buff[6] = rd32(E1000_VET); 469 regs_buff[7] = rd32(E1000_LEDCTL); 470 regs_buff[8] = rd32(E1000_PBA); 471 regs_buff[9] = rd32(E1000_PBS); 472 regs_buff[10] = rd32(E1000_FRTIMER); 473 regs_buff[11] = rd32(E1000_TCPTIMER); 474 475 /* NVM Register */ 476 regs_buff[12] = rd32(E1000_EECD); 477 478 /* Interrupt */ 479 /* Reading EICS for EICR because they read the 480 * same but EICS does not clear on read 481 */ 482 regs_buff[13] = rd32(E1000_EICS); 483 regs_buff[14] = rd32(E1000_EICS); 484 regs_buff[15] = rd32(E1000_EIMS); 485 regs_buff[16] = rd32(E1000_EIMC); 486 regs_buff[17] = rd32(E1000_EIAC); 487 regs_buff[18] = rd32(E1000_EIAM); 488 /* Reading ICS for ICR because they read the 489 * same but ICS does not clear on read 490 */ 491 regs_buff[19] = rd32(E1000_ICS); 492 regs_buff[20] = rd32(E1000_ICS); 493 regs_buff[21] = rd32(E1000_IMS); 494 regs_buff[22] = rd32(E1000_IMC); 495 regs_buff[23] = rd32(E1000_IAC); 496 regs_buff[24] = rd32(E1000_IAM); 497 regs_buff[25] = rd32(E1000_IMIRVP); 498 499 /* Flow Control */ 500 regs_buff[26] = rd32(E1000_FCAL); 501 regs_buff[27] = rd32(E1000_FCAH); 502 regs_buff[28] = rd32(E1000_FCTTV); 503 regs_buff[29] = rd32(E1000_FCRTL); 504 regs_buff[30] = rd32(E1000_FCRTH); 505 regs_buff[31] = rd32(E1000_FCRTV); 506 507 /* Receive */ 508 regs_buff[32] = rd32(E1000_RCTL); 509 regs_buff[33] = rd32(E1000_RXCSUM); 510 regs_buff[34] = rd32(E1000_RLPML); 511 regs_buff[35] = rd32(E1000_RFCTL); 512 regs_buff[36] = rd32(E1000_MRQC); 513 regs_buff[37] = rd32(E1000_VT_CTL); 514 515 /* Transmit */ 516 regs_buff[38] = rd32(E1000_TCTL); 517 regs_buff[39] = rd32(E1000_TCTL_EXT); 518 regs_buff[40] = rd32(E1000_TIPG); 519 regs_buff[41] = rd32(E1000_DTXCTL); 520 521 /* Wake Up */ 522 regs_buff[42] = rd32(E1000_WUC); 523 regs_buff[43] = rd32(E1000_WUFC); 524 regs_buff[44] = rd32(E1000_WUS); 525 regs_buff[45] = rd32(E1000_IPAV); 526 regs_buff[46] = rd32(E1000_WUPL); 527 528 /* MAC */ 529 regs_buff[47] = rd32(E1000_PCS_CFG0); 530 regs_buff[48] = rd32(E1000_PCS_LCTL); 531 regs_buff[49] = rd32(E1000_PCS_LSTAT); 532 regs_buff[50] = rd32(E1000_PCS_ANADV); 533 regs_buff[51] = rd32(E1000_PCS_LPAB); 534 regs_buff[52] = rd32(E1000_PCS_NPTX); 535 regs_buff[53] = rd32(E1000_PCS_LPABNP); 536 537 /* Statistics */ 538 regs_buff[54] = adapter->stats.crcerrs; 539 regs_buff[55] = adapter->stats.algnerrc; 540 regs_buff[56] = adapter->stats.symerrs; 541 regs_buff[57] = adapter->stats.rxerrc; 542 regs_buff[58] = adapter->stats.mpc; 543 regs_buff[59] = adapter->stats.scc; 544 regs_buff[60] = adapter->stats.ecol; 545 regs_buff[61] = adapter->stats.mcc; 546 regs_buff[62] = adapter->stats.latecol; 547 regs_buff[63] = adapter->stats.colc; 548 regs_buff[64] = adapter->stats.dc; 549 regs_buff[65] = adapter->stats.tncrs; 550 regs_buff[66] = adapter->stats.sec; 551 regs_buff[67] = adapter->stats.htdpmc; 552 regs_buff[68] = adapter->stats.rlec; 553 regs_buff[69] = adapter->stats.xonrxc; 554 regs_buff[70] = adapter->stats.xontxc; 555 regs_buff[71] = adapter->stats.xoffrxc; 556 regs_buff[72] = adapter->stats.xofftxc; 557 regs_buff[73] = adapter->stats.fcruc; 558 regs_buff[74] = adapter->stats.prc64; 559 regs_buff[75] = adapter->stats.prc127; 560 regs_buff[76] = adapter->stats.prc255; 561 regs_buff[77] = adapter->stats.prc511; 562 regs_buff[78] = adapter->stats.prc1023; 563 regs_buff[79] = adapter->stats.prc1522; 564 regs_buff[80] = adapter->stats.gprc; 565 regs_buff[81] = adapter->stats.bprc; 566 regs_buff[82] = adapter->stats.mprc; 567 regs_buff[83] = adapter->stats.gptc; 568 regs_buff[84] = adapter->stats.gorc; 569 regs_buff[86] = adapter->stats.gotc; 570 regs_buff[88] = adapter->stats.rnbc; 571 regs_buff[89] = adapter->stats.ruc; 572 regs_buff[90] = adapter->stats.rfc; 573 regs_buff[91] = adapter->stats.roc; 574 regs_buff[92] = adapter->stats.rjc; 575 regs_buff[93] = adapter->stats.mgprc; 576 regs_buff[94] = adapter->stats.mgpdc; 577 regs_buff[95] = adapter->stats.mgptc; 578 regs_buff[96] = adapter->stats.tor; 579 regs_buff[98] = adapter->stats.tot; 580 regs_buff[100] = adapter->stats.tpr; 581 regs_buff[101] = adapter->stats.tpt; 582 regs_buff[102] = adapter->stats.ptc64; 583 regs_buff[103] = adapter->stats.ptc127; 584 regs_buff[104] = adapter->stats.ptc255; 585 regs_buff[105] = adapter->stats.ptc511; 586 regs_buff[106] = adapter->stats.ptc1023; 587 regs_buff[107] = adapter->stats.ptc1522; 588 regs_buff[108] = adapter->stats.mptc; 589 regs_buff[109] = adapter->stats.bptc; 590 regs_buff[110] = adapter->stats.tsctc; 591 regs_buff[111] = adapter->stats.iac; 592 regs_buff[112] = adapter->stats.rpthc; 593 regs_buff[113] = adapter->stats.hgptc; 594 regs_buff[114] = adapter->stats.hgorc; 595 regs_buff[116] = adapter->stats.hgotc; 596 regs_buff[118] = adapter->stats.lenerrs; 597 regs_buff[119] = adapter->stats.scvpc; 598 regs_buff[120] = adapter->stats.hrmpc; 599 600 for (i = 0; i < 4; i++) 601 regs_buff[121 + i] = rd32(E1000_SRRCTL(i)); 602 for (i = 0; i < 4; i++) 603 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i)); 604 for (i = 0; i < 4; i++) 605 regs_buff[129 + i] = rd32(E1000_RDBAL(i)); 606 for (i = 0; i < 4; i++) 607 regs_buff[133 + i] = rd32(E1000_RDBAH(i)); 608 for (i = 0; i < 4; i++) 609 regs_buff[137 + i] = rd32(E1000_RDLEN(i)); 610 for (i = 0; i < 4; i++) 611 regs_buff[141 + i] = rd32(E1000_RDH(i)); 612 for (i = 0; i < 4; i++) 613 regs_buff[145 + i] = rd32(E1000_RDT(i)); 614 for (i = 0; i < 4; i++) 615 regs_buff[149 + i] = rd32(E1000_RXDCTL(i)); 616 617 for (i = 0; i < 10; i++) 618 regs_buff[153 + i] = rd32(E1000_EITR(i)); 619 for (i = 0; i < 8; i++) 620 regs_buff[163 + i] = rd32(E1000_IMIR(i)); 621 for (i = 0; i < 8; i++) 622 regs_buff[171 + i] = rd32(E1000_IMIREXT(i)); 623 for (i = 0; i < 16; i++) 624 regs_buff[179 + i] = rd32(E1000_RAL(i)); 625 for (i = 0; i < 16; i++) 626 regs_buff[195 + i] = rd32(E1000_RAH(i)); 627 628 for (i = 0; i < 4; i++) 629 regs_buff[211 + i] = rd32(E1000_TDBAL(i)); 630 for (i = 0; i < 4; i++) 631 regs_buff[215 + i] = rd32(E1000_TDBAH(i)); 632 for (i = 0; i < 4; i++) 633 regs_buff[219 + i] = rd32(E1000_TDLEN(i)); 634 for (i = 0; i < 4; i++) 635 regs_buff[223 + i] = rd32(E1000_TDH(i)); 636 for (i = 0; i < 4; i++) 637 regs_buff[227 + i] = rd32(E1000_TDT(i)); 638 for (i = 0; i < 4; i++) 639 regs_buff[231 + i] = rd32(E1000_TXDCTL(i)); 640 for (i = 0; i < 4; i++) 641 regs_buff[235 + i] = rd32(E1000_TDWBAL(i)); 642 for (i = 0; i < 4; i++) 643 regs_buff[239 + i] = rd32(E1000_TDWBAH(i)); 644 for (i = 0; i < 4; i++) 645 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i)); 646 647 for (i = 0; i < 4; i++) 648 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i)); 649 for (i = 0; i < 4; i++) 650 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i)); 651 for (i = 0; i < 32; i++) 652 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i)); 653 for (i = 0; i < 128; i++) 654 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i)); 655 for (i = 0; i < 128; i++) 656 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i)); 657 for (i = 0; i < 4; i++) 658 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i)); 659 660 regs_buff[547] = rd32(E1000_TDFH); 661 regs_buff[548] = rd32(E1000_TDFT); 662 regs_buff[549] = rd32(E1000_TDFHS); 663 regs_buff[550] = rd32(E1000_TDFPC); 664 665 if (hw->mac.type > e1000_82580) { 666 regs_buff[551] = adapter->stats.o2bgptc; 667 regs_buff[552] = adapter->stats.b2ospc; 668 regs_buff[553] = adapter->stats.o2bspc; 669 regs_buff[554] = adapter->stats.b2ogprc; 670 } 671 672 if (hw->mac.type != e1000_82576) 673 return; 674 for (i = 0; i < 12; i++) 675 regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4)); 676 for (i = 0; i < 4; i++) 677 regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4)); 678 for (i = 0; i < 12; i++) 679 regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4)); 680 for (i = 0; i < 12; i++) 681 regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4)); 682 for (i = 0; i < 12; i++) 683 regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4)); 684 for (i = 0; i < 12; i++) 685 regs_buff[607 + i] = rd32(E1000_RDH(i + 4)); 686 for (i = 0; i < 12; i++) 687 regs_buff[619 + i] = rd32(E1000_RDT(i + 4)); 688 for (i = 0; i < 12; i++) 689 regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4)); 690 691 for (i = 0; i < 12; i++) 692 regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4)); 693 for (i = 0; i < 12; i++) 694 regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4)); 695 for (i = 0; i < 12; i++) 696 regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4)); 697 for (i = 0; i < 12; i++) 698 regs_buff[679 + i] = rd32(E1000_TDH(i + 4)); 699 for (i = 0; i < 12; i++) 700 regs_buff[691 + i] = rd32(E1000_TDT(i + 4)); 701 for (i = 0; i < 12; i++) 702 regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4)); 703 for (i = 0; i < 12; i++) 704 regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4)); 705 for (i = 0; i < 12; i++) 706 regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4)); 707 } 708 709 static int igb_get_eeprom_len(struct net_device *netdev) 710 { 711 struct igb_adapter *adapter = netdev_priv(netdev); 712 return adapter->hw.nvm.word_size * 2; 713 } 714 715 static int igb_get_eeprom(struct net_device *netdev, 716 struct ethtool_eeprom *eeprom, u8 *bytes) 717 { 718 struct igb_adapter *adapter = netdev_priv(netdev); 719 struct e1000_hw *hw = &adapter->hw; 720 u16 *eeprom_buff; 721 int first_word, last_word; 722 int ret_val = 0; 723 u16 i; 724 725 if (eeprom->len == 0) 726 return -EINVAL; 727 728 eeprom->magic = hw->vendor_id | (hw->device_id << 16); 729 730 first_word = eeprom->offset >> 1; 731 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 732 733 eeprom_buff = kmalloc(sizeof(u16) * 734 (last_word - first_word + 1), GFP_KERNEL); 735 if (!eeprom_buff) 736 return -ENOMEM; 737 738 if (hw->nvm.type == e1000_nvm_eeprom_spi) 739 ret_val = hw->nvm.ops.read(hw, first_word, 740 last_word - first_word + 1, 741 eeprom_buff); 742 else { 743 for (i = 0; i < last_word - first_word + 1; i++) { 744 ret_val = hw->nvm.ops.read(hw, first_word + i, 1, 745 &eeprom_buff[i]); 746 if (ret_val) 747 break; 748 } 749 } 750 751 /* Device's eeprom is always little-endian, word addressable */ 752 for (i = 0; i < last_word - first_word + 1; i++) 753 le16_to_cpus(&eeprom_buff[i]); 754 755 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), 756 eeprom->len); 757 kfree(eeprom_buff); 758 759 return ret_val; 760 } 761 762 static int igb_set_eeprom(struct net_device *netdev, 763 struct ethtool_eeprom *eeprom, u8 *bytes) 764 { 765 struct igb_adapter *adapter = netdev_priv(netdev); 766 struct e1000_hw *hw = &adapter->hw; 767 u16 *eeprom_buff; 768 void *ptr; 769 int max_len, first_word, last_word, ret_val = 0; 770 u16 i; 771 772 if (eeprom->len == 0) 773 return -EOPNOTSUPP; 774 775 if ((hw->mac.type >= e1000_i210) && 776 !igb_get_flash_presence_i210(hw)) { 777 return -EOPNOTSUPP; 778 } 779 780 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16))) 781 return -EFAULT; 782 783 max_len = hw->nvm.word_size * 2; 784 785 first_word = eeprom->offset >> 1; 786 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 787 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 788 if (!eeprom_buff) 789 return -ENOMEM; 790 791 ptr = (void *)eeprom_buff; 792 793 if (eeprom->offset & 1) { 794 /* need read/modify/write of first changed EEPROM word 795 * only the second byte of the word is being modified 796 */ 797 ret_val = hw->nvm.ops.read(hw, first_word, 1, 798 &eeprom_buff[0]); 799 ptr++; 800 } 801 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) { 802 /* need read/modify/write of last changed EEPROM word 803 * only the first byte of the word is being modified 804 */ 805 ret_val = hw->nvm.ops.read(hw, last_word, 1, 806 &eeprom_buff[last_word - first_word]); 807 } 808 809 /* Device's eeprom is always little-endian, word addressable */ 810 for (i = 0; i < last_word - first_word + 1; i++) 811 le16_to_cpus(&eeprom_buff[i]); 812 813 memcpy(ptr, bytes, eeprom->len); 814 815 for (i = 0; i < last_word - first_word + 1; i++) 816 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]); 817 818 ret_val = hw->nvm.ops.write(hw, first_word, 819 last_word - first_word + 1, eeprom_buff); 820 821 /* Update the checksum if nvm write succeeded */ 822 if (ret_val == 0) 823 hw->nvm.ops.update(hw); 824 825 igb_set_fw_version(adapter); 826 kfree(eeprom_buff); 827 return ret_val; 828 } 829 830 static void igb_get_drvinfo(struct net_device *netdev, 831 struct ethtool_drvinfo *drvinfo) 832 { 833 struct igb_adapter *adapter = netdev_priv(netdev); 834 835 strlcpy(drvinfo->driver, igb_driver_name, sizeof(drvinfo->driver)); 836 strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version)); 837 838 /* EEPROM image version # is reported as firmware version # for 839 * 82575 controllers 840 */ 841 strlcpy(drvinfo->fw_version, adapter->fw_version, 842 sizeof(drvinfo->fw_version)); 843 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 844 sizeof(drvinfo->bus_info)); 845 drvinfo->n_stats = IGB_STATS_LEN; 846 drvinfo->testinfo_len = IGB_TEST_LEN; 847 drvinfo->regdump_len = igb_get_regs_len(netdev); 848 drvinfo->eedump_len = igb_get_eeprom_len(netdev); 849 } 850 851 static void igb_get_ringparam(struct net_device *netdev, 852 struct ethtool_ringparam *ring) 853 { 854 struct igb_adapter *adapter = netdev_priv(netdev); 855 856 ring->rx_max_pending = IGB_MAX_RXD; 857 ring->tx_max_pending = IGB_MAX_TXD; 858 ring->rx_pending = adapter->rx_ring_count; 859 ring->tx_pending = adapter->tx_ring_count; 860 } 861 862 static int igb_set_ringparam(struct net_device *netdev, 863 struct ethtool_ringparam *ring) 864 { 865 struct igb_adapter *adapter = netdev_priv(netdev); 866 struct igb_ring *temp_ring; 867 int i, err = 0; 868 u16 new_rx_count, new_tx_count; 869 870 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 871 return -EINVAL; 872 873 new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD); 874 new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD); 875 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE); 876 877 new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD); 878 new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD); 879 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE); 880 881 if ((new_tx_count == adapter->tx_ring_count) && 882 (new_rx_count == adapter->rx_ring_count)) { 883 /* nothing to do */ 884 return 0; 885 } 886 887 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 888 usleep_range(1000, 2000); 889 890 if (!netif_running(adapter->netdev)) { 891 for (i = 0; i < adapter->num_tx_queues; i++) 892 adapter->tx_ring[i]->count = new_tx_count; 893 for (i = 0; i < adapter->num_rx_queues; i++) 894 adapter->rx_ring[i]->count = new_rx_count; 895 adapter->tx_ring_count = new_tx_count; 896 adapter->rx_ring_count = new_rx_count; 897 goto clear_reset; 898 } 899 900 if (adapter->num_tx_queues > adapter->num_rx_queues) 901 temp_ring = vmalloc(adapter->num_tx_queues * 902 sizeof(struct igb_ring)); 903 else 904 temp_ring = vmalloc(adapter->num_rx_queues * 905 sizeof(struct igb_ring)); 906 907 if (!temp_ring) { 908 err = -ENOMEM; 909 goto clear_reset; 910 } 911 912 igb_down(adapter); 913 914 /* We can't just free everything and then setup again, 915 * because the ISRs in MSI-X mode get passed pointers 916 * to the Tx and Rx ring structs. 917 */ 918 if (new_tx_count != adapter->tx_ring_count) { 919 for (i = 0; i < adapter->num_tx_queues; i++) { 920 memcpy(&temp_ring[i], adapter->tx_ring[i], 921 sizeof(struct igb_ring)); 922 923 temp_ring[i].count = new_tx_count; 924 err = igb_setup_tx_resources(&temp_ring[i]); 925 if (err) { 926 while (i) { 927 i--; 928 igb_free_tx_resources(&temp_ring[i]); 929 } 930 goto err_setup; 931 } 932 } 933 934 for (i = 0; i < adapter->num_tx_queues; i++) { 935 igb_free_tx_resources(adapter->tx_ring[i]); 936 937 memcpy(adapter->tx_ring[i], &temp_ring[i], 938 sizeof(struct igb_ring)); 939 } 940 941 adapter->tx_ring_count = new_tx_count; 942 } 943 944 if (new_rx_count != adapter->rx_ring_count) { 945 for (i = 0; i < adapter->num_rx_queues; i++) { 946 memcpy(&temp_ring[i], adapter->rx_ring[i], 947 sizeof(struct igb_ring)); 948 949 temp_ring[i].count = new_rx_count; 950 err = igb_setup_rx_resources(&temp_ring[i]); 951 if (err) { 952 while (i) { 953 i--; 954 igb_free_rx_resources(&temp_ring[i]); 955 } 956 goto err_setup; 957 } 958 959 } 960 961 for (i = 0; i < adapter->num_rx_queues; i++) { 962 igb_free_rx_resources(adapter->rx_ring[i]); 963 964 memcpy(adapter->rx_ring[i], &temp_ring[i], 965 sizeof(struct igb_ring)); 966 } 967 968 adapter->rx_ring_count = new_rx_count; 969 } 970 err_setup: 971 igb_up(adapter); 972 vfree(temp_ring); 973 clear_reset: 974 clear_bit(__IGB_RESETTING, &adapter->state); 975 return err; 976 } 977 978 /* ethtool register test data */ 979 struct igb_reg_test { 980 u16 reg; 981 u16 reg_offset; 982 u16 array_len; 983 u16 test_type; 984 u32 mask; 985 u32 write; 986 }; 987 988 /* In the hardware, registers are laid out either singly, in arrays 989 * spaced 0x100 bytes apart, or in contiguous tables. We assume 990 * most tests take place on arrays or single registers (handled 991 * as a single-element array) and special-case the tables. 992 * Table tests are always pattern tests. 993 * 994 * We also make provision for some required setup steps by specifying 995 * registers to be written without any read-back testing. 996 */ 997 998 #define PATTERN_TEST 1 999 #define SET_READ_TEST 2 1000 #define WRITE_NO_TEST 3 1001 #define TABLE32_TEST 4 1002 #define TABLE64_TEST_LO 5 1003 #define TABLE64_TEST_HI 6 1004 1005 /* i210 reg test */ 1006 static struct igb_reg_test reg_test_i210[] = { 1007 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1008 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1009 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1010 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1011 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1012 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1013 /* RDH is read-only for i210, only test RDT. */ 1014 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1015 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1016 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1017 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1018 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1019 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1020 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1021 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1022 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1023 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, 1024 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, 1025 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1026 { E1000_RA, 0, 16, TABLE64_TEST_LO, 1027 0xFFFFFFFF, 0xFFFFFFFF }, 1028 { E1000_RA, 0, 16, TABLE64_TEST_HI, 1029 0x900FFFFF, 0xFFFFFFFF }, 1030 { E1000_MTA, 0, 128, TABLE32_TEST, 1031 0xFFFFFFFF, 0xFFFFFFFF }, 1032 { 0, 0, 0, 0, 0 } 1033 }; 1034 1035 /* i350 reg test */ 1036 static struct igb_reg_test reg_test_i350[] = { 1037 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1038 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1039 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1040 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 }, 1041 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1042 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1043 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1044 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1045 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1046 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1047 /* RDH is read-only for i350, only test RDT. */ 1048 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1049 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1050 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1051 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1052 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1053 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1054 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1055 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1056 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1057 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1058 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1059 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1060 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1061 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1062 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, 1063 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, 1064 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1065 { E1000_RA, 0, 16, TABLE64_TEST_LO, 1066 0xFFFFFFFF, 0xFFFFFFFF }, 1067 { E1000_RA, 0, 16, TABLE64_TEST_HI, 1068 0xC3FFFFFF, 0xFFFFFFFF }, 1069 { E1000_RA2, 0, 16, TABLE64_TEST_LO, 1070 0xFFFFFFFF, 0xFFFFFFFF }, 1071 { E1000_RA2, 0, 16, TABLE64_TEST_HI, 1072 0xC3FFFFFF, 0xFFFFFFFF }, 1073 { E1000_MTA, 0, 128, TABLE32_TEST, 1074 0xFFFFFFFF, 0xFFFFFFFF }, 1075 { 0, 0, 0, 0 } 1076 }; 1077 1078 /* 82580 reg test */ 1079 static struct igb_reg_test reg_test_82580[] = { 1080 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1081 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1082 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1083 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1084 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1085 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1086 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1087 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1088 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1089 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1090 /* RDH is read-only for 82580, only test RDT. */ 1091 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1092 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1093 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1094 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1095 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1096 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1097 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1098 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1099 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1100 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1101 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1102 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1103 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1104 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1105 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, 1106 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, 1107 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1108 { E1000_RA, 0, 16, TABLE64_TEST_LO, 1109 0xFFFFFFFF, 0xFFFFFFFF }, 1110 { E1000_RA, 0, 16, TABLE64_TEST_HI, 1111 0x83FFFFFF, 0xFFFFFFFF }, 1112 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 1113 0xFFFFFFFF, 0xFFFFFFFF }, 1114 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 1115 0x83FFFFFF, 0xFFFFFFFF }, 1116 { E1000_MTA, 0, 128, TABLE32_TEST, 1117 0xFFFFFFFF, 0xFFFFFFFF }, 1118 { 0, 0, 0, 0 } 1119 }; 1120 1121 /* 82576 reg test */ 1122 static struct igb_reg_test reg_test_82576[] = { 1123 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1124 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1125 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1126 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1127 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1128 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1129 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1130 { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1131 { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1132 { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1133 /* Enable all RX queues before testing. */ 1134 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 1135 E1000_RXDCTL_QUEUE_ENABLE }, 1136 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 1137 E1000_RXDCTL_QUEUE_ENABLE }, 1138 /* RDH is read-only for 82576, only test RDT. */ 1139 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1140 { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1141 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 }, 1142 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 }, 1143 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1144 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1145 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1146 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1147 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1148 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1149 { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1150 { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1151 { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1152 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1153 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, 1154 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, 1155 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1156 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, 1157 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF }, 1158 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, 1159 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF }, 1160 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1161 { 0, 0, 0, 0 } 1162 }; 1163 1164 /* 82575 register test */ 1165 static struct igb_reg_test reg_test_82575[] = { 1166 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1167 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1168 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1169 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1170 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1171 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1172 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1173 /* Enable all four RX queues before testing. */ 1174 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 1175 E1000_RXDCTL_QUEUE_ENABLE }, 1176 /* RDH is read-only for 82575, only test RDT. */ 1177 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1178 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 }, 1179 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1180 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1181 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1182 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1183 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1184 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1185 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1186 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB }, 1187 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF }, 1188 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1189 { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF }, 1190 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, 1191 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF }, 1192 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1193 { 0, 0, 0, 0 } 1194 }; 1195 1196 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data, 1197 int reg, u32 mask, u32 write) 1198 { 1199 struct e1000_hw *hw = &adapter->hw; 1200 u32 pat, val; 1201 static const u32 _test[] = { 1202 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; 1203 for (pat = 0; pat < ARRAY_SIZE(_test); pat++) { 1204 wr32(reg, (_test[pat] & write)); 1205 val = rd32(reg) & mask; 1206 if (val != (_test[pat] & write & mask)) { 1207 dev_err(&adapter->pdev->dev, 1208 "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n", 1209 reg, val, (_test[pat] & write & mask)); 1210 *data = reg; 1211 return true; 1212 } 1213 } 1214 1215 return false; 1216 } 1217 1218 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data, 1219 int reg, u32 mask, u32 write) 1220 { 1221 struct e1000_hw *hw = &adapter->hw; 1222 u32 val; 1223 1224 wr32(reg, write & mask); 1225 val = rd32(reg); 1226 if ((write & mask) != (val & mask)) { 1227 dev_err(&adapter->pdev->dev, 1228 "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", 1229 reg, (val & mask), (write & mask)); 1230 *data = reg; 1231 return true; 1232 } 1233 1234 return false; 1235 } 1236 1237 #define REG_PATTERN_TEST(reg, mask, write) \ 1238 do { \ 1239 if (reg_pattern_test(adapter, data, reg, mask, write)) \ 1240 return 1; \ 1241 } while (0) 1242 1243 #define REG_SET_AND_CHECK(reg, mask, write) \ 1244 do { \ 1245 if (reg_set_and_check(adapter, data, reg, mask, write)) \ 1246 return 1; \ 1247 } while (0) 1248 1249 static int igb_reg_test(struct igb_adapter *adapter, u64 *data) 1250 { 1251 struct e1000_hw *hw = &adapter->hw; 1252 struct igb_reg_test *test; 1253 u32 value, before, after; 1254 u32 i, toggle; 1255 1256 switch (adapter->hw.mac.type) { 1257 case e1000_i350: 1258 case e1000_i354: 1259 test = reg_test_i350; 1260 toggle = 0x7FEFF3FF; 1261 break; 1262 case e1000_i210: 1263 case e1000_i211: 1264 test = reg_test_i210; 1265 toggle = 0x7FEFF3FF; 1266 break; 1267 case e1000_82580: 1268 test = reg_test_82580; 1269 toggle = 0x7FEFF3FF; 1270 break; 1271 case e1000_82576: 1272 test = reg_test_82576; 1273 toggle = 0x7FFFF3FF; 1274 break; 1275 default: 1276 test = reg_test_82575; 1277 toggle = 0x7FFFF3FF; 1278 break; 1279 } 1280 1281 /* Because the status register is such a special case, 1282 * we handle it separately from the rest of the register 1283 * tests. Some bits are read-only, some toggle, and some 1284 * are writable on newer MACs. 1285 */ 1286 before = rd32(E1000_STATUS); 1287 value = (rd32(E1000_STATUS) & toggle); 1288 wr32(E1000_STATUS, toggle); 1289 after = rd32(E1000_STATUS) & toggle; 1290 if (value != after) { 1291 dev_err(&adapter->pdev->dev, 1292 "failed STATUS register test got: 0x%08X expected: 0x%08X\n", 1293 after, value); 1294 *data = 1; 1295 return 1; 1296 } 1297 /* restore previous status */ 1298 wr32(E1000_STATUS, before); 1299 1300 /* Perform the remainder of the register test, looping through 1301 * the test table until we either fail or reach the null entry. 1302 */ 1303 while (test->reg) { 1304 for (i = 0; i < test->array_len; i++) { 1305 switch (test->test_type) { 1306 case PATTERN_TEST: 1307 REG_PATTERN_TEST(test->reg + 1308 (i * test->reg_offset), 1309 test->mask, 1310 test->write); 1311 break; 1312 case SET_READ_TEST: 1313 REG_SET_AND_CHECK(test->reg + 1314 (i * test->reg_offset), 1315 test->mask, 1316 test->write); 1317 break; 1318 case WRITE_NO_TEST: 1319 writel(test->write, 1320 (adapter->hw.hw_addr + test->reg) 1321 + (i * test->reg_offset)); 1322 break; 1323 case TABLE32_TEST: 1324 REG_PATTERN_TEST(test->reg + (i * 4), 1325 test->mask, 1326 test->write); 1327 break; 1328 case TABLE64_TEST_LO: 1329 REG_PATTERN_TEST(test->reg + (i * 8), 1330 test->mask, 1331 test->write); 1332 break; 1333 case TABLE64_TEST_HI: 1334 REG_PATTERN_TEST((test->reg + 4) + (i * 8), 1335 test->mask, 1336 test->write); 1337 break; 1338 } 1339 } 1340 test++; 1341 } 1342 1343 *data = 0; 1344 return 0; 1345 } 1346 1347 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data) 1348 { 1349 struct e1000_hw *hw = &adapter->hw; 1350 1351 *data = 0; 1352 1353 /* Validate eeprom on all parts but flashless */ 1354 switch (hw->mac.type) { 1355 case e1000_i210: 1356 case e1000_i211: 1357 if (igb_get_flash_presence_i210(hw)) { 1358 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0) 1359 *data = 2; 1360 } 1361 break; 1362 default: 1363 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0) 1364 *data = 2; 1365 break; 1366 } 1367 1368 return *data; 1369 } 1370 1371 static irqreturn_t igb_test_intr(int irq, void *data) 1372 { 1373 struct igb_adapter *adapter = (struct igb_adapter *) data; 1374 struct e1000_hw *hw = &adapter->hw; 1375 1376 adapter->test_icr |= rd32(E1000_ICR); 1377 1378 return IRQ_HANDLED; 1379 } 1380 1381 static int igb_intr_test(struct igb_adapter *adapter, u64 *data) 1382 { 1383 struct e1000_hw *hw = &adapter->hw; 1384 struct net_device *netdev = adapter->netdev; 1385 u32 mask, ics_mask, i = 0, shared_int = true; 1386 u32 irq = adapter->pdev->irq; 1387 1388 *data = 0; 1389 1390 /* Hook up test interrupt handler just for this test */ 1391 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1392 if (request_irq(adapter->msix_entries[0].vector, 1393 igb_test_intr, 0, netdev->name, adapter)) { 1394 *data = 1; 1395 return -1; 1396 } 1397 } else if (adapter->flags & IGB_FLAG_HAS_MSI) { 1398 shared_int = false; 1399 if (request_irq(irq, 1400 igb_test_intr, 0, netdev->name, adapter)) { 1401 *data = 1; 1402 return -1; 1403 } 1404 } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED, 1405 netdev->name, adapter)) { 1406 shared_int = false; 1407 } else if (request_irq(irq, igb_test_intr, IRQF_SHARED, 1408 netdev->name, adapter)) { 1409 *data = 1; 1410 return -1; 1411 } 1412 dev_info(&adapter->pdev->dev, "testing %s interrupt\n", 1413 (shared_int ? "shared" : "unshared")); 1414 1415 /* Disable all the interrupts */ 1416 wr32(E1000_IMC, ~0); 1417 wrfl(); 1418 usleep_range(10000, 11000); 1419 1420 /* Define all writable bits for ICS */ 1421 switch (hw->mac.type) { 1422 case e1000_82575: 1423 ics_mask = 0x37F47EDD; 1424 break; 1425 case e1000_82576: 1426 ics_mask = 0x77D4FBFD; 1427 break; 1428 case e1000_82580: 1429 ics_mask = 0x77DCFED5; 1430 break; 1431 case e1000_i350: 1432 case e1000_i354: 1433 case e1000_i210: 1434 case e1000_i211: 1435 ics_mask = 0x77DCFED5; 1436 break; 1437 default: 1438 ics_mask = 0x7FFFFFFF; 1439 break; 1440 } 1441 1442 /* Test each interrupt */ 1443 for (; i < 31; i++) { 1444 /* Interrupt to test */ 1445 mask = 1 << i; 1446 1447 if (!(mask & ics_mask)) 1448 continue; 1449 1450 if (!shared_int) { 1451 /* Disable the interrupt to be reported in 1452 * the cause register and then force the same 1453 * interrupt and see if one gets posted. If 1454 * an interrupt was posted to the bus, the 1455 * test failed. 1456 */ 1457 adapter->test_icr = 0; 1458 1459 /* Flush any pending interrupts */ 1460 wr32(E1000_ICR, ~0); 1461 1462 wr32(E1000_IMC, mask); 1463 wr32(E1000_ICS, mask); 1464 wrfl(); 1465 usleep_range(10000, 11000); 1466 1467 if (adapter->test_icr & mask) { 1468 *data = 3; 1469 break; 1470 } 1471 } 1472 1473 /* Enable the interrupt to be reported in 1474 * the cause register and then force the same 1475 * interrupt and see if one gets posted. If 1476 * an interrupt was not posted to the bus, the 1477 * test failed. 1478 */ 1479 adapter->test_icr = 0; 1480 1481 /* Flush any pending interrupts */ 1482 wr32(E1000_ICR, ~0); 1483 1484 wr32(E1000_IMS, mask); 1485 wr32(E1000_ICS, mask); 1486 wrfl(); 1487 usleep_range(10000, 11000); 1488 1489 if (!(adapter->test_icr & mask)) { 1490 *data = 4; 1491 break; 1492 } 1493 1494 if (!shared_int) { 1495 /* Disable the other interrupts to be reported in 1496 * the cause register and then force the other 1497 * interrupts and see if any get posted. If 1498 * an interrupt was posted to the bus, the 1499 * test failed. 1500 */ 1501 adapter->test_icr = 0; 1502 1503 /* Flush any pending interrupts */ 1504 wr32(E1000_ICR, ~0); 1505 1506 wr32(E1000_IMC, ~mask); 1507 wr32(E1000_ICS, ~mask); 1508 wrfl(); 1509 usleep_range(10000, 11000); 1510 1511 if (adapter->test_icr & mask) { 1512 *data = 5; 1513 break; 1514 } 1515 } 1516 } 1517 1518 /* Disable all the interrupts */ 1519 wr32(E1000_IMC, ~0); 1520 wrfl(); 1521 usleep_range(10000, 11000); 1522 1523 /* Unhook test interrupt handler */ 1524 if (adapter->flags & IGB_FLAG_HAS_MSIX) 1525 free_irq(adapter->msix_entries[0].vector, adapter); 1526 else 1527 free_irq(irq, adapter); 1528 1529 return *data; 1530 } 1531 1532 static void igb_free_desc_rings(struct igb_adapter *adapter) 1533 { 1534 igb_free_tx_resources(&adapter->test_tx_ring); 1535 igb_free_rx_resources(&adapter->test_rx_ring); 1536 } 1537 1538 static int igb_setup_desc_rings(struct igb_adapter *adapter) 1539 { 1540 struct igb_ring *tx_ring = &adapter->test_tx_ring; 1541 struct igb_ring *rx_ring = &adapter->test_rx_ring; 1542 struct e1000_hw *hw = &adapter->hw; 1543 int ret_val; 1544 1545 /* Setup Tx descriptor ring and Tx buffers */ 1546 tx_ring->count = IGB_DEFAULT_TXD; 1547 tx_ring->dev = &adapter->pdev->dev; 1548 tx_ring->netdev = adapter->netdev; 1549 tx_ring->reg_idx = adapter->vfs_allocated_count; 1550 1551 if (igb_setup_tx_resources(tx_ring)) { 1552 ret_val = 1; 1553 goto err_nomem; 1554 } 1555 1556 igb_setup_tctl(adapter); 1557 igb_configure_tx_ring(adapter, tx_ring); 1558 1559 /* Setup Rx descriptor ring and Rx buffers */ 1560 rx_ring->count = IGB_DEFAULT_RXD; 1561 rx_ring->dev = &adapter->pdev->dev; 1562 rx_ring->netdev = adapter->netdev; 1563 rx_ring->reg_idx = adapter->vfs_allocated_count; 1564 1565 if (igb_setup_rx_resources(rx_ring)) { 1566 ret_val = 3; 1567 goto err_nomem; 1568 } 1569 1570 /* set the default queue to queue 0 of PF */ 1571 wr32(E1000_MRQC, adapter->vfs_allocated_count << 3); 1572 1573 /* enable receive ring */ 1574 igb_setup_rctl(adapter); 1575 igb_configure_rx_ring(adapter, rx_ring); 1576 1577 igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring)); 1578 1579 return 0; 1580 1581 err_nomem: 1582 igb_free_desc_rings(adapter); 1583 return ret_val; 1584 } 1585 1586 static void igb_phy_disable_receiver(struct igb_adapter *adapter) 1587 { 1588 struct e1000_hw *hw = &adapter->hw; 1589 1590 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1591 igb_write_phy_reg(hw, 29, 0x001F); 1592 igb_write_phy_reg(hw, 30, 0x8FFC); 1593 igb_write_phy_reg(hw, 29, 0x001A); 1594 igb_write_phy_reg(hw, 30, 0x8FF0); 1595 } 1596 1597 static int igb_integrated_phy_loopback(struct igb_adapter *adapter) 1598 { 1599 struct e1000_hw *hw = &adapter->hw; 1600 u32 ctrl_reg = 0; 1601 1602 hw->mac.autoneg = false; 1603 1604 if (hw->phy.type == e1000_phy_m88) { 1605 if (hw->phy.id != I210_I_PHY_ID) { 1606 /* Auto-MDI/MDIX Off */ 1607 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); 1608 /* reset to update Auto-MDI/MDIX */ 1609 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140); 1610 /* autoneg off */ 1611 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140); 1612 } else { 1613 /* force 1000, set loopback */ 1614 igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0); 1615 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140); 1616 } 1617 } else if (hw->phy.type == e1000_phy_82580) { 1618 /* enable MII loopback */ 1619 igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041); 1620 } 1621 1622 /* add small delay to avoid loopback test failure */ 1623 msleep(50); 1624 1625 /* force 1000, set loopback */ 1626 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140); 1627 1628 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1629 ctrl_reg = rd32(E1000_CTRL); 1630 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1631 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1632 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1633 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1634 E1000_CTRL_FD | /* Force Duplex to FULL */ 1635 E1000_CTRL_SLU); /* Set link up enable bit */ 1636 1637 if (hw->phy.type == e1000_phy_m88) 1638 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1639 1640 wr32(E1000_CTRL, ctrl_reg); 1641 1642 /* Disable the receiver on the PHY so when a cable is plugged in, the 1643 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1644 */ 1645 if (hw->phy.type == e1000_phy_m88) 1646 igb_phy_disable_receiver(adapter); 1647 1648 mdelay(500); 1649 return 0; 1650 } 1651 1652 static int igb_set_phy_loopback(struct igb_adapter *adapter) 1653 { 1654 return igb_integrated_phy_loopback(adapter); 1655 } 1656 1657 static int igb_setup_loopback_test(struct igb_adapter *adapter) 1658 { 1659 struct e1000_hw *hw = &adapter->hw; 1660 u32 reg; 1661 1662 reg = rd32(E1000_CTRL_EXT); 1663 1664 /* use CTRL_EXT to identify link type as SGMII can appear as copper */ 1665 if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) { 1666 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) || 1667 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) || 1668 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) || 1669 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) || 1670 (hw->device_id == E1000_DEV_ID_I354_SGMII) || 1671 (hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) { 1672 /* Enable DH89xxCC MPHY for near end loopback */ 1673 reg = rd32(E1000_MPHY_ADDR_CTL); 1674 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) | 1675 E1000_MPHY_PCS_CLK_REG_OFFSET; 1676 wr32(E1000_MPHY_ADDR_CTL, reg); 1677 1678 reg = rd32(E1000_MPHY_DATA); 1679 reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN; 1680 wr32(E1000_MPHY_DATA, reg); 1681 } 1682 1683 reg = rd32(E1000_RCTL); 1684 reg |= E1000_RCTL_LBM_TCVR; 1685 wr32(E1000_RCTL, reg); 1686 1687 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK); 1688 1689 reg = rd32(E1000_CTRL); 1690 reg &= ~(E1000_CTRL_RFCE | 1691 E1000_CTRL_TFCE | 1692 E1000_CTRL_LRST); 1693 reg |= E1000_CTRL_SLU | 1694 E1000_CTRL_FD; 1695 wr32(E1000_CTRL, reg); 1696 1697 /* Unset switch control to serdes energy detect */ 1698 reg = rd32(E1000_CONNSW); 1699 reg &= ~E1000_CONNSW_ENRGSRC; 1700 wr32(E1000_CONNSW, reg); 1701 1702 /* Unset sigdetect for SERDES loopback on 1703 * 82580 and newer devices. 1704 */ 1705 if (hw->mac.type >= e1000_82580) { 1706 reg = rd32(E1000_PCS_CFG0); 1707 reg |= E1000_PCS_CFG_IGN_SD; 1708 wr32(E1000_PCS_CFG0, reg); 1709 } 1710 1711 /* Set PCS register for forced speed */ 1712 reg = rd32(E1000_PCS_LCTL); 1713 reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/ 1714 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */ 1715 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */ 1716 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */ 1717 E1000_PCS_LCTL_FSD | /* Force Speed */ 1718 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */ 1719 wr32(E1000_PCS_LCTL, reg); 1720 1721 return 0; 1722 } 1723 1724 return igb_set_phy_loopback(adapter); 1725 } 1726 1727 static void igb_loopback_cleanup(struct igb_adapter *adapter) 1728 { 1729 struct e1000_hw *hw = &adapter->hw; 1730 u32 rctl; 1731 u16 phy_reg; 1732 1733 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) || 1734 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) || 1735 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) || 1736 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) || 1737 (hw->device_id == E1000_DEV_ID_I354_SGMII)) { 1738 u32 reg; 1739 1740 /* Disable near end loopback on DH89xxCC */ 1741 reg = rd32(E1000_MPHY_ADDR_CTL); 1742 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) | 1743 E1000_MPHY_PCS_CLK_REG_OFFSET; 1744 wr32(E1000_MPHY_ADDR_CTL, reg); 1745 1746 reg = rd32(E1000_MPHY_DATA); 1747 reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN; 1748 wr32(E1000_MPHY_DATA, reg); 1749 } 1750 1751 rctl = rd32(E1000_RCTL); 1752 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1753 wr32(E1000_RCTL, rctl); 1754 1755 hw->mac.autoneg = true; 1756 igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg); 1757 if (phy_reg & MII_CR_LOOPBACK) { 1758 phy_reg &= ~MII_CR_LOOPBACK; 1759 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg); 1760 igb_phy_sw_reset(hw); 1761 } 1762 } 1763 1764 static void igb_create_lbtest_frame(struct sk_buff *skb, 1765 unsigned int frame_size) 1766 { 1767 memset(skb->data, 0xFF, frame_size); 1768 frame_size /= 2; 1769 memset(&skb->data[frame_size], 0xAA, frame_size - 1); 1770 memset(&skb->data[frame_size + 10], 0xBE, 1); 1771 memset(&skb->data[frame_size + 12], 0xAF, 1); 1772 } 1773 1774 static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer, 1775 unsigned int frame_size) 1776 { 1777 unsigned char *data; 1778 bool match = true; 1779 1780 frame_size >>= 1; 1781 1782 data = kmap(rx_buffer->page); 1783 1784 if (data[3] != 0xFF || 1785 data[frame_size + 10] != 0xBE || 1786 data[frame_size + 12] != 0xAF) 1787 match = false; 1788 1789 kunmap(rx_buffer->page); 1790 1791 return match; 1792 } 1793 1794 static int igb_clean_test_rings(struct igb_ring *rx_ring, 1795 struct igb_ring *tx_ring, 1796 unsigned int size) 1797 { 1798 union e1000_adv_rx_desc *rx_desc; 1799 struct igb_rx_buffer *rx_buffer_info; 1800 struct igb_tx_buffer *tx_buffer_info; 1801 u16 rx_ntc, tx_ntc, count = 0; 1802 1803 /* initialize next to clean and descriptor values */ 1804 rx_ntc = rx_ring->next_to_clean; 1805 tx_ntc = tx_ring->next_to_clean; 1806 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc); 1807 1808 while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) { 1809 /* check Rx buffer */ 1810 rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc]; 1811 1812 /* sync Rx buffer for CPU read */ 1813 dma_sync_single_for_cpu(rx_ring->dev, 1814 rx_buffer_info->dma, 1815 IGB_RX_BUFSZ, 1816 DMA_FROM_DEVICE); 1817 1818 /* verify contents of skb */ 1819 if (igb_check_lbtest_frame(rx_buffer_info, size)) 1820 count++; 1821 1822 /* sync Rx buffer for device write */ 1823 dma_sync_single_for_device(rx_ring->dev, 1824 rx_buffer_info->dma, 1825 IGB_RX_BUFSZ, 1826 DMA_FROM_DEVICE); 1827 1828 /* unmap buffer on Tx side */ 1829 tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc]; 1830 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info); 1831 1832 /* increment Rx/Tx next to clean counters */ 1833 rx_ntc++; 1834 if (rx_ntc == rx_ring->count) 1835 rx_ntc = 0; 1836 tx_ntc++; 1837 if (tx_ntc == tx_ring->count) 1838 tx_ntc = 0; 1839 1840 /* fetch next descriptor */ 1841 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc); 1842 } 1843 1844 netdev_tx_reset_queue(txring_txq(tx_ring)); 1845 1846 /* re-map buffers to ring, store next to clean values */ 1847 igb_alloc_rx_buffers(rx_ring, count); 1848 rx_ring->next_to_clean = rx_ntc; 1849 tx_ring->next_to_clean = tx_ntc; 1850 1851 return count; 1852 } 1853 1854 static int igb_run_loopback_test(struct igb_adapter *adapter) 1855 { 1856 struct igb_ring *tx_ring = &adapter->test_tx_ring; 1857 struct igb_ring *rx_ring = &adapter->test_rx_ring; 1858 u16 i, j, lc, good_cnt; 1859 int ret_val = 0; 1860 unsigned int size = IGB_RX_HDR_LEN; 1861 netdev_tx_t tx_ret_val; 1862 struct sk_buff *skb; 1863 1864 /* allocate test skb */ 1865 skb = alloc_skb(size, GFP_KERNEL); 1866 if (!skb) 1867 return 11; 1868 1869 /* place data into test skb */ 1870 igb_create_lbtest_frame(skb, size); 1871 skb_put(skb, size); 1872 1873 /* Calculate the loop count based on the largest descriptor ring 1874 * The idea is to wrap the largest ring a number of times using 64 1875 * send/receive pairs during each loop 1876 */ 1877 1878 if (rx_ring->count <= tx_ring->count) 1879 lc = ((tx_ring->count / 64) * 2) + 1; 1880 else 1881 lc = ((rx_ring->count / 64) * 2) + 1; 1882 1883 for (j = 0; j <= lc; j++) { /* loop count loop */ 1884 /* reset count of good packets */ 1885 good_cnt = 0; 1886 1887 /* place 64 packets on the transmit queue*/ 1888 for (i = 0; i < 64; i++) { 1889 skb_get(skb); 1890 tx_ret_val = igb_xmit_frame_ring(skb, tx_ring); 1891 if (tx_ret_val == NETDEV_TX_OK) 1892 good_cnt++; 1893 } 1894 1895 if (good_cnt != 64) { 1896 ret_val = 12; 1897 break; 1898 } 1899 1900 /* allow 200 milliseconds for packets to go from Tx to Rx */ 1901 msleep(200); 1902 1903 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size); 1904 if (good_cnt != 64) { 1905 ret_val = 13; 1906 break; 1907 } 1908 } /* end loop count loop */ 1909 1910 /* free the original skb */ 1911 kfree_skb(skb); 1912 1913 return ret_val; 1914 } 1915 1916 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data) 1917 { 1918 /* PHY loopback cannot be performed if SoL/IDER 1919 * sessions are active 1920 */ 1921 if (igb_check_reset_block(&adapter->hw)) { 1922 dev_err(&adapter->pdev->dev, 1923 "Cannot do PHY loopback test when SoL/IDER is active.\n"); 1924 *data = 0; 1925 goto out; 1926 } 1927 1928 if (adapter->hw.mac.type == e1000_i354) { 1929 dev_info(&adapter->pdev->dev, 1930 "Loopback test not supported on i354.\n"); 1931 *data = 0; 1932 goto out; 1933 } 1934 *data = igb_setup_desc_rings(adapter); 1935 if (*data) 1936 goto out; 1937 *data = igb_setup_loopback_test(adapter); 1938 if (*data) 1939 goto err_loopback; 1940 *data = igb_run_loopback_test(adapter); 1941 igb_loopback_cleanup(adapter); 1942 1943 err_loopback: 1944 igb_free_desc_rings(adapter); 1945 out: 1946 return *data; 1947 } 1948 1949 static int igb_link_test(struct igb_adapter *adapter, u64 *data) 1950 { 1951 struct e1000_hw *hw = &adapter->hw; 1952 *data = 0; 1953 if (hw->phy.media_type == e1000_media_type_internal_serdes) { 1954 int i = 0; 1955 1956 hw->mac.serdes_has_link = false; 1957 1958 /* On some blade server designs, link establishment 1959 * could take as long as 2-3 minutes 1960 */ 1961 do { 1962 hw->mac.ops.check_for_link(&adapter->hw); 1963 if (hw->mac.serdes_has_link) 1964 return *data; 1965 msleep(20); 1966 } while (i++ < 3750); 1967 1968 *data = 1; 1969 } else { 1970 hw->mac.ops.check_for_link(&adapter->hw); 1971 if (hw->mac.autoneg) 1972 msleep(5000); 1973 1974 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) 1975 *data = 1; 1976 } 1977 return *data; 1978 } 1979 1980 static void igb_diag_test(struct net_device *netdev, 1981 struct ethtool_test *eth_test, u64 *data) 1982 { 1983 struct igb_adapter *adapter = netdev_priv(netdev); 1984 u16 autoneg_advertised; 1985 u8 forced_speed_duplex, autoneg; 1986 bool if_running = netif_running(netdev); 1987 1988 set_bit(__IGB_TESTING, &adapter->state); 1989 1990 /* can't do offline tests on media switching devices */ 1991 if (adapter->hw.dev_spec._82575.mas_capable) 1992 eth_test->flags &= ~ETH_TEST_FL_OFFLINE; 1993 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1994 /* Offline tests */ 1995 1996 /* save speed, duplex, autoneg settings */ 1997 autoneg_advertised = adapter->hw.phy.autoneg_advertised; 1998 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; 1999 autoneg = adapter->hw.mac.autoneg; 2000 2001 dev_info(&adapter->pdev->dev, "offline testing starting\n"); 2002 2003 /* power up link for link test */ 2004 igb_power_up_link(adapter); 2005 2006 /* Link test performed before hardware reset so autoneg doesn't 2007 * interfere with test result 2008 */ 2009 if (igb_link_test(adapter, &data[4])) 2010 eth_test->flags |= ETH_TEST_FL_FAILED; 2011 2012 if (if_running) 2013 /* indicate we're in test mode */ 2014 dev_close(netdev); 2015 else 2016 igb_reset(adapter); 2017 2018 if (igb_reg_test(adapter, &data[0])) 2019 eth_test->flags |= ETH_TEST_FL_FAILED; 2020 2021 igb_reset(adapter); 2022 if (igb_eeprom_test(adapter, &data[1])) 2023 eth_test->flags |= ETH_TEST_FL_FAILED; 2024 2025 igb_reset(adapter); 2026 if (igb_intr_test(adapter, &data[2])) 2027 eth_test->flags |= ETH_TEST_FL_FAILED; 2028 2029 igb_reset(adapter); 2030 /* power up link for loopback test */ 2031 igb_power_up_link(adapter); 2032 if (igb_loopback_test(adapter, &data[3])) 2033 eth_test->flags |= ETH_TEST_FL_FAILED; 2034 2035 /* restore speed, duplex, autoneg settings */ 2036 adapter->hw.phy.autoneg_advertised = autoneg_advertised; 2037 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; 2038 adapter->hw.mac.autoneg = autoneg; 2039 2040 /* force this routine to wait until autoneg complete/timeout */ 2041 adapter->hw.phy.autoneg_wait_to_complete = true; 2042 igb_reset(adapter); 2043 adapter->hw.phy.autoneg_wait_to_complete = false; 2044 2045 clear_bit(__IGB_TESTING, &adapter->state); 2046 if (if_running) 2047 dev_open(netdev); 2048 } else { 2049 dev_info(&adapter->pdev->dev, "online testing starting\n"); 2050 2051 /* PHY is powered down when interface is down */ 2052 if (if_running && igb_link_test(adapter, &data[4])) 2053 eth_test->flags |= ETH_TEST_FL_FAILED; 2054 else 2055 data[4] = 0; 2056 2057 /* Online tests aren't run; pass by default */ 2058 data[0] = 0; 2059 data[1] = 0; 2060 data[2] = 0; 2061 data[3] = 0; 2062 2063 clear_bit(__IGB_TESTING, &adapter->state); 2064 } 2065 msleep_interruptible(4 * 1000); 2066 } 2067 2068 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 2069 { 2070 struct igb_adapter *adapter = netdev_priv(netdev); 2071 2072 wol->wolopts = 0; 2073 2074 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED)) 2075 return; 2076 2077 wol->supported = WAKE_UCAST | WAKE_MCAST | 2078 WAKE_BCAST | WAKE_MAGIC | 2079 WAKE_PHY; 2080 2081 /* apply any specific unsupported masks here */ 2082 switch (adapter->hw.device_id) { 2083 default: 2084 break; 2085 } 2086 2087 if (adapter->wol & E1000_WUFC_EX) 2088 wol->wolopts |= WAKE_UCAST; 2089 if (adapter->wol & E1000_WUFC_MC) 2090 wol->wolopts |= WAKE_MCAST; 2091 if (adapter->wol & E1000_WUFC_BC) 2092 wol->wolopts |= WAKE_BCAST; 2093 if (adapter->wol & E1000_WUFC_MAG) 2094 wol->wolopts |= WAKE_MAGIC; 2095 if (adapter->wol & E1000_WUFC_LNKC) 2096 wol->wolopts |= WAKE_PHY; 2097 } 2098 2099 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 2100 { 2101 struct igb_adapter *adapter = netdev_priv(netdev); 2102 2103 if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE)) 2104 return -EOPNOTSUPP; 2105 2106 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED)) 2107 return wol->wolopts ? -EOPNOTSUPP : 0; 2108 2109 /* these settings will always override what we currently have */ 2110 adapter->wol = 0; 2111 2112 if (wol->wolopts & WAKE_UCAST) 2113 adapter->wol |= E1000_WUFC_EX; 2114 if (wol->wolopts & WAKE_MCAST) 2115 adapter->wol |= E1000_WUFC_MC; 2116 if (wol->wolopts & WAKE_BCAST) 2117 adapter->wol |= E1000_WUFC_BC; 2118 if (wol->wolopts & WAKE_MAGIC) 2119 adapter->wol |= E1000_WUFC_MAG; 2120 if (wol->wolopts & WAKE_PHY) 2121 adapter->wol |= E1000_WUFC_LNKC; 2122 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 2123 2124 return 0; 2125 } 2126 2127 /* bit defines for adapter->led_status */ 2128 #define IGB_LED_ON 0 2129 2130 static int igb_set_phys_id(struct net_device *netdev, 2131 enum ethtool_phys_id_state state) 2132 { 2133 struct igb_adapter *adapter = netdev_priv(netdev); 2134 struct e1000_hw *hw = &adapter->hw; 2135 2136 switch (state) { 2137 case ETHTOOL_ID_ACTIVE: 2138 igb_blink_led(hw); 2139 return 2; 2140 case ETHTOOL_ID_ON: 2141 igb_blink_led(hw); 2142 break; 2143 case ETHTOOL_ID_OFF: 2144 igb_led_off(hw); 2145 break; 2146 case ETHTOOL_ID_INACTIVE: 2147 igb_led_off(hw); 2148 clear_bit(IGB_LED_ON, &adapter->led_status); 2149 igb_cleanup_led(hw); 2150 break; 2151 } 2152 2153 return 0; 2154 } 2155 2156 static int igb_set_coalesce(struct net_device *netdev, 2157 struct ethtool_coalesce *ec) 2158 { 2159 struct igb_adapter *adapter = netdev_priv(netdev); 2160 int i; 2161 2162 if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) || 2163 ((ec->rx_coalesce_usecs > 3) && 2164 (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) || 2165 (ec->rx_coalesce_usecs == 2)) 2166 return -EINVAL; 2167 2168 if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) || 2169 ((ec->tx_coalesce_usecs > 3) && 2170 (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) || 2171 (ec->tx_coalesce_usecs == 2)) 2172 return -EINVAL; 2173 2174 if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs) 2175 return -EINVAL; 2176 2177 /* If ITR is disabled, disable DMAC */ 2178 if (ec->rx_coalesce_usecs == 0) { 2179 if (adapter->flags & IGB_FLAG_DMAC) 2180 adapter->flags &= ~IGB_FLAG_DMAC; 2181 } 2182 2183 /* convert to rate of irq's per second */ 2184 if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3) 2185 adapter->rx_itr_setting = ec->rx_coalesce_usecs; 2186 else 2187 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2; 2188 2189 /* convert to rate of irq's per second */ 2190 if (adapter->flags & IGB_FLAG_QUEUE_PAIRS) 2191 adapter->tx_itr_setting = adapter->rx_itr_setting; 2192 else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3) 2193 adapter->tx_itr_setting = ec->tx_coalesce_usecs; 2194 else 2195 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2; 2196 2197 for (i = 0; i < adapter->num_q_vectors; i++) { 2198 struct igb_q_vector *q_vector = adapter->q_vector[i]; 2199 q_vector->tx.work_limit = adapter->tx_work_limit; 2200 if (q_vector->rx.ring) 2201 q_vector->itr_val = adapter->rx_itr_setting; 2202 else 2203 q_vector->itr_val = adapter->tx_itr_setting; 2204 if (q_vector->itr_val && q_vector->itr_val <= 3) 2205 q_vector->itr_val = IGB_START_ITR; 2206 q_vector->set_itr = 1; 2207 } 2208 2209 return 0; 2210 } 2211 2212 static int igb_get_coalesce(struct net_device *netdev, 2213 struct ethtool_coalesce *ec) 2214 { 2215 struct igb_adapter *adapter = netdev_priv(netdev); 2216 2217 if (adapter->rx_itr_setting <= 3) 2218 ec->rx_coalesce_usecs = adapter->rx_itr_setting; 2219 else 2220 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2; 2221 2222 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) { 2223 if (adapter->tx_itr_setting <= 3) 2224 ec->tx_coalesce_usecs = adapter->tx_itr_setting; 2225 else 2226 ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2; 2227 } 2228 2229 return 0; 2230 } 2231 2232 static int igb_nway_reset(struct net_device *netdev) 2233 { 2234 struct igb_adapter *adapter = netdev_priv(netdev); 2235 if (netif_running(netdev)) 2236 igb_reinit_locked(adapter); 2237 return 0; 2238 } 2239 2240 static int igb_get_sset_count(struct net_device *netdev, int sset) 2241 { 2242 switch (sset) { 2243 case ETH_SS_STATS: 2244 return IGB_STATS_LEN; 2245 case ETH_SS_TEST: 2246 return IGB_TEST_LEN; 2247 default: 2248 return -ENOTSUPP; 2249 } 2250 } 2251 2252 static void igb_get_ethtool_stats(struct net_device *netdev, 2253 struct ethtool_stats *stats, u64 *data) 2254 { 2255 struct igb_adapter *adapter = netdev_priv(netdev); 2256 struct rtnl_link_stats64 *net_stats = &adapter->stats64; 2257 unsigned int start; 2258 struct igb_ring *ring; 2259 int i, j; 2260 char *p; 2261 2262 spin_lock(&adapter->stats64_lock); 2263 igb_update_stats(adapter, net_stats); 2264 2265 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) { 2266 p = (char *)adapter + igb_gstrings_stats[i].stat_offset; 2267 data[i] = (igb_gstrings_stats[i].sizeof_stat == 2268 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 2269 } 2270 for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) { 2271 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset; 2272 data[i] = (igb_gstrings_net_stats[j].sizeof_stat == 2273 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 2274 } 2275 for (j = 0; j < adapter->num_tx_queues; j++) { 2276 u64 restart2; 2277 2278 ring = adapter->tx_ring[j]; 2279 do { 2280 start = u64_stats_fetch_begin_irq(&ring->tx_syncp); 2281 data[i] = ring->tx_stats.packets; 2282 data[i+1] = ring->tx_stats.bytes; 2283 data[i+2] = ring->tx_stats.restart_queue; 2284 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start)); 2285 do { 2286 start = u64_stats_fetch_begin_irq(&ring->tx_syncp2); 2287 restart2 = ring->tx_stats.restart_queue2; 2288 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start)); 2289 data[i+2] += restart2; 2290 2291 i += IGB_TX_QUEUE_STATS_LEN; 2292 } 2293 for (j = 0; j < adapter->num_rx_queues; j++) { 2294 ring = adapter->rx_ring[j]; 2295 do { 2296 start = u64_stats_fetch_begin_irq(&ring->rx_syncp); 2297 data[i] = ring->rx_stats.packets; 2298 data[i+1] = ring->rx_stats.bytes; 2299 data[i+2] = ring->rx_stats.drops; 2300 data[i+3] = ring->rx_stats.csum_err; 2301 data[i+4] = ring->rx_stats.alloc_failed; 2302 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start)); 2303 i += IGB_RX_QUEUE_STATS_LEN; 2304 } 2305 spin_unlock(&adapter->stats64_lock); 2306 } 2307 2308 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data) 2309 { 2310 struct igb_adapter *adapter = netdev_priv(netdev); 2311 u8 *p = data; 2312 int i; 2313 2314 switch (stringset) { 2315 case ETH_SS_TEST: 2316 memcpy(data, *igb_gstrings_test, 2317 IGB_TEST_LEN*ETH_GSTRING_LEN); 2318 break; 2319 case ETH_SS_STATS: 2320 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) { 2321 memcpy(p, igb_gstrings_stats[i].stat_string, 2322 ETH_GSTRING_LEN); 2323 p += ETH_GSTRING_LEN; 2324 } 2325 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) { 2326 memcpy(p, igb_gstrings_net_stats[i].stat_string, 2327 ETH_GSTRING_LEN); 2328 p += ETH_GSTRING_LEN; 2329 } 2330 for (i = 0; i < adapter->num_tx_queues; i++) { 2331 sprintf(p, "tx_queue_%u_packets", i); 2332 p += ETH_GSTRING_LEN; 2333 sprintf(p, "tx_queue_%u_bytes", i); 2334 p += ETH_GSTRING_LEN; 2335 sprintf(p, "tx_queue_%u_restart", i); 2336 p += ETH_GSTRING_LEN; 2337 } 2338 for (i = 0; i < adapter->num_rx_queues; i++) { 2339 sprintf(p, "rx_queue_%u_packets", i); 2340 p += ETH_GSTRING_LEN; 2341 sprintf(p, "rx_queue_%u_bytes", i); 2342 p += ETH_GSTRING_LEN; 2343 sprintf(p, "rx_queue_%u_drops", i); 2344 p += ETH_GSTRING_LEN; 2345 sprintf(p, "rx_queue_%u_csum_err", i); 2346 p += ETH_GSTRING_LEN; 2347 sprintf(p, "rx_queue_%u_alloc_failed", i); 2348 p += ETH_GSTRING_LEN; 2349 } 2350 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */ 2351 break; 2352 } 2353 } 2354 2355 static int igb_get_ts_info(struct net_device *dev, 2356 struct ethtool_ts_info *info) 2357 { 2358 struct igb_adapter *adapter = netdev_priv(dev); 2359 2360 if (adapter->ptp_clock) 2361 info->phc_index = ptp_clock_index(adapter->ptp_clock); 2362 else 2363 info->phc_index = -1; 2364 2365 switch (adapter->hw.mac.type) { 2366 case e1000_82575: 2367 info->so_timestamping = 2368 SOF_TIMESTAMPING_TX_SOFTWARE | 2369 SOF_TIMESTAMPING_RX_SOFTWARE | 2370 SOF_TIMESTAMPING_SOFTWARE; 2371 return 0; 2372 case e1000_82576: 2373 case e1000_82580: 2374 case e1000_i350: 2375 case e1000_i354: 2376 case e1000_i210: 2377 case e1000_i211: 2378 info->so_timestamping = 2379 SOF_TIMESTAMPING_TX_SOFTWARE | 2380 SOF_TIMESTAMPING_RX_SOFTWARE | 2381 SOF_TIMESTAMPING_SOFTWARE | 2382 SOF_TIMESTAMPING_TX_HARDWARE | 2383 SOF_TIMESTAMPING_RX_HARDWARE | 2384 SOF_TIMESTAMPING_RAW_HARDWARE; 2385 2386 info->tx_types = 2387 (1 << HWTSTAMP_TX_OFF) | 2388 (1 << HWTSTAMP_TX_ON); 2389 2390 info->rx_filters = 1 << HWTSTAMP_FILTER_NONE; 2391 2392 /* 82576 does not support timestamping all packets. */ 2393 if (adapter->hw.mac.type >= e1000_82580) 2394 info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL; 2395 else 2396 info->rx_filters |= 2397 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) | 2398 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) | 2399 (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) | 2400 (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) | 2401 (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) | 2402 (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) | 2403 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 2404 2405 return 0; 2406 default: 2407 return -EOPNOTSUPP; 2408 } 2409 } 2410 2411 static int igb_get_rss_hash_opts(struct igb_adapter *adapter, 2412 struct ethtool_rxnfc *cmd) 2413 { 2414 cmd->data = 0; 2415 2416 /* Report default options for RSS on igb */ 2417 switch (cmd->flow_type) { 2418 case TCP_V4_FLOW: 2419 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2420 /* Fall through */ 2421 case UDP_V4_FLOW: 2422 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP) 2423 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2424 /* Fall through */ 2425 case SCTP_V4_FLOW: 2426 case AH_ESP_V4_FLOW: 2427 case AH_V4_FLOW: 2428 case ESP_V4_FLOW: 2429 case IPV4_FLOW: 2430 cmd->data |= RXH_IP_SRC | RXH_IP_DST; 2431 break; 2432 case TCP_V6_FLOW: 2433 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2434 /* Fall through */ 2435 case UDP_V6_FLOW: 2436 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP) 2437 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2438 /* Fall through */ 2439 case SCTP_V6_FLOW: 2440 case AH_ESP_V6_FLOW: 2441 case AH_V6_FLOW: 2442 case ESP_V6_FLOW: 2443 case IPV6_FLOW: 2444 cmd->data |= RXH_IP_SRC | RXH_IP_DST; 2445 break; 2446 default: 2447 return -EINVAL; 2448 } 2449 2450 return 0; 2451 } 2452 2453 static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd, 2454 u32 *rule_locs) 2455 { 2456 struct igb_adapter *adapter = netdev_priv(dev); 2457 int ret = -EOPNOTSUPP; 2458 2459 switch (cmd->cmd) { 2460 case ETHTOOL_GRXRINGS: 2461 cmd->data = adapter->num_rx_queues; 2462 ret = 0; 2463 break; 2464 case ETHTOOL_GRXFH: 2465 ret = igb_get_rss_hash_opts(adapter, cmd); 2466 break; 2467 default: 2468 break; 2469 } 2470 2471 return ret; 2472 } 2473 2474 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \ 2475 IGB_FLAG_RSS_FIELD_IPV6_UDP) 2476 static int igb_set_rss_hash_opt(struct igb_adapter *adapter, 2477 struct ethtool_rxnfc *nfc) 2478 { 2479 u32 flags = adapter->flags; 2480 2481 /* RSS does not support anything other than hashing 2482 * to queues on src and dst IPs and ports 2483 */ 2484 if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST | 2485 RXH_L4_B_0_1 | RXH_L4_B_2_3)) 2486 return -EINVAL; 2487 2488 switch (nfc->flow_type) { 2489 case TCP_V4_FLOW: 2490 case TCP_V6_FLOW: 2491 if (!(nfc->data & RXH_IP_SRC) || 2492 !(nfc->data & RXH_IP_DST) || 2493 !(nfc->data & RXH_L4_B_0_1) || 2494 !(nfc->data & RXH_L4_B_2_3)) 2495 return -EINVAL; 2496 break; 2497 case UDP_V4_FLOW: 2498 if (!(nfc->data & RXH_IP_SRC) || 2499 !(nfc->data & RXH_IP_DST)) 2500 return -EINVAL; 2501 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 2502 case 0: 2503 flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP; 2504 break; 2505 case (RXH_L4_B_0_1 | RXH_L4_B_2_3): 2506 flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP; 2507 break; 2508 default: 2509 return -EINVAL; 2510 } 2511 break; 2512 case UDP_V6_FLOW: 2513 if (!(nfc->data & RXH_IP_SRC) || 2514 !(nfc->data & RXH_IP_DST)) 2515 return -EINVAL; 2516 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 2517 case 0: 2518 flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP; 2519 break; 2520 case (RXH_L4_B_0_1 | RXH_L4_B_2_3): 2521 flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP; 2522 break; 2523 default: 2524 return -EINVAL; 2525 } 2526 break; 2527 case AH_ESP_V4_FLOW: 2528 case AH_V4_FLOW: 2529 case ESP_V4_FLOW: 2530 case SCTP_V4_FLOW: 2531 case AH_ESP_V6_FLOW: 2532 case AH_V6_FLOW: 2533 case ESP_V6_FLOW: 2534 case SCTP_V6_FLOW: 2535 if (!(nfc->data & RXH_IP_SRC) || 2536 !(nfc->data & RXH_IP_DST) || 2537 (nfc->data & RXH_L4_B_0_1) || 2538 (nfc->data & RXH_L4_B_2_3)) 2539 return -EINVAL; 2540 break; 2541 default: 2542 return -EINVAL; 2543 } 2544 2545 /* if we changed something we need to update flags */ 2546 if (flags != adapter->flags) { 2547 struct e1000_hw *hw = &adapter->hw; 2548 u32 mrqc = rd32(E1000_MRQC); 2549 2550 if ((flags & UDP_RSS_FLAGS) && 2551 !(adapter->flags & UDP_RSS_FLAGS)) 2552 dev_err(&adapter->pdev->dev, 2553 "enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n"); 2554 2555 adapter->flags = flags; 2556 2557 /* Perform hash on these packet types */ 2558 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 | 2559 E1000_MRQC_RSS_FIELD_IPV4_TCP | 2560 E1000_MRQC_RSS_FIELD_IPV6 | 2561 E1000_MRQC_RSS_FIELD_IPV6_TCP; 2562 2563 mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP | 2564 E1000_MRQC_RSS_FIELD_IPV6_UDP); 2565 2566 if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP) 2567 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP; 2568 2569 if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP) 2570 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP; 2571 2572 wr32(E1000_MRQC, mrqc); 2573 } 2574 2575 return 0; 2576 } 2577 2578 static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd) 2579 { 2580 struct igb_adapter *adapter = netdev_priv(dev); 2581 int ret = -EOPNOTSUPP; 2582 2583 switch (cmd->cmd) { 2584 case ETHTOOL_SRXFH: 2585 ret = igb_set_rss_hash_opt(adapter, cmd); 2586 break; 2587 default: 2588 break; 2589 } 2590 2591 return ret; 2592 } 2593 2594 static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata) 2595 { 2596 struct igb_adapter *adapter = netdev_priv(netdev); 2597 struct e1000_hw *hw = &adapter->hw; 2598 u32 ret_val; 2599 u16 phy_data; 2600 2601 if ((hw->mac.type < e1000_i350) || 2602 (hw->phy.media_type != e1000_media_type_copper)) 2603 return -EOPNOTSUPP; 2604 2605 edata->supported = (SUPPORTED_1000baseT_Full | 2606 SUPPORTED_100baseT_Full); 2607 if (!hw->dev_spec._82575.eee_disable) 2608 edata->advertised = 2609 mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert); 2610 2611 /* The IPCNFG and EEER registers are not supported on I354. */ 2612 if (hw->mac.type == e1000_i354) { 2613 igb_get_eee_status_i354(hw, (bool *)&edata->eee_active); 2614 } else { 2615 u32 eeer; 2616 2617 eeer = rd32(E1000_EEER); 2618 2619 /* EEE status on negotiated link */ 2620 if (eeer & E1000_EEER_EEE_NEG) 2621 edata->eee_active = true; 2622 2623 if (eeer & E1000_EEER_TX_LPI_EN) 2624 edata->tx_lpi_enabled = true; 2625 } 2626 2627 /* EEE Link Partner Advertised */ 2628 switch (hw->mac.type) { 2629 case e1000_i350: 2630 ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350, 2631 &phy_data); 2632 if (ret_val) 2633 return -ENODATA; 2634 2635 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data); 2636 break; 2637 case e1000_i354: 2638 case e1000_i210: 2639 case e1000_i211: 2640 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210, 2641 E1000_EEE_LP_ADV_DEV_I210, 2642 &phy_data); 2643 if (ret_val) 2644 return -ENODATA; 2645 2646 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data); 2647 2648 break; 2649 default: 2650 break; 2651 } 2652 2653 edata->eee_enabled = !hw->dev_spec._82575.eee_disable; 2654 2655 if ((hw->mac.type == e1000_i354) && 2656 (edata->eee_enabled)) 2657 edata->tx_lpi_enabled = true; 2658 2659 /* Report correct negotiated EEE status for devices that 2660 * wrongly report EEE at half-duplex 2661 */ 2662 if (adapter->link_duplex == HALF_DUPLEX) { 2663 edata->eee_enabled = false; 2664 edata->eee_active = false; 2665 edata->tx_lpi_enabled = false; 2666 edata->advertised &= ~edata->advertised; 2667 } 2668 2669 return 0; 2670 } 2671 2672 static int igb_set_eee(struct net_device *netdev, 2673 struct ethtool_eee *edata) 2674 { 2675 struct igb_adapter *adapter = netdev_priv(netdev); 2676 struct e1000_hw *hw = &adapter->hw; 2677 struct ethtool_eee eee_curr; 2678 s32 ret_val; 2679 2680 if ((hw->mac.type < e1000_i350) || 2681 (hw->phy.media_type != e1000_media_type_copper)) 2682 return -EOPNOTSUPP; 2683 2684 memset(&eee_curr, 0, sizeof(struct ethtool_eee)); 2685 2686 ret_val = igb_get_eee(netdev, &eee_curr); 2687 if (ret_val) 2688 return ret_val; 2689 2690 if (eee_curr.eee_enabled) { 2691 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) { 2692 dev_err(&adapter->pdev->dev, 2693 "Setting EEE tx-lpi is not supported\n"); 2694 return -EINVAL; 2695 } 2696 2697 /* Tx LPI timer is not implemented currently */ 2698 if (edata->tx_lpi_timer) { 2699 dev_err(&adapter->pdev->dev, 2700 "Setting EEE Tx LPI timer is not supported\n"); 2701 return -EINVAL; 2702 } 2703 2704 if (edata->advertised & 2705 ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) { 2706 dev_err(&adapter->pdev->dev, 2707 "EEE Advertisement supports only 100Tx and or 100T full duplex\n"); 2708 return -EINVAL; 2709 } 2710 2711 } else if (!edata->eee_enabled) { 2712 dev_err(&adapter->pdev->dev, 2713 "Setting EEE options are not supported with EEE disabled\n"); 2714 return -EINVAL; 2715 } 2716 2717 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised); 2718 if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) { 2719 hw->dev_spec._82575.eee_disable = !edata->eee_enabled; 2720 adapter->flags |= IGB_FLAG_EEE; 2721 if (hw->mac.type == e1000_i350) 2722 igb_set_eee_i350(hw); 2723 else 2724 igb_set_eee_i354(hw); 2725 2726 /* reset link */ 2727 if (netif_running(netdev)) 2728 igb_reinit_locked(adapter); 2729 else 2730 igb_reset(adapter); 2731 } 2732 2733 return 0; 2734 } 2735 2736 static int igb_get_module_info(struct net_device *netdev, 2737 struct ethtool_modinfo *modinfo) 2738 { 2739 struct igb_adapter *adapter = netdev_priv(netdev); 2740 struct e1000_hw *hw = &adapter->hw; 2741 u32 status = 0; 2742 u16 sff8472_rev, addr_mode; 2743 bool page_swap = false; 2744 2745 if ((hw->phy.media_type == e1000_media_type_copper) || 2746 (hw->phy.media_type == e1000_media_type_unknown)) 2747 return -EOPNOTSUPP; 2748 2749 /* Check whether we support SFF-8472 or not */ 2750 status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev); 2751 if (status) 2752 return -EIO; 2753 2754 /* addressing mode is not supported */ 2755 status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode); 2756 if (status) 2757 return -EIO; 2758 2759 /* addressing mode is not supported */ 2760 if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) { 2761 hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n"); 2762 page_swap = true; 2763 } 2764 2765 if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) { 2766 /* We have an SFP, but it does not support SFF-8472 */ 2767 modinfo->type = ETH_MODULE_SFF_8079; 2768 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; 2769 } else { 2770 /* We have an SFP which supports a revision of SFF-8472 */ 2771 modinfo->type = ETH_MODULE_SFF_8472; 2772 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; 2773 } 2774 2775 return 0; 2776 } 2777 2778 static int igb_get_module_eeprom(struct net_device *netdev, 2779 struct ethtool_eeprom *ee, u8 *data) 2780 { 2781 struct igb_adapter *adapter = netdev_priv(netdev); 2782 struct e1000_hw *hw = &adapter->hw; 2783 u32 status = 0; 2784 u16 *dataword; 2785 u16 first_word, last_word; 2786 int i = 0; 2787 2788 if (ee->len == 0) 2789 return -EINVAL; 2790 2791 first_word = ee->offset >> 1; 2792 last_word = (ee->offset + ee->len - 1) >> 1; 2793 2794 dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1), 2795 GFP_KERNEL); 2796 if (!dataword) 2797 return -ENOMEM; 2798 2799 /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */ 2800 for (i = 0; i < last_word - first_word + 1; i++) { 2801 status = igb_read_phy_reg_i2c(hw, first_word + i, &dataword[i]); 2802 if (status) { 2803 /* Error occurred while reading module */ 2804 kfree(dataword); 2805 return -EIO; 2806 } 2807 2808 be16_to_cpus(&dataword[i]); 2809 } 2810 2811 memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len); 2812 kfree(dataword); 2813 2814 return 0; 2815 } 2816 2817 static int igb_ethtool_begin(struct net_device *netdev) 2818 { 2819 struct igb_adapter *adapter = netdev_priv(netdev); 2820 pm_runtime_get_sync(&adapter->pdev->dev); 2821 return 0; 2822 } 2823 2824 static void igb_ethtool_complete(struct net_device *netdev) 2825 { 2826 struct igb_adapter *adapter = netdev_priv(netdev); 2827 pm_runtime_put(&adapter->pdev->dev); 2828 } 2829 2830 static u32 igb_get_rxfh_indir_size(struct net_device *netdev) 2831 { 2832 return IGB_RETA_SIZE; 2833 } 2834 2835 static int igb_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key) 2836 { 2837 struct igb_adapter *adapter = netdev_priv(netdev); 2838 int i; 2839 2840 for (i = 0; i < IGB_RETA_SIZE; i++) 2841 indir[i] = adapter->rss_indir_tbl[i]; 2842 2843 return 0; 2844 } 2845 2846 void igb_write_rss_indir_tbl(struct igb_adapter *adapter) 2847 { 2848 struct e1000_hw *hw = &adapter->hw; 2849 u32 reg = E1000_RETA(0); 2850 u32 shift = 0; 2851 int i = 0; 2852 2853 switch (hw->mac.type) { 2854 case e1000_82575: 2855 shift = 6; 2856 break; 2857 case e1000_82576: 2858 /* 82576 supports 2 RSS queues for SR-IOV */ 2859 if (adapter->vfs_allocated_count) 2860 shift = 3; 2861 break; 2862 default: 2863 break; 2864 } 2865 2866 while (i < IGB_RETA_SIZE) { 2867 u32 val = 0; 2868 int j; 2869 2870 for (j = 3; j >= 0; j--) { 2871 val <<= 8; 2872 val |= adapter->rss_indir_tbl[i + j]; 2873 } 2874 2875 wr32(reg, val << shift); 2876 reg += 4; 2877 i += 4; 2878 } 2879 } 2880 2881 static int igb_set_rxfh(struct net_device *netdev, const u32 *indir, 2882 const u8 *key) 2883 { 2884 struct igb_adapter *adapter = netdev_priv(netdev); 2885 struct e1000_hw *hw = &adapter->hw; 2886 int i; 2887 u32 num_queues; 2888 2889 num_queues = adapter->rss_queues; 2890 2891 switch (hw->mac.type) { 2892 case e1000_82576: 2893 /* 82576 supports 2 RSS queues for SR-IOV */ 2894 if (adapter->vfs_allocated_count) 2895 num_queues = 2; 2896 break; 2897 default: 2898 break; 2899 } 2900 2901 /* Verify user input. */ 2902 for (i = 0; i < IGB_RETA_SIZE; i++) 2903 if (indir[i] >= num_queues) 2904 return -EINVAL; 2905 2906 2907 for (i = 0; i < IGB_RETA_SIZE; i++) 2908 adapter->rss_indir_tbl[i] = indir[i]; 2909 2910 igb_write_rss_indir_tbl(adapter); 2911 2912 return 0; 2913 } 2914 2915 static unsigned int igb_max_channels(struct igb_adapter *adapter) 2916 { 2917 struct e1000_hw *hw = &adapter->hw; 2918 unsigned int max_combined = 0; 2919 2920 switch (hw->mac.type) { 2921 case e1000_i211: 2922 max_combined = IGB_MAX_RX_QUEUES_I211; 2923 break; 2924 case e1000_82575: 2925 case e1000_i210: 2926 max_combined = IGB_MAX_RX_QUEUES_82575; 2927 break; 2928 case e1000_i350: 2929 if (!!adapter->vfs_allocated_count) { 2930 max_combined = 1; 2931 break; 2932 } 2933 /* fall through */ 2934 case e1000_82576: 2935 if (!!adapter->vfs_allocated_count) { 2936 max_combined = 2; 2937 break; 2938 } 2939 /* fall through */ 2940 case e1000_82580: 2941 case e1000_i354: 2942 default: 2943 max_combined = IGB_MAX_RX_QUEUES; 2944 break; 2945 } 2946 2947 return max_combined; 2948 } 2949 2950 static void igb_get_channels(struct net_device *netdev, 2951 struct ethtool_channels *ch) 2952 { 2953 struct igb_adapter *adapter = netdev_priv(netdev); 2954 2955 /* Report maximum channels */ 2956 ch->max_combined = igb_max_channels(adapter); 2957 2958 /* Report info for other vector */ 2959 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 2960 ch->max_other = NON_Q_VECTORS; 2961 ch->other_count = NON_Q_VECTORS; 2962 } 2963 2964 ch->combined_count = adapter->rss_queues; 2965 } 2966 2967 static int igb_set_channels(struct net_device *netdev, 2968 struct ethtool_channels *ch) 2969 { 2970 struct igb_adapter *adapter = netdev_priv(netdev); 2971 unsigned int count = ch->combined_count; 2972 2973 /* Verify they are not requesting separate vectors */ 2974 if (!count || ch->rx_count || ch->tx_count) 2975 return -EINVAL; 2976 2977 /* Verify other_count is valid and has not been changed */ 2978 if (ch->other_count != NON_Q_VECTORS) 2979 return -EINVAL; 2980 2981 /* Verify the number of channels doesn't exceed hw limits */ 2982 if (count > igb_max_channels(adapter)) 2983 return -EINVAL; 2984 2985 if (count != adapter->rss_queues) { 2986 adapter->rss_queues = count; 2987 2988 /* Hardware has to reinitialize queues and interrupts to 2989 * match the new configuration. 2990 */ 2991 return igb_reinit_queues(adapter); 2992 } 2993 2994 return 0; 2995 } 2996 2997 static const struct ethtool_ops igb_ethtool_ops = { 2998 .get_settings = igb_get_settings, 2999 .set_settings = igb_set_settings, 3000 .get_drvinfo = igb_get_drvinfo, 3001 .get_regs_len = igb_get_regs_len, 3002 .get_regs = igb_get_regs, 3003 .get_wol = igb_get_wol, 3004 .set_wol = igb_set_wol, 3005 .get_msglevel = igb_get_msglevel, 3006 .set_msglevel = igb_set_msglevel, 3007 .nway_reset = igb_nway_reset, 3008 .get_link = igb_get_link, 3009 .get_eeprom_len = igb_get_eeprom_len, 3010 .get_eeprom = igb_get_eeprom, 3011 .set_eeprom = igb_set_eeprom, 3012 .get_ringparam = igb_get_ringparam, 3013 .set_ringparam = igb_set_ringparam, 3014 .get_pauseparam = igb_get_pauseparam, 3015 .set_pauseparam = igb_set_pauseparam, 3016 .self_test = igb_diag_test, 3017 .get_strings = igb_get_strings, 3018 .set_phys_id = igb_set_phys_id, 3019 .get_sset_count = igb_get_sset_count, 3020 .get_ethtool_stats = igb_get_ethtool_stats, 3021 .get_coalesce = igb_get_coalesce, 3022 .set_coalesce = igb_set_coalesce, 3023 .get_ts_info = igb_get_ts_info, 3024 .get_rxnfc = igb_get_rxnfc, 3025 .set_rxnfc = igb_set_rxnfc, 3026 .get_eee = igb_get_eee, 3027 .set_eee = igb_set_eee, 3028 .get_module_info = igb_get_module_info, 3029 .get_module_eeprom = igb_get_module_eeprom, 3030 .get_rxfh_indir_size = igb_get_rxfh_indir_size, 3031 .get_rxfh = igb_get_rxfh, 3032 .set_rxfh = igb_set_rxfh, 3033 .get_channels = igb_get_channels, 3034 .set_channels = igb_set_channels, 3035 .begin = igb_ethtool_begin, 3036 .complete = igb_ethtool_complete, 3037 }; 3038 3039 void igb_set_ethtool_ops(struct net_device *netdev) 3040 { 3041 netdev->ethtool_ops = &igb_ethtool_ops; 3042 } 3043