1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3 
4 /* ethtool support for igb */
5 
6 #include <linux/vmalloc.h>
7 #include <linux/netdevice.h>
8 #include <linux/pci.h>
9 #include <linux/delay.h>
10 #include <linux/interrupt.h>
11 #include <linux/if_ether.h>
12 #include <linux/ethtool.h>
13 #include <linux/sched.h>
14 #include <linux/slab.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/highmem.h>
17 #include <linux/mdio.h>
18 
19 #include "igb.h"
20 
21 struct igb_stats {
22 	char stat_string[ETH_GSTRING_LEN];
23 	int sizeof_stat;
24 	int stat_offset;
25 };
26 
27 #define IGB_STAT(_name, _stat) { \
28 	.stat_string = _name, \
29 	.sizeof_stat = sizeof_field(struct igb_adapter, _stat), \
30 	.stat_offset = offsetof(struct igb_adapter, _stat) \
31 }
32 static const struct igb_stats igb_gstrings_stats[] = {
33 	IGB_STAT("rx_packets", stats.gprc),
34 	IGB_STAT("tx_packets", stats.gptc),
35 	IGB_STAT("rx_bytes", stats.gorc),
36 	IGB_STAT("tx_bytes", stats.gotc),
37 	IGB_STAT("rx_broadcast", stats.bprc),
38 	IGB_STAT("tx_broadcast", stats.bptc),
39 	IGB_STAT("rx_multicast", stats.mprc),
40 	IGB_STAT("tx_multicast", stats.mptc),
41 	IGB_STAT("multicast", stats.mprc),
42 	IGB_STAT("collisions", stats.colc),
43 	IGB_STAT("rx_crc_errors", stats.crcerrs),
44 	IGB_STAT("rx_no_buffer_count", stats.rnbc),
45 	IGB_STAT("rx_missed_errors", stats.mpc),
46 	IGB_STAT("tx_aborted_errors", stats.ecol),
47 	IGB_STAT("tx_carrier_errors", stats.tncrs),
48 	IGB_STAT("tx_window_errors", stats.latecol),
49 	IGB_STAT("tx_abort_late_coll", stats.latecol),
50 	IGB_STAT("tx_deferred_ok", stats.dc),
51 	IGB_STAT("tx_single_coll_ok", stats.scc),
52 	IGB_STAT("tx_multi_coll_ok", stats.mcc),
53 	IGB_STAT("tx_timeout_count", tx_timeout_count),
54 	IGB_STAT("rx_long_length_errors", stats.roc),
55 	IGB_STAT("rx_short_length_errors", stats.ruc),
56 	IGB_STAT("rx_align_errors", stats.algnerrc),
57 	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
58 	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
59 	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
60 	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
61 	IGB_STAT("tx_flow_control_xon", stats.xontxc),
62 	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
63 	IGB_STAT("rx_long_byte_count", stats.gorc),
64 	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
65 	IGB_STAT("tx_smbus", stats.mgptc),
66 	IGB_STAT("rx_smbus", stats.mgprc),
67 	IGB_STAT("dropped_smbus", stats.mgpdc),
68 	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
69 	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
70 	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
71 	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
72 	IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
73 	IGB_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
74 	IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
75 };
76 
77 #define IGB_NETDEV_STAT(_net_stat) { \
78 	.stat_string = __stringify(_net_stat), \
79 	.sizeof_stat = sizeof_field(struct rtnl_link_stats64, _net_stat), \
80 	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
81 }
82 static const struct igb_stats igb_gstrings_net_stats[] = {
83 	IGB_NETDEV_STAT(rx_errors),
84 	IGB_NETDEV_STAT(tx_errors),
85 	IGB_NETDEV_STAT(tx_dropped),
86 	IGB_NETDEV_STAT(rx_length_errors),
87 	IGB_NETDEV_STAT(rx_over_errors),
88 	IGB_NETDEV_STAT(rx_frame_errors),
89 	IGB_NETDEV_STAT(rx_fifo_errors),
90 	IGB_NETDEV_STAT(tx_fifo_errors),
91 	IGB_NETDEV_STAT(tx_heartbeat_errors)
92 };
93 
94 #define IGB_GLOBAL_STATS_LEN	\
95 	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
96 #define IGB_NETDEV_STATS_LEN	\
97 	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
98 #define IGB_RX_QUEUE_STATS_LEN \
99 	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
100 
101 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
102 
103 #define IGB_QUEUE_STATS_LEN \
104 	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
105 	  IGB_RX_QUEUE_STATS_LEN) + \
106 	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
107 	  IGB_TX_QUEUE_STATS_LEN))
108 #define IGB_STATS_LEN \
109 	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
110 
111 enum igb_diagnostics_results {
112 	TEST_REG = 0,
113 	TEST_EEP,
114 	TEST_IRQ,
115 	TEST_LOOP,
116 	TEST_LINK
117 };
118 
119 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
120 	[TEST_REG]  = "Register test  (offline)",
121 	[TEST_EEP]  = "Eeprom test    (offline)",
122 	[TEST_IRQ]  = "Interrupt test (offline)",
123 	[TEST_LOOP] = "Loopback test  (offline)",
124 	[TEST_LINK] = "Link test   (on/offline)"
125 };
126 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
127 
128 static const char igb_priv_flags_strings[][ETH_GSTRING_LEN] = {
129 #define IGB_PRIV_FLAGS_LEGACY_RX	BIT(0)
130 	"legacy-rx",
131 };
132 
133 #define IGB_PRIV_FLAGS_STR_LEN ARRAY_SIZE(igb_priv_flags_strings)
134 
135 static int igb_get_link_ksettings(struct net_device *netdev,
136 				  struct ethtool_link_ksettings *cmd)
137 {
138 	struct igb_adapter *adapter = netdev_priv(netdev);
139 	struct e1000_hw *hw = &adapter->hw;
140 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
141 	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
142 	u32 status;
143 	u32 speed;
144 	u32 supported, advertising;
145 
146 	status = pm_runtime_suspended(&adapter->pdev->dev) ?
147 		 0 : rd32(E1000_STATUS);
148 	if (hw->phy.media_type == e1000_media_type_copper) {
149 
150 		supported = (SUPPORTED_10baseT_Half |
151 			     SUPPORTED_10baseT_Full |
152 			     SUPPORTED_100baseT_Half |
153 			     SUPPORTED_100baseT_Full |
154 			     SUPPORTED_1000baseT_Full|
155 			     SUPPORTED_Autoneg |
156 			     SUPPORTED_TP |
157 			     SUPPORTED_Pause);
158 		advertising = ADVERTISED_TP;
159 
160 		if (hw->mac.autoneg == 1) {
161 			advertising |= ADVERTISED_Autoneg;
162 			/* the e1000 autoneg seems to match ethtool nicely */
163 			advertising |= hw->phy.autoneg_advertised;
164 		}
165 
166 		cmd->base.port = PORT_TP;
167 		cmd->base.phy_address = hw->phy.addr;
168 	} else {
169 		supported = (SUPPORTED_FIBRE |
170 			     SUPPORTED_1000baseKX_Full |
171 			     SUPPORTED_Autoneg |
172 			     SUPPORTED_Pause);
173 		advertising = (ADVERTISED_FIBRE |
174 			       ADVERTISED_1000baseKX_Full);
175 		if (hw->mac.type == e1000_i354) {
176 			if ((hw->device_id ==
177 			     E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
178 			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
179 				supported |= SUPPORTED_2500baseX_Full;
180 				supported &= ~SUPPORTED_1000baseKX_Full;
181 				advertising |= ADVERTISED_2500baseX_Full;
182 				advertising &= ~ADVERTISED_1000baseKX_Full;
183 			}
184 		}
185 		if (eth_flags->e100_base_fx || eth_flags->e100_base_lx) {
186 			supported |= SUPPORTED_100baseT_Full;
187 			advertising |= ADVERTISED_100baseT_Full;
188 		}
189 		if (hw->mac.autoneg == 1)
190 			advertising |= ADVERTISED_Autoneg;
191 
192 		cmd->base.port = PORT_FIBRE;
193 	}
194 	if (hw->mac.autoneg != 1)
195 		advertising &= ~(ADVERTISED_Pause |
196 				 ADVERTISED_Asym_Pause);
197 
198 	switch (hw->fc.requested_mode) {
199 	case e1000_fc_full:
200 		advertising |= ADVERTISED_Pause;
201 		break;
202 	case e1000_fc_rx_pause:
203 		advertising |= (ADVERTISED_Pause |
204 				ADVERTISED_Asym_Pause);
205 		break;
206 	case e1000_fc_tx_pause:
207 		advertising |=  ADVERTISED_Asym_Pause;
208 		break;
209 	default:
210 		advertising &= ~(ADVERTISED_Pause |
211 				 ADVERTISED_Asym_Pause);
212 	}
213 	if (status & E1000_STATUS_LU) {
214 		if ((status & E1000_STATUS_2P5_SKU) &&
215 		    !(status & E1000_STATUS_2P5_SKU_OVER)) {
216 			speed = SPEED_2500;
217 		} else if (status & E1000_STATUS_SPEED_1000) {
218 			speed = SPEED_1000;
219 		} else if (status & E1000_STATUS_SPEED_100) {
220 			speed = SPEED_100;
221 		} else {
222 			speed = SPEED_10;
223 		}
224 		if ((status & E1000_STATUS_FD) ||
225 		    hw->phy.media_type != e1000_media_type_copper)
226 			cmd->base.duplex = DUPLEX_FULL;
227 		else
228 			cmd->base.duplex = DUPLEX_HALF;
229 	} else {
230 		speed = SPEED_UNKNOWN;
231 		cmd->base.duplex = DUPLEX_UNKNOWN;
232 	}
233 	cmd->base.speed = speed;
234 	if ((hw->phy.media_type == e1000_media_type_fiber) ||
235 	    hw->mac.autoneg)
236 		cmd->base.autoneg = AUTONEG_ENABLE;
237 	else
238 		cmd->base.autoneg = AUTONEG_DISABLE;
239 
240 	/* MDI-X => 2; MDI =>1; Invalid =>0 */
241 	if (hw->phy.media_type == e1000_media_type_copper)
242 		cmd->base.eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
243 						      ETH_TP_MDI;
244 	else
245 		cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
246 
247 	if (hw->phy.mdix == AUTO_ALL_MODES)
248 		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
249 	else
250 		cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
251 
252 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
253 						supported);
254 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
255 						advertising);
256 
257 	return 0;
258 }
259 
260 static int igb_set_link_ksettings(struct net_device *netdev,
261 				  const struct ethtool_link_ksettings *cmd)
262 {
263 	struct igb_adapter *adapter = netdev_priv(netdev);
264 	struct e1000_hw *hw = &adapter->hw;
265 	u32 advertising;
266 
267 	/* When SoL/IDER sessions are active, autoneg/speed/duplex
268 	 * cannot be changed
269 	 */
270 	if (igb_check_reset_block(hw)) {
271 		dev_err(&adapter->pdev->dev,
272 			"Cannot change link characteristics when SoL/IDER is active.\n");
273 		return -EINVAL;
274 	}
275 
276 	/* MDI setting is only allowed when autoneg enabled because
277 	 * some hardware doesn't allow MDI setting when speed or
278 	 * duplex is forced.
279 	 */
280 	if (cmd->base.eth_tp_mdix_ctrl) {
281 		if (hw->phy.media_type != e1000_media_type_copper)
282 			return -EOPNOTSUPP;
283 
284 		if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
285 		    (cmd->base.autoneg != AUTONEG_ENABLE)) {
286 			dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
287 			return -EINVAL;
288 		}
289 	}
290 
291 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
292 		usleep_range(1000, 2000);
293 
294 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
295 						cmd->link_modes.advertising);
296 
297 	if (cmd->base.autoneg == AUTONEG_ENABLE) {
298 		hw->mac.autoneg = 1;
299 		if (hw->phy.media_type == e1000_media_type_fiber) {
300 			hw->phy.autoneg_advertised = advertising |
301 						     ADVERTISED_FIBRE |
302 						     ADVERTISED_Autoneg;
303 			switch (adapter->link_speed) {
304 			case SPEED_2500:
305 				hw->phy.autoneg_advertised =
306 					ADVERTISED_2500baseX_Full;
307 				break;
308 			case SPEED_1000:
309 				hw->phy.autoneg_advertised =
310 					ADVERTISED_1000baseT_Full;
311 				break;
312 			case SPEED_100:
313 				hw->phy.autoneg_advertised =
314 					ADVERTISED_100baseT_Full;
315 				break;
316 			default:
317 				break;
318 			}
319 		} else {
320 			hw->phy.autoneg_advertised = advertising |
321 						     ADVERTISED_TP |
322 						     ADVERTISED_Autoneg;
323 		}
324 		advertising = hw->phy.autoneg_advertised;
325 		if (adapter->fc_autoneg)
326 			hw->fc.requested_mode = e1000_fc_default;
327 	} else {
328 		u32 speed = cmd->base.speed;
329 		/* calling this overrides forced MDI setting */
330 		if (igb_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
331 			clear_bit(__IGB_RESETTING, &adapter->state);
332 			return -EINVAL;
333 		}
334 	}
335 
336 	/* MDI-X => 2; MDI => 1; Auto => 3 */
337 	if (cmd->base.eth_tp_mdix_ctrl) {
338 		/* fix up the value for auto (3 => 0) as zero is mapped
339 		 * internally to auto
340 		 */
341 		if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
342 			hw->phy.mdix = AUTO_ALL_MODES;
343 		else
344 			hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
345 	}
346 
347 	/* reset the link */
348 	if (netif_running(adapter->netdev)) {
349 		igb_down(adapter);
350 		igb_up(adapter);
351 	} else
352 		igb_reset(adapter);
353 
354 	clear_bit(__IGB_RESETTING, &adapter->state);
355 	return 0;
356 }
357 
358 static u32 igb_get_link(struct net_device *netdev)
359 {
360 	struct igb_adapter *adapter = netdev_priv(netdev);
361 	struct e1000_mac_info *mac = &adapter->hw.mac;
362 
363 	/* If the link is not reported up to netdev, interrupts are disabled,
364 	 * and so the physical link state may have changed since we last
365 	 * looked. Set get_link_status to make sure that the true link
366 	 * state is interrogated, rather than pulling a cached and possibly
367 	 * stale link state from the driver.
368 	 */
369 	if (!netif_carrier_ok(netdev))
370 		mac->get_link_status = 1;
371 
372 	return igb_has_link(adapter);
373 }
374 
375 static void igb_get_pauseparam(struct net_device *netdev,
376 			       struct ethtool_pauseparam *pause)
377 {
378 	struct igb_adapter *adapter = netdev_priv(netdev);
379 	struct e1000_hw *hw = &adapter->hw;
380 
381 	pause->autoneg =
382 		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
383 
384 	if (hw->fc.current_mode == e1000_fc_rx_pause)
385 		pause->rx_pause = 1;
386 	else if (hw->fc.current_mode == e1000_fc_tx_pause)
387 		pause->tx_pause = 1;
388 	else if (hw->fc.current_mode == e1000_fc_full) {
389 		pause->rx_pause = 1;
390 		pause->tx_pause = 1;
391 	}
392 }
393 
394 static int igb_set_pauseparam(struct net_device *netdev,
395 			      struct ethtool_pauseparam *pause)
396 {
397 	struct igb_adapter *adapter = netdev_priv(netdev);
398 	struct e1000_hw *hw = &adapter->hw;
399 	int retval = 0;
400 	int i;
401 
402 	/* 100basefx does not support setting link flow control */
403 	if (hw->dev_spec._82575.eth_flags.e100_base_fx)
404 		return -EINVAL;
405 
406 	adapter->fc_autoneg = pause->autoneg;
407 
408 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
409 		usleep_range(1000, 2000);
410 
411 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
412 		hw->fc.requested_mode = e1000_fc_default;
413 		if (netif_running(adapter->netdev)) {
414 			igb_down(adapter);
415 			igb_up(adapter);
416 		} else {
417 			igb_reset(adapter);
418 		}
419 	} else {
420 		if (pause->rx_pause && pause->tx_pause)
421 			hw->fc.requested_mode = e1000_fc_full;
422 		else if (pause->rx_pause && !pause->tx_pause)
423 			hw->fc.requested_mode = e1000_fc_rx_pause;
424 		else if (!pause->rx_pause && pause->tx_pause)
425 			hw->fc.requested_mode = e1000_fc_tx_pause;
426 		else if (!pause->rx_pause && !pause->tx_pause)
427 			hw->fc.requested_mode = e1000_fc_none;
428 
429 		hw->fc.current_mode = hw->fc.requested_mode;
430 
431 		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
432 			  igb_force_mac_fc(hw) : igb_setup_link(hw));
433 
434 		/* Make sure SRRCTL considers new fc settings for each ring */
435 		for (i = 0; i < adapter->num_rx_queues; i++) {
436 			struct igb_ring *ring = adapter->rx_ring[i];
437 
438 			igb_setup_srrctl(adapter, ring);
439 		}
440 	}
441 
442 	clear_bit(__IGB_RESETTING, &adapter->state);
443 	return retval;
444 }
445 
446 static u32 igb_get_msglevel(struct net_device *netdev)
447 {
448 	struct igb_adapter *adapter = netdev_priv(netdev);
449 	return adapter->msg_enable;
450 }
451 
452 static void igb_set_msglevel(struct net_device *netdev, u32 data)
453 {
454 	struct igb_adapter *adapter = netdev_priv(netdev);
455 	adapter->msg_enable = data;
456 }
457 
458 static int igb_get_regs_len(struct net_device *netdev)
459 {
460 #define IGB_REGS_LEN 740
461 	return IGB_REGS_LEN * sizeof(u32);
462 }
463 
464 static void igb_get_regs(struct net_device *netdev,
465 			 struct ethtool_regs *regs, void *p)
466 {
467 	struct igb_adapter *adapter = netdev_priv(netdev);
468 	struct e1000_hw *hw = &adapter->hw;
469 	u32 *regs_buff = p;
470 	u8 i;
471 
472 	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
473 
474 	regs->version = (1u << 24) | (hw->revision_id << 16) | hw->device_id;
475 
476 	/* General Registers */
477 	regs_buff[0] = rd32(E1000_CTRL);
478 	regs_buff[1] = rd32(E1000_STATUS);
479 	regs_buff[2] = rd32(E1000_CTRL_EXT);
480 	regs_buff[3] = rd32(E1000_MDIC);
481 	regs_buff[4] = rd32(E1000_SCTL);
482 	regs_buff[5] = rd32(E1000_CONNSW);
483 	regs_buff[6] = rd32(E1000_VET);
484 	regs_buff[7] = rd32(E1000_LEDCTL);
485 	regs_buff[8] = rd32(E1000_PBA);
486 	regs_buff[9] = rd32(E1000_PBS);
487 	regs_buff[10] = rd32(E1000_FRTIMER);
488 	regs_buff[11] = rd32(E1000_TCPTIMER);
489 
490 	/* NVM Register */
491 	regs_buff[12] = rd32(E1000_EECD);
492 
493 	/* Interrupt */
494 	/* Reading EICS for EICR because they read the
495 	 * same but EICS does not clear on read
496 	 */
497 	regs_buff[13] = rd32(E1000_EICS);
498 	regs_buff[14] = rd32(E1000_EICS);
499 	regs_buff[15] = rd32(E1000_EIMS);
500 	regs_buff[16] = rd32(E1000_EIMC);
501 	regs_buff[17] = rd32(E1000_EIAC);
502 	regs_buff[18] = rd32(E1000_EIAM);
503 	/* Reading ICS for ICR because they read the
504 	 * same but ICS does not clear on read
505 	 */
506 	regs_buff[19] = rd32(E1000_ICS);
507 	regs_buff[20] = rd32(E1000_ICS);
508 	regs_buff[21] = rd32(E1000_IMS);
509 	regs_buff[22] = rd32(E1000_IMC);
510 	regs_buff[23] = rd32(E1000_IAC);
511 	regs_buff[24] = rd32(E1000_IAM);
512 	regs_buff[25] = rd32(E1000_IMIRVP);
513 
514 	/* Flow Control */
515 	regs_buff[26] = rd32(E1000_FCAL);
516 	regs_buff[27] = rd32(E1000_FCAH);
517 	regs_buff[28] = rd32(E1000_FCTTV);
518 	regs_buff[29] = rd32(E1000_FCRTL);
519 	regs_buff[30] = rd32(E1000_FCRTH);
520 	regs_buff[31] = rd32(E1000_FCRTV);
521 
522 	/* Receive */
523 	regs_buff[32] = rd32(E1000_RCTL);
524 	regs_buff[33] = rd32(E1000_RXCSUM);
525 	regs_buff[34] = rd32(E1000_RLPML);
526 	regs_buff[35] = rd32(E1000_RFCTL);
527 	regs_buff[36] = rd32(E1000_MRQC);
528 	regs_buff[37] = rd32(E1000_VT_CTL);
529 
530 	/* Transmit */
531 	regs_buff[38] = rd32(E1000_TCTL);
532 	regs_buff[39] = rd32(E1000_TCTL_EXT);
533 	regs_buff[40] = rd32(E1000_TIPG);
534 	regs_buff[41] = rd32(E1000_DTXCTL);
535 
536 	/* Wake Up */
537 	regs_buff[42] = rd32(E1000_WUC);
538 	regs_buff[43] = rd32(E1000_WUFC);
539 	regs_buff[44] = rd32(E1000_WUS);
540 	regs_buff[45] = rd32(E1000_IPAV);
541 	regs_buff[46] = rd32(E1000_WUPL);
542 
543 	/* MAC */
544 	regs_buff[47] = rd32(E1000_PCS_CFG0);
545 	regs_buff[48] = rd32(E1000_PCS_LCTL);
546 	regs_buff[49] = rd32(E1000_PCS_LSTAT);
547 	regs_buff[50] = rd32(E1000_PCS_ANADV);
548 	regs_buff[51] = rd32(E1000_PCS_LPAB);
549 	regs_buff[52] = rd32(E1000_PCS_NPTX);
550 	regs_buff[53] = rd32(E1000_PCS_LPABNP);
551 
552 	/* Statistics */
553 	regs_buff[54] = adapter->stats.crcerrs;
554 	regs_buff[55] = adapter->stats.algnerrc;
555 	regs_buff[56] = adapter->stats.symerrs;
556 	regs_buff[57] = adapter->stats.rxerrc;
557 	regs_buff[58] = adapter->stats.mpc;
558 	regs_buff[59] = adapter->stats.scc;
559 	regs_buff[60] = adapter->stats.ecol;
560 	regs_buff[61] = adapter->stats.mcc;
561 	regs_buff[62] = adapter->stats.latecol;
562 	regs_buff[63] = adapter->stats.colc;
563 	regs_buff[64] = adapter->stats.dc;
564 	regs_buff[65] = adapter->stats.tncrs;
565 	regs_buff[66] = adapter->stats.sec;
566 	regs_buff[67] = adapter->stats.htdpmc;
567 	regs_buff[68] = adapter->stats.rlec;
568 	regs_buff[69] = adapter->stats.xonrxc;
569 	regs_buff[70] = adapter->stats.xontxc;
570 	regs_buff[71] = adapter->stats.xoffrxc;
571 	regs_buff[72] = adapter->stats.xofftxc;
572 	regs_buff[73] = adapter->stats.fcruc;
573 	regs_buff[74] = adapter->stats.prc64;
574 	regs_buff[75] = adapter->stats.prc127;
575 	regs_buff[76] = adapter->stats.prc255;
576 	regs_buff[77] = adapter->stats.prc511;
577 	regs_buff[78] = adapter->stats.prc1023;
578 	regs_buff[79] = adapter->stats.prc1522;
579 	regs_buff[80] = adapter->stats.gprc;
580 	regs_buff[81] = adapter->stats.bprc;
581 	regs_buff[82] = adapter->stats.mprc;
582 	regs_buff[83] = adapter->stats.gptc;
583 	regs_buff[84] = adapter->stats.gorc;
584 	regs_buff[86] = adapter->stats.gotc;
585 	regs_buff[88] = adapter->stats.rnbc;
586 	regs_buff[89] = adapter->stats.ruc;
587 	regs_buff[90] = adapter->stats.rfc;
588 	regs_buff[91] = adapter->stats.roc;
589 	regs_buff[92] = adapter->stats.rjc;
590 	regs_buff[93] = adapter->stats.mgprc;
591 	regs_buff[94] = adapter->stats.mgpdc;
592 	regs_buff[95] = adapter->stats.mgptc;
593 	regs_buff[96] = adapter->stats.tor;
594 	regs_buff[98] = adapter->stats.tot;
595 	regs_buff[100] = adapter->stats.tpr;
596 	regs_buff[101] = adapter->stats.tpt;
597 	regs_buff[102] = adapter->stats.ptc64;
598 	regs_buff[103] = adapter->stats.ptc127;
599 	regs_buff[104] = adapter->stats.ptc255;
600 	regs_buff[105] = adapter->stats.ptc511;
601 	regs_buff[106] = adapter->stats.ptc1023;
602 	regs_buff[107] = adapter->stats.ptc1522;
603 	regs_buff[108] = adapter->stats.mptc;
604 	regs_buff[109] = adapter->stats.bptc;
605 	regs_buff[110] = adapter->stats.tsctc;
606 	regs_buff[111] = adapter->stats.iac;
607 	regs_buff[112] = adapter->stats.rpthc;
608 	regs_buff[113] = adapter->stats.hgptc;
609 	regs_buff[114] = adapter->stats.hgorc;
610 	regs_buff[116] = adapter->stats.hgotc;
611 	regs_buff[118] = adapter->stats.lenerrs;
612 	regs_buff[119] = adapter->stats.scvpc;
613 	regs_buff[120] = adapter->stats.hrmpc;
614 
615 	for (i = 0; i < 4; i++)
616 		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
617 	for (i = 0; i < 4; i++)
618 		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
619 	for (i = 0; i < 4; i++)
620 		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
621 	for (i = 0; i < 4; i++)
622 		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
623 	for (i = 0; i < 4; i++)
624 		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
625 	for (i = 0; i < 4; i++)
626 		regs_buff[141 + i] = rd32(E1000_RDH(i));
627 	for (i = 0; i < 4; i++)
628 		regs_buff[145 + i] = rd32(E1000_RDT(i));
629 	for (i = 0; i < 4; i++)
630 		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
631 
632 	for (i = 0; i < 10; i++)
633 		regs_buff[153 + i] = rd32(E1000_EITR(i));
634 	for (i = 0; i < 8; i++)
635 		regs_buff[163 + i] = rd32(E1000_IMIR(i));
636 	for (i = 0; i < 8; i++)
637 		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
638 	for (i = 0; i < 16; i++)
639 		regs_buff[179 + i] = rd32(E1000_RAL(i));
640 	for (i = 0; i < 16; i++)
641 		regs_buff[195 + i] = rd32(E1000_RAH(i));
642 
643 	for (i = 0; i < 4; i++)
644 		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
645 	for (i = 0; i < 4; i++)
646 		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
647 	for (i = 0; i < 4; i++)
648 		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
649 	for (i = 0; i < 4; i++)
650 		regs_buff[223 + i] = rd32(E1000_TDH(i));
651 	for (i = 0; i < 4; i++)
652 		regs_buff[227 + i] = rd32(E1000_TDT(i));
653 	for (i = 0; i < 4; i++)
654 		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
655 	for (i = 0; i < 4; i++)
656 		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
657 	for (i = 0; i < 4; i++)
658 		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
659 	for (i = 0; i < 4; i++)
660 		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
661 
662 	for (i = 0; i < 4; i++)
663 		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
664 	for (i = 0; i < 4; i++)
665 		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
666 	for (i = 0; i < 32; i++)
667 		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
668 	for (i = 0; i < 128; i++)
669 		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
670 	for (i = 0; i < 128; i++)
671 		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
672 	for (i = 0; i < 4; i++)
673 		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
674 
675 	regs_buff[547] = rd32(E1000_TDFH);
676 	regs_buff[548] = rd32(E1000_TDFT);
677 	regs_buff[549] = rd32(E1000_TDFHS);
678 	regs_buff[550] = rd32(E1000_TDFPC);
679 
680 	if (hw->mac.type > e1000_82580) {
681 		regs_buff[551] = adapter->stats.o2bgptc;
682 		regs_buff[552] = adapter->stats.b2ospc;
683 		regs_buff[553] = adapter->stats.o2bspc;
684 		regs_buff[554] = adapter->stats.b2ogprc;
685 	}
686 
687 	if (hw->mac.type == e1000_82576) {
688 		for (i = 0; i < 12; i++)
689 			regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
690 		for (i = 0; i < 4; i++)
691 			regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
692 		for (i = 0; i < 12; i++)
693 			regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
694 		for (i = 0; i < 12; i++)
695 			regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
696 		for (i = 0; i < 12; i++)
697 			regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
698 		for (i = 0; i < 12; i++)
699 			regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
700 		for (i = 0; i < 12; i++)
701 			regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
702 		for (i = 0; i < 12; i++)
703 			regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
704 
705 		for (i = 0; i < 12; i++)
706 			regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
707 		for (i = 0; i < 12; i++)
708 			regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
709 		for (i = 0; i < 12; i++)
710 			regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
711 		for (i = 0; i < 12; i++)
712 			regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
713 		for (i = 0; i < 12; i++)
714 			regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
715 		for (i = 0; i < 12; i++)
716 			regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
717 		for (i = 0; i < 12; i++)
718 			regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
719 		for (i = 0; i < 12; i++)
720 			regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
721 	}
722 
723 	if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211)
724 		regs_buff[739] = rd32(E1000_I210_RR2DCDELAY);
725 }
726 
727 static int igb_get_eeprom_len(struct net_device *netdev)
728 {
729 	struct igb_adapter *adapter = netdev_priv(netdev);
730 	return adapter->hw.nvm.word_size * 2;
731 }
732 
733 static int igb_get_eeprom(struct net_device *netdev,
734 			  struct ethtool_eeprom *eeprom, u8 *bytes)
735 {
736 	struct igb_adapter *adapter = netdev_priv(netdev);
737 	struct e1000_hw *hw = &adapter->hw;
738 	u16 *eeprom_buff;
739 	int first_word, last_word;
740 	int ret_val = 0;
741 	u16 i;
742 
743 	if (eeprom->len == 0)
744 		return -EINVAL;
745 
746 	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
747 
748 	first_word = eeprom->offset >> 1;
749 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
750 
751 	eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
752 				    GFP_KERNEL);
753 	if (!eeprom_buff)
754 		return -ENOMEM;
755 
756 	if (hw->nvm.type == e1000_nvm_eeprom_spi)
757 		ret_val = hw->nvm.ops.read(hw, first_word,
758 					   last_word - first_word + 1,
759 					   eeprom_buff);
760 	else {
761 		for (i = 0; i < last_word - first_word + 1; i++) {
762 			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
763 						   &eeprom_buff[i]);
764 			if (ret_val)
765 				break;
766 		}
767 	}
768 
769 	/* Device's eeprom is always little-endian, word addressable */
770 	for (i = 0; i < last_word - first_word + 1; i++)
771 		le16_to_cpus(&eeprom_buff[i]);
772 
773 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
774 			eeprom->len);
775 	kfree(eeprom_buff);
776 
777 	return ret_val;
778 }
779 
780 static int igb_set_eeprom(struct net_device *netdev,
781 			  struct ethtool_eeprom *eeprom, u8 *bytes)
782 {
783 	struct igb_adapter *adapter = netdev_priv(netdev);
784 	struct e1000_hw *hw = &adapter->hw;
785 	u16 *eeprom_buff;
786 	void *ptr;
787 	int max_len, first_word, last_word, ret_val = 0;
788 	u16 i;
789 
790 	if (eeprom->len == 0)
791 		return -EOPNOTSUPP;
792 
793 	if ((hw->mac.type >= e1000_i210) &&
794 	    !igb_get_flash_presence_i210(hw)) {
795 		return -EOPNOTSUPP;
796 	}
797 
798 	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
799 		return -EFAULT;
800 
801 	max_len = hw->nvm.word_size * 2;
802 
803 	first_word = eeprom->offset >> 1;
804 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
805 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
806 	if (!eeprom_buff)
807 		return -ENOMEM;
808 
809 	ptr = (void *)eeprom_buff;
810 
811 	if (eeprom->offset & 1) {
812 		/* need read/modify/write of first changed EEPROM word
813 		 * only the second byte of the word is being modified
814 		 */
815 		ret_val = hw->nvm.ops.read(hw, first_word, 1,
816 					    &eeprom_buff[0]);
817 		ptr++;
818 	}
819 	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
820 		/* need read/modify/write of last changed EEPROM word
821 		 * only the first byte of the word is being modified
822 		 */
823 		ret_val = hw->nvm.ops.read(hw, last_word, 1,
824 				   &eeprom_buff[last_word - first_word]);
825 	}
826 
827 	/* Device's eeprom is always little-endian, word addressable */
828 	for (i = 0; i < last_word - first_word + 1; i++)
829 		le16_to_cpus(&eeprom_buff[i]);
830 
831 	memcpy(ptr, bytes, eeprom->len);
832 
833 	for (i = 0; i < last_word - first_word + 1; i++)
834 		cpu_to_le16s(&eeprom_buff[i]);
835 
836 	ret_val = hw->nvm.ops.write(hw, first_word,
837 				    last_word - first_word + 1, eeprom_buff);
838 
839 	/* Update the checksum if nvm write succeeded */
840 	if (ret_val == 0)
841 		hw->nvm.ops.update(hw);
842 
843 	igb_set_fw_version(adapter);
844 	kfree(eeprom_buff);
845 	return ret_val;
846 }
847 
848 static void igb_get_drvinfo(struct net_device *netdev,
849 			    struct ethtool_drvinfo *drvinfo)
850 {
851 	struct igb_adapter *adapter = netdev_priv(netdev);
852 
853 	strscpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
854 
855 	/* EEPROM image version # is reported as firmware version # for
856 	 * 82575 controllers
857 	 */
858 	strscpy(drvinfo->fw_version, adapter->fw_version,
859 		sizeof(drvinfo->fw_version));
860 	strscpy(drvinfo->bus_info, pci_name(adapter->pdev),
861 		sizeof(drvinfo->bus_info));
862 
863 	drvinfo->n_priv_flags = IGB_PRIV_FLAGS_STR_LEN;
864 }
865 
866 static void igb_get_ringparam(struct net_device *netdev,
867 			      struct ethtool_ringparam *ring,
868 			      struct kernel_ethtool_ringparam *kernel_ring,
869 			      struct netlink_ext_ack *extack)
870 {
871 	struct igb_adapter *adapter = netdev_priv(netdev);
872 
873 	ring->rx_max_pending = IGB_MAX_RXD;
874 	ring->tx_max_pending = IGB_MAX_TXD;
875 	ring->rx_pending = adapter->rx_ring_count;
876 	ring->tx_pending = adapter->tx_ring_count;
877 }
878 
879 static int igb_set_ringparam(struct net_device *netdev,
880 			     struct ethtool_ringparam *ring,
881 			     struct kernel_ethtool_ringparam *kernel_ring,
882 			     struct netlink_ext_ack *extack)
883 {
884 	struct igb_adapter *adapter = netdev_priv(netdev);
885 	struct igb_ring *temp_ring;
886 	int i, err = 0;
887 	u16 new_rx_count, new_tx_count;
888 
889 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
890 		return -EINVAL;
891 
892 	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
893 	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
894 	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
895 
896 	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
897 	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
898 	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
899 
900 	if ((new_tx_count == adapter->tx_ring_count) &&
901 	    (new_rx_count == adapter->rx_ring_count)) {
902 		/* nothing to do */
903 		return 0;
904 	}
905 
906 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
907 		usleep_range(1000, 2000);
908 
909 	if (!netif_running(adapter->netdev)) {
910 		for (i = 0; i < adapter->num_tx_queues; i++)
911 			adapter->tx_ring[i]->count = new_tx_count;
912 		for (i = 0; i < adapter->num_rx_queues; i++)
913 			adapter->rx_ring[i]->count = new_rx_count;
914 		adapter->tx_ring_count = new_tx_count;
915 		adapter->rx_ring_count = new_rx_count;
916 		goto clear_reset;
917 	}
918 
919 	if (adapter->num_tx_queues > adapter->num_rx_queues)
920 		temp_ring = vmalloc(array_size(sizeof(struct igb_ring),
921 					       adapter->num_tx_queues));
922 	else
923 		temp_ring = vmalloc(array_size(sizeof(struct igb_ring),
924 					       adapter->num_rx_queues));
925 
926 	if (!temp_ring) {
927 		err = -ENOMEM;
928 		goto clear_reset;
929 	}
930 
931 	igb_down(adapter);
932 
933 	/* We can't just free everything and then setup again,
934 	 * because the ISRs in MSI-X mode get passed pointers
935 	 * to the Tx and Rx ring structs.
936 	 */
937 	if (new_tx_count != adapter->tx_ring_count) {
938 		for (i = 0; i < adapter->num_tx_queues; i++) {
939 			memcpy(&temp_ring[i], adapter->tx_ring[i],
940 			       sizeof(struct igb_ring));
941 
942 			temp_ring[i].count = new_tx_count;
943 			err = igb_setup_tx_resources(&temp_ring[i]);
944 			if (err) {
945 				while (i) {
946 					i--;
947 					igb_free_tx_resources(&temp_ring[i]);
948 				}
949 				goto err_setup;
950 			}
951 		}
952 
953 		for (i = 0; i < adapter->num_tx_queues; i++) {
954 			igb_free_tx_resources(adapter->tx_ring[i]);
955 
956 			memcpy(adapter->tx_ring[i], &temp_ring[i],
957 			       sizeof(struct igb_ring));
958 		}
959 
960 		adapter->tx_ring_count = new_tx_count;
961 	}
962 
963 	if (new_rx_count != adapter->rx_ring_count) {
964 		for (i = 0; i < adapter->num_rx_queues; i++) {
965 			memcpy(&temp_ring[i], adapter->rx_ring[i],
966 			       sizeof(struct igb_ring));
967 
968 			temp_ring[i].count = new_rx_count;
969 			err = igb_setup_rx_resources(&temp_ring[i]);
970 			if (err) {
971 				while (i) {
972 					i--;
973 					igb_free_rx_resources(&temp_ring[i]);
974 				}
975 				goto err_setup;
976 			}
977 
978 		}
979 
980 		for (i = 0; i < adapter->num_rx_queues; i++) {
981 			igb_free_rx_resources(adapter->rx_ring[i]);
982 
983 			memcpy(adapter->rx_ring[i], &temp_ring[i],
984 			       sizeof(struct igb_ring));
985 		}
986 
987 		adapter->rx_ring_count = new_rx_count;
988 	}
989 err_setup:
990 	igb_up(adapter);
991 	vfree(temp_ring);
992 clear_reset:
993 	clear_bit(__IGB_RESETTING, &adapter->state);
994 	return err;
995 }
996 
997 /* ethtool register test data */
998 struct igb_reg_test {
999 	u16 reg;
1000 	u16 reg_offset;
1001 	u16 array_len;
1002 	u16 test_type;
1003 	u32 mask;
1004 	u32 write;
1005 };
1006 
1007 /* In the hardware, registers are laid out either singly, in arrays
1008  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
1009  * most tests take place on arrays or single registers (handled
1010  * as a single-element array) and special-case the tables.
1011  * Table tests are always pattern tests.
1012  *
1013  * We also make provision for some required setup steps by specifying
1014  * registers to be written without any read-back testing.
1015  */
1016 
1017 #define PATTERN_TEST	1
1018 #define SET_READ_TEST	2
1019 #define WRITE_NO_TEST	3
1020 #define TABLE32_TEST	4
1021 #define TABLE64_TEST_LO	5
1022 #define TABLE64_TEST_HI	6
1023 
1024 /* i210 reg test */
1025 static struct igb_reg_test reg_test_i210[] = {
1026 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1027 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1028 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1029 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1030 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1031 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1032 	/* RDH is read-only for i210, only test RDT. */
1033 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1034 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1035 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1036 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1037 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1038 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1039 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1040 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1041 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1042 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1043 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1044 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1045 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1046 						0xFFFFFFFF, 0xFFFFFFFF },
1047 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1048 						0x900FFFFF, 0xFFFFFFFF },
1049 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1050 						0xFFFFFFFF, 0xFFFFFFFF },
1051 	{ 0, 0, 0, 0, 0 }
1052 };
1053 
1054 /* i350 reg test */
1055 static struct igb_reg_test reg_test_i350[] = {
1056 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1057 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1058 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1059 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1060 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1061 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1062 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1063 	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1064 	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1065 	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1066 	/* RDH is read-only for i350, only test RDT. */
1067 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1068 	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1069 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1070 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1071 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1072 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1073 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1074 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1075 	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1076 	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1077 	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1078 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1079 	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1080 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1081 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1082 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1083 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1084 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1085 						0xFFFFFFFF, 0xFFFFFFFF },
1086 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1087 						0xC3FFFFFF, 0xFFFFFFFF },
1088 	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
1089 						0xFFFFFFFF, 0xFFFFFFFF },
1090 	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
1091 						0xC3FFFFFF, 0xFFFFFFFF },
1092 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1093 						0xFFFFFFFF, 0xFFFFFFFF },
1094 	{ 0, 0, 0, 0 }
1095 };
1096 
1097 /* 82580 reg test */
1098 static struct igb_reg_test reg_test_82580[] = {
1099 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1100 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1101 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1102 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1103 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1104 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1105 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1106 	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1107 	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1108 	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1109 	/* RDH is read-only for 82580, only test RDT. */
1110 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1111 	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1112 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1113 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1114 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1115 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1116 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1117 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1118 	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1119 	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1120 	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1121 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1122 	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1123 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1124 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1125 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1126 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1127 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1128 						0xFFFFFFFF, 0xFFFFFFFF },
1129 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1130 						0x83FFFFFF, 0xFFFFFFFF },
1131 	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
1132 						0xFFFFFFFF, 0xFFFFFFFF },
1133 	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
1134 						0x83FFFFFF, 0xFFFFFFFF },
1135 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1136 						0xFFFFFFFF, 0xFFFFFFFF },
1137 	{ 0, 0, 0, 0 }
1138 };
1139 
1140 /* 82576 reg test */
1141 static struct igb_reg_test reg_test_82576[] = {
1142 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1143 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1144 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1145 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1146 	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1147 	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1148 	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1149 	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1150 	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1151 	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1152 	/* Enable all RX queues before testing. */
1153 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1154 	  E1000_RXDCTL_QUEUE_ENABLE },
1155 	{ E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0,
1156 	  E1000_RXDCTL_QUEUE_ENABLE },
1157 	/* RDH is read-only for 82576, only test RDT. */
1158 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1159 	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1160 	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1161 	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1162 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1163 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1164 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1165 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1166 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1167 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1168 	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1169 	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1170 	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1171 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1172 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1173 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1174 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1175 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1176 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1177 	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1178 	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1179 	{ E1000_MTA,	   0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1180 	{ 0, 0, 0, 0 }
1181 };
1182 
1183 /* 82575 register test */
1184 static struct igb_reg_test reg_test_82575[] = {
1185 	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1186 	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1187 	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1188 	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1189 	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1190 	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1191 	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1192 	/* Enable all four RX queues before testing. */
1193 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1194 	  E1000_RXDCTL_QUEUE_ENABLE },
1195 	/* RDH is read-only for 82575, only test RDT. */
1196 	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1197 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1198 	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1199 	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1200 	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1201 	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1202 	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1203 	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1204 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1205 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1206 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1207 	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1208 	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1209 	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1210 	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1211 	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1212 	{ 0, 0, 0, 0 }
1213 };
1214 
1215 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1216 			     int reg, u32 mask, u32 write)
1217 {
1218 	struct e1000_hw *hw = &adapter->hw;
1219 	u32 pat, val;
1220 	static const u32 _test[] = {
1221 		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1222 	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1223 		wr32(reg, (_test[pat] & write));
1224 		val = rd32(reg) & mask;
1225 		if (val != (_test[pat] & write & mask)) {
1226 			dev_err(&adapter->pdev->dev,
1227 				"pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1228 				reg, val, (_test[pat] & write & mask));
1229 			*data = reg;
1230 			return true;
1231 		}
1232 	}
1233 
1234 	return false;
1235 }
1236 
1237 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1238 			      int reg, u32 mask, u32 write)
1239 {
1240 	struct e1000_hw *hw = &adapter->hw;
1241 	u32 val;
1242 
1243 	wr32(reg, write & mask);
1244 	val = rd32(reg);
1245 	if ((write & mask) != (val & mask)) {
1246 		dev_err(&adapter->pdev->dev,
1247 			"set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
1248 			reg, (val & mask), (write & mask));
1249 		*data = reg;
1250 		return true;
1251 	}
1252 
1253 	return false;
1254 }
1255 
1256 #define REG_PATTERN_TEST(reg, mask, write) \
1257 	do { \
1258 		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1259 			return 1; \
1260 	} while (0)
1261 
1262 #define REG_SET_AND_CHECK(reg, mask, write) \
1263 	do { \
1264 		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1265 			return 1; \
1266 	} while (0)
1267 
1268 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1269 {
1270 	struct e1000_hw *hw = &adapter->hw;
1271 	struct igb_reg_test *test;
1272 	u32 value, before, after;
1273 	u32 i, toggle;
1274 
1275 	switch (adapter->hw.mac.type) {
1276 	case e1000_i350:
1277 	case e1000_i354:
1278 		test = reg_test_i350;
1279 		toggle = 0x7FEFF3FF;
1280 		break;
1281 	case e1000_i210:
1282 	case e1000_i211:
1283 		test = reg_test_i210;
1284 		toggle = 0x7FEFF3FF;
1285 		break;
1286 	case e1000_82580:
1287 		test = reg_test_82580;
1288 		toggle = 0x7FEFF3FF;
1289 		break;
1290 	case e1000_82576:
1291 		test = reg_test_82576;
1292 		toggle = 0x7FFFF3FF;
1293 		break;
1294 	default:
1295 		test = reg_test_82575;
1296 		toggle = 0x7FFFF3FF;
1297 		break;
1298 	}
1299 
1300 	/* Because the status register is such a special case,
1301 	 * we handle it separately from the rest of the register
1302 	 * tests.  Some bits are read-only, some toggle, and some
1303 	 * are writable on newer MACs.
1304 	 */
1305 	before = rd32(E1000_STATUS);
1306 	value = (rd32(E1000_STATUS) & toggle);
1307 	wr32(E1000_STATUS, toggle);
1308 	after = rd32(E1000_STATUS) & toggle;
1309 	if (value != after) {
1310 		dev_err(&adapter->pdev->dev,
1311 			"failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1312 			after, value);
1313 		*data = 1;
1314 		return 1;
1315 	}
1316 	/* restore previous status */
1317 	wr32(E1000_STATUS, before);
1318 
1319 	/* Perform the remainder of the register test, looping through
1320 	 * the test table until we either fail or reach the null entry.
1321 	 */
1322 	while (test->reg) {
1323 		for (i = 0; i < test->array_len; i++) {
1324 			switch (test->test_type) {
1325 			case PATTERN_TEST:
1326 				REG_PATTERN_TEST(test->reg +
1327 						(i * test->reg_offset),
1328 						test->mask,
1329 						test->write);
1330 				break;
1331 			case SET_READ_TEST:
1332 				REG_SET_AND_CHECK(test->reg +
1333 						(i * test->reg_offset),
1334 						test->mask,
1335 						test->write);
1336 				break;
1337 			case WRITE_NO_TEST:
1338 				writel(test->write,
1339 				    (adapter->hw.hw_addr + test->reg)
1340 					+ (i * test->reg_offset));
1341 				break;
1342 			case TABLE32_TEST:
1343 				REG_PATTERN_TEST(test->reg + (i * 4),
1344 						test->mask,
1345 						test->write);
1346 				break;
1347 			case TABLE64_TEST_LO:
1348 				REG_PATTERN_TEST(test->reg + (i * 8),
1349 						test->mask,
1350 						test->write);
1351 				break;
1352 			case TABLE64_TEST_HI:
1353 				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1354 						test->mask,
1355 						test->write);
1356 				break;
1357 			}
1358 		}
1359 		test++;
1360 	}
1361 
1362 	*data = 0;
1363 	return 0;
1364 }
1365 
1366 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1367 {
1368 	struct e1000_hw *hw = &adapter->hw;
1369 
1370 	*data = 0;
1371 
1372 	/* Validate eeprom on all parts but flashless */
1373 	switch (hw->mac.type) {
1374 	case e1000_i210:
1375 	case e1000_i211:
1376 		if (igb_get_flash_presence_i210(hw)) {
1377 			if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1378 				*data = 2;
1379 		}
1380 		break;
1381 	default:
1382 		if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1383 			*data = 2;
1384 		break;
1385 	}
1386 
1387 	return *data;
1388 }
1389 
1390 static irqreturn_t igb_test_intr(int irq, void *data)
1391 {
1392 	struct igb_adapter *adapter = (struct igb_adapter *) data;
1393 	struct e1000_hw *hw = &adapter->hw;
1394 
1395 	adapter->test_icr |= rd32(E1000_ICR);
1396 
1397 	return IRQ_HANDLED;
1398 }
1399 
1400 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1401 {
1402 	struct e1000_hw *hw = &adapter->hw;
1403 	struct net_device *netdev = adapter->netdev;
1404 	u32 mask, ics_mask, i = 0, shared_int = true;
1405 	u32 irq = adapter->pdev->irq;
1406 
1407 	*data = 0;
1408 
1409 	/* Hook up test interrupt handler just for this test */
1410 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1411 		if (request_irq(adapter->msix_entries[0].vector,
1412 				igb_test_intr, 0, netdev->name, adapter)) {
1413 			*data = 1;
1414 			return -1;
1415 		}
1416 		wr32(E1000_IVAR_MISC, E1000_IVAR_VALID << 8);
1417 		wr32(E1000_EIMS, BIT(0));
1418 	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1419 		shared_int = false;
1420 		if (request_irq(irq,
1421 				igb_test_intr, 0, netdev->name, adapter)) {
1422 			*data = 1;
1423 			return -1;
1424 		}
1425 	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1426 				netdev->name, adapter)) {
1427 		shared_int = false;
1428 	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1429 		 netdev->name, adapter)) {
1430 		*data = 1;
1431 		return -1;
1432 	}
1433 	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1434 		(shared_int ? "shared" : "unshared"));
1435 
1436 	/* Disable all the interrupts */
1437 	wr32(E1000_IMC, ~0);
1438 	wrfl();
1439 	usleep_range(10000, 11000);
1440 
1441 	/* Define all writable bits for ICS */
1442 	switch (hw->mac.type) {
1443 	case e1000_82575:
1444 		ics_mask = 0x37F47EDD;
1445 		break;
1446 	case e1000_82576:
1447 		ics_mask = 0x77D4FBFD;
1448 		break;
1449 	case e1000_82580:
1450 		ics_mask = 0x77DCFED5;
1451 		break;
1452 	case e1000_i350:
1453 	case e1000_i354:
1454 	case e1000_i210:
1455 	case e1000_i211:
1456 		ics_mask = 0x77DCFED5;
1457 		break;
1458 	default:
1459 		ics_mask = 0x7FFFFFFF;
1460 		break;
1461 	}
1462 
1463 	/* Test each interrupt */
1464 	for (; i < 31; i++) {
1465 		/* Interrupt to test */
1466 		mask = BIT(i);
1467 
1468 		if (!(mask & ics_mask))
1469 			continue;
1470 
1471 		if (!shared_int) {
1472 			/* Disable the interrupt to be reported in
1473 			 * the cause register and then force the same
1474 			 * interrupt and see if one gets posted.  If
1475 			 * an interrupt was posted to the bus, the
1476 			 * test failed.
1477 			 */
1478 			adapter->test_icr = 0;
1479 
1480 			/* Flush any pending interrupts */
1481 			wr32(E1000_ICR, ~0);
1482 
1483 			wr32(E1000_IMC, mask);
1484 			wr32(E1000_ICS, mask);
1485 			wrfl();
1486 			usleep_range(10000, 11000);
1487 
1488 			if (adapter->test_icr & mask) {
1489 				*data = 3;
1490 				break;
1491 			}
1492 		}
1493 
1494 		/* Enable the interrupt to be reported in
1495 		 * the cause register and then force the same
1496 		 * interrupt and see if one gets posted.  If
1497 		 * an interrupt was not posted to the bus, the
1498 		 * test failed.
1499 		 */
1500 		adapter->test_icr = 0;
1501 
1502 		/* Flush any pending interrupts */
1503 		wr32(E1000_ICR, ~0);
1504 
1505 		wr32(E1000_IMS, mask);
1506 		wr32(E1000_ICS, mask);
1507 		wrfl();
1508 		usleep_range(10000, 11000);
1509 
1510 		if (!(adapter->test_icr & mask)) {
1511 			*data = 4;
1512 			break;
1513 		}
1514 
1515 		if (!shared_int) {
1516 			/* Disable the other interrupts to be reported in
1517 			 * the cause register and then force the other
1518 			 * interrupts and see if any get posted.  If
1519 			 * an interrupt was posted to the bus, the
1520 			 * test failed.
1521 			 */
1522 			adapter->test_icr = 0;
1523 
1524 			/* Flush any pending interrupts */
1525 			wr32(E1000_ICR, ~0);
1526 
1527 			wr32(E1000_IMC, ~mask);
1528 			wr32(E1000_ICS, ~mask);
1529 			wrfl();
1530 			usleep_range(10000, 11000);
1531 
1532 			if (adapter->test_icr & mask) {
1533 				*data = 5;
1534 				break;
1535 			}
1536 		}
1537 	}
1538 
1539 	/* Disable all the interrupts */
1540 	wr32(E1000_IMC, ~0);
1541 	wrfl();
1542 	usleep_range(10000, 11000);
1543 
1544 	/* Unhook test interrupt handler */
1545 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1546 		free_irq(adapter->msix_entries[0].vector, adapter);
1547 	else
1548 		free_irq(irq, adapter);
1549 
1550 	return *data;
1551 }
1552 
1553 static void igb_free_desc_rings(struct igb_adapter *adapter)
1554 {
1555 	igb_free_tx_resources(&adapter->test_tx_ring);
1556 	igb_free_rx_resources(&adapter->test_rx_ring);
1557 }
1558 
1559 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1560 {
1561 	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1562 	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1563 	struct e1000_hw *hw = &adapter->hw;
1564 	int ret_val;
1565 
1566 	/* Setup Tx descriptor ring and Tx buffers */
1567 	tx_ring->count = IGB_DEFAULT_TXD;
1568 	tx_ring->dev = &adapter->pdev->dev;
1569 	tx_ring->netdev = adapter->netdev;
1570 	tx_ring->reg_idx = adapter->vfs_allocated_count;
1571 
1572 	if (igb_setup_tx_resources(tx_ring)) {
1573 		ret_val = 1;
1574 		goto err_nomem;
1575 	}
1576 
1577 	igb_setup_tctl(adapter);
1578 	igb_configure_tx_ring(adapter, tx_ring);
1579 
1580 	/* Setup Rx descriptor ring and Rx buffers */
1581 	rx_ring->count = IGB_DEFAULT_RXD;
1582 	rx_ring->dev = &adapter->pdev->dev;
1583 	rx_ring->netdev = adapter->netdev;
1584 	rx_ring->reg_idx = adapter->vfs_allocated_count;
1585 
1586 	if (igb_setup_rx_resources(rx_ring)) {
1587 		ret_val = 3;
1588 		goto err_nomem;
1589 	}
1590 
1591 	/* set the default queue to queue 0 of PF */
1592 	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1593 
1594 	/* enable receive ring */
1595 	igb_setup_rctl(adapter);
1596 	igb_configure_rx_ring(adapter, rx_ring);
1597 
1598 	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1599 
1600 	return 0;
1601 
1602 err_nomem:
1603 	igb_free_desc_rings(adapter);
1604 	return ret_val;
1605 }
1606 
1607 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1608 {
1609 	struct e1000_hw *hw = &adapter->hw;
1610 
1611 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1612 	igb_write_phy_reg(hw, 29, 0x001F);
1613 	igb_write_phy_reg(hw, 30, 0x8FFC);
1614 	igb_write_phy_reg(hw, 29, 0x001A);
1615 	igb_write_phy_reg(hw, 30, 0x8FF0);
1616 }
1617 
1618 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1619 {
1620 	struct e1000_hw *hw = &adapter->hw;
1621 	u32 ctrl_reg = 0;
1622 
1623 	hw->mac.autoneg = false;
1624 
1625 	if (hw->phy.type == e1000_phy_m88) {
1626 		if (hw->phy.id != I210_I_PHY_ID) {
1627 			/* Auto-MDI/MDIX Off */
1628 			igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1629 			/* reset to update Auto-MDI/MDIX */
1630 			igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1631 			/* autoneg off */
1632 			igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1633 		} else {
1634 			/* force 1000, set loopback  */
1635 			igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1636 			igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1637 		}
1638 	} else if (hw->phy.type == e1000_phy_82580) {
1639 		/* enable MII loopback */
1640 		igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1641 	}
1642 
1643 	/* add small delay to avoid loopback test failure */
1644 	msleep(50);
1645 
1646 	/* force 1000, set loopback */
1647 	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1648 
1649 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1650 	ctrl_reg = rd32(E1000_CTRL);
1651 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1652 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1653 		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1654 		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1655 		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1656 		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1657 
1658 	if (hw->phy.type == e1000_phy_m88)
1659 		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1660 
1661 	wr32(E1000_CTRL, ctrl_reg);
1662 
1663 	/* Disable the receiver on the PHY so when a cable is plugged in, the
1664 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1665 	 */
1666 	if (hw->phy.type == e1000_phy_m88)
1667 		igb_phy_disable_receiver(adapter);
1668 
1669 	msleep(500);
1670 	return 0;
1671 }
1672 
1673 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1674 {
1675 	return igb_integrated_phy_loopback(adapter);
1676 }
1677 
1678 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1679 {
1680 	struct e1000_hw *hw = &adapter->hw;
1681 	u32 reg;
1682 
1683 	reg = rd32(E1000_CTRL_EXT);
1684 
1685 	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1686 	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1687 		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1688 		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1689 		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1690 		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1691 		(hw->device_id == E1000_DEV_ID_I354_SGMII) ||
1692 		(hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) {
1693 			/* Enable DH89xxCC MPHY for near end loopback */
1694 			reg = rd32(E1000_MPHY_ADDR_CTL);
1695 			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1696 			E1000_MPHY_PCS_CLK_REG_OFFSET;
1697 			wr32(E1000_MPHY_ADDR_CTL, reg);
1698 
1699 			reg = rd32(E1000_MPHY_DATA);
1700 			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1701 			wr32(E1000_MPHY_DATA, reg);
1702 		}
1703 
1704 		reg = rd32(E1000_RCTL);
1705 		reg |= E1000_RCTL_LBM_TCVR;
1706 		wr32(E1000_RCTL, reg);
1707 
1708 		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1709 
1710 		reg = rd32(E1000_CTRL);
1711 		reg &= ~(E1000_CTRL_RFCE |
1712 			 E1000_CTRL_TFCE |
1713 			 E1000_CTRL_LRST);
1714 		reg |= E1000_CTRL_SLU |
1715 		       E1000_CTRL_FD;
1716 		wr32(E1000_CTRL, reg);
1717 
1718 		/* Unset switch control to serdes energy detect */
1719 		reg = rd32(E1000_CONNSW);
1720 		reg &= ~E1000_CONNSW_ENRGSRC;
1721 		wr32(E1000_CONNSW, reg);
1722 
1723 		/* Unset sigdetect for SERDES loopback on
1724 		 * 82580 and newer devices.
1725 		 */
1726 		if (hw->mac.type >= e1000_82580) {
1727 			reg = rd32(E1000_PCS_CFG0);
1728 			reg |= E1000_PCS_CFG_IGN_SD;
1729 			wr32(E1000_PCS_CFG0, reg);
1730 		}
1731 
1732 		/* Set PCS register for forced speed */
1733 		reg = rd32(E1000_PCS_LCTL);
1734 		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1735 		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1736 		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1737 		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1738 		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1739 		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1740 		wr32(E1000_PCS_LCTL, reg);
1741 
1742 		return 0;
1743 	}
1744 
1745 	return igb_set_phy_loopback(adapter);
1746 }
1747 
1748 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1749 {
1750 	struct e1000_hw *hw = &adapter->hw;
1751 	u32 rctl;
1752 	u16 phy_reg;
1753 
1754 	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1755 	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1756 	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1757 	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1758 	(hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1759 		u32 reg;
1760 
1761 		/* Disable near end loopback on DH89xxCC */
1762 		reg = rd32(E1000_MPHY_ADDR_CTL);
1763 		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1764 		E1000_MPHY_PCS_CLK_REG_OFFSET;
1765 		wr32(E1000_MPHY_ADDR_CTL, reg);
1766 
1767 		reg = rd32(E1000_MPHY_DATA);
1768 		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1769 		wr32(E1000_MPHY_DATA, reg);
1770 	}
1771 
1772 	rctl = rd32(E1000_RCTL);
1773 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1774 	wr32(E1000_RCTL, rctl);
1775 
1776 	hw->mac.autoneg = true;
1777 	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1778 	if (phy_reg & MII_CR_LOOPBACK) {
1779 		phy_reg &= ~MII_CR_LOOPBACK;
1780 		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1781 		igb_phy_sw_reset(hw);
1782 	}
1783 }
1784 
1785 static void igb_create_lbtest_frame(struct sk_buff *skb,
1786 				    unsigned int frame_size)
1787 {
1788 	memset(skb->data, 0xFF, frame_size);
1789 	frame_size /= 2;
1790 	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1791 	skb->data[frame_size + 10] = 0xBE;
1792 	skb->data[frame_size + 12] = 0xAF;
1793 }
1794 
1795 static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1796 				  unsigned int frame_size)
1797 {
1798 	unsigned char *data;
1799 	bool match = true;
1800 
1801 	frame_size >>= 1;
1802 
1803 	data = kmap_local_page(rx_buffer->page);
1804 
1805 	if (data[3] != 0xFF ||
1806 	    data[frame_size + 10] != 0xBE ||
1807 	    data[frame_size + 12] != 0xAF)
1808 		match = false;
1809 
1810 	kunmap_local(data);
1811 
1812 	return match;
1813 }
1814 
1815 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1816 				struct igb_ring *tx_ring,
1817 				unsigned int size)
1818 {
1819 	union e1000_adv_rx_desc *rx_desc;
1820 	struct igb_rx_buffer *rx_buffer_info;
1821 	struct igb_tx_buffer *tx_buffer_info;
1822 	u16 rx_ntc, tx_ntc, count = 0;
1823 
1824 	/* initialize next to clean and descriptor values */
1825 	rx_ntc = rx_ring->next_to_clean;
1826 	tx_ntc = tx_ring->next_to_clean;
1827 	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1828 
1829 	while (rx_desc->wb.upper.length) {
1830 		/* check Rx buffer */
1831 		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1832 
1833 		/* sync Rx buffer for CPU read */
1834 		dma_sync_single_for_cpu(rx_ring->dev,
1835 					rx_buffer_info->dma,
1836 					size,
1837 					DMA_FROM_DEVICE);
1838 
1839 		/* verify contents of skb */
1840 		if (igb_check_lbtest_frame(rx_buffer_info, size))
1841 			count++;
1842 
1843 		/* sync Rx buffer for device write */
1844 		dma_sync_single_for_device(rx_ring->dev,
1845 					   rx_buffer_info->dma,
1846 					   size,
1847 					   DMA_FROM_DEVICE);
1848 
1849 		/* unmap buffer on Tx side */
1850 		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1851 
1852 		/* Free all the Tx ring sk_buffs */
1853 		dev_kfree_skb_any(tx_buffer_info->skb);
1854 
1855 		/* unmap skb header data */
1856 		dma_unmap_single(tx_ring->dev,
1857 				 dma_unmap_addr(tx_buffer_info, dma),
1858 				 dma_unmap_len(tx_buffer_info, len),
1859 				 DMA_TO_DEVICE);
1860 		dma_unmap_len_set(tx_buffer_info, len, 0);
1861 
1862 		/* increment Rx/Tx next to clean counters */
1863 		rx_ntc++;
1864 		if (rx_ntc == rx_ring->count)
1865 			rx_ntc = 0;
1866 		tx_ntc++;
1867 		if (tx_ntc == tx_ring->count)
1868 			tx_ntc = 0;
1869 
1870 		/* fetch next descriptor */
1871 		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1872 	}
1873 
1874 	netdev_tx_reset_queue(txring_txq(tx_ring));
1875 
1876 	/* re-map buffers to ring, store next to clean values */
1877 	igb_alloc_rx_buffers(rx_ring, count);
1878 	rx_ring->next_to_clean = rx_ntc;
1879 	tx_ring->next_to_clean = tx_ntc;
1880 
1881 	return count;
1882 }
1883 
1884 static int igb_run_loopback_test(struct igb_adapter *adapter)
1885 {
1886 	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1887 	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1888 	u16 i, j, lc, good_cnt;
1889 	int ret_val = 0;
1890 	unsigned int size = IGB_RX_HDR_LEN;
1891 	netdev_tx_t tx_ret_val;
1892 	struct sk_buff *skb;
1893 
1894 	/* allocate test skb */
1895 	skb = alloc_skb(size, GFP_KERNEL);
1896 	if (!skb)
1897 		return 11;
1898 
1899 	/* place data into test skb */
1900 	igb_create_lbtest_frame(skb, size);
1901 	skb_put(skb, size);
1902 
1903 	/* Calculate the loop count based on the largest descriptor ring
1904 	 * The idea is to wrap the largest ring a number of times using 64
1905 	 * send/receive pairs during each loop
1906 	 */
1907 
1908 	if (rx_ring->count <= tx_ring->count)
1909 		lc = ((tx_ring->count / 64) * 2) + 1;
1910 	else
1911 		lc = ((rx_ring->count / 64) * 2) + 1;
1912 
1913 	for (j = 0; j <= lc; j++) { /* loop count loop */
1914 		/* reset count of good packets */
1915 		good_cnt = 0;
1916 
1917 		/* place 64 packets on the transmit queue*/
1918 		for (i = 0; i < 64; i++) {
1919 			skb_get(skb);
1920 			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1921 			if (tx_ret_val == NETDEV_TX_OK)
1922 				good_cnt++;
1923 		}
1924 
1925 		if (good_cnt != 64) {
1926 			ret_val = 12;
1927 			break;
1928 		}
1929 
1930 		/* allow 200 milliseconds for packets to go from Tx to Rx */
1931 		msleep(200);
1932 
1933 		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1934 		if (good_cnt != 64) {
1935 			ret_val = 13;
1936 			break;
1937 		}
1938 	} /* end loop count loop */
1939 
1940 	/* free the original skb */
1941 	kfree_skb(skb);
1942 
1943 	return ret_val;
1944 }
1945 
1946 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1947 {
1948 	/* PHY loopback cannot be performed if SoL/IDER
1949 	 * sessions are active
1950 	 */
1951 	if (igb_check_reset_block(&adapter->hw)) {
1952 		dev_err(&adapter->pdev->dev,
1953 			"Cannot do PHY loopback test when SoL/IDER is active.\n");
1954 		*data = 0;
1955 		goto out;
1956 	}
1957 
1958 	if (adapter->hw.mac.type == e1000_i354) {
1959 		dev_info(&adapter->pdev->dev,
1960 			"Loopback test not supported on i354.\n");
1961 		*data = 0;
1962 		goto out;
1963 	}
1964 	*data = igb_setup_desc_rings(adapter);
1965 	if (*data)
1966 		goto out;
1967 	*data = igb_setup_loopback_test(adapter);
1968 	if (*data)
1969 		goto err_loopback;
1970 	*data = igb_run_loopback_test(adapter);
1971 	igb_loopback_cleanup(adapter);
1972 
1973 err_loopback:
1974 	igb_free_desc_rings(adapter);
1975 out:
1976 	return *data;
1977 }
1978 
1979 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1980 {
1981 	struct e1000_hw *hw = &adapter->hw;
1982 	*data = 0;
1983 	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1984 		int i = 0;
1985 
1986 		hw->mac.serdes_has_link = false;
1987 
1988 		/* On some blade server designs, link establishment
1989 		 * could take as long as 2-3 minutes
1990 		 */
1991 		do {
1992 			hw->mac.ops.check_for_link(&adapter->hw);
1993 			if (hw->mac.serdes_has_link)
1994 				return *data;
1995 			msleep(20);
1996 		} while (i++ < 3750);
1997 
1998 		*data = 1;
1999 	} else {
2000 		hw->mac.ops.check_for_link(&adapter->hw);
2001 		if (hw->mac.autoneg)
2002 			msleep(5000);
2003 
2004 		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
2005 			*data = 1;
2006 	}
2007 	return *data;
2008 }
2009 
2010 static void igb_diag_test(struct net_device *netdev,
2011 			  struct ethtool_test *eth_test, u64 *data)
2012 {
2013 	struct igb_adapter *adapter = netdev_priv(netdev);
2014 	u16 autoneg_advertised;
2015 	u8 forced_speed_duplex, autoneg;
2016 	bool if_running = netif_running(netdev);
2017 
2018 	set_bit(__IGB_TESTING, &adapter->state);
2019 
2020 	/* can't do offline tests on media switching devices */
2021 	if (adapter->hw.dev_spec._82575.mas_capable)
2022 		eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
2023 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
2024 		/* Offline tests */
2025 
2026 		/* save speed, duplex, autoneg settings */
2027 		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
2028 		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
2029 		autoneg = adapter->hw.mac.autoneg;
2030 
2031 		dev_info(&adapter->pdev->dev, "offline testing starting\n");
2032 
2033 		/* power up link for link test */
2034 		igb_power_up_link(adapter);
2035 
2036 		/* Link test performed before hardware reset so autoneg doesn't
2037 		 * interfere with test result
2038 		 */
2039 		if (igb_link_test(adapter, &data[TEST_LINK]))
2040 			eth_test->flags |= ETH_TEST_FL_FAILED;
2041 
2042 		if (if_running)
2043 			/* indicate we're in test mode */
2044 			igb_close(netdev);
2045 		else
2046 			igb_reset(adapter);
2047 
2048 		if (igb_reg_test(adapter, &data[TEST_REG]))
2049 			eth_test->flags |= ETH_TEST_FL_FAILED;
2050 
2051 		igb_reset(adapter);
2052 		if (igb_eeprom_test(adapter, &data[TEST_EEP]))
2053 			eth_test->flags |= ETH_TEST_FL_FAILED;
2054 
2055 		igb_reset(adapter);
2056 		if (igb_intr_test(adapter, &data[TEST_IRQ]))
2057 			eth_test->flags |= ETH_TEST_FL_FAILED;
2058 
2059 		igb_reset(adapter);
2060 		/* power up link for loopback test */
2061 		igb_power_up_link(adapter);
2062 		if (igb_loopback_test(adapter, &data[TEST_LOOP]))
2063 			eth_test->flags |= ETH_TEST_FL_FAILED;
2064 
2065 		/* restore speed, duplex, autoneg settings */
2066 		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2067 		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2068 		adapter->hw.mac.autoneg = autoneg;
2069 
2070 		/* force this routine to wait until autoneg complete/timeout */
2071 		adapter->hw.phy.autoneg_wait_to_complete = true;
2072 		igb_reset(adapter);
2073 		adapter->hw.phy.autoneg_wait_to_complete = false;
2074 
2075 		clear_bit(__IGB_TESTING, &adapter->state);
2076 		if (if_running)
2077 			igb_open(netdev);
2078 	} else {
2079 		dev_info(&adapter->pdev->dev, "online testing starting\n");
2080 
2081 		/* PHY is powered down when interface is down */
2082 		if (if_running && igb_link_test(adapter, &data[TEST_LINK]))
2083 			eth_test->flags |= ETH_TEST_FL_FAILED;
2084 		else
2085 			data[TEST_LINK] = 0;
2086 
2087 		/* Online tests aren't run; pass by default */
2088 		data[TEST_REG] = 0;
2089 		data[TEST_EEP] = 0;
2090 		data[TEST_IRQ] = 0;
2091 		data[TEST_LOOP] = 0;
2092 
2093 		clear_bit(__IGB_TESTING, &adapter->state);
2094 	}
2095 	msleep_interruptible(4 * 1000);
2096 }
2097 
2098 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2099 {
2100 	struct igb_adapter *adapter = netdev_priv(netdev);
2101 
2102 	wol->wolopts = 0;
2103 
2104 	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2105 		return;
2106 
2107 	wol->supported = WAKE_UCAST | WAKE_MCAST |
2108 			 WAKE_BCAST | WAKE_MAGIC |
2109 			 WAKE_PHY;
2110 
2111 	/* apply any specific unsupported masks here */
2112 	switch (adapter->hw.device_id) {
2113 	default:
2114 		break;
2115 	}
2116 
2117 	if (adapter->wol & E1000_WUFC_EX)
2118 		wol->wolopts |= WAKE_UCAST;
2119 	if (adapter->wol & E1000_WUFC_MC)
2120 		wol->wolopts |= WAKE_MCAST;
2121 	if (adapter->wol & E1000_WUFC_BC)
2122 		wol->wolopts |= WAKE_BCAST;
2123 	if (adapter->wol & E1000_WUFC_MAG)
2124 		wol->wolopts |= WAKE_MAGIC;
2125 	if (adapter->wol & E1000_WUFC_LNKC)
2126 		wol->wolopts |= WAKE_PHY;
2127 }
2128 
2129 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2130 {
2131 	struct igb_adapter *adapter = netdev_priv(netdev);
2132 
2133 	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_FILTER))
2134 		return -EOPNOTSUPP;
2135 
2136 	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2137 		return wol->wolopts ? -EOPNOTSUPP : 0;
2138 
2139 	/* these settings will always override what we currently have */
2140 	adapter->wol = 0;
2141 
2142 	if (wol->wolopts & WAKE_UCAST)
2143 		adapter->wol |= E1000_WUFC_EX;
2144 	if (wol->wolopts & WAKE_MCAST)
2145 		adapter->wol |= E1000_WUFC_MC;
2146 	if (wol->wolopts & WAKE_BCAST)
2147 		adapter->wol |= E1000_WUFC_BC;
2148 	if (wol->wolopts & WAKE_MAGIC)
2149 		adapter->wol |= E1000_WUFC_MAG;
2150 	if (wol->wolopts & WAKE_PHY)
2151 		adapter->wol |= E1000_WUFC_LNKC;
2152 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2153 
2154 	return 0;
2155 }
2156 
2157 /* bit defines for adapter->led_status */
2158 #define IGB_LED_ON		0
2159 
2160 static int igb_set_phys_id(struct net_device *netdev,
2161 			   enum ethtool_phys_id_state state)
2162 {
2163 	struct igb_adapter *adapter = netdev_priv(netdev);
2164 	struct e1000_hw *hw = &adapter->hw;
2165 
2166 	switch (state) {
2167 	case ETHTOOL_ID_ACTIVE:
2168 		igb_blink_led(hw);
2169 		return 2;
2170 	case ETHTOOL_ID_ON:
2171 		igb_blink_led(hw);
2172 		break;
2173 	case ETHTOOL_ID_OFF:
2174 		igb_led_off(hw);
2175 		break;
2176 	case ETHTOOL_ID_INACTIVE:
2177 		igb_led_off(hw);
2178 		clear_bit(IGB_LED_ON, &adapter->led_status);
2179 		igb_cleanup_led(hw);
2180 		break;
2181 	}
2182 
2183 	return 0;
2184 }
2185 
2186 static int igb_set_coalesce(struct net_device *netdev,
2187 			    struct ethtool_coalesce *ec,
2188 			    struct kernel_ethtool_coalesce *kernel_coal,
2189 			    struct netlink_ext_ack *extack)
2190 {
2191 	struct igb_adapter *adapter = netdev_priv(netdev);
2192 	int i;
2193 
2194 	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2195 	    ((ec->rx_coalesce_usecs > 3) &&
2196 	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2197 	    (ec->rx_coalesce_usecs == 2))
2198 		return -EINVAL;
2199 
2200 	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2201 	    ((ec->tx_coalesce_usecs > 3) &&
2202 	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2203 	    (ec->tx_coalesce_usecs == 2))
2204 		return -EINVAL;
2205 
2206 	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2207 		return -EINVAL;
2208 
2209 	/* If ITR is disabled, disable DMAC */
2210 	if (ec->rx_coalesce_usecs == 0) {
2211 		if (adapter->flags & IGB_FLAG_DMAC)
2212 			adapter->flags &= ~IGB_FLAG_DMAC;
2213 	}
2214 
2215 	/* convert to rate of irq's per second */
2216 	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2217 		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2218 	else
2219 		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2220 
2221 	/* convert to rate of irq's per second */
2222 	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2223 		adapter->tx_itr_setting = adapter->rx_itr_setting;
2224 	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2225 		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2226 	else
2227 		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2228 
2229 	for (i = 0; i < adapter->num_q_vectors; i++) {
2230 		struct igb_q_vector *q_vector = adapter->q_vector[i];
2231 		q_vector->tx.work_limit = adapter->tx_work_limit;
2232 		if (q_vector->rx.ring)
2233 			q_vector->itr_val = adapter->rx_itr_setting;
2234 		else
2235 			q_vector->itr_val = adapter->tx_itr_setting;
2236 		if (q_vector->itr_val && q_vector->itr_val <= 3)
2237 			q_vector->itr_val = IGB_START_ITR;
2238 		q_vector->set_itr = 1;
2239 	}
2240 
2241 	return 0;
2242 }
2243 
2244 static int igb_get_coalesce(struct net_device *netdev,
2245 			    struct ethtool_coalesce *ec,
2246 			    struct kernel_ethtool_coalesce *kernel_coal,
2247 			    struct netlink_ext_ack *extack)
2248 {
2249 	struct igb_adapter *adapter = netdev_priv(netdev);
2250 
2251 	if (adapter->rx_itr_setting <= 3)
2252 		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2253 	else
2254 		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2255 
2256 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2257 		if (adapter->tx_itr_setting <= 3)
2258 			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2259 		else
2260 			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2261 	}
2262 
2263 	return 0;
2264 }
2265 
2266 static int igb_nway_reset(struct net_device *netdev)
2267 {
2268 	struct igb_adapter *adapter = netdev_priv(netdev);
2269 	if (netif_running(netdev))
2270 		igb_reinit_locked(adapter);
2271 	return 0;
2272 }
2273 
2274 static int igb_get_sset_count(struct net_device *netdev, int sset)
2275 {
2276 	switch (sset) {
2277 	case ETH_SS_STATS:
2278 		return IGB_STATS_LEN;
2279 	case ETH_SS_TEST:
2280 		return IGB_TEST_LEN;
2281 	case ETH_SS_PRIV_FLAGS:
2282 		return IGB_PRIV_FLAGS_STR_LEN;
2283 	default:
2284 		return -ENOTSUPP;
2285 	}
2286 }
2287 
2288 static void igb_get_ethtool_stats(struct net_device *netdev,
2289 				  struct ethtool_stats *stats, u64 *data)
2290 {
2291 	struct igb_adapter *adapter = netdev_priv(netdev);
2292 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2293 	unsigned int start;
2294 	struct igb_ring *ring;
2295 	int i, j;
2296 	char *p;
2297 
2298 	spin_lock(&adapter->stats64_lock);
2299 	igb_update_stats(adapter);
2300 
2301 	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2302 		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2303 		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2304 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2305 	}
2306 	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2307 		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2308 		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2309 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2310 	}
2311 	for (j = 0; j < adapter->num_tx_queues; j++) {
2312 		u64	restart2;
2313 
2314 		ring = adapter->tx_ring[j];
2315 		do {
2316 			start = u64_stats_fetch_begin(&ring->tx_syncp);
2317 			data[i]   = ring->tx_stats.packets;
2318 			data[i+1] = ring->tx_stats.bytes;
2319 			data[i+2] = ring->tx_stats.restart_queue;
2320 		} while (u64_stats_fetch_retry(&ring->tx_syncp, start));
2321 		do {
2322 			start = u64_stats_fetch_begin(&ring->tx_syncp2);
2323 			restart2  = ring->tx_stats.restart_queue2;
2324 		} while (u64_stats_fetch_retry(&ring->tx_syncp2, start));
2325 		data[i+2] += restart2;
2326 
2327 		i += IGB_TX_QUEUE_STATS_LEN;
2328 	}
2329 	for (j = 0; j < adapter->num_rx_queues; j++) {
2330 		ring = adapter->rx_ring[j];
2331 		do {
2332 			start = u64_stats_fetch_begin(&ring->rx_syncp);
2333 			data[i]   = ring->rx_stats.packets;
2334 			data[i+1] = ring->rx_stats.bytes;
2335 			data[i+2] = ring->rx_stats.drops;
2336 			data[i+3] = ring->rx_stats.csum_err;
2337 			data[i+4] = ring->rx_stats.alloc_failed;
2338 		} while (u64_stats_fetch_retry(&ring->rx_syncp, start));
2339 		i += IGB_RX_QUEUE_STATS_LEN;
2340 	}
2341 	spin_unlock(&adapter->stats64_lock);
2342 }
2343 
2344 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2345 {
2346 	struct igb_adapter *adapter = netdev_priv(netdev);
2347 	u8 *p = data;
2348 	int i;
2349 
2350 	switch (stringset) {
2351 	case ETH_SS_TEST:
2352 		memcpy(data, igb_gstrings_test, sizeof(igb_gstrings_test));
2353 		break;
2354 	case ETH_SS_STATS:
2355 		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++)
2356 			ethtool_sprintf(&p,
2357 					igb_gstrings_stats[i].stat_string);
2358 		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++)
2359 			ethtool_sprintf(&p,
2360 					igb_gstrings_net_stats[i].stat_string);
2361 		for (i = 0; i < adapter->num_tx_queues; i++) {
2362 			ethtool_sprintf(&p, "tx_queue_%u_packets", i);
2363 			ethtool_sprintf(&p, "tx_queue_%u_bytes", i);
2364 			ethtool_sprintf(&p, "tx_queue_%u_restart", i);
2365 		}
2366 		for (i = 0; i < adapter->num_rx_queues; i++) {
2367 			ethtool_sprintf(&p, "rx_queue_%u_packets", i);
2368 			ethtool_sprintf(&p, "rx_queue_%u_bytes", i);
2369 			ethtool_sprintf(&p, "rx_queue_%u_drops", i);
2370 			ethtool_sprintf(&p, "rx_queue_%u_csum_err", i);
2371 			ethtool_sprintf(&p, "rx_queue_%u_alloc_failed", i);
2372 		}
2373 		/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2374 		break;
2375 	case ETH_SS_PRIV_FLAGS:
2376 		memcpy(data, igb_priv_flags_strings,
2377 		       IGB_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN);
2378 		break;
2379 	}
2380 }
2381 
2382 static int igb_get_ts_info(struct net_device *dev,
2383 			   struct ethtool_ts_info *info)
2384 {
2385 	struct igb_adapter *adapter = netdev_priv(dev);
2386 
2387 	if (adapter->ptp_clock)
2388 		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2389 	else
2390 		info->phc_index = -1;
2391 
2392 	switch (adapter->hw.mac.type) {
2393 	case e1000_82575:
2394 		info->so_timestamping =
2395 			SOF_TIMESTAMPING_TX_SOFTWARE |
2396 			SOF_TIMESTAMPING_RX_SOFTWARE |
2397 			SOF_TIMESTAMPING_SOFTWARE;
2398 		return 0;
2399 	case e1000_82576:
2400 	case e1000_82580:
2401 	case e1000_i350:
2402 	case e1000_i354:
2403 	case e1000_i210:
2404 	case e1000_i211:
2405 		info->so_timestamping =
2406 			SOF_TIMESTAMPING_TX_SOFTWARE |
2407 			SOF_TIMESTAMPING_RX_SOFTWARE |
2408 			SOF_TIMESTAMPING_SOFTWARE |
2409 			SOF_TIMESTAMPING_TX_HARDWARE |
2410 			SOF_TIMESTAMPING_RX_HARDWARE |
2411 			SOF_TIMESTAMPING_RAW_HARDWARE;
2412 
2413 		info->tx_types =
2414 			BIT(HWTSTAMP_TX_OFF) |
2415 			BIT(HWTSTAMP_TX_ON);
2416 
2417 		info->rx_filters = BIT(HWTSTAMP_FILTER_NONE);
2418 
2419 		/* 82576 does not support timestamping all packets. */
2420 		if (adapter->hw.mac.type >= e1000_82580)
2421 			info->rx_filters |= BIT(HWTSTAMP_FILTER_ALL);
2422 		else
2423 			info->rx_filters |=
2424 				BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2425 				BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2426 				BIT(HWTSTAMP_FILTER_PTP_V2_EVENT);
2427 
2428 		return 0;
2429 	default:
2430 		return -EOPNOTSUPP;
2431 	}
2432 }
2433 
2434 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2435 static int igb_get_ethtool_nfc_entry(struct igb_adapter *adapter,
2436 				     struct ethtool_rxnfc *cmd)
2437 {
2438 	struct ethtool_rx_flow_spec *fsp = &cmd->fs;
2439 	struct igb_nfc_filter *rule = NULL;
2440 
2441 	/* report total rule count */
2442 	cmd->data = IGB_MAX_RXNFC_FILTERS;
2443 
2444 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2445 		if (fsp->location <= rule->sw_idx)
2446 			break;
2447 	}
2448 
2449 	if (!rule || fsp->location != rule->sw_idx)
2450 		return -EINVAL;
2451 
2452 	if (rule->filter.match_flags) {
2453 		fsp->flow_type = ETHER_FLOW;
2454 		fsp->ring_cookie = rule->action;
2455 		if (rule->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2456 			fsp->h_u.ether_spec.h_proto = rule->filter.etype;
2457 			fsp->m_u.ether_spec.h_proto = ETHER_TYPE_FULL_MASK;
2458 		}
2459 		if (rule->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI) {
2460 			fsp->flow_type |= FLOW_EXT;
2461 			fsp->h_ext.vlan_tci = rule->filter.vlan_tci;
2462 			fsp->m_ext.vlan_tci = htons(VLAN_PRIO_MASK);
2463 		}
2464 		if (rule->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) {
2465 			ether_addr_copy(fsp->h_u.ether_spec.h_dest,
2466 					rule->filter.dst_addr);
2467 			/* As we only support matching by the full
2468 			 * mask, return the mask to userspace
2469 			 */
2470 			eth_broadcast_addr(fsp->m_u.ether_spec.h_dest);
2471 		}
2472 		if (rule->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) {
2473 			ether_addr_copy(fsp->h_u.ether_spec.h_source,
2474 					rule->filter.src_addr);
2475 			/* As we only support matching by the full
2476 			 * mask, return the mask to userspace
2477 			 */
2478 			eth_broadcast_addr(fsp->m_u.ether_spec.h_source);
2479 		}
2480 
2481 		return 0;
2482 	}
2483 	return -EINVAL;
2484 }
2485 
2486 static int igb_get_ethtool_nfc_all(struct igb_adapter *adapter,
2487 				   struct ethtool_rxnfc *cmd,
2488 				   u32 *rule_locs)
2489 {
2490 	struct igb_nfc_filter *rule;
2491 	int cnt = 0;
2492 
2493 	/* report total rule count */
2494 	cmd->data = IGB_MAX_RXNFC_FILTERS;
2495 
2496 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2497 		if (cnt == cmd->rule_cnt)
2498 			return -EMSGSIZE;
2499 		rule_locs[cnt] = rule->sw_idx;
2500 		cnt++;
2501 	}
2502 
2503 	cmd->rule_cnt = cnt;
2504 
2505 	return 0;
2506 }
2507 
2508 static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2509 				 struct ethtool_rxnfc *cmd)
2510 {
2511 	cmd->data = 0;
2512 
2513 	/* Report default options for RSS on igb */
2514 	switch (cmd->flow_type) {
2515 	case TCP_V4_FLOW:
2516 		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2517 		fallthrough;
2518 	case UDP_V4_FLOW:
2519 		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2520 			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2521 		fallthrough;
2522 	case SCTP_V4_FLOW:
2523 	case AH_ESP_V4_FLOW:
2524 	case AH_V4_FLOW:
2525 	case ESP_V4_FLOW:
2526 	case IPV4_FLOW:
2527 		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2528 		break;
2529 	case TCP_V6_FLOW:
2530 		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2531 		fallthrough;
2532 	case UDP_V6_FLOW:
2533 		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2534 			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2535 		fallthrough;
2536 	case SCTP_V6_FLOW:
2537 	case AH_ESP_V6_FLOW:
2538 	case AH_V6_FLOW:
2539 	case ESP_V6_FLOW:
2540 	case IPV6_FLOW:
2541 		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2542 		break;
2543 	default:
2544 		return -EINVAL;
2545 	}
2546 
2547 	return 0;
2548 }
2549 
2550 static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2551 			 u32 *rule_locs)
2552 {
2553 	struct igb_adapter *adapter = netdev_priv(dev);
2554 	int ret = -EOPNOTSUPP;
2555 
2556 	switch (cmd->cmd) {
2557 	case ETHTOOL_GRXRINGS:
2558 		cmd->data = adapter->num_rx_queues;
2559 		ret = 0;
2560 		break;
2561 	case ETHTOOL_GRXCLSRLCNT:
2562 		cmd->rule_cnt = adapter->nfc_filter_count;
2563 		ret = 0;
2564 		break;
2565 	case ETHTOOL_GRXCLSRULE:
2566 		ret = igb_get_ethtool_nfc_entry(adapter, cmd);
2567 		break;
2568 	case ETHTOOL_GRXCLSRLALL:
2569 		ret = igb_get_ethtool_nfc_all(adapter, cmd, rule_locs);
2570 		break;
2571 	case ETHTOOL_GRXFH:
2572 		ret = igb_get_rss_hash_opts(adapter, cmd);
2573 		break;
2574 	default:
2575 		break;
2576 	}
2577 
2578 	return ret;
2579 }
2580 
2581 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2582 		       IGB_FLAG_RSS_FIELD_IPV6_UDP)
2583 static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2584 				struct ethtool_rxnfc *nfc)
2585 {
2586 	u32 flags = adapter->flags;
2587 
2588 	/* RSS does not support anything other than hashing
2589 	 * to queues on src and dst IPs and ports
2590 	 */
2591 	if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2592 			  RXH_L4_B_0_1 | RXH_L4_B_2_3))
2593 		return -EINVAL;
2594 
2595 	switch (nfc->flow_type) {
2596 	case TCP_V4_FLOW:
2597 	case TCP_V6_FLOW:
2598 		if (!(nfc->data & RXH_IP_SRC) ||
2599 		    !(nfc->data & RXH_IP_DST) ||
2600 		    !(nfc->data & RXH_L4_B_0_1) ||
2601 		    !(nfc->data & RXH_L4_B_2_3))
2602 			return -EINVAL;
2603 		break;
2604 	case UDP_V4_FLOW:
2605 		if (!(nfc->data & RXH_IP_SRC) ||
2606 		    !(nfc->data & RXH_IP_DST))
2607 			return -EINVAL;
2608 		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2609 		case 0:
2610 			flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2611 			break;
2612 		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2613 			flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2614 			break;
2615 		default:
2616 			return -EINVAL;
2617 		}
2618 		break;
2619 	case UDP_V6_FLOW:
2620 		if (!(nfc->data & RXH_IP_SRC) ||
2621 		    !(nfc->data & RXH_IP_DST))
2622 			return -EINVAL;
2623 		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2624 		case 0:
2625 			flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2626 			break;
2627 		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2628 			flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2629 			break;
2630 		default:
2631 			return -EINVAL;
2632 		}
2633 		break;
2634 	case AH_ESP_V4_FLOW:
2635 	case AH_V4_FLOW:
2636 	case ESP_V4_FLOW:
2637 	case SCTP_V4_FLOW:
2638 	case AH_ESP_V6_FLOW:
2639 	case AH_V6_FLOW:
2640 	case ESP_V6_FLOW:
2641 	case SCTP_V6_FLOW:
2642 		if (!(nfc->data & RXH_IP_SRC) ||
2643 		    !(nfc->data & RXH_IP_DST) ||
2644 		    (nfc->data & RXH_L4_B_0_1) ||
2645 		    (nfc->data & RXH_L4_B_2_3))
2646 			return -EINVAL;
2647 		break;
2648 	default:
2649 		return -EINVAL;
2650 	}
2651 
2652 	/* if we changed something we need to update flags */
2653 	if (flags != adapter->flags) {
2654 		struct e1000_hw *hw = &adapter->hw;
2655 		u32 mrqc = rd32(E1000_MRQC);
2656 
2657 		if ((flags & UDP_RSS_FLAGS) &&
2658 		    !(adapter->flags & UDP_RSS_FLAGS))
2659 			dev_err(&adapter->pdev->dev,
2660 				"enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2661 
2662 		adapter->flags = flags;
2663 
2664 		/* Perform hash on these packet types */
2665 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2666 			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2667 			E1000_MRQC_RSS_FIELD_IPV6 |
2668 			E1000_MRQC_RSS_FIELD_IPV6_TCP;
2669 
2670 		mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2671 			  E1000_MRQC_RSS_FIELD_IPV6_UDP);
2672 
2673 		if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2674 			mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2675 
2676 		if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2677 			mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2678 
2679 		wr32(E1000_MRQC, mrqc);
2680 	}
2681 
2682 	return 0;
2683 }
2684 
2685 static int igb_rxnfc_write_etype_filter(struct igb_adapter *adapter,
2686 					struct igb_nfc_filter *input)
2687 {
2688 	struct e1000_hw *hw = &adapter->hw;
2689 	u8 i;
2690 	u32 etqf;
2691 	u16 etype;
2692 
2693 	/* find an empty etype filter register */
2694 	for (i = 0; i < MAX_ETYPE_FILTER; ++i) {
2695 		if (!adapter->etype_bitmap[i])
2696 			break;
2697 	}
2698 	if (i == MAX_ETYPE_FILTER) {
2699 		dev_err(&adapter->pdev->dev, "ethtool -N: etype filters are all used.\n");
2700 		return -EINVAL;
2701 	}
2702 
2703 	adapter->etype_bitmap[i] = true;
2704 
2705 	etqf = rd32(E1000_ETQF(i));
2706 	etype = ntohs(input->filter.etype & ETHER_TYPE_FULL_MASK);
2707 
2708 	etqf |= E1000_ETQF_FILTER_ENABLE;
2709 	etqf &= ~E1000_ETQF_ETYPE_MASK;
2710 	etqf |= (etype & E1000_ETQF_ETYPE_MASK);
2711 
2712 	etqf &= ~E1000_ETQF_QUEUE_MASK;
2713 	etqf |= ((input->action << E1000_ETQF_QUEUE_SHIFT)
2714 		& E1000_ETQF_QUEUE_MASK);
2715 	etqf |= E1000_ETQF_QUEUE_ENABLE;
2716 
2717 	wr32(E1000_ETQF(i), etqf);
2718 
2719 	input->etype_reg_index = i;
2720 
2721 	return 0;
2722 }
2723 
2724 static int igb_rxnfc_write_vlan_prio_filter(struct igb_adapter *adapter,
2725 					    struct igb_nfc_filter *input)
2726 {
2727 	struct e1000_hw *hw = &adapter->hw;
2728 	u8 vlan_priority;
2729 	u16 queue_index;
2730 	u32 vlapqf;
2731 
2732 	vlapqf = rd32(E1000_VLAPQF);
2733 	vlan_priority = (ntohs(input->filter.vlan_tci) & VLAN_PRIO_MASK)
2734 				>> VLAN_PRIO_SHIFT;
2735 	queue_index = (vlapqf >> (vlan_priority * 4)) & E1000_VLAPQF_QUEUE_MASK;
2736 
2737 	/* check whether this vlan prio is already set */
2738 	if ((vlapqf & E1000_VLAPQF_P_VALID(vlan_priority)) &&
2739 	    (queue_index != input->action)) {
2740 		dev_err(&adapter->pdev->dev, "ethtool rxnfc set vlan prio filter failed.\n");
2741 		return -EEXIST;
2742 	}
2743 
2744 	vlapqf |= E1000_VLAPQF_P_VALID(vlan_priority);
2745 	vlapqf |= E1000_VLAPQF_QUEUE_SEL(vlan_priority, input->action);
2746 
2747 	wr32(E1000_VLAPQF, vlapqf);
2748 
2749 	return 0;
2750 }
2751 
2752 int igb_add_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2753 {
2754 	struct e1000_hw *hw = &adapter->hw;
2755 	int err = -EINVAL;
2756 
2757 	if (hw->mac.type == e1000_i210 &&
2758 	    !(input->filter.match_flags & ~IGB_FILTER_FLAG_SRC_MAC_ADDR)) {
2759 		dev_err(&adapter->pdev->dev,
2760 			"i210 doesn't support flow classification rules specifying only source addresses.\n");
2761 		return -EOPNOTSUPP;
2762 	}
2763 
2764 	if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2765 		err = igb_rxnfc_write_etype_filter(adapter, input);
2766 		if (err)
2767 			return err;
2768 	}
2769 
2770 	if (input->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) {
2771 		err = igb_add_mac_steering_filter(adapter,
2772 						  input->filter.dst_addr,
2773 						  input->action, 0);
2774 		err = min_t(int, err, 0);
2775 		if (err)
2776 			return err;
2777 	}
2778 
2779 	if (input->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) {
2780 		err = igb_add_mac_steering_filter(adapter,
2781 						  input->filter.src_addr,
2782 						  input->action,
2783 						  IGB_MAC_STATE_SRC_ADDR);
2784 		err = min_t(int, err, 0);
2785 		if (err)
2786 			return err;
2787 	}
2788 
2789 	if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2790 		err = igb_rxnfc_write_vlan_prio_filter(adapter, input);
2791 
2792 	return err;
2793 }
2794 
2795 static void igb_clear_etype_filter_regs(struct igb_adapter *adapter,
2796 					u16 reg_index)
2797 {
2798 	struct e1000_hw *hw = &adapter->hw;
2799 	u32 etqf = rd32(E1000_ETQF(reg_index));
2800 
2801 	etqf &= ~E1000_ETQF_QUEUE_ENABLE;
2802 	etqf &= ~E1000_ETQF_QUEUE_MASK;
2803 	etqf &= ~E1000_ETQF_FILTER_ENABLE;
2804 
2805 	wr32(E1000_ETQF(reg_index), etqf);
2806 
2807 	adapter->etype_bitmap[reg_index] = false;
2808 }
2809 
2810 static void igb_clear_vlan_prio_filter(struct igb_adapter *adapter,
2811 				       u16 vlan_tci)
2812 {
2813 	struct e1000_hw *hw = &adapter->hw;
2814 	u8 vlan_priority;
2815 	u32 vlapqf;
2816 
2817 	vlan_priority = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
2818 
2819 	vlapqf = rd32(E1000_VLAPQF);
2820 	vlapqf &= ~E1000_VLAPQF_P_VALID(vlan_priority);
2821 	vlapqf &= ~E1000_VLAPQF_QUEUE_SEL(vlan_priority,
2822 						E1000_VLAPQF_QUEUE_MASK);
2823 
2824 	wr32(E1000_VLAPQF, vlapqf);
2825 }
2826 
2827 int igb_erase_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2828 {
2829 	if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE)
2830 		igb_clear_etype_filter_regs(adapter,
2831 					    input->etype_reg_index);
2832 
2833 	if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2834 		igb_clear_vlan_prio_filter(adapter,
2835 					   ntohs(input->filter.vlan_tci));
2836 
2837 	if (input->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR)
2838 		igb_del_mac_steering_filter(adapter, input->filter.src_addr,
2839 					    input->action,
2840 					    IGB_MAC_STATE_SRC_ADDR);
2841 
2842 	if (input->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR)
2843 		igb_del_mac_steering_filter(adapter, input->filter.dst_addr,
2844 					    input->action, 0);
2845 
2846 	return 0;
2847 }
2848 
2849 static int igb_update_ethtool_nfc_entry(struct igb_adapter *adapter,
2850 					struct igb_nfc_filter *input,
2851 					u16 sw_idx)
2852 {
2853 	struct igb_nfc_filter *rule, *parent;
2854 	int err = -EINVAL;
2855 
2856 	parent = NULL;
2857 	rule = NULL;
2858 
2859 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2860 		/* hash found, or no matching entry */
2861 		if (rule->sw_idx >= sw_idx)
2862 			break;
2863 		parent = rule;
2864 	}
2865 
2866 	/* if there is an old rule occupying our place remove it */
2867 	if (rule && (rule->sw_idx == sw_idx)) {
2868 		if (!input)
2869 			err = igb_erase_filter(adapter, rule);
2870 
2871 		hlist_del(&rule->nfc_node);
2872 		kfree(rule);
2873 		adapter->nfc_filter_count--;
2874 	}
2875 
2876 	/* If no input this was a delete, err should be 0 if a rule was
2877 	 * successfully found and removed from the list else -EINVAL
2878 	 */
2879 	if (!input)
2880 		return err;
2881 
2882 	/* initialize node */
2883 	INIT_HLIST_NODE(&input->nfc_node);
2884 
2885 	/* add filter to the list */
2886 	if (parent)
2887 		hlist_add_behind(&input->nfc_node, &parent->nfc_node);
2888 	else
2889 		hlist_add_head(&input->nfc_node, &adapter->nfc_filter_list);
2890 
2891 	/* update counts */
2892 	adapter->nfc_filter_count++;
2893 
2894 	return 0;
2895 }
2896 
2897 static int igb_add_ethtool_nfc_entry(struct igb_adapter *adapter,
2898 				     struct ethtool_rxnfc *cmd)
2899 {
2900 	struct net_device *netdev = adapter->netdev;
2901 	struct ethtool_rx_flow_spec *fsp =
2902 		(struct ethtool_rx_flow_spec *)&cmd->fs;
2903 	struct igb_nfc_filter *input, *rule;
2904 	int err = 0;
2905 
2906 	if (!(netdev->hw_features & NETIF_F_NTUPLE))
2907 		return -EOPNOTSUPP;
2908 
2909 	/* Don't allow programming if the action is a queue greater than
2910 	 * the number of online Rx queues.
2911 	 */
2912 	if ((fsp->ring_cookie == RX_CLS_FLOW_DISC) ||
2913 	    (fsp->ring_cookie >= adapter->num_rx_queues)) {
2914 		dev_err(&adapter->pdev->dev, "ethtool -N: The specified action is invalid\n");
2915 		return -EINVAL;
2916 	}
2917 
2918 	/* Don't allow indexes to exist outside of available space */
2919 	if (fsp->location >= IGB_MAX_RXNFC_FILTERS) {
2920 		dev_err(&adapter->pdev->dev, "Location out of range\n");
2921 		return -EINVAL;
2922 	}
2923 
2924 	if ((fsp->flow_type & ~FLOW_EXT) != ETHER_FLOW)
2925 		return -EINVAL;
2926 
2927 	input = kzalloc(sizeof(*input), GFP_KERNEL);
2928 	if (!input)
2929 		return -ENOMEM;
2930 
2931 	if (fsp->m_u.ether_spec.h_proto == ETHER_TYPE_FULL_MASK) {
2932 		input->filter.etype = fsp->h_u.ether_spec.h_proto;
2933 		input->filter.match_flags = IGB_FILTER_FLAG_ETHER_TYPE;
2934 	}
2935 
2936 	/* Only support matching addresses by the full mask */
2937 	if (is_broadcast_ether_addr(fsp->m_u.ether_spec.h_source)) {
2938 		input->filter.match_flags |= IGB_FILTER_FLAG_SRC_MAC_ADDR;
2939 		ether_addr_copy(input->filter.src_addr,
2940 				fsp->h_u.ether_spec.h_source);
2941 	}
2942 
2943 	/* Only support matching addresses by the full mask */
2944 	if (is_broadcast_ether_addr(fsp->m_u.ether_spec.h_dest)) {
2945 		input->filter.match_flags |= IGB_FILTER_FLAG_DST_MAC_ADDR;
2946 		ether_addr_copy(input->filter.dst_addr,
2947 				fsp->h_u.ether_spec.h_dest);
2948 	}
2949 
2950 	if ((fsp->flow_type & FLOW_EXT) && fsp->m_ext.vlan_tci) {
2951 		if (fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK)) {
2952 			err = -EINVAL;
2953 			goto err_out;
2954 		}
2955 		input->filter.vlan_tci = fsp->h_ext.vlan_tci;
2956 		input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2957 	}
2958 
2959 	input->action = fsp->ring_cookie;
2960 	input->sw_idx = fsp->location;
2961 
2962 	spin_lock(&adapter->nfc_lock);
2963 
2964 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2965 		if (!memcmp(&input->filter, &rule->filter,
2966 			    sizeof(input->filter))) {
2967 			err = -EEXIST;
2968 			dev_err(&adapter->pdev->dev,
2969 				"ethtool: this filter is already set\n");
2970 			goto err_out_w_lock;
2971 		}
2972 	}
2973 
2974 	err = igb_add_filter(adapter, input);
2975 	if (err)
2976 		goto err_out_w_lock;
2977 
2978 	igb_update_ethtool_nfc_entry(adapter, input, input->sw_idx);
2979 
2980 	spin_unlock(&adapter->nfc_lock);
2981 	return 0;
2982 
2983 err_out_w_lock:
2984 	spin_unlock(&adapter->nfc_lock);
2985 err_out:
2986 	kfree(input);
2987 	return err;
2988 }
2989 
2990 static int igb_del_ethtool_nfc_entry(struct igb_adapter *adapter,
2991 				     struct ethtool_rxnfc *cmd)
2992 {
2993 	struct ethtool_rx_flow_spec *fsp =
2994 		(struct ethtool_rx_flow_spec *)&cmd->fs;
2995 	int err;
2996 
2997 	spin_lock(&adapter->nfc_lock);
2998 	err = igb_update_ethtool_nfc_entry(adapter, NULL, fsp->location);
2999 	spin_unlock(&adapter->nfc_lock);
3000 
3001 	return err;
3002 }
3003 
3004 static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
3005 {
3006 	struct igb_adapter *adapter = netdev_priv(dev);
3007 	int ret = -EOPNOTSUPP;
3008 
3009 	switch (cmd->cmd) {
3010 	case ETHTOOL_SRXFH:
3011 		ret = igb_set_rss_hash_opt(adapter, cmd);
3012 		break;
3013 	case ETHTOOL_SRXCLSRLINS:
3014 		ret = igb_add_ethtool_nfc_entry(adapter, cmd);
3015 		break;
3016 	case ETHTOOL_SRXCLSRLDEL:
3017 		ret = igb_del_ethtool_nfc_entry(adapter, cmd);
3018 		break;
3019 	default:
3020 		break;
3021 	}
3022 
3023 	return ret;
3024 }
3025 
3026 static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
3027 {
3028 	struct igb_adapter *adapter = netdev_priv(netdev);
3029 	struct e1000_hw *hw = &adapter->hw;
3030 	u32 ret_val;
3031 	u16 phy_data;
3032 
3033 	if ((hw->mac.type < e1000_i350) ||
3034 	    (hw->phy.media_type != e1000_media_type_copper))
3035 		return -EOPNOTSUPP;
3036 
3037 	edata->supported = (SUPPORTED_1000baseT_Full |
3038 			    SUPPORTED_100baseT_Full);
3039 	if (!hw->dev_spec._82575.eee_disable)
3040 		edata->advertised =
3041 			mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
3042 
3043 	/* The IPCNFG and EEER registers are not supported on I354. */
3044 	if (hw->mac.type == e1000_i354) {
3045 		igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
3046 	} else {
3047 		u32 eeer;
3048 
3049 		eeer = rd32(E1000_EEER);
3050 
3051 		/* EEE status on negotiated link */
3052 		if (eeer & E1000_EEER_EEE_NEG)
3053 			edata->eee_active = true;
3054 
3055 		if (eeer & E1000_EEER_TX_LPI_EN)
3056 			edata->tx_lpi_enabled = true;
3057 	}
3058 
3059 	/* EEE Link Partner Advertised */
3060 	switch (hw->mac.type) {
3061 	case e1000_i350:
3062 		ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
3063 					   &phy_data);
3064 		if (ret_val)
3065 			return -ENODATA;
3066 
3067 		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
3068 		break;
3069 	case e1000_i354:
3070 	case e1000_i210:
3071 	case e1000_i211:
3072 		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
3073 					     E1000_EEE_LP_ADV_DEV_I210,
3074 					     &phy_data);
3075 		if (ret_val)
3076 			return -ENODATA;
3077 
3078 		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
3079 
3080 		break;
3081 	default:
3082 		break;
3083 	}
3084 
3085 	edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
3086 
3087 	if ((hw->mac.type == e1000_i354) &&
3088 	    (edata->eee_enabled))
3089 		edata->tx_lpi_enabled = true;
3090 
3091 	/* Report correct negotiated EEE status for devices that
3092 	 * wrongly report EEE at half-duplex
3093 	 */
3094 	if (adapter->link_duplex == HALF_DUPLEX) {
3095 		edata->eee_enabled = false;
3096 		edata->eee_active = false;
3097 		edata->tx_lpi_enabled = false;
3098 		edata->advertised &= ~edata->advertised;
3099 	}
3100 
3101 	return 0;
3102 }
3103 
3104 static int igb_set_eee(struct net_device *netdev,
3105 		       struct ethtool_eee *edata)
3106 {
3107 	struct igb_adapter *adapter = netdev_priv(netdev);
3108 	struct e1000_hw *hw = &adapter->hw;
3109 	struct ethtool_eee eee_curr;
3110 	bool adv1g_eee = true, adv100m_eee = true;
3111 	s32 ret_val;
3112 
3113 	if ((hw->mac.type < e1000_i350) ||
3114 	    (hw->phy.media_type != e1000_media_type_copper))
3115 		return -EOPNOTSUPP;
3116 
3117 	memset(&eee_curr, 0, sizeof(struct ethtool_eee));
3118 
3119 	ret_val = igb_get_eee(netdev, &eee_curr);
3120 	if (ret_val)
3121 		return ret_val;
3122 
3123 	if (eee_curr.eee_enabled) {
3124 		if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
3125 			dev_err(&adapter->pdev->dev,
3126 				"Setting EEE tx-lpi is not supported\n");
3127 			return -EINVAL;
3128 		}
3129 
3130 		/* Tx LPI timer is not implemented currently */
3131 		if (edata->tx_lpi_timer) {
3132 			dev_err(&adapter->pdev->dev,
3133 				"Setting EEE Tx LPI timer is not supported\n");
3134 			return -EINVAL;
3135 		}
3136 
3137 		if (!edata->advertised || (edata->advertised &
3138 		    ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL))) {
3139 			dev_err(&adapter->pdev->dev,
3140 				"EEE Advertisement supports only 100Tx and/or 100T full duplex\n");
3141 			return -EINVAL;
3142 		}
3143 		adv100m_eee = !!(edata->advertised & ADVERTISE_100_FULL);
3144 		adv1g_eee = !!(edata->advertised & ADVERTISE_1000_FULL);
3145 
3146 	} else if (!edata->eee_enabled) {
3147 		dev_err(&adapter->pdev->dev,
3148 			"Setting EEE options are not supported with EEE disabled\n");
3149 		return -EINVAL;
3150 	}
3151 
3152 	adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
3153 	if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
3154 		hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
3155 		adapter->flags |= IGB_FLAG_EEE;
3156 
3157 		/* reset link */
3158 		if (netif_running(netdev))
3159 			igb_reinit_locked(adapter);
3160 		else
3161 			igb_reset(adapter);
3162 	}
3163 
3164 	if (hw->mac.type == e1000_i354)
3165 		ret_val = igb_set_eee_i354(hw, adv1g_eee, adv100m_eee);
3166 	else
3167 		ret_val = igb_set_eee_i350(hw, adv1g_eee, adv100m_eee);
3168 
3169 	if (ret_val) {
3170 		dev_err(&adapter->pdev->dev,
3171 			"Problem setting EEE advertisement options\n");
3172 		return -EINVAL;
3173 	}
3174 
3175 	return 0;
3176 }
3177 
3178 static int igb_get_module_info(struct net_device *netdev,
3179 			       struct ethtool_modinfo *modinfo)
3180 {
3181 	struct igb_adapter *adapter = netdev_priv(netdev);
3182 	struct e1000_hw *hw = &adapter->hw;
3183 	u32 status = 0;
3184 	u16 sff8472_rev, addr_mode;
3185 	bool page_swap = false;
3186 
3187 	if ((hw->phy.media_type == e1000_media_type_copper) ||
3188 	    (hw->phy.media_type == e1000_media_type_unknown))
3189 		return -EOPNOTSUPP;
3190 
3191 	/* Check whether we support SFF-8472 or not */
3192 	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
3193 	if (status)
3194 		return -EIO;
3195 
3196 	/* addressing mode is not supported */
3197 	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
3198 	if (status)
3199 		return -EIO;
3200 
3201 	/* addressing mode is not supported */
3202 	if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
3203 		hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
3204 		page_swap = true;
3205 	}
3206 
3207 	if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
3208 		/* We have an SFP, but it does not support SFF-8472 */
3209 		modinfo->type = ETH_MODULE_SFF_8079;
3210 		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
3211 	} else {
3212 		/* We have an SFP which supports a revision of SFF-8472 */
3213 		modinfo->type = ETH_MODULE_SFF_8472;
3214 		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
3215 	}
3216 
3217 	return 0;
3218 }
3219 
3220 static int igb_get_module_eeprom(struct net_device *netdev,
3221 				 struct ethtool_eeprom *ee, u8 *data)
3222 {
3223 	struct igb_adapter *adapter = netdev_priv(netdev);
3224 	struct e1000_hw *hw = &adapter->hw;
3225 	u32 status = 0;
3226 	u16 *dataword;
3227 	u16 first_word, last_word;
3228 	int i = 0;
3229 
3230 	if (ee->len == 0)
3231 		return -EINVAL;
3232 
3233 	first_word = ee->offset >> 1;
3234 	last_word = (ee->offset + ee->len - 1) >> 1;
3235 
3236 	dataword = kmalloc_array(last_word - first_word + 1, sizeof(u16),
3237 				 GFP_KERNEL);
3238 	if (!dataword)
3239 		return -ENOMEM;
3240 
3241 	/* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
3242 	for (i = 0; i < last_word - first_word + 1; i++) {
3243 		status = igb_read_phy_reg_i2c(hw, (first_word + i) * 2,
3244 					      &dataword[i]);
3245 		if (status) {
3246 			/* Error occurred while reading module */
3247 			kfree(dataword);
3248 			return -EIO;
3249 		}
3250 
3251 		be16_to_cpus(&dataword[i]);
3252 	}
3253 
3254 	memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
3255 	kfree(dataword);
3256 
3257 	return 0;
3258 }
3259 
3260 static int igb_ethtool_begin(struct net_device *netdev)
3261 {
3262 	struct igb_adapter *adapter = netdev_priv(netdev);
3263 	pm_runtime_get_sync(&adapter->pdev->dev);
3264 	return 0;
3265 }
3266 
3267 static void igb_ethtool_complete(struct net_device *netdev)
3268 {
3269 	struct igb_adapter *adapter = netdev_priv(netdev);
3270 	pm_runtime_put(&adapter->pdev->dev);
3271 }
3272 
3273 static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
3274 {
3275 	return IGB_RETA_SIZE;
3276 }
3277 
3278 static int igb_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key,
3279 			u8 *hfunc)
3280 {
3281 	struct igb_adapter *adapter = netdev_priv(netdev);
3282 	int i;
3283 
3284 	if (hfunc)
3285 		*hfunc = ETH_RSS_HASH_TOP;
3286 	if (!indir)
3287 		return 0;
3288 	for (i = 0; i < IGB_RETA_SIZE; i++)
3289 		indir[i] = adapter->rss_indir_tbl[i];
3290 
3291 	return 0;
3292 }
3293 
3294 void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
3295 {
3296 	struct e1000_hw *hw = &adapter->hw;
3297 	u32 reg = E1000_RETA(0);
3298 	u32 shift = 0;
3299 	int i = 0;
3300 
3301 	switch (hw->mac.type) {
3302 	case e1000_82575:
3303 		shift = 6;
3304 		break;
3305 	case e1000_82576:
3306 		/* 82576 supports 2 RSS queues for SR-IOV */
3307 		if (adapter->vfs_allocated_count)
3308 			shift = 3;
3309 		break;
3310 	default:
3311 		break;
3312 	}
3313 
3314 	while (i < IGB_RETA_SIZE) {
3315 		u32 val = 0;
3316 		int j;
3317 
3318 		for (j = 3; j >= 0; j--) {
3319 			val <<= 8;
3320 			val |= adapter->rss_indir_tbl[i + j];
3321 		}
3322 
3323 		wr32(reg, val << shift);
3324 		reg += 4;
3325 		i += 4;
3326 	}
3327 }
3328 
3329 static int igb_set_rxfh(struct net_device *netdev, const u32 *indir,
3330 			const u8 *key, const u8 hfunc)
3331 {
3332 	struct igb_adapter *adapter = netdev_priv(netdev);
3333 	struct e1000_hw *hw = &adapter->hw;
3334 	int i;
3335 	u32 num_queues;
3336 
3337 	/* We do not allow change in unsupported parameters */
3338 	if (key ||
3339 	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
3340 		return -EOPNOTSUPP;
3341 	if (!indir)
3342 		return 0;
3343 
3344 	num_queues = adapter->rss_queues;
3345 
3346 	switch (hw->mac.type) {
3347 	case e1000_82576:
3348 		/* 82576 supports 2 RSS queues for SR-IOV */
3349 		if (adapter->vfs_allocated_count)
3350 			num_queues = 2;
3351 		break;
3352 	default:
3353 		break;
3354 	}
3355 
3356 	/* Verify user input. */
3357 	for (i = 0; i < IGB_RETA_SIZE; i++)
3358 		if (indir[i] >= num_queues)
3359 			return -EINVAL;
3360 
3361 
3362 	for (i = 0; i < IGB_RETA_SIZE; i++)
3363 		adapter->rss_indir_tbl[i] = indir[i];
3364 
3365 	igb_write_rss_indir_tbl(adapter);
3366 
3367 	return 0;
3368 }
3369 
3370 static unsigned int igb_max_channels(struct igb_adapter *adapter)
3371 {
3372 	return igb_get_max_rss_queues(adapter);
3373 }
3374 
3375 static void igb_get_channels(struct net_device *netdev,
3376 			     struct ethtool_channels *ch)
3377 {
3378 	struct igb_adapter *adapter = netdev_priv(netdev);
3379 
3380 	/* Report maximum channels */
3381 	ch->max_combined = igb_max_channels(adapter);
3382 
3383 	/* Report info for other vector */
3384 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
3385 		ch->max_other = NON_Q_VECTORS;
3386 		ch->other_count = NON_Q_VECTORS;
3387 	}
3388 
3389 	ch->combined_count = adapter->rss_queues;
3390 }
3391 
3392 static int igb_set_channels(struct net_device *netdev,
3393 			    struct ethtool_channels *ch)
3394 {
3395 	struct igb_adapter *adapter = netdev_priv(netdev);
3396 	unsigned int count = ch->combined_count;
3397 	unsigned int max_combined = 0;
3398 
3399 	/* Verify they are not requesting separate vectors */
3400 	if (!count || ch->rx_count || ch->tx_count)
3401 		return -EINVAL;
3402 
3403 	/* Verify other_count is valid and has not been changed */
3404 	if (ch->other_count != NON_Q_VECTORS)
3405 		return -EINVAL;
3406 
3407 	/* Verify the number of channels doesn't exceed hw limits */
3408 	max_combined = igb_max_channels(adapter);
3409 	if (count > max_combined)
3410 		return -EINVAL;
3411 
3412 	if (count != adapter->rss_queues) {
3413 		adapter->rss_queues = count;
3414 		igb_set_flag_queue_pairs(adapter, max_combined);
3415 
3416 		/* Hardware has to reinitialize queues and interrupts to
3417 		 * match the new configuration.
3418 		 */
3419 		return igb_reinit_queues(adapter);
3420 	}
3421 
3422 	return 0;
3423 }
3424 
3425 static u32 igb_get_priv_flags(struct net_device *netdev)
3426 {
3427 	struct igb_adapter *adapter = netdev_priv(netdev);
3428 	u32 priv_flags = 0;
3429 
3430 	if (adapter->flags & IGB_FLAG_RX_LEGACY)
3431 		priv_flags |= IGB_PRIV_FLAGS_LEGACY_RX;
3432 
3433 	return priv_flags;
3434 }
3435 
3436 static int igb_set_priv_flags(struct net_device *netdev, u32 priv_flags)
3437 {
3438 	struct igb_adapter *adapter = netdev_priv(netdev);
3439 	unsigned int flags = adapter->flags;
3440 
3441 	flags &= ~IGB_FLAG_RX_LEGACY;
3442 	if (priv_flags & IGB_PRIV_FLAGS_LEGACY_RX)
3443 		flags |= IGB_FLAG_RX_LEGACY;
3444 
3445 	if (flags != adapter->flags) {
3446 		adapter->flags = flags;
3447 
3448 		/* reset interface to repopulate queues */
3449 		if (netif_running(netdev))
3450 			igb_reinit_locked(adapter);
3451 	}
3452 
3453 	return 0;
3454 }
3455 
3456 static const struct ethtool_ops igb_ethtool_ops = {
3457 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS,
3458 	.get_drvinfo		= igb_get_drvinfo,
3459 	.get_regs_len		= igb_get_regs_len,
3460 	.get_regs		= igb_get_regs,
3461 	.get_wol		= igb_get_wol,
3462 	.set_wol		= igb_set_wol,
3463 	.get_msglevel		= igb_get_msglevel,
3464 	.set_msglevel		= igb_set_msglevel,
3465 	.nway_reset		= igb_nway_reset,
3466 	.get_link		= igb_get_link,
3467 	.get_eeprom_len		= igb_get_eeprom_len,
3468 	.get_eeprom		= igb_get_eeprom,
3469 	.set_eeprom		= igb_set_eeprom,
3470 	.get_ringparam		= igb_get_ringparam,
3471 	.set_ringparam		= igb_set_ringparam,
3472 	.get_pauseparam		= igb_get_pauseparam,
3473 	.set_pauseparam		= igb_set_pauseparam,
3474 	.self_test		= igb_diag_test,
3475 	.get_strings		= igb_get_strings,
3476 	.set_phys_id		= igb_set_phys_id,
3477 	.get_sset_count		= igb_get_sset_count,
3478 	.get_ethtool_stats	= igb_get_ethtool_stats,
3479 	.get_coalesce		= igb_get_coalesce,
3480 	.set_coalesce		= igb_set_coalesce,
3481 	.get_ts_info		= igb_get_ts_info,
3482 	.get_rxnfc		= igb_get_rxnfc,
3483 	.set_rxnfc		= igb_set_rxnfc,
3484 	.get_eee		= igb_get_eee,
3485 	.set_eee		= igb_set_eee,
3486 	.get_module_info	= igb_get_module_info,
3487 	.get_module_eeprom	= igb_get_module_eeprom,
3488 	.get_rxfh_indir_size	= igb_get_rxfh_indir_size,
3489 	.get_rxfh		= igb_get_rxfh,
3490 	.set_rxfh		= igb_set_rxfh,
3491 	.get_channels		= igb_get_channels,
3492 	.set_channels		= igb_set_channels,
3493 	.get_priv_flags		= igb_get_priv_flags,
3494 	.set_priv_flags		= igb_set_priv_flags,
3495 	.begin			= igb_ethtool_begin,
3496 	.complete		= igb_ethtool_complete,
3497 	.get_link_ksettings	= igb_get_link_ksettings,
3498 	.set_link_ksettings	= igb_set_link_ksettings,
3499 };
3500 
3501 void igb_set_ethtool_ops(struct net_device *netdev)
3502 {
3503 	netdev->ethtool_ops = &igb_ethtool_ops;
3504 }
3505