1 /******************************************************************************* 2 3 Intel(R) Gigabit Ethernet Linux driver 4 Copyright(c) 2007-2013 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 25 26 *******************************************************************************/ 27 28 /* ethtool support for igb */ 29 30 #include <linux/vmalloc.h> 31 #include <linux/netdevice.h> 32 #include <linux/pci.h> 33 #include <linux/delay.h> 34 #include <linux/interrupt.h> 35 #include <linux/if_ether.h> 36 #include <linux/ethtool.h> 37 #include <linux/sched.h> 38 #include <linux/slab.h> 39 #include <linux/pm_runtime.h> 40 #include <linux/highmem.h> 41 #include <linux/mdio.h> 42 43 #include "igb.h" 44 45 struct igb_stats { 46 char stat_string[ETH_GSTRING_LEN]; 47 int sizeof_stat; 48 int stat_offset; 49 }; 50 51 #define IGB_STAT(_name, _stat) { \ 52 .stat_string = _name, \ 53 .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \ 54 .stat_offset = offsetof(struct igb_adapter, _stat) \ 55 } 56 static const struct igb_stats igb_gstrings_stats[] = { 57 IGB_STAT("rx_packets", stats.gprc), 58 IGB_STAT("tx_packets", stats.gptc), 59 IGB_STAT("rx_bytes", stats.gorc), 60 IGB_STAT("tx_bytes", stats.gotc), 61 IGB_STAT("rx_broadcast", stats.bprc), 62 IGB_STAT("tx_broadcast", stats.bptc), 63 IGB_STAT("rx_multicast", stats.mprc), 64 IGB_STAT("tx_multicast", stats.mptc), 65 IGB_STAT("multicast", stats.mprc), 66 IGB_STAT("collisions", stats.colc), 67 IGB_STAT("rx_crc_errors", stats.crcerrs), 68 IGB_STAT("rx_no_buffer_count", stats.rnbc), 69 IGB_STAT("rx_missed_errors", stats.mpc), 70 IGB_STAT("tx_aborted_errors", stats.ecol), 71 IGB_STAT("tx_carrier_errors", stats.tncrs), 72 IGB_STAT("tx_window_errors", stats.latecol), 73 IGB_STAT("tx_abort_late_coll", stats.latecol), 74 IGB_STAT("tx_deferred_ok", stats.dc), 75 IGB_STAT("tx_single_coll_ok", stats.scc), 76 IGB_STAT("tx_multi_coll_ok", stats.mcc), 77 IGB_STAT("tx_timeout_count", tx_timeout_count), 78 IGB_STAT("rx_long_length_errors", stats.roc), 79 IGB_STAT("rx_short_length_errors", stats.ruc), 80 IGB_STAT("rx_align_errors", stats.algnerrc), 81 IGB_STAT("tx_tcp_seg_good", stats.tsctc), 82 IGB_STAT("tx_tcp_seg_failed", stats.tsctfc), 83 IGB_STAT("rx_flow_control_xon", stats.xonrxc), 84 IGB_STAT("rx_flow_control_xoff", stats.xoffrxc), 85 IGB_STAT("tx_flow_control_xon", stats.xontxc), 86 IGB_STAT("tx_flow_control_xoff", stats.xofftxc), 87 IGB_STAT("rx_long_byte_count", stats.gorc), 88 IGB_STAT("tx_dma_out_of_sync", stats.doosync), 89 IGB_STAT("tx_smbus", stats.mgptc), 90 IGB_STAT("rx_smbus", stats.mgprc), 91 IGB_STAT("dropped_smbus", stats.mgpdc), 92 IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc), 93 IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc), 94 IGB_STAT("os2bmc_tx_by_host", stats.o2bspc), 95 IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc), 96 IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts), 97 IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared), 98 }; 99 100 #define IGB_NETDEV_STAT(_net_stat) { \ 101 .stat_string = __stringify(_net_stat), \ 102 .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \ 103 .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \ 104 } 105 static const struct igb_stats igb_gstrings_net_stats[] = { 106 IGB_NETDEV_STAT(rx_errors), 107 IGB_NETDEV_STAT(tx_errors), 108 IGB_NETDEV_STAT(tx_dropped), 109 IGB_NETDEV_STAT(rx_length_errors), 110 IGB_NETDEV_STAT(rx_over_errors), 111 IGB_NETDEV_STAT(rx_frame_errors), 112 IGB_NETDEV_STAT(rx_fifo_errors), 113 IGB_NETDEV_STAT(tx_fifo_errors), 114 IGB_NETDEV_STAT(tx_heartbeat_errors) 115 }; 116 117 #define IGB_GLOBAL_STATS_LEN \ 118 (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats)) 119 #define IGB_NETDEV_STATS_LEN \ 120 (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats)) 121 #define IGB_RX_QUEUE_STATS_LEN \ 122 (sizeof(struct igb_rx_queue_stats) / sizeof(u64)) 123 124 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */ 125 126 #define IGB_QUEUE_STATS_LEN \ 127 ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \ 128 IGB_RX_QUEUE_STATS_LEN) + \ 129 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \ 130 IGB_TX_QUEUE_STATS_LEN)) 131 #define IGB_STATS_LEN \ 132 (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN) 133 134 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = { 135 "Register test (offline)", "Eeprom test (offline)", 136 "Interrupt test (offline)", "Loopback test (offline)", 137 "Link test (on/offline)" 138 }; 139 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN) 140 141 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) 142 { 143 struct igb_adapter *adapter = netdev_priv(netdev); 144 struct e1000_hw *hw = &adapter->hw; 145 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; 146 struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags; 147 u32 status; 148 149 if (hw->phy.media_type == e1000_media_type_copper) { 150 151 ecmd->supported = (SUPPORTED_10baseT_Half | 152 SUPPORTED_10baseT_Full | 153 SUPPORTED_100baseT_Half | 154 SUPPORTED_100baseT_Full | 155 SUPPORTED_1000baseT_Full| 156 SUPPORTED_Autoneg | 157 SUPPORTED_TP | 158 SUPPORTED_Pause); 159 ecmd->advertising = ADVERTISED_TP; 160 161 if (hw->mac.autoneg == 1) { 162 ecmd->advertising |= ADVERTISED_Autoneg; 163 /* the e1000 autoneg seems to match ethtool nicely */ 164 ecmd->advertising |= hw->phy.autoneg_advertised; 165 } 166 167 ecmd->port = PORT_TP; 168 ecmd->phy_address = hw->phy.addr; 169 ecmd->transceiver = XCVR_INTERNAL; 170 } else { 171 ecmd->supported = (SUPPORTED_FIBRE | 172 SUPPORTED_Autoneg | 173 SUPPORTED_Pause); 174 ecmd->advertising = ADVERTISED_FIBRE; 175 176 if ((eth_flags->e1000_base_lx) || (eth_flags->e1000_base_sx)) { 177 ecmd->supported |= SUPPORTED_1000baseT_Full; 178 ecmd->advertising |= ADVERTISED_1000baseT_Full; 179 } 180 if (eth_flags->e100_base_fx) { 181 ecmd->supported |= SUPPORTED_100baseT_Full; 182 ecmd->advertising |= ADVERTISED_100baseT_Full; 183 } 184 if (hw->mac.autoneg == 1) 185 ecmd->advertising |= ADVERTISED_Autoneg; 186 187 ecmd->port = PORT_FIBRE; 188 ecmd->transceiver = XCVR_EXTERNAL; 189 } 190 191 if (hw->mac.autoneg != 1) 192 ecmd->advertising &= ~(ADVERTISED_Pause | 193 ADVERTISED_Asym_Pause); 194 195 if (hw->fc.requested_mode == e1000_fc_full) 196 ecmd->advertising |= ADVERTISED_Pause; 197 else if (hw->fc.requested_mode == e1000_fc_rx_pause) 198 ecmd->advertising |= (ADVERTISED_Pause | 199 ADVERTISED_Asym_Pause); 200 else if (hw->fc.requested_mode == e1000_fc_tx_pause) 201 ecmd->advertising |= ADVERTISED_Asym_Pause; 202 else 203 ecmd->advertising &= ~(ADVERTISED_Pause | 204 ADVERTISED_Asym_Pause); 205 206 status = rd32(E1000_STATUS); 207 208 if (status & E1000_STATUS_LU) { 209 if (hw->mac.type == e1000_i354) { 210 if ((status & E1000_STATUS_2P5_SKU) && 211 !(status & E1000_STATUS_2P5_SKU_OVER)) { 212 ecmd->supported = SUPPORTED_2500baseX_Full; 213 ecmd->advertising = ADVERTISED_2500baseX_Full; 214 ecmd->speed = SPEED_2500; 215 } else { 216 ecmd->supported = SUPPORTED_1000baseT_Full; 217 ecmd->advertising = ADVERTISED_1000baseT_Full; 218 } 219 } else if (status & E1000_STATUS_SPEED_1000) { 220 ecmd->speed = SPEED_1000; 221 } else if (status & E1000_STATUS_SPEED_100) { 222 ecmd->speed = SPEED_100; 223 } else { 224 ecmd->speed = SPEED_10; 225 } 226 if ((status & E1000_STATUS_FD) || 227 hw->phy.media_type != e1000_media_type_copper) 228 ecmd->duplex = DUPLEX_FULL; 229 else 230 ecmd->duplex = DUPLEX_HALF; 231 } else { 232 ecmd->speed = -1; 233 ecmd->duplex = -1; 234 } 235 236 if ((hw->phy.media_type == e1000_media_type_fiber) || 237 hw->mac.autoneg) 238 ecmd->autoneg = AUTONEG_ENABLE; 239 else 240 ecmd->autoneg = AUTONEG_DISABLE; 241 242 /* MDI-X => 2; MDI =>1; Invalid =>0 */ 243 if (hw->phy.media_type == e1000_media_type_copper) 244 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : 245 ETH_TP_MDI; 246 else 247 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID; 248 249 if (hw->phy.mdix == AUTO_ALL_MODES) 250 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; 251 else 252 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix; 253 254 return 0; 255 } 256 257 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) 258 { 259 struct igb_adapter *adapter = netdev_priv(netdev); 260 struct e1000_hw *hw = &adapter->hw; 261 262 /* When SoL/IDER sessions are active, autoneg/speed/duplex 263 * cannot be changed 264 */ 265 if (igb_check_reset_block(hw)) { 266 dev_err(&adapter->pdev->dev, 267 "Cannot change link characteristics when SoL/IDER is active.\n"); 268 return -EINVAL; 269 } 270 271 /* MDI setting is only allowed when autoneg enabled because 272 * some hardware doesn't allow MDI setting when speed or 273 * duplex is forced. 274 */ 275 if (ecmd->eth_tp_mdix_ctrl) { 276 if (hw->phy.media_type != e1000_media_type_copper) 277 return -EOPNOTSUPP; 278 279 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && 280 (ecmd->autoneg != AUTONEG_ENABLE)) { 281 dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); 282 return -EINVAL; 283 } 284 } 285 286 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 287 msleep(1); 288 289 if (ecmd->autoneg == AUTONEG_ENABLE) { 290 hw->mac.autoneg = 1; 291 if (hw->phy.media_type == e1000_media_type_fiber) { 292 hw->phy.autoneg_advertised = ecmd->advertising | 293 ADVERTISED_FIBRE | 294 ADVERTISED_Autoneg; 295 switch (adapter->link_speed) { 296 case SPEED_2500: 297 hw->phy.autoneg_advertised = 298 ADVERTISED_2500baseX_Full; 299 break; 300 case SPEED_1000: 301 hw->phy.autoneg_advertised = 302 ADVERTISED_1000baseT_Full; 303 break; 304 case SPEED_100: 305 hw->phy.autoneg_advertised = 306 ADVERTISED_100baseT_Full; 307 break; 308 default: 309 break; 310 } 311 } else { 312 hw->phy.autoneg_advertised = ecmd->advertising | 313 ADVERTISED_TP | 314 ADVERTISED_Autoneg; 315 } 316 ecmd->advertising = hw->phy.autoneg_advertised; 317 if (adapter->fc_autoneg) 318 hw->fc.requested_mode = e1000_fc_default; 319 } else { 320 u32 speed = ethtool_cmd_speed(ecmd); 321 /* calling this overrides forced MDI setting */ 322 if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) { 323 clear_bit(__IGB_RESETTING, &adapter->state); 324 return -EINVAL; 325 } 326 } 327 328 /* MDI-X => 2; MDI => 1; Auto => 3 */ 329 if (ecmd->eth_tp_mdix_ctrl) { 330 /* fix up the value for auto (3 => 0) as zero is mapped 331 * internally to auto 332 */ 333 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) 334 hw->phy.mdix = AUTO_ALL_MODES; 335 else 336 hw->phy.mdix = ecmd->eth_tp_mdix_ctrl; 337 } 338 339 /* reset the link */ 340 if (netif_running(adapter->netdev)) { 341 igb_down(adapter); 342 igb_up(adapter); 343 } else 344 igb_reset(adapter); 345 346 clear_bit(__IGB_RESETTING, &adapter->state); 347 return 0; 348 } 349 350 static u32 igb_get_link(struct net_device *netdev) 351 { 352 struct igb_adapter *adapter = netdev_priv(netdev); 353 struct e1000_mac_info *mac = &adapter->hw.mac; 354 355 /* If the link is not reported up to netdev, interrupts are disabled, 356 * and so the physical link state may have changed since we last 357 * looked. Set get_link_status to make sure that the true link 358 * state is interrogated, rather than pulling a cached and possibly 359 * stale link state from the driver. 360 */ 361 if (!netif_carrier_ok(netdev)) 362 mac->get_link_status = 1; 363 364 return igb_has_link(adapter); 365 } 366 367 static void igb_get_pauseparam(struct net_device *netdev, 368 struct ethtool_pauseparam *pause) 369 { 370 struct igb_adapter *adapter = netdev_priv(netdev); 371 struct e1000_hw *hw = &adapter->hw; 372 373 pause->autoneg = 374 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 375 376 if (hw->fc.current_mode == e1000_fc_rx_pause) 377 pause->rx_pause = 1; 378 else if (hw->fc.current_mode == e1000_fc_tx_pause) 379 pause->tx_pause = 1; 380 else if (hw->fc.current_mode == e1000_fc_full) { 381 pause->rx_pause = 1; 382 pause->tx_pause = 1; 383 } 384 } 385 386 static int igb_set_pauseparam(struct net_device *netdev, 387 struct ethtool_pauseparam *pause) 388 { 389 struct igb_adapter *adapter = netdev_priv(netdev); 390 struct e1000_hw *hw = &adapter->hw; 391 int retval = 0; 392 393 /* 100basefx does not support setting link flow control */ 394 if (hw->dev_spec._82575.eth_flags.e100_base_fx) 395 return -EINVAL; 396 397 adapter->fc_autoneg = pause->autoneg; 398 399 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 400 msleep(1); 401 402 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 403 hw->fc.requested_mode = e1000_fc_default; 404 if (netif_running(adapter->netdev)) { 405 igb_down(adapter); 406 igb_up(adapter); 407 } else { 408 igb_reset(adapter); 409 } 410 } else { 411 if (pause->rx_pause && pause->tx_pause) 412 hw->fc.requested_mode = e1000_fc_full; 413 else if (pause->rx_pause && !pause->tx_pause) 414 hw->fc.requested_mode = e1000_fc_rx_pause; 415 else if (!pause->rx_pause && pause->tx_pause) 416 hw->fc.requested_mode = e1000_fc_tx_pause; 417 else if (!pause->rx_pause && !pause->tx_pause) 418 hw->fc.requested_mode = e1000_fc_none; 419 420 hw->fc.current_mode = hw->fc.requested_mode; 421 422 retval = ((hw->phy.media_type == e1000_media_type_copper) ? 423 igb_force_mac_fc(hw) : igb_setup_link(hw)); 424 } 425 426 clear_bit(__IGB_RESETTING, &adapter->state); 427 return retval; 428 } 429 430 static u32 igb_get_msglevel(struct net_device *netdev) 431 { 432 struct igb_adapter *adapter = netdev_priv(netdev); 433 return adapter->msg_enable; 434 } 435 436 static void igb_set_msglevel(struct net_device *netdev, u32 data) 437 { 438 struct igb_adapter *adapter = netdev_priv(netdev); 439 adapter->msg_enable = data; 440 } 441 442 static int igb_get_regs_len(struct net_device *netdev) 443 { 444 #define IGB_REGS_LEN 739 445 return IGB_REGS_LEN * sizeof(u32); 446 } 447 448 static void igb_get_regs(struct net_device *netdev, 449 struct ethtool_regs *regs, void *p) 450 { 451 struct igb_adapter *adapter = netdev_priv(netdev); 452 struct e1000_hw *hw = &adapter->hw; 453 u32 *regs_buff = p; 454 u8 i; 455 456 memset(p, 0, IGB_REGS_LEN * sizeof(u32)); 457 458 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id; 459 460 /* General Registers */ 461 regs_buff[0] = rd32(E1000_CTRL); 462 regs_buff[1] = rd32(E1000_STATUS); 463 regs_buff[2] = rd32(E1000_CTRL_EXT); 464 regs_buff[3] = rd32(E1000_MDIC); 465 regs_buff[4] = rd32(E1000_SCTL); 466 regs_buff[5] = rd32(E1000_CONNSW); 467 regs_buff[6] = rd32(E1000_VET); 468 regs_buff[7] = rd32(E1000_LEDCTL); 469 regs_buff[8] = rd32(E1000_PBA); 470 regs_buff[9] = rd32(E1000_PBS); 471 regs_buff[10] = rd32(E1000_FRTIMER); 472 regs_buff[11] = rd32(E1000_TCPTIMER); 473 474 /* NVM Register */ 475 regs_buff[12] = rd32(E1000_EECD); 476 477 /* Interrupt */ 478 /* Reading EICS for EICR because they read the 479 * same but EICS does not clear on read 480 */ 481 regs_buff[13] = rd32(E1000_EICS); 482 regs_buff[14] = rd32(E1000_EICS); 483 regs_buff[15] = rd32(E1000_EIMS); 484 regs_buff[16] = rd32(E1000_EIMC); 485 regs_buff[17] = rd32(E1000_EIAC); 486 regs_buff[18] = rd32(E1000_EIAM); 487 /* Reading ICS for ICR because they read the 488 * same but ICS does not clear on read 489 */ 490 regs_buff[19] = rd32(E1000_ICS); 491 regs_buff[20] = rd32(E1000_ICS); 492 regs_buff[21] = rd32(E1000_IMS); 493 regs_buff[22] = rd32(E1000_IMC); 494 regs_buff[23] = rd32(E1000_IAC); 495 regs_buff[24] = rd32(E1000_IAM); 496 regs_buff[25] = rd32(E1000_IMIRVP); 497 498 /* Flow Control */ 499 regs_buff[26] = rd32(E1000_FCAL); 500 regs_buff[27] = rd32(E1000_FCAH); 501 regs_buff[28] = rd32(E1000_FCTTV); 502 regs_buff[29] = rd32(E1000_FCRTL); 503 regs_buff[30] = rd32(E1000_FCRTH); 504 regs_buff[31] = rd32(E1000_FCRTV); 505 506 /* Receive */ 507 regs_buff[32] = rd32(E1000_RCTL); 508 regs_buff[33] = rd32(E1000_RXCSUM); 509 regs_buff[34] = rd32(E1000_RLPML); 510 regs_buff[35] = rd32(E1000_RFCTL); 511 regs_buff[36] = rd32(E1000_MRQC); 512 regs_buff[37] = rd32(E1000_VT_CTL); 513 514 /* Transmit */ 515 regs_buff[38] = rd32(E1000_TCTL); 516 regs_buff[39] = rd32(E1000_TCTL_EXT); 517 regs_buff[40] = rd32(E1000_TIPG); 518 regs_buff[41] = rd32(E1000_DTXCTL); 519 520 /* Wake Up */ 521 regs_buff[42] = rd32(E1000_WUC); 522 regs_buff[43] = rd32(E1000_WUFC); 523 regs_buff[44] = rd32(E1000_WUS); 524 regs_buff[45] = rd32(E1000_IPAV); 525 regs_buff[46] = rd32(E1000_WUPL); 526 527 /* MAC */ 528 regs_buff[47] = rd32(E1000_PCS_CFG0); 529 regs_buff[48] = rd32(E1000_PCS_LCTL); 530 regs_buff[49] = rd32(E1000_PCS_LSTAT); 531 regs_buff[50] = rd32(E1000_PCS_ANADV); 532 regs_buff[51] = rd32(E1000_PCS_LPAB); 533 regs_buff[52] = rd32(E1000_PCS_NPTX); 534 regs_buff[53] = rd32(E1000_PCS_LPABNP); 535 536 /* Statistics */ 537 regs_buff[54] = adapter->stats.crcerrs; 538 regs_buff[55] = adapter->stats.algnerrc; 539 regs_buff[56] = adapter->stats.symerrs; 540 regs_buff[57] = adapter->stats.rxerrc; 541 regs_buff[58] = adapter->stats.mpc; 542 regs_buff[59] = adapter->stats.scc; 543 regs_buff[60] = adapter->stats.ecol; 544 regs_buff[61] = adapter->stats.mcc; 545 regs_buff[62] = adapter->stats.latecol; 546 regs_buff[63] = adapter->stats.colc; 547 regs_buff[64] = adapter->stats.dc; 548 regs_buff[65] = adapter->stats.tncrs; 549 regs_buff[66] = adapter->stats.sec; 550 regs_buff[67] = adapter->stats.htdpmc; 551 regs_buff[68] = adapter->stats.rlec; 552 regs_buff[69] = adapter->stats.xonrxc; 553 regs_buff[70] = adapter->stats.xontxc; 554 regs_buff[71] = adapter->stats.xoffrxc; 555 regs_buff[72] = adapter->stats.xofftxc; 556 regs_buff[73] = adapter->stats.fcruc; 557 regs_buff[74] = adapter->stats.prc64; 558 regs_buff[75] = adapter->stats.prc127; 559 regs_buff[76] = adapter->stats.prc255; 560 regs_buff[77] = adapter->stats.prc511; 561 regs_buff[78] = adapter->stats.prc1023; 562 regs_buff[79] = adapter->stats.prc1522; 563 regs_buff[80] = adapter->stats.gprc; 564 regs_buff[81] = adapter->stats.bprc; 565 regs_buff[82] = adapter->stats.mprc; 566 regs_buff[83] = adapter->stats.gptc; 567 regs_buff[84] = adapter->stats.gorc; 568 regs_buff[86] = adapter->stats.gotc; 569 regs_buff[88] = adapter->stats.rnbc; 570 regs_buff[89] = adapter->stats.ruc; 571 regs_buff[90] = adapter->stats.rfc; 572 regs_buff[91] = adapter->stats.roc; 573 regs_buff[92] = adapter->stats.rjc; 574 regs_buff[93] = adapter->stats.mgprc; 575 regs_buff[94] = adapter->stats.mgpdc; 576 regs_buff[95] = adapter->stats.mgptc; 577 regs_buff[96] = adapter->stats.tor; 578 regs_buff[98] = adapter->stats.tot; 579 regs_buff[100] = adapter->stats.tpr; 580 regs_buff[101] = adapter->stats.tpt; 581 regs_buff[102] = adapter->stats.ptc64; 582 regs_buff[103] = adapter->stats.ptc127; 583 regs_buff[104] = adapter->stats.ptc255; 584 regs_buff[105] = adapter->stats.ptc511; 585 regs_buff[106] = adapter->stats.ptc1023; 586 regs_buff[107] = adapter->stats.ptc1522; 587 regs_buff[108] = adapter->stats.mptc; 588 regs_buff[109] = adapter->stats.bptc; 589 regs_buff[110] = adapter->stats.tsctc; 590 regs_buff[111] = adapter->stats.iac; 591 regs_buff[112] = adapter->stats.rpthc; 592 regs_buff[113] = adapter->stats.hgptc; 593 regs_buff[114] = adapter->stats.hgorc; 594 regs_buff[116] = adapter->stats.hgotc; 595 regs_buff[118] = adapter->stats.lenerrs; 596 regs_buff[119] = adapter->stats.scvpc; 597 regs_buff[120] = adapter->stats.hrmpc; 598 599 for (i = 0; i < 4; i++) 600 regs_buff[121 + i] = rd32(E1000_SRRCTL(i)); 601 for (i = 0; i < 4; i++) 602 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i)); 603 for (i = 0; i < 4; i++) 604 regs_buff[129 + i] = rd32(E1000_RDBAL(i)); 605 for (i = 0; i < 4; i++) 606 regs_buff[133 + i] = rd32(E1000_RDBAH(i)); 607 for (i = 0; i < 4; i++) 608 regs_buff[137 + i] = rd32(E1000_RDLEN(i)); 609 for (i = 0; i < 4; i++) 610 regs_buff[141 + i] = rd32(E1000_RDH(i)); 611 for (i = 0; i < 4; i++) 612 regs_buff[145 + i] = rd32(E1000_RDT(i)); 613 for (i = 0; i < 4; i++) 614 regs_buff[149 + i] = rd32(E1000_RXDCTL(i)); 615 616 for (i = 0; i < 10; i++) 617 regs_buff[153 + i] = rd32(E1000_EITR(i)); 618 for (i = 0; i < 8; i++) 619 regs_buff[163 + i] = rd32(E1000_IMIR(i)); 620 for (i = 0; i < 8; i++) 621 regs_buff[171 + i] = rd32(E1000_IMIREXT(i)); 622 for (i = 0; i < 16; i++) 623 regs_buff[179 + i] = rd32(E1000_RAL(i)); 624 for (i = 0; i < 16; i++) 625 regs_buff[195 + i] = rd32(E1000_RAH(i)); 626 627 for (i = 0; i < 4; i++) 628 regs_buff[211 + i] = rd32(E1000_TDBAL(i)); 629 for (i = 0; i < 4; i++) 630 regs_buff[215 + i] = rd32(E1000_TDBAH(i)); 631 for (i = 0; i < 4; i++) 632 regs_buff[219 + i] = rd32(E1000_TDLEN(i)); 633 for (i = 0; i < 4; i++) 634 regs_buff[223 + i] = rd32(E1000_TDH(i)); 635 for (i = 0; i < 4; i++) 636 regs_buff[227 + i] = rd32(E1000_TDT(i)); 637 for (i = 0; i < 4; i++) 638 regs_buff[231 + i] = rd32(E1000_TXDCTL(i)); 639 for (i = 0; i < 4; i++) 640 regs_buff[235 + i] = rd32(E1000_TDWBAL(i)); 641 for (i = 0; i < 4; i++) 642 regs_buff[239 + i] = rd32(E1000_TDWBAH(i)); 643 for (i = 0; i < 4; i++) 644 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i)); 645 646 for (i = 0; i < 4; i++) 647 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i)); 648 for (i = 0; i < 4; i++) 649 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i)); 650 for (i = 0; i < 32; i++) 651 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i)); 652 for (i = 0; i < 128; i++) 653 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i)); 654 for (i = 0; i < 128; i++) 655 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i)); 656 for (i = 0; i < 4; i++) 657 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i)); 658 659 regs_buff[547] = rd32(E1000_TDFH); 660 regs_buff[548] = rd32(E1000_TDFT); 661 regs_buff[549] = rd32(E1000_TDFHS); 662 regs_buff[550] = rd32(E1000_TDFPC); 663 664 if (hw->mac.type > e1000_82580) { 665 regs_buff[551] = adapter->stats.o2bgptc; 666 regs_buff[552] = adapter->stats.b2ospc; 667 regs_buff[553] = adapter->stats.o2bspc; 668 regs_buff[554] = adapter->stats.b2ogprc; 669 } 670 671 if (hw->mac.type != e1000_82576) 672 return; 673 for (i = 0; i < 12; i++) 674 regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4)); 675 for (i = 0; i < 4; i++) 676 regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4)); 677 for (i = 0; i < 12; i++) 678 regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4)); 679 for (i = 0; i < 12; i++) 680 regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4)); 681 for (i = 0; i < 12; i++) 682 regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4)); 683 for (i = 0; i < 12; i++) 684 regs_buff[607 + i] = rd32(E1000_RDH(i + 4)); 685 for (i = 0; i < 12; i++) 686 regs_buff[619 + i] = rd32(E1000_RDT(i + 4)); 687 for (i = 0; i < 12; i++) 688 regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4)); 689 690 for (i = 0; i < 12; i++) 691 regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4)); 692 for (i = 0; i < 12; i++) 693 regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4)); 694 for (i = 0; i < 12; i++) 695 regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4)); 696 for (i = 0; i < 12; i++) 697 regs_buff[679 + i] = rd32(E1000_TDH(i + 4)); 698 for (i = 0; i < 12; i++) 699 regs_buff[691 + i] = rd32(E1000_TDT(i + 4)); 700 for (i = 0; i < 12; i++) 701 regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4)); 702 for (i = 0; i < 12; i++) 703 regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4)); 704 for (i = 0; i < 12; i++) 705 regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4)); 706 } 707 708 static int igb_get_eeprom_len(struct net_device *netdev) 709 { 710 struct igb_adapter *adapter = netdev_priv(netdev); 711 return adapter->hw.nvm.word_size * 2; 712 } 713 714 static int igb_get_eeprom(struct net_device *netdev, 715 struct ethtool_eeprom *eeprom, u8 *bytes) 716 { 717 struct igb_adapter *adapter = netdev_priv(netdev); 718 struct e1000_hw *hw = &adapter->hw; 719 u16 *eeprom_buff; 720 int first_word, last_word; 721 int ret_val = 0; 722 u16 i; 723 724 if (eeprom->len == 0) 725 return -EINVAL; 726 727 eeprom->magic = hw->vendor_id | (hw->device_id << 16); 728 729 first_word = eeprom->offset >> 1; 730 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 731 732 eeprom_buff = kmalloc(sizeof(u16) * 733 (last_word - first_word + 1), GFP_KERNEL); 734 if (!eeprom_buff) 735 return -ENOMEM; 736 737 if (hw->nvm.type == e1000_nvm_eeprom_spi) 738 ret_val = hw->nvm.ops.read(hw, first_word, 739 last_word - first_word + 1, 740 eeprom_buff); 741 else { 742 for (i = 0; i < last_word - first_word + 1; i++) { 743 ret_val = hw->nvm.ops.read(hw, first_word + i, 1, 744 &eeprom_buff[i]); 745 if (ret_val) 746 break; 747 } 748 } 749 750 /* Device's eeprom is always little-endian, word addressable */ 751 for (i = 0; i < last_word - first_word + 1; i++) 752 le16_to_cpus(&eeprom_buff[i]); 753 754 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), 755 eeprom->len); 756 kfree(eeprom_buff); 757 758 return ret_val; 759 } 760 761 static int igb_set_eeprom(struct net_device *netdev, 762 struct ethtool_eeprom *eeprom, u8 *bytes) 763 { 764 struct igb_adapter *adapter = netdev_priv(netdev); 765 struct e1000_hw *hw = &adapter->hw; 766 u16 *eeprom_buff; 767 void *ptr; 768 int max_len, first_word, last_word, ret_val = 0; 769 u16 i; 770 771 if (eeprom->len == 0) 772 return -EOPNOTSUPP; 773 774 if (hw->mac.type == e1000_i211) 775 return -EOPNOTSUPP; 776 777 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16))) 778 return -EFAULT; 779 780 max_len = hw->nvm.word_size * 2; 781 782 first_word = eeprom->offset >> 1; 783 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 784 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 785 if (!eeprom_buff) 786 return -ENOMEM; 787 788 ptr = (void *)eeprom_buff; 789 790 if (eeprom->offset & 1) { 791 /* need read/modify/write of first changed EEPROM word 792 * only the second byte of the word is being modified 793 */ 794 ret_val = hw->nvm.ops.read(hw, first_word, 1, 795 &eeprom_buff[0]); 796 ptr++; 797 } 798 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) { 799 /* need read/modify/write of last changed EEPROM word 800 * only the first byte of the word is being modified 801 */ 802 ret_val = hw->nvm.ops.read(hw, last_word, 1, 803 &eeprom_buff[last_word - first_word]); 804 } 805 806 /* Device's eeprom is always little-endian, word addressable */ 807 for (i = 0; i < last_word - first_word + 1; i++) 808 le16_to_cpus(&eeprom_buff[i]); 809 810 memcpy(ptr, bytes, eeprom->len); 811 812 for (i = 0; i < last_word - first_word + 1; i++) 813 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]); 814 815 ret_val = hw->nvm.ops.write(hw, first_word, 816 last_word - first_word + 1, eeprom_buff); 817 818 /* Update the checksum if nvm write succeeded */ 819 if (ret_val == 0) 820 hw->nvm.ops.update(hw); 821 822 igb_set_fw_version(adapter); 823 kfree(eeprom_buff); 824 return ret_val; 825 } 826 827 static void igb_get_drvinfo(struct net_device *netdev, 828 struct ethtool_drvinfo *drvinfo) 829 { 830 struct igb_adapter *adapter = netdev_priv(netdev); 831 832 strlcpy(drvinfo->driver, igb_driver_name, sizeof(drvinfo->driver)); 833 strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version)); 834 835 /* EEPROM image version # is reported as firmware version # for 836 * 82575 controllers 837 */ 838 strlcpy(drvinfo->fw_version, adapter->fw_version, 839 sizeof(drvinfo->fw_version)); 840 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 841 sizeof(drvinfo->bus_info)); 842 drvinfo->n_stats = IGB_STATS_LEN; 843 drvinfo->testinfo_len = IGB_TEST_LEN; 844 drvinfo->regdump_len = igb_get_regs_len(netdev); 845 drvinfo->eedump_len = igb_get_eeprom_len(netdev); 846 } 847 848 static void igb_get_ringparam(struct net_device *netdev, 849 struct ethtool_ringparam *ring) 850 { 851 struct igb_adapter *adapter = netdev_priv(netdev); 852 853 ring->rx_max_pending = IGB_MAX_RXD; 854 ring->tx_max_pending = IGB_MAX_TXD; 855 ring->rx_pending = adapter->rx_ring_count; 856 ring->tx_pending = adapter->tx_ring_count; 857 } 858 859 static int igb_set_ringparam(struct net_device *netdev, 860 struct ethtool_ringparam *ring) 861 { 862 struct igb_adapter *adapter = netdev_priv(netdev); 863 struct igb_ring *temp_ring; 864 int i, err = 0; 865 u16 new_rx_count, new_tx_count; 866 867 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 868 return -EINVAL; 869 870 new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD); 871 new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD); 872 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE); 873 874 new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD); 875 new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD); 876 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE); 877 878 if ((new_tx_count == adapter->tx_ring_count) && 879 (new_rx_count == adapter->rx_ring_count)) { 880 /* nothing to do */ 881 return 0; 882 } 883 884 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 885 msleep(1); 886 887 if (!netif_running(adapter->netdev)) { 888 for (i = 0; i < adapter->num_tx_queues; i++) 889 adapter->tx_ring[i]->count = new_tx_count; 890 for (i = 0; i < adapter->num_rx_queues; i++) 891 adapter->rx_ring[i]->count = new_rx_count; 892 adapter->tx_ring_count = new_tx_count; 893 adapter->rx_ring_count = new_rx_count; 894 goto clear_reset; 895 } 896 897 if (adapter->num_tx_queues > adapter->num_rx_queues) 898 temp_ring = vmalloc(adapter->num_tx_queues * 899 sizeof(struct igb_ring)); 900 else 901 temp_ring = vmalloc(adapter->num_rx_queues * 902 sizeof(struct igb_ring)); 903 904 if (!temp_ring) { 905 err = -ENOMEM; 906 goto clear_reset; 907 } 908 909 igb_down(adapter); 910 911 /* We can't just free everything and then setup again, 912 * because the ISRs in MSI-X mode get passed pointers 913 * to the Tx and Rx ring structs. 914 */ 915 if (new_tx_count != adapter->tx_ring_count) { 916 for (i = 0; i < adapter->num_tx_queues; i++) { 917 memcpy(&temp_ring[i], adapter->tx_ring[i], 918 sizeof(struct igb_ring)); 919 920 temp_ring[i].count = new_tx_count; 921 err = igb_setup_tx_resources(&temp_ring[i]); 922 if (err) { 923 while (i) { 924 i--; 925 igb_free_tx_resources(&temp_ring[i]); 926 } 927 goto err_setup; 928 } 929 } 930 931 for (i = 0; i < adapter->num_tx_queues; i++) { 932 igb_free_tx_resources(adapter->tx_ring[i]); 933 934 memcpy(adapter->tx_ring[i], &temp_ring[i], 935 sizeof(struct igb_ring)); 936 } 937 938 adapter->tx_ring_count = new_tx_count; 939 } 940 941 if (new_rx_count != adapter->rx_ring_count) { 942 for (i = 0; i < adapter->num_rx_queues; i++) { 943 memcpy(&temp_ring[i], adapter->rx_ring[i], 944 sizeof(struct igb_ring)); 945 946 temp_ring[i].count = new_rx_count; 947 err = igb_setup_rx_resources(&temp_ring[i]); 948 if (err) { 949 while (i) { 950 i--; 951 igb_free_rx_resources(&temp_ring[i]); 952 } 953 goto err_setup; 954 } 955 956 } 957 958 for (i = 0; i < adapter->num_rx_queues; i++) { 959 igb_free_rx_resources(adapter->rx_ring[i]); 960 961 memcpy(adapter->rx_ring[i], &temp_ring[i], 962 sizeof(struct igb_ring)); 963 } 964 965 adapter->rx_ring_count = new_rx_count; 966 } 967 err_setup: 968 igb_up(adapter); 969 vfree(temp_ring); 970 clear_reset: 971 clear_bit(__IGB_RESETTING, &adapter->state); 972 return err; 973 } 974 975 /* ethtool register test data */ 976 struct igb_reg_test { 977 u16 reg; 978 u16 reg_offset; 979 u16 array_len; 980 u16 test_type; 981 u32 mask; 982 u32 write; 983 }; 984 985 /* In the hardware, registers are laid out either singly, in arrays 986 * spaced 0x100 bytes apart, or in contiguous tables. We assume 987 * most tests take place on arrays or single registers (handled 988 * as a single-element array) and special-case the tables. 989 * Table tests are always pattern tests. 990 * 991 * We also make provision for some required setup steps by specifying 992 * registers to be written without any read-back testing. 993 */ 994 995 #define PATTERN_TEST 1 996 #define SET_READ_TEST 2 997 #define WRITE_NO_TEST 3 998 #define TABLE32_TEST 4 999 #define TABLE64_TEST_LO 5 1000 #define TABLE64_TEST_HI 6 1001 1002 /* i210 reg test */ 1003 static struct igb_reg_test reg_test_i210[] = { 1004 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1005 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1006 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1007 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1008 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1009 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1010 /* RDH is read-only for i210, only test RDT. */ 1011 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1012 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1013 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1014 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1015 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1016 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1017 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1018 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1019 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1020 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, 1021 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, 1022 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1023 { E1000_RA, 0, 16, TABLE64_TEST_LO, 1024 0xFFFFFFFF, 0xFFFFFFFF }, 1025 { E1000_RA, 0, 16, TABLE64_TEST_HI, 1026 0x900FFFFF, 0xFFFFFFFF }, 1027 { E1000_MTA, 0, 128, TABLE32_TEST, 1028 0xFFFFFFFF, 0xFFFFFFFF }, 1029 { 0, 0, 0, 0, 0 } 1030 }; 1031 1032 /* i350 reg test */ 1033 static struct igb_reg_test reg_test_i350[] = { 1034 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1035 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1036 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1037 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 }, 1038 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1039 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1040 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1041 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1042 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1043 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1044 /* RDH is read-only for i350, only test RDT. */ 1045 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1046 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1047 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1048 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1049 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1050 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1051 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1052 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1053 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1054 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1055 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1056 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1057 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1058 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1059 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, 1060 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, 1061 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1062 { E1000_RA, 0, 16, TABLE64_TEST_LO, 1063 0xFFFFFFFF, 0xFFFFFFFF }, 1064 { E1000_RA, 0, 16, TABLE64_TEST_HI, 1065 0xC3FFFFFF, 0xFFFFFFFF }, 1066 { E1000_RA2, 0, 16, TABLE64_TEST_LO, 1067 0xFFFFFFFF, 0xFFFFFFFF }, 1068 { E1000_RA2, 0, 16, TABLE64_TEST_HI, 1069 0xC3FFFFFF, 0xFFFFFFFF }, 1070 { E1000_MTA, 0, 128, TABLE32_TEST, 1071 0xFFFFFFFF, 0xFFFFFFFF }, 1072 { 0, 0, 0, 0 } 1073 }; 1074 1075 /* 82580 reg test */ 1076 static struct igb_reg_test reg_test_82580[] = { 1077 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1078 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1079 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1080 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1081 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1082 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1083 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1084 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1085 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1086 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1087 /* RDH is read-only for 82580, only test RDT. */ 1088 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1089 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1090 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1091 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1092 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1093 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1094 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1095 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1096 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1097 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1098 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1099 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1100 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1101 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1102 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, 1103 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, 1104 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1105 { E1000_RA, 0, 16, TABLE64_TEST_LO, 1106 0xFFFFFFFF, 0xFFFFFFFF }, 1107 { E1000_RA, 0, 16, TABLE64_TEST_HI, 1108 0x83FFFFFF, 0xFFFFFFFF }, 1109 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 1110 0xFFFFFFFF, 0xFFFFFFFF }, 1111 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 1112 0x83FFFFFF, 0xFFFFFFFF }, 1113 { E1000_MTA, 0, 128, TABLE32_TEST, 1114 0xFFFFFFFF, 0xFFFFFFFF }, 1115 { 0, 0, 0, 0 } 1116 }; 1117 1118 /* 82576 reg test */ 1119 static struct igb_reg_test reg_test_82576[] = { 1120 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1121 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1122 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1123 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1124 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1125 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1126 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1127 { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1128 { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1129 { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1130 /* Enable all RX queues before testing. */ 1131 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE }, 1132 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE }, 1133 /* RDH is read-only for 82576, only test RDT. */ 1134 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1135 { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1136 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 }, 1137 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 }, 1138 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1139 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1140 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1141 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1142 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1143 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1144 { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1145 { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1146 { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF }, 1147 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1148 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB }, 1149 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF }, 1150 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1151 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, 1152 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF }, 1153 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, 1154 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF }, 1155 { E1000_MTA, 0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1156 { 0, 0, 0, 0 } 1157 }; 1158 1159 /* 82575 register test */ 1160 static struct igb_reg_test reg_test_82575[] = { 1161 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1162 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1163 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF }, 1164 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1165 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1166 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1167 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1168 /* Enable all four RX queues before testing. */ 1169 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE }, 1170 /* RDH is read-only for 82575, only test RDT. */ 1171 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1172 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 }, 1173 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 }, 1174 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF }, 1175 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF }, 1176 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF }, 1177 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1178 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF }, 1179 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1180 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB }, 1181 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF }, 1182 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 }, 1183 { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF }, 1184 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF }, 1185 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF }, 1186 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF }, 1187 { 0, 0, 0, 0 } 1188 }; 1189 1190 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data, 1191 int reg, u32 mask, u32 write) 1192 { 1193 struct e1000_hw *hw = &adapter->hw; 1194 u32 pat, val; 1195 static const u32 _test[] = 1196 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; 1197 for (pat = 0; pat < ARRAY_SIZE(_test); pat++) { 1198 wr32(reg, (_test[pat] & write)); 1199 val = rd32(reg) & mask; 1200 if (val != (_test[pat] & write & mask)) { 1201 dev_err(&adapter->pdev->dev, 1202 "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n", 1203 reg, val, (_test[pat] & write & mask)); 1204 *data = reg; 1205 return 1; 1206 } 1207 } 1208 1209 return 0; 1210 } 1211 1212 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data, 1213 int reg, u32 mask, u32 write) 1214 { 1215 struct e1000_hw *hw = &adapter->hw; 1216 u32 val; 1217 wr32(reg, write & mask); 1218 val = rd32(reg); 1219 if ((write & mask) != (val & mask)) { 1220 dev_err(&adapter->pdev->dev, 1221 "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", reg, 1222 (val & mask), (write & mask)); 1223 *data = reg; 1224 return 1; 1225 } 1226 1227 return 0; 1228 } 1229 1230 #define REG_PATTERN_TEST(reg, mask, write) \ 1231 do { \ 1232 if (reg_pattern_test(adapter, data, reg, mask, write)) \ 1233 return 1; \ 1234 } while (0) 1235 1236 #define REG_SET_AND_CHECK(reg, mask, write) \ 1237 do { \ 1238 if (reg_set_and_check(adapter, data, reg, mask, write)) \ 1239 return 1; \ 1240 } while (0) 1241 1242 static int igb_reg_test(struct igb_adapter *adapter, u64 *data) 1243 { 1244 struct e1000_hw *hw = &adapter->hw; 1245 struct igb_reg_test *test; 1246 u32 value, before, after; 1247 u32 i, toggle; 1248 1249 switch (adapter->hw.mac.type) { 1250 case e1000_i350: 1251 case e1000_i354: 1252 test = reg_test_i350; 1253 toggle = 0x7FEFF3FF; 1254 break; 1255 case e1000_i210: 1256 case e1000_i211: 1257 test = reg_test_i210; 1258 toggle = 0x7FEFF3FF; 1259 break; 1260 case e1000_82580: 1261 test = reg_test_82580; 1262 toggle = 0x7FEFF3FF; 1263 break; 1264 case e1000_82576: 1265 test = reg_test_82576; 1266 toggle = 0x7FFFF3FF; 1267 break; 1268 default: 1269 test = reg_test_82575; 1270 toggle = 0x7FFFF3FF; 1271 break; 1272 } 1273 1274 /* Because the status register is such a special case, 1275 * we handle it separately from the rest of the register 1276 * tests. Some bits are read-only, some toggle, and some 1277 * are writable on newer MACs. 1278 */ 1279 before = rd32(E1000_STATUS); 1280 value = (rd32(E1000_STATUS) & toggle); 1281 wr32(E1000_STATUS, toggle); 1282 after = rd32(E1000_STATUS) & toggle; 1283 if (value != after) { 1284 dev_err(&adapter->pdev->dev, 1285 "failed STATUS register test got: 0x%08X expected: 0x%08X\n", 1286 after, value); 1287 *data = 1; 1288 return 1; 1289 } 1290 /* restore previous status */ 1291 wr32(E1000_STATUS, before); 1292 1293 /* Perform the remainder of the register test, looping through 1294 * the test table until we either fail or reach the null entry. 1295 */ 1296 while (test->reg) { 1297 for (i = 0; i < test->array_len; i++) { 1298 switch (test->test_type) { 1299 case PATTERN_TEST: 1300 REG_PATTERN_TEST(test->reg + 1301 (i * test->reg_offset), 1302 test->mask, 1303 test->write); 1304 break; 1305 case SET_READ_TEST: 1306 REG_SET_AND_CHECK(test->reg + 1307 (i * test->reg_offset), 1308 test->mask, 1309 test->write); 1310 break; 1311 case WRITE_NO_TEST: 1312 writel(test->write, 1313 (adapter->hw.hw_addr + test->reg) 1314 + (i * test->reg_offset)); 1315 break; 1316 case TABLE32_TEST: 1317 REG_PATTERN_TEST(test->reg + (i * 4), 1318 test->mask, 1319 test->write); 1320 break; 1321 case TABLE64_TEST_LO: 1322 REG_PATTERN_TEST(test->reg + (i * 8), 1323 test->mask, 1324 test->write); 1325 break; 1326 case TABLE64_TEST_HI: 1327 REG_PATTERN_TEST((test->reg + 4) + (i * 8), 1328 test->mask, 1329 test->write); 1330 break; 1331 } 1332 } 1333 test++; 1334 } 1335 1336 *data = 0; 1337 return 0; 1338 } 1339 1340 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data) 1341 { 1342 struct e1000_hw *hw = &adapter->hw; 1343 1344 *data = 0; 1345 1346 /* Validate eeprom on all parts but flashless */ 1347 switch (hw->mac.type) { 1348 case e1000_i210: 1349 case e1000_i211: 1350 if (igb_get_flash_presence_i210(hw)) { 1351 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0) 1352 *data = 2; 1353 } 1354 break; 1355 default: 1356 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0) 1357 *data = 2; 1358 break; 1359 } 1360 1361 return *data; 1362 } 1363 1364 static irqreturn_t igb_test_intr(int irq, void *data) 1365 { 1366 struct igb_adapter *adapter = (struct igb_adapter *) data; 1367 struct e1000_hw *hw = &adapter->hw; 1368 1369 adapter->test_icr |= rd32(E1000_ICR); 1370 1371 return IRQ_HANDLED; 1372 } 1373 1374 static int igb_intr_test(struct igb_adapter *adapter, u64 *data) 1375 { 1376 struct e1000_hw *hw = &adapter->hw; 1377 struct net_device *netdev = adapter->netdev; 1378 u32 mask, ics_mask, i = 0, shared_int = true; 1379 u32 irq = adapter->pdev->irq; 1380 1381 *data = 0; 1382 1383 /* Hook up test interrupt handler just for this test */ 1384 if (adapter->msix_entries) { 1385 if (request_irq(adapter->msix_entries[0].vector, 1386 igb_test_intr, 0, netdev->name, adapter)) { 1387 *data = 1; 1388 return -1; 1389 } 1390 } else if (adapter->flags & IGB_FLAG_HAS_MSI) { 1391 shared_int = false; 1392 if (request_irq(irq, 1393 igb_test_intr, 0, netdev->name, adapter)) { 1394 *data = 1; 1395 return -1; 1396 } 1397 } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED, 1398 netdev->name, adapter)) { 1399 shared_int = false; 1400 } else if (request_irq(irq, igb_test_intr, IRQF_SHARED, 1401 netdev->name, adapter)) { 1402 *data = 1; 1403 return -1; 1404 } 1405 dev_info(&adapter->pdev->dev, "testing %s interrupt\n", 1406 (shared_int ? "shared" : "unshared")); 1407 1408 /* Disable all the interrupts */ 1409 wr32(E1000_IMC, ~0); 1410 wrfl(); 1411 msleep(10); 1412 1413 /* Define all writable bits for ICS */ 1414 switch (hw->mac.type) { 1415 case e1000_82575: 1416 ics_mask = 0x37F47EDD; 1417 break; 1418 case e1000_82576: 1419 ics_mask = 0x77D4FBFD; 1420 break; 1421 case e1000_82580: 1422 ics_mask = 0x77DCFED5; 1423 break; 1424 case e1000_i350: 1425 case e1000_i354: 1426 case e1000_i210: 1427 case e1000_i211: 1428 ics_mask = 0x77DCFED5; 1429 break; 1430 default: 1431 ics_mask = 0x7FFFFFFF; 1432 break; 1433 } 1434 1435 /* Test each interrupt */ 1436 for (; i < 31; i++) { 1437 /* Interrupt to test */ 1438 mask = 1 << i; 1439 1440 if (!(mask & ics_mask)) 1441 continue; 1442 1443 if (!shared_int) { 1444 /* Disable the interrupt to be reported in 1445 * the cause register and then force the same 1446 * interrupt and see if one gets posted. If 1447 * an interrupt was posted to the bus, the 1448 * test failed. 1449 */ 1450 adapter->test_icr = 0; 1451 1452 /* Flush any pending interrupts */ 1453 wr32(E1000_ICR, ~0); 1454 1455 wr32(E1000_IMC, mask); 1456 wr32(E1000_ICS, mask); 1457 wrfl(); 1458 msleep(10); 1459 1460 if (adapter->test_icr & mask) { 1461 *data = 3; 1462 break; 1463 } 1464 } 1465 1466 /* Enable the interrupt to be reported in 1467 * the cause register and then force the same 1468 * interrupt and see if one gets posted. If 1469 * an interrupt was not posted to the bus, the 1470 * test failed. 1471 */ 1472 adapter->test_icr = 0; 1473 1474 /* Flush any pending interrupts */ 1475 wr32(E1000_ICR, ~0); 1476 1477 wr32(E1000_IMS, mask); 1478 wr32(E1000_ICS, mask); 1479 wrfl(); 1480 msleep(10); 1481 1482 if (!(adapter->test_icr & mask)) { 1483 *data = 4; 1484 break; 1485 } 1486 1487 if (!shared_int) { 1488 /* Disable the other interrupts to be reported in 1489 * the cause register and then force the other 1490 * interrupts and see if any get posted. If 1491 * an interrupt was posted to the bus, the 1492 * test failed. 1493 */ 1494 adapter->test_icr = 0; 1495 1496 /* Flush any pending interrupts */ 1497 wr32(E1000_ICR, ~0); 1498 1499 wr32(E1000_IMC, ~mask); 1500 wr32(E1000_ICS, ~mask); 1501 wrfl(); 1502 msleep(10); 1503 1504 if (adapter->test_icr & mask) { 1505 *data = 5; 1506 break; 1507 } 1508 } 1509 } 1510 1511 /* Disable all the interrupts */ 1512 wr32(E1000_IMC, ~0); 1513 wrfl(); 1514 msleep(10); 1515 1516 /* Unhook test interrupt handler */ 1517 if (adapter->msix_entries) 1518 free_irq(adapter->msix_entries[0].vector, adapter); 1519 else 1520 free_irq(irq, adapter); 1521 1522 return *data; 1523 } 1524 1525 static void igb_free_desc_rings(struct igb_adapter *adapter) 1526 { 1527 igb_free_tx_resources(&adapter->test_tx_ring); 1528 igb_free_rx_resources(&adapter->test_rx_ring); 1529 } 1530 1531 static int igb_setup_desc_rings(struct igb_adapter *adapter) 1532 { 1533 struct igb_ring *tx_ring = &adapter->test_tx_ring; 1534 struct igb_ring *rx_ring = &adapter->test_rx_ring; 1535 struct e1000_hw *hw = &adapter->hw; 1536 int ret_val; 1537 1538 /* Setup Tx descriptor ring and Tx buffers */ 1539 tx_ring->count = IGB_DEFAULT_TXD; 1540 tx_ring->dev = &adapter->pdev->dev; 1541 tx_ring->netdev = adapter->netdev; 1542 tx_ring->reg_idx = adapter->vfs_allocated_count; 1543 1544 if (igb_setup_tx_resources(tx_ring)) { 1545 ret_val = 1; 1546 goto err_nomem; 1547 } 1548 1549 igb_setup_tctl(adapter); 1550 igb_configure_tx_ring(adapter, tx_ring); 1551 1552 /* Setup Rx descriptor ring and Rx buffers */ 1553 rx_ring->count = IGB_DEFAULT_RXD; 1554 rx_ring->dev = &adapter->pdev->dev; 1555 rx_ring->netdev = adapter->netdev; 1556 rx_ring->reg_idx = adapter->vfs_allocated_count; 1557 1558 if (igb_setup_rx_resources(rx_ring)) { 1559 ret_val = 3; 1560 goto err_nomem; 1561 } 1562 1563 /* set the default queue to queue 0 of PF */ 1564 wr32(E1000_MRQC, adapter->vfs_allocated_count << 3); 1565 1566 /* enable receive ring */ 1567 igb_setup_rctl(adapter); 1568 igb_configure_rx_ring(adapter, rx_ring); 1569 1570 igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring)); 1571 1572 return 0; 1573 1574 err_nomem: 1575 igb_free_desc_rings(adapter); 1576 return ret_val; 1577 } 1578 1579 static void igb_phy_disable_receiver(struct igb_adapter *adapter) 1580 { 1581 struct e1000_hw *hw = &adapter->hw; 1582 1583 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1584 igb_write_phy_reg(hw, 29, 0x001F); 1585 igb_write_phy_reg(hw, 30, 0x8FFC); 1586 igb_write_phy_reg(hw, 29, 0x001A); 1587 igb_write_phy_reg(hw, 30, 0x8FF0); 1588 } 1589 1590 static int igb_integrated_phy_loopback(struct igb_adapter *adapter) 1591 { 1592 struct e1000_hw *hw = &adapter->hw; 1593 u32 ctrl_reg = 0; 1594 1595 hw->mac.autoneg = false; 1596 1597 if (hw->phy.type == e1000_phy_m88) { 1598 if (hw->phy.id != I210_I_PHY_ID) { 1599 /* Auto-MDI/MDIX Off */ 1600 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808); 1601 /* reset to update Auto-MDI/MDIX */ 1602 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140); 1603 /* autoneg off */ 1604 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140); 1605 } else { 1606 /* force 1000, set loopback */ 1607 igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0); 1608 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140); 1609 } 1610 } else if (hw->phy.type == e1000_phy_82580) { 1611 /* enable MII loopback */ 1612 igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041); 1613 } 1614 1615 /* add small delay to avoid loopback test failure */ 1616 msleep(50); 1617 1618 /* force 1000, set loopback */ 1619 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140); 1620 1621 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1622 ctrl_reg = rd32(E1000_CTRL); 1623 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1624 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1625 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1626 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1627 E1000_CTRL_FD | /* Force Duplex to FULL */ 1628 E1000_CTRL_SLU); /* Set link up enable bit */ 1629 1630 if (hw->phy.type == e1000_phy_m88) 1631 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1632 1633 wr32(E1000_CTRL, ctrl_reg); 1634 1635 /* Disable the receiver on the PHY so when a cable is plugged in, the 1636 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1637 */ 1638 if (hw->phy.type == e1000_phy_m88) 1639 igb_phy_disable_receiver(adapter); 1640 1641 mdelay(500); 1642 return 0; 1643 } 1644 1645 static int igb_set_phy_loopback(struct igb_adapter *adapter) 1646 { 1647 return igb_integrated_phy_loopback(adapter); 1648 } 1649 1650 static int igb_setup_loopback_test(struct igb_adapter *adapter) 1651 { 1652 struct e1000_hw *hw = &adapter->hw; 1653 u32 reg; 1654 1655 reg = rd32(E1000_CTRL_EXT); 1656 1657 /* use CTRL_EXT to identify link type as SGMII can appear as copper */ 1658 if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) { 1659 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) || 1660 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) || 1661 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) || 1662 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) { 1663 1664 /* Enable DH89xxCC MPHY for near end loopback */ 1665 reg = rd32(E1000_MPHY_ADDR_CTL); 1666 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) | 1667 E1000_MPHY_PCS_CLK_REG_OFFSET; 1668 wr32(E1000_MPHY_ADDR_CTL, reg); 1669 1670 reg = rd32(E1000_MPHY_DATA); 1671 reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN; 1672 wr32(E1000_MPHY_DATA, reg); 1673 } 1674 1675 reg = rd32(E1000_RCTL); 1676 reg |= E1000_RCTL_LBM_TCVR; 1677 wr32(E1000_RCTL, reg); 1678 1679 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK); 1680 1681 reg = rd32(E1000_CTRL); 1682 reg &= ~(E1000_CTRL_RFCE | 1683 E1000_CTRL_TFCE | 1684 E1000_CTRL_LRST); 1685 reg |= E1000_CTRL_SLU | 1686 E1000_CTRL_FD; 1687 wr32(E1000_CTRL, reg); 1688 1689 /* Unset switch control to serdes energy detect */ 1690 reg = rd32(E1000_CONNSW); 1691 reg &= ~E1000_CONNSW_ENRGSRC; 1692 wr32(E1000_CONNSW, reg); 1693 1694 /* Unset sigdetect for SERDES loopback on 1695 * 82580 and newer devices. 1696 */ 1697 if (hw->mac.type >= e1000_82580) { 1698 reg = rd32(E1000_PCS_CFG0); 1699 reg |= E1000_PCS_CFG_IGN_SD; 1700 wr32(E1000_PCS_CFG0, reg); 1701 } 1702 1703 /* Set PCS register for forced speed */ 1704 reg = rd32(E1000_PCS_LCTL); 1705 reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/ 1706 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */ 1707 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */ 1708 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */ 1709 E1000_PCS_LCTL_FSD | /* Force Speed */ 1710 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */ 1711 wr32(E1000_PCS_LCTL, reg); 1712 1713 return 0; 1714 } 1715 1716 return igb_set_phy_loopback(adapter); 1717 } 1718 1719 static void igb_loopback_cleanup(struct igb_adapter *adapter) 1720 { 1721 struct e1000_hw *hw = &adapter->hw; 1722 u32 rctl; 1723 u16 phy_reg; 1724 1725 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) || 1726 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) || 1727 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) || 1728 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) { 1729 u32 reg; 1730 1731 /* Disable near end loopback on DH89xxCC */ 1732 reg = rd32(E1000_MPHY_ADDR_CTL); 1733 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) | 1734 E1000_MPHY_PCS_CLK_REG_OFFSET; 1735 wr32(E1000_MPHY_ADDR_CTL, reg); 1736 1737 reg = rd32(E1000_MPHY_DATA); 1738 reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN; 1739 wr32(E1000_MPHY_DATA, reg); 1740 } 1741 1742 rctl = rd32(E1000_RCTL); 1743 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1744 wr32(E1000_RCTL, rctl); 1745 1746 hw->mac.autoneg = true; 1747 igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg); 1748 if (phy_reg & MII_CR_LOOPBACK) { 1749 phy_reg &= ~MII_CR_LOOPBACK; 1750 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg); 1751 igb_phy_sw_reset(hw); 1752 } 1753 } 1754 1755 static void igb_create_lbtest_frame(struct sk_buff *skb, 1756 unsigned int frame_size) 1757 { 1758 memset(skb->data, 0xFF, frame_size); 1759 frame_size /= 2; 1760 memset(&skb->data[frame_size], 0xAA, frame_size - 1); 1761 memset(&skb->data[frame_size + 10], 0xBE, 1); 1762 memset(&skb->data[frame_size + 12], 0xAF, 1); 1763 } 1764 1765 static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer, 1766 unsigned int frame_size) 1767 { 1768 unsigned char *data; 1769 bool match = true; 1770 1771 frame_size >>= 1; 1772 1773 data = kmap(rx_buffer->page); 1774 1775 if (data[3] != 0xFF || 1776 data[frame_size + 10] != 0xBE || 1777 data[frame_size + 12] != 0xAF) 1778 match = false; 1779 1780 kunmap(rx_buffer->page); 1781 1782 return match; 1783 } 1784 1785 static int igb_clean_test_rings(struct igb_ring *rx_ring, 1786 struct igb_ring *tx_ring, 1787 unsigned int size) 1788 { 1789 union e1000_adv_rx_desc *rx_desc; 1790 struct igb_rx_buffer *rx_buffer_info; 1791 struct igb_tx_buffer *tx_buffer_info; 1792 u16 rx_ntc, tx_ntc, count = 0; 1793 1794 /* initialize next to clean and descriptor values */ 1795 rx_ntc = rx_ring->next_to_clean; 1796 tx_ntc = tx_ring->next_to_clean; 1797 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc); 1798 1799 while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) { 1800 /* check Rx buffer */ 1801 rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc]; 1802 1803 /* sync Rx buffer for CPU read */ 1804 dma_sync_single_for_cpu(rx_ring->dev, 1805 rx_buffer_info->dma, 1806 IGB_RX_BUFSZ, 1807 DMA_FROM_DEVICE); 1808 1809 /* verify contents of skb */ 1810 if (igb_check_lbtest_frame(rx_buffer_info, size)) 1811 count++; 1812 1813 /* sync Rx buffer for device write */ 1814 dma_sync_single_for_device(rx_ring->dev, 1815 rx_buffer_info->dma, 1816 IGB_RX_BUFSZ, 1817 DMA_FROM_DEVICE); 1818 1819 /* unmap buffer on Tx side */ 1820 tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc]; 1821 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info); 1822 1823 /* increment Rx/Tx next to clean counters */ 1824 rx_ntc++; 1825 if (rx_ntc == rx_ring->count) 1826 rx_ntc = 0; 1827 tx_ntc++; 1828 if (tx_ntc == tx_ring->count) 1829 tx_ntc = 0; 1830 1831 /* fetch next descriptor */ 1832 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc); 1833 } 1834 1835 netdev_tx_reset_queue(txring_txq(tx_ring)); 1836 1837 /* re-map buffers to ring, store next to clean values */ 1838 igb_alloc_rx_buffers(rx_ring, count); 1839 rx_ring->next_to_clean = rx_ntc; 1840 tx_ring->next_to_clean = tx_ntc; 1841 1842 return count; 1843 } 1844 1845 static int igb_run_loopback_test(struct igb_adapter *adapter) 1846 { 1847 struct igb_ring *tx_ring = &adapter->test_tx_ring; 1848 struct igb_ring *rx_ring = &adapter->test_rx_ring; 1849 u16 i, j, lc, good_cnt; 1850 int ret_val = 0; 1851 unsigned int size = IGB_RX_HDR_LEN; 1852 netdev_tx_t tx_ret_val; 1853 struct sk_buff *skb; 1854 1855 /* allocate test skb */ 1856 skb = alloc_skb(size, GFP_KERNEL); 1857 if (!skb) 1858 return 11; 1859 1860 /* place data into test skb */ 1861 igb_create_lbtest_frame(skb, size); 1862 skb_put(skb, size); 1863 1864 /* Calculate the loop count based on the largest descriptor ring 1865 * The idea is to wrap the largest ring a number of times using 64 1866 * send/receive pairs during each loop 1867 */ 1868 1869 if (rx_ring->count <= tx_ring->count) 1870 lc = ((tx_ring->count / 64) * 2) + 1; 1871 else 1872 lc = ((rx_ring->count / 64) * 2) + 1; 1873 1874 for (j = 0; j <= lc; j++) { /* loop count loop */ 1875 /* reset count of good packets */ 1876 good_cnt = 0; 1877 1878 /* place 64 packets on the transmit queue*/ 1879 for (i = 0; i < 64; i++) { 1880 skb_get(skb); 1881 tx_ret_val = igb_xmit_frame_ring(skb, tx_ring); 1882 if (tx_ret_val == NETDEV_TX_OK) 1883 good_cnt++; 1884 } 1885 1886 if (good_cnt != 64) { 1887 ret_val = 12; 1888 break; 1889 } 1890 1891 /* allow 200 milliseconds for packets to go from Tx to Rx */ 1892 msleep(200); 1893 1894 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size); 1895 if (good_cnt != 64) { 1896 ret_val = 13; 1897 break; 1898 } 1899 } /* end loop count loop */ 1900 1901 /* free the original skb */ 1902 kfree_skb(skb); 1903 1904 return ret_val; 1905 } 1906 1907 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data) 1908 { 1909 /* PHY loopback cannot be performed if SoL/IDER 1910 * sessions are active 1911 */ 1912 if (igb_check_reset_block(&adapter->hw)) { 1913 dev_err(&adapter->pdev->dev, 1914 "Cannot do PHY loopback test when SoL/IDER is active.\n"); 1915 *data = 0; 1916 goto out; 1917 } 1918 1919 if (adapter->hw.mac.type == e1000_i354) { 1920 dev_info(&adapter->pdev->dev, 1921 "Loopback test not supported on i354.\n"); 1922 *data = 0; 1923 goto out; 1924 } 1925 *data = igb_setup_desc_rings(adapter); 1926 if (*data) 1927 goto out; 1928 *data = igb_setup_loopback_test(adapter); 1929 if (*data) 1930 goto err_loopback; 1931 *data = igb_run_loopback_test(adapter); 1932 igb_loopback_cleanup(adapter); 1933 1934 err_loopback: 1935 igb_free_desc_rings(adapter); 1936 out: 1937 return *data; 1938 } 1939 1940 static int igb_link_test(struct igb_adapter *adapter, u64 *data) 1941 { 1942 struct e1000_hw *hw = &adapter->hw; 1943 *data = 0; 1944 if (hw->phy.media_type == e1000_media_type_internal_serdes) { 1945 int i = 0; 1946 hw->mac.serdes_has_link = false; 1947 1948 /* On some blade server designs, link establishment 1949 * could take as long as 2-3 minutes 1950 */ 1951 do { 1952 hw->mac.ops.check_for_link(&adapter->hw); 1953 if (hw->mac.serdes_has_link) 1954 return *data; 1955 msleep(20); 1956 } while (i++ < 3750); 1957 1958 *data = 1; 1959 } else { 1960 hw->mac.ops.check_for_link(&adapter->hw); 1961 if (hw->mac.autoneg) 1962 msleep(5000); 1963 1964 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) 1965 *data = 1; 1966 } 1967 return *data; 1968 } 1969 1970 static void igb_diag_test(struct net_device *netdev, 1971 struct ethtool_test *eth_test, u64 *data) 1972 { 1973 struct igb_adapter *adapter = netdev_priv(netdev); 1974 u16 autoneg_advertised; 1975 u8 forced_speed_duplex, autoneg; 1976 bool if_running = netif_running(netdev); 1977 1978 set_bit(__IGB_TESTING, &adapter->state); 1979 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1980 /* Offline tests */ 1981 1982 /* save speed, duplex, autoneg settings */ 1983 autoneg_advertised = adapter->hw.phy.autoneg_advertised; 1984 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex; 1985 autoneg = adapter->hw.mac.autoneg; 1986 1987 dev_info(&adapter->pdev->dev, "offline testing starting\n"); 1988 1989 /* power up link for link test */ 1990 igb_power_up_link(adapter); 1991 1992 /* Link test performed before hardware reset so autoneg doesn't 1993 * interfere with test result 1994 */ 1995 if (igb_link_test(adapter, &data[4])) 1996 eth_test->flags |= ETH_TEST_FL_FAILED; 1997 1998 if (if_running) 1999 /* indicate we're in test mode */ 2000 dev_close(netdev); 2001 else 2002 igb_reset(adapter); 2003 2004 if (igb_reg_test(adapter, &data[0])) 2005 eth_test->flags |= ETH_TEST_FL_FAILED; 2006 2007 igb_reset(adapter); 2008 if (igb_eeprom_test(adapter, &data[1])) 2009 eth_test->flags |= ETH_TEST_FL_FAILED; 2010 2011 igb_reset(adapter); 2012 if (igb_intr_test(adapter, &data[2])) 2013 eth_test->flags |= ETH_TEST_FL_FAILED; 2014 2015 igb_reset(adapter); 2016 /* power up link for loopback test */ 2017 igb_power_up_link(adapter); 2018 if (igb_loopback_test(adapter, &data[3])) 2019 eth_test->flags |= ETH_TEST_FL_FAILED; 2020 2021 /* restore speed, duplex, autoneg settings */ 2022 adapter->hw.phy.autoneg_advertised = autoneg_advertised; 2023 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex; 2024 adapter->hw.mac.autoneg = autoneg; 2025 2026 /* force this routine to wait until autoneg complete/timeout */ 2027 adapter->hw.phy.autoneg_wait_to_complete = true; 2028 igb_reset(adapter); 2029 adapter->hw.phy.autoneg_wait_to_complete = false; 2030 2031 clear_bit(__IGB_TESTING, &adapter->state); 2032 if (if_running) 2033 dev_open(netdev); 2034 } else { 2035 dev_info(&adapter->pdev->dev, "online testing starting\n"); 2036 2037 /* PHY is powered down when interface is down */ 2038 if (if_running && igb_link_test(adapter, &data[4])) 2039 eth_test->flags |= ETH_TEST_FL_FAILED; 2040 else 2041 data[4] = 0; 2042 2043 /* Online tests aren't run; pass by default */ 2044 data[0] = 0; 2045 data[1] = 0; 2046 data[2] = 0; 2047 data[3] = 0; 2048 2049 clear_bit(__IGB_TESTING, &adapter->state); 2050 } 2051 msleep_interruptible(4 * 1000); 2052 } 2053 2054 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 2055 { 2056 struct igb_adapter *adapter = netdev_priv(netdev); 2057 2058 wol->supported = WAKE_UCAST | WAKE_MCAST | 2059 WAKE_BCAST | WAKE_MAGIC | 2060 WAKE_PHY; 2061 wol->wolopts = 0; 2062 2063 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED)) 2064 return; 2065 2066 /* apply any specific unsupported masks here */ 2067 switch (adapter->hw.device_id) { 2068 default: 2069 break; 2070 } 2071 2072 if (adapter->wol & E1000_WUFC_EX) 2073 wol->wolopts |= WAKE_UCAST; 2074 if (adapter->wol & E1000_WUFC_MC) 2075 wol->wolopts |= WAKE_MCAST; 2076 if (adapter->wol & E1000_WUFC_BC) 2077 wol->wolopts |= WAKE_BCAST; 2078 if (adapter->wol & E1000_WUFC_MAG) 2079 wol->wolopts |= WAKE_MAGIC; 2080 if (adapter->wol & E1000_WUFC_LNKC) 2081 wol->wolopts |= WAKE_PHY; 2082 } 2083 2084 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 2085 { 2086 struct igb_adapter *adapter = netdev_priv(netdev); 2087 2088 if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE)) 2089 return -EOPNOTSUPP; 2090 2091 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED)) 2092 return wol->wolopts ? -EOPNOTSUPP : 0; 2093 2094 /* these settings will always override what we currently have */ 2095 adapter->wol = 0; 2096 2097 if (wol->wolopts & WAKE_UCAST) 2098 adapter->wol |= E1000_WUFC_EX; 2099 if (wol->wolopts & WAKE_MCAST) 2100 adapter->wol |= E1000_WUFC_MC; 2101 if (wol->wolopts & WAKE_BCAST) 2102 adapter->wol |= E1000_WUFC_BC; 2103 if (wol->wolopts & WAKE_MAGIC) 2104 adapter->wol |= E1000_WUFC_MAG; 2105 if (wol->wolopts & WAKE_PHY) 2106 adapter->wol |= E1000_WUFC_LNKC; 2107 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 2108 2109 return 0; 2110 } 2111 2112 /* bit defines for adapter->led_status */ 2113 #define IGB_LED_ON 0 2114 2115 static int igb_set_phys_id(struct net_device *netdev, 2116 enum ethtool_phys_id_state state) 2117 { 2118 struct igb_adapter *adapter = netdev_priv(netdev); 2119 struct e1000_hw *hw = &adapter->hw; 2120 2121 switch (state) { 2122 case ETHTOOL_ID_ACTIVE: 2123 igb_blink_led(hw); 2124 return 2; 2125 case ETHTOOL_ID_ON: 2126 igb_blink_led(hw); 2127 break; 2128 case ETHTOOL_ID_OFF: 2129 igb_led_off(hw); 2130 break; 2131 case ETHTOOL_ID_INACTIVE: 2132 igb_led_off(hw); 2133 clear_bit(IGB_LED_ON, &adapter->led_status); 2134 igb_cleanup_led(hw); 2135 break; 2136 } 2137 2138 return 0; 2139 } 2140 2141 static int igb_set_coalesce(struct net_device *netdev, 2142 struct ethtool_coalesce *ec) 2143 { 2144 struct igb_adapter *adapter = netdev_priv(netdev); 2145 int i; 2146 2147 if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) || 2148 ((ec->rx_coalesce_usecs > 3) && 2149 (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) || 2150 (ec->rx_coalesce_usecs == 2)) 2151 return -EINVAL; 2152 2153 if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) || 2154 ((ec->tx_coalesce_usecs > 3) && 2155 (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) || 2156 (ec->tx_coalesce_usecs == 2)) 2157 return -EINVAL; 2158 2159 if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs) 2160 return -EINVAL; 2161 2162 /* If ITR is disabled, disable DMAC */ 2163 if (ec->rx_coalesce_usecs == 0) { 2164 if (adapter->flags & IGB_FLAG_DMAC) 2165 adapter->flags &= ~IGB_FLAG_DMAC; 2166 } 2167 2168 /* convert to rate of irq's per second */ 2169 if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3) 2170 adapter->rx_itr_setting = ec->rx_coalesce_usecs; 2171 else 2172 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2; 2173 2174 /* convert to rate of irq's per second */ 2175 if (adapter->flags & IGB_FLAG_QUEUE_PAIRS) 2176 adapter->tx_itr_setting = adapter->rx_itr_setting; 2177 else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3) 2178 adapter->tx_itr_setting = ec->tx_coalesce_usecs; 2179 else 2180 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2; 2181 2182 for (i = 0; i < adapter->num_q_vectors; i++) { 2183 struct igb_q_vector *q_vector = adapter->q_vector[i]; 2184 q_vector->tx.work_limit = adapter->tx_work_limit; 2185 if (q_vector->rx.ring) 2186 q_vector->itr_val = adapter->rx_itr_setting; 2187 else 2188 q_vector->itr_val = adapter->tx_itr_setting; 2189 if (q_vector->itr_val && q_vector->itr_val <= 3) 2190 q_vector->itr_val = IGB_START_ITR; 2191 q_vector->set_itr = 1; 2192 } 2193 2194 return 0; 2195 } 2196 2197 static int igb_get_coalesce(struct net_device *netdev, 2198 struct ethtool_coalesce *ec) 2199 { 2200 struct igb_adapter *adapter = netdev_priv(netdev); 2201 2202 if (adapter->rx_itr_setting <= 3) 2203 ec->rx_coalesce_usecs = adapter->rx_itr_setting; 2204 else 2205 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2; 2206 2207 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) { 2208 if (adapter->tx_itr_setting <= 3) 2209 ec->tx_coalesce_usecs = adapter->tx_itr_setting; 2210 else 2211 ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2; 2212 } 2213 2214 return 0; 2215 } 2216 2217 static int igb_nway_reset(struct net_device *netdev) 2218 { 2219 struct igb_adapter *adapter = netdev_priv(netdev); 2220 if (netif_running(netdev)) 2221 igb_reinit_locked(adapter); 2222 return 0; 2223 } 2224 2225 static int igb_get_sset_count(struct net_device *netdev, int sset) 2226 { 2227 switch (sset) { 2228 case ETH_SS_STATS: 2229 return IGB_STATS_LEN; 2230 case ETH_SS_TEST: 2231 return IGB_TEST_LEN; 2232 default: 2233 return -ENOTSUPP; 2234 } 2235 } 2236 2237 static void igb_get_ethtool_stats(struct net_device *netdev, 2238 struct ethtool_stats *stats, u64 *data) 2239 { 2240 struct igb_adapter *adapter = netdev_priv(netdev); 2241 struct rtnl_link_stats64 *net_stats = &adapter->stats64; 2242 unsigned int start; 2243 struct igb_ring *ring; 2244 int i, j; 2245 char *p; 2246 2247 spin_lock(&adapter->stats64_lock); 2248 igb_update_stats(adapter, net_stats); 2249 2250 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) { 2251 p = (char *)adapter + igb_gstrings_stats[i].stat_offset; 2252 data[i] = (igb_gstrings_stats[i].sizeof_stat == 2253 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 2254 } 2255 for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) { 2256 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset; 2257 data[i] = (igb_gstrings_net_stats[j].sizeof_stat == 2258 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 2259 } 2260 for (j = 0; j < adapter->num_tx_queues; j++) { 2261 u64 restart2; 2262 2263 ring = adapter->tx_ring[j]; 2264 do { 2265 start = u64_stats_fetch_begin_bh(&ring->tx_syncp); 2266 data[i] = ring->tx_stats.packets; 2267 data[i+1] = ring->tx_stats.bytes; 2268 data[i+2] = ring->tx_stats.restart_queue; 2269 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start)); 2270 do { 2271 start = u64_stats_fetch_begin_bh(&ring->tx_syncp2); 2272 restart2 = ring->tx_stats.restart_queue2; 2273 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start)); 2274 data[i+2] += restart2; 2275 2276 i += IGB_TX_QUEUE_STATS_LEN; 2277 } 2278 for (j = 0; j < adapter->num_rx_queues; j++) { 2279 ring = adapter->rx_ring[j]; 2280 do { 2281 start = u64_stats_fetch_begin_bh(&ring->rx_syncp); 2282 data[i] = ring->rx_stats.packets; 2283 data[i+1] = ring->rx_stats.bytes; 2284 data[i+2] = ring->rx_stats.drops; 2285 data[i+3] = ring->rx_stats.csum_err; 2286 data[i+4] = ring->rx_stats.alloc_failed; 2287 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start)); 2288 i += IGB_RX_QUEUE_STATS_LEN; 2289 } 2290 spin_unlock(&adapter->stats64_lock); 2291 } 2292 2293 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data) 2294 { 2295 struct igb_adapter *adapter = netdev_priv(netdev); 2296 u8 *p = data; 2297 int i; 2298 2299 switch (stringset) { 2300 case ETH_SS_TEST: 2301 memcpy(data, *igb_gstrings_test, 2302 IGB_TEST_LEN*ETH_GSTRING_LEN); 2303 break; 2304 case ETH_SS_STATS: 2305 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) { 2306 memcpy(p, igb_gstrings_stats[i].stat_string, 2307 ETH_GSTRING_LEN); 2308 p += ETH_GSTRING_LEN; 2309 } 2310 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) { 2311 memcpy(p, igb_gstrings_net_stats[i].stat_string, 2312 ETH_GSTRING_LEN); 2313 p += ETH_GSTRING_LEN; 2314 } 2315 for (i = 0; i < adapter->num_tx_queues; i++) { 2316 sprintf(p, "tx_queue_%u_packets", i); 2317 p += ETH_GSTRING_LEN; 2318 sprintf(p, "tx_queue_%u_bytes", i); 2319 p += ETH_GSTRING_LEN; 2320 sprintf(p, "tx_queue_%u_restart", i); 2321 p += ETH_GSTRING_LEN; 2322 } 2323 for (i = 0; i < adapter->num_rx_queues; i++) { 2324 sprintf(p, "rx_queue_%u_packets", i); 2325 p += ETH_GSTRING_LEN; 2326 sprintf(p, "rx_queue_%u_bytes", i); 2327 p += ETH_GSTRING_LEN; 2328 sprintf(p, "rx_queue_%u_drops", i); 2329 p += ETH_GSTRING_LEN; 2330 sprintf(p, "rx_queue_%u_csum_err", i); 2331 p += ETH_GSTRING_LEN; 2332 sprintf(p, "rx_queue_%u_alloc_failed", i); 2333 p += ETH_GSTRING_LEN; 2334 } 2335 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */ 2336 break; 2337 } 2338 } 2339 2340 static int igb_get_ts_info(struct net_device *dev, 2341 struct ethtool_ts_info *info) 2342 { 2343 struct igb_adapter *adapter = netdev_priv(dev); 2344 2345 switch (adapter->hw.mac.type) { 2346 case e1000_82575: 2347 info->so_timestamping = 2348 SOF_TIMESTAMPING_TX_SOFTWARE | 2349 SOF_TIMESTAMPING_RX_SOFTWARE | 2350 SOF_TIMESTAMPING_SOFTWARE; 2351 return 0; 2352 case e1000_82576: 2353 case e1000_82580: 2354 case e1000_i350: 2355 case e1000_i354: 2356 case e1000_i210: 2357 case e1000_i211: 2358 info->so_timestamping = 2359 SOF_TIMESTAMPING_TX_SOFTWARE | 2360 SOF_TIMESTAMPING_RX_SOFTWARE | 2361 SOF_TIMESTAMPING_SOFTWARE | 2362 SOF_TIMESTAMPING_TX_HARDWARE | 2363 SOF_TIMESTAMPING_RX_HARDWARE | 2364 SOF_TIMESTAMPING_RAW_HARDWARE; 2365 2366 if (adapter->ptp_clock) 2367 info->phc_index = ptp_clock_index(adapter->ptp_clock); 2368 else 2369 info->phc_index = -1; 2370 2371 info->tx_types = 2372 (1 << HWTSTAMP_TX_OFF) | 2373 (1 << HWTSTAMP_TX_ON); 2374 2375 info->rx_filters = 1 << HWTSTAMP_FILTER_NONE; 2376 2377 /* 82576 does not support timestamping all packets. */ 2378 if (adapter->hw.mac.type >= e1000_82580) 2379 info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL; 2380 else 2381 info->rx_filters |= 2382 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) | 2383 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) | 2384 (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) | 2385 (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) | 2386 (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) | 2387 (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) | 2388 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); 2389 2390 return 0; 2391 default: 2392 return -EOPNOTSUPP; 2393 } 2394 } 2395 2396 static int igb_get_rss_hash_opts(struct igb_adapter *adapter, 2397 struct ethtool_rxnfc *cmd) 2398 { 2399 cmd->data = 0; 2400 2401 /* Report default options for RSS on igb */ 2402 switch (cmd->flow_type) { 2403 case TCP_V4_FLOW: 2404 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2405 case UDP_V4_FLOW: 2406 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP) 2407 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2408 case SCTP_V4_FLOW: 2409 case AH_ESP_V4_FLOW: 2410 case AH_V4_FLOW: 2411 case ESP_V4_FLOW: 2412 case IPV4_FLOW: 2413 cmd->data |= RXH_IP_SRC | RXH_IP_DST; 2414 break; 2415 case TCP_V6_FLOW: 2416 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2417 case UDP_V6_FLOW: 2418 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP) 2419 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; 2420 case SCTP_V6_FLOW: 2421 case AH_ESP_V6_FLOW: 2422 case AH_V6_FLOW: 2423 case ESP_V6_FLOW: 2424 case IPV6_FLOW: 2425 cmd->data |= RXH_IP_SRC | RXH_IP_DST; 2426 break; 2427 default: 2428 return -EINVAL; 2429 } 2430 2431 return 0; 2432 } 2433 2434 static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd, 2435 u32 *rule_locs) 2436 { 2437 struct igb_adapter *adapter = netdev_priv(dev); 2438 int ret = -EOPNOTSUPP; 2439 2440 switch (cmd->cmd) { 2441 case ETHTOOL_GRXRINGS: 2442 cmd->data = adapter->num_rx_queues; 2443 ret = 0; 2444 break; 2445 case ETHTOOL_GRXFH: 2446 ret = igb_get_rss_hash_opts(adapter, cmd); 2447 break; 2448 default: 2449 break; 2450 } 2451 2452 return ret; 2453 } 2454 2455 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \ 2456 IGB_FLAG_RSS_FIELD_IPV6_UDP) 2457 static int igb_set_rss_hash_opt(struct igb_adapter *adapter, 2458 struct ethtool_rxnfc *nfc) 2459 { 2460 u32 flags = adapter->flags; 2461 2462 /* RSS does not support anything other than hashing 2463 * to queues on src and dst IPs and ports 2464 */ 2465 if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST | 2466 RXH_L4_B_0_1 | RXH_L4_B_2_3)) 2467 return -EINVAL; 2468 2469 switch (nfc->flow_type) { 2470 case TCP_V4_FLOW: 2471 case TCP_V6_FLOW: 2472 if (!(nfc->data & RXH_IP_SRC) || 2473 !(nfc->data & RXH_IP_DST) || 2474 !(nfc->data & RXH_L4_B_0_1) || 2475 !(nfc->data & RXH_L4_B_2_3)) 2476 return -EINVAL; 2477 break; 2478 case UDP_V4_FLOW: 2479 if (!(nfc->data & RXH_IP_SRC) || 2480 !(nfc->data & RXH_IP_DST)) 2481 return -EINVAL; 2482 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 2483 case 0: 2484 flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP; 2485 break; 2486 case (RXH_L4_B_0_1 | RXH_L4_B_2_3): 2487 flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP; 2488 break; 2489 default: 2490 return -EINVAL; 2491 } 2492 break; 2493 case UDP_V6_FLOW: 2494 if (!(nfc->data & RXH_IP_SRC) || 2495 !(nfc->data & RXH_IP_DST)) 2496 return -EINVAL; 2497 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 2498 case 0: 2499 flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP; 2500 break; 2501 case (RXH_L4_B_0_1 | RXH_L4_B_2_3): 2502 flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP; 2503 break; 2504 default: 2505 return -EINVAL; 2506 } 2507 break; 2508 case AH_ESP_V4_FLOW: 2509 case AH_V4_FLOW: 2510 case ESP_V4_FLOW: 2511 case SCTP_V4_FLOW: 2512 case AH_ESP_V6_FLOW: 2513 case AH_V6_FLOW: 2514 case ESP_V6_FLOW: 2515 case SCTP_V6_FLOW: 2516 if (!(nfc->data & RXH_IP_SRC) || 2517 !(nfc->data & RXH_IP_DST) || 2518 (nfc->data & RXH_L4_B_0_1) || 2519 (nfc->data & RXH_L4_B_2_3)) 2520 return -EINVAL; 2521 break; 2522 default: 2523 return -EINVAL; 2524 } 2525 2526 /* if we changed something we need to update flags */ 2527 if (flags != adapter->flags) { 2528 struct e1000_hw *hw = &adapter->hw; 2529 u32 mrqc = rd32(E1000_MRQC); 2530 2531 if ((flags & UDP_RSS_FLAGS) && 2532 !(adapter->flags & UDP_RSS_FLAGS)) 2533 dev_err(&adapter->pdev->dev, 2534 "enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n"); 2535 2536 adapter->flags = flags; 2537 2538 /* Perform hash on these packet types */ 2539 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 | 2540 E1000_MRQC_RSS_FIELD_IPV4_TCP | 2541 E1000_MRQC_RSS_FIELD_IPV6 | 2542 E1000_MRQC_RSS_FIELD_IPV6_TCP; 2543 2544 mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP | 2545 E1000_MRQC_RSS_FIELD_IPV6_UDP); 2546 2547 if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP) 2548 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP; 2549 2550 if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP) 2551 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP; 2552 2553 wr32(E1000_MRQC, mrqc); 2554 } 2555 2556 return 0; 2557 } 2558 2559 static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd) 2560 { 2561 struct igb_adapter *adapter = netdev_priv(dev); 2562 int ret = -EOPNOTSUPP; 2563 2564 switch (cmd->cmd) { 2565 case ETHTOOL_SRXFH: 2566 ret = igb_set_rss_hash_opt(adapter, cmd); 2567 break; 2568 default: 2569 break; 2570 } 2571 2572 return ret; 2573 } 2574 2575 static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata) 2576 { 2577 struct igb_adapter *adapter = netdev_priv(netdev); 2578 struct e1000_hw *hw = &adapter->hw; 2579 u32 ipcnfg, eeer, ret_val; 2580 u16 phy_data; 2581 2582 if ((hw->mac.type < e1000_i350) || 2583 (hw->phy.media_type != e1000_media_type_copper)) 2584 return -EOPNOTSUPP; 2585 2586 edata->supported = (SUPPORTED_1000baseT_Full | 2587 SUPPORTED_100baseT_Full); 2588 2589 ipcnfg = rd32(E1000_IPCNFG); 2590 eeer = rd32(E1000_EEER); 2591 2592 /* EEE status on negotiated link */ 2593 if (ipcnfg & E1000_IPCNFG_EEE_1G_AN) 2594 edata->advertised = ADVERTISED_1000baseT_Full; 2595 2596 if (ipcnfg & E1000_IPCNFG_EEE_100M_AN) 2597 edata->advertised |= ADVERTISED_100baseT_Full; 2598 2599 /* EEE Link Partner Advertised */ 2600 switch (hw->mac.type) { 2601 case e1000_i350: 2602 ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350, 2603 &phy_data); 2604 if (ret_val) 2605 return -ENODATA; 2606 2607 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data); 2608 2609 break; 2610 case e1000_i210: 2611 case e1000_i211: 2612 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210, 2613 E1000_EEE_LP_ADV_DEV_I210, 2614 &phy_data); 2615 if (ret_val) 2616 return -ENODATA; 2617 2618 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data); 2619 2620 break; 2621 default: 2622 break; 2623 } 2624 2625 if (eeer & E1000_EEER_EEE_NEG) 2626 edata->eee_active = true; 2627 2628 edata->eee_enabled = !hw->dev_spec._82575.eee_disable; 2629 2630 if (eeer & E1000_EEER_TX_LPI_EN) 2631 edata->tx_lpi_enabled = true; 2632 2633 /* Report correct negotiated EEE status for devices that 2634 * wrongly report EEE at half-duplex 2635 */ 2636 if (adapter->link_duplex == HALF_DUPLEX) { 2637 edata->eee_enabled = false; 2638 edata->eee_active = false; 2639 edata->tx_lpi_enabled = false; 2640 edata->advertised &= ~edata->advertised; 2641 } 2642 2643 return 0; 2644 } 2645 2646 static int igb_set_eee(struct net_device *netdev, 2647 struct ethtool_eee *edata) 2648 { 2649 struct igb_adapter *adapter = netdev_priv(netdev); 2650 struct e1000_hw *hw = &adapter->hw; 2651 struct ethtool_eee eee_curr; 2652 s32 ret_val; 2653 2654 if ((hw->mac.type < e1000_i350) || 2655 (hw->phy.media_type != e1000_media_type_copper)) 2656 return -EOPNOTSUPP; 2657 2658 memset(&eee_curr, 0, sizeof(struct ethtool_eee)); 2659 2660 ret_val = igb_get_eee(netdev, &eee_curr); 2661 if (ret_val) 2662 return ret_val; 2663 2664 if (eee_curr.eee_enabled) { 2665 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) { 2666 dev_err(&adapter->pdev->dev, 2667 "Setting EEE tx-lpi is not supported\n"); 2668 return -EINVAL; 2669 } 2670 2671 /* Tx LPI timer is not implemented currently */ 2672 if (edata->tx_lpi_timer) { 2673 dev_err(&adapter->pdev->dev, 2674 "Setting EEE Tx LPI timer is not supported\n"); 2675 return -EINVAL; 2676 } 2677 2678 if (eee_curr.advertised != edata->advertised) { 2679 dev_err(&adapter->pdev->dev, 2680 "Setting EEE Advertisement is not supported\n"); 2681 return -EINVAL; 2682 } 2683 2684 } else if (!edata->eee_enabled) { 2685 dev_err(&adapter->pdev->dev, 2686 "Setting EEE options are not supported with EEE disabled\n"); 2687 return -EINVAL; 2688 } 2689 2690 if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) { 2691 hw->dev_spec._82575.eee_disable = !edata->eee_enabled; 2692 igb_set_eee_i350(hw); 2693 2694 /* reset link */ 2695 if (netif_running(netdev)) 2696 igb_reinit_locked(adapter); 2697 else 2698 igb_reset(adapter); 2699 } 2700 2701 return 0; 2702 } 2703 2704 static int igb_get_module_info(struct net_device *netdev, 2705 struct ethtool_modinfo *modinfo) 2706 { 2707 struct igb_adapter *adapter = netdev_priv(netdev); 2708 struct e1000_hw *hw = &adapter->hw; 2709 u32 status = E1000_SUCCESS; 2710 u16 sff8472_rev, addr_mode; 2711 bool page_swap = false; 2712 2713 if ((hw->phy.media_type == e1000_media_type_copper) || 2714 (hw->phy.media_type == e1000_media_type_unknown)) 2715 return -EOPNOTSUPP; 2716 2717 /* Check whether we support SFF-8472 or not */ 2718 status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev); 2719 if (status != E1000_SUCCESS) 2720 return -EIO; 2721 2722 /* addressing mode is not supported */ 2723 status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode); 2724 if (status != E1000_SUCCESS) 2725 return -EIO; 2726 2727 /* addressing mode is not supported */ 2728 if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) { 2729 hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n"); 2730 page_swap = true; 2731 } 2732 2733 if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) { 2734 /* We have an SFP, but it does not support SFF-8472 */ 2735 modinfo->type = ETH_MODULE_SFF_8079; 2736 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; 2737 } else { 2738 /* We have an SFP which supports a revision of SFF-8472 */ 2739 modinfo->type = ETH_MODULE_SFF_8472; 2740 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; 2741 } 2742 2743 return 0; 2744 } 2745 2746 static int igb_get_module_eeprom(struct net_device *netdev, 2747 struct ethtool_eeprom *ee, u8 *data) 2748 { 2749 struct igb_adapter *adapter = netdev_priv(netdev); 2750 struct e1000_hw *hw = &adapter->hw; 2751 u32 status = E1000_SUCCESS; 2752 u16 *dataword; 2753 u16 first_word, last_word; 2754 int i = 0; 2755 2756 if (ee->len == 0) 2757 return -EINVAL; 2758 2759 first_word = ee->offset >> 1; 2760 last_word = (ee->offset + ee->len - 1) >> 1; 2761 2762 dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1), 2763 GFP_KERNEL); 2764 if (!dataword) 2765 return -ENOMEM; 2766 2767 /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */ 2768 for (i = 0; i < last_word - first_word + 1; i++) { 2769 status = igb_read_phy_reg_i2c(hw, first_word + i, &dataword[i]); 2770 if (status != E1000_SUCCESS) 2771 /* Error occurred while reading module */ 2772 return -EIO; 2773 2774 be16_to_cpus(&dataword[i]); 2775 } 2776 2777 memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len); 2778 kfree(dataword); 2779 2780 return 0; 2781 } 2782 2783 static int igb_ethtool_begin(struct net_device *netdev) 2784 { 2785 struct igb_adapter *adapter = netdev_priv(netdev); 2786 pm_runtime_get_sync(&adapter->pdev->dev); 2787 return 0; 2788 } 2789 2790 static void igb_ethtool_complete(struct net_device *netdev) 2791 { 2792 struct igb_adapter *adapter = netdev_priv(netdev); 2793 pm_runtime_put(&adapter->pdev->dev); 2794 } 2795 2796 static u32 igb_get_rxfh_indir_size(struct net_device *netdev) 2797 { 2798 return IGB_RETA_SIZE; 2799 } 2800 2801 static int igb_get_rxfh_indir(struct net_device *netdev, u32 *indir) 2802 { 2803 struct igb_adapter *adapter = netdev_priv(netdev); 2804 int i; 2805 2806 for (i = 0; i < IGB_RETA_SIZE; i++) 2807 indir[i] = adapter->rss_indir_tbl[i]; 2808 2809 return 0; 2810 } 2811 2812 void igb_write_rss_indir_tbl(struct igb_adapter *adapter) 2813 { 2814 struct e1000_hw *hw = &adapter->hw; 2815 u32 reg = E1000_RETA(0); 2816 u32 shift = 0; 2817 int i = 0; 2818 2819 switch (hw->mac.type) { 2820 case e1000_82575: 2821 shift = 6; 2822 break; 2823 case e1000_82576: 2824 /* 82576 supports 2 RSS queues for SR-IOV */ 2825 if (adapter->vfs_allocated_count) 2826 shift = 3; 2827 break; 2828 default: 2829 break; 2830 } 2831 2832 while (i < IGB_RETA_SIZE) { 2833 u32 val = 0; 2834 int j; 2835 2836 for (j = 3; j >= 0; j--) { 2837 val <<= 8; 2838 val |= adapter->rss_indir_tbl[i + j]; 2839 } 2840 2841 wr32(reg, val << shift); 2842 reg += 4; 2843 i += 4; 2844 } 2845 } 2846 2847 static int igb_set_rxfh_indir(struct net_device *netdev, const u32 *indir) 2848 { 2849 struct igb_adapter *adapter = netdev_priv(netdev); 2850 struct e1000_hw *hw = &adapter->hw; 2851 int i; 2852 u32 num_queues; 2853 2854 num_queues = adapter->rss_queues; 2855 2856 switch (hw->mac.type) { 2857 case e1000_82576: 2858 /* 82576 supports 2 RSS queues for SR-IOV */ 2859 if (adapter->vfs_allocated_count) 2860 num_queues = 2; 2861 break; 2862 default: 2863 break; 2864 } 2865 2866 /* Verify user input. */ 2867 for (i = 0; i < IGB_RETA_SIZE; i++) 2868 if (indir[i] >= num_queues) 2869 return -EINVAL; 2870 2871 2872 for (i = 0; i < IGB_RETA_SIZE; i++) 2873 adapter->rss_indir_tbl[i] = indir[i]; 2874 2875 igb_write_rss_indir_tbl(adapter); 2876 2877 return 0; 2878 } 2879 2880 static const struct ethtool_ops igb_ethtool_ops = { 2881 .get_settings = igb_get_settings, 2882 .set_settings = igb_set_settings, 2883 .get_drvinfo = igb_get_drvinfo, 2884 .get_regs_len = igb_get_regs_len, 2885 .get_regs = igb_get_regs, 2886 .get_wol = igb_get_wol, 2887 .set_wol = igb_set_wol, 2888 .get_msglevel = igb_get_msglevel, 2889 .set_msglevel = igb_set_msglevel, 2890 .nway_reset = igb_nway_reset, 2891 .get_link = igb_get_link, 2892 .get_eeprom_len = igb_get_eeprom_len, 2893 .get_eeprom = igb_get_eeprom, 2894 .set_eeprom = igb_set_eeprom, 2895 .get_ringparam = igb_get_ringparam, 2896 .set_ringparam = igb_set_ringparam, 2897 .get_pauseparam = igb_get_pauseparam, 2898 .set_pauseparam = igb_set_pauseparam, 2899 .self_test = igb_diag_test, 2900 .get_strings = igb_get_strings, 2901 .set_phys_id = igb_set_phys_id, 2902 .get_sset_count = igb_get_sset_count, 2903 .get_ethtool_stats = igb_get_ethtool_stats, 2904 .get_coalesce = igb_get_coalesce, 2905 .set_coalesce = igb_set_coalesce, 2906 .get_ts_info = igb_get_ts_info, 2907 .get_rxnfc = igb_get_rxnfc, 2908 .set_rxnfc = igb_set_rxnfc, 2909 .get_eee = igb_get_eee, 2910 .set_eee = igb_set_eee, 2911 .get_module_info = igb_get_module_info, 2912 .get_module_eeprom = igb_get_module_eeprom, 2913 .get_rxfh_indir_size = igb_get_rxfh_indir_size, 2914 .get_rxfh_indir = igb_get_rxfh_indir, 2915 .set_rxfh_indir = igb_set_rxfh_indir, 2916 .begin = igb_ethtool_begin, 2917 .complete = igb_ethtool_complete, 2918 }; 2919 2920 void igb_set_ethtool_ops(struct net_device *netdev) 2921 { 2922 SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops); 2923 } 2924