1 /*******************************************************************************
2 
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2013 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 #include <linux/if_ether.h>
29 #include <linux/delay.h>
30 
31 #include "e1000_mac.h"
32 #include "e1000_phy.h"
33 
34 static s32  igb_phy_setup_autoneg(struct e1000_hw *hw);
35 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
36 					     u16 *phy_ctrl);
37 static s32  igb_wait_autoneg(struct e1000_hw *hw);
38 static s32  igb_set_master_slave_mode(struct e1000_hw *hw);
39 
40 /* Cable length tables */
41 static const u16 e1000_m88_cable_length_table[] = {
42 	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
43 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
44 	(sizeof(e1000_m88_cable_length_table) / \
45 	sizeof(e1000_m88_cable_length_table[0]))
46 
47 static const u16 e1000_igp_2_cable_length_table[] = {
48 	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
49 	0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
50 	6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
51 	21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
52 	40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
53 	60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
54 	83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
55 	104, 109, 114, 118, 121, 124};
56 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
57 	(sizeof(e1000_igp_2_cable_length_table) / \
58 	 sizeof(e1000_igp_2_cable_length_table[0]))
59 
60 /**
61  *  igb_check_reset_block - Check if PHY reset is blocked
62  *  @hw: pointer to the HW structure
63  *
64  *  Read the PHY management control register and check whether a PHY reset
65  *  is blocked.  If a reset is not blocked return 0, otherwise
66  *  return E1000_BLK_PHY_RESET (12).
67  **/
68 s32 igb_check_reset_block(struct e1000_hw *hw)
69 {
70 	u32 manc;
71 
72 	manc = rd32(E1000_MANC);
73 
74 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
75 }
76 
77 /**
78  *  igb_get_phy_id - Retrieve the PHY ID and revision
79  *  @hw: pointer to the HW structure
80  *
81  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
82  *  revision in the hardware structure.
83  **/
84 s32 igb_get_phy_id(struct e1000_hw *hw)
85 {
86 	struct e1000_phy_info *phy = &hw->phy;
87 	s32 ret_val = 0;
88 	u16 phy_id;
89 
90 	ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
91 	if (ret_val)
92 		goto out;
93 
94 	phy->id = (u32)(phy_id << 16);
95 	udelay(20);
96 	ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
97 	if (ret_val)
98 		goto out;
99 
100 	phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
101 	phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
102 
103 out:
104 	return ret_val;
105 }
106 
107 /**
108  *  igb_phy_reset_dsp - Reset PHY DSP
109  *  @hw: pointer to the HW structure
110  *
111  *  Reset the digital signal processor.
112  **/
113 static s32 igb_phy_reset_dsp(struct e1000_hw *hw)
114 {
115 	s32 ret_val = 0;
116 
117 	if (!(hw->phy.ops.write_reg))
118 		goto out;
119 
120 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
121 	if (ret_val)
122 		goto out;
123 
124 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
125 
126 out:
127 	return ret_val;
128 }
129 
130 /**
131  *  igb_read_phy_reg_mdic - Read MDI control register
132  *  @hw: pointer to the HW structure
133  *  @offset: register offset to be read
134  *  @data: pointer to the read data
135  *
136  *  Reads the MDI control regsiter in the PHY at offset and stores the
137  *  information read to data.
138  **/
139 s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
140 {
141 	struct e1000_phy_info *phy = &hw->phy;
142 	u32 i, mdic = 0;
143 	s32 ret_val = 0;
144 
145 	if (offset > MAX_PHY_REG_ADDRESS) {
146 		hw_dbg("PHY Address %d is out of range\n", offset);
147 		ret_val = -E1000_ERR_PARAM;
148 		goto out;
149 	}
150 
151 	/* Set up Op-code, Phy Address, and register offset in the MDI
152 	 * Control register.  The MAC will take care of interfacing with the
153 	 * PHY to retrieve the desired data.
154 	 */
155 	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
156 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
157 		(E1000_MDIC_OP_READ));
158 
159 	wr32(E1000_MDIC, mdic);
160 
161 	/* Poll the ready bit to see if the MDI read completed
162 	 * Increasing the time out as testing showed failures with
163 	 * the lower time out
164 	 */
165 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
166 		udelay(50);
167 		mdic = rd32(E1000_MDIC);
168 		if (mdic & E1000_MDIC_READY)
169 			break;
170 	}
171 	if (!(mdic & E1000_MDIC_READY)) {
172 		hw_dbg("MDI Read did not complete\n");
173 		ret_val = -E1000_ERR_PHY;
174 		goto out;
175 	}
176 	if (mdic & E1000_MDIC_ERROR) {
177 		hw_dbg("MDI Error\n");
178 		ret_val = -E1000_ERR_PHY;
179 		goto out;
180 	}
181 	*data = (u16) mdic;
182 
183 out:
184 	return ret_val;
185 }
186 
187 /**
188  *  igb_write_phy_reg_mdic - Write MDI control register
189  *  @hw: pointer to the HW structure
190  *  @offset: register offset to write to
191  *  @data: data to write to register at offset
192  *
193  *  Writes data to MDI control register in the PHY at offset.
194  **/
195 s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
196 {
197 	struct e1000_phy_info *phy = &hw->phy;
198 	u32 i, mdic = 0;
199 	s32 ret_val = 0;
200 
201 	if (offset > MAX_PHY_REG_ADDRESS) {
202 		hw_dbg("PHY Address %d is out of range\n", offset);
203 		ret_val = -E1000_ERR_PARAM;
204 		goto out;
205 	}
206 
207 	/* Set up Op-code, Phy Address, and register offset in the MDI
208 	 * Control register.  The MAC will take care of interfacing with the
209 	 * PHY to retrieve the desired data.
210 	 */
211 	mdic = (((u32)data) |
212 		(offset << E1000_MDIC_REG_SHIFT) |
213 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
214 		(E1000_MDIC_OP_WRITE));
215 
216 	wr32(E1000_MDIC, mdic);
217 
218 	/* Poll the ready bit to see if the MDI read completed
219 	 * Increasing the time out as testing showed failures with
220 	 * the lower time out
221 	 */
222 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
223 		udelay(50);
224 		mdic = rd32(E1000_MDIC);
225 		if (mdic & E1000_MDIC_READY)
226 			break;
227 	}
228 	if (!(mdic & E1000_MDIC_READY)) {
229 		hw_dbg("MDI Write did not complete\n");
230 		ret_val = -E1000_ERR_PHY;
231 		goto out;
232 	}
233 	if (mdic & E1000_MDIC_ERROR) {
234 		hw_dbg("MDI Error\n");
235 		ret_val = -E1000_ERR_PHY;
236 		goto out;
237 	}
238 
239 out:
240 	return ret_val;
241 }
242 
243 /**
244  *  igb_read_phy_reg_i2c - Read PHY register using i2c
245  *  @hw: pointer to the HW structure
246  *  @offset: register offset to be read
247  *  @data: pointer to the read data
248  *
249  *  Reads the PHY register at offset using the i2c interface and stores the
250  *  retrieved information in data.
251  **/
252 s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
253 {
254 	struct e1000_phy_info *phy = &hw->phy;
255 	u32 i, i2ccmd = 0;
256 
257 	/* Set up Op-code, Phy Address, and register address in the I2CCMD
258 	 * register.  The MAC will take care of interfacing with the
259 	 * PHY to retrieve the desired data.
260 	 */
261 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
262 		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
263 		  (E1000_I2CCMD_OPCODE_READ));
264 
265 	wr32(E1000_I2CCMD, i2ccmd);
266 
267 	/* Poll the ready bit to see if the I2C read completed */
268 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
269 		udelay(50);
270 		i2ccmd = rd32(E1000_I2CCMD);
271 		if (i2ccmd & E1000_I2CCMD_READY)
272 			break;
273 	}
274 	if (!(i2ccmd & E1000_I2CCMD_READY)) {
275 		hw_dbg("I2CCMD Read did not complete\n");
276 		return -E1000_ERR_PHY;
277 	}
278 	if (i2ccmd & E1000_I2CCMD_ERROR) {
279 		hw_dbg("I2CCMD Error bit set\n");
280 		return -E1000_ERR_PHY;
281 	}
282 
283 	/* Need to byte-swap the 16-bit value. */
284 	*data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
285 
286 	return 0;
287 }
288 
289 /**
290  *  igb_write_phy_reg_i2c - Write PHY register using i2c
291  *  @hw: pointer to the HW structure
292  *  @offset: register offset to write to
293  *  @data: data to write at register offset
294  *
295  *  Writes the data to PHY register at the offset using the i2c interface.
296  **/
297 s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
298 {
299 	struct e1000_phy_info *phy = &hw->phy;
300 	u32 i, i2ccmd = 0;
301 	u16 phy_data_swapped;
302 
303 	/* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/
304 	if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) {
305 		hw_dbg("PHY I2C Address %d is out of range.\n",
306 			  hw->phy.addr);
307 		return -E1000_ERR_CONFIG;
308 	}
309 
310 	/* Swap the data bytes for the I2C interface */
311 	phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
312 
313 	/* Set up Op-code, Phy Address, and register address in the I2CCMD
314 	 * register.  The MAC will take care of interfacing with the
315 	 * PHY to retrieve the desired data.
316 	 */
317 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
318 		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
319 		  E1000_I2CCMD_OPCODE_WRITE |
320 		  phy_data_swapped);
321 
322 	wr32(E1000_I2CCMD, i2ccmd);
323 
324 	/* Poll the ready bit to see if the I2C read completed */
325 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
326 		udelay(50);
327 		i2ccmd = rd32(E1000_I2CCMD);
328 		if (i2ccmd & E1000_I2CCMD_READY)
329 			break;
330 	}
331 	if (!(i2ccmd & E1000_I2CCMD_READY)) {
332 		hw_dbg("I2CCMD Write did not complete\n");
333 		return -E1000_ERR_PHY;
334 	}
335 	if (i2ccmd & E1000_I2CCMD_ERROR) {
336 		hw_dbg("I2CCMD Error bit set\n");
337 		return -E1000_ERR_PHY;
338 	}
339 
340 	return 0;
341 }
342 
343 /**
344  *  igb_read_sfp_data_byte - Reads SFP module data.
345  *  @hw: pointer to the HW structure
346  *  @offset: byte location offset to be read
347  *  @data: read data buffer pointer
348  *
349  *  Reads one byte from SFP module data stored
350  *  in SFP resided EEPROM memory or SFP diagnostic area.
351  *  Function should be called with
352  *  E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
353  *  E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
354  *  access
355  **/
356 s32 igb_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data)
357 {
358 	u32 i = 0;
359 	u32 i2ccmd = 0;
360 	u32 data_local = 0;
361 
362 	if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
363 		hw_dbg("I2CCMD command address exceeds upper limit\n");
364 		return -E1000_ERR_PHY;
365 	}
366 
367 	/* Set up Op-code, EEPROM Address,in the I2CCMD
368 	 * register. The MAC will take care of interfacing with the
369 	 * EEPROM to retrieve the desired data.
370 	 */
371 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
372 		  E1000_I2CCMD_OPCODE_READ);
373 
374 	wr32(E1000_I2CCMD, i2ccmd);
375 
376 	/* Poll the ready bit to see if the I2C read completed */
377 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
378 		udelay(50);
379 		data_local = rd32(E1000_I2CCMD);
380 		if (data_local & E1000_I2CCMD_READY)
381 			break;
382 	}
383 	if (!(data_local & E1000_I2CCMD_READY)) {
384 		hw_dbg("I2CCMD Read did not complete\n");
385 		return -E1000_ERR_PHY;
386 	}
387 	if (data_local & E1000_I2CCMD_ERROR) {
388 		hw_dbg("I2CCMD Error bit set\n");
389 		return -E1000_ERR_PHY;
390 	}
391 	*data = (u8) data_local & 0xFF;
392 
393 	return 0;
394 }
395 
396 /**
397  *  e1000_write_sfp_data_byte - Writes SFP module data.
398  *  @hw: pointer to the HW structure
399  *  @offset: byte location offset to write to
400  *  @data: data to write
401  *
402  *  Writes one byte to SFP module data stored
403  *  in SFP resided EEPROM memory or SFP diagnostic area.
404  *  Function should be called with
405  *  E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
406  *  E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
407  *  access
408  **/
409 s32 e1000_write_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 data)
410 {
411 	u32 i = 0;
412 	u32 i2ccmd = 0;
413 	u32 data_local = 0;
414 
415 	if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
416 		hw_dbg("I2CCMD command address exceeds upper limit\n");
417 		return -E1000_ERR_PHY;
418 	}
419 	/* The programming interface is 16 bits wide
420 	 * so we need to read the whole word first
421 	 * then update appropriate byte lane and write
422 	 * the updated word back.
423 	 */
424 	/* Set up Op-code, EEPROM Address,in the I2CCMD
425 	 * register. The MAC will take care of interfacing
426 	 * with an EEPROM to write the data given.
427 	 */
428 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
429 		  E1000_I2CCMD_OPCODE_READ);
430 	/* Set a command to read single word */
431 	wr32(E1000_I2CCMD, i2ccmd);
432 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
433 		udelay(50);
434 		/* Poll the ready bit to see if lastly
435 		 * launched I2C operation completed
436 		 */
437 		i2ccmd = rd32(E1000_I2CCMD);
438 		if (i2ccmd & E1000_I2CCMD_READY) {
439 			/* Check if this is READ or WRITE phase */
440 			if ((i2ccmd & E1000_I2CCMD_OPCODE_READ) ==
441 			    E1000_I2CCMD_OPCODE_READ) {
442 				/* Write the selected byte
443 				 * lane and update whole word
444 				 */
445 				data_local = i2ccmd & 0xFF00;
446 				data_local |= data;
447 				i2ccmd = ((offset <<
448 					E1000_I2CCMD_REG_ADDR_SHIFT) |
449 					E1000_I2CCMD_OPCODE_WRITE | data_local);
450 				wr32(E1000_I2CCMD, i2ccmd);
451 			} else {
452 				break;
453 			}
454 		}
455 	}
456 	if (!(i2ccmd & E1000_I2CCMD_READY)) {
457 		hw_dbg("I2CCMD Write did not complete\n");
458 		return -E1000_ERR_PHY;
459 	}
460 	if (i2ccmd & E1000_I2CCMD_ERROR) {
461 		hw_dbg("I2CCMD Error bit set\n");
462 		return -E1000_ERR_PHY;
463 	}
464 	return 0;
465 }
466 
467 /**
468  *  igb_read_phy_reg_igp - Read igp PHY register
469  *  @hw: pointer to the HW structure
470  *  @offset: register offset to be read
471  *  @data: pointer to the read data
472  *
473  *  Acquires semaphore, if necessary, then reads the PHY register at offset
474  *  and storing the retrieved information in data.  Release any acquired
475  *  semaphores before exiting.
476  **/
477 s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
478 {
479 	s32 ret_val = 0;
480 
481 	if (!(hw->phy.ops.acquire))
482 		goto out;
483 
484 	ret_val = hw->phy.ops.acquire(hw);
485 	if (ret_val)
486 		goto out;
487 
488 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
489 		ret_val = igb_write_phy_reg_mdic(hw,
490 						 IGP01E1000_PHY_PAGE_SELECT,
491 						 (u16)offset);
492 		if (ret_val) {
493 			hw->phy.ops.release(hw);
494 			goto out;
495 		}
496 	}
497 
498 	ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
499 					data);
500 
501 	hw->phy.ops.release(hw);
502 
503 out:
504 	return ret_val;
505 }
506 
507 /**
508  *  igb_write_phy_reg_igp - Write igp PHY register
509  *  @hw: pointer to the HW structure
510  *  @offset: register offset to write to
511  *  @data: data to write at register offset
512  *
513  *  Acquires semaphore, if necessary, then writes the data to PHY register
514  *  at the offset.  Release any acquired semaphores before exiting.
515  **/
516 s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
517 {
518 	s32 ret_val = 0;
519 
520 	if (!(hw->phy.ops.acquire))
521 		goto out;
522 
523 	ret_val = hw->phy.ops.acquire(hw);
524 	if (ret_val)
525 		goto out;
526 
527 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
528 		ret_val = igb_write_phy_reg_mdic(hw,
529 						 IGP01E1000_PHY_PAGE_SELECT,
530 						 (u16)offset);
531 		if (ret_val) {
532 			hw->phy.ops.release(hw);
533 			goto out;
534 		}
535 	}
536 
537 	ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
538 					 data);
539 
540 	hw->phy.ops.release(hw);
541 
542 out:
543 	return ret_val;
544 }
545 
546 /**
547  *  igb_copper_link_setup_82580 - Setup 82580 PHY for copper link
548  *  @hw: pointer to the HW structure
549  *
550  *  Sets up Carrier-sense on Transmit and downshift values.
551  **/
552 s32 igb_copper_link_setup_82580(struct e1000_hw *hw)
553 {
554 	struct e1000_phy_info *phy = &hw->phy;
555 	s32 ret_val;
556 	u16 phy_data;
557 
558 	if (phy->reset_disable) {
559 		ret_val = 0;
560 		goto out;
561 	}
562 
563 	if (phy->type == e1000_phy_82580) {
564 		ret_val = hw->phy.ops.reset(hw);
565 		if (ret_val) {
566 			hw_dbg("Error resetting the PHY.\n");
567 			goto out;
568 		}
569 	}
570 
571 	/* Enable CRS on TX. This must be set for half-duplex operation. */
572 	ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data);
573 	if (ret_val)
574 		goto out;
575 
576 	phy_data |= I82580_CFG_ASSERT_CRS_ON_TX;
577 
578 	/* Enable downshift */
579 	phy_data |= I82580_CFG_ENABLE_DOWNSHIFT;
580 
581 	ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data);
582 	if (ret_val)
583 		goto out;
584 
585 	/* Set MDI/MDIX mode */
586 	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
587 	if (ret_val)
588 		goto out;
589 	phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
590 	/* Options:
591 	 *   0 - Auto (default)
592 	 *   1 - MDI mode
593 	 *   2 - MDI-X mode
594 	 */
595 	switch (hw->phy.mdix) {
596 	case 1:
597 		break;
598 	case 2:
599 		phy_data |= I82580_PHY_CTRL2_MANUAL_MDIX;
600 		break;
601 	case 0:
602 	default:
603 		phy_data |= I82580_PHY_CTRL2_AUTO_MDI_MDIX;
604 		break;
605 	}
606 	ret_val = hw->phy.ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
607 
608 out:
609 	return ret_val;
610 }
611 
612 /**
613  *  igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
614  *  @hw: pointer to the HW structure
615  *
616  *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
617  *  and downshift values are set also.
618  **/
619 s32 igb_copper_link_setup_m88(struct e1000_hw *hw)
620 {
621 	struct e1000_phy_info *phy = &hw->phy;
622 	s32 ret_val;
623 	u16 phy_data;
624 
625 	if (phy->reset_disable) {
626 		ret_val = 0;
627 		goto out;
628 	}
629 
630 	/* Enable CRS on TX. This must be set for half-duplex operation. */
631 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
632 	if (ret_val)
633 		goto out;
634 
635 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
636 
637 	/* Options:
638 	 *   MDI/MDI-X = 0 (default)
639 	 *   0 - Auto for all speeds
640 	 *   1 - MDI mode
641 	 *   2 - MDI-X mode
642 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
643 	 */
644 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
645 
646 	switch (phy->mdix) {
647 	case 1:
648 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
649 		break;
650 	case 2:
651 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
652 		break;
653 	case 3:
654 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
655 		break;
656 	case 0:
657 	default:
658 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
659 		break;
660 	}
661 
662 	/* Options:
663 	 *   disable_polarity_correction = 0 (default)
664 	 *       Automatic Correction for Reversed Cable Polarity
665 	 *   0 - Disabled
666 	 *   1 - Enabled
667 	 */
668 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
669 	if (phy->disable_polarity_correction == 1)
670 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
671 
672 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
673 	if (ret_val)
674 		goto out;
675 
676 	if (phy->revision < E1000_REVISION_4) {
677 		/* Force TX_CLK in the Extended PHY Specific Control Register
678 		 * to 25MHz clock.
679 		 */
680 		ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
681 					    &phy_data);
682 		if (ret_val)
683 			goto out;
684 
685 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
686 
687 		if ((phy->revision == E1000_REVISION_2) &&
688 		    (phy->id == M88E1111_I_PHY_ID)) {
689 			/* 82573L PHY - set the downshift counter to 5x. */
690 			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
691 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
692 		} else {
693 			/* Configure Master and Slave downshift values */
694 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
695 				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
696 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
697 				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
698 		}
699 		ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
700 					     phy_data);
701 		if (ret_val)
702 			goto out;
703 	}
704 
705 	/* Commit the changes. */
706 	ret_val = igb_phy_sw_reset(hw);
707 	if (ret_val) {
708 		hw_dbg("Error committing the PHY changes\n");
709 		goto out;
710 	}
711 	if (phy->type == e1000_phy_i210) {
712 		ret_val = igb_set_master_slave_mode(hw);
713 		if (ret_val)
714 			return ret_val;
715 	}
716 
717 out:
718 	return ret_val;
719 }
720 
721 /**
722  *  igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
723  *  @hw: pointer to the HW structure
724  *
725  *  Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
726  *  Also enables and sets the downshift parameters.
727  **/
728 s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw)
729 {
730 	struct e1000_phy_info *phy = &hw->phy;
731 	s32 ret_val;
732 	u16 phy_data;
733 
734 	if (phy->reset_disable)
735 		return 0;
736 
737 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
738 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
739 	if (ret_val)
740 		return ret_val;
741 
742 	/* Options:
743 	 *   MDI/MDI-X = 0 (default)
744 	 *   0 - Auto for all speeds
745 	 *   1 - MDI mode
746 	 *   2 - MDI-X mode
747 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
748 	 */
749 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
750 
751 	switch (phy->mdix) {
752 	case 1:
753 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
754 		break;
755 	case 2:
756 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
757 		break;
758 	case 3:
759 		/* M88E1112 does not support this mode) */
760 		if (phy->id != M88E1112_E_PHY_ID) {
761 			phy_data |= M88E1000_PSCR_AUTO_X_1000T;
762 			break;
763 		}
764 	case 0:
765 	default:
766 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
767 		break;
768 	}
769 
770 	/* Options:
771 	 *   disable_polarity_correction = 0 (default)
772 	 *       Automatic Correction for Reversed Cable Polarity
773 	 *   0 - Disabled
774 	 *   1 - Enabled
775 	 */
776 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
777 	if (phy->disable_polarity_correction == 1)
778 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
779 
780 	/* Enable downshift and setting it to X6 */
781 	if (phy->id == M88E1543_E_PHY_ID) {
782 		phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE;
783 		ret_val =
784 		    phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
785 		if (ret_val)
786 			return ret_val;
787 
788 		ret_val = igb_phy_sw_reset(hw);
789 		if (ret_val) {
790 			hw_dbg("Error committing the PHY changes\n");
791 			return ret_val;
792 		}
793 	}
794 
795 	phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
796 	phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
797 	phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
798 
799 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
800 	if (ret_val)
801 		return ret_val;
802 
803 	/* Commit the changes. */
804 	ret_val = igb_phy_sw_reset(hw);
805 	if (ret_val) {
806 		hw_dbg("Error committing the PHY changes\n");
807 		return ret_val;
808 	}
809 
810 	return 0;
811 }
812 
813 /**
814  *  igb_copper_link_setup_igp - Setup igp PHY's for copper link
815  *  @hw: pointer to the HW structure
816  *
817  *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
818  *  igp PHY's.
819  **/
820 s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
821 {
822 	struct e1000_phy_info *phy = &hw->phy;
823 	s32 ret_val;
824 	u16 data;
825 
826 	if (phy->reset_disable) {
827 		ret_val = 0;
828 		goto out;
829 	}
830 
831 	ret_val = phy->ops.reset(hw);
832 	if (ret_val) {
833 		hw_dbg("Error resetting the PHY.\n");
834 		goto out;
835 	}
836 
837 	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
838 	 * timeout issues when LFS is enabled.
839 	 */
840 	msleep(100);
841 
842 	/* The NVM settings will configure LPLU in D3 for
843 	 * non-IGP1 PHYs.
844 	 */
845 	if (phy->type == e1000_phy_igp) {
846 		/* disable lplu d3 during driver init */
847 		if (phy->ops.set_d3_lplu_state)
848 			ret_val = phy->ops.set_d3_lplu_state(hw, false);
849 		if (ret_val) {
850 			hw_dbg("Error Disabling LPLU D3\n");
851 			goto out;
852 		}
853 	}
854 
855 	/* disable lplu d0 during driver init */
856 	ret_val = phy->ops.set_d0_lplu_state(hw, false);
857 	if (ret_val) {
858 		hw_dbg("Error Disabling LPLU D0\n");
859 		goto out;
860 	}
861 	/* Configure mdi-mdix settings */
862 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
863 	if (ret_val)
864 		goto out;
865 
866 	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
867 
868 	switch (phy->mdix) {
869 	case 1:
870 		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
871 		break;
872 	case 2:
873 		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
874 		break;
875 	case 0:
876 	default:
877 		data |= IGP01E1000_PSCR_AUTO_MDIX;
878 		break;
879 	}
880 	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
881 	if (ret_val)
882 		goto out;
883 
884 	/* set auto-master slave resolution settings */
885 	if (hw->mac.autoneg) {
886 		/* when autonegotiation advertisement is only 1000Mbps then we
887 		 * should disable SmartSpeed and enable Auto MasterSlave
888 		 * resolution as hardware default.
889 		 */
890 		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
891 			/* Disable SmartSpeed */
892 			ret_val = phy->ops.read_reg(hw,
893 						    IGP01E1000_PHY_PORT_CONFIG,
894 						    &data);
895 			if (ret_val)
896 				goto out;
897 
898 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
899 			ret_val = phy->ops.write_reg(hw,
900 						     IGP01E1000_PHY_PORT_CONFIG,
901 						     data);
902 			if (ret_val)
903 				goto out;
904 
905 			/* Set auto Master/Slave resolution process */
906 			ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
907 			if (ret_val)
908 				goto out;
909 
910 			data &= ~CR_1000T_MS_ENABLE;
911 			ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
912 			if (ret_val)
913 				goto out;
914 		}
915 
916 		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
917 		if (ret_val)
918 			goto out;
919 
920 		/* load defaults for future use */
921 		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
922 			((data & CR_1000T_MS_VALUE) ?
923 			e1000_ms_force_master :
924 			e1000_ms_force_slave) :
925 			e1000_ms_auto;
926 
927 		switch (phy->ms_type) {
928 		case e1000_ms_force_master:
929 			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
930 			break;
931 		case e1000_ms_force_slave:
932 			data |= CR_1000T_MS_ENABLE;
933 			data &= ~(CR_1000T_MS_VALUE);
934 			break;
935 		case e1000_ms_auto:
936 			data &= ~CR_1000T_MS_ENABLE;
937 		default:
938 			break;
939 		}
940 		ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
941 		if (ret_val)
942 			goto out;
943 	}
944 
945 out:
946 	return ret_val;
947 }
948 
949 /**
950  *  igb_copper_link_autoneg - Setup/Enable autoneg for copper link
951  *  @hw: pointer to the HW structure
952  *
953  *  Performs initial bounds checking on autoneg advertisement parameter, then
954  *  configure to advertise the full capability.  Setup the PHY to autoneg
955  *  and restart the negotiation process between the link partner.  If
956  *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
957  **/
958 static s32 igb_copper_link_autoneg(struct e1000_hw *hw)
959 {
960 	struct e1000_phy_info *phy = &hw->phy;
961 	s32 ret_val;
962 	u16 phy_ctrl;
963 
964 	/* Perform some bounds checking on the autoneg advertisement
965 	 * parameter.
966 	 */
967 	phy->autoneg_advertised &= phy->autoneg_mask;
968 
969 	/* If autoneg_advertised is zero, we assume it was not defaulted
970 	 * by the calling code so we set to advertise full capability.
971 	 */
972 	if (phy->autoneg_advertised == 0)
973 		phy->autoneg_advertised = phy->autoneg_mask;
974 
975 	hw_dbg("Reconfiguring auto-neg advertisement params\n");
976 	ret_val = igb_phy_setup_autoneg(hw);
977 	if (ret_val) {
978 		hw_dbg("Error Setting up Auto-Negotiation\n");
979 		goto out;
980 	}
981 	hw_dbg("Restarting Auto-Neg\n");
982 
983 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
984 	 * the Auto Neg Restart bit in the PHY control register.
985 	 */
986 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
987 	if (ret_val)
988 		goto out;
989 
990 	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
991 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
992 	if (ret_val)
993 		goto out;
994 
995 	/* Does the user want to wait for Auto-Neg to complete here, or
996 	 * check at a later time (for example, callback routine).
997 	 */
998 	if (phy->autoneg_wait_to_complete) {
999 		ret_val = igb_wait_autoneg(hw);
1000 		if (ret_val) {
1001 			hw_dbg("Error while waiting for "
1002 			       "autoneg to complete\n");
1003 			goto out;
1004 		}
1005 	}
1006 
1007 	hw->mac.get_link_status = true;
1008 
1009 out:
1010 	return ret_val;
1011 }
1012 
1013 /**
1014  *  igb_phy_setup_autoneg - Configure PHY for auto-negotiation
1015  *  @hw: pointer to the HW structure
1016  *
1017  *  Reads the MII auto-neg advertisement register and/or the 1000T control
1018  *  register and if the PHY is already setup for auto-negotiation, then
1019  *  return successful.  Otherwise, setup advertisement and flow control to
1020  *  the appropriate values for the wanted auto-negotiation.
1021  **/
1022 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
1023 {
1024 	struct e1000_phy_info *phy = &hw->phy;
1025 	s32 ret_val;
1026 	u16 mii_autoneg_adv_reg;
1027 	u16 mii_1000t_ctrl_reg = 0;
1028 
1029 	phy->autoneg_advertised &= phy->autoneg_mask;
1030 
1031 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
1032 	ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
1033 	if (ret_val)
1034 		goto out;
1035 
1036 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1037 		/* Read the MII 1000Base-T Control Register (Address 9). */
1038 		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
1039 					    &mii_1000t_ctrl_reg);
1040 		if (ret_val)
1041 			goto out;
1042 	}
1043 
1044 	/* Need to parse both autoneg_advertised and fc and set up
1045 	 * the appropriate PHY registers.  First we will parse for
1046 	 * autoneg_advertised software override.  Since we can advertise
1047 	 * a plethora of combinations, we need to check each bit
1048 	 * individually.
1049 	 */
1050 
1051 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
1052 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1053 	 * the  1000Base-T Control Register (Address 9).
1054 	 */
1055 	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
1056 				 NWAY_AR_100TX_HD_CAPS |
1057 				 NWAY_AR_10T_FD_CAPS   |
1058 				 NWAY_AR_10T_HD_CAPS);
1059 	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
1060 
1061 	hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
1062 
1063 	/* Do we want to advertise 10 Mb Half Duplex? */
1064 	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
1065 		hw_dbg("Advertise 10mb Half duplex\n");
1066 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1067 	}
1068 
1069 	/* Do we want to advertise 10 Mb Full Duplex? */
1070 	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
1071 		hw_dbg("Advertise 10mb Full duplex\n");
1072 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1073 	}
1074 
1075 	/* Do we want to advertise 100 Mb Half Duplex? */
1076 	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
1077 		hw_dbg("Advertise 100mb Half duplex\n");
1078 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1079 	}
1080 
1081 	/* Do we want to advertise 100 Mb Full Duplex? */
1082 	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
1083 		hw_dbg("Advertise 100mb Full duplex\n");
1084 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1085 	}
1086 
1087 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1088 	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1089 		hw_dbg("Advertise 1000mb Half duplex request denied!\n");
1090 
1091 	/* Do we want to advertise 1000 Mb Full Duplex? */
1092 	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1093 		hw_dbg("Advertise 1000mb Full duplex\n");
1094 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1095 	}
1096 
1097 	/* Check for a software override of the flow control settings, and
1098 	 * setup the PHY advertisement registers accordingly.  If
1099 	 * auto-negotiation is enabled, then software will have to set the
1100 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1101 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1102 	 * negotiation.
1103 	 *
1104 	 * The possible values of the "fc" parameter are:
1105 	 *      0:  Flow control is completely disabled
1106 	 *      1:  Rx flow control is enabled (we can receive pause frames
1107 	 *          but not send pause frames).
1108 	 *      2:  Tx flow control is enabled (we can send pause frames
1109 	 *          but we do not support receiving pause frames).
1110 	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
1111 	 *  other:  No software override.  The flow control configuration
1112 	 *          in the EEPROM is used.
1113 	 */
1114 	switch (hw->fc.current_mode) {
1115 	case e1000_fc_none:
1116 		/* Flow control (RX & TX) is completely disabled by a
1117 		 * software over-ride.
1118 		 */
1119 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1120 		break;
1121 	case e1000_fc_rx_pause:
1122 		/* RX Flow control is enabled, and TX Flow control is
1123 		 * disabled, by a software over-ride.
1124 		 *
1125 		 * Since there really isn't a way to advertise that we are
1126 		 * capable of RX Pause ONLY, we will advertise that we
1127 		 * support both symmetric and asymmetric RX PAUSE.  Later
1128 		 * (in e1000_config_fc_after_link_up) we will disable the
1129 		 * hw's ability to send PAUSE frames.
1130 		 */
1131 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1132 		break;
1133 	case e1000_fc_tx_pause:
1134 		/* TX Flow control is enabled, and RX Flow control is
1135 		 * disabled, by a software over-ride.
1136 		 */
1137 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1138 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1139 		break;
1140 	case e1000_fc_full:
1141 		/* Flow control (both RX and TX) is enabled by a software
1142 		 * over-ride.
1143 		 */
1144 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1145 		break;
1146 	default:
1147 		hw_dbg("Flow control param set incorrectly\n");
1148 		ret_val = -E1000_ERR_CONFIG;
1149 		goto out;
1150 	}
1151 
1152 	ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1153 	if (ret_val)
1154 		goto out;
1155 
1156 	hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1157 
1158 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1159 		ret_val = phy->ops.write_reg(hw,
1160 					     PHY_1000T_CTRL,
1161 					     mii_1000t_ctrl_reg);
1162 		if (ret_val)
1163 			goto out;
1164 	}
1165 
1166 out:
1167 	return ret_val;
1168 }
1169 
1170 /**
1171  *  igb_setup_copper_link - Configure copper link settings
1172  *  @hw: pointer to the HW structure
1173  *
1174  *  Calls the appropriate function to configure the link for auto-neg or forced
1175  *  speed and duplex.  Then we check for link, once link is established calls
1176  *  to configure collision distance and flow control are called.  If link is
1177  *  not established, we return -E1000_ERR_PHY (-2).
1178  **/
1179 s32 igb_setup_copper_link(struct e1000_hw *hw)
1180 {
1181 	s32 ret_val;
1182 	bool link;
1183 
1184 	if (hw->mac.autoneg) {
1185 		/* Setup autoneg and flow control advertisement and perform
1186 		 * autonegotiation.
1187 		 */
1188 		ret_val = igb_copper_link_autoneg(hw);
1189 		if (ret_val)
1190 			goto out;
1191 	} else {
1192 		/* PHY will be set to 10H, 10F, 100H or 100F
1193 		 * depending on user settings.
1194 		 */
1195 		hw_dbg("Forcing Speed and Duplex\n");
1196 		ret_val = hw->phy.ops.force_speed_duplex(hw);
1197 		if (ret_val) {
1198 			hw_dbg("Error Forcing Speed and Duplex\n");
1199 			goto out;
1200 		}
1201 	}
1202 
1203 	/* Check link status. Wait up to 100 microseconds for link to become
1204 	 * valid.
1205 	 */
1206 	ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
1207 	if (ret_val)
1208 		goto out;
1209 
1210 	if (link) {
1211 		hw_dbg("Valid link established!!!\n");
1212 		igb_config_collision_dist(hw);
1213 		ret_val = igb_config_fc_after_link_up(hw);
1214 	} else {
1215 		hw_dbg("Unable to establish link!!!\n");
1216 	}
1217 
1218 out:
1219 	return ret_val;
1220 }
1221 
1222 /**
1223  *  igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1224  *  @hw: pointer to the HW structure
1225  *
1226  *  Calls the PHY setup function to force speed and duplex.  Clears the
1227  *  auto-crossover to force MDI manually.  Waits for link and returns
1228  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1229  **/
1230 s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1231 {
1232 	struct e1000_phy_info *phy = &hw->phy;
1233 	s32 ret_val;
1234 	u16 phy_data;
1235 	bool link;
1236 
1237 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1238 	if (ret_val)
1239 		goto out;
1240 
1241 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1242 
1243 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1244 	if (ret_val)
1245 		goto out;
1246 
1247 	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1248 	 * forced whenever speed and duplex are forced.
1249 	 */
1250 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1251 	if (ret_val)
1252 		goto out;
1253 
1254 	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1255 	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1256 
1257 	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1258 	if (ret_val)
1259 		goto out;
1260 
1261 	hw_dbg("IGP PSCR: %X\n", phy_data);
1262 
1263 	udelay(1);
1264 
1265 	if (phy->autoneg_wait_to_complete) {
1266 		hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1267 
1268 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
1269 		if (ret_val)
1270 			goto out;
1271 
1272 		if (!link)
1273 			hw_dbg("Link taking longer than expected.\n");
1274 
1275 		/* Try once more */
1276 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
1277 		if (ret_val)
1278 			goto out;
1279 	}
1280 
1281 out:
1282 	return ret_val;
1283 }
1284 
1285 /**
1286  *  igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1287  *  @hw: pointer to the HW structure
1288  *
1289  *  Calls the PHY setup function to force speed and duplex.  Clears the
1290  *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1291  *  changes.  If time expires while waiting for link up, we reset the DSP.
1292  *  After reset, TX_CLK and CRS on TX must be set.  Return successful upon
1293  *  successful completion, else return corresponding error code.
1294  **/
1295 s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1296 {
1297 	struct e1000_phy_info *phy = &hw->phy;
1298 	s32 ret_val;
1299 	u16 phy_data;
1300 	bool link;
1301 
1302 	/* I210 and I211 devices support Auto-Crossover in forced operation. */
1303 	if (phy->type != e1000_phy_i210) {
1304 		/* Clear Auto-Crossover to force MDI manually.  M88E1000
1305 		 * requires MDI forced whenever speed and duplex are forced.
1306 		 */
1307 		ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL,
1308 					    &phy_data);
1309 		if (ret_val)
1310 			goto out;
1311 
1312 		phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1313 		ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
1314 					     phy_data);
1315 		if (ret_val)
1316 			goto out;
1317 
1318 		hw_dbg("M88E1000 PSCR: %X\n", phy_data);
1319 	}
1320 
1321 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1322 	if (ret_val)
1323 		goto out;
1324 
1325 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1326 
1327 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1328 	if (ret_val)
1329 		goto out;
1330 
1331 	/* Reset the phy to commit changes. */
1332 	ret_val = igb_phy_sw_reset(hw);
1333 	if (ret_val)
1334 		goto out;
1335 
1336 	if (phy->autoneg_wait_to_complete) {
1337 		hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1338 
1339 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
1340 		if (ret_val)
1341 			goto out;
1342 
1343 		if (!link) {
1344 			bool reset_dsp = true;
1345 
1346 			switch (hw->phy.id) {
1347 			case I347AT4_E_PHY_ID:
1348 			case M88E1112_E_PHY_ID:
1349 			case I210_I_PHY_ID:
1350 				reset_dsp = false;
1351 				break;
1352 			default:
1353 				if (hw->phy.type != e1000_phy_m88)
1354 					reset_dsp = false;
1355 				break;
1356 			}
1357 			if (!reset_dsp)
1358 				hw_dbg("Link taking longer than expected.\n");
1359 			else {
1360 				/* We didn't get link.
1361 				 * Reset the DSP and cross our fingers.
1362 				 */
1363 				ret_val = phy->ops.write_reg(hw,
1364 						M88E1000_PHY_PAGE_SELECT,
1365 						0x001d);
1366 				if (ret_val)
1367 					goto out;
1368 				ret_val = igb_phy_reset_dsp(hw);
1369 				if (ret_val)
1370 					goto out;
1371 			}
1372 		}
1373 
1374 		/* Try once more */
1375 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT,
1376 					   100000, &link);
1377 		if (ret_val)
1378 			goto out;
1379 	}
1380 
1381 	if (hw->phy.type != e1000_phy_m88 ||
1382 	    hw->phy.id == I347AT4_E_PHY_ID ||
1383 	    hw->phy.id == M88E1112_E_PHY_ID ||
1384 	    hw->phy.id == I210_I_PHY_ID)
1385 		goto out;
1386 
1387 	ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1388 	if (ret_val)
1389 		goto out;
1390 
1391 	/* Resetting the phy means we need to re-force TX_CLK in the
1392 	 * Extended PHY Specific Control Register to 25MHz clock from
1393 	 * the reset value of 2.5MHz.
1394 	 */
1395 	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1396 	ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1397 	if (ret_val)
1398 		goto out;
1399 
1400 	/* In addition, we must re-enable CRS on Tx for both half and full
1401 	 * duplex.
1402 	 */
1403 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1404 	if (ret_val)
1405 		goto out;
1406 
1407 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1408 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1409 
1410 out:
1411 	return ret_val;
1412 }
1413 
1414 /**
1415  *  igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1416  *  @hw: pointer to the HW structure
1417  *  @phy_ctrl: pointer to current value of PHY_CONTROL
1418  *
1419  *  Forces speed and duplex on the PHY by doing the following: disable flow
1420  *  control, force speed/duplex on the MAC, disable auto speed detection,
1421  *  disable auto-negotiation, configure duplex, configure speed, configure
1422  *  the collision distance, write configuration to CTRL register.  The
1423  *  caller must write to the PHY_CONTROL register for these settings to
1424  *  take affect.
1425  **/
1426 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
1427 					     u16 *phy_ctrl)
1428 {
1429 	struct e1000_mac_info *mac = &hw->mac;
1430 	u32 ctrl;
1431 
1432 	/* Turn off flow control when forcing speed/duplex */
1433 	hw->fc.current_mode = e1000_fc_none;
1434 
1435 	/* Force speed/duplex on the mac */
1436 	ctrl = rd32(E1000_CTRL);
1437 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1438 	ctrl &= ~E1000_CTRL_SPD_SEL;
1439 
1440 	/* Disable Auto Speed Detection */
1441 	ctrl &= ~E1000_CTRL_ASDE;
1442 
1443 	/* Disable autoneg on the phy */
1444 	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1445 
1446 	/* Forcing Full or Half Duplex? */
1447 	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1448 		ctrl &= ~E1000_CTRL_FD;
1449 		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1450 		hw_dbg("Half Duplex\n");
1451 	} else {
1452 		ctrl |= E1000_CTRL_FD;
1453 		*phy_ctrl |= MII_CR_FULL_DUPLEX;
1454 		hw_dbg("Full Duplex\n");
1455 	}
1456 
1457 	/* Forcing 10mb or 100mb? */
1458 	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1459 		ctrl |= E1000_CTRL_SPD_100;
1460 		*phy_ctrl |= MII_CR_SPEED_100;
1461 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1462 		hw_dbg("Forcing 100mb\n");
1463 	} else {
1464 		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1465 		*phy_ctrl |= MII_CR_SPEED_10;
1466 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1467 		hw_dbg("Forcing 10mb\n");
1468 	}
1469 
1470 	igb_config_collision_dist(hw);
1471 
1472 	wr32(E1000_CTRL, ctrl);
1473 }
1474 
1475 /**
1476  *  igb_set_d3_lplu_state - Sets low power link up state for D3
1477  *  @hw: pointer to the HW structure
1478  *  @active: boolean used to enable/disable lplu
1479  *
1480  *  Success returns 0, Failure returns 1
1481  *
1482  *  The low power link up (lplu) state is set to the power management level D3
1483  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1484  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1485  *  is used during Dx states where the power conservation is most important.
1486  *  During driver activity, SmartSpeed should be enabled so performance is
1487  *  maintained.
1488  **/
1489 s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1490 {
1491 	struct e1000_phy_info *phy = &hw->phy;
1492 	s32 ret_val = 0;
1493 	u16 data;
1494 
1495 	if (!(hw->phy.ops.read_reg))
1496 		goto out;
1497 
1498 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1499 	if (ret_val)
1500 		goto out;
1501 
1502 	if (!active) {
1503 		data &= ~IGP02E1000_PM_D3_LPLU;
1504 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1505 					     data);
1506 		if (ret_val)
1507 			goto out;
1508 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1509 		 * during Dx states where the power conservation is most
1510 		 * important.  During driver activity we should enable
1511 		 * SmartSpeed, so performance is maintained.
1512 		 */
1513 		if (phy->smart_speed == e1000_smart_speed_on) {
1514 			ret_val = phy->ops.read_reg(hw,
1515 						    IGP01E1000_PHY_PORT_CONFIG,
1516 						    &data);
1517 			if (ret_val)
1518 				goto out;
1519 
1520 			data |= IGP01E1000_PSCFR_SMART_SPEED;
1521 			ret_val = phy->ops.write_reg(hw,
1522 						     IGP01E1000_PHY_PORT_CONFIG,
1523 						     data);
1524 			if (ret_val)
1525 				goto out;
1526 		} else if (phy->smart_speed == e1000_smart_speed_off) {
1527 			ret_val = phy->ops.read_reg(hw,
1528 						     IGP01E1000_PHY_PORT_CONFIG,
1529 						     &data);
1530 			if (ret_val)
1531 				goto out;
1532 
1533 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1534 			ret_val = phy->ops.write_reg(hw,
1535 						     IGP01E1000_PHY_PORT_CONFIG,
1536 						     data);
1537 			if (ret_val)
1538 				goto out;
1539 		}
1540 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1541 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1542 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1543 		data |= IGP02E1000_PM_D3_LPLU;
1544 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1545 					      data);
1546 		if (ret_val)
1547 			goto out;
1548 
1549 		/* When LPLU is enabled, we should disable SmartSpeed */
1550 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1551 					    &data);
1552 		if (ret_val)
1553 			goto out;
1554 
1555 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1556 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1557 					     data);
1558 	}
1559 
1560 out:
1561 	return ret_val;
1562 }
1563 
1564 /**
1565  *  igb_check_downshift - Checks whether a downshift in speed occurred
1566  *  @hw: pointer to the HW structure
1567  *
1568  *  Success returns 0, Failure returns 1
1569  *
1570  *  A downshift is detected by querying the PHY link health.
1571  **/
1572 s32 igb_check_downshift(struct e1000_hw *hw)
1573 {
1574 	struct e1000_phy_info *phy = &hw->phy;
1575 	s32 ret_val;
1576 	u16 phy_data, offset, mask;
1577 
1578 	switch (phy->type) {
1579 	case e1000_phy_i210:
1580 	case e1000_phy_m88:
1581 	case e1000_phy_gg82563:
1582 		offset	= M88E1000_PHY_SPEC_STATUS;
1583 		mask	= M88E1000_PSSR_DOWNSHIFT;
1584 		break;
1585 	case e1000_phy_igp_2:
1586 	case e1000_phy_igp:
1587 	case e1000_phy_igp_3:
1588 		offset	= IGP01E1000_PHY_LINK_HEALTH;
1589 		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
1590 		break;
1591 	default:
1592 		/* speed downshift not supported */
1593 		phy->speed_downgraded = false;
1594 		ret_val = 0;
1595 		goto out;
1596 	}
1597 
1598 	ret_val = phy->ops.read_reg(hw, offset, &phy_data);
1599 
1600 	if (!ret_val)
1601 		phy->speed_downgraded = (phy_data & mask) ? true : false;
1602 
1603 out:
1604 	return ret_val;
1605 }
1606 
1607 /**
1608  *  igb_check_polarity_m88 - Checks the polarity.
1609  *  @hw: pointer to the HW structure
1610  *
1611  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1612  *
1613  *  Polarity is determined based on the PHY specific status register.
1614  **/
1615 s32 igb_check_polarity_m88(struct e1000_hw *hw)
1616 {
1617 	struct e1000_phy_info *phy = &hw->phy;
1618 	s32 ret_val;
1619 	u16 data;
1620 
1621 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
1622 
1623 	if (!ret_val)
1624 		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1625 				      ? e1000_rev_polarity_reversed
1626 				      : e1000_rev_polarity_normal;
1627 
1628 	return ret_val;
1629 }
1630 
1631 /**
1632  *  igb_check_polarity_igp - Checks the polarity.
1633  *  @hw: pointer to the HW structure
1634  *
1635  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1636  *
1637  *  Polarity is determined based on the PHY port status register, and the
1638  *  current speed (since there is no polarity at 100Mbps).
1639  **/
1640 static s32 igb_check_polarity_igp(struct e1000_hw *hw)
1641 {
1642 	struct e1000_phy_info *phy = &hw->phy;
1643 	s32 ret_val;
1644 	u16 data, offset, mask;
1645 
1646 	/* Polarity is determined based on the speed of
1647 	 * our connection.
1648 	 */
1649 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1650 	if (ret_val)
1651 		goto out;
1652 
1653 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1654 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1655 		offset	= IGP01E1000_PHY_PCS_INIT_REG;
1656 		mask	= IGP01E1000_PHY_POLARITY_MASK;
1657 	} else {
1658 		/* This really only applies to 10Mbps since
1659 		 * there is no polarity for 100Mbps (always 0).
1660 		 */
1661 		offset	= IGP01E1000_PHY_PORT_STATUS;
1662 		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
1663 	}
1664 
1665 	ret_val = phy->ops.read_reg(hw, offset, &data);
1666 
1667 	if (!ret_val)
1668 		phy->cable_polarity = (data & mask)
1669 				      ? e1000_rev_polarity_reversed
1670 				      : e1000_rev_polarity_normal;
1671 
1672 out:
1673 	return ret_val;
1674 }
1675 
1676 /**
1677  *  igb_wait_autoneg - Wait for auto-neg completion
1678  *  @hw: pointer to the HW structure
1679  *
1680  *  Waits for auto-negotiation to complete or for the auto-negotiation time
1681  *  limit to expire, which ever happens first.
1682  **/
1683 static s32 igb_wait_autoneg(struct e1000_hw *hw)
1684 {
1685 	s32 ret_val = 0;
1686 	u16 i, phy_status;
1687 
1688 	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1689 	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1690 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1691 		if (ret_val)
1692 			break;
1693 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1694 		if (ret_val)
1695 			break;
1696 		if (phy_status & MII_SR_AUTONEG_COMPLETE)
1697 			break;
1698 		msleep(100);
1699 	}
1700 
1701 	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1702 	 * has completed.
1703 	 */
1704 	return ret_val;
1705 }
1706 
1707 /**
1708  *  igb_phy_has_link - Polls PHY for link
1709  *  @hw: pointer to the HW structure
1710  *  @iterations: number of times to poll for link
1711  *  @usec_interval: delay between polling attempts
1712  *  @success: pointer to whether polling was successful or not
1713  *
1714  *  Polls the PHY status register for link, 'iterations' number of times.
1715  **/
1716 s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations,
1717 		     u32 usec_interval, bool *success)
1718 {
1719 	s32 ret_val = 0;
1720 	u16 i, phy_status;
1721 
1722 	for (i = 0; i < iterations; i++) {
1723 		/* Some PHYs require the PHY_STATUS register to be read
1724 		 * twice due to the link bit being sticky.  No harm doing
1725 		 * it across the board.
1726 		 */
1727 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1728 		if (ret_val && usec_interval > 0) {
1729 			/* If the first read fails, another entity may have
1730 			 * ownership of the resources, wait and try again to
1731 			 * see if they have relinquished the resources yet.
1732 			 */
1733 			udelay(usec_interval);
1734 		}
1735 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1736 		if (ret_val)
1737 			break;
1738 		if (phy_status & MII_SR_LINK_STATUS)
1739 			break;
1740 		if (usec_interval >= 1000)
1741 			mdelay(usec_interval/1000);
1742 		else
1743 			udelay(usec_interval);
1744 	}
1745 
1746 	*success = (i < iterations) ? true : false;
1747 
1748 	return ret_val;
1749 }
1750 
1751 /**
1752  *  igb_get_cable_length_m88 - Determine cable length for m88 PHY
1753  *  @hw: pointer to the HW structure
1754  *
1755  *  Reads the PHY specific status register to retrieve the cable length
1756  *  information.  The cable length is determined by averaging the minimum and
1757  *  maximum values to get the "average" cable length.  The m88 PHY has four
1758  *  possible cable length values, which are:
1759  *	Register Value		Cable Length
1760  *	0			< 50 meters
1761  *	1			50 - 80 meters
1762  *	2			80 - 110 meters
1763  *	3			110 - 140 meters
1764  *	4			> 140 meters
1765  **/
1766 s32 igb_get_cable_length_m88(struct e1000_hw *hw)
1767 {
1768 	struct e1000_phy_info *phy = &hw->phy;
1769 	s32 ret_val;
1770 	u16 phy_data, index;
1771 
1772 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1773 	if (ret_val)
1774 		goto out;
1775 
1776 	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1777 		M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1778 	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1779 		ret_val = -E1000_ERR_PHY;
1780 		goto out;
1781 	}
1782 
1783 	phy->min_cable_length = e1000_m88_cable_length_table[index];
1784 	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1785 
1786 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1787 
1788 out:
1789 	return ret_val;
1790 }
1791 
1792 s32 igb_get_cable_length_m88_gen2(struct e1000_hw *hw)
1793 {
1794 	struct e1000_phy_info *phy = &hw->phy;
1795 	s32 ret_val;
1796 	u16 phy_data, phy_data2, index, default_page, is_cm;
1797 
1798 	switch (hw->phy.id) {
1799 	case I210_I_PHY_ID:
1800 		/* Get cable length from PHY Cable Diagnostics Control Reg */
1801 		ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
1802 					    (I347AT4_PCDL + phy->addr),
1803 					    &phy_data);
1804 		if (ret_val)
1805 			return ret_val;
1806 
1807 		/* Check if the unit of cable length is meters or cm */
1808 		ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
1809 					    I347AT4_PCDC, &phy_data2);
1810 		if (ret_val)
1811 			return ret_val;
1812 
1813 		is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1814 
1815 		/* Populate the phy structure with cable length in meters */
1816 		phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
1817 		phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
1818 		phy->cable_length = phy_data / (is_cm ? 100 : 1);
1819 		break;
1820 	case M88E1543_E_PHY_ID:
1821 	case I347AT4_E_PHY_ID:
1822 		/* Remember the original page select and set it to 7 */
1823 		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1824 					    &default_page);
1825 		if (ret_val)
1826 			goto out;
1827 
1828 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
1829 		if (ret_val)
1830 			goto out;
1831 
1832 		/* Get cable length from PHY Cable Diagnostics Control Reg */
1833 		ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr),
1834 					    &phy_data);
1835 		if (ret_val)
1836 			goto out;
1837 
1838 		/* Check if the unit of cable length is meters or cm */
1839 		ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
1840 		if (ret_val)
1841 			goto out;
1842 
1843 		is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1844 
1845 		/* Populate the phy structure with cable length in meters */
1846 		phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
1847 		phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
1848 		phy->cable_length = phy_data / (is_cm ? 100 : 1);
1849 
1850 		/* Reset the page selec to its original value */
1851 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1852 					     default_page);
1853 		if (ret_val)
1854 			goto out;
1855 		break;
1856 	case M88E1112_E_PHY_ID:
1857 		/* Remember the original page select and set it to 5 */
1858 		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1859 					    &default_page);
1860 		if (ret_val)
1861 			goto out;
1862 
1863 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
1864 		if (ret_val)
1865 			goto out;
1866 
1867 		ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
1868 					    &phy_data);
1869 		if (ret_val)
1870 			goto out;
1871 
1872 		index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1873 			M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1874 		if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1875 			ret_val = -E1000_ERR_PHY;
1876 			goto out;
1877 		}
1878 
1879 		phy->min_cable_length = e1000_m88_cable_length_table[index];
1880 		phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1881 
1882 		phy->cable_length = (phy->min_cable_length +
1883 				     phy->max_cable_length) / 2;
1884 
1885 		/* Reset the page select to its original value */
1886 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1887 					     default_page);
1888 		if (ret_val)
1889 			goto out;
1890 
1891 		break;
1892 	default:
1893 		ret_val = -E1000_ERR_PHY;
1894 		goto out;
1895 	}
1896 
1897 out:
1898 	return ret_val;
1899 }
1900 
1901 /**
1902  *  igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1903  *  @hw: pointer to the HW structure
1904  *
1905  *  The automatic gain control (agc) normalizes the amplitude of the
1906  *  received signal, adjusting for the attenuation produced by the
1907  *  cable.  By reading the AGC registers, which represent the
1908  *  combination of coarse and fine gain value, the value can be put
1909  *  into a lookup table to obtain the approximate cable length
1910  *  for each channel.
1911  **/
1912 s32 igb_get_cable_length_igp_2(struct e1000_hw *hw)
1913 {
1914 	struct e1000_phy_info *phy = &hw->phy;
1915 	s32 ret_val = 0;
1916 	u16 phy_data, i, agc_value = 0;
1917 	u16 cur_agc_index, max_agc_index = 0;
1918 	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1919 	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1920 		IGP02E1000_PHY_AGC_A,
1921 		IGP02E1000_PHY_AGC_B,
1922 		IGP02E1000_PHY_AGC_C,
1923 		IGP02E1000_PHY_AGC_D
1924 	};
1925 
1926 	/* Read the AGC registers for all channels */
1927 	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1928 		ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
1929 		if (ret_val)
1930 			goto out;
1931 
1932 		/* Getting bits 15:9, which represent the combination of
1933 		 * coarse and fine gain values.  The result is a number
1934 		 * that can be put into the lookup table to obtain the
1935 		 * approximate cable length.
1936 		 */
1937 		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1938 				IGP02E1000_AGC_LENGTH_MASK;
1939 
1940 		/* Array index bound check. */
1941 		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1942 		    (cur_agc_index == 0)) {
1943 			ret_val = -E1000_ERR_PHY;
1944 			goto out;
1945 		}
1946 
1947 		/* Remove min & max AGC values from calculation. */
1948 		if (e1000_igp_2_cable_length_table[min_agc_index] >
1949 		    e1000_igp_2_cable_length_table[cur_agc_index])
1950 			min_agc_index = cur_agc_index;
1951 		if (e1000_igp_2_cable_length_table[max_agc_index] <
1952 		    e1000_igp_2_cable_length_table[cur_agc_index])
1953 			max_agc_index = cur_agc_index;
1954 
1955 		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1956 	}
1957 
1958 	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1959 		      e1000_igp_2_cable_length_table[max_agc_index]);
1960 	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1961 
1962 	/* Calculate cable length with the error range of +/- 10 meters. */
1963 	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1964 				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1965 	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1966 
1967 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1968 
1969 out:
1970 	return ret_val;
1971 }
1972 
1973 /**
1974  *  igb_get_phy_info_m88 - Retrieve PHY information
1975  *  @hw: pointer to the HW structure
1976  *
1977  *  Valid for only copper links.  Read the PHY status register (sticky read)
1978  *  to verify that link is up.  Read the PHY special control register to
1979  *  determine the polarity and 10base-T extended distance.  Read the PHY
1980  *  special status register to determine MDI/MDIx and current speed.  If
1981  *  speed is 1000, then determine cable length, local and remote receiver.
1982  **/
1983 s32 igb_get_phy_info_m88(struct e1000_hw *hw)
1984 {
1985 	struct e1000_phy_info *phy = &hw->phy;
1986 	s32  ret_val;
1987 	u16 phy_data;
1988 	bool link;
1989 
1990 	if (phy->media_type != e1000_media_type_copper) {
1991 		hw_dbg("Phy info is only valid for copper media\n");
1992 		ret_val = -E1000_ERR_CONFIG;
1993 		goto out;
1994 	}
1995 
1996 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
1997 	if (ret_val)
1998 		goto out;
1999 
2000 	if (!link) {
2001 		hw_dbg("Phy info is only valid if link is up\n");
2002 		ret_val = -E1000_ERR_CONFIG;
2003 		goto out;
2004 	}
2005 
2006 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2007 	if (ret_val)
2008 		goto out;
2009 
2010 	phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
2011 				   ? true : false;
2012 
2013 	ret_val = igb_check_polarity_m88(hw);
2014 	if (ret_val)
2015 		goto out;
2016 
2017 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
2018 	if (ret_val)
2019 		goto out;
2020 
2021 	phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false;
2022 
2023 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
2024 		ret_val = phy->ops.get_cable_length(hw);
2025 		if (ret_val)
2026 			goto out;
2027 
2028 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
2029 		if (ret_val)
2030 			goto out;
2031 
2032 		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
2033 				? e1000_1000t_rx_status_ok
2034 				: e1000_1000t_rx_status_not_ok;
2035 
2036 		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
2037 				 ? e1000_1000t_rx_status_ok
2038 				 : e1000_1000t_rx_status_not_ok;
2039 	} else {
2040 		/* Set values to "undefined" */
2041 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2042 		phy->local_rx = e1000_1000t_rx_status_undefined;
2043 		phy->remote_rx = e1000_1000t_rx_status_undefined;
2044 	}
2045 
2046 out:
2047 	return ret_val;
2048 }
2049 
2050 /**
2051  *  igb_get_phy_info_igp - Retrieve igp PHY information
2052  *  @hw: pointer to the HW structure
2053  *
2054  *  Read PHY status to determine if link is up.  If link is up, then
2055  *  set/determine 10base-T extended distance and polarity correction.  Read
2056  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
2057  *  determine on the cable length, local and remote receiver.
2058  **/
2059 s32 igb_get_phy_info_igp(struct e1000_hw *hw)
2060 {
2061 	struct e1000_phy_info *phy = &hw->phy;
2062 	s32 ret_val;
2063 	u16 data;
2064 	bool link;
2065 
2066 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
2067 	if (ret_val)
2068 		goto out;
2069 
2070 	if (!link) {
2071 		hw_dbg("Phy info is only valid if link is up\n");
2072 		ret_val = -E1000_ERR_CONFIG;
2073 		goto out;
2074 	}
2075 
2076 	phy->polarity_correction = true;
2077 
2078 	ret_val = igb_check_polarity_igp(hw);
2079 	if (ret_val)
2080 		goto out;
2081 
2082 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2083 	if (ret_val)
2084 		goto out;
2085 
2086 	phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false;
2087 
2088 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2089 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
2090 		ret_val = phy->ops.get_cable_length(hw);
2091 		if (ret_val)
2092 			goto out;
2093 
2094 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2095 		if (ret_val)
2096 			goto out;
2097 
2098 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2099 				? e1000_1000t_rx_status_ok
2100 				: e1000_1000t_rx_status_not_ok;
2101 
2102 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2103 				 ? e1000_1000t_rx_status_ok
2104 				 : e1000_1000t_rx_status_not_ok;
2105 	} else {
2106 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2107 		phy->local_rx = e1000_1000t_rx_status_undefined;
2108 		phy->remote_rx = e1000_1000t_rx_status_undefined;
2109 	}
2110 
2111 out:
2112 	return ret_val;
2113 }
2114 
2115 /**
2116  *  igb_phy_sw_reset - PHY software reset
2117  *  @hw: pointer to the HW structure
2118  *
2119  *  Does a software reset of the PHY by reading the PHY control register and
2120  *  setting/write the control register reset bit to the PHY.
2121  **/
2122 s32 igb_phy_sw_reset(struct e1000_hw *hw)
2123 {
2124 	s32 ret_val = 0;
2125 	u16 phy_ctrl;
2126 
2127 	if (!(hw->phy.ops.read_reg))
2128 		goto out;
2129 
2130 	ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
2131 	if (ret_val)
2132 		goto out;
2133 
2134 	phy_ctrl |= MII_CR_RESET;
2135 	ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
2136 	if (ret_val)
2137 		goto out;
2138 
2139 	udelay(1);
2140 
2141 out:
2142 	return ret_val;
2143 }
2144 
2145 /**
2146  *  igb_phy_hw_reset - PHY hardware reset
2147  *  @hw: pointer to the HW structure
2148  *
2149  *  Verify the reset block is not blocking us from resetting.  Acquire
2150  *  semaphore (if necessary) and read/set/write the device control reset
2151  *  bit in the PHY.  Wait the appropriate delay time for the device to
2152  *  reset and release the semaphore (if necessary).
2153  **/
2154 s32 igb_phy_hw_reset(struct e1000_hw *hw)
2155 {
2156 	struct e1000_phy_info *phy = &hw->phy;
2157 	s32  ret_val;
2158 	u32 ctrl;
2159 
2160 	ret_val = igb_check_reset_block(hw);
2161 	if (ret_val) {
2162 		ret_val = 0;
2163 		goto out;
2164 	}
2165 
2166 	ret_val = phy->ops.acquire(hw);
2167 	if (ret_val)
2168 		goto out;
2169 
2170 	ctrl = rd32(E1000_CTRL);
2171 	wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
2172 	wrfl();
2173 
2174 	udelay(phy->reset_delay_us);
2175 
2176 	wr32(E1000_CTRL, ctrl);
2177 	wrfl();
2178 
2179 	udelay(150);
2180 
2181 	phy->ops.release(hw);
2182 
2183 	ret_val = phy->ops.get_cfg_done(hw);
2184 
2185 out:
2186 	return ret_val;
2187 }
2188 
2189 /**
2190  *  igb_phy_init_script_igp3 - Inits the IGP3 PHY
2191  *  @hw: pointer to the HW structure
2192  *
2193  *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2194  **/
2195 s32 igb_phy_init_script_igp3(struct e1000_hw *hw)
2196 {
2197 	hw_dbg("Running IGP 3 PHY init script\n");
2198 
2199 	/* PHY init IGP 3 */
2200 	/* Enable rise/fall, 10-mode work in class-A */
2201 	hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
2202 	/* Remove all caps from Replica path filter */
2203 	hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
2204 	/* Bias trimming for ADC, AFE and Driver (Default) */
2205 	hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
2206 	/* Increase Hybrid poly bias */
2207 	hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
2208 	/* Add 4% to TX amplitude in Giga mode */
2209 	hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
2210 	/* Disable trimming (TTT) */
2211 	hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
2212 	/* Poly DC correction to 94.6% + 2% for all channels */
2213 	hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
2214 	/* ABS DC correction to 95.9% */
2215 	hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
2216 	/* BG temp curve trim */
2217 	hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
2218 	/* Increasing ADC OPAMP stage 1 currents to max */
2219 	hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
2220 	/* Force 1000 ( required for enabling PHY regs configuration) */
2221 	hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
2222 	/* Set upd_freq to 6 */
2223 	hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
2224 	/* Disable NPDFE */
2225 	hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
2226 	/* Disable adaptive fixed FFE (Default) */
2227 	hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
2228 	/* Enable FFE hysteresis */
2229 	hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
2230 	/* Fixed FFE for short cable lengths */
2231 	hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
2232 	/* Fixed FFE for medium cable lengths */
2233 	hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
2234 	/* Fixed FFE for long cable lengths */
2235 	hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
2236 	/* Enable Adaptive Clip Threshold */
2237 	hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
2238 	/* AHT reset limit to 1 */
2239 	hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
2240 	/* Set AHT master delay to 127 msec */
2241 	hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
2242 	/* Set scan bits for AHT */
2243 	hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
2244 	/* Set AHT Preset bits */
2245 	hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
2246 	/* Change integ_factor of channel A to 3 */
2247 	hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
2248 	/* Change prop_factor of channels BCD to 8 */
2249 	hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
2250 	/* Change cg_icount + enable integbp for channels BCD */
2251 	hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
2252 	/* Change cg_icount + enable integbp + change prop_factor_master
2253 	 * to 8 for channel A
2254 	 */
2255 	hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
2256 	/* Disable AHT in Slave mode on channel A */
2257 	hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
2258 	/* Enable LPLU and disable AN to 1000 in non-D0a states,
2259 	 * Enable SPD+B2B
2260 	 */
2261 	hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
2262 	/* Enable restart AN on an1000_dis change */
2263 	hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
2264 	/* Enable wh_fifo read clock in 10/100 modes */
2265 	hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
2266 	/* Restart AN, Speed selection is 1000 */
2267 	hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
2268 
2269 	return 0;
2270 }
2271 
2272 /**
2273  * igb_power_up_phy_copper - Restore copper link in case of PHY power down
2274  * @hw: pointer to the HW structure
2275  *
2276  * In the case of a PHY power down to save power, or to turn off link during a
2277  * driver unload, restore the link to previous settings.
2278  **/
2279 void igb_power_up_phy_copper(struct e1000_hw *hw)
2280 {
2281 	u16 mii_reg = 0;
2282 	u16 power_reg = 0;
2283 
2284 	/* The PHY will retain its settings across a power down/up cycle */
2285 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2286 	mii_reg &= ~MII_CR_POWER_DOWN;
2287 	if (hw->phy.type == e1000_phy_i210) {
2288 		hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg);
2289 		power_reg &= ~GS40G_CS_POWER_DOWN;
2290 		hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg);
2291 	}
2292 	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2293 }
2294 
2295 /**
2296  * igb_power_down_phy_copper - Power down copper PHY
2297  * @hw: pointer to the HW structure
2298  *
2299  * Power down PHY to save power when interface is down and wake on lan
2300  * is not enabled.
2301  **/
2302 void igb_power_down_phy_copper(struct e1000_hw *hw)
2303 {
2304 	u16 mii_reg = 0;
2305 	u16 power_reg = 0;
2306 
2307 	/* The PHY will retain its settings across a power down/up cycle */
2308 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2309 	mii_reg |= MII_CR_POWER_DOWN;
2310 
2311 	/* i210 Phy requires an additional bit for power up/down */
2312 	if (hw->phy.type == e1000_phy_i210) {
2313 		hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg);
2314 		power_reg |= GS40G_CS_POWER_DOWN;
2315 		hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg);
2316 	}
2317 	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2318 	msleep(1);
2319 }
2320 
2321 /**
2322  *  igb_check_polarity_82580 - Checks the polarity.
2323  *  @hw: pointer to the HW structure
2324  *
2325  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2326  *
2327  *  Polarity is determined based on the PHY specific status register.
2328  **/
2329 static s32 igb_check_polarity_82580(struct e1000_hw *hw)
2330 {
2331 	struct e1000_phy_info *phy = &hw->phy;
2332 	s32 ret_val;
2333 	u16 data;
2334 
2335 
2336 	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2337 
2338 	if (!ret_val)
2339 		phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY)
2340 				      ? e1000_rev_polarity_reversed
2341 				      : e1000_rev_polarity_normal;
2342 
2343 	return ret_val;
2344 }
2345 
2346 /**
2347  *  igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY
2348  *  @hw: pointer to the HW structure
2349  *
2350  *  Calls the PHY setup function to force speed and duplex.  Clears the
2351  *  auto-crossover to force MDI manually.  Waits for link and returns
2352  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
2353  **/
2354 s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw)
2355 {
2356 	struct e1000_phy_info *phy = &hw->phy;
2357 	s32 ret_val;
2358 	u16 phy_data;
2359 	bool link;
2360 
2361 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
2362 	if (ret_val)
2363 		goto out;
2364 
2365 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
2366 
2367 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
2368 	if (ret_val)
2369 		goto out;
2370 
2371 	/* Clear Auto-Crossover to force MDI manually.  82580 requires MDI
2372 	 * forced whenever speed and duplex are forced.
2373 	 */
2374 	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
2375 	if (ret_val)
2376 		goto out;
2377 
2378 	phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
2379 
2380 	ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
2381 	if (ret_val)
2382 		goto out;
2383 
2384 	hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data);
2385 
2386 	udelay(1);
2387 
2388 	if (phy->autoneg_wait_to_complete) {
2389 		hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n");
2390 
2391 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2392 		if (ret_val)
2393 			goto out;
2394 
2395 		if (!link)
2396 			hw_dbg("Link taking longer than expected.\n");
2397 
2398 		/* Try once more */
2399 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2400 		if (ret_val)
2401 			goto out;
2402 	}
2403 
2404 out:
2405 	return ret_val;
2406 }
2407 
2408 /**
2409  *  igb_get_phy_info_82580 - Retrieve I82580 PHY information
2410  *  @hw: pointer to the HW structure
2411  *
2412  *  Read PHY status to determine if link is up.  If link is up, then
2413  *  set/determine 10base-T extended distance and polarity correction.  Read
2414  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
2415  *  determine on the cable length, local and remote receiver.
2416  **/
2417 s32 igb_get_phy_info_82580(struct e1000_hw *hw)
2418 {
2419 	struct e1000_phy_info *phy = &hw->phy;
2420 	s32 ret_val;
2421 	u16 data;
2422 	bool link;
2423 
2424 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
2425 	if (ret_val)
2426 		goto out;
2427 
2428 	if (!link) {
2429 		hw_dbg("Phy info is only valid if link is up\n");
2430 		ret_val = -E1000_ERR_CONFIG;
2431 		goto out;
2432 	}
2433 
2434 	phy->polarity_correction = true;
2435 
2436 	ret_val = igb_check_polarity_82580(hw);
2437 	if (ret_val)
2438 		goto out;
2439 
2440 	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2441 	if (ret_val)
2442 		goto out;
2443 
2444 	phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false;
2445 
2446 	if ((data & I82580_PHY_STATUS2_SPEED_MASK) ==
2447 	    I82580_PHY_STATUS2_SPEED_1000MBPS) {
2448 		ret_val = hw->phy.ops.get_cable_length(hw);
2449 		if (ret_val)
2450 			goto out;
2451 
2452 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2453 		if (ret_val)
2454 			goto out;
2455 
2456 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2457 				? e1000_1000t_rx_status_ok
2458 				: e1000_1000t_rx_status_not_ok;
2459 
2460 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2461 				 ? e1000_1000t_rx_status_ok
2462 				 : e1000_1000t_rx_status_not_ok;
2463 	} else {
2464 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2465 		phy->local_rx = e1000_1000t_rx_status_undefined;
2466 		phy->remote_rx = e1000_1000t_rx_status_undefined;
2467 	}
2468 
2469 out:
2470 	return ret_val;
2471 }
2472 
2473 /**
2474  *  igb_get_cable_length_82580 - Determine cable length for 82580 PHY
2475  *  @hw: pointer to the HW structure
2476  *
2477  * Reads the diagnostic status register and verifies result is valid before
2478  * placing it in the phy_cable_length field.
2479  **/
2480 s32 igb_get_cable_length_82580(struct e1000_hw *hw)
2481 {
2482 	struct e1000_phy_info *phy = &hw->phy;
2483 	s32 ret_val;
2484 	u16 phy_data, length;
2485 
2486 	ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data);
2487 	if (ret_val)
2488 		goto out;
2489 
2490 	length = (phy_data & I82580_DSTATUS_CABLE_LENGTH) >>
2491 		 I82580_DSTATUS_CABLE_LENGTH_SHIFT;
2492 
2493 	if (length == E1000_CABLE_LENGTH_UNDEFINED)
2494 		ret_val = -E1000_ERR_PHY;
2495 
2496 	phy->cable_length = length;
2497 
2498 out:
2499 	return ret_val;
2500 }
2501 
2502 /**
2503  *  igb_write_phy_reg_gs40g - Write GS40G PHY register
2504  *  @hw: pointer to the HW structure
2505  *  @offset: lower half is register offset to write to
2506  *     upper half is page to use.
2507  *  @data: data to write at register offset
2508  *
2509  *  Acquires semaphore, if necessary, then writes the data to PHY register
2510  *  at the offset.  Release any acquired semaphores before exiting.
2511  **/
2512 s32 igb_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data)
2513 {
2514 	s32 ret_val;
2515 	u16 page = offset >> GS40G_PAGE_SHIFT;
2516 
2517 	offset = offset & GS40G_OFFSET_MASK;
2518 	ret_val = hw->phy.ops.acquire(hw);
2519 	if (ret_val)
2520 		return ret_val;
2521 
2522 	ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
2523 	if (ret_val)
2524 		goto release;
2525 	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2526 
2527 release:
2528 	hw->phy.ops.release(hw);
2529 	return ret_val;
2530 }
2531 
2532 /**
2533  *  igb_read_phy_reg_gs40g - Read GS40G  PHY register
2534  *  @hw: pointer to the HW structure
2535  *  @offset: lower half is register offset to read to
2536  *     upper half is page to use.
2537  *  @data: data to read at register offset
2538  *
2539  *  Acquires semaphore, if necessary, then reads the data in the PHY register
2540  *  at the offset.  Release any acquired semaphores before exiting.
2541  **/
2542 s32 igb_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data)
2543 {
2544 	s32 ret_val;
2545 	u16 page = offset >> GS40G_PAGE_SHIFT;
2546 
2547 	offset = offset & GS40G_OFFSET_MASK;
2548 	ret_val = hw->phy.ops.acquire(hw);
2549 	if (ret_val)
2550 		return ret_val;
2551 
2552 	ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
2553 	if (ret_val)
2554 		goto release;
2555 	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2556 
2557 release:
2558 	hw->phy.ops.release(hw);
2559 	return ret_val;
2560 }
2561 
2562 /**
2563  *  igb_set_master_slave_mode - Setup PHY for Master/slave mode
2564  *  @hw: pointer to the HW structure
2565  *
2566  *  Sets up Master/slave mode
2567  **/
2568 static s32 igb_set_master_slave_mode(struct e1000_hw *hw)
2569 {
2570 	s32 ret_val;
2571 	u16 phy_data;
2572 
2573 	/* Resolve Master/Slave mode */
2574 	ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data);
2575 	if (ret_val)
2576 		return ret_val;
2577 
2578 	/* load defaults for future use */
2579 	hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
2580 				   ((phy_data & CR_1000T_MS_VALUE) ?
2581 				    e1000_ms_force_master :
2582 				    e1000_ms_force_slave) : e1000_ms_auto;
2583 
2584 	switch (hw->phy.ms_type) {
2585 	case e1000_ms_force_master:
2586 		phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2587 		break;
2588 	case e1000_ms_force_slave:
2589 		phy_data |= CR_1000T_MS_ENABLE;
2590 		phy_data &= ~(CR_1000T_MS_VALUE);
2591 		break;
2592 	case e1000_ms_auto:
2593 		phy_data &= ~CR_1000T_MS_ENABLE;
2594 		/* fall-through */
2595 	default:
2596 		break;
2597 	}
2598 
2599 	return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data);
2600 }
2601