1 /*******************************************************************************
2 
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2012 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 #include <linux/if_ether.h>
29 #include <linux/delay.h>
30 
31 #include "e1000_mac.h"
32 #include "e1000_phy.h"
33 
34 static s32  igb_phy_setup_autoneg(struct e1000_hw *hw);
35 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
36 					       u16 *phy_ctrl);
37 static s32  igb_wait_autoneg(struct e1000_hw *hw);
38 static s32  igb_set_master_slave_mode(struct e1000_hw *hw);
39 
40 /* Cable length tables */
41 static const u16 e1000_m88_cable_length_table[] =
42 	{ 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
43 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
44                 (sizeof(e1000_m88_cable_length_table) / \
45                  sizeof(e1000_m88_cable_length_table[0]))
46 
47 static const u16 e1000_igp_2_cable_length_table[] =
48     { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
49       0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
50       6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
51       21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
52       40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
53       60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
54       83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
55       104, 109, 114, 118, 121, 124};
56 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
57 		(sizeof(e1000_igp_2_cable_length_table) / \
58 		 sizeof(e1000_igp_2_cable_length_table[0]))
59 
60 /**
61  *  igb_check_reset_block - Check if PHY reset is blocked
62  *  @hw: pointer to the HW structure
63  *
64  *  Read the PHY management control register and check whether a PHY reset
65  *  is blocked.  If a reset is not blocked return 0, otherwise
66  *  return E1000_BLK_PHY_RESET (12).
67  **/
68 s32 igb_check_reset_block(struct e1000_hw *hw)
69 {
70 	u32 manc;
71 
72 	manc = rd32(E1000_MANC);
73 
74 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
75 	       E1000_BLK_PHY_RESET : 0;
76 }
77 
78 /**
79  *  igb_get_phy_id - Retrieve the PHY ID and revision
80  *  @hw: pointer to the HW structure
81  *
82  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
83  *  revision in the hardware structure.
84  **/
85 s32 igb_get_phy_id(struct e1000_hw *hw)
86 {
87 	struct e1000_phy_info *phy = &hw->phy;
88 	s32 ret_val = 0;
89 	u16 phy_id;
90 
91 	ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
92 	if (ret_val)
93 		goto out;
94 
95 	phy->id = (u32)(phy_id << 16);
96 	udelay(20);
97 	ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
98 	if (ret_val)
99 		goto out;
100 
101 	phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
102 	phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
103 
104 out:
105 	return ret_val;
106 }
107 
108 /**
109  *  igb_phy_reset_dsp - Reset PHY DSP
110  *  @hw: pointer to the HW structure
111  *
112  *  Reset the digital signal processor.
113  **/
114 static s32 igb_phy_reset_dsp(struct e1000_hw *hw)
115 {
116 	s32 ret_val = 0;
117 
118 	if (!(hw->phy.ops.write_reg))
119 		goto out;
120 
121 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
122 	if (ret_val)
123 		goto out;
124 
125 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
126 
127 out:
128 	return ret_val;
129 }
130 
131 /**
132  *  igb_read_phy_reg_mdic - Read MDI control register
133  *  @hw: pointer to the HW structure
134  *  @offset: register offset to be read
135  *  @data: pointer to the read data
136  *
137  *  Reads the MDI control regsiter in the PHY at offset and stores the
138  *  information read to data.
139  **/
140 s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
141 {
142 	struct e1000_phy_info *phy = &hw->phy;
143 	u32 i, mdic = 0;
144 	s32 ret_val = 0;
145 
146 	if (offset > MAX_PHY_REG_ADDRESS) {
147 		hw_dbg("PHY Address %d is out of range\n", offset);
148 		ret_val = -E1000_ERR_PARAM;
149 		goto out;
150 	}
151 
152 	/*
153 	 * Set up Op-code, Phy Address, and register offset in the MDI
154 	 * Control register.  The MAC will take care of interfacing with the
155 	 * PHY to retrieve the desired data.
156 	 */
157 	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
158 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
159 		(E1000_MDIC_OP_READ));
160 
161 	wr32(E1000_MDIC, mdic);
162 
163 	/*
164 	 * Poll the ready bit to see if the MDI read completed
165 	 * Increasing the time out as testing showed failures with
166 	 * the lower time out
167 	 */
168 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
169 		udelay(50);
170 		mdic = rd32(E1000_MDIC);
171 		if (mdic & E1000_MDIC_READY)
172 			break;
173 	}
174 	if (!(mdic & E1000_MDIC_READY)) {
175 		hw_dbg("MDI Read did not complete\n");
176 		ret_val = -E1000_ERR_PHY;
177 		goto out;
178 	}
179 	if (mdic & E1000_MDIC_ERROR) {
180 		hw_dbg("MDI Error\n");
181 		ret_val = -E1000_ERR_PHY;
182 		goto out;
183 	}
184 	*data = (u16) mdic;
185 
186 out:
187 	return ret_val;
188 }
189 
190 /**
191  *  igb_write_phy_reg_mdic - Write MDI control register
192  *  @hw: pointer to the HW structure
193  *  @offset: register offset to write to
194  *  @data: data to write to register at offset
195  *
196  *  Writes data to MDI control register in the PHY at offset.
197  **/
198 s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
199 {
200 	struct e1000_phy_info *phy = &hw->phy;
201 	u32 i, mdic = 0;
202 	s32 ret_val = 0;
203 
204 	if (offset > MAX_PHY_REG_ADDRESS) {
205 		hw_dbg("PHY Address %d is out of range\n", offset);
206 		ret_val = -E1000_ERR_PARAM;
207 		goto out;
208 	}
209 
210 	/*
211 	 * Set up Op-code, Phy Address, and register offset in the MDI
212 	 * Control register.  The MAC will take care of interfacing with the
213 	 * PHY to retrieve the desired data.
214 	 */
215 	mdic = (((u32)data) |
216 		(offset << E1000_MDIC_REG_SHIFT) |
217 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
218 		(E1000_MDIC_OP_WRITE));
219 
220 	wr32(E1000_MDIC, mdic);
221 
222 	/*
223 	 * Poll the ready bit to see if the MDI read completed
224 	 * Increasing the time out as testing showed failures with
225 	 * the lower time out
226 	 */
227 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
228 		udelay(50);
229 		mdic = rd32(E1000_MDIC);
230 		if (mdic & E1000_MDIC_READY)
231 			break;
232 	}
233 	if (!(mdic & E1000_MDIC_READY)) {
234 		hw_dbg("MDI Write did not complete\n");
235 		ret_val = -E1000_ERR_PHY;
236 		goto out;
237 	}
238 	if (mdic & E1000_MDIC_ERROR) {
239 		hw_dbg("MDI Error\n");
240 		ret_val = -E1000_ERR_PHY;
241 		goto out;
242 	}
243 
244 out:
245 	return ret_val;
246 }
247 
248 /**
249  *  igb_read_phy_reg_i2c - Read PHY register using i2c
250  *  @hw: pointer to the HW structure
251  *  @offset: register offset to be read
252  *  @data: pointer to the read data
253  *
254  *  Reads the PHY register at offset using the i2c interface and stores the
255  *  retrieved information in data.
256  **/
257 s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
258 {
259 	struct e1000_phy_info *phy = &hw->phy;
260 	u32 i, i2ccmd = 0;
261 
262 
263 	/*
264 	 * Set up Op-code, Phy Address, and register address in the I2CCMD
265 	 * register.  The MAC will take care of interfacing with the
266 	 * PHY to retrieve the desired data.
267 	 */
268 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
269 	          (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
270 	          (E1000_I2CCMD_OPCODE_READ));
271 
272 	wr32(E1000_I2CCMD, i2ccmd);
273 
274 	/* Poll the ready bit to see if the I2C read completed */
275 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
276 		udelay(50);
277 		i2ccmd = rd32(E1000_I2CCMD);
278 		if (i2ccmd & E1000_I2CCMD_READY)
279 			break;
280 	}
281 	if (!(i2ccmd & E1000_I2CCMD_READY)) {
282 		hw_dbg("I2CCMD Read did not complete\n");
283 		return -E1000_ERR_PHY;
284 	}
285 	if (i2ccmd & E1000_I2CCMD_ERROR) {
286 		hw_dbg("I2CCMD Error bit set\n");
287 		return -E1000_ERR_PHY;
288 	}
289 
290 	/* Need to byte-swap the 16-bit value. */
291 	*data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
292 
293 	return 0;
294 }
295 
296 /**
297  *  igb_write_phy_reg_i2c - Write PHY register using i2c
298  *  @hw: pointer to the HW structure
299  *  @offset: register offset to write to
300  *  @data: data to write at register offset
301  *
302  *  Writes the data to PHY register at the offset using the i2c interface.
303  **/
304 s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
305 {
306 	struct e1000_phy_info *phy = &hw->phy;
307 	u32 i, i2ccmd = 0;
308 	u16 phy_data_swapped;
309 
310 	/* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/
311 	if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) {
312 		hw_dbg("PHY I2C Address %d is out of range.\n",
313 			  hw->phy.addr);
314 		return -E1000_ERR_CONFIG;
315 	}
316 
317 	/* Swap the data bytes for the I2C interface */
318 	phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
319 
320 	/*
321 	 * Set up Op-code, Phy Address, and register address in the I2CCMD
322 	 * register.  The MAC will take care of interfacing with the
323 	 * PHY to retrieve the desired data.
324 	 */
325 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
326 	          (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
327 	          E1000_I2CCMD_OPCODE_WRITE |
328 	          phy_data_swapped);
329 
330 	wr32(E1000_I2CCMD, i2ccmd);
331 
332 	/* Poll the ready bit to see if the I2C read completed */
333 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
334 		udelay(50);
335 		i2ccmd = rd32(E1000_I2CCMD);
336 		if (i2ccmd & E1000_I2CCMD_READY)
337 			break;
338 	}
339 	if (!(i2ccmd & E1000_I2CCMD_READY)) {
340 		hw_dbg("I2CCMD Write did not complete\n");
341 		return -E1000_ERR_PHY;
342 	}
343 	if (i2ccmd & E1000_I2CCMD_ERROR) {
344 		hw_dbg("I2CCMD Error bit set\n");
345 		return -E1000_ERR_PHY;
346 	}
347 
348 	return 0;
349 }
350 
351 /**
352  *  igb_read_phy_reg_igp - Read igp PHY register
353  *  @hw: pointer to the HW structure
354  *  @offset: register offset to be read
355  *  @data: pointer to the read data
356  *
357  *  Acquires semaphore, if necessary, then reads the PHY register at offset
358  *  and storing the retrieved information in data.  Release any acquired
359  *  semaphores before exiting.
360  **/
361 s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
362 {
363 	s32 ret_val = 0;
364 
365 	if (!(hw->phy.ops.acquire))
366 		goto out;
367 
368 	ret_val = hw->phy.ops.acquire(hw);
369 	if (ret_val)
370 		goto out;
371 
372 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
373 		ret_val = igb_write_phy_reg_mdic(hw,
374 						   IGP01E1000_PHY_PAGE_SELECT,
375 						   (u16)offset);
376 		if (ret_val) {
377 			hw->phy.ops.release(hw);
378 			goto out;
379 		}
380 	}
381 
382 	ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
383 					data);
384 
385 	hw->phy.ops.release(hw);
386 
387 out:
388 	return ret_val;
389 }
390 
391 /**
392  *  igb_write_phy_reg_igp - Write igp PHY register
393  *  @hw: pointer to the HW structure
394  *  @offset: register offset to write to
395  *  @data: data to write at register offset
396  *
397  *  Acquires semaphore, if necessary, then writes the data to PHY register
398  *  at the offset.  Release any acquired semaphores before exiting.
399  **/
400 s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
401 {
402 	s32 ret_val = 0;
403 
404 	if (!(hw->phy.ops.acquire))
405 		goto out;
406 
407 	ret_val = hw->phy.ops.acquire(hw);
408 	if (ret_val)
409 		goto out;
410 
411 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
412 		ret_val = igb_write_phy_reg_mdic(hw,
413 						   IGP01E1000_PHY_PAGE_SELECT,
414 						   (u16)offset);
415 		if (ret_val) {
416 			hw->phy.ops.release(hw);
417 			goto out;
418 		}
419 	}
420 
421 	ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
422 					   data);
423 
424 	hw->phy.ops.release(hw);
425 
426 out:
427 	return ret_val;
428 }
429 
430 /**
431  *  igb_copper_link_setup_82580 - Setup 82580 PHY for copper link
432  *  @hw: pointer to the HW structure
433  *
434  *  Sets up Carrier-sense on Transmit and downshift values.
435  **/
436 s32 igb_copper_link_setup_82580(struct e1000_hw *hw)
437 {
438 	struct e1000_phy_info *phy = &hw->phy;
439 	s32 ret_val;
440 	u16 phy_data;
441 
442 
443 	if (phy->reset_disable) {
444 		ret_val = 0;
445 		goto out;
446 	}
447 
448 	if (phy->type == e1000_phy_82580) {
449 		ret_val = hw->phy.ops.reset(hw);
450 		if (ret_val) {
451 			hw_dbg("Error resetting the PHY.\n");
452 			goto out;
453 		}
454 	}
455 
456 	/* Enable CRS on TX. This must be set for half-duplex operation. */
457 	ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data);
458 	if (ret_val)
459 		goto out;
460 
461 	phy_data |= I82580_CFG_ASSERT_CRS_ON_TX;
462 
463 	/* Enable downshift */
464 	phy_data |= I82580_CFG_ENABLE_DOWNSHIFT;
465 
466 	ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data);
467 	if (ret_val)
468 		goto out;
469 
470 	/* Set MDI/MDIX mode */
471 	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
472 	if (ret_val)
473 		goto out;
474 	phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
475 	/*
476 	 * Options:
477 	 *   0 - Auto (default)
478 	 *   1 - MDI mode
479 	 *   2 - MDI-X mode
480 	 */
481 	switch (hw->phy.mdix) {
482 	case 1:
483 		break;
484 	case 2:
485 		phy_data |= I82580_PHY_CTRL2_MANUAL_MDIX;
486 		break;
487 	case 0:
488 	default:
489 		phy_data |= I82580_PHY_CTRL2_AUTO_MDI_MDIX;
490 		break;
491 	}
492 	ret_val = hw->phy.ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
493 
494 out:
495 	return ret_val;
496 }
497 
498 /**
499  *  igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
500  *  @hw: pointer to the HW structure
501  *
502  *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
503  *  and downshift values are set also.
504  **/
505 s32 igb_copper_link_setup_m88(struct e1000_hw *hw)
506 {
507 	struct e1000_phy_info *phy = &hw->phy;
508 	s32 ret_val;
509 	u16 phy_data;
510 
511 	if (phy->reset_disable) {
512 		ret_val = 0;
513 		goto out;
514 	}
515 
516 	/* Enable CRS on TX. This must be set for half-duplex operation. */
517 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
518 	if (ret_val)
519 		goto out;
520 
521 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
522 
523 	/*
524 	 * Options:
525 	 *   MDI/MDI-X = 0 (default)
526 	 *   0 - Auto for all speeds
527 	 *   1 - MDI mode
528 	 *   2 - MDI-X mode
529 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
530 	 */
531 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
532 
533 	switch (phy->mdix) {
534 	case 1:
535 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
536 		break;
537 	case 2:
538 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
539 		break;
540 	case 3:
541 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
542 		break;
543 	case 0:
544 	default:
545 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
546 		break;
547 	}
548 
549 	/*
550 	 * Options:
551 	 *   disable_polarity_correction = 0 (default)
552 	 *       Automatic Correction for Reversed Cable Polarity
553 	 *   0 - Disabled
554 	 *   1 - Enabled
555 	 */
556 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
557 	if (phy->disable_polarity_correction == 1)
558 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
559 
560 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
561 	if (ret_val)
562 		goto out;
563 
564 	if (phy->revision < E1000_REVISION_4) {
565 		/*
566 		 * Force TX_CLK in the Extended PHY Specific Control Register
567 		 * to 25MHz clock.
568 		 */
569 		ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
570 					     &phy_data);
571 		if (ret_val)
572 			goto out;
573 
574 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
575 
576 		if ((phy->revision == E1000_REVISION_2) &&
577 		    (phy->id == M88E1111_I_PHY_ID)) {
578 			/* 82573L PHY - set the downshift counter to 5x. */
579 			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
580 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
581 		} else {
582 			/* Configure Master and Slave downshift values */
583 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
584 				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
585 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
586 				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
587 		}
588 		ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
589 					     phy_data);
590 		if (ret_val)
591 			goto out;
592 	}
593 
594 	/* Commit the changes. */
595 	ret_val = igb_phy_sw_reset(hw);
596 	if (ret_val) {
597 		hw_dbg("Error committing the PHY changes\n");
598 		goto out;
599 	}
600 	if (phy->type == e1000_phy_i210) {
601 		ret_val = igb_set_master_slave_mode(hw);
602 		if (ret_val)
603 			return ret_val;
604 	}
605 
606 out:
607 	return ret_val;
608 }
609 
610 /**
611  *  igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
612  *  @hw: pointer to the HW structure
613  *
614  *  Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
615  *  Also enables and sets the downshift parameters.
616  **/
617 s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw)
618 {
619 	struct e1000_phy_info *phy = &hw->phy;
620 	s32 ret_val;
621 	u16 phy_data;
622 
623 	if (phy->reset_disable) {
624 		ret_val = 0;
625 		goto out;
626 	}
627 
628 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
629 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
630 	if (ret_val)
631 		goto out;
632 
633 	/*
634 	 * Options:
635 	 *   MDI/MDI-X = 0 (default)
636 	 *   0 - Auto for all speeds
637 	 *   1 - MDI mode
638 	 *   2 - MDI-X mode
639 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
640 	 */
641 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
642 
643 	switch (phy->mdix) {
644 	case 1:
645 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
646 		break;
647 	case 2:
648 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
649 		break;
650 	case 3:
651 		/* M88E1112 does not support this mode) */
652 		if (phy->id != M88E1112_E_PHY_ID) {
653 			phy_data |= M88E1000_PSCR_AUTO_X_1000T;
654 			break;
655 		}
656 	case 0:
657 	default:
658 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
659 		break;
660 	}
661 
662 	/*
663 	 * Options:
664 	 *   disable_polarity_correction = 0 (default)
665 	 *       Automatic Correction for Reversed Cable Polarity
666 	 *   0 - Disabled
667 	 *   1 - Enabled
668 	 */
669 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
670 	if (phy->disable_polarity_correction == 1)
671 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
672 
673 	/* Enable downshift and setting it to X6 */
674 	phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
675 	phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
676 	phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
677 
678 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
679 	if (ret_val)
680 		goto out;
681 
682 	/* Commit the changes. */
683 	ret_val = igb_phy_sw_reset(hw);
684 	if (ret_val) {
685 		hw_dbg("Error committing the PHY changes\n");
686 		goto out;
687 	}
688 
689 out:
690 	return ret_val;
691 }
692 
693 /**
694  *  igb_copper_link_setup_igp - Setup igp PHY's for copper link
695  *  @hw: pointer to the HW structure
696  *
697  *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
698  *  igp PHY's.
699  **/
700 s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
701 {
702 	struct e1000_phy_info *phy = &hw->phy;
703 	s32 ret_val;
704 	u16 data;
705 
706 	if (phy->reset_disable) {
707 		ret_val = 0;
708 		goto out;
709 	}
710 
711 	ret_val = phy->ops.reset(hw);
712 	if (ret_val) {
713 		hw_dbg("Error resetting the PHY.\n");
714 		goto out;
715 	}
716 
717 	/*
718 	 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
719 	 * timeout issues when LFS is enabled.
720 	 */
721 	msleep(100);
722 
723 	/*
724 	 * The NVM settings will configure LPLU in D3 for
725 	 * non-IGP1 PHYs.
726 	 */
727 	if (phy->type == e1000_phy_igp) {
728 		/* disable lplu d3 during driver init */
729 		if (phy->ops.set_d3_lplu_state)
730 			ret_val = phy->ops.set_d3_lplu_state(hw, false);
731 		if (ret_val) {
732 			hw_dbg("Error Disabling LPLU D3\n");
733 			goto out;
734 		}
735 	}
736 
737 	/* disable lplu d0 during driver init */
738 	ret_val = phy->ops.set_d0_lplu_state(hw, false);
739 	if (ret_val) {
740 		hw_dbg("Error Disabling LPLU D0\n");
741 		goto out;
742 	}
743 	/* Configure mdi-mdix settings */
744 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
745 	if (ret_val)
746 		goto out;
747 
748 	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
749 
750 	switch (phy->mdix) {
751 	case 1:
752 		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
753 		break;
754 	case 2:
755 		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
756 		break;
757 	case 0:
758 	default:
759 		data |= IGP01E1000_PSCR_AUTO_MDIX;
760 		break;
761 	}
762 	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
763 	if (ret_val)
764 		goto out;
765 
766 	/* set auto-master slave resolution settings */
767 	if (hw->mac.autoneg) {
768 		/*
769 		 * when autonegotiation advertisement is only 1000Mbps then we
770 		 * should disable SmartSpeed and enable Auto MasterSlave
771 		 * resolution as hardware default.
772 		 */
773 		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
774 			/* Disable SmartSpeed */
775 			ret_val = phy->ops.read_reg(hw,
776 						    IGP01E1000_PHY_PORT_CONFIG,
777 						    &data);
778 			if (ret_val)
779 				goto out;
780 
781 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
782 			ret_val = phy->ops.write_reg(hw,
783 						     IGP01E1000_PHY_PORT_CONFIG,
784 						     data);
785 			if (ret_val)
786 				goto out;
787 
788 			/* Set auto Master/Slave resolution process */
789 			ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
790 			if (ret_val)
791 				goto out;
792 
793 			data &= ~CR_1000T_MS_ENABLE;
794 			ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
795 			if (ret_val)
796 				goto out;
797 		}
798 
799 		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
800 		if (ret_val)
801 			goto out;
802 
803 		/* load defaults for future use */
804 		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
805 			((data & CR_1000T_MS_VALUE) ?
806 			e1000_ms_force_master :
807 			e1000_ms_force_slave) :
808 			e1000_ms_auto;
809 
810 		switch (phy->ms_type) {
811 		case e1000_ms_force_master:
812 			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
813 			break;
814 		case e1000_ms_force_slave:
815 			data |= CR_1000T_MS_ENABLE;
816 			data &= ~(CR_1000T_MS_VALUE);
817 			break;
818 		case e1000_ms_auto:
819 			data &= ~CR_1000T_MS_ENABLE;
820 		default:
821 			break;
822 		}
823 		ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
824 		if (ret_val)
825 			goto out;
826 	}
827 
828 out:
829 	return ret_val;
830 }
831 
832 /**
833  *  igb_copper_link_autoneg - Setup/Enable autoneg for copper link
834  *  @hw: pointer to the HW structure
835  *
836  *  Performs initial bounds checking on autoneg advertisement parameter, then
837  *  configure to advertise the full capability.  Setup the PHY to autoneg
838  *  and restart the negotiation process between the link partner.  If
839  *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
840  **/
841 static s32 igb_copper_link_autoneg(struct e1000_hw *hw)
842 {
843 	struct e1000_phy_info *phy = &hw->phy;
844 	s32 ret_val;
845 	u16 phy_ctrl;
846 
847 	/*
848 	 * Perform some bounds checking on the autoneg advertisement
849 	 * parameter.
850 	 */
851 	phy->autoneg_advertised &= phy->autoneg_mask;
852 
853 	/*
854 	 * If autoneg_advertised is zero, we assume it was not defaulted
855 	 * by the calling code so we set to advertise full capability.
856 	 */
857 	if (phy->autoneg_advertised == 0)
858 		phy->autoneg_advertised = phy->autoneg_mask;
859 
860 	hw_dbg("Reconfiguring auto-neg advertisement params\n");
861 	ret_val = igb_phy_setup_autoneg(hw);
862 	if (ret_val) {
863 		hw_dbg("Error Setting up Auto-Negotiation\n");
864 		goto out;
865 	}
866 	hw_dbg("Restarting Auto-Neg\n");
867 
868 	/*
869 	 * Restart auto-negotiation by setting the Auto Neg Enable bit and
870 	 * the Auto Neg Restart bit in the PHY control register.
871 	 */
872 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
873 	if (ret_val)
874 		goto out;
875 
876 	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
877 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
878 	if (ret_val)
879 		goto out;
880 
881 	/*
882 	 * Does the user want to wait for Auto-Neg to complete here, or
883 	 * check at a later time (for example, callback routine).
884 	 */
885 	if (phy->autoneg_wait_to_complete) {
886 		ret_val = igb_wait_autoneg(hw);
887 		if (ret_val) {
888 			hw_dbg("Error while waiting for "
889 			       "autoneg to complete\n");
890 			goto out;
891 		}
892 	}
893 
894 	hw->mac.get_link_status = true;
895 
896 out:
897 	return ret_val;
898 }
899 
900 /**
901  *  igb_phy_setup_autoneg - Configure PHY for auto-negotiation
902  *  @hw: pointer to the HW structure
903  *
904  *  Reads the MII auto-neg advertisement register and/or the 1000T control
905  *  register and if the PHY is already setup for auto-negotiation, then
906  *  return successful.  Otherwise, setup advertisement and flow control to
907  *  the appropriate values for the wanted auto-negotiation.
908  **/
909 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
910 {
911 	struct e1000_phy_info *phy = &hw->phy;
912 	s32 ret_val;
913 	u16 mii_autoneg_adv_reg;
914 	u16 mii_1000t_ctrl_reg = 0;
915 
916 	phy->autoneg_advertised &= phy->autoneg_mask;
917 
918 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
919 	ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
920 	if (ret_val)
921 		goto out;
922 
923 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
924 		/* Read the MII 1000Base-T Control Register (Address 9). */
925 		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
926 					    &mii_1000t_ctrl_reg);
927 		if (ret_val)
928 			goto out;
929 	}
930 
931 	/*
932 	 * Need to parse both autoneg_advertised and fc and set up
933 	 * the appropriate PHY registers.  First we will parse for
934 	 * autoneg_advertised software override.  Since we can advertise
935 	 * a plethora of combinations, we need to check each bit
936 	 * individually.
937 	 */
938 
939 	/*
940 	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
941 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
942 	 * the  1000Base-T Control Register (Address 9).
943 	 */
944 	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
945 				 NWAY_AR_100TX_HD_CAPS |
946 				 NWAY_AR_10T_FD_CAPS   |
947 				 NWAY_AR_10T_HD_CAPS);
948 	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
949 
950 	hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
951 
952 	/* Do we want to advertise 10 Mb Half Duplex? */
953 	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
954 		hw_dbg("Advertise 10mb Half duplex\n");
955 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
956 	}
957 
958 	/* Do we want to advertise 10 Mb Full Duplex? */
959 	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
960 		hw_dbg("Advertise 10mb Full duplex\n");
961 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
962 	}
963 
964 	/* Do we want to advertise 100 Mb Half Duplex? */
965 	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
966 		hw_dbg("Advertise 100mb Half duplex\n");
967 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
968 	}
969 
970 	/* Do we want to advertise 100 Mb Full Duplex? */
971 	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
972 		hw_dbg("Advertise 100mb Full duplex\n");
973 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
974 	}
975 
976 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
977 	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
978 		hw_dbg("Advertise 1000mb Half duplex request denied!\n");
979 
980 	/* Do we want to advertise 1000 Mb Full Duplex? */
981 	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
982 		hw_dbg("Advertise 1000mb Full duplex\n");
983 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
984 	}
985 
986 	/*
987 	 * Check for a software override of the flow control settings, and
988 	 * setup the PHY advertisement registers accordingly.  If
989 	 * auto-negotiation is enabled, then software will have to set the
990 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
991 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
992 	 * negotiation.
993 	 *
994 	 * The possible values of the "fc" parameter are:
995 	 *      0:  Flow control is completely disabled
996 	 *      1:  Rx flow control is enabled (we can receive pause frames
997 	 *          but not send pause frames).
998 	 *      2:  Tx flow control is enabled (we can send pause frames
999 	 *          but we do not support receiving pause frames).
1000 	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
1001 	 *  other:  No software override.  The flow control configuration
1002 	 *          in the EEPROM is used.
1003 	 */
1004 	switch (hw->fc.current_mode) {
1005 	case e1000_fc_none:
1006 		/*
1007 		 * Flow control (RX & TX) is completely disabled by a
1008 		 * software over-ride.
1009 		 */
1010 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1011 		break;
1012 	case e1000_fc_rx_pause:
1013 		/*
1014 		 * RX Flow control is enabled, and TX Flow control is
1015 		 * disabled, by a software over-ride.
1016 		 *
1017 		 * Since there really isn't a way to advertise that we are
1018 		 * capable of RX Pause ONLY, we will advertise that we
1019 		 * support both symmetric and asymmetric RX PAUSE.  Later
1020 		 * (in e1000_config_fc_after_link_up) we will disable the
1021 		 * hw's ability to send PAUSE frames.
1022 		 */
1023 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1024 		break;
1025 	case e1000_fc_tx_pause:
1026 		/*
1027 		 * TX Flow control is enabled, and RX Flow control is
1028 		 * disabled, by a software over-ride.
1029 		 */
1030 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1031 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1032 		break;
1033 	case e1000_fc_full:
1034 		/*
1035 		 * Flow control (both RX and TX) is enabled by a software
1036 		 * over-ride.
1037 		 */
1038 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1039 		break;
1040 	default:
1041 		hw_dbg("Flow control param set incorrectly\n");
1042 		ret_val = -E1000_ERR_CONFIG;
1043 		goto out;
1044 	}
1045 
1046 	ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1047 	if (ret_val)
1048 		goto out;
1049 
1050 	hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1051 
1052 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1053 		ret_val = phy->ops.write_reg(hw,
1054 					     PHY_1000T_CTRL,
1055 					     mii_1000t_ctrl_reg);
1056 		if (ret_val)
1057 			goto out;
1058 	}
1059 
1060 out:
1061 	return ret_val;
1062 }
1063 
1064 /**
1065  *  igb_setup_copper_link - Configure copper link settings
1066  *  @hw: pointer to the HW structure
1067  *
1068  *  Calls the appropriate function to configure the link for auto-neg or forced
1069  *  speed and duplex.  Then we check for link, once link is established calls
1070  *  to configure collision distance and flow control are called.  If link is
1071  *  not established, we return -E1000_ERR_PHY (-2).
1072  **/
1073 s32 igb_setup_copper_link(struct e1000_hw *hw)
1074 {
1075 	s32 ret_val;
1076 	bool link;
1077 
1078 
1079 	if (hw->mac.autoneg) {
1080 		/*
1081 		 * Setup autoneg and flow control advertisement and perform
1082 		 * autonegotiation.
1083 		 */
1084 		ret_val = igb_copper_link_autoneg(hw);
1085 		if (ret_val)
1086 			goto out;
1087 	} else {
1088 		/*
1089 		 * PHY will be set to 10H, 10F, 100H or 100F
1090 		 * depending on user settings.
1091 		 */
1092 		hw_dbg("Forcing Speed and Duplex\n");
1093 		ret_val = hw->phy.ops.force_speed_duplex(hw);
1094 		if (ret_val) {
1095 			hw_dbg("Error Forcing Speed and Duplex\n");
1096 			goto out;
1097 		}
1098 	}
1099 
1100 	/*
1101 	 * Check link status. Wait up to 100 microseconds for link to become
1102 	 * valid.
1103 	 */
1104 	ret_val = igb_phy_has_link(hw,
1105 	                           COPPER_LINK_UP_LIMIT,
1106 	                           10,
1107 	                           &link);
1108 	if (ret_val)
1109 		goto out;
1110 
1111 	if (link) {
1112 		hw_dbg("Valid link established!!!\n");
1113 		igb_config_collision_dist(hw);
1114 		ret_val = igb_config_fc_after_link_up(hw);
1115 	} else {
1116 		hw_dbg("Unable to establish link!!!\n");
1117 	}
1118 
1119 out:
1120 	return ret_val;
1121 }
1122 
1123 /**
1124  *  igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1125  *  @hw: pointer to the HW structure
1126  *
1127  *  Calls the PHY setup function to force speed and duplex.  Clears the
1128  *  auto-crossover to force MDI manually.  Waits for link and returns
1129  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1130  **/
1131 s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1132 {
1133 	struct e1000_phy_info *phy = &hw->phy;
1134 	s32 ret_val;
1135 	u16 phy_data;
1136 	bool link;
1137 
1138 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1139 	if (ret_val)
1140 		goto out;
1141 
1142 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1143 
1144 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1145 	if (ret_val)
1146 		goto out;
1147 
1148 	/*
1149 	 * Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1150 	 * forced whenever speed and duplex are forced.
1151 	 */
1152 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1153 	if (ret_val)
1154 		goto out;
1155 
1156 	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1157 	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1158 
1159 	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1160 	if (ret_val)
1161 		goto out;
1162 
1163 	hw_dbg("IGP PSCR: %X\n", phy_data);
1164 
1165 	udelay(1);
1166 
1167 	if (phy->autoneg_wait_to_complete) {
1168 		hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1169 
1170 		ret_val = igb_phy_has_link(hw,
1171 						     PHY_FORCE_LIMIT,
1172 						     100000,
1173 						     &link);
1174 		if (ret_val)
1175 			goto out;
1176 
1177 		if (!link)
1178 			hw_dbg("Link taking longer than expected.\n");
1179 
1180 		/* Try once more */
1181 		ret_val = igb_phy_has_link(hw,
1182 						     PHY_FORCE_LIMIT,
1183 						     100000,
1184 						     &link);
1185 		if (ret_val)
1186 			goto out;
1187 	}
1188 
1189 out:
1190 	return ret_val;
1191 }
1192 
1193 /**
1194  *  igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1195  *  @hw: pointer to the HW structure
1196  *
1197  *  Calls the PHY setup function to force speed and duplex.  Clears the
1198  *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1199  *  changes.  If time expires while waiting for link up, we reset the DSP.
1200  *  After reset, TX_CLK and CRS on TX must be set.  Return successful upon
1201  *  successful completion, else return corresponding error code.
1202  **/
1203 s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1204 {
1205 	struct e1000_phy_info *phy = &hw->phy;
1206 	s32 ret_val;
1207 	u16 phy_data;
1208 	bool link;
1209 
1210 	/* I210 and I211 devices support Auto-Crossover in forced operation. */
1211 	if (phy->type != e1000_phy_i210) {
1212 		/*
1213 		 * Clear Auto-Crossover to force MDI manually.  M88E1000
1214 		 * requires MDI forced whenever speed and duplex are forced.
1215 		 */
1216 		ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL,
1217 					    &phy_data);
1218 		if (ret_val)
1219 			goto out;
1220 
1221 		phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1222 		ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
1223 					     phy_data);
1224 		if (ret_val)
1225 			goto out;
1226 
1227 		hw_dbg("M88E1000 PSCR: %X\n", phy_data);
1228 	}
1229 
1230 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1231 	if (ret_val)
1232 		goto out;
1233 
1234 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1235 
1236 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1237 	if (ret_val)
1238 		goto out;
1239 
1240 	/* Reset the phy to commit changes. */
1241 	ret_val = igb_phy_sw_reset(hw);
1242 	if (ret_val)
1243 		goto out;
1244 
1245 	if (phy->autoneg_wait_to_complete) {
1246 		hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1247 
1248 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
1249 		if (ret_val)
1250 			goto out;
1251 
1252 		if (!link) {
1253 			bool reset_dsp = true;
1254 
1255 			switch (hw->phy.id) {
1256 			case I347AT4_E_PHY_ID:
1257 			case M88E1112_E_PHY_ID:
1258 			case I210_I_PHY_ID:
1259 				reset_dsp = false;
1260 				break;
1261 			default:
1262 				if (hw->phy.type != e1000_phy_m88)
1263 					reset_dsp = false;
1264 				break;
1265 			}
1266 			if (!reset_dsp)
1267 				hw_dbg("Link taking longer than expected.\n");
1268 			else {
1269 				/*
1270 				 * We didn't get link.
1271 				 * Reset the DSP and cross our fingers.
1272 				 */
1273 				ret_val = phy->ops.write_reg(hw,
1274 							     M88E1000_PHY_PAGE_SELECT,
1275 							     0x001d);
1276 				if (ret_val)
1277 					goto out;
1278 				ret_val = igb_phy_reset_dsp(hw);
1279 				if (ret_val)
1280 					goto out;
1281 			}
1282 		}
1283 
1284 		/* Try once more */
1285 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT,
1286 					   100000, &link);
1287 		if (ret_val)
1288 			goto out;
1289 	}
1290 
1291 	if (hw->phy.type != e1000_phy_m88 ||
1292 	    hw->phy.id == I347AT4_E_PHY_ID ||
1293 	    hw->phy.id == M88E1112_E_PHY_ID ||
1294 	    hw->phy.id == I210_I_PHY_ID)
1295 		goto out;
1296 
1297 	ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1298 	if (ret_val)
1299 		goto out;
1300 
1301 	/*
1302 	 * Resetting the phy means we need to re-force TX_CLK in the
1303 	 * Extended PHY Specific Control Register to 25MHz clock from
1304 	 * the reset value of 2.5MHz.
1305 	 */
1306 	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1307 	ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1308 	if (ret_val)
1309 		goto out;
1310 
1311 	/*
1312 	 * In addition, we must re-enable CRS on Tx for both half and full
1313 	 * duplex.
1314 	 */
1315 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1316 	if (ret_val)
1317 		goto out;
1318 
1319 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1320 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1321 
1322 out:
1323 	return ret_val;
1324 }
1325 
1326 /**
1327  *  igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1328  *  @hw: pointer to the HW structure
1329  *  @phy_ctrl: pointer to current value of PHY_CONTROL
1330  *
1331  *  Forces speed and duplex on the PHY by doing the following: disable flow
1332  *  control, force speed/duplex on the MAC, disable auto speed detection,
1333  *  disable auto-negotiation, configure duplex, configure speed, configure
1334  *  the collision distance, write configuration to CTRL register.  The
1335  *  caller must write to the PHY_CONTROL register for these settings to
1336  *  take affect.
1337  **/
1338 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
1339 					       u16 *phy_ctrl)
1340 {
1341 	struct e1000_mac_info *mac = &hw->mac;
1342 	u32 ctrl;
1343 
1344 	/* Turn off flow control when forcing speed/duplex */
1345 	hw->fc.current_mode = e1000_fc_none;
1346 
1347 	/* Force speed/duplex on the mac */
1348 	ctrl = rd32(E1000_CTRL);
1349 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1350 	ctrl &= ~E1000_CTRL_SPD_SEL;
1351 
1352 	/* Disable Auto Speed Detection */
1353 	ctrl &= ~E1000_CTRL_ASDE;
1354 
1355 	/* Disable autoneg on the phy */
1356 	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1357 
1358 	/* Forcing Full or Half Duplex? */
1359 	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1360 		ctrl &= ~E1000_CTRL_FD;
1361 		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1362 		hw_dbg("Half Duplex\n");
1363 	} else {
1364 		ctrl |= E1000_CTRL_FD;
1365 		*phy_ctrl |= MII_CR_FULL_DUPLEX;
1366 		hw_dbg("Full Duplex\n");
1367 	}
1368 
1369 	/* Forcing 10mb or 100mb? */
1370 	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1371 		ctrl |= E1000_CTRL_SPD_100;
1372 		*phy_ctrl |= MII_CR_SPEED_100;
1373 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1374 		hw_dbg("Forcing 100mb\n");
1375 	} else {
1376 		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1377 		*phy_ctrl |= MII_CR_SPEED_10;
1378 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1379 		hw_dbg("Forcing 10mb\n");
1380 	}
1381 
1382 	igb_config_collision_dist(hw);
1383 
1384 	wr32(E1000_CTRL, ctrl);
1385 }
1386 
1387 /**
1388  *  igb_set_d3_lplu_state - Sets low power link up state for D3
1389  *  @hw: pointer to the HW structure
1390  *  @active: boolean used to enable/disable lplu
1391  *
1392  *  Success returns 0, Failure returns 1
1393  *
1394  *  The low power link up (lplu) state is set to the power management level D3
1395  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1396  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1397  *  is used during Dx states where the power conservation is most important.
1398  *  During driver activity, SmartSpeed should be enabled so performance is
1399  *  maintained.
1400  **/
1401 s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1402 {
1403 	struct e1000_phy_info *phy = &hw->phy;
1404 	s32 ret_val = 0;
1405 	u16 data;
1406 
1407 	if (!(hw->phy.ops.read_reg))
1408 		goto out;
1409 
1410 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1411 	if (ret_val)
1412 		goto out;
1413 
1414 	if (!active) {
1415 		data &= ~IGP02E1000_PM_D3_LPLU;
1416 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1417 					     data);
1418 		if (ret_val)
1419 			goto out;
1420 		/*
1421 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1422 		 * during Dx states where the power conservation is most
1423 		 * important.  During driver activity we should enable
1424 		 * SmartSpeed, so performance is maintained.
1425 		 */
1426 		if (phy->smart_speed == e1000_smart_speed_on) {
1427 			ret_val = phy->ops.read_reg(hw,
1428 						    IGP01E1000_PHY_PORT_CONFIG,
1429 						    &data);
1430 			if (ret_val)
1431 				goto out;
1432 
1433 			data |= IGP01E1000_PSCFR_SMART_SPEED;
1434 			ret_val = phy->ops.write_reg(hw,
1435 						     IGP01E1000_PHY_PORT_CONFIG,
1436 						     data);
1437 			if (ret_val)
1438 				goto out;
1439 		} else if (phy->smart_speed == e1000_smart_speed_off) {
1440 			ret_val = phy->ops.read_reg(hw,
1441 						     IGP01E1000_PHY_PORT_CONFIG,
1442 						     &data);
1443 			if (ret_val)
1444 				goto out;
1445 
1446 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1447 			ret_val = phy->ops.write_reg(hw,
1448 						     IGP01E1000_PHY_PORT_CONFIG,
1449 						     data);
1450 			if (ret_val)
1451 				goto out;
1452 		}
1453 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1454 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1455 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1456 		data |= IGP02E1000_PM_D3_LPLU;
1457 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1458 					      data);
1459 		if (ret_val)
1460 			goto out;
1461 
1462 		/* When LPLU is enabled, we should disable SmartSpeed */
1463 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1464 					     &data);
1465 		if (ret_val)
1466 			goto out;
1467 
1468 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1469 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1470 					      data);
1471 	}
1472 
1473 out:
1474 	return ret_val;
1475 }
1476 
1477 /**
1478  *  igb_check_downshift - Checks whether a downshift in speed occurred
1479  *  @hw: pointer to the HW structure
1480  *
1481  *  Success returns 0, Failure returns 1
1482  *
1483  *  A downshift is detected by querying the PHY link health.
1484  **/
1485 s32 igb_check_downshift(struct e1000_hw *hw)
1486 {
1487 	struct e1000_phy_info *phy = &hw->phy;
1488 	s32 ret_val;
1489 	u16 phy_data, offset, mask;
1490 
1491 	switch (phy->type) {
1492 	case e1000_phy_i210:
1493 	case e1000_phy_m88:
1494 	case e1000_phy_gg82563:
1495 		offset	= M88E1000_PHY_SPEC_STATUS;
1496 		mask	= M88E1000_PSSR_DOWNSHIFT;
1497 		break;
1498 	case e1000_phy_igp_2:
1499 	case e1000_phy_igp:
1500 	case e1000_phy_igp_3:
1501 		offset	= IGP01E1000_PHY_LINK_HEALTH;
1502 		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
1503 		break;
1504 	default:
1505 		/* speed downshift not supported */
1506 		phy->speed_downgraded = false;
1507 		ret_val = 0;
1508 		goto out;
1509 	}
1510 
1511 	ret_val = phy->ops.read_reg(hw, offset, &phy_data);
1512 
1513 	if (!ret_val)
1514 		phy->speed_downgraded = (phy_data & mask) ? true : false;
1515 
1516 out:
1517 	return ret_val;
1518 }
1519 
1520 /**
1521  *  igb_check_polarity_m88 - Checks the polarity.
1522  *  @hw: pointer to the HW structure
1523  *
1524  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1525  *
1526  *  Polarity is determined based on the PHY specific status register.
1527  **/
1528 s32 igb_check_polarity_m88(struct e1000_hw *hw)
1529 {
1530 	struct e1000_phy_info *phy = &hw->phy;
1531 	s32 ret_val;
1532 	u16 data;
1533 
1534 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
1535 
1536 	if (!ret_val)
1537 		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1538 				      ? e1000_rev_polarity_reversed
1539 				      : e1000_rev_polarity_normal;
1540 
1541 	return ret_val;
1542 }
1543 
1544 /**
1545  *  igb_check_polarity_igp - Checks the polarity.
1546  *  @hw: pointer to the HW structure
1547  *
1548  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1549  *
1550  *  Polarity is determined based on the PHY port status register, and the
1551  *  current speed (since there is no polarity at 100Mbps).
1552  **/
1553 static s32 igb_check_polarity_igp(struct e1000_hw *hw)
1554 {
1555 	struct e1000_phy_info *phy = &hw->phy;
1556 	s32 ret_val;
1557 	u16 data, offset, mask;
1558 
1559 	/*
1560 	 * Polarity is determined based on the speed of
1561 	 * our connection.
1562 	 */
1563 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1564 	if (ret_val)
1565 		goto out;
1566 
1567 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1568 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1569 		offset	= IGP01E1000_PHY_PCS_INIT_REG;
1570 		mask	= IGP01E1000_PHY_POLARITY_MASK;
1571 	} else {
1572 		/*
1573 		 * This really only applies to 10Mbps since
1574 		 * there is no polarity for 100Mbps (always 0).
1575 		 */
1576 		offset	= IGP01E1000_PHY_PORT_STATUS;
1577 		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
1578 	}
1579 
1580 	ret_val = phy->ops.read_reg(hw, offset, &data);
1581 
1582 	if (!ret_val)
1583 		phy->cable_polarity = (data & mask)
1584 				      ? e1000_rev_polarity_reversed
1585 				      : e1000_rev_polarity_normal;
1586 
1587 out:
1588 	return ret_val;
1589 }
1590 
1591 /**
1592  *  igb_wait_autoneg - Wait for auto-neg compeletion
1593  *  @hw: pointer to the HW structure
1594  *
1595  *  Waits for auto-negotiation to complete or for the auto-negotiation time
1596  *  limit to expire, which ever happens first.
1597  **/
1598 static s32 igb_wait_autoneg(struct e1000_hw *hw)
1599 {
1600 	s32 ret_val = 0;
1601 	u16 i, phy_status;
1602 
1603 	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1604 	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1605 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1606 		if (ret_val)
1607 			break;
1608 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1609 		if (ret_val)
1610 			break;
1611 		if (phy_status & MII_SR_AUTONEG_COMPLETE)
1612 			break;
1613 		msleep(100);
1614 	}
1615 
1616 	/*
1617 	 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1618 	 * has completed.
1619 	 */
1620 	return ret_val;
1621 }
1622 
1623 /**
1624  *  igb_phy_has_link - Polls PHY for link
1625  *  @hw: pointer to the HW structure
1626  *  @iterations: number of times to poll for link
1627  *  @usec_interval: delay between polling attempts
1628  *  @success: pointer to whether polling was successful or not
1629  *
1630  *  Polls the PHY status register for link, 'iterations' number of times.
1631  **/
1632 s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations,
1633 			       u32 usec_interval, bool *success)
1634 {
1635 	s32 ret_val = 0;
1636 	u16 i, phy_status;
1637 
1638 	for (i = 0; i < iterations; i++) {
1639 		/*
1640 		 * Some PHYs require the PHY_STATUS register to be read
1641 		 * twice due to the link bit being sticky.  No harm doing
1642 		 * it across the board.
1643 		 */
1644 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1645 		if (ret_val) {
1646 			/*
1647 			 * If the first read fails, another entity may have
1648 			 * ownership of the resources, wait and try again to
1649 			 * see if they have relinquished the resources yet.
1650 			 */
1651 			udelay(usec_interval);
1652 		}
1653 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1654 		if (ret_val)
1655 			break;
1656 		if (phy_status & MII_SR_LINK_STATUS)
1657 			break;
1658 		if (usec_interval >= 1000)
1659 			mdelay(usec_interval/1000);
1660 		else
1661 			udelay(usec_interval);
1662 	}
1663 
1664 	*success = (i < iterations) ? true : false;
1665 
1666 	return ret_val;
1667 }
1668 
1669 /**
1670  *  igb_get_cable_length_m88 - Determine cable length for m88 PHY
1671  *  @hw: pointer to the HW structure
1672  *
1673  *  Reads the PHY specific status register to retrieve the cable length
1674  *  information.  The cable length is determined by averaging the minimum and
1675  *  maximum values to get the "average" cable length.  The m88 PHY has four
1676  *  possible cable length values, which are:
1677  *	Register Value		Cable Length
1678  *	0			< 50 meters
1679  *	1			50 - 80 meters
1680  *	2			80 - 110 meters
1681  *	3			110 - 140 meters
1682  *	4			> 140 meters
1683  **/
1684 s32 igb_get_cable_length_m88(struct e1000_hw *hw)
1685 {
1686 	struct e1000_phy_info *phy = &hw->phy;
1687 	s32 ret_val;
1688 	u16 phy_data, index;
1689 
1690 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1691 	if (ret_val)
1692 		goto out;
1693 
1694 	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1695 		M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1696 	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1697 		ret_val = -E1000_ERR_PHY;
1698 		goto out;
1699 	}
1700 
1701 	phy->min_cable_length = e1000_m88_cable_length_table[index];
1702 	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1703 
1704 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1705 
1706 out:
1707 	return ret_val;
1708 }
1709 
1710 s32 igb_get_cable_length_m88_gen2(struct e1000_hw *hw)
1711 {
1712 	struct e1000_phy_info *phy = &hw->phy;
1713 	s32 ret_val;
1714 	u16 phy_data, phy_data2, index, default_page, is_cm;
1715 
1716 	switch (hw->phy.id) {
1717 	case I210_I_PHY_ID:
1718 		/* Get cable length from PHY Cable Diagnostics Control Reg */
1719 		ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
1720 					    (I347AT4_PCDL + phy->addr),
1721 					    &phy_data);
1722 		if (ret_val)
1723 			return ret_val;
1724 
1725 		/* Check if the unit of cable length is meters or cm */
1726 		ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
1727 					    I347AT4_PCDC, &phy_data2);
1728 		if (ret_val)
1729 			return ret_val;
1730 
1731 		is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1732 
1733 		/* Populate the phy structure with cable length in meters */
1734 		phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
1735 		phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
1736 		phy->cable_length = phy_data / (is_cm ? 100 : 1);
1737 		break;
1738 	case I347AT4_E_PHY_ID:
1739 		/* Remember the original page select and set it to 7 */
1740 		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1741 					    &default_page);
1742 		if (ret_val)
1743 			goto out;
1744 
1745 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
1746 		if (ret_val)
1747 			goto out;
1748 
1749 		/* Get cable length from PHY Cable Diagnostics Control Reg */
1750 		ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr),
1751 					    &phy_data);
1752 		if (ret_val)
1753 			goto out;
1754 
1755 		/* Check if the unit of cable length is meters or cm */
1756 		ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
1757 		if (ret_val)
1758 			goto out;
1759 
1760 		is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1761 
1762 		/* Populate the phy structure with cable length in meters */
1763 		phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
1764 		phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
1765 		phy->cable_length = phy_data / (is_cm ? 100 : 1);
1766 
1767 		/* Reset the page selec to its original value */
1768 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1769 					     default_page);
1770 		if (ret_val)
1771 			goto out;
1772 		break;
1773 	case M88E1112_E_PHY_ID:
1774 		/* Remember the original page select and set it to 5 */
1775 		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1776 					    &default_page);
1777 		if (ret_val)
1778 			goto out;
1779 
1780 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
1781 		if (ret_val)
1782 			goto out;
1783 
1784 		ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
1785 					    &phy_data);
1786 		if (ret_val)
1787 			goto out;
1788 
1789 		index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1790 			M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1791 		if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1792 			ret_val = -E1000_ERR_PHY;
1793 			goto out;
1794 		}
1795 
1796 		phy->min_cable_length = e1000_m88_cable_length_table[index];
1797 		phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1798 
1799 		phy->cable_length = (phy->min_cable_length +
1800 				     phy->max_cable_length) / 2;
1801 
1802 		/* Reset the page select to its original value */
1803 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1804 					     default_page);
1805 		if (ret_val)
1806 			goto out;
1807 
1808 		break;
1809 	default:
1810 		ret_val = -E1000_ERR_PHY;
1811 		goto out;
1812 	}
1813 
1814 out:
1815 	return ret_val;
1816 }
1817 
1818 /**
1819  *  igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1820  *  @hw: pointer to the HW structure
1821  *
1822  *  The automatic gain control (agc) normalizes the amplitude of the
1823  *  received signal, adjusting for the attenuation produced by the
1824  *  cable.  By reading the AGC registers, which represent the
1825  *  combination of coarse and fine gain value, the value can be put
1826  *  into a lookup table to obtain the approximate cable length
1827  *  for each channel.
1828  **/
1829 s32 igb_get_cable_length_igp_2(struct e1000_hw *hw)
1830 {
1831 	struct e1000_phy_info *phy = &hw->phy;
1832 	s32 ret_val = 0;
1833 	u16 phy_data, i, agc_value = 0;
1834 	u16 cur_agc_index, max_agc_index = 0;
1835 	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1836 	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1837 	       IGP02E1000_PHY_AGC_A,
1838 	       IGP02E1000_PHY_AGC_B,
1839 	       IGP02E1000_PHY_AGC_C,
1840 	       IGP02E1000_PHY_AGC_D
1841 	};
1842 
1843 	/* Read the AGC registers for all channels */
1844 	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1845 		ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
1846 		if (ret_val)
1847 			goto out;
1848 
1849 		/*
1850 		 * Getting bits 15:9, which represent the combination of
1851 		 * coarse and fine gain values.  The result is a number
1852 		 * that can be put into the lookup table to obtain the
1853 		 * approximate cable length.
1854 		 */
1855 		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1856 				IGP02E1000_AGC_LENGTH_MASK;
1857 
1858 		/* Array index bound check. */
1859 		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1860 		    (cur_agc_index == 0)) {
1861 			ret_val = -E1000_ERR_PHY;
1862 			goto out;
1863 		}
1864 
1865 		/* Remove min & max AGC values from calculation. */
1866 		if (e1000_igp_2_cable_length_table[min_agc_index] >
1867 		    e1000_igp_2_cable_length_table[cur_agc_index])
1868 			min_agc_index = cur_agc_index;
1869 		if (e1000_igp_2_cable_length_table[max_agc_index] <
1870 		    e1000_igp_2_cable_length_table[cur_agc_index])
1871 			max_agc_index = cur_agc_index;
1872 
1873 		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1874 	}
1875 
1876 	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1877 		      e1000_igp_2_cable_length_table[max_agc_index]);
1878 	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1879 
1880 	/* Calculate cable length with the error range of +/- 10 meters. */
1881 	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1882 				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1883 	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1884 
1885 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1886 
1887 out:
1888 	return ret_val;
1889 }
1890 
1891 /**
1892  *  igb_get_phy_info_m88 - Retrieve PHY information
1893  *  @hw: pointer to the HW structure
1894  *
1895  *  Valid for only copper links.  Read the PHY status register (sticky read)
1896  *  to verify that link is up.  Read the PHY special control register to
1897  *  determine the polarity and 10base-T extended distance.  Read the PHY
1898  *  special status register to determine MDI/MDIx and current speed.  If
1899  *  speed is 1000, then determine cable length, local and remote receiver.
1900  **/
1901 s32 igb_get_phy_info_m88(struct e1000_hw *hw)
1902 {
1903 	struct e1000_phy_info *phy = &hw->phy;
1904 	s32  ret_val;
1905 	u16 phy_data;
1906 	bool link;
1907 
1908 	if (phy->media_type != e1000_media_type_copper) {
1909 		hw_dbg("Phy info is only valid for copper media\n");
1910 		ret_val = -E1000_ERR_CONFIG;
1911 		goto out;
1912 	}
1913 
1914 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
1915 	if (ret_val)
1916 		goto out;
1917 
1918 	if (!link) {
1919 		hw_dbg("Phy info is only valid if link is up\n");
1920 		ret_val = -E1000_ERR_CONFIG;
1921 		goto out;
1922 	}
1923 
1924 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1925 	if (ret_val)
1926 		goto out;
1927 
1928 	phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
1929 				   ? true : false;
1930 
1931 	ret_val = igb_check_polarity_m88(hw);
1932 	if (ret_val)
1933 		goto out;
1934 
1935 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1936 	if (ret_val)
1937 		goto out;
1938 
1939 	phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false;
1940 
1941 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1942 		ret_val = phy->ops.get_cable_length(hw);
1943 		if (ret_val)
1944 			goto out;
1945 
1946 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
1947 		if (ret_val)
1948 			goto out;
1949 
1950 		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1951 				? e1000_1000t_rx_status_ok
1952 				: e1000_1000t_rx_status_not_ok;
1953 
1954 		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1955 				 ? e1000_1000t_rx_status_ok
1956 				 : e1000_1000t_rx_status_not_ok;
1957 	} else {
1958 		/* Set values to "undefined" */
1959 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1960 		phy->local_rx = e1000_1000t_rx_status_undefined;
1961 		phy->remote_rx = e1000_1000t_rx_status_undefined;
1962 	}
1963 
1964 out:
1965 	return ret_val;
1966 }
1967 
1968 /**
1969  *  igb_get_phy_info_igp - Retrieve igp PHY information
1970  *  @hw: pointer to the HW structure
1971  *
1972  *  Read PHY status to determine if link is up.  If link is up, then
1973  *  set/determine 10base-T extended distance and polarity correction.  Read
1974  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1975  *  determine on the cable length, local and remote receiver.
1976  **/
1977 s32 igb_get_phy_info_igp(struct e1000_hw *hw)
1978 {
1979 	struct e1000_phy_info *phy = &hw->phy;
1980 	s32 ret_val;
1981 	u16 data;
1982 	bool link;
1983 
1984 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
1985 	if (ret_val)
1986 		goto out;
1987 
1988 	if (!link) {
1989 		hw_dbg("Phy info is only valid if link is up\n");
1990 		ret_val = -E1000_ERR_CONFIG;
1991 		goto out;
1992 	}
1993 
1994 	phy->polarity_correction = true;
1995 
1996 	ret_val = igb_check_polarity_igp(hw);
1997 	if (ret_val)
1998 		goto out;
1999 
2000 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2001 	if (ret_val)
2002 		goto out;
2003 
2004 	phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false;
2005 
2006 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2007 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
2008 		ret_val = phy->ops.get_cable_length(hw);
2009 		if (ret_val)
2010 			goto out;
2011 
2012 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2013 		if (ret_val)
2014 			goto out;
2015 
2016 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2017 				? e1000_1000t_rx_status_ok
2018 				: e1000_1000t_rx_status_not_ok;
2019 
2020 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2021 				 ? e1000_1000t_rx_status_ok
2022 				 : e1000_1000t_rx_status_not_ok;
2023 	} else {
2024 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2025 		phy->local_rx = e1000_1000t_rx_status_undefined;
2026 		phy->remote_rx = e1000_1000t_rx_status_undefined;
2027 	}
2028 
2029 out:
2030 	return ret_val;
2031 }
2032 
2033 /**
2034  *  igb_phy_sw_reset - PHY software reset
2035  *  @hw: pointer to the HW structure
2036  *
2037  *  Does a software reset of the PHY by reading the PHY control register and
2038  *  setting/write the control register reset bit to the PHY.
2039  **/
2040 s32 igb_phy_sw_reset(struct e1000_hw *hw)
2041 {
2042 	s32 ret_val = 0;
2043 	u16 phy_ctrl;
2044 
2045 	if (!(hw->phy.ops.read_reg))
2046 		goto out;
2047 
2048 	ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
2049 	if (ret_val)
2050 		goto out;
2051 
2052 	phy_ctrl |= MII_CR_RESET;
2053 	ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
2054 	if (ret_val)
2055 		goto out;
2056 
2057 	udelay(1);
2058 
2059 out:
2060 	return ret_val;
2061 }
2062 
2063 /**
2064  *  igb_phy_hw_reset - PHY hardware reset
2065  *  @hw: pointer to the HW structure
2066  *
2067  *  Verify the reset block is not blocking us from resetting.  Acquire
2068  *  semaphore (if necessary) and read/set/write the device control reset
2069  *  bit in the PHY.  Wait the appropriate delay time for the device to
2070  *  reset and relase the semaphore (if necessary).
2071  **/
2072 s32 igb_phy_hw_reset(struct e1000_hw *hw)
2073 {
2074 	struct e1000_phy_info *phy = &hw->phy;
2075 	s32  ret_val;
2076 	u32 ctrl;
2077 
2078 	ret_val = igb_check_reset_block(hw);
2079 	if (ret_val) {
2080 		ret_val = 0;
2081 		goto out;
2082 	}
2083 
2084 	ret_val = phy->ops.acquire(hw);
2085 	if (ret_val)
2086 		goto out;
2087 
2088 	ctrl = rd32(E1000_CTRL);
2089 	wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
2090 	wrfl();
2091 
2092 	udelay(phy->reset_delay_us);
2093 
2094 	wr32(E1000_CTRL, ctrl);
2095 	wrfl();
2096 
2097 	udelay(150);
2098 
2099 	phy->ops.release(hw);
2100 
2101 	ret_val = phy->ops.get_cfg_done(hw);
2102 
2103 out:
2104 	return ret_val;
2105 }
2106 
2107 /**
2108  *  igb_phy_init_script_igp3 - Inits the IGP3 PHY
2109  *  @hw: pointer to the HW structure
2110  *
2111  *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2112  **/
2113 s32 igb_phy_init_script_igp3(struct e1000_hw *hw)
2114 {
2115 	hw_dbg("Running IGP 3 PHY init script\n");
2116 
2117 	/* PHY init IGP 3 */
2118 	/* Enable rise/fall, 10-mode work in class-A */
2119 	hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
2120 	/* Remove all caps from Replica path filter */
2121 	hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
2122 	/* Bias trimming for ADC, AFE and Driver (Default) */
2123 	hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
2124 	/* Increase Hybrid poly bias */
2125 	hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
2126 	/* Add 4% to TX amplitude in Giga mode */
2127 	hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
2128 	/* Disable trimming (TTT) */
2129 	hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
2130 	/* Poly DC correction to 94.6% + 2% for all channels */
2131 	hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
2132 	/* ABS DC correction to 95.9% */
2133 	hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
2134 	/* BG temp curve trim */
2135 	hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
2136 	/* Increasing ADC OPAMP stage 1 currents to max */
2137 	hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
2138 	/* Force 1000 ( required for enabling PHY regs configuration) */
2139 	hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
2140 	/* Set upd_freq to 6 */
2141 	hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
2142 	/* Disable NPDFE */
2143 	hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
2144 	/* Disable adaptive fixed FFE (Default) */
2145 	hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
2146 	/* Enable FFE hysteresis */
2147 	hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
2148 	/* Fixed FFE for short cable lengths */
2149 	hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
2150 	/* Fixed FFE for medium cable lengths */
2151 	hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
2152 	/* Fixed FFE for long cable lengths */
2153 	hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
2154 	/* Enable Adaptive Clip Threshold */
2155 	hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
2156 	/* AHT reset limit to 1 */
2157 	hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
2158 	/* Set AHT master delay to 127 msec */
2159 	hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
2160 	/* Set scan bits for AHT */
2161 	hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
2162 	/* Set AHT Preset bits */
2163 	hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
2164 	/* Change integ_factor of channel A to 3 */
2165 	hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
2166 	/* Change prop_factor of channels BCD to 8 */
2167 	hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
2168 	/* Change cg_icount + enable integbp for channels BCD */
2169 	hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
2170 	/*
2171 	 * Change cg_icount + enable integbp + change prop_factor_master
2172 	 * to 8 for channel A
2173 	 */
2174 	hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
2175 	/* Disable AHT in Slave mode on channel A */
2176 	hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
2177 	/*
2178 	 * Enable LPLU and disable AN to 1000 in non-D0a states,
2179 	 * Enable SPD+B2B
2180 	 */
2181 	hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
2182 	/* Enable restart AN on an1000_dis change */
2183 	hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
2184 	/* Enable wh_fifo read clock in 10/100 modes */
2185 	hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
2186 	/* Restart AN, Speed selection is 1000 */
2187 	hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
2188 
2189 	return 0;
2190 }
2191 
2192 /**
2193  * igb_power_up_phy_copper - Restore copper link in case of PHY power down
2194  * @hw: pointer to the HW structure
2195  *
2196  * In the case of a PHY power down to save power, or to turn off link during a
2197  * driver unload, restore the link to previous settings.
2198  **/
2199 void igb_power_up_phy_copper(struct e1000_hw *hw)
2200 {
2201 	u16 mii_reg = 0;
2202 	u16 power_reg = 0;
2203 
2204 	/* The PHY will retain its settings across a power down/up cycle */
2205 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2206 	mii_reg &= ~MII_CR_POWER_DOWN;
2207 	if (hw->phy.type == e1000_phy_i210) {
2208 		hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg);
2209 		power_reg &= ~GS40G_CS_POWER_DOWN;
2210 		hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg);
2211 	}
2212 	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2213 }
2214 
2215 /**
2216  * igb_power_down_phy_copper - Power down copper PHY
2217  * @hw: pointer to the HW structure
2218  *
2219  * Power down PHY to save power when interface is down and wake on lan
2220  * is not enabled.
2221  **/
2222 void igb_power_down_phy_copper(struct e1000_hw *hw)
2223 {
2224 	u16 mii_reg = 0;
2225 	u16 power_reg = 0;
2226 
2227 	/* The PHY will retain its settings across a power down/up cycle */
2228 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2229 	mii_reg |= MII_CR_POWER_DOWN;
2230 
2231 	/* i210 Phy requires an additional bit for power up/down */
2232 	if (hw->phy.type == e1000_phy_i210) {
2233 		hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg);
2234 		power_reg |= GS40G_CS_POWER_DOWN;
2235 		hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg);
2236 	}
2237 	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2238 	msleep(1);
2239 }
2240 
2241 /**
2242  *  igb_check_polarity_82580 - Checks the polarity.
2243  *  @hw: pointer to the HW structure
2244  *
2245  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2246  *
2247  *  Polarity is determined based on the PHY specific status register.
2248  **/
2249 static s32 igb_check_polarity_82580(struct e1000_hw *hw)
2250 {
2251 	struct e1000_phy_info *phy = &hw->phy;
2252 	s32 ret_val;
2253 	u16 data;
2254 
2255 
2256 	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2257 
2258 	if (!ret_val)
2259 		phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY)
2260 		                      ? e1000_rev_polarity_reversed
2261 		                      : e1000_rev_polarity_normal;
2262 
2263 	return ret_val;
2264 }
2265 
2266 /**
2267  *  igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY
2268  *  @hw: pointer to the HW structure
2269  *
2270  *  Calls the PHY setup function to force speed and duplex.  Clears the
2271  *  auto-crossover to force MDI manually.  Waits for link and returns
2272  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
2273  **/
2274 s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw)
2275 {
2276 	struct e1000_phy_info *phy = &hw->phy;
2277 	s32 ret_val;
2278 	u16 phy_data;
2279 	bool link;
2280 
2281 
2282 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
2283 	if (ret_val)
2284 		goto out;
2285 
2286 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
2287 
2288 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
2289 	if (ret_val)
2290 		goto out;
2291 
2292 	/*
2293 	 * Clear Auto-Crossover to force MDI manually.  82580 requires MDI
2294 	 * forced whenever speed and duplex are forced.
2295 	 */
2296 	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
2297 	if (ret_val)
2298 		goto out;
2299 
2300 	phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
2301 
2302 	ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
2303 	if (ret_val)
2304 		goto out;
2305 
2306 	hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data);
2307 
2308 	udelay(1);
2309 
2310 	if (phy->autoneg_wait_to_complete) {
2311 		hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n");
2312 
2313 		ret_val = igb_phy_has_link(hw,
2314 		                           PHY_FORCE_LIMIT,
2315 		                           100000,
2316 		                           &link);
2317 		if (ret_val)
2318 			goto out;
2319 
2320 		if (!link)
2321 			hw_dbg("Link taking longer than expected.\n");
2322 
2323 		/* Try once more */
2324 		ret_val = igb_phy_has_link(hw,
2325 		                           PHY_FORCE_LIMIT,
2326 		                           100000,
2327 		                           &link);
2328 		if (ret_val)
2329 			goto out;
2330 	}
2331 
2332 out:
2333 	return ret_val;
2334 }
2335 
2336 /**
2337  *  igb_get_phy_info_82580 - Retrieve I82580 PHY information
2338  *  @hw: pointer to the HW structure
2339  *
2340  *  Read PHY status to determine if link is up.  If link is up, then
2341  *  set/determine 10base-T extended distance and polarity correction.  Read
2342  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
2343  *  determine on the cable length, local and remote receiver.
2344  **/
2345 s32 igb_get_phy_info_82580(struct e1000_hw *hw)
2346 {
2347 	struct e1000_phy_info *phy = &hw->phy;
2348 	s32 ret_val;
2349 	u16 data;
2350 	bool link;
2351 
2352 
2353 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
2354 	if (ret_val)
2355 		goto out;
2356 
2357 	if (!link) {
2358 		hw_dbg("Phy info is only valid if link is up\n");
2359 		ret_val = -E1000_ERR_CONFIG;
2360 		goto out;
2361 	}
2362 
2363 	phy->polarity_correction = true;
2364 
2365 	ret_val = igb_check_polarity_82580(hw);
2366 	if (ret_val)
2367 		goto out;
2368 
2369 	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2370 	if (ret_val)
2371 		goto out;
2372 
2373 	phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false;
2374 
2375 	if ((data & I82580_PHY_STATUS2_SPEED_MASK) ==
2376 	    I82580_PHY_STATUS2_SPEED_1000MBPS) {
2377 		ret_val = hw->phy.ops.get_cable_length(hw);
2378 		if (ret_val)
2379 			goto out;
2380 
2381 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2382 		if (ret_val)
2383 			goto out;
2384 
2385 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2386 		                ? e1000_1000t_rx_status_ok
2387 		                : e1000_1000t_rx_status_not_ok;
2388 
2389 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2390 		                 ? e1000_1000t_rx_status_ok
2391 		                 : e1000_1000t_rx_status_not_ok;
2392 	} else {
2393 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2394 		phy->local_rx = e1000_1000t_rx_status_undefined;
2395 		phy->remote_rx = e1000_1000t_rx_status_undefined;
2396 	}
2397 
2398 out:
2399 	return ret_val;
2400 }
2401 
2402 /**
2403  *  igb_get_cable_length_82580 - Determine cable length for 82580 PHY
2404  *  @hw: pointer to the HW structure
2405  *
2406  * Reads the diagnostic status register and verifies result is valid before
2407  * placing it in the phy_cable_length field.
2408  **/
2409 s32 igb_get_cable_length_82580(struct e1000_hw *hw)
2410 {
2411 	struct e1000_phy_info *phy = &hw->phy;
2412 	s32 ret_val;
2413 	u16 phy_data, length;
2414 
2415 
2416 	ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data);
2417 	if (ret_val)
2418 		goto out;
2419 
2420 	length = (phy_data & I82580_DSTATUS_CABLE_LENGTH) >>
2421 	         I82580_DSTATUS_CABLE_LENGTH_SHIFT;
2422 
2423 	if (length == E1000_CABLE_LENGTH_UNDEFINED)
2424 		ret_val = -E1000_ERR_PHY;
2425 
2426 	phy->cable_length = length;
2427 
2428 out:
2429 	return ret_val;
2430 }
2431 
2432 /**
2433  *  igb_write_phy_reg_gs40g - Write GS40G PHY register
2434  *  @hw: pointer to the HW structure
2435  *  @offset: lower half is register offset to write to
2436  *     upper half is page to use.
2437  *  @data: data to write at register offset
2438  *
2439  *  Acquires semaphore, if necessary, then writes the data to PHY register
2440  *  at the offset.  Release any acquired semaphores before exiting.
2441  **/
2442 s32 igb_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data)
2443 {
2444 	s32 ret_val;
2445 	u16 page = offset >> GS40G_PAGE_SHIFT;
2446 
2447 	offset = offset & GS40G_OFFSET_MASK;
2448 	ret_val = hw->phy.ops.acquire(hw);
2449 	if (ret_val)
2450 		return ret_val;
2451 
2452 	ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
2453 	if (ret_val)
2454 		goto release;
2455 	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2456 
2457 release:
2458 	hw->phy.ops.release(hw);
2459 	return ret_val;
2460 }
2461 
2462 /**
2463  *  igb_read_phy_reg_gs40g - Read GS40G  PHY register
2464  *  @hw: pointer to the HW structure
2465  *  @offset: lower half is register offset to read to
2466  *     upper half is page to use.
2467  *  @data: data to read at register offset
2468  *
2469  *  Acquires semaphore, if necessary, then reads the data in the PHY register
2470  *  at the offset.  Release any acquired semaphores before exiting.
2471  **/
2472 s32 igb_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data)
2473 {
2474 	s32 ret_val;
2475 	u16 page = offset >> GS40G_PAGE_SHIFT;
2476 
2477 	offset = offset & GS40G_OFFSET_MASK;
2478 	ret_val = hw->phy.ops.acquire(hw);
2479 	if (ret_val)
2480 		return ret_val;
2481 
2482 	ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
2483 	if (ret_val)
2484 		goto release;
2485 	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2486 
2487 release:
2488 	hw->phy.ops.release(hw);
2489 	return ret_val;
2490 }
2491 
2492 /**
2493  *  igb_set_master_slave_mode - Setup PHY for Master/slave mode
2494  *  @hw: pointer to the HW structure
2495  *
2496  *  Sets up Master/slave mode
2497  **/
2498 static s32 igb_set_master_slave_mode(struct e1000_hw *hw)
2499 {
2500 	s32 ret_val;
2501 	u16 phy_data;
2502 
2503 	/* Resolve Master/Slave mode */
2504 	ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data);
2505 	if (ret_val)
2506 		return ret_val;
2507 
2508 	/* load defaults for future use */
2509 	hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
2510 				   ((phy_data & CR_1000T_MS_VALUE) ?
2511 				    e1000_ms_force_master :
2512 				    e1000_ms_force_slave) : e1000_ms_auto;
2513 
2514 	switch (hw->phy.ms_type) {
2515 	case e1000_ms_force_master:
2516 		phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2517 		break;
2518 	case e1000_ms_force_slave:
2519 		phy_data |= CR_1000T_MS_ENABLE;
2520 		phy_data &= ~(CR_1000T_MS_VALUE);
2521 		break;
2522 	case e1000_ms_auto:
2523 		phy_data &= ~CR_1000T_MS_ENABLE;
2524 		/* fall-through */
2525 	default:
2526 		break;
2527 	}
2528 
2529 	return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data);
2530 }
2531