1 // SPDX-License-Identifier: GPL-2.0
2 /* Intel(R) Gigabit Ethernet Linux driver
3  * Copyright(c) 2007-2015 Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, see <http://www.gnu.org/licenses/>.
16  *
17  * The full GNU General Public License is included in this distribution in
18  * the file called "COPYING".
19  *
20  * Contact Information:
21  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
22  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
23  */
24 
25 #include <linux/if_ether.h>
26 #include <linux/delay.h>
27 
28 #include "e1000_mac.h"
29 #include "e1000_phy.h"
30 
31 static s32  igb_phy_setup_autoneg(struct e1000_hw *hw);
32 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
33 					     u16 *phy_ctrl);
34 static s32  igb_wait_autoneg(struct e1000_hw *hw);
35 static s32  igb_set_master_slave_mode(struct e1000_hw *hw);
36 
37 /* Cable length tables */
38 static const u16 e1000_m88_cable_length_table[] = {
39 	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
40 
41 static const u16 e1000_igp_2_cable_length_table[] = {
42 	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
43 	0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
44 	6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
45 	21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
46 	40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
47 	60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
48 	83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
49 	104, 109, 114, 118, 121, 124};
50 
51 /**
52  *  igb_check_reset_block - Check if PHY reset is blocked
53  *  @hw: pointer to the HW structure
54  *
55  *  Read the PHY management control register and check whether a PHY reset
56  *  is blocked.  If a reset is not blocked return 0, otherwise
57  *  return E1000_BLK_PHY_RESET (12).
58  **/
59 s32 igb_check_reset_block(struct e1000_hw *hw)
60 {
61 	u32 manc;
62 
63 	manc = rd32(E1000_MANC);
64 
65 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
66 }
67 
68 /**
69  *  igb_get_phy_id - Retrieve the PHY ID and revision
70  *  @hw: pointer to the HW structure
71  *
72  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
73  *  revision in the hardware structure.
74  **/
75 s32 igb_get_phy_id(struct e1000_hw *hw)
76 {
77 	struct e1000_phy_info *phy = &hw->phy;
78 	s32 ret_val = 0;
79 	u16 phy_id;
80 
81 	/* ensure PHY page selection to fix misconfigured i210 */
82 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
83 		phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0);
84 
85 	ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
86 	if (ret_val)
87 		goto out;
88 
89 	phy->id = (u32)(phy_id << 16);
90 	udelay(20);
91 	ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
92 	if (ret_val)
93 		goto out;
94 
95 	phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
96 	phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
97 
98 out:
99 	return ret_val;
100 }
101 
102 /**
103  *  igb_phy_reset_dsp - Reset PHY DSP
104  *  @hw: pointer to the HW structure
105  *
106  *  Reset the digital signal processor.
107  **/
108 static s32 igb_phy_reset_dsp(struct e1000_hw *hw)
109 {
110 	s32 ret_val = 0;
111 
112 	if (!(hw->phy.ops.write_reg))
113 		goto out;
114 
115 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
116 	if (ret_val)
117 		goto out;
118 
119 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
120 
121 out:
122 	return ret_val;
123 }
124 
125 /**
126  *  igb_read_phy_reg_mdic - Read MDI control register
127  *  @hw: pointer to the HW structure
128  *  @offset: register offset to be read
129  *  @data: pointer to the read data
130  *
131  *  Reads the MDI control register in the PHY at offset and stores the
132  *  information read to data.
133  **/
134 s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
135 {
136 	struct e1000_phy_info *phy = &hw->phy;
137 	u32 i, mdic = 0;
138 	s32 ret_val = 0;
139 
140 	if (offset > MAX_PHY_REG_ADDRESS) {
141 		hw_dbg("PHY Address %d is out of range\n", offset);
142 		ret_val = -E1000_ERR_PARAM;
143 		goto out;
144 	}
145 
146 	/* Set up Op-code, Phy Address, and register offset in the MDI
147 	 * Control register.  The MAC will take care of interfacing with the
148 	 * PHY to retrieve the desired data.
149 	 */
150 	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
151 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
152 		(E1000_MDIC_OP_READ));
153 
154 	wr32(E1000_MDIC, mdic);
155 
156 	/* Poll the ready bit to see if the MDI read completed
157 	 * Increasing the time out as testing showed failures with
158 	 * the lower time out
159 	 */
160 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
161 		udelay(50);
162 		mdic = rd32(E1000_MDIC);
163 		if (mdic & E1000_MDIC_READY)
164 			break;
165 	}
166 	if (!(mdic & E1000_MDIC_READY)) {
167 		hw_dbg("MDI Read did not complete\n");
168 		ret_val = -E1000_ERR_PHY;
169 		goto out;
170 	}
171 	if (mdic & E1000_MDIC_ERROR) {
172 		hw_dbg("MDI Error\n");
173 		ret_val = -E1000_ERR_PHY;
174 		goto out;
175 	}
176 	*data = (u16) mdic;
177 
178 out:
179 	return ret_val;
180 }
181 
182 /**
183  *  igb_write_phy_reg_mdic - Write MDI control register
184  *  @hw: pointer to the HW structure
185  *  @offset: register offset to write to
186  *  @data: data to write to register at offset
187  *
188  *  Writes data to MDI control register in the PHY at offset.
189  **/
190 s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
191 {
192 	struct e1000_phy_info *phy = &hw->phy;
193 	u32 i, mdic = 0;
194 	s32 ret_val = 0;
195 
196 	if (offset > MAX_PHY_REG_ADDRESS) {
197 		hw_dbg("PHY Address %d is out of range\n", offset);
198 		ret_val = -E1000_ERR_PARAM;
199 		goto out;
200 	}
201 
202 	/* Set up Op-code, Phy Address, and register offset in the MDI
203 	 * Control register.  The MAC will take care of interfacing with the
204 	 * PHY to retrieve the desired data.
205 	 */
206 	mdic = (((u32)data) |
207 		(offset << E1000_MDIC_REG_SHIFT) |
208 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
209 		(E1000_MDIC_OP_WRITE));
210 
211 	wr32(E1000_MDIC, mdic);
212 
213 	/* Poll the ready bit to see if the MDI read completed
214 	 * Increasing the time out as testing showed failures with
215 	 * the lower time out
216 	 */
217 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
218 		udelay(50);
219 		mdic = rd32(E1000_MDIC);
220 		if (mdic & E1000_MDIC_READY)
221 			break;
222 	}
223 	if (!(mdic & E1000_MDIC_READY)) {
224 		hw_dbg("MDI Write did not complete\n");
225 		ret_val = -E1000_ERR_PHY;
226 		goto out;
227 	}
228 	if (mdic & E1000_MDIC_ERROR) {
229 		hw_dbg("MDI Error\n");
230 		ret_val = -E1000_ERR_PHY;
231 		goto out;
232 	}
233 
234 out:
235 	return ret_val;
236 }
237 
238 /**
239  *  igb_read_phy_reg_i2c - Read PHY register using i2c
240  *  @hw: pointer to the HW structure
241  *  @offset: register offset to be read
242  *  @data: pointer to the read data
243  *
244  *  Reads the PHY register at offset using the i2c interface and stores the
245  *  retrieved information in data.
246  **/
247 s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
248 {
249 	struct e1000_phy_info *phy = &hw->phy;
250 	u32 i, i2ccmd = 0;
251 
252 	/* Set up Op-code, Phy Address, and register address in the I2CCMD
253 	 * register.  The MAC will take care of interfacing with the
254 	 * PHY to retrieve the desired data.
255 	 */
256 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
257 		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
258 		  (E1000_I2CCMD_OPCODE_READ));
259 
260 	wr32(E1000_I2CCMD, i2ccmd);
261 
262 	/* Poll the ready bit to see if the I2C read completed */
263 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
264 		udelay(50);
265 		i2ccmd = rd32(E1000_I2CCMD);
266 		if (i2ccmd & E1000_I2CCMD_READY)
267 			break;
268 	}
269 	if (!(i2ccmd & E1000_I2CCMD_READY)) {
270 		hw_dbg("I2CCMD Read did not complete\n");
271 		return -E1000_ERR_PHY;
272 	}
273 	if (i2ccmd & E1000_I2CCMD_ERROR) {
274 		hw_dbg("I2CCMD Error bit set\n");
275 		return -E1000_ERR_PHY;
276 	}
277 
278 	/* Need to byte-swap the 16-bit value. */
279 	*data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
280 
281 	return 0;
282 }
283 
284 /**
285  *  igb_write_phy_reg_i2c - Write PHY register using i2c
286  *  @hw: pointer to the HW structure
287  *  @offset: register offset to write to
288  *  @data: data to write at register offset
289  *
290  *  Writes the data to PHY register at the offset using the i2c interface.
291  **/
292 s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
293 {
294 	struct e1000_phy_info *phy = &hw->phy;
295 	u32 i, i2ccmd = 0;
296 	u16 phy_data_swapped;
297 
298 	/* Prevent overwriting SFP I2C EEPROM which is at A0 address.*/
299 	if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) {
300 		hw_dbg("PHY I2C Address %d is out of range.\n",
301 			  hw->phy.addr);
302 		return -E1000_ERR_CONFIG;
303 	}
304 
305 	/* Swap the data bytes for the I2C interface */
306 	phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
307 
308 	/* Set up Op-code, Phy Address, and register address in the I2CCMD
309 	 * register.  The MAC will take care of interfacing with the
310 	 * PHY to retrieve the desired data.
311 	 */
312 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
313 		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
314 		  E1000_I2CCMD_OPCODE_WRITE |
315 		  phy_data_swapped);
316 
317 	wr32(E1000_I2CCMD, i2ccmd);
318 
319 	/* Poll the ready bit to see if the I2C read completed */
320 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
321 		udelay(50);
322 		i2ccmd = rd32(E1000_I2CCMD);
323 		if (i2ccmd & E1000_I2CCMD_READY)
324 			break;
325 	}
326 	if (!(i2ccmd & E1000_I2CCMD_READY)) {
327 		hw_dbg("I2CCMD Write did not complete\n");
328 		return -E1000_ERR_PHY;
329 	}
330 	if (i2ccmd & E1000_I2CCMD_ERROR) {
331 		hw_dbg("I2CCMD Error bit set\n");
332 		return -E1000_ERR_PHY;
333 	}
334 
335 	return 0;
336 }
337 
338 /**
339  *  igb_read_sfp_data_byte - Reads SFP module data.
340  *  @hw: pointer to the HW structure
341  *  @offset: byte location offset to be read
342  *  @data: read data buffer pointer
343  *
344  *  Reads one byte from SFP module data stored
345  *  in SFP resided EEPROM memory or SFP diagnostic area.
346  *  Function should be called with
347  *  E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
348  *  E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
349  *  access
350  **/
351 s32 igb_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data)
352 {
353 	u32 i = 0;
354 	u32 i2ccmd = 0;
355 	u32 data_local = 0;
356 
357 	if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
358 		hw_dbg("I2CCMD command address exceeds upper limit\n");
359 		return -E1000_ERR_PHY;
360 	}
361 
362 	/* Set up Op-code, EEPROM Address,in the I2CCMD
363 	 * register. The MAC will take care of interfacing with the
364 	 * EEPROM to retrieve the desired data.
365 	 */
366 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
367 		  E1000_I2CCMD_OPCODE_READ);
368 
369 	wr32(E1000_I2CCMD, i2ccmd);
370 
371 	/* Poll the ready bit to see if the I2C read completed */
372 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
373 		udelay(50);
374 		data_local = rd32(E1000_I2CCMD);
375 		if (data_local & E1000_I2CCMD_READY)
376 			break;
377 	}
378 	if (!(data_local & E1000_I2CCMD_READY)) {
379 		hw_dbg("I2CCMD Read did not complete\n");
380 		return -E1000_ERR_PHY;
381 	}
382 	if (data_local & E1000_I2CCMD_ERROR) {
383 		hw_dbg("I2CCMD Error bit set\n");
384 		return -E1000_ERR_PHY;
385 	}
386 	*data = (u8) data_local & 0xFF;
387 
388 	return 0;
389 }
390 
391 /**
392  *  igb_read_phy_reg_igp - Read igp PHY register
393  *  @hw: pointer to the HW structure
394  *  @offset: register offset to be read
395  *  @data: pointer to the read data
396  *
397  *  Acquires semaphore, if necessary, then reads the PHY register at offset
398  *  and storing the retrieved information in data.  Release any acquired
399  *  semaphores before exiting.
400  **/
401 s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
402 {
403 	s32 ret_val = 0;
404 
405 	if (!(hw->phy.ops.acquire))
406 		goto out;
407 
408 	ret_val = hw->phy.ops.acquire(hw);
409 	if (ret_val)
410 		goto out;
411 
412 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
413 		ret_val = igb_write_phy_reg_mdic(hw,
414 						 IGP01E1000_PHY_PAGE_SELECT,
415 						 (u16)offset);
416 		if (ret_val) {
417 			hw->phy.ops.release(hw);
418 			goto out;
419 		}
420 	}
421 
422 	ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
423 					data);
424 
425 	hw->phy.ops.release(hw);
426 
427 out:
428 	return ret_val;
429 }
430 
431 /**
432  *  igb_write_phy_reg_igp - Write igp PHY register
433  *  @hw: pointer to the HW structure
434  *  @offset: register offset to write to
435  *  @data: data to write at register offset
436  *
437  *  Acquires semaphore, if necessary, then writes the data to PHY register
438  *  at the offset.  Release any acquired semaphores before exiting.
439  **/
440 s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
441 {
442 	s32 ret_val = 0;
443 
444 	if (!(hw->phy.ops.acquire))
445 		goto out;
446 
447 	ret_val = hw->phy.ops.acquire(hw);
448 	if (ret_val)
449 		goto out;
450 
451 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
452 		ret_val = igb_write_phy_reg_mdic(hw,
453 						 IGP01E1000_PHY_PAGE_SELECT,
454 						 (u16)offset);
455 		if (ret_val) {
456 			hw->phy.ops.release(hw);
457 			goto out;
458 		}
459 	}
460 
461 	ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
462 					 data);
463 
464 	hw->phy.ops.release(hw);
465 
466 out:
467 	return ret_val;
468 }
469 
470 /**
471  *  igb_copper_link_setup_82580 - Setup 82580 PHY for copper link
472  *  @hw: pointer to the HW structure
473  *
474  *  Sets up Carrier-sense on Transmit and downshift values.
475  **/
476 s32 igb_copper_link_setup_82580(struct e1000_hw *hw)
477 {
478 	struct e1000_phy_info *phy = &hw->phy;
479 	s32 ret_val;
480 	u16 phy_data;
481 
482 	if (phy->reset_disable) {
483 		ret_val = 0;
484 		goto out;
485 	}
486 
487 	if (phy->type == e1000_phy_82580) {
488 		ret_val = hw->phy.ops.reset(hw);
489 		if (ret_val) {
490 			hw_dbg("Error resetting the PHY.\n");
491 			goto out;
492 		}
493 	}
494 
495 	/* Enable CRS on TX. This must be set for half-duplex operation. */
496 	ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data);
497 	if (ret_val)
498 		goto out;
499 
500 	phy_data |= I82580_CFG_ASSERT_CRS_ON_TX;
501 
502 	/* Enable downshift */
503 	phy_data |= I82580_CFG_ENABLE_DOWNSHIFT;
504 
505 	ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data);
506 	if (ret_val)
507 		goto out;
508 
509 	/* Set MDI/MDIX mode */
510 	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
511 	if (ret_val)
512 		goto out;
513 	phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
514 	/* Options:
515 	 *   0 - Auto (default)
516 	 *   1 - MDI mode
517 	 *   2 - MDI-X mode
518 	 */
519 	switch (hw->phy.mdix) {
520 	case 1:
521 		break;
522 	case 2:
523 		phy_data |= I82580_PHY_CTRL2_MANUAL_MDIX;
524 		break;
525 	case 0:
526 	default:
527 		phy_data |= I82580_PHY_CTRL2_AUTO_MDI_MDIX;
528 		break;
529 	}
530 	ret_val = hw->phy.ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
531 
532 out:
533 	return ret_val;
534 }
535 
536 /**
537  *  igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
538  *  @hw: pointer to the HW structure
539  *
540  *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
541  *  and downshift values are set also.
542  **/
543 s32 igb_copper_link_setup_m88(struct e1000_hw *hw)
544 {
545 	struct e1000_phy_info *phy = &hw->phy;
546 	s32 ret_val;
547 	u16 phy_data;
548 
549 	if (phy->reset_disable) {
550 		ret_val = 0;
551 		goto out;
552 	}
553 
554 	/* Enable CRS on TX. This must be set for half-duplex operation. */
555 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
556 	if (ret_val)
557 		goto out;
558 
559 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
560 
561 	/* Options:
562 	 *   MDI/MDI-X = 0 (default)
563 	 *   0 - Auto for all speeds
564 	 *   1 - MDI mode
565 	 *   2 - MDI-X mode
566 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
567 	 */
568 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
569 
570 	switch (phy->mdix) {
571 	case 1:
572 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
573 		break;
574 	case 2:
575 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
576 		break;
577 	case 3:
578 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
579 		break;
580 	case 0:
581 	default:
582 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
583 		break;
584 	}
585 
586 	/* Options:
587 	 *   disable_polarity_correction = 0 (default)
588 	 *       Automatic Correction for Reversed Cable Polarity
589 	 *   0 - Disabled
590 	 *   1 - Enabled
591 	 */
592 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
593 	if (phy->disable_polarity_correction == 1)
594 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
595 
596 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
597 	if (ret_val)
598 		goto out;
599 
600 	if (phy->revision < E1000_REVISION_4) {
601 		/* Force TX_CLK in the Extended PHY Specific Control Register
602 		 * to 25MHz clock.
603 		 */
604 		ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
605 					    &phy_data);
606 		if (ret_val)
607 			goto out;
608 
609 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
610 
611 		if ((phy->revision == E1000_REVISION_2) &&
612 		    (phy->id == M88E1111_I_PHY_ID)) {
613 			/* 82573L PHY - set the downshift counter to 5x. */
614 			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
615 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
616 		} else {
617 			/* Configure Master and Slave downshift values */
618 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
619 				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
620 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
621 				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
622 		}
623 		ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
624 					     phy_data);
625 		if (ret_val)
626 			goto out;
627 	}
628 
629 	/* Commit the changes. */
630 	ret_val = igb_phy_sw_reset(hw);
631 	if (ret_val) {
632 		hw_dbg("Error committing the PHY changes\n");
633 		goto out;
634 	}
635 
636 out:
637 	return ret_val;
638 }
639 
640 /**
641  *  igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
642  *  @hw: pointer to the HW structure
643  *
644  *  Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
645  *  Also enables and sets the downshift parameters.
646  **/
647 s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw)
648 {
649 	struct e1000_phy_info *phy = &hw->phy;
650 	s32 ret_val;
651 	u16 phy_data;
652 
653 	if (phy->reset_disable)
654 		return 0;
655 
656 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
657 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
658 	if (ret_val)
659 		return ret_val;
660 
661 	/* Options:
662 	 *   MDI/MDI-X = 0 (default)
663 	 *   0 - Auto for all speeds
664 	 *   1 - MDI mode
665 	 *   2 - MDI-X mode
666 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
667 	 */
668 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
669 
670 	switch (phy->mdix) {
671 	case 1:
672 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
673 		break;
674 	case 2:
675 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
676 		break;
677 	case 3:
678 		/* M88E1112 does not support this mode) */
679 		if (phy->id != M88E1112_E_PHY_ID) {
680 			phy_data |= M88E1000_PSCR_AUTO_X_1000T;
681 			break;
682 		}
683 	case 0:
684 	default:
685 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
686 		break;
687 	}
688 
689 	/* Options:
690 	 *   disable_polarity_correction = 0 (default)
691 	 *       Automatic Correction for Reversed Cable Polarity
692 	 *   0 - Disabled
693 	 *   1 - Enabled
694 	 */
695 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
696 	if (phy->disable_polarity_correction == 1)
697 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
698 
699 	/* Enable downshift and setting it to X6 */
700 	if (phy->id == M88E1543_E_PHY_ID) {
701 		phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE;
702 		ret_val =
703 		    phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
704 		if (ret_val)
705 			return ret_val;
706 
707 		ret_val = igb_phy_sw_reset(hw);
708 		if (ret_val) {
709 			hw_dbg("Error committing the PHY changes\n");
710 			return ret_val;
711 		}
712 	}
713 
714 	phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
715 	phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
716 	phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
717 
718 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
719 	if (ret_val)
720 		return ret_val;
721 
722 	/* Commit the changes. */
723 	ret_val = igb_phy_sw_reset(hw);
724 	if (ret_val) {
725 		hw_dbg("Error committing the PHY changes\n");
726 		return ret_val;
727 	}
728 	ret_val = igb_set_master_slave_mode(hw);
729 	if (ret_val)
730 		return ret_val;
731 
732 	return 0;
733 }
734 
735 /**
736  *  igb_copper_link_setup_igp - Setup igp PHY's for copper link
737  *  @hw: pointer to the HW structure
738  *
739  *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
740  *  igp PHY's.
741  **/
742 s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
743 {
744 	struct e1000_phy_info *phy = &hw->phy;
745 	s32 ret_val;
746 	u16 data;
747 
748 	if (phy->reset_disable) {
749 		ret_val = 0;
750 		goto out;
751 	}
752 
753 	ret_val = phy->ops.reset(hw);
754 	if (ret_val) {
755 		hw_dbg("Error resetting the PHY.\n");
756 		goto out;
757 	}
758 
759 	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
760 	 * timeout issues when LFS is enabled.
761 	 */
762 	msleep(100);
763 
764 	/* The NVM settings will configure LPLU in D3 for
765 	 * non-IGP1 PHYs.
766 	 */
767 	if (phy->type == e1000_phy_igp) {
768 		/* disable lplu d3 during driver init */
769 		if (phy->ops.set_d3_lplu_state)
770 			ret_val = phy->ops.set_d3_lplu_state(hw, false);
771 		if (ret_val) {
772 			hw_dbg("Error Disabling LPLU D3\n");
773 			goto out;
774 		}
775 	}
776 
777 	/* disable lplu d0 during driver init */
778 	ret_val = phy->ops.set_d0_lplu_state(hw, false);
779 	if (ret_val) {
780 		hw_dbg("Error Disabling LPLU D0\n");
781 		goto out;
782 	}
783 	/* Configure mdi-mdix settings */
784 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
785 	if (ret_val)
786 		goto out;
787 
788 	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
789 
790 	switch (phy->mdix) {
791 	case 1:
792 		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
793 		break;
794 	case 2:
795 		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
796 		break;
797 	case 0:
798 	default:
799 		data |= IGP01E1000_PSCR_AUTO_MDIX;
800 		break;
801 	}
802 	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
803 	if (ret_val)
804 		goto out;
805 
806 	/* set auto-master slave resolution settings */
807 	if (hw->mac.autoneg) {
808 		/* when autonegotiation advertisement is only 1000Mbps then we
809 		 * should disable SmartSpeed and enable Auto MasterSlave
810 		 * resolution as hardware default.
811 		 */
812 		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
813 			/* Disable SmartSpeed */
814 			ret_val = phy->ops.read_reg(hw,
815 						    IGP01E1000_PHY_PORT_CONFIG,
816 						    &data);
817 			if (ret_val)
818 				goto out;
819 
820 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
821 			ret_val = phy->ops.write_reg(hw,
822 						     IGP01E1000_PHY_PORT_CONFIG,
823 						     data);
824 			if (ret_val)
825 				goto out;
826 
827 			/* Set auto Master/Slave resolution process */
828 			ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
829 			if (ret_val)
830 				goto out;
831 
832 			data &= ~CR_1000T_MS_ENABLE;
833 			ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
834 			if (ret_val)
835 				goto out;
836 		}
837 
838 		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
839 		if (ret_val)
840 			goto out;
841 
842 		/* load defaults for future use */
843 		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
844 			((data & CR_1000T_MS_VALUE) ?
845 			e1000_ms_force_master :
846 			e1000_ms_force_slave) :
847 			e1000_ms_auto;
848 
849 		switch (phy->ms_type) {
850 		case e1000_ms_force_master:
851 			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
852 			break;
853 		case e1000_ms_force_slave:
854 			data |= CR_1000T_MS_ENABLE;
855 			data &= ~(CR_1000T_MS_VALUE);
856 			break;
857 		case e1000_ms_auto:
858 			data &= ~CR_1000T_MS_ENABLE;
859 		default:
860 			break;
861 		}
862 		ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
863 		if (ret_val)
864 			goto out;
865 	}
866 
867 out:
868 	return ret_val;
869 }
870 
871 /**
872  *  igb_copper_link_autoneg - Setup/Enable autoneg for copper link
873  *  @hw: pointer to the HW structure
874  *
875  *  Performs initial bounds checking on autoneg advertisement parameter, then
876  *  configure to advertise the full capability.  Setup the PHY to autoneg
877  *  and restart the negotiation process between the link partner.  If
878  *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
879  **/
880 static s32 igb_copper_link_autoneg(struct e1000_hw *hw)
881 {
882 	struct e1000_phy_info *phy = &hw->phy;
883 	s32 ret_val;
884 	u16 phy_ctrl;
885 
886 	/* Perform some bounds checking on the autoneg advertisement
887 	 * parameter.
888 	 */
889 	phy->autoneg_advertised &= phy->autoneg_mask;
890 
891 	/* If autoneg_advertised is zero, we assume it was not defaulted
892 	 * by the calling code so we set to advertise full capability.
893 	 */
894 	if (phy->autoneg_advertised == 0)
895 		phy->autoneg_advertised = phy->autoneg_mask;
896 
897 	hw_dbg("Reconfiguring auto-neg advertisement params\n");
898 	ret_val = igb_phy_setup_autoneg(hw);
899 	if (ret_val) {
900 		hw_dbg("Error Setting up Auto-Negotiation\n");
901 		goto out;
902 	}
903 	hw_dbg("Restarting Auto-Neg\n");
904 
905 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
906 	 * the Auto Neg Restart bit in the PHY control register.
907 	 */
908 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
909 	if (ret_val)
910 		goto out;
911 
912 	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
913 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
914 	if (ret_val)
915 		goto out;
916 
917 	/* Does the user want to wait for Auto-Neg to complete here, or
918 	 * check at a later time (for example, callback routine).
919 	 */
920 	if (phy->autoneg_wait_to_complete) {
921 		ret_val = igb_wait_autoneg(hw);
922 		if (ret_val) {
923 			hw_dbg("Error while waiting for autoneg to complete\n");
924 			goto out;
925 		}
926 	}
927 
928 	hw->mac.get_link_status = true;
929 
930 out:
931 	return ret_val;
932 }
933 
934 /**
935  *  igb_phy_setup_autoneg - Configure PHY for auto-negotiation
936  *  @hw: pointer to the HW structure
937  *
938  *  Reads the MII auto-neg advertisement register and/or the 1000T control
939  *  register and if the PHY is already setup for auto-negotiation, then
940  *  return successful.  Otherwise, setup advertisement and flow control to
941  *  the appropriate values for the wanted auto-negotiation.
942  **/
943 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
944 {
945 	struct e1000_phy_info *phy = &hw->phy;
946 	s32 ret_val;
947 	u16 mii_autoneg_adv_reg;
948 	u16 mii_1000t_ctrl_reg = 0;
949 
950 	phy->autoneg_advertised &= phy->autoneg_mask;
951 
952 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
953 	ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
954 	if (ret_val)
955 		goto out;
956 
957 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
958 		/* Read the MII 1000Base-T Control Register (Address 9). */
959 		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
960 					    &mii_1000t_ctrl_reg);
961 		if (ret_val)
962 			goto out;
963 	}
964 
965 	/* Need to parse both autoneg_advertised and fc and set up
966 	 * the appropriate PHY registers.  First we will parse for
967 	 * autoneg_advertised software override.  Since we can advertise
968 	 * a plethora of combinations, we need to check each bit
969 	 * individually.
970 	 */
971 
972 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
973 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
974 	 * the  1000Base-T Control Register (Address 9).
975 	 */
976 	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
977 				 NWAY_AR_100TX_HD_CAPS |
978 				 NWAY_AR_10T_FD_CAPS   |
979 				 NWAY_AR_10T_HD_CAPS);
980 	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
981 
982 	hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
983 
984 	/* Do we want to advertise 10 Mb Half Duplex? */
985 	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
986 		hw_dbg("Advertise 10mb Half duplex\n");
987 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
988 	}
989 
990 	/* Do we want to advertise 10 Mb Full Duplex? */
991 	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
992 		hw_dbg("Advertise 10mb Full duplex\n");
993 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
994 	}
995 
996 	/* Do we want to advertise 100 Mb Half Duplex? */
997 	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
998 		hw_dbg("Advertise 100mb Half duplex\n");
999 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1000 	}
1001 
1002 	/* Do we want to advertise 100 Mb Full Duplex? */
1003 	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
1004 		hw_dbg("Advertise 100mb Full duplex\n");
1005 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1006 	}
1007 
1008 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1009 	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1010 		hw_dbg("Advertise 1000mb Half duplex request denied!\n");
1011 
1012 	/* Do we want to advertise 1000 Mb Full Duplex? */
1013 	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1014 		hw_dbg("Advertise 1000mb Full duplex\n");
1015 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1016 	}
1017 
1018 	/* Check for a software override of the flow control settings, and
1019 	 * setup the PHY advertisement registers accordingly.  If
1020 	 * auto-negotiation is enabled, then software will have to set the
1021 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1022 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1023 	 * negotiation.
1024 	 *
1025 	 * The possible values of the "fc" parameter are:
1026 	 *      0:  Flow control is completely disabled
1027 	 *      1:  Rx flow control is enabled (we can receive pause frames
1028 	 *          but not send pause frames).
1029 	 *      2:  Tx flow control is enabled (we can send pause frames
1030 	 *          but we do not support receiving pause frames).
1031 	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
1032 	 *  other:  No software override.  The flow control configuration
1033 	 *          in the EEPROM is used.
1034 	 */
1035 	switch (hw->fc.current_mode) {
1036 	case e1000_fc_none:
1037 		/* Flow control (RX & TX) is completely disabled by a
1038 		 * software over-ride.
1039 		 */
1040 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1041 		break;
1042 	case e1000_fc_rx_pause:
1043 		/* RX Flow control is enabled, and TX Flow control is
1044 		 * disabled, by a software over-ride.
1045 		 *
1046 		 * Since there really isn't a way to advertise that we are
1047 		 * capable of RX Pause ONLY, we will advertise that we
1048 		 * support both symmetric and asymmetric RX PAUSE.  Later
1049 		 * (in e1000_config_fc_after_link_up) we will disable the
1050 		 * hw's ability to send PAUSE frames.
1051 		 */
1052 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1053 		break;
1054 	case e1000_fc_tx_pause:
1055 		/* TX Flow control is enabled, and RX Flow control is
1056 		 * disabled, by a software over-ride.
1057 		 */
1058 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1059 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1060 		break;
1061 	case e1000_fc_full:
1062 		/* Flow control (both RX and TX) is enabled by a software
1063 		 * over-ride.
1064 		 */
1065 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1066 		break;
1067 	default:
1068 		hw_dbg("Flow control param set incorrectly\n");
1069 		ret_val = -E1000_ERR_CONFIG;
1070 		goto out;
1071 	}
1072 
1073 	ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1074 	if (ret_val)
1075 		goto out;
1076 
1077 	hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1078 
1079 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1080 		ret_val = phy->ops.write_reg(hw,
1081 					     PHY_1000T_CTRL,
1082 					     mii_1000t_ctrl_reg);
1083 		if (ret_val)
1084 			goto out;
1085 	}
1086 
1087 out:
1088 	return ret_val;
1089 }
1090 
1091 /**
1092  *  igb_setup_copper_link - Configure copper link settings
1093  *  @hw: pointer to the HW structure
1094  *
1095  *  Calls the appropriate function to configure the link for auto-neg or forced
1096  *  speed and duplex.  Then we check for link, once link is established calls
1097  *  to configure collision distance and flow control are called.  If link is
1098  *  not established, we return -E1000_ERR_PHY (-2).
1099  **/
1100 s32 igb_setup_copper_link(struct e1000_hw *hw)
1101 {
1102 	s32 ret_val;
1103 	bool link;
1104 
1105 	if (hw->mac.autoneg) {
1106 		/* Setup autoneg and flow control advertisement and perform
1107 		 * autonegotiation.
1108 		 */
1109 		ret_val = igb_copper_link_autoneg(hw);
1110 		if (ret_val)
1111 			goto out;
1112 	} else {
1113 		/* PHY will be set to 10H, 10F, 100H or 100F
1114 		 * depending on user settings.
1115 		 */
1116 		hw_dbg("Forcing Speed and Duplex\n");
1117 		ret_val = hw->phy.ops.force_speed_duplex(hw);
1118 		if (ret_val) {
1119 			hw_dbg("Error Forcing Speed and Duplex\n");
1120 			goto out;
1121 		}
1122 	}
1123 
1124 	/* Check link status. Wait up to 100 microseconds for link to become
1125 	 * valid.
1126 	 */
1127 	ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
1128 	if (ret_val)
1129 		goto out;
1130 
1131 	if (link) {
1132 		hw_dbg("Valid link established!!!\n");
1133 		igb_config_collision_dist(hw);
1134 		ret_val = igb_config_fc_after_link_up(hw);
1135 	} else {
1136 		hw_dbg("Unable to establish link!!!\n");
1137 	}
1138 
1139 out:
1140 	return ret_val;
1141 }
1142 
1143 /**
1144  *  igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1145  *  @hw: pointer to the HW structure
1146  *
1147  *  Calls the PHY setup function to force speed and duplex.  Clears the
1148  *  auto-crossover to force MDI manually.  Waits for link and returns
1149  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1150  **/
1151 s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1152 {
1153 	struct e1000_phy_info *phy = &hw->phy;
1154 	s32 ret_val;
1155 	u16 phy_data;
1156 	bool link;
1157 
1158 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1159 	if (ret_val)
1160 		goto out;
1161 
1162 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1163 
1164 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1165 	if (ret_val)
1166 		goto out;
1167 
1168 	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1169 	 * forced whenever speed and duplex are forced.
1170 	 */
1171 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1172 	if (ret_val)
1173 		goto out;
1174 
1175 	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1176 	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1177 
1178 	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1179 	if (ret_val)
1180 		goto out;
1181 
1182 	hw_dbg("IGP PSCR: %X\n", phy_data);
1183 
1184 	udelay(1);
1185 
1186 	if (phy->autoneg_wait_to_complete) {
1187 		hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1188 
1189 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
1190 		if (ret_val)
1191 			goto out;
1192 
1193 		if (!link)
1194 			hw_dbg("Link taking longer than expected.\n");
1195 
1196 		/* Try once more */
1197 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
1198 		if (ret_val)
1199 			goto out;
1200 	}
1201 
1202 out:
1203 	return ret_val;
1204 }
1205 
1206 /**
1207  *  igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1208  *  @hw: pointer to the HW structure
1209  *
1210  *  Calls the PHY setup function to force speed and duplex.  Clears the
1211  *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1212  *  changes.  If time expires while waiting for link up, we reset the DSP.
1213  *  After reset, TX_CLK and CRS on TX must be set.  Return successful upon
1214  *  successful completion, else return corresponding error code.
1215  **/
1216 s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1217 {
1218 	struct e1000_phy_info *phy = &hw->phy;
1219 	s32 ret_val;
1220 	u16 phy_data;
1221 	bool link;
1222 
1223 	/* I210 and I211 devices support Auto-Crossover in forced operation. */
1224 	if (phy->type != e1000_phy_i210) {
1225 		/* Clear Auto-Crossover to force MDI manually.  M88E1000
1226 		 * requires MDI forced whenever speed and duplex are forced.
1227 		 */
1228 		ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL,
1229 					    &phy_data);
1230 		if (ret_val)
1231 			goto out;
1232 
1233 		phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1234 		ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
1235 					     phy_data);
1236 		if (ret_val)
1237 			goto out;
1238 
1239 		hw_dbg("M88E1000 PSCR: %X\n", phy_data);
1240 	}
1241 
1242 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1243 	if (ret_val)
1244 		goto out;
1245 
1246 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1247 
1248 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1249 	if (ret_val)
1250 		goto out;
1251 
1252 	/* Reset the phy to commit changes. */
1253 	ret_val = igb_phy_sw_reset(hw);
1254 	if (ret_val)
1255 		goto out;
1256 
1257 	if (phy->autoneg_wait_to_complete) {
1258 		hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1259 
1260 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
1261 		if (ret_val)
1262 			goto out;
1263 
1264 		if (!link) {
1265 			bool reset_dsp = true;
1266 
1267 			switch (hw->phy.id) {
1268 			case I347AT4_E_PHY_ID:
1269 			case M88E1112_E_PHY_ID:
1270 			case M88E1543_E_PHY_ID:
1271 			case M88E1512_E_PHY_ID:
1272 			case I210_I_PHY_ID:
1273 				reset_dsp = false;
1274 				break;
1275 			default:
1276 				if (hw->phy.type != e1000_phy_m88)
1277 					reset_dsp = false;
1278 				break;
1279 			}
1280 			if (!reset_dsp) {
1281 				hw_dbg("Link taking longer than expected.\n");
1282 			} else {
1283 				/* We didn't get link.
1284 				 * Reset the DSP and cross our fingers.
1285 				 */
1286 				ret_val = phy->ops.write_reg(hw,
1287 						M88E1000_PHY_PAGE_SELECT,
1288 						0x001d);
1289 				if (ret_val)
1290 					goto out;
1291 				ret_val = igb_phy_reset_dsp(hw);
1292 				if (ret_val)
1293 					goto out;
1294 			}
1295 		}
1296 
1297 		/* Try once more */
1298 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT,
1299 					   100000, &link);
1300 		if (ret_val)
1301 			goto out;
1302 	}
1303 
1304 	if (hw->phy.type != e1000_phy_m88 ||
1305 	    hw->phy.id == I347AT4_E_PHY_ID ||
1306 	    hw->phy.id == M88E1112_E_PHY_ID ||
1307 	    hw->phy.id == M88E1543_E_PHY_ID ||
1308 	    hw->phy.id == M88E1512_E_PHY_ID ||
1309 	    hw->phy.id == I210_I_PHY_ID)
1310 		goto out;
1311 
1312 	ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1313 	if (ret_val)
1314 		goto out;
1315 
1316 	/* Resetting the phy means we need to re-force TX_CLK in the
1317 	 * Extended PHY Specific Control Register to 25MHz clock from
1318 	 * the reset value of 2.5MHz.
1319 	 */
1320 	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1321 	ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1322 	if (ret_val)
1323 		goto out;
1324 
1325 	/* In addition, we must re-enable CRS on Tx for both half and full
1326 	 * duplex.
1327 	 */
1328 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1329 	if (ret_val)
1330 		goto out;
1331 
1332 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1333 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1334 
1335 out:
1336 	return ret_val;
1337 }
1338 
1339 /**
1340  *  igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1341  *  @hw: pointer to the HW structure
1342  *  @phy_ctrl: pointer to current value of PHY_CONTROL
1343  *
1344  *  Forces speed and duplex on the PHY by doing the following: disable flow
1345  *  control, force speed/duplex on the MAC, disable auto speed detection,
1346  *  disable auto-negotiation, configure duplex, configure speed, configure
1347  *  the collision distance, write configuration to CTRL register.  The
1348  *  caller must write to the PHY_CONTROL register for these settings to
1349  *  take affect.
1350  **/
1351 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
1352 					     u16 *phy_ctrl)
1353 {
1354 	struct e1000_mac_info *mac = &hw->mac;
1355 	u32 ctrl;
1356 
1357 	/* Turn off flow control when forcing speed/duplex */
1358 	hw->fc.current_mode = e1000_fc_none;
1359 
1360 	/* Force speed/duplex on the mac */
1361 	ctrl = rd32(E1000_CTRL);
1362 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1363 	ctrl &= ~E1000_CTRL_SPD_SEL;
1364 
1365 	/* Disable Auto Speed Detection */
1366 	ctrl &= ~E1000_CTRL_ASDE;
1367 
1368 	/* Disable autoneg on the phy */
1369 	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1370 
1371 	/* Forcing Full or Half Duplex? */
1372 	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1373 		ctrl &= ~E1000_CTRL_FD;
1374 		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1375 		hw_dbg("Half Duplex\n");
1376 	} else {
1377 		ctrl |= E1000_CTRL_FD;
1378 		*phy_ctrl |= MII_CR_FULL_DUPLEX;
1379 		hw_dbg("Full Duplex\n");
1380 	}
1381 
1382 	/* Forcing 10mb or 100mb? */
1383 	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1384 		ctrl |= E1000_CTRL_SPD_100;
1385 		*phy_ctrl |= MII_CR_SPEED_100;
1386 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1387 		hw_dbg("Forcing 100mb\n");
1388 	} else {
1389 		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1390 		*phy_ctrl |= MII_CR_SPEED_10;
1391 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1392 		hw_dbg("Forcing 10mb\n");
1393 	}
1394 
1395 	igb_config_collision_dist(hw);
1396 
1397 	wr32(E1000_CTRL, ctrl);
1398 }
1399 
1400 /**
1401  *  igb_set_d3_lplu_state - Sets low power link up state for D3
1402  *  @hw: pointer to the HW structure
1403  *  @active: boolean used to enable/disable lplu
1404  *
1405  *  Success returns 0, Failure returns 1
1406  *
1407  *  The low power link up (lplu) state is set to the power management level D3
1408  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1409  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1410  *  is used during Dx states where the power conservation is most important.
1411  *  During driver activity, SmartSpeed should be enabled so performance is
1412  *  maintained.
1413  **/
1414 s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1415 {
1416 	struct e1000_phy_info *phy = &hw->phy;
1417 	s32 ret_val = 0;
1418 	u16 data;
1419 
1420 	if (!(hw->phy.ops.read_reg))
1421 		goto out;
1422 
1423 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1424 	if (ret_val)
1425 		goto out;
1426 
1427 	if (!active) {
1428 		data &= ~IGP02E1000_PM_D3_LPLU;
1429 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1430 					     data);
1431 		if (ret_val)
1432 			goto out;
1433 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1434 		 * during Dx states where the power conservation is most
1435 		 * important.  During driver activity we should enable
1436 		 * SmartSpeed, so performance is maintained.
1437 		 */
1438 		if (phy->smart_speed == e1000_smart_speed_on) {
1439 			ret_val = phy->ops.read_reg(hw,
1440 						    IGP01E1000_PHY_PORT_CONFIG,
1441 						    &data);
1442 			if (ret_val)
1443 				goto out;
1444 
1445 			data |= IGP01E1000_PSCFR_SMART_SPEED;
1446 			ret_val = phy->ops.write_reg(hw,
1447 						     IGP01E1000_PHY_PORT_CONFIG,
1448 						     data);
1449 			if (ret_val)
1450 				goto out;
1451 		} else if (phy->smart_speed == e1000_smart_speed_off) {
1452 			ret_val = phy->ops.read_reg(hw,
1453 						     IGP01E1000_PHY_PORT_CONFIG,
1454 						     &data);
1455 			if (ret_val)
1456 				goto out;
1457 
1458 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1459 			ret_val = phy->ops.write_reg(hw,
1460 						     IGP01E1000_PHY_PORT_CONFIG,
1461 						     data);
1462 			if (ret_val)
1463 				goto out;
1464 		}
1465 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1466 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1467 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1468 		data |= IGP02E1000_PM_D3_LPLU;
1469 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1470 					      data);
1471 		if (ret_val)
1472 			goto out;
1473 
1474 		/* When LPLU is enabled, we should disable SmartSpeed */
1475 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1476 					    &data);
1477 		if (ret_val)
1478 			goto out;
1479 
1480 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1481 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1482 					     data);
1483 	}
1484 
1485 out:
1486 	return ret_val;
1487 }
1488 
1489 /**
1490  *  igb_check_downshift - Checks whether a downshift in speed occurred
1491  *  @hw: pointer to the HW structure
1492  *
1493  *  Success returns 0, Failure returns 1
1494  *
1495  *  A downshift is detected by querying the PHY link health.
1496  **/
1497 s32 igb_check_downshift(struct e1000_hw *hw)
1498 {
1499 	struct e1000_phy_info *phy = &hw->phy;
1500 	s32 ret_val;
1501 	u16 phy_data, offset, mask;
1502 
1503 	switch (phy->type) {
1504 	case e1000_phy_i210:
1505 	case e1000_phy_m88:
1506 	case e1000_phy_gg82563:
1507 		offset	= M88E1000_PHY_SPEC_STATUS;
1508 		mask	= M88E1000_PSSR_DOWNSHIFT;
1509 		break;
1510 	case e1000_phy_igp_2:
1511 	case e1000_phy_igp:
1512 	case e1000_phy_igp_3:
1513 		offset	= IGP01E1000_PHY_LINK_HEALTH;
1514 		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
1515 		break;
1516 	default:
1517 		/* speed downshift not supported */
1518 		phy->speed_downgraded = false;
1519 		ret_val = 0;
1520 		goto out;
1521 	}
1522 
1523 	ret_val = phy->ops.read_reg(hw, offset, &phy_data);
1524 
1525 	if (!ret_val)
1526 		phy->speed_downgraded = (phy_data & mask) ? true : false;
1527 
1528 out:
1529 	return ret_val;
1530 }
1531 
1532 /**
1533  *  igb_check_polarity_m88 - Checks the polarity.
1534  *  @hw: pointer to the HW structure
1535  *
1536  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1537  *
1538  *  Polarity is determined based on the PHY specific status register.
1539  **/
1540 s32 igb_check_polarity_m88(struct e1000_hw *hw)
1541 {
1542 	struct e1000_phy_info *phy = &hw->phy;
1543 	s32 ret_val;
1544 	u16 data;
1545 
1546 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
1547 
1548 	if (!ret_val)
1549 		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1550 				      ? e1000_rev_polarity_reversed
1551 				      : e1000_rev_polarity_normal;
1552 
1553 	return ret_val;
1554 }
1555 
1556 /**
1557  *  igb_check_polarity_igp - Checks the polarity.
1558  *  @hw: pointer to the HW structure
1559  *
1560  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1561  *
1562  *  Polarity is determined based on the PHY port status register, and the
1563  *  current speed (since there is no polarity at 100Mbps).
1564  **/
1565 static s32 igb_check_polarity_igp(struct e1000_hw *hw)
1566 {
1567 	struct e1000_phy_info *phy = &hw->phy;
1568 	s32 ret_val;
1569 	u16 data, offset, mask;
1570 
1571 	/* Polarity is determined based on the speed of
1572 	 * our connection.
1573 	 */
1574 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1575 	if (ret_val)
1576 		goto out;
1577 
1578 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1579 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1580 		offset	= IGP01E1000_PHY_PCS_INIT_REG;
1581 		mask	= IGP01E1000_PHY_POLARITY_MASK;
1582 	} else {
1583 		/* This really only applies to 10Mbps since
1584 		 * there is no polarity for 100Mbps (always 0).
1585 		 */
1586 		offset	= IGP01E1000_PHY_PORT_STATUS;
1587 		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
1588 	}
1589 
1590 	ret_val = phy->ops.read_reg(hw, offset, &data);
1591 
1592 	if (!ret_val)
1593 		phy->cable_polarity = (data & mask)
1594 				      ? e1000_rev_polarity_reversed
1595 				      : e1000_rev_polarity_normal;
1596 
1597 out:
1598 	return ret_val;
1599 }
1600 
1601 /**
1602  *  igb_wait_autoneg - Wait for auto-neg completion
1603  *  @hw: pointer to the HW structure
1604  *
1605  *  Waits for auto-negotiation to complete or for the auto-negotiation time
1606  *  limit to expire, which ever happens first.
1607  **/
1608 static s32 igb_wait_autoneg(struct e1000_hw *hw)
1609 {
1610 	s32 ret_val = 0;
1611 	u16 i, phy_status;
1612 
1613 	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1614 	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1615 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1616 		if (ret_val)
1617 			break;
1618 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1619 		if (ret_val)
1620 			break;
1621 		if (phy_status & MII_SR_AUTONEG_COMPLETE)
1622 			break;
1623 		msleep(100);
1624 	}
1625 
1626 	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1627 	 * has completed.
1628 	 */
1629 	return ret_val;
1630 }
1631 
1632 /**
1633  *  igb_phy_has_link - Polls PHY for link
1634  *  @hw: pointer to the HW structure
1635  *  @iterations: number of times to poll for link
1636  *  @usec_interval: delay between polling attempts
1637  *  @success: pointer to whether polling was successful or not
1638  *
1639  *  Polls the PHY status register for link, 'iterations' number of times.
1640  **/
1641 s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations,
1642 		     u32 usec_interval, bool *success)
1643 {
1644 	s32 ret_val = 0;
1645 	u16 i, phy_status;
1646 
1647 	for (i = 0; i < iterations; i++) {
1648 		/* Some PHYs require the PHY_STATUS register to be read
1649 		 * twice due to the link bit being sticky.  No harm doing
1650 		 * it across the board.
1651 		 */
1652 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1653 		if (ret_val && usec_interval > 0) {
1654 			/* If the first read fails, another entity may have
1655 			 * ownership of the resources, wait and try again to
1656 			 * see if they have relinquished the resources yet.
1657 			 */
1658 			if (usec_interval >= 1000)
1659 				mdelay(usec_interval/1000);
1660 			else
1661 				udelay(usec_interval);
1662 		}
1663 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1664 		if (ret_val)
1665 			break;
1666 		if (phy_status & MII_SR_LINK_STATUS)
1667 			break;
1668 		if (usec_interval >= 1000)
1669 			mdelay(usec_interval/1000);
1670 		else
1671 			udelay(usec_interval);
1672 	}
1673 
1674 	*success = (i < iterations) ? true : false;
1675 
1676 	return ret_val;
1677 }
1678 
1679 /**
1680  *  igb_get_cable_length_m88 - Determine cable length for m88 PHY
1681  *  @hw: pointer to the HW structure
1682  *
1683  *  Reads the PHY specific status register to retrieve the cable length
1684  *  information.  The cable length is determined by averaging the minimum and
1685  *  maximum values to get the "average" cable length.  The m88 PHY has four
1686  *  possible cable length values, which are:
1687  *	Register Value		Cable Length
1688  *	0			< 50 meters
1689  *	1			50 - 80 meters
1690  *	2			80 - 110 meters
1691  *	3			110 - 140 meters
1692  *	4			> 140 meters
1693  **/
1694 s32 igb_get_cable_length_m88(struct e1000_hw *hw)
1695 {
1696 	struct e1000_phy_info *phy = &hw->phy;
1697 	s32 ret_val;
1698 	u16 phy_data, index;
1699 
1700 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1701 	if (ret_val)
1702 		goto out;
1703 
1704 	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1705 		M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1706 	if (index >= ARRAY_SIZE(e1000_m88_cable_length_table) - 1) {
1707 		ret_val = -E1000_ERR_PHY;
1708 		goto out;
1709 	}
1710 
1711 	phy->min_cable_length = e1000_m88_cable_length_table[index];
1712 	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1713 
1714 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1715 
1716 out:
1717 	return ret_val;
1718 }
1719 
1720 s32 igb_get_cable_length_m88_gen2(struct e1000_hw *hw)
1721 {
1722 	struct e1000_phy_info *phy = &hw->phy;
1723 	s32 ret_val;
1724 	u16 phy_data, phy_data2, index, default_page, is_cm;
1725 	int len_tot = 0;
1726 	u16 len_min;
1727 	u16 len_max;
1728 
1729 	switch (hw->phy.id) {
1730 	case M88E1543_E_PHY_ID:
1731 	case M88E1512_E_PHY_ID:
1732 	case I347AT4_E_PHY_ID:
1733 	case I210_I_PHY_ID:
1734 		/* Remember the original page select and set it to 7 */
1735 		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1736 					    &default_page);
1737 		if (ret_val)
1738 			goto out;
1739 
1740 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
1741 		if (ret_val)
1742 			goto out;
1743 
1744 		/* Check if the unit of cable length is meters or cm */
1745 		ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
1746 		if (ret_val)
1747 			goto out;
1748 
1749 		is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1750 
1751 		/* Get cable length from Pair 0 length Regs */
1752 		ret_val = phy->ops.read_reg(hw, I347AT4_PCDL0, &phy_data);
1753 		if (ret_val)
1754 			goto out;
1755 
1756 		phy->pair_length[0] = phy_data / (is_cm ? 100 : 1);
1757 		len_tot = phy->pair_length[0];
1758 		len_min = phy->pair_length[0];
1759 		len_max = phy->pair_length[0];
1760 
1761 		/* Get cable length from Pair 1 length Regs */
1762 		ret_val = phy->ops.read_reg(hw, I347AT4_PCDL1, &phy_data);
1763 		if (ret_val)
1764 			goto out;
1765 
1766 		phy->pair_length[1] = phy_data / (is_cm ? 100 : 1);
1767 		len_tot += phy->pair_length[1];
1768 		len_min = min(len_min, phy->pair_length[1]);
1769 		len_max = max(len_max, phy->pair_length[1]);
1770 
1771 		/* Get cable length from Pair 2 length Regs */
1772 		ret_val = phy->ops.read_reg(hw, I347AT4_PCDL2, &phy_data);
1773 		if (ret_val)
1774 			goto out;
1775 
1776 		phy->pair_length[2] = phy_data / (is_cm ? 100 : 1);
1777 		len_tot += phy->pair_length[2];
1778 		len_min = min(len_min, phy->pair_length[2]);
1779 		len_max = max(len_max, phy->pair_length[2]);
1780 
1781 		/* Get cable length from Pair 3 length Regs */
1782 		ret_val = phy->ops.read_reg(hw, I347AT4_PCDL3, &phy_data);
1783 		if (ret_val)
1784 			goto out;
1785 
1786 		phy->pair_length[3] = phy_data / (is_cm ? 100 : 1);
1787 		len_tot += phy->pair_length[3];
1788 		len_min = min(len_min, phy->pair_length[3]);
1789 		len_max = max(len_max, phy->pair_length[3]);
1790 
1791 		/* Populate the phy structure with cable length in meters */
1792 		phy->min_cable_length = len_min;
1793 		phy->max_cable_length = len_max;
1794 		phy->cable_length = len_tot / 4;
1795 
1796 		/* Reset the page selec to its original value */
1797 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1798 					     default_page);
1799 		if (ret_val)
1800 			goto out;
1801 		break;
1802 	case M88E1112_E_PHY_ID:
1803 		/* Remember the original page select and set it to 5 */
1804 		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1805 					    &default_page);
1806 		if (ret_val)
1807 			goto out;
1808 
1809 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
1810 		if (ret_val)
1811 			goto out;
1812 
1813 		ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
1814 					    &phy_data);
1815 		if (ret_val)
1816 			goto out;
1817 
1818 		index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1819 			M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1820 		if (index >= ARRAY_SIZE(e1000_m88_cable_length_table) - 1) {
1821 			ret_val = -E1000_ERR_PHY;
1822 			goto out;
1823 		}
1824 
1825 		phy->min_cable_length = e1000_m88_cable_length_table[index];
1826 		phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1827 
1828 		phy->cable_length = (phy->min_cable_length +
1829 				     phy->max_cable_length) / 2;
1830 
1831 		/* Reset the page select to its original value */
1832 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1833 					     default_page);
1834 		if (ret_val)
1835 			goto out;
1836 
1837 		break;
1838 	default:
1839 		ret_val = -E1000_ERR_PHY;
1840 		goto out;
1841 	}
1842 
1843 out:
1844 	return ret_val;
1845 }
1846 
1847 /**
1848  *  igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1849  *  @hw: pointer to the HW structure
1850  *
1851  *  The automatic gain control (agc) normalizes the amplitude of the
1852  *  received signal, adjusting for the attenuation produced by the
1853  *  cable.  By reading the AGC registers, which represent the
1854  *  combination of coarse and fine gain value, the value can be put
1855  *  into a lookup table to obtain the approximate cable length
1856  *  for each channel.
1857  **/
1858 s32 igb_get_cable_length_igp_2(struct e1000_hw *hw)
1859 {
1860 	struct e1000_phy_info *phy = &hw->phy;
1861 	s32 ret_val = 0;
1862 	u16 phy_data, i, agc_value = 0;
1863 	u16 cur_agc_index, max_agc_index = 0;
1864 	u16 min_agc_index = ARRAY_SIZE(e1000_igp_2_cable_length_table) - 1;
1865 	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1866 		IGP02E1000_PHY_AGC_A,
1867 		IGP02E1000_PHY_AGC_B,
1868 		IGP02E1000_PHY_AGC_C,
1869 		IGP02E1000_PHY_AGC_D
1870 	};
1871 
1872 	/* Read the AGC registers for all channels */
1873 	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1874 		ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
1875 		if (ret_val)
1876 			goto out;
1877 
1878 		/* Getting bits 15:9, which represent the combination of
1879 		 * coarse and fine gain values.  The result is a number
1880 		 * that can be put into the lookup table to obtain the
1881 		 * approximate cable length.
1882 		 */
1883 		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1884 				IGP02E1000_AGC_LENGTH_MASK;
1885 
1886 		/* Array index bound check. */
1887 		if ((cur_agc_index >= ARRAY_SIZE(e1000_igp_2_cable_length_table)) ||
1888 		    (cur_agc_index == 0)) {
1889 			ret_val = -E1000_ERR_PHY;
1890 			goto out;
1891 		}
1892 
1893 		/* Remove min & max AGC values from calculation. */
1894 		if (e1000_igp_2_cable_length_table[min_agc_index] >
1895 		    e1000_igp_2_cable_length_table[cur_agc_index])
1896 			min_agc_index = cur_agc_index;
1897 		if (e1000_igp_2_cable_length_table[max_agc_index] <
1898 		    e1000_igp_2_cable_length_table[cur_agc_index])
1899 			max_agc_index = cur_agc_index;
1900 
1901 		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1902 	}
1903 
1904 	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1905 		      e1000_igp_2_cable_length_table[max_agc_index]);
1906 	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1907 
1908 	/* Calculate cable length with the error range of +/- 10 meters. */
1909 	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1910 				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1911 	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1912 
1913 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1914 
1915 out:
1916 	return ret_val;
1917 }
1918 
1919 /**
1920  *  igb_get_phy_info_m88 - Retrieve PHY information
1921  *  @hw: pointer to the HW structure
1922  *
1923  *  Valid for only copper links.  Read the PHY status register (sticky read)
1924  *  to verify that link is up.  Read the PHY special control register to
1925  *  determine the polarity and 10base-T extended distance.  Read the PHY
1926  *  special status register to determine MDI/MDIx and current speed.  If
1927  *  speed is 1000, then determine cable length, local and remote receiver.
1928  **/
1929 s32 igb_get_phy_info_m88(struct e1000_hw *hw)
1930 {
1931 	struct e1000_phy_info *phy = &hw->phy;
1932 	s32  ret_val;
1933 	u16 phy_data;
1934 	bool link;
1935 
1936 	if (phy->media_type != e1000_media_type_copper) {
1937 		hw_dbg("Phy info is only valid for copper media\n");
1938 		ret_val = -E1000_ERR_CONFIG;
1939 		goto out;
1940 	}
1941 
1942 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
1943 	if (ret_val)
1944 		goto out;
1945 
1946 	if (!link) {
1947 		hw_dbg("Phy info is only valid if link is up\n");
1948 		ret_val = -E1000_ERR_CONFIG;
1949 		goto out;
1950 	}
1951 
1952 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1953 	if (ret_val)
1954 		goto out;
1955 
1956 	phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
1957 				   ? true : false;
1958 
1959 	ret_val = igb_check_polarity_m88(hw);
1960 	if (ret_val)
1961 		goto out;
1962 
1963 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1964 	if (ret_val)
1965 		goto out;
1966 
1967 	phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false;
1968 
1969 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1970 		ret_val = phy->ops.get_cable_length(hw);
1971 		if (ret_val)
1972 			goto out;
1973 
1974 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
1975 		if (ret_val)
1976 			goto out;
1977 
1978 		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1979 				? e1000_1000t_rx_status_ok
1980 				: e1000_1000t_rx_status_not_ok;
1981 
1982 		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1983 				 ? e1000_1000t_rx_status_ok
1984 				 : e1000_1000t_rx_status_not_ok;
1985 	} else {
1986 		/* Set values to "undefined" */
1987 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1988 		phy->local_rx = e1000_1000t_rx_status_undefined;
1989 		phy->remote_rx = e1000_1000t_rx_status_undefined;
1990 	}
1991 
1992 out:
1993 	return ret_val;
1994 }
1995 
1996 /**
1997  *  igb_get_phy_info_igp - Retrieve igp PHY information
1998  *  @hw: pointer to the HW structure
1999  *
2000  *  Read PHY status to determine if link is up.  If link is up, then
2001  *  set/determine 10base-T extended distance and polarity correction.  Read
2002  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
2003  *  determine on the cable length, local and remote receiver.
2004  **/
2005 s32 igb_get_phy_info_igp(struct e1000_hw *hw)
2006 {
2007 	struct e1000_phy_info *phy = &hw->phy;
2008 	s32 ret_val;
2009 	u16 data;
2010 	bool link;
2011 
2012 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
2013 	if (ret_val)
2014 		goto out;
2015 
2016 	if (!link) {
2017 		hw_dbg("Phy info is only valid if link is up\n");
2018 		ret_val = -E1000_ERR_CONFIG;
2019 		goto out;
2020 	}
2021 
2022 	phy->polarity_correction = true;
2023 
2024 	ret_val = igb_check_polarity_igp(hw);
2025 	if (ret_val)
2026 		goto out;
2027 
2028 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2029 	if (ret_val)
2030 		goto out;
2031 
2032 	phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false;
2033 
2034 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2035 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
2036 		ret_val = phy->ops.get_cable_length(hw);
2037 		if (ret_val)
2038 			goto out;
2039 
2040 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2041 		if (ret_val)
2042 			goto out;
2043 
2044 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2045 				? e1000_1000t_rx_status_ok
2046 				: e1000_1000t_rx_status_not_ok;
2047 
2048 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2049 				 ? e1000_1000t_rx_status_ok
2050 				 : e1000_1000t_rx_status_not_ok;
2051 	} else {
2052 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2053 		phy->local_rx = e1000_1000t_rx_status_undefined;
2054 		phy->remote_rx = e1000_1000t_rx_status_undefined;
2055 	}
2056 
2057 out:
2058 	return ret_val;
2059 }
2060 
2061 /**
2062  *  igb_phy_sw_reset - PHY software reset
2063  *  @hw: pointer to the HW structure
2064  *
2065  *  Does a software reset of the PHY by reading the PHY control register and
2066  *  setting/write the control register reset bit to the PHY.
2067  **/
2068 s32 igb_phy_sw_reset(struct e1000_hw *hw)
2069 {
2070 	s32 ret_val = 0;
2071 	u16 phy_ctrl;
2072 
2073 	if (!(hw->phy.ops.read_reg))
2074 		goto out;
2075 
2076 	ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
2077 	if (ret_val)
2078 		goto out;
2079 
2080 	phy_ctrl |= MII_CR_RESET;
2081 	ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
2082 	if (ret_val)
2083 		goto out;
2084 
2085 	udelay(1);
2086 
2087 out:
2088 	return ret_val;
2089 }
2090 
2091 /**
2092  *  igb_phy_hw_reset - PHY hardware reset
2093  *  @hw: pointer to the HW structure
2094  *
2095  *  Verify the reset block is not blocking us from resetting.  Acquire
2096  *  semaphore (if necessary) and read/set/write the device control reset
2097  *  bit in the PHY.  Wait the appropriate delay time for the device to
2098  *  reset and release the semaphore (if necessary).
2099  **/
2100 s32 igb_phy_hw_reset(struct e1000_hw *hw)
2101 {
2102 	struct e1000_phy_info *phy = &hw->phy;
2103 	s32  ret_val;
2104 	u32 ctrl;
2105 
2106 	ret_val = igb_check_reset_block(hw);
2107 	if (ret_val) {
2108 		ret_val = 0;
2109 		goto out;
2110 	}
2111 
2112 	ret_val = phy->ops.acquire(hw);
2113 	if (ret_val)
2114 		goto out;
2115 
2116 	ctrl = rd32(E1000_CTRL);
2117 	wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
2118 	wrfl();
2119 
2120 	udelay(phy->reset_delay_us);
2121 
2122 	wr32(E1000_CTRL, ctrl);
2123 	wrfl();
2124 
2125 	udelay(150);
2126 
2127 	phy->ops.release(hw);
2128 
2129 	ret_val = phy->ops.get_cfg_done(hw);
2130 
2131 out:
2132 	return ret_val;
2133 }
2134 
2135 /**
2136  *  igb_phy_init_script_igp3 - Inits the IGP3 PHY
2137  *  @hw: pointer to the HW structure
2138  *
2139  *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2140  **/
2141 s32 igb_phy_init_script_igp3(struct e1000_hw *hw)
2142 {
2143 	hw_dbg("Running IGP 3 PHY init script\n");
2144 
2145 	/* PHY init IGP 3 */
2146 	/* Enable rise/fall, 10-mode work in class-A */
2147 	hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
2148 	/* Remove all caps from Replica path filter */
2149 	hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
2150 	/* Bias trimming for ADC, AFE and Driver (Default) */
2151 	hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
2152 	/* Increase Hybrid poly bias */
2153 	hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
2154 	/* Add 4% to TX amplitude in Giga mode */
2155 	hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
2156 	/* Disable trimming (TTT) */
2157 	hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
2158 	/* Poly DC correction to 94.6% + 2% for all channels */
2159 	hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
2160 	/* ABS DC correction to 95.9% */
2161 	hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
2162 	/* BG temp curve trim */
2163 	hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
2164 	/* Increasing ADC OPAMP stage 1 currents to max */
2165 	hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
2166 	/* Force 1000 ( required for enabling PHY regs configuration) */
2167 	hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
2168 	/* Set upd_freq to 6 */
2169 	hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
2170 	/* Disable NPDFE */
2171 	hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
2172 	/* Disable adaptive fixed FFE (Default) */
2173 	hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
2174 	/* Enable FFE hysteresis */
2175 	hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
2176 	/* Fixed FFE for short cable lengths */
2177 	hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
2178 	/* Fixed FFE for medium cable lengths */
2179 	hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
2180 	/* Fixed FFE for long cable lengths */
2181 	hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
2182 	/* Enable Adaptive Clip Threshold */
2183 	hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
2184 	/* AHT reset limit to 1 */
2185 	hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
2186 	/* Set AHT master delay to 127 msec */
2187 	hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
2188 	/* Set scan bits for AHT */
2189 	hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
2190 	/* Set AHT Preset bits */
2191 	hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
2192 	/* Change integ_factor of channel A to 3 */
2193 	hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
2194 	/* Change prop_factor of channels BCD to 8 */
2195 	hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
2196 	/* Change cg_icount + enable integbp for channels BCD */
2197 	hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
2198 	/* Change cg_icount + enable integbp + change prop_factor_master
2199 	 * to 8 for channel A
2200 	 */
2201 	hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
2202 	/* Disable AHT in Slave mode on channel A */
2203 	hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
2204 	/* Enable LPLU and disable AN to 1000 in non-D0a states,
2205 	 * Enable SPD+B2B
2206 	 */
2207 	hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
2208 	/* Enable restart AN on an1000_dis change */
2209 	hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
2210 	/* Enable wh_fifo read clock in 10/100 modes */
2211 	hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
2212 	/* Restart AN, Speed selection is 1000 */
2213 	hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
2214 
2215 	return 0;
2216 }
2217 
2218 /**
2219  *  igb_initialize_M88E1512_phy - Initialize M88E1512 PHY
2220  *  @hw: pointer to the HW structure
2221  *
2222  *  Initialize Marvel 1512 to work correctly with Avoton.
2223  **/
2224 s32 igb_initialize_M88E1512_phy(struct e1000_hw *hw)
2225 {
2226 	struct e1000_phy_info *phy = &hw->phy;
2227 	s32 ret_val = 0;
2228 
2229 	/* Switch to PHY page 0xFF. */
2230 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF);
2231 	if (ret_val)
2232 		goto out;
2233 
2234 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B);
2235 	if (ret_val)
2236 		goto out;
2237 
2238 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144);
2239 	if (ret_val)
2240 		goto out;
2241 
2242 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28);
2243 	if (ret_val)
2244 		goto out;
2245 
2246 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146);
2247 	if (ret_val)
2248 		goto out;
2249 
2250 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233);
2251 	if (ret_val)
2252 		goto out;
2253 
2254 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D);
2255 	if (ret_val)
2256 		goto out;
2257 
2258 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xCC0C);
2259 	if (ret_val)
2260 		goto out;
2261 
2262 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159);
2263 	if (ret_val)
2264 		goto out;
2265 
2266 	/* Switch to PHY page 0xFB. */
2267 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB);
2268 	if (ret_val)
2269 		goto out;
2270 
2271 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x000D);
2272 	if (ret_val)
2273 		goto out;
2274 
2275 	/* Switch to PHY page 0x12. */
2276 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12);
2277 	if (ret_val)
2278 		goto out;
2279 
2280 	/* Change mode to SGMII-to-Copper */
2281 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001);
2282 	if (ret_val)
2283 		goto out;
2284 
2285 	/* Return the PHY to page 0. */
2286 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2287 	if (ret_val)
2288 		goto out;
2289 
2290 	ret_val = igb_phy_sw_reset(hw);
2291 	if (ret_val) {
2292 		hw_dbg("Error committing the PHY changes\n");
2293 		return ret_val;
2294 	}
2295 
2296 	/* msec_delay(1000); */
2297 	usleep_range(1000, 2000);
2298 out:
2299 	return ret_val;
2300 }
2301 
2302 /**
2303  *  igb_initialize_M88E1543_phy - Initialize M88E1512 PHY
2304  *  @hw: pointer to the HW structure
2305  *
2306  *  Initialize Marvell 1543 to work correctly with Avoton.
2307  **/
2308 s32 igb_initialize_M88E1543_phy(struct e1000_hw *hw)
2309 {
2310 	struct e1000_phy_info *phy = &hw->phy;
2311 	s32 ret_val = 0;
2312 
2313 	/* Switch to PHY page 0xFF. */
2314 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF);
2315 	if (ret_val)
2316 		goto out;
2317 
2318 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B);
2319 	if (ret_val)
2320 		goto out;
2321 
2322 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144);
2323 	if (ret_val)
2324 		goto out;
2325 
2326 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28);
2327 	if (ret_val)
2328 		goto out;
2329 
2330 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146);
2331 	if (ret_val)
2332 		goto out;
2333 
2334 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233);
2335 	if (ret_val)
2336 		goto out;
2337 
2338 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D);
2339 	if (ret_val)
2340 		goto out;
2341 
2342 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xDC0C);
2343 	if (ret_val)
2344 		goto out;
2345 
2346 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159);
2347 	if (ret_val)
2348 		goto out;
2349 
2350 	/* Switch to PHY page 0xFB. */
2351 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB);
2352 	if (ret_val)
2353 		goto out;
2354 
2355 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x0C0D);
2356 	if (ret_val)
2357 		goto out;
2358 
2359 	/* Switch to PHY page 0x12. */
2360 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12);
2361 	if (ret_val)
2362 		goto out;
2363 
2364 	/* Change mode to SGMII-to-Copper */
2365 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001);
2366 	if (ret_val)
2367 		goto out;
2368 
2369 	/* Switch to PHY page 1. */
2370 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x1);
2371 	if (ret_val)
2372 		goto out;
2373 
2374 	/* Change mode to 1000BASE-X/SGMII and autoneg enable */
2375 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_FIBER_CTRL, 0x9140);
2376 	if (ret_val)
2377 		goto out;
2378 
2379 	/* Return the PHY to page 0. */
2380 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2381 	if (ret_val)
2382 		goto out;
2383 
2384 	ret_val = igb_phy_sw_reset(hw);
2385 	if (ret_val) {
2386 		hw_dbg("Error committing the PHY changes\n");
2387 		return ret_val;
2388 	}
2389 
2390 	/* msec_delay(1000); */
2391 	usleep_range(1000, 2000);
2392 out:
2393 	return ret_val;
2394 }
2395 
2396 /**
2397  * igb_power_up_phy_copper - Restore copper link in case of PHY power down
2398  * @hw: pointer to the HW structure
2399  *
2400  * In the case of a PHY power down to save power, or to turn off link during a
2401  * driver unload, restore the link to previous settings.
2402  **/
2403 void igb_power_up_phy_copper(struct e1000_hw *hw)
2404 {
2405 	u16 mii_reg = 0;
2406 
2407 	/* The PHY will retain its settings across a power down/up cycle */
2408 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2409 	mii_reg &= ~MII_CR_POWER_DOWN;
2410 	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2411 }
2412 
2413 /**
2414  * igb_power_down_phy_copper - Power down copper PHY
2415  * @hw: pointer to the HW structure
2416  *
2417  * Power down PHY to save power when interface is down and wake on lan
2418  * is not enabled.
2419  **/
2420 void igb_power_down_phy_copper(struct e1000_hw *hw)
2421 {
2422 	u16 mii_reg = 0;
2423 
2424 	/* The PHY will retain its settings across a power down/up cycle */
2425 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2426 	mii_reg |= MII_CR_POWER_DOWN;
2427 	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2428 	usleep_range(1000, 2000);
2429 }
2430 
2431 /**
2432  *  igb_check_polarity_82580 - Checks the polarity.
2433  *  @hw: pointer to the HW structure
2434  *
2435  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2436  *
2437  *  Polarity is determined based on the PHY specific status register.
2438  **/
2439 static s32 igb_check_polarity_82580(struct e1000_hw *hw)
2440 {
2441 	struct e1000_phy_info *phy = &hw->phy;
2442 	s32 ret_val;
2443 	u16 data;
2444 
2445 
2446 	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2447 
2448 	if (!ret_val)
2449 		phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY)
2450 				      ? e1000_rev_polarity_reversed
2451 				      : e1000_rev_polarity_normal;
2452 
2453 	return ret_val;
2454 }
2455 
2456 /**
2457  *  igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY
2458  *  @hw: pointer to the HW structure
2459  *
2460  *  Calls the PHY setup function to force speed and duplex.  Clears the
2461  *  auto-crossover to force MDI manually.  Waits for link and returns
2462  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
2463  **/
2464 s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw)
2465 {
2466 	struct e1000_phy_info *phy = &hw->phy;
2467 	s32 ret_val;
2468 	u16 phy_data;
2469 	bool link;
2470 
2471 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
2472 	if (ret_val)
2473 		goto out;
2474 
2475 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
2476 
2477 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
2478 	if (ret_val)
2479 		goto out;
2480 
2481 	/* Clear Auto-Crossover to force MDI manually.  82580 requires MDI
2482 	 * forced whenever speed and duplex are forced.
2483 	 */
2484 	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
2485 	if (ret_val)
2486 		goto out;
2487 
2488 	phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
2489 
2490 	ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
2491 	if (ret_val)
2492 		goto out;
2493 
2494 	hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data);
2495 
2496 	udelay(1);
2497 
2498 	if (phy->autoneg_wait_to_complete) {
2499 		hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n");
2500 
2501 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2502 		if (ret_val)
2503 			goto out;
2504 
2505 		if (!link)
2506 			hw_dbg("Link taking longer than expected.\n");
2507 
2508 		/* Try once more */
2509 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2510 		if (ret_val)
2511 			goto out;
2512 	}
2513 
2514 out:
2515 	return ret_val;
2516 }
2517 
2518 /**
2519  *  igb_get_phy_info_82580 - Retrieve I82580 PHY information
2520  *  @hw: pointer to the HW structure
2521  *
2522  *  Read PHY status to determine if link is up.  If link is up, then
2523  *  set/determine 10base-T extended distance and polarity correction.  Read
2524  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
2525  *  determine on the cable length, local and remote receiver.
2526  **/
2527 s32 igb_get_phy_info_82580(struct e1000_hw *hw)
2528 {
2529 	struct e1000_phy_info *phy = &hw->phy;
2530 	s32 ret_val;
2531 	u16 data;
2532 	bool link;
2533 
2534 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
2535 	if (ret_val)
2536 		goto out;
2537 
2538 	if (!link) {
2539 		hw_dbg("Phy info is only valid if link is up\n");
2540 		ret_val = -E1000_ERR_CONFIG;
2541 		goto out;
2542 	}
2543 
2544 	phy->polarity_correction = true;
2545 
2546 	ret_val = igb_check_polarity_82580(hw);
2547 	if (ret_val)
2548 		goto out;
2549 
2550 	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2551 	if (ret_val)
2552 		goto out;
2553 
2554 	phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false;
2555 
2556 	if ((data & I82580_PHY_STATUS2_SPEED_MASK) ==
2557 	    I82580_PHY_STATUS2_SPEED_1000MBPS) {
2558 		ret_val = hw->phy.ops.get_cable_length(hw);
2559 		if (ret_val)
2560 			goto out;
2561 
2562 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2563 		if (ret_val)
2564 			goto out;
2565 
2566 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2567 				? e1000_1000t_rx_status_ok
2568 				: e1000_1000t_rx_status_not_ok;
2569 
2570 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2571 				 ? e1000_1000t_rx_status_ok
2572 				 : e1000_1000t_rx_status_not_ok;
2573 	} else {
2574 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2575 		phy->local_rx = e1000_1000t_rx_status_undefined;
2576 		phy->remote_rx = e1000_1000t_rx_status_undefined;
2577 	}
2578 
2579 out:
2580 	return ret_val;
2581 }
2582 
2583 /**
2584  *  igb_get_cable_length_82580 - Determine cable length for 82580 PHY
2585  *  @hw: pointer to the HW structure
2586  *
2587  * Reads the diagnostic status register and verifies result is valid before
2588  * placing it in the phy_cable_length field.
2589  **/
2590 s32 igb_get_cable_length_82580(struct e1000_hw *hw)
2591 {
2592 	struct e1000_phy_info *phy = &hw->phy;
2593 	s32 ret_val;
2594 	u16 phy_data, length;
2595 
2596 	ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data);
2597 	if (ret_val)
2598 		goto out;
2599 
2600 	length = (phy_data & I82580_DSTATUS_CABLE_LENGTH) >>
2601 		 I82580_DSTATUS_CABLE_LENGTH_SHIFT;
2602 
2603 	if (length == E1000_CABLE_LENGTH_UNDEFINED)
2604 		ret_val = -E1000_ERR_PHY;
2605 
2606 	phy->cable_length = length;
2607 
2608 out:
2609 	return ret_val;
2610 }
2611 
2612 /**
2613  *  igb_set_master_slave_mode - Setup PHY for Master/slave mode
2614  *  @hw: pointer to the HW structure
2615  *
2616  *  Sets up Master/slave mode
2617  **/
2618 static s32 igb_set_master_slave_mode(struct e1000_hw *hw)
2619 {
2620 	s32 ret_val;
2621 	u16 phy_data;
2622 
2623 	/* Resolve Master/Slave mode */
2624 	ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data);
2625 	if (ret_val)
2626 		return ret_val;
2627 
2628 	/* load defaults for future use */
2629 	hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
2630 				   ((phy_data & CR_1000T_MS_VALUE) ?
2631 				    e1000_ms_force_master :
2632 				    e1000_ms_force_slave) : e1000_ms_auto;
2633 
2634 	switch (hw->phy.ms_type) {
2635 	case e1000_ms_force_master:
2636 		phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2637 		break;
2638 	case e1000_ms_force_slave:
2639 		phy_data |= CR_1000T_MS_ENABLE;
2640 		phy_data &= ~(CR_1000T_MS_VALUE);
2641 		break;
2642 	case e1000_ms_auto:
2643 		phy_data &= ~CR_1000T_MS_ENABLE;
2644 		/* fall-through */
2645 	default:
2646 		break;
2647 	}
2648 
2649 	return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data);
2650 }
2651