1 /* Intel(R) Gigabit Ethernet Linux driver 2 * Copyright(c) 2007-2015 Intel Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, see <http://www.gnu.org/licenses/>. 15 * 16 * The full GNU General Public License is included in this distribution in 17 * the file called "COPYING". 18 * 19 * Contact Information: 20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 22 */ 23 24 #include <linux/if_ether.h> 25 #include <linux/delay.h> 26 27 #include "e1000_mac.h" 28 #include "e1000_phy.h" 29 30 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw); 31 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw, 32 u16 *phy_ctrl); 33 static s32 igb_wait_autoneg(struct e1000_hw *hw); 34 static s32 igb_set_master_slave_mode(struct e1000_hw *hw); 35 36 /* Cable length tables */ 37 static const u16 e1000_m88_cable_length_table[] = { 38 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED }; 39 40 static const u16 e1000_igp_2_cable_length_table[] = { 41 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 42 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 43 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 44 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 45 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 46 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 47 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124, 48 104, 109, 114, 118, 121, 124}; 49 50 /** 51 * igb_check_reset_block - Check if PHY reset is blocked 52 * @hw: pointer to the HW structure 53 * 54 * Read the PHY management control register and check whether a PHY reset 55 * is blocked. If a reset is not blocked return 0, otherwise 56 * return E1000_BLK_PHY_RESET (12). 57 **/ 58 s32 igb_check_reset_block(struct e1000_hw *hw) 59 { 60 u32 manc; 61 62 manc = rd32(E1000_MANC); 63 64 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0; 65 } 66 67 /** 68 * igb_get_phy_id - Retrieve the PHY ID and revision 69 * @hw: pointer to the HW structure 70 * 71 * Reads the PHY registers and stores the PHY ID and possibly the PHY 72 * revision in the hardware structure. 73 **/ 74 s32 igb_get_phy_id(struct e1000_hw *hw) 75 { 76 struct e1000_phy_info *phy = &hw->phy; 77 s32 ret_val = 0; 78 u16 phy_id; 79 80 ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id); 81 if (ret_val) 82 goto out; 83 84 phy->id = (u32)(phy_id << 16); 85 udelay(20); 86 ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id); 87 if (ret_val) 88 goto out; 89 90 phy->id |= (u32)(phy_id & PHY_REVISION_MASK); 91 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); 92 93 out: 94 return ret_val; 95 } 96 97 /** 98 * igb_phy_reset_dsp - Reset PHY DSP 99 * @hw: pointer to the HW structure 100 * 101 * Reset the digital signal processor. 102 **/ 103 static s32 igb_phy_reset_dsp(struct e1000_hw *hw) 104 { 105 s32 ret_val = 0; 106 107 if (!(hw->phy.ops.write_reg)) 108 goto out; 109 110 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1); 111 if (ret_val) 112 goto out; 113 114 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0); 115 116 out: 117 return ret_val; 118 } 119 120 /** 121 * igb_read_phy_reg_mdic - Read MDI control register 122 * @hw: pointer to the HW structure 123 * @offset: register offset to be read 124 * @data: pointer to the read data 125 * 126 * Reads the MDI control regsiter in the PHY at offset and stores the 127 * information read to data. 128 **/ 129 s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data) 130 { 131 struct e1000_phy_info *phy = &hw->phy; 132 u32 i, mdic = 0; 133 s32 ret_val = 0; 134 135 if (offset > MAX_PHY_REG_ADDRESS) { 136 hw_dbg("PHY Address %d is out of range\n", offset); 137 ret_val = -E1000_ERR_PARAM; 138 goto out; 139 } 140 141 /* Set up Op-code, Phy Address, and register offset in the MDI 142 * Control register. The MAC will take care of interfacing with the 143 * PHY to retrieve the desired data. 144 */ 145 mdic = ((offset << E1000_MDIC_REG_SHIFT) | 146 (phy->addr << E1000_MDIC_PHY_SHIFT) | 147 (E1000_MDIC_OP_READ)); 148 149 wr32(E1000_MDIC, mdic); 150 151 /* Poll the ready bit to see if the MDI read completed 152 * Increasing the time out as testing showed failures with 153 * the lower time out 154 */ 155 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { 156 udelay(50); 157 mdic = rd32(E1000_MDIC); 158 if (mdic & E1000_MDIC_READY) 159 break; 160 } 161 if (!(mdic & E1000_MDIC_READY)) { 162 hw_dbg("MDI Read did not complete\n"); 163 ret_val = -E1000_ERR_PHY; 164 goto out; 165 } 166 if (mdic & E1000_MDIC_ERROR) { 167 hw_dbg("MDI Error\n"); 168 ret_val = -E1000_ERR_PHY; 169 goto out; 170 } 171 *data = (u16) mdic; 172 173 out: 174 return ret_val; 175 } 176 177 /** 178 * igb_write_phy_reg_mdic - Write MDI control register 179 * @hw: pointer to the HW structure 180 * @offset: register offset to write to 181 * @data: data to write to register at offset 182 * 183 * Writes data to MDI control register in the PHY at offset. 184 **/ 185 s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data) 186 { 187 struct e1000_phy_info *phy = &hw->phy; 188 u32 i, mdic = 0; 189 s32 ret_val = 0; 190 191 if (offset > MAX_PHY_REG_ADDRESS) { 192 hw_dbg("PHY Address %d is out of range\n", offset); 193 ret_val = -E1000_ERR_PARAM; 194 goto out; 195 } 196 197 /* Set up Op-code, Phy Address, and register offset in the MDI 198 * Control register. The MAC will take care of interfacing with the 199 * PHY to retrieve the desired data. 200 */ 201 mdic = (((u32)data) | 202 (offset << E1000_MDIC_REG_SHIFT) | 203 (phy->addr << E1000_MDIC_PHY_SHIFT) | 204 (E1000_MDIC_OP_WRITE)); 205 206 wr32(E1000_MDIC, mdic); 207 208 /* Poll the ready bit to see if the MDI read completed 209 * Increasing the time out as testing showed failures with 210 * the lower time out 211 */ 212 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { 213 udelay(50); 214 mdic = rd32(E1000_MDIC); 215 if (mdic & E1000_MDIC_READY) 216 break; 217 } 218 if (!(mdic & E1000_MDIC_READY)) { 219 hw_dbg("MDI Write did not complete\n"); 220 ret_val = -E1000_ERR_PHY; 221 goto out; 222 } 223 if (mdic & E1000_MDIC_ERROR) { 224 hw_dbg("MDI Error\n"); 225 ret_val = -E1000_ERR_PHY; 226 goto out; 227 } 228 229 out: 230 return ret_val; 231 } 232 233 /** 234 * igb_read_phy_reg_i2c - Read PHY register using i2c 235 * @hw: pointer to the HW structure 236 * @offset: register offset to be read 237 * @data: pointer to the read data 238 * 239 * Reads the PHY register at offset using the i2c interface and stores the 240 * retrieved information in data. 241 **/ 242 s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data) 243 { 244 struct e1000_phy_info *phy = &hw->phy; 245 u32 i, i2ccmd = 0; 246 247 /* Set up Op-code, Phy Address, and register address in the I2CCMD 248 * register. The MAC will take care of interfacing with the 249 * PHY to retrieve the desired data. 250 */ 251 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | 252 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | 253 (E1000_I2CCMD_OPCODE_READ)); 254 255 wr32(E1000_I2CCMD, i2ccmd); 256 257 /* Poll the ready bit to see if the I2C read completed */ 258 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { 259 udelay(50); 260 i2ccmd = rd32(E1000_I2CCMD); 261 if (i2ccmd & E1000_I2CCMD_READY) 262 break; 263 } 264 if (!(i2ccmd & E1000_I2CCMD_READY)) { 265 hw_dbg("I2CCMD Read did not complete\n"); 266 return -E1000_ERR_PHY; 267 } 268 if (i2ccmd & E1000_I2CCMD_ERROR) { 269 hw_dbg("I2CCMD Error bit set\n"); 270 return -E1000_ERR_PHY; 271 } 272 273 /* Need to byte-swap the 16-bit value. */ 274 *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00); 275 276 return 0; 277 } 278 279 /** 280 * igb_write_phy_reg_i2c - Write PHY register using i2c 281 * @hw: pointer to the HW structure 282 * @offset: register offset to write to 283 * @data: data to write at register offset 284 * 285 * Writes the data to PHY register at the offset using the i2c interface. 286 **/ 287 s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data) 288 { 289 struct e1000_phy_info *phy = &hw->phy; 290 u32 i, i2ccmd = 0; 291 u16 phy_data_swapped; 292 293 /* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/ 294 if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) { 295 hw_dbg("PHY I2C Address %d is out of range.\n", 296 hw->phy.addr); 297 return -E1000_ERR_CONFIG; 298 } 299 300 /* Swap the data bytes for the I2C interface */ 301 phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00); 302 303 /* Set up Op-code, Phy Address, and register address in the I2CCMD 304 * register. The MAC will take care of interfacing with the 305 * PHY to retrieve the desired data. 306 */ 307 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | 308 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | 309 E1000_I2CCMD_OPCODE_WRITE | 310 phy_data_swapped); 311 312 wr32(E1000_I2CCMD, i2ccmd); 313 314 /* Poll the ready bit to see if the I2C read completed */ 315 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { 316 udelay(50); 317 i2ccmd = rd32(E1000_I2CCMD); 318 if (i2ccmd & E1000_I2CCMD_READY) 319 break; 320 } 321 if (!(i2ccmd & E1000_I2CCMD_READY)) { 322 hw_dbg("I2CCMD Write did not complete\n"); 323 return -E1000_ERR_PHY; 324 } 325 if (i2ccmd & E1000_I2CCMD_ERROR) { 326 hw_dbg("I2CCMD Error bit set\n"); 327 return -E1000_ERR_PHY; 328 } 329 330 return 0; 331 } 332 333 /** 334 * igb_read_sfp_data_byte - Reads SFP module data. 335 * @hw: pointer to the HW structure 336 * @offset: byte location offset to be read 337 * @data: read data buffer pointer 338 * 339 * Reads one byte from SFP module data stored 340 * in SFP resided EEPROM memory or SFP diagnostic area. 341 * Function should be called with 342 * E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access 343 * E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters 344 * access 345 **/ 346 s32 igb_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data) 347 { 348 u32 i = 0; 349 u32 i2ccmd = 0; 350 u32 data_local = 0; 351 352 if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) { 353 hw_dbg("I2CCMD command address exceeds upper limit\n"); 354 return -E1000_ERR_PHY; 355 } 356 357 /* Set up Op-code, EEPROM Address,in the I2CCMD 358 * register. The MAC will take care of interfacing with the 359 * EEPROM to retrieve the desired data. 360 */ 361 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | 362 E1000_I2CCMD_OPCODE_READ); 363 364 wr32(E1000_I2CCMD, i2ccmd); 365 366 /* Poll the ready bit to see if the I2C read completed */ 367 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { 368 udelay(50); 369 data_local = rd32(E1000_I2CCMD); 370 if (data_local & E1000_I2CCMD_READY) 371 break; 372 } 373 if (!(data_local & E1000_I2CCMD_READY)) { 374 hw_dbg("I2CCMD Read did not complete\n"); 375 return -E1000_ERR_PHY; 376 } 377 if (data_local & E1000_I2CCMD_ERROR) { 378 hw_dbg("I2CCMD Error bit set\n"); 379 return -E1000_ERR_PHY; 380 } 381 *data = (u8) data_local & 0xFF; 382 383 return 0; 384 } 385 386 /** 387 * igb_read_phy_reg_igp - Read igp PHY register 388 * @hw: pointer to the HW structure 389 * @offset: register offset to be read 390 * @data: pointer to the read data 391 * 392 * Acquires semaphore, if necessary, then reads the PHY register at offset 393 * and storing the retrieved information in data. Release any acquired 394 * semaphores before exiting. 395 **/ 396 s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data) 397 { 398 s32 ret_val = 0; 399 400 if (!(hw->phy.ops.acquire)) 401 goto out; 402 403 ret_val = hw->phy.ops.acquire(hw); 404 if (ret_val) 405 goto out; 406 407 if (offset > MAX_PHY_MULTI_PAGE_REG) { 408 ret_val = igb_write_phy_reg_mdic(hw, 409 IGP01E1000_PHY_PAGE_SELECT, 410 (u16)offset); 411 if (ret_val) { 412 hw->phy.ops.release(hw); 413 goto out; 414 } 415 } 416 417 ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 418 data); 419 420 hw->phy.ops.release(hw); 421 422 out: 423 return ret_val; 424 } 425 426 /** 427 * igb_write_phy_reg_igp - Write igp PHY register 428 * @hw: pointer to the HW structure 429 * @offset: register offset to write to 430 * @data: data to write at register offset 431 * 432 * Acquires semaphore, if necessary, then writes the data to PHY register 433 * at the offset. Release any acquired semaphores before exiting. 434 **/ 435 s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data) 436 { 437 s32 ret_val = 0; 438 439 if (!(hw->phy.ops.acquire)) 440 goto out; 441 442 ret_val = hw->phy.ops.acquire(hw); 443 if (ret_val) 444 goto out; 445 446 if (offset > MAX_PHY_MULTI_PAGE_REG) { 447 ret_val = igb_write_phy_reg_mdic(hw, 448 IGP01E1000_PHY_PAGE_SELECT, 449 (u16)offset); 450 if (ret_val) { 451 hw->phy.ops.release(hw); 452 goto out; 453 } 454 } 455 456 ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 457 data); 458 459 hw->phy.ops.release(hw); 460 461 out: 462 return ret_val; 463 } 464 465 /** 466 * igb_copper_link_setup_82580 - Setup 82580 PHY for copper link 467 * @hw: pointer to the HW structure 468 * 469 * Sets up Carrier-sense on Transmit and downshift values. 470 **/ 471 s32 igb_copper_link_setup_82580(struct e1000_hw *hw) 472 { 473 struct e1000_phy_info *phy = &hw->phy; 474 s32 ret_val; 475 u16 phy_data; 476 477 if (phy->reset_disable) { 478 ret_val = 0; 479 goto out; 480 } 481 482 if (phy->type == e1000_phy_82580) { 483 ret_val = hw->phy.ops.reset(hw); 484 if (ret_val) { 485 hw_dbg("Error resetting the PHY.\n"); 486 goto out; 487 } 488 } 489 490 /* Enable CRS on TX. This must be set for half-duplex operation. */ 491 ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data); 492 if (ret_val) 493 goto out; 494 495 phy_data |= I82580_CFG_ASSERT_CRS_ON_TX; 496 497 /* Enable downshift */ 498 phy_data |= I82580_CFG_ENABLE_DOWNSHIFT; 499 500 ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data); 501 if (ret_val) 502 goto out; 503 504 /* Set MDI/MDIX mode */ 505 ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data); 506 if (ret_val) 507 goto out; 508 phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK; 509 /* Options: 510 * 0 - Auto (default) 511 * 1 - MDI mode 512 * 2 - MDI-X mode 513 */ 514 switch (hw->phy.mdix) { 515 case 1: 516 break; 517 case 2: 518 phy_data |= I82580_PHY_CTRL2_MANUAL_MDIX; 519 break; 520 case 0: 521 default: 522 phy_data |= I82580_PHY_CTRL2_AUTO_MDI_MDIX; 523 break; 524 } 525 ret_val = hw->phy.ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data); 526 527 out: 528 return ret_val; 529 } 530 531 /** 532 * igb_copper_link_setup_m88 - Setup m88 PHY's for copper link 533 * @hw: pointer to the HW structure 534 * 535 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock 536 * and downshift values are set also. 537 **/ 538 s32 igb_copper_link_setup_m88(struct e1000_hw *hw) 539 { 540 struct e1000_phy_info *phy = &hw->phy; 541 s32 ret_val; 542 u16 phy_data; 543 544 if (phy->reset_disable) { 545 ret_val = 0; 546 goto out; 547 } 548 549 /* Enable CRS on TX. This must be set for half-duplex operation. */ 550 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 551 if (ret_val) 552 goto out; 553 554 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; 555 556 /* Options: 557 * MDI/MDI-X = 0 (default) 558 * 0 - Auto for all speeds 559 * 1 - MDI mode 560 * 2 - MDI-X mode 561 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) 562 */ 563 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; 564 565 switch (phy->mdix) { 566 case 1: 567 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; 568 break; 569 case 2: 570 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; 571 break; 572 case 3: 573 phy_data |= M88E1000_PSCR_AUTO_X_1000T; 574 break; 575 case 0: 576 default: 577 phy_data |= M88E1000_PSCR_AUTO_X_MODE; 578 break; 579 } 580 581 /* Options: 582 * disable_polarity_correction = 0 (default) 583 * Automatic Correction for Reversed Cable Polarity 584 * 0 - Disabled 585 * 1 - Enabled 586 */ 587 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; 588 if (phy->disable_polarity_correction == 1) 589 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; 590 591 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 592 if (ret_val) 593 goto out; 594 595 if (phy->revision < E1000_REVISION_4) { 596 /* Force TX_CLK in the Extended PHY Specific Control Register 597 * to 25MHz clock. 598 */ 599 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, 600 &phy_data); 601 if (ret_val) 602 goto out; 603 604 phy_data |= M88E1000_EPSCR_TX_CLK_25; 605 606 if ((phy->revision == E1000_REVISION_2) && 607 (phy->id == M88E1111_I_PHY_ID)) { 608 /* 82573L PHY - set the downshift counter to 5x. */ 609 phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK; 610 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; 611 } else { 612 /* Configure Master and Slave downshift values */ 613 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | 614 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); 615 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | 616 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); 617 } 618 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, 619 phy_data); 620 if (ret_val) 621 goto out; 622 } 623 624 /* Commit the changes. */ 625 ret_val = igb_phy_sw_reset(hw); 626 if (ret_val) { 627 hw_dbg("Error committing the PHY changes\n"); 628 goto out; 629 } 630 631 out: 632 return ret_val; 633 } 634 635 /** 636 * igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link 637 * @hw: pointer to the HW structure 638 * 639 * Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's. 640 * Also enables and sets the downshift parameters. 641 **/ 642 s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw) 643 { 644 struct e1000_phy_info *phy = &hw->phy; 645 s32 ret_val; 646 u16 phy_data; 647 648 if (phy->reset_disable) 649 return 0; 650 651 /* Enable CRS on Tx. This must be set for half-duplex operation. */ 652 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 653 if (ret_val) 654 return ret_val; 655 656 /* Options: 657 * MDI/MDI-X = 0 (default) 658 * 0 - Auto for all speeds 659 * 1 - MDI mode 660 * 2 - MDI-X mode 661 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) 662 */ 663 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; 664 665 switch (phy->mdix) { 666 case 1: 667 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; 668 break; 669 case 2: 670 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; 671 break; 672 case 3: 673 /* M88E1112 does not support this mode) */ 674 if (phy->id != M88E1112_E_PHY_ID) { 675 phy_data |= M88E1000_PSCR_AUTO_X_1000T; 676 break; 677 } 678 case 0: 679 default: 680 phy_data |= M88E1000_PSCR_AUTO_X_MODE; 681 break; 682 } 683 684 /* Options: 685 * disable_polarity_correction = 0 (default) 686 * Automatic Correction for Reversed Cable Polarity 687 * 0 - Disabled 688 * 1 - Enabled 689 */ 690 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; 691 if (phy->disable_polarity_correction == 1) 692 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; 693 694 /* Enable downshift and setting it to X6 */ 695 if (phy->id == M88E1543_E_PHY_ID) { 696 phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE; 697 ret_val = 698 phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 699 if (ret_val) 700 return ret_val; 701 702 ret_val = igb_phy_sw_reset(hw); 703 if (ret_val) { 704 hw_dbg("Error committing the PHY changes\n"); 705 return ret_val; 706 } 707 } 708 709 phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK; 710 phy_data |= I347AT4_PSCR_DOWNSHIFT_6X; 711 phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE; 712 713 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 714 if (ret_val) 715 return ret_val; 716 717 /* Commit the changes. */ 718 ret_val = igb_phy_sw_reset(hw); 719 if (ret_val) { 720 hw_dbg("Error committing the PHY changes\n"); 721 return ret_val; 722 } 723 ret_val = igb_set_master_slave_mode(hw); 724 if (ret_val) 725 return ret_val; 726 727 return 0; 728 } 729 730 /** 731 * igb_copper_link_setup_igp - Setup igp PHY's for copper link 732 * @hw: pointer to the HW structure 733 * 734 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for 735 * igp PHY's. 736 **/ 737 s32 igb_copper_link_setup_igp(struct e1000_hw *hw) 738 { 739 struct e1000_phy_info *phy = &hw->phy; 740 s32 ret_val; 741 u16 data; 742 743 if (phy->reset_disable) { 744 ret_val = 0; 745 goto out; 746 } 747 748 ret_val = phy->ops.reset(hw); 749 if (ret_val) { 750 hw_dbg("Error resetting the PHY.\n"); 751 goto out; 752 } 753 754 /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid 755 * timeout issues when LFS is enabled. 756 */ 757 msleep(100); 758 759 /* The NVM settings will configure LPLU in D3 for 760 * non-IGP1 PHYs. 761 */ 762 if (phy->type == e1000_phy_igp) { 763 /* disable lplu d3 during driver init */ 764 if (phy->ops.set_d3_lplu_state) 765 ret_val = phy->ops.set_d3_lplu_state(hw, false); 766 if (ret_val) { 767 hw_dbg("Error Disabling LPLU D3\n"); 768 goto out; 769 } 770 } 771 772 /* disable lplu d0 during driver init */ 773 ret_val = phy->ops.set_d0_lplu_state(hw, false); 774 if (ret_val) { 775 hw_dbg("Error Disabling LPLU D0\n"); 776 goto out; 777 } 778 /* Configure mdi-mdix settings */ 779 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data); 780 if (ret_val) 781 goto out; 782 783 data &= ~IGP01E1000_PSCR_AUTO_MDIX; 784 785 switch (phy->mdix) { 786 case 1: 787 data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; 788 break; 789 case 2: 790 data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; 791 break; 792 case 0: 793 default: 794 data |= IGP01E1000_PSCR_AUTO_MDIX; 795 break; 796 } 797 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data); 798 if (ret_val) 799 goto out; 800 801 /* set auto-master slave resolution settings */ 802 if (hw->mac.autoneg) { 803 /* when autonegotiation advertisement is only 1000Mbps then we 804 * should disable SmartSpeed and enable Auto MasterSlave 805 * resolution as hardware default. 806 */ 807 if (phy->autoneg_advertised == ADVERTISE_1000_FULL) { 808 /* Disable SmartSpeed */ 809 ret_val = phy->ops.read_reg(hw, 810 IGP01E1000_PHY_PORT_CONFIG, 811 &data); 812 if (ret_val) 813 goto out; 814 815 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 816 ret_val = phy->ops.write_reg(hw, 817 IGP01E1000_PHY_PORT_CONFIG, 818 data); 819 if (ret_val) 820 goto out; 821 822 /* Set auto Master/Slave resolution process */ 823 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data); 824 if (ret_val) 825 goto out; 826 827 data &= ~CR_1000T_MS_ENABLE; 828 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data); 829 if (ret_val) 830 goto out; 831 } 832 833 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data); 834 if (ret_val) 835 goto out; 836 837 /* load defaults for future use */ 838 phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ? 839 ((data & CR_1000T_MS_VALUE) ? 840 e1000_ms_force_master : 841 e1000_ms_force_slave) : 842 e1000_ms_auto; 843 844 switch (phy->ms_type) { 845 case e1000_ms_force_master: 846 data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); 847 break; 848 case e1000_ms_force_slave: 849 data |= CR_1000T_MS_ENABLE; 850 data &= ~(CR_1000T_MS_VALUE); 851 break; 852 case e1000_ms_auto: 853 data &= ~CR_1000T_MS_ENABLE; 854 default: 855 break; 856 } 857 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data); 858 if (ret_val) 859 goto out; 860 } 861 862 out: 863 return ret_val; 864 } 865 866 /** 867 * igb_copper_link_autoneg - Setup/Enable autoneg for copper link 868 * @hw: pointer to the HW structure 869 * 870 * Performs initial bounds checking on autoneg advertisement parameter, then 871 * configure to advertise the full capability. Setup the PHY to autoneg 872 * and restart the negotiation process between the link partner. If 873 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting. 874 **/ 875 static s32 igb_copper_link_autoneg(struct e1000_hw *hw) 876 { 877 struct e1000_phy_info *phy = &hw->phy; 878 s32 ret_val; 879 u16 phy_ctrl; 880 881 /* Perform some bounds checking on the autoneg advertisement 882 * parameter. 883 */ 884 phy->autoneg_advertised &= phy->autoneg_mask; 885 886 /* If autoneg_advertised is zero, we assume it was not defaulted 887 * by the calling code so we set to advertise full capability. 888 */ 889 if (phy->autoneg_advertised == 0) 890 phy->autoneg_advertised = phy->autoneg_mask; 891 892 hw_dbg("Reconfiguring auto-neg advertisement params\n"); 893 ret_val = igb_phy_setup_autoneg(hw); 894 if (ret_val) { 895 hw_dbg("Error Setting up Auto-Negotiation\n"); 896 goto out; 897 } 898 hw_dbg("Restarting Auto-Neg\n"); 899 900 /* Restart auto-negotiation by setting the Auto Neg Enable bit and 901 * the Auto Neg Restart bit in the PHY control register. 902 */ 903 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); 904 if (ret_val) 905 goto out; 906 907 phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); 908 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl); 909 if (ret_val) 910 goto out; 911 912 /* Does the user want to wait for Auto-Neg to complete here, or 913 * check at a later time (for example, callback routine). 914 */ 915 if (phy->autoneg_wait_to_complete) { 916 ret_val = igb_wait_autoneg(hw); 917 if (ret_val) { 918 hw_dbg("Error while waiting for autoneg to complete\n"); 919 goto out; 920 } 921 } 922 923 hw->mac.get_link_status = true; 924 925 out: 926 return ret_val; 927 } 928 929 /** 930 * igb_phy_setup_autoneg - Configure PHY for auto-negotiation 931 * @hw: pointer to the HW structure 932 * 933 * Reads the MII auto-neg advertisement register and/or the 1000T control 934 * register and if the PHY is already setup for auto-negotiation, then 935 * return successful. Otherwise, setup advertisement and flow control to 936 * the appropriate values for the wanted auto-negotiation. 937 **/ 938 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw) 939 { 940 struct e1000_phy_info *phy = &hw->phy; 941 s32 ret_val; 942 u16 mii_autoneg_adv_reg; 943 u16 mii_1000t_ctrl_reg = 0; 944 945 phy->autoneg_advertised &= phy->autoneg_mask; 946 947 /* Read the MII Auto-Neg Advertisement Register (Address 4). */ 948 ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); 949 if (ret_val) 950 goto out; 951 952 if (phy->autoneg_mask & ADVERTISE_1000_FULL) { 953 /* Read the MII 1000Base-T Control Register (Address 9). */ 954 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, 955 &mii_1000t_ctrl_reg); 956 if (ret_val) 957 goto out; 958 } 959 960 /* Need to parse both autoneg_advertised and fc and set up 961 * the appropriate PHY registers. First we will parse for 962 * autoneg_advertised software override. Since we can advertise 963 * a plethora of combinations, we need to check each bit 964 * individually. 965 */ 966 967 /* First we clear all the 10/100 mb speed bits in the Auto-Neg 968 * Advertisement Register (Address 4) and the 1000 mb speed bits in 969 * the 1000Base-T Control Register (Address 9). 970 */ 971 mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS | 972 NWAY_AR_100TX_HD_CAPS | 973 NWAY_AR_10T_FD_CAPS | 974 NWAY_AR_10T_HD_CAPS); 975 mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS); 976 977 hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised); 978 979 /* Do we want to advertise 10 Mb Half Duplex? */ 980 if (phy->autoneg_advertised & ADVERTISE_10_HALF) { 981 hw_dbg("Advertise 10mb Half duplex\n"); 982 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; 983 } 984 985 /* Do we want to advertise 10 Mb Full Duplex? */ 986 if (phy->autoneg_advertised & ADVERTISE_10_FULL) { 987 hw_dbg("Advertise 10mb Full duplex\n"); 988 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; 989 } 990 991 /* Do we want to advertise 100 Mb Half Duplex? */ 992 if (phy->autoneg_advertised & ADVERTISE_100_HALF) { 993 hw_dbg("Advertise 100mb Half duplex\n"); 994 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; 995 } 996 997 /* Do we want to advertise 100 Mb Full Duplex? */ 998 if (phy->autoneg_advertised & ADVERTISE_100_FULL) { 999 hw_dbg("Advertise 100mb Full duplex\n"); 1000 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; 1001 } 1002 1003 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ 1004 if (phy->autoneg_advertised & ADVERTISE_1000_HALF) 1005 hw_dbg("Advertise 1000mb Half duplex request denied!\n"); 1006 1007 /* Do we want to advertise 1000 Mb Full Duplex? */ 1008 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) { 1009 hw_dbg("Advertise 1000mb Full duplex\n"); 1010 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; 1011 } 1012 1013 /* Check for a software override of the flow control settings, and 1014 * setup the PHY advertisement registers accordingly. If 1015 * auto-negotiation is enabled, then software will have to set the 1016 * "PAUSE" bits to the correct value in the Auto-Negotiation 1017 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto- 1018 * negotiation. 1019 * 1020 * The possible values of the "fc" parameter are: 1021 * 0: Flow control is completely disabled 1022 * 1: Rx flow control is enabled (we can receive pause frames 1023 * but not send pause frames). 1024 * 2: Tx flow control is enabled (we can send pause frames 1025 * but we do not support receiving pause frames). 1026 * 3: Both Rx and TX flow control (symmetric) are enabled. 1027 * other: No software override. The flow control configuration 1028 * in the EEPROM is used. 1029 */ 1030 switch (hw->fc.current_mode) { 1031 case e1000_fc_none: 1032 /* Flow control (RX & TX) is completely disabled by a 1033 * software over-ride. 1034 */ 1035 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); 1036 break; 1037 case e1000_fc_rx_pause: 1038 /* RX Flow control is enabled, and TX Flow control is 1039 * disabled, by a software over-ride. 1040 * 1041 * Since there really isn't a way to advertise that we are 1042 * capable of RX Pause ONLY, we will advertise that we 1043 * support both symmetric and asymmetric RX PAUSE. Later 1044 * (in e1000_config_fc_after_link_up) we will disable the 1045 * hw's ability to send PAUSE frames. 1046 */ 1047 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); 1048 break; 1049 case e1000_fc_tx_pause: 1050 /* TX Flow control is enabled, and RX Flow control is 1051 * disabled, by a software over-ride. 1052 */ 1053 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; 1054 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; 1055 break; 1056 case e1000_fc_full: 1057 /* Flow control (both RX and TX) is enabled by a software 1058 * over-ride. 1059 */ 1060 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); 1061 break; 1062 default: 1063 hw_dbg("Flow control param set incorrectly\n"); 1064 ret_val = -E1000_ERR_CONFIG; 1065 goto out; 1066 } 1067 1068 ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); 1069 if (ret_val) 1070 goto out; 1071 1072 hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); 1073 1074 if (phy->autoneg_mask & ADVERTISE_1000_FULL) { 1075 ret_val = phy->ops.write_reg(hw, 1076 PHY_1000T_CTRL, 1077 mii_1000t_ctrl_reg); 1078 if (ret_val) 1079 goto out; 1080 } 1081 1082 out: 1083 return ret_val; 1084 } 1085 1086 /** 1087 * igb_setup_copper_link - Configure copper link settings 1088 * @hw: pointer to the HW structure 1089 * 1090 * Calls the appropriate function to configure the link for auto-neg or forced 1091 * speed and duplex. Then we check for link, once link is established calls 1092 * to configure collision distance and flow control are called. If link is 1093 * not established, we return -E1000_ERR_PHY (-2). 1094 **/ 1095 s32 igb_setup_copper_link(struct e1000_hw *hw) 1096 { 1097 s32 ret_val; 1098 bool link; 1099 1100 if (hw->mac.autoneg) { 1101 /* Setup autoneg and flow control advertisement and perform 1102 * autonegotiation. 1103 */ 1104 ret_val = igb_copper_link_autoneg(hw); 1105 if (ret_val) 1106 goto out; 1107 } else { 1108 /* PHY will be set to 10H, 10F, 100H or 100F 1109 * depending on user settings. 1110 */ 1111 hw_dbg("Forcing Speed and Duplex\n"); 1112 ret_val = hw->phy.ops.force_speed_duplex(hw); 1113 if (ret_val) { 1114 hw_dbg("Error Forcing Speed and Duplex\n"); 1115 goto out; 1116 } 1117 } 1118 1119 /* Check link status. Wait up to 100 microseconds for link to become 1120 * valid. 1121 */ 1122 ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link); 1123 if (ret_val) 1124 goto out; 1125 1126 if (link) { 1127 hw_dbg("Valid link established!!!\n"); 1128 igb_config_collision_dist(hw); 1129 ret_val = igb_config_fc_after_link_up(hw); 1130 } else { 1131 hw_dbg("Unable to establish link!!!\n"); 1132 } 1133 1134 out: 1135 return ret_val; 1136 } 1137 1138 /** 1139 * igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY 1140 * @hw: pointer to the HW structure 1141 * 1142 * Calls the PHY setup function to force speed and duplex. Clears the 1143 * auto-crossover to force MDI manually. Waits for link and returns 1144 * successful if link up is successful, else -E1000_ERR_PHY (-2). 1145 **/ 1146 s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw) 1147 { 1148 struct e1000_phy_info *phy = &hw->phy; 1149 s32 ret_val; 1150 u16 phy_data; 1151 bool link; 1152 1153 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); 1154 if (ret_val) 1155 goto out; 1156 1157 igb_phy_force_speed_duplex_setup(hw, &phy_data); 1158 1159 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); 1160 if (ret_val) 1161 goto out; 1162 1163 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI 1164 * forced whenever speed and duplex are forced. 1165 */ 1166 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); 1167 if (ret_val) 1168 goto out; 1169 1170 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; 1171 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; 1172 1173 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); 1174 if (ret_val) 1175 goto out; 1176 1177 hw_dbg("IGP PSCR: %X\n", phy_data); 1178 1179 udelay(1); 1180 1181 if (phy->autoneg_wait_to_complete) { 1182 hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n"); 1183 1184 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link); 1185 if (ret_val) 1186 goto out; 1187 1188 if (!link) 1189 hw_dbg("Link taking longer than expected.\n"); 1190 1191 /* Try once more */ 1192 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link); 1193 if (ret_val) 1194 goto out; 1195 } 1196 1197 out: 1198 return ret_val; 1199 } 1200 1201 /** 1202 * igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY 1203 * @hw: pointer to the HW structure 1204 * 1205 * Calls the PHY setup function to force speed and duplex. Clears the 1206 * auto-crossover to force MDI manually. Resets the PHY to commit the 1207 * changes. If time expires while waiting for link up, we reset the DSP. 1208 * After reset, TX_CLK and CRS on TX must be set. Return successful upon 1209 * successful completion, else return corresponding error code. 1210 **/ 1211 s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw) 1212 { 1213 struct e1000_phy_info *phy = &hw->phy; 1214 s32 ret_val; 1215 u16 phy_data; 1216 bool link; 1217 1218 /* I210 and I211 devices support Auto-Crossover in forced operation. */ 1219 if (phy->type != e1000_phy_i210) { 1220 /* Clear Auto-Crossover to force MDI manually. M88E1000 1221 * requires MDI forced whenever speed and duplex are forced. 1222 */ 1223 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, 1224 &phy_data); 1225 if (ret_val) 1226 goto out; 1227 1228 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; 1229 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, 1230 phy_data); 1231 if (ret_val) 1232 goto out; 1233 1234 hw_dbg("M88E1000 PSCR: %X\n", phy_data); 1235 } 1236 1237 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); 1238 if (ret_val) 1239 goto out; 1240 1241 igb_phy_force_speed_duplex_setup(hw, &phy_data); 1242 1243 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); 1244 if (ret_val) 1245 goto out; 1246 1247 /* Reset the phy to commit changes. */ 1248 ret_val = igb_phy_sw_reset(hw); 1249 if (ret_val) 1250 goto out; 1251 1252 if (phy->autoneg_wait_to_complete) { 1253 hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n"); 1254 1255 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link); 1256 if (ret_val) 1257 goto out; 1258 1259 if (!link) { 1260 bool reset_dsp = true; 1261 1262 switch (hw->phy.id) { 1263 case I347AT4_E_PHY_ID: 1264 case M88E1112_E_PHY_ID: 1265 case M88E1543_E_PHY_ID: 1266 case M88E1512_E_PHY_ID: 1267 case I210_I_PHY_ID: 1268 reset_dsp = false; 1269 break; 1270 default: 1271 if (hw->phy.type != e1000_phy_m88) 1272 reset_dsp = false; 1273 break; 1274 } 1275 if (!reset_dsp) { 1276 hw_dbg("Link taking longer than expected.\n"); 1277 } else { 1278 /* We didn't get link. 1279 * Reset the DSP and cross our fingers. 1280 */ 1281 ret_val = phy->ops.write_reg(hw, 1282 M88E1000_PHY_PAGE_SELECT, 1283 0x001d); 1284 if (ret_val) 1285 goto out; 1286 ret_val = igb_phy_reset_dsp(hw); 1287 if (ret_val) 1288 goto out; 1289 } 1290 } 1291 1292 /* Try once more */ 1293 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 1294 100000, &link); 1295 if (ret_val) 1296 goto out; 1297 } 1298 1299 if (hw->phy.type != e1000_phy_m88 || 1300 hw->phy.id == I347AT4_E_PHY_ID || 1301 hw->phy.id == M88E1112_E_PHY_ID || 1302 hw->phy.id == M88E1543_E_PHY_ID || 1303 hw->phy.id == M88E1512_E_PHY_ID || 1304 hw->phy.id == I210_I_PHY_ID) 1305 goto out; 1306 1307 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); 1308 if (ret_val) 1309 goto out; 1310 1311 /* Resetting the phy means we need to re-force TX_CLK in the 1312 * Extended PHY Specific Control Register to 25MHz clock from 1313 * the reset value of 2.5MHz. 1314 */ 1315 phy_data |= M88E1000_EPSCR_TX_CLK_25; 1316 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); 1317 if (ret_val) 1318 goto out; 1319 1320 /* In addition, we must re-enable CRS on Tx for both half and full 1321 * duplex. 1322 */ 1323 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 1324 if (ret_val) 1325 goto out; 1326 1327 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; 1328 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 1329 1330 out: 1331 return ret_val; 1332 } 1333 1334 /** 1335 * igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex 1336 * @hw: pointer to the HW structure 1337 * @phy_ctrl: pointer to current value of PHY_CONTROL 1338 * 1339 * Forces speed and duplex on the PHY by doing the following: disable flow 1340 * control, force speed/duplex on the MAC, disable auto speed detection, 1341 * disable auto-negotiation, configure duplex, configure speed, configure 1342 * the collision distance, write configuration to CTRL register. The 1343 * caller must write to the PHY_CONTROL register for these settings to 1344 * take affect. 1345 **/ 1346 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw, 1347 u16 *phy_ctrl) 1348 { 1349 struct e1000_mac_info *mac = &hw->mac; 1350 u32 ctrl; 1351 1352 /* Turn off flow control when forcing speed/duplex */ 1353 hw->fc.current_mode = e1000_fc_none; 1354 1355 /* Force speed/duplex on the mac */ 1356 ctrl = rd32(E1000_CTRL); 1357 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 1358 ctrl &= ~E1000_CTRL_SPD_SEL; 1359 1360 /* Disable Auto Speed Detection */ 1361 ctrl &= ~E1000_CTRL_ASDE; 1362 1363 /* Disable autoneg on the phy */ 1364 *phy_ctrl &= ~MII_CR_AUTO_NEG_EN; 1365 1366 /* Forcing Full or Half Duplex? */ 1367 if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) { 1368 ctrl &= ~E1000_CTRL_FD; 1369 *phy_ctrl &= ~MII_CR_FULL_DUPLEX; 1370 hw_dbg("Half Duplex\n"); 1371 } else { 1372 ctrl |= E1000_CTRL_FD; 1373 *phy_ctrl |= MII_CR_FULL_DUPLEX; 1374 hw_dbg("Full Duplex\n"); 1375 } 1376 1377 /* Forcing 10mb or 100mb? */ 1378 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) { 1379 ctrl |= E1000_CTRL_SPD_100; 1380 *phy_ctrl |= MII_CR_SPEED_100; 1381 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); 1382 hw_dbg("Forcing 100mb\n"); 1383 } else { 1384 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 1385 *phy_ctrl |= MII_CR_SPEED_10; 1386 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); 1387 hw_dbg("Forcing 10mb\n"); 1388 } 1389 1390 igb_config_collision_dist(hw); 1391 1392 wr32(E1000_CTRL, ctrl); 1393 } 1394 1395 /** 1396 * igb_set_d3_lplu_state - Sets low power link up state for D3 1397 * @hw: pointer to the HW structure 1398 * @active: boolean used to enable/disable lplu 1399 * 1400 * Success returns 0, Failure returns 1 1401 * 1402 * The low power link up (lplu) state is set to the power management level D3 1403 * and SmartSpeed is disabled when active is true, else clear lplu for D3 1404 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1405 * is used during Dx states where the power conservation is most important. 1406 * During driver activity, SmartSpeed should be enabled so performance is 1407 * maintained. 1408 **/ 1409 s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active) 1410 { 1411 struct e1000_phy_info *phy = &hw->phy; 1412 s32 ret_val = 0; 1413 u16 data; 1414 1415 if (!(hw->phy.ops.read_reg)) 1416 goto out; 1417 1418 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); 1419 if (ret_val) 1420 goto out; 1421 1422 if (!active) { 1423 data &= ~IGP02E1000_PM_D3_LPLU; 1424 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, 1425 data); 1426 if (ret_val) 1427 goto out; 1428 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 1429 * during Dx states where the power conservation is most 1430 * important. During driver activity we should enable 1431 * SmartSpeed, so performance is maintained. 1432 */ 1433 if (phy->smart_speed == e1000_smart_speed_on) { 1434 ret_val = phy->ops.read_reg(hw, 1435 IGP01E1000_PHY_PORT_CONFIG, 1436 &data); 1437 if (ret_val) 1438 goto out; 1439 1440 data |= IGP01E1000_PSCFR_SMART_SPEED; 1441 ret_val = phy->ops.write_reg(hw, 1442 IGP01E1000_PHY_PORT_CONFIG, 1443 data); 1444 if (ret_val) 1445 goto out; 1446 } else if (phy->smart_speed == e1000_smart_speed_off) { 1447 ret_val = phy->ops.read_reg(hw, 1448 IGP01E1000_PHY_PORT_CONFIG, 1449 &data); 1450 if (ret_val) 1451 goto out; 1452 1453 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 1454 ret_val = phy->ops.write_reg(hw, 1455 IGP01E1000_PHY_PORT_CONFIG, 1456 data); 1457 if (ret_val) 1458 goto out; 1459 } 1460 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || 1461 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || 1462 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { 1463 data |= IGP02E1000_PM_D3_LPLU; 1464 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, 1465 data); 1466 if (ret_val) 1467 goto out; 1468 1469 /* When LPLU is enabled, we should disable SmartSpeed */ 1470 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, 1471 &data); 1472 if (ret_val) 1473 goto out; 1474 1475 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 1476 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, 1477 data); 1478 } 1479 1480 out: 1481 return ret_val; 1482 } 1483 1484 /** 1485 * igb_check_downshift - Checks whether a downshift in speed occurred 1486 * @hw: pointer to the HW structure 1487 * 1488 * Success returns 0, Failure returns 1 1489 * 1490 * A downshift is detected by querying the PHY link health. 1491 **/ 1492 s32 igb_check_downshift(struct e1000_hw *hw) 1493 { 1494 struct e1000_phy_info *phy = &hw->phy; 1495 s32 ret_val; 1496 u16 phy_data, offset, mask; 1497 1498 switch (phy->type) { 1499 case e1000_phy_i210: 1500 case e1000_phy_m88: 1501 case e1000_phy_gg82563: 1502 offset = M88E1000_PHY_SPEC_STATUS; 1503 mask = M88E1000_PSSR_DOWNSHIFT; 1504 break; 1505 case e1000_phy_igp_2: 1506 case e1000_phy_igp: 1507 case e1000_phy_igp_3: 1508 offset = IGP01E1000_PHY_LINK_HEALTH; 1509 mask = IGP01E1000_PLHR_SS_DOWNGRADE; 1510 break; 1511 default: 1512 /* speed downshift not supported */ 1513 phy->speed_downgraded = false; 1514 ret_val = 0; 1515 goto out; 1516 } 1517 1518 ret_val = phy->ops.read_reg(hw, offset, &phy_data); 1519 1520 if (!ret_val) 1521 phy->speed_downgraded = (phy_data & mask) ? true : false; 1522 1523 out: 1524 return ret_val; 1525 } 1526 1527 /** 1528 * igb_check_polarity_m88 - Checks the polarity. 1529 * @hw: pointer to the HW structure 1530 * 1531 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 1532 * 1533 * Polarity is determined based on the PHY specific status register. 1534 **/ 1535 s32 igb_check_polarity_m88(struct e1000_hw *hw) 1536 { 1537 struct e1000_phy_info *phy = &hw->phy; 1538 s32 ret_val; 1539 u16 data; 1540 1541 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data); 1542 1543 if (!ret_val) 1544 phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY) 1545 ? e1000_rev_polarity_reversed 1546 : e1000_rev_polarity_normal; 1547 1548 return ret_val; 1549 } 1550 1551 /** 1552 * igb_check_polarity_igp - Checks the polarity. 1553 * @hw: pointer to the HW structure 1554 * 1555 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 1556 * 1557 * Polarity is determined based on the PHY port status register, and the 1558 * current speed (since there is no polarity at 100Mbps). 1559 **/ 1560 static s32 igb_check_polarity_igp(struct e1000_hw *hw) 1561 { 1562 struct e1000_phy_info *phy = &hw->phy; 1563 s32 ret_val; 1564 u16 data, offset, mask; 1565 1566 /* Polarity is determined based on the speed of 1567 * our connection. 1568 */ 1569 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data); 1570 if (ret_val) 1571 goto out; 1572 1573 if ((data & IGP01E1000_PSSR_SPEED_MASK) == 1574 IGP01E1000_PSSR_SPEED_1000MBPS) { 1575 offset = IGP01E1000_PHY_PCS_INIT_REG; 1576 mask = IGP01E1000_PHY_POLARITY_MASK; 1577 } else { 1578 /* This really only applies to 10Mbps since 1579 * there is no polarity for 100Mbps (always 0). 1580 */ 1581 offset = IGP01E1000_PHY_PORT_STATUS; 1582 mask = IGP01E1000_PSSR_POLARITY_REVERSED; 1583 } 1584 1585 ret_val = phy->ops.read_reg(hw, offset, &data); 1586 1587 if (!ret_val) 1588 phy->cable_polarity = (data & mask) 1589 ? e1000_rev_polarity_reversed 1590 : e1000_rev_polarity_normal; 1591 1592 out: 1593 return ret_val; 1594 } 1595 1596 /** 1597 * igb_wait_autoneg - Wait for auto-neg completion 1598 * @hw: pointer to the HW structure 1599 * 1600 * Waits for auto-negotiation to complete or for the auto-negotiation time 1601 * limit to expire, which ever happens first. 1602 **/ 1603 static s32 igb_wait_autoneg(struct e1000_hw *hw) 1604 { 1605 s32 ret_val = 0; 1606 u16 i, phy_status; 1607 1608 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */ 1609 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) { 1610 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); 1611 if (ret_val) 1612 break; 1613 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); 1614 if (ret_val) 1615 break; 1616 if (phy_status & MII_SR_AUTONEG_COMPLETE) 1617 break; 1618 msleep(100); 1619 } 1620 1621 /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation 1622 * has completed. 1623 */ 1624 return ret_val; 1625 } 1626 1627 /** 1628 * igb_phy_has_link - Polls PHY for link 1629 * @hw: pointer to the HW structure 1630 * @iterations: number of times to poll for link 1631 * @usec_interval: delay between polling attempts 1632 * @success: pointer to whether polling was successful or not 1633 * 1634 * Polls the PHY status register for link, 'iterations' number of times. 1635 **/ 1636 s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations, 1637 u32 usec_interval, bool *success) 1638 { 1639 s32 ret_val = 0; 1640 u16 i, phy_status; 1641 1642 for (i = 0; i < iterations; i++) { 1643 /* Some PHYs require the PHY_STATUS register to be read 1644 * twice due to the link bit being sticky. No harm doing 1645 * it across the board. 1646 */ 1647 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); 1648 if (ret_val && usec_interval > 0) { 1649 /* If the first read fails, another entity may have 1650 * ownership of the resources, wait and try again to 1651 * see if they have relinquished the resources yet. 1652 */ 1653 if (usec_interval >= 1000) 1654 mdelay(usec_interval/1000); 1655 else 1656 udelay(usec_interval); 1657 } 1658 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); 1659 if (ret_val) 1660 break; 1661 if (phy_status & MII_SR_LINK_STATUS) 1662 break; 1663 if (usec_interval >= 1000) 1664 mdelay(usec_interval/1000); 1665 else 1666 udelay(usec_interval); 1667 } 1668 1669 *success = (i < iterations) ? true : false; 1670 1671 return ret_val; 1672 } 1673 1674 /** 1675 * igb_get_cable_length_m88 - Determine cable length for m88 PHY 1676 * @hw: pointer to the HW structure 1677 * 1678 * Reads the PHY specific status register to retrieve the cable length 1679 * information. The cable length is determined by averaging the minimum and 1680 * maximum values to get the "average" cable length. The m88 PHY has four 1681 * possible cable length values, which are: 1682 * Register Value Cable Length 1683 * 0 < 50 meters 1684 * 1 50 - 80 meters 1685 * 2 80 - 110 meters 1686 * 3 110 - 140 meters 1687 * 4 > 140 meters 1688 **/ 1689 s32 igb_get_cable_length_m88(struct e1000_hw *hw) 1690 { 1691 struct e1000_phy_info *phy = &hw->phy; 1692 s32 ret_val; 1693 u16 phy_data, index; 1694 1695 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 1696 if (ret_val) 1697 goto out; 1698 1699 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> 1700 M88E1000_PSSR_CABLE_LENGTH_SHIFT; 1701 if (index >= ARRAY_SIZE(e1000_m88_cable_length_table) - 1) { 1702 ret_val = -E1000_ERR_PHY; 1703 goto out; 1704 } 1705 1706 phy->min_cable_length = e1000_m88_cable_length_table[index]; 1707 phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; 1708 1709 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; 1710 1711 out: 1712 return ret_val; 1713 } 1714 1715 s32 igb_get_cable_length_m88_gen2(struct e1000_hw *hw) 1716 { 1717 struct e1000_phy_info *phy = &hw->phy; 1718 s32 ret_val; 1719 u16 phy_data, phy_data2, index, default_page, is_cm; 1720 1721 switch (hw->phy.id) { 1722 case I210_I_PHY_ID: 1723 /* Get cable length from PHY Cable Diagnostics Control Reg */ 1724 ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) + 1725 (I347AT4_PCDL + phy->addr), 1726 &phy_data); 1727 if (ret_val) 1728 return ret_val; 1729 1730 /* Check if the unit of cable length is meters or cm */ 1731 ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) + 1732 I347AT4_PCDC, &phy_data2); 1733 if (ret_val) 1734 return ret_val; 1735 1736 is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT); 1737 1738 /* Populate the phy structure with cable length in meters */ 1739 phy->min_cable_length = phy_data / (is_cm ? 100 : 1); 1740 phy->max_cable_length = phy_data / (is_cm ? 100 : 1); 1741 phy->cable_length = phy_data / (is_cm ? 100 : 1); 1742 break; 1743 case M88E1543_E_PHY_ID: 1744 case M88E1512_E_PHY_ID: 1745 case I347AT4_E_PHY_ID: 1746 /* Remember the original page select and set it to 7 */ 1747 ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT, 1748 &default_page); 1749 if (ret_val) 1750 goto out; 1751 1752 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07); 1753 if (ret_val) 1754 goto out; 1755 1756 /* Get cable length from PHY Cable Diagnostics Control Reg */ 1757 ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr), 1758 &phy_data); 1759 if (ret_val) 1760 goto out; 1761 1762 /* Check if the unit of cable length is meters or cm */ 1763 ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2); 1764 if (ret_val) 1765 goto out; 1766 1767 is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT); 1768 1769 /* Populate the phy structure with cable length in meters */ 1770 phy->min_cable_length = phy_data / (is_cm ? 100 : 1); 1771 phy->max_cable_length = phy_data / (is_cm ? 100 : 1); 1772 phy->cable_length = phy_data / (is_cm ? 100 : 1); 1773 1774 /* Reset the page selec to its original value */ 1775 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 1776 default_page); 1777 if (ret_val) 1778 goto out; 1779 break; 1780 case M88E1112_E_PHY_ID: 1781 /* Remember the original page select and set it to 5 */ 1782 ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT, 1783 &default_page); 1784 if (ret_val) 1785 goto out; 1786 1787 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05); 1788 if (ret_val) 1789 goto out; 1790 1791 ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE, 1792 &phy_data); 1793 if (ret_val) 1794 goto out; 1795 1796 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> 1797 M88E1000_PSSR_CABLE_LENGTH_SHIFT; 1798 if (index >= ARRAY_SIZE(e1000_m88_cable_length_table) - 1) { 1799 ret_val = -E1000_ERR_PHY; 1800 goto out; 1801 } 1802 1803 phy->min_cable_length = e1000_m88_cable_length_table[index]; 1804 phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; 1805 1806 phy->cable_length = (phy->min_cable_length + 1807 phy->max_cable_length) / 2; 1808 1809 /* Reset the page select to its original value */ 1810 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 1811 default_page); 1812 if (ret_val) 1813 goto out; 1814 1815 break; 1816 default: 1817 ret_val = -E1000_ERR_PHY; 1818 goto out; 1819 } 1820 1821 out: 1822 return ret_val; 1823 } 1824 1825 /** 1826 * igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY 1827 * @hw: pointer to the HW structure 1828 * 1829 * The automatic gain control (agc) normalizes the amplitude of the 1830 * received signal, adjusting for the attenuation produced by the 1831 * cable. By reading the AGC registers, which represent the 1832 * combination of coarse and fine gain value, the value can be put 1833 * into a lookup table to obtain the approximate cable length 1834 * for each channel. 1835 **/ 1836 s32 igb_get_cable_length_igp_2(struct e1000_hw *hw) 1837 { 1838 struct e1000_phy_info *phy = &hw->phy; 1839 s32 ret_val = 0; 1840 u16 phy_data, i, agc_value = 0; 1841 u16 cur_agc_index, max_agc_index = 0; 1842 u16 min_agc_index = ARRAY_SIZE(e1000_igp_2_cable_length_table) - 1; 1843 static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = { 1844 IGP02E1000_PHY_AGC_A, 1845 IGP02E1000_PHY_AGC_B, 1846 IGP02E1000_PHY_AGC_C, 1847 IGP02E1000_PHY_AGC_D 1848 }; 1849 1850 /* Read the AGC registers for all channels */ 1851 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { 1852 ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data); 1853 if (ret_val) 1854 goto out; 1855 1856 /* Getting bits 15:9, which represent the combination of 1857 * coarse and fine gain values. The result is a number 1858 * that can be put into the lookup table to obtain the 1859 * approximate cable length. 1860 */ 1861 cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & 1862 IGP02E1000_AGC_LENGTH_MASK; 1863 1864 /* Array index bound check. */ 1865 if ((cur_agc_index >= ARRAY_SIZE(e1000_igp_2_cable_length_table)) || 1866 (cur_agc_index == 0)) { 1867 ret_val = -E1000_ERR_PHY; 1868 goto out; 1869 } 1870 1871 /* Remove min & max AGC values from calculation. */ 1872 if (e1000_igp_2_cable_length_table[min_agc_index] > 1873 e1000_igp_2_cable_length_table[cur_agc_index]) 1874 min_agc_index = cur_agc_index; 1875 if (e1000_igp_2_cable_length_table[max_agc_index] < 1876 e1000_igp_2_cable_length_table[cur_agc_index]) 1877 max_agc_index = cur_agc_index; 1878 1879 agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; 1880 } 1881 1882 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + 1883 e1000_igp_2_cable_length_table[max_agc_index]); 1884 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); 1885 1886 /* Calculate cable length with the error range of +/- 10 meters. */ 1887 phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ? 1888 (agc_value - IGP02E1000_AGC_RANGE) : 0; 1889 phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE; 1890 1891 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; 1892 1893 out: 1894 return ret_val; 1895 } 1896 1897 /** 1898 * igb_get_phy_info_m88 - Retrieve PHY information 1899 * @hw: pointer to the HW structure 1900 * 1901 * Valid for only copper links. Read the PHY status register (sticky read) 1902 * to verify that link is up. Read the PHY special control register to 1903 * determine the polarity and 10base-T extended distance. Read the PHY 1904 * special status register to determine MDI/MDIx and current speed. If 1905 * speed is 1000, then determine cable length, local and remote receiver. 1906 **/ 1907 s32 igb_get_phy_info_m88(struct e1000_hw *hw) 1908 { 1909 struct e1000_phy_info *phy = &hw->phy; 1910 s32 ret_val; 1911 u16 phy_data; 1912 bool link; 1913 1914 if (phy->media_type != e1000_media_type_copper) { 1915 hw_dbg("Phy info is only valid for copper media\n"); 1916 ret_val = -E1000_ERR_CONFIG; 1917 goto out; 1918 } 1919 1920 ret_val = igb_phy_has_link(hw, 1, 0, &link); 1921 if (ret_val) 1922 goto out; 1923 1924 if (!link) { 1925 hw_dbg("Phy info is only valid if link is up\n"); 1926 ret_val = -E1000_ERR_CONFIG; 1927 goto out; 1928 } 1929 1930 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 1931 if (ret_val) 1932 goto out; 1933 1934 phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL) 1935 ? true : false; 1936 1937 ret_val = igb_check_polarity_m88(hw); 1938 if (ret_val) 1939 goto out; 1940 1941 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 1942 if (ret_val) 1943 goto out; 1944 1945 phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false; 1946 1947 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { 1948 ret_val = phy->ops.get_cable_length(hw); 1949 if (ret_val) 1950 goto out; 1951 1952 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data); 1953 if (ret_val) 1954 goto out; 1955 1956 phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) 1957 ? e1000_1000t_rx_status_ok 1958 : e1000_1000t_rx_status_not_ok; 1959 1960 phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) 1961 ? e1000_1000t_rx_status_ok 1962 : e1000_1000t_rx_status_not_ok; 1963 } else { 1964 /* Set values to "undefined" */ 1965 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; 1966 phy->local_rx = e1000_1000t_rx_status_undefined; 1967 phy->remote_rx = e1000_1000t_rx_status_undefined; 1968 } 1969 1970 out: 1971 return ret_val; 1972 } 1973 1974 /** 1975 * igb_get_phy_info_igp - Retrieve igp PHY information 1976 * @hw: pointer to the HW structure 1977 * 1978 * Read PHY status to determine if link is up. If link is up, then 1979 * set/determine 10base-T extended distance and polarity correction. Read 1980 * PHY port status to determine MDI/MDIx and speed. Based on the speed, 1981 * determine on the cable length, local and remote receiver. 1982 **/ 1983 s32 igb_get_phy_info_igp(struct e1000_hw *hw) 1984 { 1985 struct e1000_phy_info *phy = &hw->phy; 1986 s32 ret_val; 1987 u16 data; 1988 bool link; 1989 1990 ret_val = igb_phy_has_link(hw, 1, 0, &link); 1991 if (ret_val) 1992 goto out; 1993 1994 if (!link) { 1995 hw_dbg("Phy info is only valid if link is up\n"); 1996 ret_val = -E1000_ERR_CONFIG; 1997 goto out; 1998 } 1999 2000 phy->polarity_correction = true; 2001 2002 ret_val = igb_check_polarity_igp(hw); 2003 if (ret_val) 2004 goto out; 2005 2006 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data); 2007 if (ret_val) 2008 goto out; 2009 2010 phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false; 2011 2012 if ((data & IGP01E1000_PSSR_SPEED_MASK) == 2013 IGP01E1000_PSSR_SPEED_1000MBPS) { 2014 ret_val = phy->ops.get_cable_length(hw); 2015 if (ret_val) 2016 goto out; 2017 2018 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data); 2019 if (ret_val) 2020 goto out; 2021 2022 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) 2023 ? e1000_1000t_rx_status_ok 2024 : e1000_1000t_rx_status_not_ok; 2025 2026 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) 2027 ? e1000_1000t_rx_status_ok 2028 : e1000_1000t_rx_status_not_ok; 2029 } else { 2030 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; 2031 phy->local_rx = e1000_1000t_rx_status_undefined; 2032 phy->remote_rx = e1000_1000t_rx_status_undefined; 2033 } 2034 2035 out: 2036 return ret_val; 2037 } 2038 2039 /** 2040 * igb_phy_sw_reset - PHY software reset 2041 * @hw: pointer to the HW structure 2042 * 2043 * Does a software reset of the PHY by reading the PHY control register and 2044 * setting/write the control register reset bit to the PHY. 2045 **/ 2046 s32 igb_phy_sw_reset(struct e1000_hw *hw) 2047 { 2048 s32 ret_val = 0; 2049 u16 phy_ctrl; 2050 2051 if (!(hw->phy.ops.read_reg)) 2052 goto out; 2053 2054 ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); 2055 if (ret_val) 2056 goto out; 2057 2058 phy_ctrl |= MII_CR_RESET; 2059 ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl); 2060 if (ret_val) 2061 goto out; 2062 2063 udelay(1); 2064 2065 out: 2066 return ret_val; 2067 } 2068 2069 /** 2070 * igb_phy_hw_reset - PHY hardware reset 2071 * @hw: pointer to the HW structure 2072 * 2073 * Verify the reset block is not blocking us from resetting. Acquire 2074 * semaphore (if necessary) and read/set/write the device control reset 2075 * bit in the PHY. Wait the appropriate delay time for the device to 2076 * reset and release the semaphore (if necessary). 2077 **/ 2078 s32 igb_phy_hw_reset(struct e1000_hw *hw) 2079 { 2080 struct e1000_phy_info *phy = &hw->phy; 2081 s32 ret_val; 2082 u32 ctrl; 2083 2084 ret_val = igb_check_reset_block(hw); 2085 if (ret_val) { 2086 ret_val = 0; 2087 goto out; 2088 } 2089 2090 ret_val = phy->ops.acquire(hw); 2091 if (ret_val) 2092 goto out; 2093 2094 ctrl = rd32(E1000_CTRL); 2095 wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST); 2096 wrfl(); 2097 2098 udelay(phy->reset_delay_us); 2099 2100 wr32(E1000_CTRL, ctrl); 2101 wrfl(); 2102 2103 udelay(150); 2104 2105 phy->ops.release(hw); 2106 2107 ret_val = phy->ops.get_cfg_done(hw); 2108 2109 out: 2110 return ret_val; 2111 } 2112 2113 /** 2114 * igb_phy_init_script_igp3 - Inits the IGP3 PHY 2115 * @hw: pointer to the HW structure 2116 * 2117 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present. 2118 **/ 2119 s32 igb_phy_init_script_igp3(struct e1000_hw *hw) 2120 { 2121 hw_dbg("Running IGP 3 PHY init script\n"); 2122 2123 /* PHY init IGP 3 */ 2124 /* Enable rise/fall, 10-mode work in class-A */ 2125 hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018); 2126 /* Remove all caps from Replica path filter */ 2127 hw->phy.ops.write_reg(hw, 0x2F52, 0x0000); 2128 /* Bias trimming for ADC, AFE and Driver (Default) */ 2129 hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24); 2130 /* Increase Hybrid poly bias */ 2131 hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0); 2132 /* Add 4% to TX amplitude in Giga mode */ 2133 hw->phy.ops.write_reg(hw, 0x2010, 0x10B0); 2134 /* Disable trimming (TTT) */ 2135 hw->phy.ops.write_reg(hw, 0x2011, 0x0000); 2136 /* Poly DC correction to 94.6% + 2% for all channels */ 2137 hw->phy.ops.write_reg(hw, 0x20DD, 0x249A); 2138 /* ABS DC correction to 95.9% */ 2139 hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3); 2140 /* BG temp curve trim */ 2141 hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE); 2142 /* Increasing ADC OPAMP stage 1 currents to max */ 2143 hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4); 2144 /* Force 1000 ( required for enabling PHY regs configuration) */ 2145 hw->phy.ops.write_reg(hw, 0x0000, 0x0140); 2146 /* Set upd_freq to 6 */ 2147 hw->phy.ops.write_reg(hw, 0x1F30, 0x1606); 2148 /* Disable NPDFE */ 2149 hw->phy.ops.write_reg(hw, 0x1F31, 0xB814); 2150 /* Disable adaptive fixed FFE (Default) */ 2151 hw->phy.ops.write_reg(hw, 0x1F35, 0x002A); 2152 /* Enable FFE hysteresis */ 2153 hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067); 2154 /* Fixed FFE for short cable lengths */ 2155 hw->phy.ops.write_reg(hw, 0x1F54, 0x0065); 2156 /* Fixed FFE for medium cable lengths */ 2157 hw->phy.ops.write_reg(hw, 0x1F55, 0x002A); 2158 /* Fixed FFE for long cable lengths */ 2159 hw->phy.ops.write_reg(hw, 0x1F56, 0x002A); 2160 /* Enable Adaptive Clip Threshold */ 2161 hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0); 2162 /* AHT reset limit to 1 */ 2163 hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF); 2164 /* Set AHT master delay to 127 msec */ 2165 hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC); 2166 /* Set scan bits for AHT */ 2167 hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF); 2168 /* Set AHT Preset bits */ 2169 hw->phy.ops.write_reg(hw, 0x1F79, 0x0210); 2170 /* Change integ_factor of channel A to 3 */ 2171 hw->phy.ops.write_reg(hw, 0x1895, 0x0003); 2172 /* Change prop_factor of channels BCD to 8 */ 2173 hw->phy.ops.write_reg(hw, 0x1796, 0x0008); 2174 /* Change cg_icount + enable integbp for channels BCD */ 2175 hw->phy.ops.write_reg(hw, 0x1798, 0xD008); 2176 /* Change cg_icount + enable integbp + change prop_factor_master 2177 * to 8 for channel A 2178 */ 2179 hw->phy.ops.write_reg(hw, 0x1898, 0xD918); 2180 /* Disable AHT in Slave mode on channel A */ 2181 hw->phy.ops.write_reg(hw, 0x187A, 0x0800); 2182 /* Enable LPLU and disable AN to 1000 in non-D0a states, 2183 * Enable SPD+B2B 2184 */ 2185 hw->phy.ops.write_reg(hw, 0x0019, 0x008D); 2186 /* Enable restart AN on an1000_dis change */ 2187 hw->phy.ops.write_reg(hw, 0x001B, 0x2080); 2188 /* Enable wh_fifo read clock in 10/100 modes */ 2189 hw->phy.ops.write_reg(hw, 0x0014, 0x0045); 2190 /* Restart AN, Speed selection is 1000 */ 2191 hw->phy.ops.write_reg(hw, 0x0000, 0x1340); 2192 2193 return 0; 2194 } 2195 2196 /** 2197 * igb_initialize_M88E1512_phy - Initialize M88E1512 PHY 2198 * @hw: pointer to the HW structure 2199 * 2200 * Initialize Marvel 1512 to work correctly with Avoton. 2201 **/ 2202 s32 igb_initialize_M88E1512_phy(struct e1000_hw *hw) 2203 { 2204 struct e1000_phy_info *phy = &hw->phy; 2205 s32 ret_val = 0; 2206 2207 /* Switch to PHY page 0xFF. */ 2208 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF); 2209 if (ret_val) 2210 goto out; 2211 2212 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B); 2213 if (ret_val) 2214 goto out; 2215 2216 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144); 2217 if (ret_val) 2218 goto out; 2219 2220 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28); 2221 if (ret_val) 2222 goto out; 2223 2224 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146); 2225 if (ret_val) 2226 goto out; 2227 2228 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233); 2229 if (ret_val) 2230 goto out; 2231 2232 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D); 2233 if (ret_val) 2234 goto out; 2235 2236 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xCC0C); 2237 if (ret_val) 2238 goto out; 2239 2240 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159); 2241 if (ret_val) 2242 goto out; 2243 2244 /* Switch to PHY page 0xFB. */ 2245 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB); 2246 if (ret_val) 2247 goto out; 2248 2249 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x000D); 2250 if (ret_val) 2251 goto out; 2252 2253 /* Switch to PHY page 0x12. */ 2254 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12); 2255 if (ret_val) 2256 goto out; 2257 2258 /* Change mode to SGMII-to-Copper */ 2259 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001); 2260 if (ret_val) 2261 goto out; 2262 2263 /* Return the PHY to page 0. */ 2264 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0); 2265 if (ret_val) 2266 goto out; 2267 2268 ret_val = igb_phy_sw_reset(hw); 2269 if (ret_val) { 2270 hw_dbg("Error committing the PHY changes\n"); 2271 return ret_val; 2272 } 2273 2274 /* msec_delay(1000); */ 2275 usleep_range(1000, 2000); 2276 out: 2277 return ret_val; 2278 } 2279 2280 /** 2281 * igb_power_up_phy_copper - Restore copper link in case of PHY power down 2282 * @hw: pointer to the HW structure 2283 * 2284 * In the case of a PHY power down to save power, or to turn off link during a 2285 * driver unload, restore the link to previous settings. 2286 **/ 2287 void igb_power_up_phy_copper(struct e1000_hw *hw) 2288 { 2289 u16 mii_reg = 0; 2290 2291 /* The PHY will retain its settings across a power down/up cycle */ 2292 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); 2293 mii_reg &= ~MII_CR_POWER_DOWN; 2294 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); 2295 } 2296 2297 /** 2298 * igb_power_down_phy_copper - Power down copper PHY 2299 * @hw: pointer to the HW structure 2300 * 2301 * Power down PHY to save power when interface is down and wake on lan 2302 * is not enabled. 2303 **/ 2304 void igb_power_down_phy_copper(struct e1000_hw *hw) 2305 { 2306 u16 mii_reg = 0; 2307 2308 /* The PHY will retain its settings across a power down/up cycle */ 2309 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); 2310 mii_reg |= MII_CR_POWER_DOWN; 2311 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); 2312 usleep_range(1000, 2000); 2313 } 2314 2315 /** 2316 * igb_check_polarity_82580 - Checks the polarity. 2317 * @hw: pointer to the HW structure 2318 * 2319 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 2320 * 2321 * Polarity is determined based on the PHY specific status register. 2322 **/ 2323 static s32 igb_check_polarity_82580(struct e1000_hw *hw) 2324 { 2325 struct e1000_phy_info *phy = &hw->phy; 2326 s32 ret_val; 2327 u16 data; 2328 2329 2330 ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data); 2331 2332 if (!ret_val) 2333 phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY) 2334 ? e1000_rev_polarity_reversed 2335 : e1000_rev_polarity_normal; 2336 2337 return ret_val; 2338 } 2339 2340 /** 2341 * igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY 2342 * @hw: pointer to the HW structure 2343 * 2344 * Calls the PHY setup function to force speed and duplex. Clears the 2345 * auto-crossover to force MDI manually. Waits for link and returns 2346 * successful if link up is successful, else -E1000_ERR_PHY (-2). 2347 **/ 2348 s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw) 2349 { 2350 struct e1000_phy_info *phy = &hw->phy; 2351 s32 ret_val; 2352 u16 phy_data; 2353 bool link; 2354 2355 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); 2356 if (ret_val) 2357 goto out; 2358 2359 igb_phy_force_speed_duplex_setup(hw, &phy_data); 2360 2361 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); 2362 if (ret_val) 2363 goto out; 2364 2365 /* Clear Auto-Crossover to force MDI manually. 82580 requires MDI 2366 * forced whenever speed and duplex are forced. 2367 */ 2368 ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data); 2369 if (ret_val) 2370 goto out; 2371 2372 phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK; 2373 2374 ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data); 2375 if (ret_val) 2376 goto out; 2377 2378 hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data); 2379 2380 udelay(1); 2381 2382 if (phy->autoneg_wait_to_complete) { 2383 hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n"); 2384 2385 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link); 2386 if (ret_val) 2387 goto out; 2388 2389 if (!link) 2390 hw_dbg("Link taking longer than expected.\n"); 2391 2392 /* Try once more */ 2393 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link); 2394 if (ret_val) 2395 goto out; 2396 } 2397 2398 out: 2399 return ret_val; 2400 } 2401 2402 /** 2403 * igb_get_phy_info_82580 - Retrieve I82580 PHY information 2404 * @hw: pointer to the HW structure 2405 * 2406 * Read PHY status to determine if link is up. If link is up, then 2407 * set/determine 10base-T extended distance and polarity correction. Read 2408 * PHY port status to determine MDI/MDIx and speed. Based on the speed, 2409 * determine on the cable length, local and remote receiver. 2410 **/ 2411 s32 igb_get_phy_info_82580(struct e1000_hw *hw) 2412 { 2413 struct e1000_phy_info *phy = &hw->phy; 2414 s32 ret_val; 2415 u16 data; 2416 bool link; 2417 2418 ret_val = igb_phy_has_link(hw, 1, 0, &link); 2419 if (ret_val) 2420 goto out; 2421 2422 if (!link) { 2423 hw_dbg("Phy info is only valid if link is up\n"); 2424 ret_val = -E1000_ERR_CONFIG; 2425 goto out; 2426 } 2427 2428 phy->polarity_correction = true; 2429 2430 ret_val = igb_check_polarity_82580(hw); 2431 if (ret_val) 2432 goto out; 2433 2434 ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data); 2435 if (ret_val) 2436 goto out; 2437 2438 phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false; 2439 2440 if ((data & I82580_PHY_STATUS2_SPEED_MASK) == 2441 I82580_PHY_STATUS2_SPEED_1000MBPS) { 2442 ret_val = hw->phy.ops.get_cable_length(hw); 2443 if (ret_val) 2444 goto out; 2445 2446 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data); 2447 if (ret_val) 2448 goto out; 2449 2450 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) 2451 ? e1000_1000t_rx_status_ok 2452 : e1000_1000t_rx_status_not_ok; 2453 2454 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) 2455 ? e1000_1000t_rx_status_ok 2456 : e1000_1000t_rx_status_not_ok; 2457 } else { 2458 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; 2459 phy->local_rx = e1000_1000t_rx_status_undefined; 2460 phy->remote_rx = e1000_1000t_rx_status_undefined; 2461 } 2462 2463 out: 2464 return ret_val; 2465 } 2466 2467 /** 2468 * igb_get_cable_length_82580 - Determine cable length for 82580 PHY 2469 * @hw: pointer to the HW structure 2470 * 2471 * Reads the diagnostic status register and verifies result is valid before 2472 * placing it in the phy_cable_length field. 2473 **/ 2474 s32 igb_get_cable_length_82580(struct e1000_hw *hw) 2475 { 2476 struct e1000_phy_info *phy = &hw->phy; 2477 s32 ret_val; 2478 u16 phy_data, length; 2479 2480 ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data); 2481 if (ret_val) 2482 goto out; 2483 2484 length = (phy_data & I82580_DSTATUS_CABLE_LENGTH) >> 2485 I82580_DSTATUS_CABLE_LENGTH_SHIFT; 2486 2487 if (length == E1000_CABLE_LENGTH_UNDEFINED) 2488 ret_val = -E1000_ERR_PHY; 2489 2490 phy->cable_length = length; 2491 2492 out: 2493 return ret_val; 2494 } 2495 2496 /** 2497 * igb_write_phy_reg_gs40g - Write GS40G PHY register 2498 * @hw: pointer to the HW structure 2499 * @offset: lower half is register offset to write to 2500 * upper half is page to use. 2501 * @data: data to write at register offset 2502 * 2503 * Acquires semaphore, if necessary, then writes the data to PHY register 2504 * at the offset. Release any acquired semaphores before exiting. 2505 **/ 2506 s32 igb_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data) 2507 { 2508 s32 ret_val; 2509 u16 page = offset >> GS40G_PAGE_SHIFT; 2510 2511 offset = offset & GS40G_OFFSET_MASK; 2512 ret_val = hw->phy.ops.acquire(hw); 2513 if (ret_val) 2514 return ret_val; 2515 2516 ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page); 2517 if (ret_val) 2518 goto release; 2519 ret_val = igb_write_phy_reg_mdic(hw, offset, data); 2520 2521 release: 2522 hw->phy.ops.release(hw); 2523 return ret_val; 2524 } 2525 2526 /** 2527 * igb_read_phy_reg_gs40g - Read GS40G PHY register 2528 * @hw: pointer to the HW structure 2529 * @offset: lower half is register offset to read to 2530 * upper half is page to use. 2531 * @data: data to read at register offset 2532 * 2533 * Acquires semaphore, if necessary, then reads the data in the PHY register 2534 * at the offset. Release any acquired semaphores before exiting. 2535 **/ 2536 s32 igb_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data) 2537 { 2538 s32 ret_val; 2539 u16 page = offset >> GS40G_PAGE_SHIFT; 2540 2541 offset = offset & GS40G_OFFSET_MASK; 2542 ret_val = hw->phy.ops.acquire(hw); 2543 if (ret_val) 2544 return ret_val; 2545 2546 ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page); 2547 if (ret_val) 2548 goto release; 2549 ret_val = igb_read_phy_reg_mdic(hw, offset, data); 2550 2551 release: 2552 hw->phy.ops.release(hw); 2553 return ret_val; 2554 } 2555 2556 /** 2557 * igb_set_master_slave_mode - Setup PHY for Master/slave mode 2558 * @hw: pointer to the HW structure 2559 * 2560 * Sets up Master/slave mode 2561 **/ 2562 static s32 igb_set_master_slave_mode(struct e1000_hw *hw) 2563 { 2564 s32 ret_val; 2565 u16 phy_data; 2566 2567 /* Resolve Master/Slave mode */ 2568 ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data); 2569 if (ret_val) 2570 return ret_val; 2571 2572 /* load defaults for future use */ 2573 hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ? 2574 ((phy_data & CR_1000T_MS_VALUE) ? 2575 e1000_ms_force_master : 2576 e1000_ms_force_slave) : e1000_ms_auto; 2577 2578 switch (hw->phy.ms_type) { 2579 case e1000_ms_force_master: 2580 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); 2581 break; 2582 case e1000_ms_force_slave: 2583 phy_data |= CR_1000T_MS_ENABLE; 2584 phy_data &= ~(CR_1000T_MS_VALUE); 2585 break; 2586 case e1000_ms_auto: 2587 phy_data &= ~CR_1000T_MS_ENABLE; 2588 /* fall-through */ 2589 default: 2590 break; 2591 } 2592 2593 return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data); 2594 } 2595