1 /*******************************************************************************
2 
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2012 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 #include <linux/if_ether.h>
29 #include <linux/delay.h>
30 
31 #include "e1000_mac.h"
32 #include "e1000_phy.h"
33 
34 static s32  igb_phy_setup_autoneg(struct e1000_hw *hw);
35 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
36 					       u16 *phy_ctrl);
37 static s32  igb_wait_autoneg(struct e1000_hw *hw);
38 static s32  igb_set_master_slave_mode(struct e1000_hw *hw);
39 
40 /* Cable length tables */
41 static const u16 e1000_m88_cable_length_table[] =
42 	{ 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
43 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
44                 (sizeof(e1000_m88_cable_length_table) / \
45                  sizeof(e1000_m88_cable_length_table[0]))
46 
47 static const u16 e1000_igp_2_cable_length_table[] =
48     { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
49       0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
50       6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
51       21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
52       40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
53       60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
54       83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
55       104, 109, 114, 118, 121, 124};
56 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
57 		(sizeof(e1000_igp_2_cable_length_table) / \
58 		 sizeof(e1000_igp_2_cable_length_table[0]))
59 
60 /**
61  *  igb_check_reset_block - Check if PHY reset is blocked
62  *  @hw: pointer to the HW structure
63  *
64  *  Read the PHY management control register and check whether a PHY reset
65  *  is blocked.  If a reset is not blocked return 0, otherwise
66  *  return E1000_BLK_PHY_RESET (12).
67  **/
68 s32 igb_check_reset_block(struct e1000_hw *hw)
69 {
70 	u32 manc;
71 
72 	manc = rd32(E1000_MANC);
73 
74 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
75 	       E1000_BLK_PHY_RESET : 0;
76 }
77 
78 /**
79  *  igb_get_phy_id - Retrieve the PHY ID and revision
80  *  @hw: pointer to the HW structure
81  *
82  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
83  *  revision in the hardware structure.
84  **/
85 s32 igb_get_phy_id(struct e1000_hw *hw)
86 {
87 	struct e1000_phy_info *phy = &hw->phy;
88 	s32 ret_val = 0;
89 	u16 phy_id;
90 
91 	ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
92 	if (ret_val)
93 		goto out;
94 
95 	phy->id = (u32)(phy_id << 16);
96 	udelay(20);
97 	ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
98 	if (ret_val)
99 		goto out;
100 
101 	phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
102 	phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
103 
104 out:
105 	return ret_val;
106 }
107 
108 /**
109  *  igb_phy_reset_dsp - Reset PHY DSP
110  *  @hw: pointer to the HW structure
111  *
112  *  Reset the digital signal processor.
113  **/
114 static s32 igb_phy_reset_dsp(struct e1000_hw *hw)
115 {
116 	s32 ret_val = 0;
117 
118 	if (!(hw->phy.ops.write_reg))
119 		goto out;
120 
121 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
122 	if (ret_val)
123 		goto out;
124 
125 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
126 
127 out:
128 	return ret_val;
129 }
130 
131 /**
132  *  igb_read_phy_reg_mdic - Read MDI control register
133  *  @hw: pointer to the HW structure
134  *  @offset: register offset to be read
135  *  @data: pointer to the read data
136  *
137  *  Reads the MDI control regsiter in the PHY at offset and stores the
138  *  information read to data.
139  **/
140 s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
141 {
142 	struct e1000_phy_info *phy = &hw->phy;
143 	u32 i, mdic = 0;
144 	s32 ret_val = 0;
145 
146 	if (offset > MAX_PHY_REG_ADDRESS) {
147 		hw_dbg("PHY Address %d is out of range\n", offset);
148 		ret_val = -E1000_ERR_PARAM;
149 		goto out;
150 	}
151 
152 	/*
153 	 * Set up Op-code, Phy Address, and register offset in the MDI
154 	 * Control register.  The MAC will take care of interfacing with the
155 	 * PHY to retrieve the desired data.
156 	 */
157 	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
158 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
159 		(E1000_MDIC_OP_READ));
160 
161 	wr32(E1000_MDIC, mdic);
162 
163 	/*
164 	 * Poll the ready bit to see if the MDI read completed
165 	 * Increasing the time out as testing showed failures with
166 	 * the lower time out
167 	 */
168 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
169 		udelay(50);
170 		mdic = rd32(E1000_MDIC);
171 		if (mdic & E1000_MDIC_READY)
172 			break;
173 	}
174 	if (!(mdic & E1000_MDIC_READY)) {
175 		hw_dbg("MDI Read did not complete\n");
176 		ret_val = -E1000_ERR_PHY;
177 		goto out;
178 	}
179 	if (mdic & E1000_MDIC_ERROR) {
180 		hw_dbg("MDI Error\n");
181 		ret_val = -E1000_ERR_PHY;
182 		goto out;
183 	}
184 	*data = (u16) mdic;
185 
186 out:
187 	return ret_val;
188 }
189 
190 /**
191  *  igb_write_phy_reg_mdic - Write MDI control register
192  *  @hw: pointer to the HW structure
193  *  @offset: register offset to write to
194  *  @data: data to write to register at offset
195  *
196  *  Writes data to MDI control register in the PHY at offset.
197  **/
198 s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
199 {
200 	struct e1000_phy_info *phy = &hw->phy;
201 	u32 i, mdic = 0;
202 	s32 ret_val = 0;
203 
204 	if (offset > MAX_PHY_REG_ADDRESS) {
205 		hw_dbg("PHY Address %d is out of range\n", offset);
206 		ret_val = -E1000_ERR_PARAM;
207 		goto out;
208 	}
209 
210 	/*
211 	 * Set up Op-code, Phy Address, and register offset in the MDI
212 	 * Control register.  The MAC will take care of interfacing with the
213 	 * PHY to retrieve the desired data.
214 	 */
215 	mdic = (((u32)data) |
216 		(offset << E1000_MDIC_REG_SHIFT) |
217 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
218 		(E1000_MDIC_OP_WRITE));
219 
220 	wr32(E1000_MDIC, mdic);
221 
222 	/*
223 	 * Poll the ready bit to see if the MDI read completed
224 	 * Increasing the time out as testing showed failures with
225 	 * the lower time out
226 	 */
227 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
228 		udelay(50);
229 		mdic = rd32(E1000_MDIC);
230 		if (mdic & E1000_MDIC_READY)
231 			break;
232 	}
233 	if (!(mdic & E1000_MDIC_READY)) {
234 		hw_dbg("MDI Write did not complete\n");
235 		ret_val = -E1000_ERR_PHY;
236 		goto out;
237 	}
238 	if (mdic & E1000_MDIC_ERROR) {
239 		hw_dbg("MDI Error\n");
240 		ret_val = -E1000_ERR_PHY;
241 		goto out;
242 	}
243 
244 out:
245 	return ret_val;
246 }
247 
248 /**
249  *  igb_read_phy_reg_i2c - Read PHY register using i2c
250  *  @hw: pointer to the HW structure
251  *  @offset: register offset to be read
252  *  @data: pointer to the read data
253  *
254  *  Reads the PHY register at offset using the i2c interface and stores the
255  *  retrieved information in data.
256  **/
257 s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
258 {
259 	struct e1000_phy_info *phy = &hw->phy;
260 	u32 i, i2ccmd = 0;
261 
262 
263 	/*
264 	 * Set up Op-code, Phy Address, and register address in the I2CCMD
265 	 * register.  The MAC will take care of interfacing with the
266 	 * PHY to retrieve the desired data.
267 	 */
268 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
269 	          (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
270 	          (E1000_I2CCMD_OPCODE_READ));
271 
272 	wr32(E1000_I2CCMD, i2ccmd);
273 
274 	/* Poll the ready bit to see if the I2C read completed */
275 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
276 		udelay(50);
277 		i2ccmd = rd32(E1000_I2CCMD);
278 		if (i2ccmd & E1000_I2CCMD_READY)
279 			break;
280 	}
281 	if (!(i2ccmd & E1000_I2CCMD_READY)) {
282 		hw_dbg("I2CCMD Read did not complete\n");
283 		return -E1000_ERR_PHY;
284 	}
285 	if (i2ccmd & E1000_I2CCMD_ERROR) {
286 		hw_dbg("I2CCMD Error bit set\n");
287 		return -E1000_ERR_PHY;
288 	}
289 
290 	/* Need to byte-swap the 16-bit value. */
291 	*data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
292 
293 	return 0;
294 }
295 
296 /**
297  *  igb_write_phy_reg_i2c - Write PHY register using i2c
298  *  @hw: pointer to the HW structure
299  *  @offset: register offset to write to
300  *  @data: data to write at register offset
301  *
302  *  Writes the data to PHY register at the offset using the i2c interface.
303  **/
304 s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
305 {
306 	struct e1000_phy_info *phy = &hw->phy;
307 	u32 i, i2ccmd = 0;
308 	u16 phy_data_swapped;
309 
310 	/* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/
311 	if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) {
312 		hw_dbg("PHY I2C Address %d is out of range.\n",
313 			  hw->phy.addr);
314 		return -E1000_ERR_CONFIG;
315 	}
316 
317 	/* Swap the data bytes for the I2C interface */
318 	phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
319 
320 	/*
321 	 * Set up Op-code, Phy Address, and register address in the I2CCMD
322 	 * register.  The MAC will take care of interfacing with the
323 	 * PHY to retrieve the desired data.
324 	 */
325 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
326 	          (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
327 	          E1000_I2CCMD_OPCODE_WRITE |
328 	          phy_data_swapped);
329 
330 	wr32(E1000_I2CCMD, i2ccmd);
331 
332 	/* Poll the ready bit to see if the I2C read completed */
333 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
334 		udelay(50);
335 		i2ccmd = rd32(E1000_I2CCMD);
336 		if (i2ccmd & E1000_I2CCMD_READY)
337 			break;
338 	}
339 	if (!(i2ccmd & E1000_I2CCMD_READY)) {
340 		hw_dbg("I2CCMD Write did not complete\n");
341 		return -E1000_ERR_PHY;
342 	}
343 	if (i2ccmd & E1000_I2CCMD_ERROR) {
344 		hw_dbg("I2CCMD Error bit set\n");
345 		return -E1000_ERR_PHY;
346 	}
347 
348 	return 0;
349 }
350 
351 /**
352  *  igb_read_phy_reg_igp - Read igp PHY register
353  *  @hw: pointer to the HW structure
354  *  @offset: register offset to be read
355  *  @data: pointer to the read data
356  *
357  *  Acquires semaphore, if necessary, then reads the PHY register at offset
358  *  and storing the retrieved information in data.  Release any acquired
359  *  semaphores before exiting.
360  **/
361 s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
362 {
363 	s32 ret_val = 0;
364 
365 	if (!(hw->phy.ops.acquire))
366 		goto out;
367 
368 	ret_val = hw->phy.ops.acquire(hw);
369 	if (ret_val)
370 		goto out;
371 
372 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
373 		ret_val = igb_write_phy_reg_mdic(hw,
374 						   IGP01E1000_PHY_PAGE_SELECT,
375 						   (u16)offset);
376 		if (ret_val) {
377 			hw->phy.ops.release(hw);
378 			goto out;
379 		}
380 	}
381 
382 	ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
383 					data);
384 
385 	hw->phy.ops.release(hw);
386 
387 out:
388 	return ret_val;
389 }
390 
391 /**
392  *  igb_write_phy_reg_igp - Write igp PHY register
393  *  @hw: pointer to the HW structure
394  *  @offset: register offset to write to
395  *  @data: data to write at register offset
396  *
397  *  Acquires semaphore, if necessary, then writes the data to PHY register
398  *  at the offset.  Release any acquired semaphores before exiting.
399  **/
400 s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
401 {
402 	s32 ret_val = 0;
403 
404 	if (!(hw->phy.ops.acquire))
405 		goto out;
406 
407 	ret_val = hw->phy.ops.acquire(hw);
408 	if (ret_val)
409 		goto out;
410 
411 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
412 		ret_val = igb_write_phy_reg_mdic(hw,
413 						   IGP01E1000_PHY_PAGE_SELECT,
414 						   (u16)offset);
415 		if (ret_val) {
416 			hw->phy.ops.release(hw);
417 			goto out;
418 		}
419 	}
420 
421 	ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
422 					   data);
423 
424 	hw->phy.ops.release(hw);
425 
426 out:
427 	return ret_val;
428 }
429 
430 /**
431  *  igb_copper_link_setup_82580 - Setup 82580 PHY for copper link
432  *  @hw: pointer to the HW structure
433  *
434  *  Sets up Carrier-sense on Transmit and downshift values.
435  **/
436 s32 igb_copper_link_setup_82580(struct e1000_hw *hw)
437 {
438 	struct e1000_phy_info *phy = &hw->phy;
439 	s32 ret_val;
440 	u16 phy_data;
441 
442 
443 	if (phy->reset_disable) {
444 		ret_val = 0;
445 		goto out;
446 	}
447 
448 	if (phy->type == e1000_phy_82580) {
449 		ret_val = hw->phy.ops.reset(hw);
450 		if (ret_val) {
451 			hw_dbg("Error resetting the PHY.\n");
452 			goto out;
453 		}
454 	}
455 
456 	/* Enable CRS on TX. This must be set for half-duplex operation. */
457 	ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data);
458 	if (ret_val)
459 		goto out;
460 
461 	phy_data |= I82580_CFG_ASSERT_CRS_ON_TX;
462 
463 	/* Enable downshift */
464 	phy_data |= I82580_CFG_ENABLE_DOWNSHIFT;
465 
466 	ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data);
467 
468 out:
469 	return ret_val;
470 }
471 
472 /**
473  *  igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
474  *  @hw: pointer to the HW structure
475  *
476  *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
477  *  and downshift values are set also.
478  **/
479 s32 igb_copper_link_setup_m88(struct e1000_hw *hw)
480 {
481 	struct e1000_phy_info *phy = &hw->phy;
482 	s32 ret_val;
483 	u16 phy_data;
484 
485 	if (phy->reset_disable) {
486 		ret_val = 0;
487 		goto out;
488 	}
489 
490 	/* Enable CRS on TX. This must be set for half-duplex operation. */
491 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
492 	if (ret_val)
493 		goto out;
494 
495 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
496 
497 	/*
498 	 * Options:
499 	 *   MDI/MDI-X = 0 (default)
500 	 *   0 - Auto for all speeds
501 	 *   1 - MDI mode
502 	 *   2 - MDI-X mode
503 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
504 	 */
505 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
506 
507 	switch (phy->mdix) {
508 	case 1:
509 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
510 		break;
511 	case 2:
512 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
513 		break;
514 	case 3:
515 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
516 		break;
517 	case 0:
518 	default:
519 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
520 		break;
521 	}
522 
523 	/*
524 	 * Options:
525 	 *   disable_polarity_correction = 0 (default)
526 	 *       Automatic Correction for Reversed Cable Polarity
527 	 *   0 - Disabled
528 	 *   1 - Enabled
529 	 */
530 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
531 	if (phy->disable_polarity_correction == 1)
532 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
533 
534 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
535 	if (ret_val)
536 		goto out;
537 
538 	if (phy->revision < E1000_REVISION_4) {
539 		/*
540 		 * Force TX_CLK in the Extended PHY Specific Control Register
541 		 * to 25MHz clock.
542 		 */
543 		ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
544 					     &phy_data);
545 		if (ret_val)
546 			goto out;
547 
548 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
549 
550 		if ((phy->revision == E1000_REVISION_2) &&
551 		    (phy->id == M88E1111_I_PHY_ID)) {
552 			/* 82573L PHY - set the downshift counter to 5x. */
553 			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
554 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
555 		} else {
556 			/* Configure Master and Slave downshift values */
557 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
558 				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
559 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
560 				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
561 		}
562 		ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
563 					     phy_data);
564 		if (ret_val)
565 			goto out;
566 	}
567 
568 	/* Commit the changes. */
569 	ret_val = igb_phy_sw_reset(hw);
570 	if (ret_val) {
571 		hw_dbg("Error committing the PHY changes\n");
572 		goto out;
573 	}
574 	if (phy->type == e1000_phy_i210) {
575 		ret_val = igb_set_master_slave_mode(hw);
576 		if (ret_val)
577 			return ret_val;
578 	}
579 
580 out:
581 	return ret_val;
582 }
583 
584 /**
585  *  igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
586  *  @hw: pointer to the HW structure
587  *
588  *  Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
589  *  Also enables and sets the downshift parameters.
590  **/
591 s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw)
592 {
593 	struct e1000_phy_info *phy = &hw->phy;
594 	s32 ret_val;
595 	u16 phy_data;
596 
597 	if (phy->reset_disable) {
598 		ret_val = 0;
599 		goto out;
600 	}
601 
602 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
603 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
604 	if (ret_val)
605 		goto out;
606 
607 	/*
608 	 * Options:
609 	 *   MDI/MDI-X = 0 (default)
610 	 *   0 - Auto for all speeds
611 	 *   1 - MDI mode
612 	 *   2 - MDI-X mode
613 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
614 	 */
615 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
616 
617 	switch (phy->mdix) {
618 	case 1:
619 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
620 		break;
621 	case 2:
622 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
623 		break;
624 	case 3:
625 		/* M88E1112 does not support this mode) */
626 		if (phy->id != M88E1112_E_PHY_ID) {
627 			phy_data |= M88E1000_PSCR_AUTO_X_1000T;
628 			break;
629 		}
630 	case 0:
631 	default:
632 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
633 		break;
634 	}
635 
636 	/*
637 	 * Options:
638 	 *   disable_polarity_correction = 0 (default)
639 	 *       Automatic Correction for Reversed Cable Polarity
640 	 *   0 - Disabled
641 	 *   1 - Enabled
642 	 */
643 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
644 	if (phy->disable_polarity_correction == 1)
645 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
646 
647 	/* Enable downshift and setting it to X6 */
648 	phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
649 	phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
650 	phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
651 
652 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
653 	if (ret_val)
654 		goto out;
655 
656 	/* Commit the changes. */
657 	ret_val = igb_phy_sw_reset(hw);
658 	if (ret_val) {
659 		hw_dbg("Error committing the PHY changes\n");
660 		goto out;
661 	}
662 
663 out:
664 	return ret_val;
665 }
666 
667 /**
668  *  igb_copper_link_setup_igp - Setup igp PHY's for copper link
669  *  @hw: pointer to the HW structure
670  *
671  *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
672  *  igp PHY's.
673  **/
674 s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
675 {
676 	struct e1000_phy_info *phy = &hw->phy;
677 	s32 ret_val;
678 	u16 data;
679 
680 	if (phy->reset_disable) {
681 		ret_val = 0;
682 		goto out;
683 	}
684 
685 	ret_val = phy->ops.reset(hw);
686 	if (ret_val) {
687 		hw_dbg("Error resetting the PHY.\n");
688 		goto out;
689 	}
690 
691 	/*
692 	 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
693 	 * timeout issues when LFS is enabled.
694 	 */
695 	msleep(100);
696 
697 	/*
698 	 * The NVM settings will configure LPLU in D3 for
699 	 * non-IGP1 PHYs.
700 	 */
701 	if (phy->type == e1000_phy_igp) {
702 		/* disable lplu d3 during driver init */
703 		if (phy->ops.set_d3_lplu_state)
704 			ret_val = phy->ops.set_d3_lplu_state(hw, false);
705 		if (ret_val) {
706 			hw_dbg("Error Disabling LPLU D3\n");
707 			goto out;
708 		}
709 	}
710 
711 	/* disable lplu d0 during driver init */
712 	ret_val = phy->ops.set_d0_lplu_state(hw, false);
713 	if (ret_val) {
714 		hw_dbg("Error Disabling LPLU D0\n");
715 		goto out;
716 	}
717 	/* Configure mdi-mdix settings */
718 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
719 	if (ret_val)
720 		goto out;
721 
722 	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
723 
724 	switch (phy->mdix) {
725 	case 1:
726 		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
727 		break;
728 	case 2:
729 		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
730 		break;
731 	case 0:
732 	default:
733 		data |= IGP01E1000_PSCR_AUTO_MDIX;
734 		break;
735 	}
736 	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
737 	if (ret_val)
738 		goto out;
739 
740 	/* set auto-master slave resolution settings */
741 	if (hw->mac.autoneg) {
742 		/*
743 		 * when autonegotiation advertisement is only 1000Mbps then we
744 		 * should disable SmartSpeed and enable Auto MasterSlave
745 		 * resolution as hardware default.
746 		 */
747 		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
748 			/* Disable SmartSpeed */
749 			ret_val = phy->ops.read_reg(hw,
750 						    IGP01E1000_PHY_PORT_CONFIG,
751 						    &data);
752 			if (ret_val)
753 				goto out;
754 
755 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
756 			ret_val = phy->ops.write_reg(hw,
757 						     IGP01E1000_PHY_PORT_CONFIG,
758 						     data);
759 			if (ret_val)
760 				goto out;
761 
762 			/* Set auto Master/Slave resolution process */
763 			ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
764 			if (ret_val)
765 				goto out;
766 
767 			data &= ~CR_1000T_MS_ENABLE;
768 			ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
769 			if (ret_val)
770 				goto out;
771 		}
772 
773 		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
774 		if (ret_val)
775 			goto out;
776 
777 		/* load defaults for future use */
778 		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
779 			((data & CR_1000T_MS_VALUE) ?
780 			e1000_ms_force_master :
781 			e1000_ms_force_slave) :
782 			e1000_ms_auto;
783 
784 		switch (phy->ms_type) {
785 		case e1000_ms_force_master:
786 			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
787 			break;
788 		case e1000_ms_force_slave:
789 			data |= CR_1000T_MS_ENABLE;
790 			data &= ~(CR_1000T_MS_VALUE);
791 			break;
792 		case e1000_ms_auto:
793 			data &= ~CR_1000T_MS_ENABLE;
794 		default:
795 			break;
796 		}
797 		ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
798 		if (ret_val)
799 			goto out;
800 	}
801 
802 out:
803 	return ret_val;
804 }
805 
806 /**
807  *  igb_copper_link_autoneg - Setup/Enable autoneg for copper link
808  *  @hw: pointer to the HW structure
809  *
810  *  Performs initial bounds checking on autoneg advertisement parameter, then
811  *  configure to advertise the full capability.  Setup the PHY to autoneg
812  *  and restart the negotiation process between the link partner.  If
813  *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
814  **/
815 static s32 igb_copper_link_autoneg(struct e1000_hw *hw)
816 {
817 	struct e1000_phy_info *phy = &hw->phy;
818 	s32 ret_val;
819 	u16 phy_ctrl;
820 
821 	/*
822 	 * Perform some bounds checking on the autoneg advertisement
823 	 * parameter.
824 	 */
825 	phy->autoneg_advertised &= phy->autoneg_mask;
826 
827 	/*
828 	 * If autoneg_advertised is zero, we assume it was not defaulted
829 	 * by the calling code so we set to advertise full capability.
830 	 */
831 	if (phy->autoneg_advertised == 0)
832 		phy->autoneg_advertised = phy->autoneg_mask;
833 
834 	hw_dbg("Reconfiguring auto-neg advertisement params\n");
835 	ret_val = igb_phy_setup_autoneg(hw);
836 	if (ret_val) {
837 		hw_dbg("Error Setting up Auto-Negotiation\n");
838 		goto out;
839 	}
840 	hw_dbg("Restarting Auto-Neg\n");
841 
842 	/*
843 	 * Restart auto-negotiation by setting the Auto Neg Enable bit and
844 	 * the Auto Neg Restart bit in the PHY control register.
845 	 */
846 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
847 	if (ret_val)
848 		goto out;
849 
850 	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
851 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
852 	if (ret_val)
853 		goto out;
854 
855 	/*
856 	 * Does the user want to wait for Auto-Neg to complete here, or
857 	 * check at a later time (for example, callback routine).
858 	 */
859 	if (phy->autoneg_wait_to_complete) {
860 		ret_val = igb_wait_autoneg(hw);
861 		if (ret_val) {
862 			hw_dbg("Error while waiting for "
863 			       "autoneg to complete\n");
864 			goto out;
865 		}
866 	}
867 
868 	hw->mac.get_link_status = true;
869 
870 out:
871 	return ret_val;
872 }
873 
874 /**
875  *  igb_phy_setup_autoneg - Configure PHY for auto-negotiation
876  *  @hw: pointer to the HW structure
877  *
878  *  Reads the MII auto-neg advertisement register and/or the 1000T control
879  *  register and if the PHY is already setup for auto-negotiation, then
880  *  return successful.  Otherwise, setup advertisement and flow control to
881  *  the appropriate values for the wanted auto-negotiation.
882  **/
883 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
884 {
885 	struct e1000_phy_info *phy = &hw->phy;
886 	s32 ret_val;
887 	u16 mii_autoneg_adv_reg;
888 	u16 mii_1000t_ctrl_reg = 0;
889 
890 	phy->autoneg_advertised &= phy->autoneg_mask;
891 
892 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
893 	ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
894 	if (ret_val)
895 		goto out;
896 
897 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
898 		/* Read the MII 1000Base-T Control Register (Address 9). */
899 		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
900 					    &mii_1000t_ctrl_reg);
901 		if (ret_val)
902 			goto out;
903 	}
904 
905 	/*
906 	 * Need to parse both autoneg_advertised and fc and set up
907 	 * the appropriate PHY registers.  First we will parse for
908 	 * autoneg_advertised software override.  Since we can advertise
909 	 * a plethora of combinations, we need to check each bit
910 	 * individually.
911 	 */
912 
913 	/*
914 	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
915 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
916 	 * the  1000Base-T Control Register (Address 9).
917 	 */
918 	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
919 				 NWAY_AR_100TX_HD_CAPS |
920 				 NWAY_AR_10T_FD_CAPS   |
921 				 NWAY_AR_10T_HD_CAPS);
922 	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
923 
924 	hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
925 
926 	/* Do we want to advertise 10 Mb Half Duplex? */
927 	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
928 		hw_dbg("Advertise 10mb Half duplex\n");
929 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
930 	}
931 
932 	/* Do we want to advertise 10 Mb Full Duplex? */
933 	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
934 		hw_dbg("Advertise 10mb Full duplex\n");
935 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
936 	}
937 
938 	/* Do we want to advertise 100 Mb Half Duplex? */
939 	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
940 		hw_dbg("Advertise 100mb Half duplex\n");
941 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
942 	}
943 
944 	/* Do we want to advertise 100 Mb Full Duplex? */
945 	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
946 		hw_dbg("Advertise 100mb Full duplex\n");
947 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
948 	}
949 
950 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
951 	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
952 		hw_dbg("Advertise 1000mb Half duplex request denied!\n");
953 
954 	/* Do we want to advertise 1000 Mb Full Duplex? */
955 	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
956 		hw_dbg("Advertise 1000mb Full duplex\n");
957 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
958 	}
959 
960 	/*
961 	 * Check for a software override of the flow control settings, and
962 	 * setup the PHY advertisement registers accordingly.  If
963 	 * auto-negotiation is enabled, then software will have to set the
964 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
965 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
966 	 * negotiation.
967 	 *
968 	 * The possible values of the "fc" parameter are:
969 	 *      0:  Flow control is completely disabled
970 	 *      1:  Rx flow control is enabled (we can receive pause frames
971 	 *          but not send pause frames).
972 	 *      2:  Tx flow control is enabled (we can send pause frames
973 	 *          but we do not support receiving pause frames).
974 	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
975 	 *  other:  No software override.  The flow control configuration
976 	 *          in the EEPROM is used.
977 	 */
978 	switch (hw->fc.current_mode) {
979 	case e1000_fc_none:
980 		/*
981 		 * Flow control (RX & TX) is completely disabled by a
982 		 * software over-ride.
983 		 */
984 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
985 		break;
986 	case e1000_fc_rx_pause:
987 		/*
988 		 * RX Flow control is enabled, and TX Flow control is
989 		 * disabled, by a software over-ride.
990 		 *
991 		 * Since there really isn't a way to advertise that we are
992 		 * capable of RX Pause ONLY, we will advertise that we
993 		 * support both symmetric and asymmetric RX PAUSE.  Later
994 		 * (in e1000_config_fc_after_link_up) we will disable the
995 		 * hw's ability to send PAUSE frames.
996 		 */
997 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
998 		break;
999 	case e1000_fc_tx_pause:
1000 		/*
1001 		 * TX Flow control is enabled, and RX Flow control is
1002 		 * disabled, by a software over-ride.
1003 		 */
1004 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1005 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1006 		break;
1007 	case e1000_fc_full:
1008 		/*
1009 		 * Flow control (both RX and TX) is enabled by a software
1010 		 * over-ride.
1011 		 */
1012 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1013 		break;
1014 	default:
1015 		hw_dbg("Flow control param set incorrectly\n");
1016 		ret_val = -E1000_ERR_CONFIG;
1017 		goto out;
1018 	}
1019 
1020 	ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1021 	if (ret_val)
1022 		goto out;
1023 
1024 	hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1025 
1026 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1027 		ret_val = phy->ops.write_reg(hw,
1028 					     PHY_1000T_CTRL,
1029 					     mii_1000t_ctrl_reg);
1030 		if (ret_val)
1031 			goto out;
1032 	}
1033 
1034 out:
1035 	return ret_val;
1036 }
1037 
1038 /**
1039  *  igb_setup_copper_link - Configure copper link settings
1040  *  @hw: pointer to the HW structure
1041  *
1042  *  Calls the appropriate function to configure the link for auto-neg or forced
1043  *  speed and duplex.  Then we check for link, once link is established calls
1044  *  to configure collision distance and flow control are called.  If link is
1045  *  not established, we return -E1000_ERR_PHY (-2).
1046  **/
1047 s32 igb_setup_copper_link(struct e1000_hw *hw)
1048 {
1049 	s32 ret_val;
1050 	bool link;
1051 
1052 
1053 	if (hw->mac.autoneg) {
1054 		/*
1055 		 * Setup autoneg and flow control advertisement and perform
1056 		 * autonegotiation.
1057 		 */
1058 		ret_val = igb_copper_link_autoneg(hw);
1059 		if (ret_val)
1060 			goto out;
1061 	} else {
1062 		/*
1063 		 * PHY will be set to 10H, 10F, 100H or 100F
1064 		 * depending on user settings.
1065 		 */
1066 		hw_dbg("Forcing Speed and Duplex\n");
1067 		ret_val = hw->phy.ops.force_speed_duplex(hw);
1068 		if (ret_val) {
1069 			hw_dbg("Error Forcing Speed and Duplex\n");
1070 			goto out;
1071 		}
1072 	}
1073 
1074 	/*
1075 	 * Check link status. Wait up to 100 microseconds for link to become
1076 	 * valid.
1077 	 */
1078 	ret_val = igb_phy_has_link(hw,
1079 	                           COPPER_LINK_UP_LIMIT,
1080 	                           10,
1081 	                           &link);
1082 	if (ret_val)
1083 		goto out;
1084 
1085 	if (link) {
1086 		hw_dbg("Valid link established!!!\n");
1087 		igb_config_collision_dist(hw);
1088 		ret_val = igb_config_fc_after_link_up(hw);
1089 	} else {
1090 		hw_dbg("Unable to establish link!!!\n");
1091 	}
1092 
1093 out:
1094 	return ret_val;
1095 }
1096 
1097 /**
1098  *  igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1099  *  @hw: pointer to the HW structure
1100  *
1101  *  Calls the PHY setup function to force speed and duplex.  Clears the
1102  *  auto-crossover to force MDI manually.  Waits for link and returns
1103  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1104  **/
1105 s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1106 {
1107 	struct e1000_phy_info *phy = &hw->phy;
1108 	s32 ret_val;
1109 	u16 phy_data;
1110 	bool link;
1111 
1112 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1113 	if (ret_val)
1114 		goto out;
1115 
1116 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1117 
1118 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1119 	if (ret_val)
1120 		goto out;
1121 
1122 	/*
1123 	 * Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1124 	 * forced whenever speed and duplex are forced.
1125 	 */
1126 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1127 	if (ret_val)
1128 		goto out;
1129 
1130 	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1131 	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1132 
1133 	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1134 	if (ret_val)
1135 		goto out;
1136 
1137 	hw_dbg("IGP PSCR: %X\n", phy_data);
1138 
1139 	udelay(1);
1140 
1141 	if (phy->autoneg_wait_to_complete) {
1142 		hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1143 
1144 		ret_val = igb_phy_has_link(hw,
1145 						     PHY_FORCE_LIMIT,
1146 						     100000,
1147 						     &link);
1148 		if (ret_val)
1149 			goto out;
1150 
1151 		if (!link)
1152 			hw_dbg("Link taking longer than expected.\n");
1153 
1154 		/* Try once more */
1155 		ret_val = igb_phy_has_link(hw,
1156 						     PHY_FORCE_LIMIT,
1157 						     100000,
1158 						     &link);
1159 		if (ret_val)
1160 			goto out;
1161 	}
1162 
1163 out:
1164 	return ret_val;
1165 }
1166 
1167 /**
1168  *  igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1169  *  @hw: pointer to the HW structure
1170  *
1171  *  Calls the PHY setup function to force speed and duplex.  Clears the
1172  *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1173  *  changes.  If time expires while waiting for link up, we reset the DSP.
1174  *  After reset, TX_CLK and CRS on TX must be set.  Return successful upon
1175  *  successful completion, else return corresponding error code.
1176  **/
1177 s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1178 {
1179 	struct e1000_phy_info *phy = &hw->phy;
1180 	s32 ret_val;
1181 	u16 phy_data;
1182 	bool link;
1183 
1184 	/*
1185 	 * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
1186 	 * forced whenever speed and duplex are forced.
1187 	 */
1188 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1189 	if (ret_val)
1190 		goto out;
1191 
1192 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1193 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1194 	if (ret_val)
1195 		goto out;
1196 
1197 	hw_dbg("M88E1000 PSCR: %X\n", phy_data);
1198 
1199 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1200 	if (ret_val)
1201 		goto out;
1202 
1203 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1204 
1205 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1206 	if (ret_val)
1207 		goto out;
1208 
1209 	/* Reset the phy to commit changes. */
1210 	ret_val = igb_phy_sw_reset(hw);
1211 	if (ret_val)
1212 		goto out;
1213 
1214 	if (phy->autoneg_wait_to_complete) {
1215 		hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1216 
1217 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
1218 		if (ret_val)
1219 			goto out;
1220 
1221 		if (!link) {
1222 			bool reset_dsp = true;
1223 
1224 			switch (hw->phy.id) {
1225 			case I347AT4_E_PHY_ID:
1226 			case M88E1112_E_PHY_ID:
1227 			case I210_I_PHY_ID:
1228 				reset_dsp = false;
1229 				break;
1230 			default:
1231 				if (hw->phy.type != e1000_phy_m88)
1232 					reset_dsp = false;
1233 				break;
1234 			}
1235 			if (!reset_dsp)
1236 				hw_dbg("Link taking longer than expected.\n");
1237 			else {
1238 				/*
1239 				 * We didn't get link.
1240 				 * Reset the DSP and cross our fingers.
1241 				 */
1242 				ret_val = phy->ops.write_reg(hw,
1243 							     M88E1000_PHY_PAGE_SELECT,
1244 							     0x001d);
1245 				if (ret_val)
1246 					goto out;
1247 				ret_val = igb_phy_reset_dsp(hw);
1248 				if (ret_val)
1249 					goto out;
1250 			}
1251 		}
1252 
1253 		/* Try once more */
1254 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT,
1255 					   100000, &link);
1256 		if (ret_val)
1257 			goto out;
1258 	}
1259 
1260 	if (hw->phy.type != e1000_phy_m88 ||
1261 	    hw->phy.id == I347AT4_E_PHY_ID ||
1262 	    hw->phy.id == M88E1112_E_PHY_ID ||
1263 	    hw->phy.id == I210_I_PHY_ID)
1264 		goto out;
1265 
1266 	ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1267 	if (ret_val)
1268 		goto out;
1269 
1270 	/*
1271 	 * Resetting the phy means we need to re-force TX_CLK in the
1272 	 * Extended PHY Specific Control Register to 25MHz clock from
1273 	 * the reset value of 2.5MHz.
1274 	 */
1275 	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1276 	ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1277 	if (ret_val)
1278 		goto out;
1279 
1280 	/*
1281 	 * In addition, we must re-enable CRS on Tx for both half and full
1282 	 * duplex.
1283 	 */
1284 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1285 	if (ret_val)
1286 		goto out;
1287 
1288 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1289 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1290 
1291 out:
1292 	return ret_val;
1293 }
1294 
1295 /**
1296  *  igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1297  *  @hw: pointer to the HW structure
1298  *  @phy_ctrl: pointer to current value of PHY_CONTROL
1299  *
1300  *  Forces speed and duplex on the PHY by doing the following: disable flow
1301  *  control, force speed/duplex on the MAC, disable auto speed detection,
1302  *  disable auto-negotiation, configure duplex, configure speed, configure
1303  *  the collision distance, write configuration to CTRL register.  The
1304  *  caller must write to the PHY_CONTROL register for these settings to
1305  *  take affect.
1306  **/
1307 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
1308 					       u16 *phy_ctrl)
1309 {
1310 	struct e1000_mac_info *mac = &hw->mac;
1311 	u32 ctrl;
1312 
1313 	/* Turn off flow control when forcing speed/duplex */
1314 	hw->fc.current_mode = e1000_fc_none;
1315 
1316 	/* Force speed/duplex on the mac */
1317 	ctrl = rd32(E1000_CTRL);
1318 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1319 	ctrl &= ~E1000_CTRL_SPD_SEL;
1320 
1321 	/* Disable Auto Speed Detection */
1322 	ctrl &= ~E1000_CTRL_ASDE;
1323 
1324 	/* Disable autoneg on the phy */
1325 	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1326 
1327 	/* Forcing Full or Half Duplex? */
1328 	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1329 		ctrl &= ~E1000_CTRL_FD;
1330 		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1331 		hw_dbg("Half Duplex\n");
1332 	} else {
1333 		ctrl |= E1000_CTRL_FD;
1334 		*phy_ctrl |= MII_CR_FULL_DUPLEX;
1335 		hw_dbg("Full Duplex\n");
1336 	}
1337 
1338 	/* Forcing 10mb or 100mb? */
1339 	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1340 		ctrl |= E1000_CTRL_SPD_100;
1341 		*phy_ctrl |= MII_CR_SPEED_100;
1342 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1343 		hw_dbg("Forcing 100mb\n");
1344 	} else {
1345 		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1346 		*phy_ctrl |= MII_CR_SPEED_10;
1347 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1348 		hw_dbg("Forcing 10mb\n");
1349 	}
1350 
1351 	igb_config_collision_dist(hw);
1352 
1353 	wr32(E1000_CTRL, ctrl);
1354 }
1355 
1356 /**
1357  *  igb_set_d3_lplu_state - Sets low power link up state for D3
1358  *  @hw: pointer to the HW structure
1359  *  @active: boolean used to enable/disable lplu
1360  *
1361  *  Success returns 0, Failure returns 1
1362  *
1363  *  The low power link up (lplu) state is set to the power management level D3
1364  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1365  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1366  *  is used during Dx states where the power conservation is most important.
1367  *  During driver activity, SmartSpeed should be enabled so performance is
1368  *  maintained.
1369  **/
1370 s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1371 {
1372 	struct e1000_phy_info *phy = &hw->phy;
1373 	s32 ret_val = 0;
1374 	u16 data;
1375 
1376 	if (!(hw->phy.ops.read_reg))
1377 		goto out;
1378 
1379 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1380 	if (ret_val)
1381 		goto out;
1382 
1383 	if (!active) {
1384 		data &= ~IGP02E1000_PM_D3_LPLU;
1385 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1386 					     data);
1387 		if (ret_val)
1388 			goto out;
1389 		/*
1390 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1391 		 * during Dx states where the power conservation is most
1392 		 * important.  During driver activity we should enable
1393 		 * SmartSpeed, so performance is maintained.
1394 		 */
1395 		if (phy->smart_speed == e1000_smart_speed_on) {
1396 			ret_val = phy->ops.read_reg(hw,
1397 						    IGP01E1000_PHY_PORT_CONFIG,
1398 						    &data);
1399 			if (ret_val)
1400 				goto out;
1401 
1402 			data |= IGP01E1000_PSCFR_SMART_SPEED;
1403 			ret_val = phy->ops.write_reg(hw,
1404 						     IGP01E1000_PHY_PORT_CONFIG,
1405 						     data);
1406 			if (ret_val)
1407 				goto out;
1408 		} else if (phy->smart_speed == e1000_smart_speed_off) {
1409 			ret_val = phy->ops.read_reg(hw,
1410 						     IGP01E1000_PHY_PORT_CONFIG,
1411 						     &data);
1412 			if (ret_val)
1413 				goto out;
1414 
1415 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1416 			ret_val = phy->ops.write_reg(hw,
1417 						     IGP01E1000_PHY_PORT_CONFIG,
1418 						     data);
1419 			if (ret_val)
1420 				goto out;
1421 		}
1422 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1423 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1424 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1425 		data |= IGP02E1000_PM_D3_LPLU;
1426 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1427 					      data);
1428 		if (ret_val)
1429 			goto out;
1430 
1431 		/* When LPLU is enabled, we should disable SmartSpeed */
1432 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1433 					     &data);
1434 		if (ret_val)
1435 			goto out;
1436 
1437 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1438 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1439 					      data);
1440 	}
1441 
1442 out:
1443 	return ret_val;
1444 }
1445 
1446 /**
1447  *  igb_check_downshift - Checks whether a downshift in speed occurred
1448  *  @hw: pointer to the HW structure
1449  *
1450  *  Success returns 0, Failure returns 1
1451  *
1452  *  A downshift is detected by querying the PHY link health.
1453  **/
1454 s32 igb_check_downshift(struct e1000_hw *hw)
1455 {
1456 	struct e1000_phy_info *phy = &hw->phy;
1457 	s32 ret_val;
1458 	u16 phy_data, offset, mask;
1459 
1460 	switch (phy->type) {
1461 	case e1000_phy_i210:
1462 	case e1000_phy_m88:
1463 	case e1000_phy_gg82563:
1464 		offset	= M88E1000_PHY_SPEC_STATUS;
1465 		mask	= M88E1000_PSSR_DOWNSHIFT;
1466 		break;
1467 	case e1000_phy_igp_2:
1468 	case e1000_phy_igp:
1469 	case e1000_phy_igp_3:
1470 		offset	= IGP01E1000_PHY_LINK_HEALTH;
1471 		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
1472 		break;
1473 	default:
1474 		/* speed downshift not supported */
1475 		phy->speed_downgraded = false;
1476 		ret_val = 0;
1477 		goto out;
1478 	}
1479 
1480 	ret_val = phy->ops.read_reg(hw, offset, &phy_data);
1481 
1482 	if (!ret_val)
1483 		phy->speed_downgraded = (phy_data & mask) ? true : false;
1484 
1485 out:
1486 	return ret_val;
1487 }
1488 
1489 /**
1490  *  igb_check_polarity_m88 - Checks the polarity.
1491  *  @hw: pointer to the HW structure
1492  *
1493  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1494  *
1495  *  Polarity is determined based on the PHY specific status register.
1496  **/
1497 s32 igb_check_polarity_m88(struct e1000_hw *hw)
1498 {
1499 	struct e1000_phy_info *phy = &hw->phy;
1500 	s32 ret_val;
1501 	u16 data;
1502 
1503 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
1504 
1505 	if (!ret_val)
1506 		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1507 				      ? e1000_rev_polarity_reversed
1508 				      : e1000_rev_polarity_normal;
1509 
1510 	return ret_val;
1511 }
1512 
1513 /**
1514  *  igb_check_polarity_igp - Checks the polarity.
1515  *  @hw: pointer to the HW structure
1516  *
1517  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1518  *
1519  *  Polarity is determined based on the PHY port status register, and the
1520  *  current speed (since there is no polarity at 100Mbps).
1521  **/
1522 static s32 igb_check_polarity_igp(struct e1000_hw *hw)
1523 {
1524 	struct e1000_phy_info *phy = &hw->phy;
1525 	s32 ret_val;
1526 	u16 data, offset, mask;
1527 
1528 	/*
1529 	 * Polarity is determined based on the speed of
1530 	 * our connection.
1531 	 */
1532 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1533 	if (ret_val)
1534 		goto out;
1535 
1536 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1537 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1538 		offset	= IGP01E1000_PHY_PCS_INIT_REG;
1539 		mask	= IGP01E1000_PHY_POLARITY_MASK;
1540 	} else {
1541 		/*
1542 		 * This really only applies to 10Mbps since
1543 		 * there is no polarity for 100Mbps (always 0).
1544 		 */
1545 		offset	= IGP01E1000_PHY_PORT_STATUS;
1546 		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
1547 	}
1548 
1549 	ret_val = phy->ops.read_reg(hw, offset, &data);
1550 
1551 	if (!ret_val)
1552 		phy->cable_polarity = (data & mask)
1553 				      ? e1000_rev_polarity_reversed
1554 				      : e1000_rev_polarity_normal;
1555 
1556 out:
1557 	return ret_val;
1558 }
1559 
1560 /**
1561  *  igb_wait_autoneg - Wait for auto-neg compeletion
1562  *  @hw: pointer to the HW structure
1563  *
1564  *  Waits for auto-negotiation to complete or for the auto-negotiation time
1565  *  limit to expire, which ever happens first.
1566  **/
1567 static s32 igb_wait_autoneg(struct e1000_hw *hw)
1568 {
1569 	s32 ret_val = 0;
1570 	u16 i, phy_status;
1571 
1572 	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1573 	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1574 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1575 		if (ret_val)
1576 			break;
1577 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1578 		if (ret_val)
1579 			break;
1580 		if (phy_status & MII_SR_AUTONEG_COMPLETE)
1581 			break;
1582 		msleep(100);
1583 	}
1584 
1585 	/*
1586 	 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1587 	 * has completed.
1588 	 */
1589 	return ret_val;
1590 }
1591 
1592 /**
1593  *  igb_phy_has_link - Polls PHY for link
1594  *  @hw: pointer to the HW structure
1595  *  @iterations: number of times to poll for link
1596  *  @usec_interval: delay between polling attempts
1597  *  @success: pointer to whether polling was successful or not
1598  *
1599  *  Polls the PHY status register for link, 'iterations' number of times.
1600  **/
1601 s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations,
1602 			       u32 usec_interval, bool *success)
1603 {
1604 	s32 ret_val = 0;
1605 	u16 i, phy_status;
1606 
1607 	for (i = 0; i < iterations; i++) {
1608 		/*
1609 		 * Some PHYs require the PHY_STATUS register to be read
1610 		 * twice due to the link bit being sticky.  No harm doing
1611 		 * it across the board.
1612 		 */
1613 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1614 		if (ret_val) {
1615 			/*
1616 			 * If the first read fails, another entity may have
1617 			 * ownership of the resources, wait and try again to
1618 			 * see if they have relinquished the resources yet.
1619 			 */
1620 			udelay(usec_interval);
1621 		}
1622 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1623 		if (ret_val)
1624 			break;
1625 		if (phy_status & MII_SR_LINK_STATUS)
1626 			break;
1627 		if (usec_interval >= 1000)
1628 			mdelay(usec_interval/1000);
1629 		else
1630 			udelay(usec_interval);
1631 	}
1632 
1633 	*success = (i < iterations) ? true : false;
1634 
1635 	return ret_val;
1636 }
1637 
1638 /**
1639  *  igb_get_cable_length_m88 - Determine cable length for m88 PHY
1640  *  @hw: pointer to the HW structure
1641  *
1642  *  Reads the PHY specific status register to retrieve the cable length
1643  *  information.  The cable length is determined by averaging the minimum and
1644  *  maximum values to get the "average" cable length.  The m88 PHY has four
1645  *  possible cable length values, which are:
1646  *	Register Value		Cable Length
1647  *	0			< 50 meters
1648  *	1			50 - 80 meters
1649  *	2			80 - 110 meters
1650  *	3			110 - 140 meters
1651  *	4			> 140 meters
1652  **/
1653 s32 igb_get_cable_length_m88(struct e1000_hw *hw)
1654 {
1655 	struct e1000_phy_info *phy = &hw->phy;
1656 	s32 ret_val;
1657 	u16 phy_data, index;
1658 
1659 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1660 	if (ret_val)
1661 		goto out;
1662 
1663 	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1664 		M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1665 	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1666 		ret_val = -E1000_ERR_PHY;
1667 		goto out;
1668 	}
1669 
1670 	phy->min_cable_length = e1000_m88_cable_length_table[index];
1671 	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1672 
1673 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1674 
1675 out:
1676 	return ret_val;
1677 }
1678 
1679 s32 igb_get_cable_length_m88_gen2(struct e1000_hw *hw)
1680 {
1681 	struct e1000_phy_info *phy = &hw->phy;
1682 	s32 ret_val;
1683 	u16 phy_data, phy_data2, index, default_page, is_cm;
1684 
1685 	switch (hw->phy.id) {
1686 	case I210_I_PHY_ID:
1687 	case I347AT4_E_PHY_ID:
1688 		/* Remember the original page select and set it to 7 */
1689 		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1690 					    &default_page);
1691 		if (ret_val)
1692 			goto out;
1693 
1694 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
1695 		if (ret_val)
1696 			goto out;
1697 
1698 		/* Get cable length from PHY Cable Diagnostics Control Reg */
1699 		ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr),
1700 					    &phy_data);
1701 		if (ret_val)
1702 			goto out;
1703 
1704 		/* Check if the unit of cable length is meters or cm */
1705 		ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
1706 		if (ret_val)
1707 			goto out;
1708 
1709 		is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1710 
1711 		/* Populate the phy structure with cable length in meters */
1712 		phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
1713 		phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
1714 		phy->cable_length = phy_data / (is_cm ? 100 : 1);
1715 
1716 		/* Reset the page selec to its original value */
1717 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1718 					     default_page);
1719 		if (ret_val)
1720 			goto out;
1721 		break;
1722 	case M88E1112_E_PHY_ID:
1723 		/* Remember the original page select and set it to 5 */
1724 		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1725 					    &default_page);
1726 		if (ret_val)
1727 			goto out;
1728 
1729 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
1730 		if (ret_val)
1731 			goto out;
1732 
1733 		ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
1734 					    &phy_data);
1735 		if (ret_val)
1736 			goto out;
1737 
1738 		index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1739 			M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1740 		if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1741 			ret_val = -E1000_ERR_PHY;
1742 			goto out;
1743 		}
1744 
1745 		phy->min_cable_length = e1000_m88_cable_length_table[index];
1746 		phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1747 
1748 		phy->cable_length = (phy->min_cable_length +
1749 				     phy->max_cable_length) / 2;
1750 
1751 		/* Reset the page select to its original value */
1752 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1753 					     default_page);
1754 		if (ret_val)
1755 			goto out;
1756 
1757 		break;
1758 	default:
1759 		ret_val = -E1000_ERR_PHY;
1760 		goto out;
1761 	}
1762 
1763 out:
1764 	return ret_val;
1765 }
1766 
1767 /**
1768  *  igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1769  *  @hw: pointer to the HW structure
1770  *
1771  *  The automatic gain control (agc) normalizes the amplitude of the
1772  *  received signal, adjusting for the attenuation produced by the
1773  *  cable.  By reading the AGC registers, which represent the
1774  *  combination of coarse and fine gain value, the value can be put
1775  *  into a lookup table to obtain the approximate cable length
1776  *  for each channel.
1777  **/
1778 s32 igb_get_cable_length_igp_2(struct e1000_hw *hw)
1779 {
1780 	struct e1000_phy_info *phy = &hw->phy;
1781 	s32 ret_val = 0;
1782 	u16 phy_data, i, agc_value = 0;
1783 	u16 cur_agc_index, max_agc_index = 0;
1784 	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1785 	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1786 	       IGP02E1000_PHY_AGC_A,
1787 	       IGP02E1000_PHY_AGC_B,
1788 	       IGP02E1000_PHY_AGC_C,
1789 	       IGP02E1000_PHY_AGC_D
1790 	};
1791 
1792 	/* Read the AGC registers for all channels */
1793 	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1794 		ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
1795 		if (ret_val)
1796 			goto out;
1797 
1798 		/*
1799 		 * Getting bits 15:9, which represent the combination of
1800 		 * coarse and fine gain values.  The result is a number
1801 		 * that can be put into the lookup table to obtain the
1802 		 * approximate cable length.
1803 		 */
1804 		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1805 				IGP02E1000_AGC_LENGTH_MASK;
1806 
1807 		/* Array index bound check. */
1808 		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1809 		    (cur_agc_index == 0)) {
1810 			ret_val = -E1000_ERR_PHY;
1811 			goto out;
1812 		}
1813 
1814 		/* Remove min & max AGC values from calculation. */
1815 		if (e1000_igp_2_cable_length_table[min_agc_index] >
1816 		    e1000_igp_2_cable_length_table[cur_agc_index])
1817 			min_agc_index = cur_agc_index;
1818 		if (e1000_igp_2_cable_length_table[max_agc_index] <
1819 		    e1000_igp_2_cable_length_table[cur_agc_index])
1820 			max_agc_index = cur_agc_index;
1821 
1822 		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1823 	}
1824 
1825 	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1826 		      e1000_igp_2_cable_length_table[max_agc_index]);
1827 	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1828 
1829 	/* Calculate cable length with the error range of +/- 10 meters. */
1830 	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1831 				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1832 	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1833 
1834 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1835 
1836 out:
1837 	return ret_val;
1838 }
1839 
1840 /**
1841  *  igb_get_phy_info_m88 - Retrieve PHY information
1842  *  @hw: pointer to the HW structure
1843  *
1844  *  Valid for only copper links.  Read the PHY status register (sticky read)
1845  *  to verify that link is up.  Read the PHY special control register to
1846  *  determine the polarity and 10base-T extended distance.  Read the PHY
1847  *  special status register to determine MDI/MDIx and current speed.  If
1848  *  speed is 1000, then determine cable length, local and remote receiver.
1849  **/
1850 s32 igb_get_phy_info_m88(struct e1000_hw *hw)
1851 {
1852 	struct e1000_phy_info *phy = &hw->phy;
1853 	s32  ret_val;
1854 	u16 phy_data;
1855 	bool link;
1856 
1857 	if (phy->media_type != e1000_media_type_copper) {
1858 		hw_dbg("Phy info is only valid for copper media\n");
1859 		ret_val = -E1000_ERR_CONFIG;
1860 		goto out;
1861 	}
1862 
1863 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
1864 	if (ret_val)
1865 		goto out;
1866 
1867 	if (!link) {
1868 		hw_dbg("Phy info is only valid if link is up\n");
1869 		ret_val = -E1000_ERR_CONFIG;
1870 		goto out;
1871 	}
1872 
1873 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1874 	if (ret_val)
1875 		goto out;
1876 
1877 	phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
1878 				   ? true : false;
1879 
1880 	ret_val = igb_check_polarity_m88(hw);
1881 	if (ret_val)
1882 		goto out;
1883 
1884 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1885 	if (ret_val)
1886 		goto out;
1887 
1888 	phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false;
1889 
1890 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1891 		ret_val = phy->ops.get_cable_length(hw);
1892 		if (ret_val)
1893 			goto out;
1894 
1895 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
1896 		if (ret_val)
1897 			goto out;
1898 
1899 		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1900 				? e1000_1000t_rx_status_ok
1901 				: e1000_1000t_rx_status_not_ok;
1902 
1903 		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1904 				 ? e1000_1000t_rx_status_ok
1905 				 : e1000_1000t_rx_status_not_ok;
1906 	} else {
1907 		/* Set values to "undefined" */
1908 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1909 		phy->local_rx = e1000_1000t_rx_status_undefined;
1910 		phy->remote_rx = e1000_1000t_rx_status_undefined;
1911 	}
1912 
1913 out:
1914 	return ret_val;
1915 }
1916 
1917 /**
1918  *  igb_get_phy_info_igp - Retrieve igp PHY information
1919  *  @hw: pointer to the HW structure
1920  *
1921  *  Read PHY status to determine if link is up.  If link is up, then
1922  *  set/determine 10base-T extended distance and polarity correction.  Read
1923  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1924  *  determine on the cable length, local and remote receiver.
1925  **/
1926 s32 igb_get_phy_info_igp(struct e1000_hw *hw)
1927 {
1928 	struct e1000_phy_info *phy = &hw->phy;
1929 	s32 ret_val;
1930 	u16 data;
1931 	bool link;
1932 
1933 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
1934 	if (ret_val)
1935 		goto out;
1936 
1937 	if (!link) {
1938 		hw_dbg("Phy info is only valid if link is up\n");
1939 		ret_val = -E1000_ERR_CONFIG;
1940 		goto out;
1941 	}
1942 
1943 	phy->polarity_correction = true;
1944 
1945 	ret_val = igb_check_polarity_igp(hw);
1946 	if (ret_val)
1947 		goto out;
1948 
1949 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1950 	if (ret_val)
1951 		goto out;
1952 
1953 	phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false;
1954 
1955 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1956 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1957 		ret_val = phy->ops.get_cable_length(hw);
1958 		if (ret_val)
1959 			goto out;
1960 
1961 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
1962 		if (ret_val)
1963 			goto out;
1964 
1965 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
1966 				? e1000_1000t_rx_status_ok
1967 				: e1000_1000t_rx_status_not_ok;
1968 
1969 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
1970 				 ? e1000_1000t_rx_status_ok
1971 				 : e1000_1000t_rx_status_not_ok;
1972 	} else {
1973 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1974 		phy->local_rx = e1000_1000t_rx_status_undefined;
1975 		phy->remote_rx = e1000_1000t_rx_status_undefined;
1976 	}
1977 
1978 out:
1979 	return ret_val;
1980 }
1981 
1982 /**
1983  *  igb_phy_sw_reset - PHY software reset
1984  *  @hw: pointer to the HW structure
1985  *
1986  *  Does a software reset of the PHY by reading the PHY control register and
1987  *  setting/write the control register reset bit to the PHY.
1988  **/
1989 s32 igb_phy_sw_reset(struct e1000_hw *hw)
1990 {
1991 	s32 ret_val = 0;
1992 	u16 phy_ctrl;
1993 
1994 	if (!(hw->phy.ops.read_reg))
1995 		goto out;
1996 
1997 	ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
1998 	if (ret_val)
1999 		goto out;
2000 
2001 	phy_ctrl |= MII_CR_RESET;
2002 	ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
2003 	if (ret_val)
2004 		goto out;
2005 
2006 	udelay(1);
2007 
2008 out:
2009 	return ret_val;
2010 }
2011 
2012 /**
2013  *  igb_phy_hw_reset - PHY hardware reset
2014  *  @hw: pointer to the HW structure
2015  *
2016  *  Verify the reset block is not blocking us from resetting.  Acquire
2017  *  semaphore (if necessary) and read/set/write the device control reset
2018  *  bit in the PHY.  Wait the appropriate delay time for the device to
2019  *  reset and relase the semaphore (if necessary).
2020  **/
2021 s32 igb_phy_hw_reset(struct e1000_hw *hw)
2022 {
2023 	struct e1000_phy_info *phy = &hw->phy;
2024 	s32  ret_val;
2025 	u32 ctrl;
2026 
2027 	ret_val = igb_check_reset_block(hw);
2028 	if (ret_val) {
2029 		ret_val = 0;
2030 		goto out;
2031 	}
2032 
2033 	ret_val = phy->ops.acquire(hw);
2034 	if (ret_val)
2035 		goto out;
2036 
2037 	ctrl = rd32(E1000_CTRL);
2038 	wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
2039 	wrfl();
2040 
2041 	udelay(phy->reset_delay_us);
2042 
2043 	wr32(E1000_CTRL, ctrl);
2044 	wrfl();
2045 
2046 	udelay(150);
2047 
2048 	phy->ops.release(hw);
2049 
2050 	ret_val = phy->ops.get_cfg_done(hw);
2051 
2052 out:
2053 	return ret_val;
2054 }
2055 
2056 /**
2057  *  igb_phy_init_script_igp3 - Inits the IGP3 PHY
2058  *  @hw: pointer to the HW structure
2059  *
2060  *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2061  **/
2062 s32 igb_phy_init_script_igp3(struct e1000_hw *hw)
2063 {
2064 	hw_dbg("Running IGP 3 PHY init script\n");
2065 
2066 	/* PHY init IGP 3 */
2067 	/* Enable rise/fall, 10-mode work in class-A */
2068 	hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
2069 	/* Remove all caps from Replica path filter */
2070 	hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
2071 	/* Bias trimming for ADC, AFE and Driver (Default) */
2072 	hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
2073 	/* Increase Hybrid poly bias */
2074 	hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
2075 	/* Add 4% to TX amplitude in Giga mode */
2076 	hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
2077 	/* Disable trimming (TTT) */
2078 	hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
2079 	/* Poly DC correction to 94.6% + 2% for all channels */
2080 	hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
2081 	/* ABS DC correction to 95.9% */
2082 	hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
2083 	/* BG temp curve trim */
2084 	hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
2085 	/* Increasing ADC OPAMP stage 1 currents to max */
2086 	hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
2087 	/* Force 1000 ( required for enabling PHY regs configuration) */
2088 	hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
2089 	/* Set upd_freq to 6 */
2090 	hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
2091 	/* Disable NPDFE */
2092 	hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
2093 	/* Disable adaptive fixed FFE (Default) */
2094 	hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
2095 	/* Enable FFE hysteresis */
2096 	hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
2097 	/* Fixed FFE for short cable lengths */
2098 	hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
2099 	/* Fixed FFE for medium cable lengths */
2100 	hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
2101 	/* Fixed FFE for long cable lengths */
2102 	hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
2103 	/* Enable Adaptive Clip Threshold */
2104 	hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
2105 	/* AHT reset limit to 1 */
2106 	hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
2107 	/* Set AHT master delay to 127 msec */
2108 	hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
2109 	/* Set scan bits for AHT */
2110 	hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
2111 	/* Set AHT Preset bits */
2112 	hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
2113 	/* Change integ_factor of channel A to 3 */
2114 	hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
2115 	/* Change prop_factor of channels BCD to 8 */
2116 	hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
2117 	/* Change cg_icount + enable integbp for channels BCD */
2118 	hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
2119 	/*
2120 	 * Change cg_icount + enable integbp + change prop_factor_master
2121 	 * to 8 for channel A
2122 	 */
2123 	hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
2124 	/* Disable AHT in Slave mode on channel A */
2125 	hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
2126 	/*
2127 	 * Enable LPLU and disable AN to 1000 in non-D0a states,
2128 	 * Enable SPD+B2B
2129 	 */
2130 	hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
2131 	/* Enable restart AN on an1000_dis change */
2132 	hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
2133 	/* Enable wh_fifo read clock in 10/100 modes */
2134 	hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
2135 	/* Restart AN, Speed selection is 1000 */
2136 	hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
2137 
2138 	return 0;
2139 }
2140 
2141 /**
2142  * igb_power_up_phy_copper - Restore copper link in case of PHY power down
2143  * @hw: pointer to the HW structure
2144  *
2145  * In the case of a PHY power down to save power, or to turn off link during a
2146  * driver unload, restore the link to previous settings.
2147  **/
2148 void igb_power_up_phy_copper(struct e1000_hw *hw)
2149 {
2150 	u16 mii_reg = 0;
2151 	u16 power_reg = 0;
2152 
2153 	/* The PHY will retain its settings across a power down/up cycle */
2154 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2155 	mii_reg &= ~MII_CR_POWER_DOWN;
2156 	if (hw->phy.type == e1000_phy_i210) {
2157 		hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg);
2158 		power_reg &= ~GS40G_CS_POWER_DOWN;
2159 		hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg);
2160 	}
2161 	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2162 }
2163 
2164 /**
2165  * igb_power_down_phy_copper - Power down copper PHY
2166  * @hw: pointer to the HW structure
2167  *
2168  * Power down PHY to save power when interface is down and wake on lan
2169  * is not enabled.
2170  **/
2171 void igb_power_down_phy_copper(struct e1000_hw *hw)
2172 {
2173 	u16 mii_reg = 0;
2174 	u16 power_reg = 0;
2175 
2176 	/* The PHY will retain its settings across a power down/up cycle */
2177 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2178 	mii_reg |= MII_CR_POWER_DOWN;
2179 
2180 	/* i210 Phy requires an additional bit for power up/down */
2181 	if (hw->phy.type == e1000_phy_i210) {
2182 		hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg);
2183 		power_reg |= GS40G_CS_POWER_DOWN;
2184 		hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg);
2185 	}
2186 	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2187 	msleep(1);
2188 }
2189 
2190 /**
2191  *  igb_check_polarity_82580 - Checks the polarity.
2192  *  @hw: pointer to the HW structure
2193  *
2194  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2195  *
2196  *  Polarity is determined based on the PHY specific status register.
2197  **/
2198 static s32 igb_check_polarity_82580(struct e1000_hw *hw)
2199 {
2200 	struct e1000_phy_info *phy = &hw->phy;
2201 	s32 ret_val;
2202 	u16 data;
2203 
2204 
2205 	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2206 
2207 	if (!ret_val)
2208 		phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY)
2209 		                      ? e1000_rev_polarity_reversed
2210 		                      : e1000_rev_polarity_normal;
2211 
2212 	return ret_val;
2213 }
2214 
2215 /**
2216  *  igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY
2217  *  @hw: pointer to the HW structure
2218  *
2219  *  Calls the PHY setup function to force speed and duplex.  Clears the
2220  *  auto-crossover to force MDI manually.  Waits for link and returns
2221  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
2222  **/
2223 s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw)
2224 {
2225 	struct e1000_phy_info *phy = &hw->phy;
2226 	s32 ret_val;
2227 	u16 phy_data;
2228 	bool link;
2229 
2230 
2231 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
2232 	if (ret_val)
2233 		goto out;
2234 
2235 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
2236 
2237 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
2238 	if (ret_val)
2239 		goto out;
2240 
2241 	/*
2242 	 * Clear Auto-Crossover to force MDI manually.  82580 requires MDI
2243 	 * forced whenever speed and duplex are forced.
2244 	 */
2245 	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
2246 	if (ret_val)
2247 		goto out;
2248 
2249 	phy_data &= ~I82580_PHY_CTRL2_AUTO_MDIX;
2250 	phy_data &= ~I82580_PHY_CTRL2_FORCE_MDI_MDIX;
2251 
2252 	ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
2253 	if (ret_val)
2254 		goto out;
2255 
2256 	hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data);
2257 
2258 	udelay(1);
2259 
2260 	if (phy->autoneg_wait_to_complete) {
2261 		hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n");
2262 
2263 		ret_val = igb_phy_has_link(hw,
2264 		                           PHY_FORCE_LIMIT,
2265 		                           100000,
2266 		                           &link);
2267 		if (ret_val)
2268 			goto out;
2269 
2270 		if (!link)
2271 			hw_dbg("Link taking longer than expected.\n");
2272 
2273 		/* Try once more */
2274 		ret_val = igb_phy_has_link(hw,
2275 		                           PHY_FORCE_LIMIT,
2276 		                           100000,
2277 		                           &link);
2278 		if (ret_val)
2279 			goto out;
2280 	}
2281 
2282 out:
2283 	return ret_val;
2284 }
2285 
2286 /**
2287  *  igb_get_phy_info_82580 - Retrieve I82580 PHY information
2288  *  @hw: pointer to the HW structure
2289  *
2290  *  Read PHY status to determine if link is up.  If link is up, then
2291  *  set/determine 10base-T extended distance and polarity correction.  Read
2292  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
2293  *  determine on the cable length, local and remote receiver.
2294  **/
2295 s32 igb_get_phy_info_82580(struct e1000_hw *hw)
2296 {
2297 	struct e1000_phy_info *phy = &hw->phy;
2298 	s32 ret_val;
2299 	u16 data;
2300 	bool link;
2301 
2302 
2303 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
2304 	if (ret_val)
2305 		goto out;
2306 
2307 	if (!link) {
2308 		hw_dbg("Phy info is only valid if link is up\n");
2309 		ret_val = -E1000_ERR_CONFIG;
2310 		goto out;
2311 	}
2312 
2313 	phy->polarity_correction = true;
2314 
2315 	ret_val = igb_check_polarity_82580(hw);
2316 	if (ret_val)
2317 		goto out;
2318 
2319 	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2320 	if (ret_val)
2321 		goto out;
2322 
2323 	phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false;
2324 
2325 	if ((data & I82580_PHY_STATUS2_SPEED_MASK) ==
2326 	    I82580_PHY_STATUS2_SPEED_1000MBPS) {
2327 		ret_val = hw->phy.ops.get_cable_length(hw);
2328 		if (ret_val)
2329 			goto out;
2330 
2331 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2332 		if (ret_val)
2333 			goto out;
2334 
2335 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2336 		                ? e1000_1000t_rx_status_ok
2337 		                : e1000_1000t_rx_status_not_ok;
2338 
2339 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2340 		                 ? e1000_1000t_rx_status_ok
2341 		                 : e1000_1000t_rx_status_not_ok;
2342 	} else {
2343 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2344 		phy->local_rx = e1000_1000t_rx_status_undefined;
2345 		phy->remote_rx = e1000_1000t_rx_status_undefined;
2346 	}
2347 
2348 out:
2349 	return ret_val;
2350 }
2351 
2352 /**
2353  *  igb_get_cable_length_82580 - Determine cable length for 82580 PHY
2354  *  @hw: pointer to the HW structure
2355  *
2356  * Reads the diagnostic status register and verifies result is valid before
2357  * placing it in the phy_cable_length field.
2358  **/
2359 s32 igb_get_cable_length_82580(struct e1000_hw *hw)
2360 {
2361 	struct e1000_phy_info *phy = &hw->phy;
2362 	s32 ret_val;
2363 	u16 phy_data, length;
2364 
2365 
2366 	ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data);
2367 	if (ret_val)
2368 		goto out;
2369 
2370 	length = (phy_data & I82580_DSTATUS_CABLE_LENGTH) >>
2371 	         I82580_DSTATUS_CABLE_LENGTH_SHIFT;
2372 
2373 	if (length == E1000_CABLE_LENGTH_UNDEFINED)
2374 		ret_val = -E1000_ERR_PHY;
2375 
2376 	phy->cable_length = length;
2377 
2378 out:
2379 	return ret_val;
2380 }
2381 
2382 /**
2383  *  igb_write_phy_reg_gs40g - Write GS40G PHY register
2384  *  @hw: pointer to the HW structure
2385  *  @offset: lower half is register offset to write to
2386  *     upper half is page to use.
2387  *  @data: data to write at register offset
2388  *
2389  *  Acquires semaphore, if necessary, then writes the data to PHY register
2390  *  at the offset.  Release any acquired semaphores before exiting.
2391  **/
2392 s32 igb_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data)
2393 {
2394 	s32 ret_val;
2395 	u16 page = offset >> GS40G_PAGE_SHIFT;
2396 
2397 	offset = offset & GS40G_OFFSET_MASK;
2398 	ret_val = hw->phy.ops.acquire(hw);
2399 	if (ret_val)
2400 		return ret_val;
2401 
2402 	ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
2403 	if (ret_val)
2404 		goto release;
2405 	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2406 
2407 release:
2408 	hw->phy.ops.release(hw);
2409 	return ret_val;
2410 }
2411 
2412 /**
2413  *  igb_read_phy_reg_gs40g - Read GS40G  PHY register
2414  *  @hw: pointer to the HW structure
2415  *  @offset: lower half is register offset to read to
2416  *     upper half is page to use.
2417  *  @data: data to read at register offset
2418  *
2419  *  Acquires semaphore, if necessary, then reads the data in the PHY register
2420  *  at the offset.  Release any acquired semaphores before exiting.
2421  **/
2422 s32 igb_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data)
2423 {
2424 	s32 ret_val;
2425 	u16 page = offset >> GS40G_PAGE_SHIFT;
2426 
2427 	offset = offset & GS40G_OFFSET_MASK;
2428 	ret_val = hw->phy.ops.acquire(hw);
2429 	if (ret_val)
2430 		return ret_val;
2431 
2432 	ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
2433 	if (ret_val)
2434 		goto release;
2435 	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2436 
2437 release:
2438 	hw->phy.ops.release(hw);
2439 	return ret_val;
2440 }
2441 
2442 /**
2443  *  igb_set_master_slave_mode - Setup PHY for Master/slave mode
2444  *  @hw: pointer to the HW structure
2445  *
2446  *  Sets up Master/slave mode
2447  **/
2448 static s32 igb_set_master_slave_mode(struct e1000_hw *hw)
2449 {
2450 	s32 ret_val;
2451 	u16 phy_data;
2452 
2453 	/* Resolve Master/Slave mode */
2454 	ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data);
2455 	if (ret_val)
2456 		return ret_val;
2457 
2458 	/* load defaults for future use */
2459 	hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
2460 				   ((phy_data & CR_1000T_MS_VALUE) ?
2461 				    e1000_ms_force_master :
2462 				    e1000_ms_force_slave) : e1000_ms_auto;
2463 
2464 	switch (hw->phy.ms_type) {
2465 	case e1000_ms_force_master:
2466 		phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2467 		break;
2468 	case e1000_ms_force_slave:
2469 		phy_data |= CR_1000T_MS_ENABLE;
2470 		phy_data &= ~(CR_1000T_MS_VALUE);
2471 		break;
2472 	case e1000_ms_auto:
2473 		phy_data &= ~CR_1000T_MS_ENABLE;
2474 		/* fall-through */
2475 	default:
2476 		break;
2477 	}
2478 
2479 	return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data);
2480 }
2481