1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2007 - 2018 Intel Corporation. */ 3 4 #include <linux/bitfield.h> 5 #include <linux/delay.h> 6 #include <linux/if_ether.h> 7 #include "e1000_mac.h" 8 #include "e1000_phy.h" 9 10 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw); 11 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw, 12 u16 *phy_ctrl); 13 static s32 igb_wait_autoneg(struct e1000_hw *hw); 14 static s32 igb_set_master_slave_mode(struct e1000_hw *hw); 15 16 /* Cable length tables */ 17 static const u16 e1000_m88_cable_length_table[] = { 18 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED }; 19 20 static const u16 e1000_igp_2_cable_length_table[] = { 21 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 22 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 23 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 24 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 25 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 26 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 27 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124, 28 104, 109, 114, 118, 121, 124}; 29 30 /** 31 * igb_check_reset_block - Check if PHY reset is blocked 32 * @hw: pointer to the HW structure 33 * 34 * Read the PHY management control register and check whether a PHY reset 35 * is blocked. If a reset is not blocked return 0, otherwise 36 * return E1000_BLK_PHY_RESET (12). 37 **/ 38 s32 igb_check_reset_block(struct e1000_hw *hw) 39 { 40 u32 manc; 41 42 manc = rd32(E1000_MANC); 43 44 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0; 45 } 46 47 /** 48 * igb_get_phy_id - Retrieve the PHY ID and revision 49 * @hw: pointer to the HW structure 50 * 51 * Reads the PHY registers and stores the PHY ID and possibly the PHY 52 * revision in the hardware structure. 53 **/ 54 s32 igb_get_phy_id(struct e1000_hw *hw) 55 { 56 struct e1000_phy_info *phy = &hw->phy; 57 s32 ret_val = 0; 58 u16 phy_id; 59 60 /* ensure PHY page selection to fix misconfigured i210 */ 61 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) 62 phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0); 63 64 ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id); 65 if (ret_val) 66 goto out; 67 68 phy->id = (u32)(phy_id << 16); 69 udelay(20); 70 ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id); 71 if (ret_val) 72 goto out; 73 74 phy->id |= (u32)(phy_id & PHY_REVISION_MASK); 75 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); 76 77 out: 78 return ret_val; 79 } 80 81 /** 82 * igb_phy_reset_dsp - Reset PHY DSP 83 * @hw: pointer to the HW structure 84 * 85 * Reset the digital signal processor. 86 **/ 87 static s32 igb_phy_reset_dsp(struct e1000_hw *hw) 88 { 89 s32 ret_val = 0; 90 91 if (!(hw->phy.ops.write_reg)) 92 goto out; 93 94 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1); 95 if (ret_val) 96 goto out; 97 98 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0); 99 100 out: 101 return ret_val; 102 } 103 104 /** 105 * igb_read_phy_reg_mdic - Read MDI control register 106 * @hw: pointer to the HW structure 107 * @offset: register offset to be read 108 * @data: pointer to the read data 109 * 110 * Reads the MDI control register in the PHY at offset and stores the 111 * information read to data. 112 **/ 113 s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data) 114 { 115 struct e1000_phy_info *phy = &hw->phy; 116 u32 i, mdic = 0; 117 s32 ret_val = 0; 118 119 if (offset > MAX_PHY_REG_ADDRESS) { 120 hw_dbg("PHY Address %d is out of range\n", offset); 121 ret_val = -E1000_ERR_PARAM; 122 goto out; 123 } 124 125 /* Set up Op-code, Phy Address, and register offset in the MDI 126 * Control register. The MAC will take care of interfacing with the 127 * PHY to retrieve the desired data. 128 */ 129 mdic = ((offset << E1000_MDIC_REG_SHIFT) | 130 (phy->addr << E1000_MDIC_PHY_SHIFT) | 131 (E1000_MDIC_OP_READ)); 132 133 wr32(E1000_MDIC, mdic); 134 135 /* Poll the ready bit to see if the MDI read completed 136 * Increasing the time out as testing showed failures with 137 * the lower time out 138 */ 139 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { 140 udelay(50); 141 mdic = rd32(E1000_MDIC); 142 if (mdic & E1000_MDIC_READY) 143 break; 144 } 145 if (!(mdic & E1000_MDIC_READY)) { 146 hw_dbg("MDI Read did not complete\n"); 147 ret_val = -E1000_ERR_PHY; 148 goto out; 149 } 150 if (mdic & E1000_MDIC_ERROR) { 151 hw_dbg("MDI Error\n"); 152 ret_val = -E1000_ERR_PHY; 153 goto out; 154 } 155 *data = (u16) mdic; 156 157 out: 158 return ret_val; 159 } 160 161 /** 162 * igb_write_phy_reg_mdic - Write MDI control register 163 * @hw: pointer to the HW structure 164 * @offset: register offset to write to 165 * @data: data to write to register at offset 166 * 167 * Writes data to MDI control register in the PHY at offset. 168 **/ 169 s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data) 170 { 171 struct e1000_phy_info *phy = &hw->phy; 172 u32 i, mdic = 0; 173 s32 ret_val = 0; 174 175 if (offset > MAX_PHY_REG_ADDRESS) { 176 hw_dbg("PHY Address %d is out of range\n", offset); 177 ret_val = -E1000_ERR_PARAM; 178 goto out; 179 } 180 181 /* Set up Op-code, Phy Address, and register offset in the MDI 182 * Control register. The MAC will take care of interfacing with the 183 * PHY to retrieve the desired data. 184 */ 185 mdic = (((u32)data) | 186 (offset << E1000_MDIC_REG_SHIFT) | 187 (phy->addr << E1000_MDIC_PHY_SHIFT) | 188 (E1000_MDIC_OP_WRITE)); 189 190 wr32(E1000_MDIC, mdic); 191 192 /* Poll the ready bit to see if the MDI read completed 193 * Increasing the time out as testing showed failures with 194 * the lower time out 195 */ 196 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { 197 udelay(50); 198 mdic = rd32(E1000_MDIC); 199 if (mdic & E1000_MDIC_READY) 200 break; 201 } 202 if (!(mdic & E1000_MDIC_READY)) { 203 hw_dbg("MDI Write did not complete\n"); 204 ret_val = -E1000_ERR_PHY; 205 goto out; 206 } 207 if (mdic & E1000_MDIC_ERROR) { 208 hw_dbg("MDI Error\n"); 209 ret_val = -E1000_ERR_PHY; 210 goto out; 211 } 212 213 out: 214 return ret_val; 215 } 216 217 /** 218 * igb_read_phy_reg_i2c - Read PHY register using i2c 219 * @hw: pointer to the HW structure 220 * @offset: register offset to be read 221 * @data: pointer to the read data 222 * 223 * Reads the PHY register at offset using the i2c interface and stores the 224 * retrieved information in data. 225 **/ 226 s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data) 227 { 228 struct e1000_phy_info *phy = &hw->phy; 229 u32 i, i2ccmd = 0; 230 231 /* Set up Op-code, Phy Address, and register address in the I2CCMD 232 * register. The MAC will take care of interfacing with the 233 * PHY to retrieve the desired data. 234 */ 235 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | 236 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | 237 (E1000_I2CCMD_OPCODE_READ)); 238 239 wr32(E1000_I2CCMD, i2ccmd); 240 241 /* Poll the ready bit to see if the I2C read completed */ 242 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { 243 udelay(50); 244 i2ccmd = rd32(E1000_I2CCMD); 245 if (i2ccmd & E1000_I2CCMD_READY) 246 break; 247 } 248 if (!(i2ccmd & E1000_I2CCMD_READY)) { 249 hw_dbg("I2CCMD Read did not complete\n"); 250 return -E1000_ERR_PHY; 251 } 252 if (i2ccmd & E1000_I2CCMD_ERROR) { 253 hw_dbg("I2CCMD Error bit set\n"); 254 return -E1000_ERR_PHY; 255 } 256 257 /* Need to byte-swap the 16-bit value. */ 258 *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00); 259 260 return 0; 261 } 262 263 /** 264 * igb_write_phy_reg_i2c - Write PHY register using i2c 265 * @hw: pointer to the HW structure 266 * @offset: register offset to write to 267 * @data: data to write at register offset 268 * 269 * Writes the data to PHY register at the offset using the i2c interface. 270 **/ 271 s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data) 272 { 273 struct e1000_phy_info *phy = &hw->phy; 274 u32 i, i2ccmd = 0; 275 u16 phy_data_swapped; 276 277 /* Prevent overwriting SFP I2C EEPROM which is at A0 address.*/ 278 if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) { 279 hw_dbg("PHY I2C Address %d is out of range.\n", 280 hw->phy.addr); 281 return -E1000_ERR_CONFIG; 282 } 283 284 /* Swap the data bytes for the I2C interface */ 285 phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00); 286 287 /* Set up Op-code, Phy Address, and register address in the I2CCMD 288 * register. The MAC will take care of interfacing with the 289 * PHY to retrieve the desired data. 290 */ 291 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | 292 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | 293 E1000_I2CCMD_OPCODE_WRITE | 294 phy_data_swapped); 295 296 wr32(E1000_I2CCMD, i2ccmd); 297 298 /* Poll the ready bit to see if the I2C read completed */ 299 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { 300 udelay(50); 301 i2ccmd = rd32(E1000_I2CCMD); 302 if (i2ccmd & E1000_I2CCMD_READY) 303 break; 304 } 305 if (!(i2ccmd & E1000_I2CCMD_READY)) { 306 hw_dbg("I2CCMD Write did not complete\n"); 307 return -E1000_ERR_PHY; 308 } 309 if (i2ccmd & E1000_I2CCMD_ERROR) { 310 hw_dbg("I2CCMD Error bit set\n"); 311 return -E1000_ERR_PHY; 312 } 313 314 return 0; 315 } 316 317 /** 318 * igb_read_sfp_data_byte - Reads SFP module data. 319 * @hw: pointer to the HW structure 320 * @offset: byte location offset to be read 321 * @data: read data buffer pointer 322 * 323 * Reads one byte from SFP module data stored 324 * in SFP resided EEPROM memory or SFP diagnostic area. 325 * Function should be called with 326 * E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access 327 * E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters 328 * access 329 **/ 330 s32 igb_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data) 331 { 332 u32 i = 0; 333 u32 i2ccmd = 0; 334 u32 data_local = 0; 335 336 if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) { 337 hw_dbg("I2CCMD command address exceeds upper limit\n"); 338 return -E1000_ERR_PHY; 339 } 340 341 /* Set up Op-code, EEPROM Address,in the I2CCMD 342 * register. The MAC will take care of interfacing with the 343 * EEPROM to retrieve the desired data. 344 */ 345 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | 346 E1000_I2CCMD_OPCODE_READ); 347 348 wr32(E1000_I2CCMD, i2ccmd); 349 350 /* Poll the ready bit to see if the I2C read completed */ 351 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { 352 udelay(50); 353 data_local = rd32(E1000_I2CCMD); 354 if (data_local & E1000_I2CCMD_READY) 355 break; 356 } 357 if (!(data_local & E1000_I2CCMD_READY)) { 358 hw_dbg("I2CCMD Read did not complete\n"); 359 return -E1000_ERR_PHY; 360 } 361 if (data_local & E1000_I2CCMD_ERROR) { 362 hw_dbg("I2CCMD Error bit set\n"); 363 return -E1000_ERR_PHY; 364 } 365 *data = (u8) data_local & 0xFF; 366 367 return 0; 368 } 369 370 /** 371 * igb_read_phy_reg_igp - Read igp PHY register 372 * @hw: pointer to the HW structure 373 * @offset: register offset to be read 374 * @data: pointer to the read data 375 * 376 * Acquires semaphore, if necessary, then reads the PHY register at offset 377 * and storing the retrieved information in data. Release any acquired 378 * semaphores before exiting. 379 **/ 380 s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data) 381 { 382 s32 ret_val = 0; 383 384 if (!(hw->phy.ops.acquire)) 385 goto out; 386 387 ret_val = hw->phy.ops.acquire(hw); 388 if (ret_val) 389 goto out; 390 391 if (offset > MAX_PHY_MULTI_PAGE_REG) { 392 ret_val = igb_write_phy_reg_mdic(hw, 393 IGP01E1000_PHY_PAGE_SELECT, 394 (u16)offset); 395 if (ret_val) { 396 hw->phy.ops.release(hw); 397 goto out; 398 } 399 } 400 401 ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 402 data); 403 404 hw->phy.ops.release(hw); 405 406 out: 407 return ret_val; 408 } 409 410 /** 411 * igb_write_phy_reg_igp - Write igp PHY register 412 * @hw: pointer to the HW structure 413 * @offset: register offset to write to 414 * @data: data to write at register offset 415 * 416 * Acquires semaphore, if necessary, then writes the data to PHY register 417 * at the offset. Release any acquired semaphores before exiting. 418 **/ 419 s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data) 420 { 421 s32 ret_val = 0; 422 423 if (!(hw->phy.ops.acquire)) 424 goto out; 425 426 ret_val = hw->phy.ops.acquire(hw); 427 if (ret_val) 428 goto out; 429 430 if (offset > MAX_PHY_MULTI_PAGE_REG) { 431 ret_val = igb_write_phy_reg_mdic(hw, 432 IGP01E1000_PHY_PAGE_SELECT, 433 (u16)offset); 434 if (ret_val) { 435 hw->phy.ops.release(hw); 436 goto out; 437 } 438 } 439 440 ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 441 data); 442 443 hw->phy.ops.release(hw); 444 445 out: 446 return ret_val; 447 } 448 449 /** 450 * igb_copper_link_setup_82580 - Setup 82580 PHY for copper link 451 * @hw: pointer to the HW structure 452 * 453 * Sets up Carrier-sense on Transmit and downshift values. 454 **/ 455 s32 igb_copper_link_setup_82580(struct e1000_hw *hw) 456 { 457 struct e1000_phy_info *phy = &hw->phy; 458 s32 ret_val; 459 u16 phy_data; 460 461 if (phy->reset_disable) { 462 ret_val = 0; 463 goto out; 464 } 465 466 if (phy->type == e1000_phy_82580) { 467 ret_val = hw->phy.ops.reset(hw); 468 if (ret_val) { 469 hw_dbg("Error resetting the PHY.\n"); 470 goto out; 471 } 472 } 473 474 /* Enable CRS on TX. This must be set for half-duplex operation. */ 475 ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data); 476 if (ret_val) 477 goto out; 478 479 phy_data |= I82580_CFG_ASSERT_CRS_ON_TX; 480 481 /* Enable downshift */ 482 phy_data |= I82580_CFG_ENABLE_DOWNSHIFT; 483 484 ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data); 485 if (ret_val) 486 goto out; 487 488 /* Set MDI/MDIX mode */ 489 ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data); 490 if (ret_val) 491 goto out; 492 phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK; 493 /* Options: 494 * 0 - Auto (default) 495 * 1 - MDI mode 496 * 2 - MDI-X mode 497 */ 498 switch (hw->phy.mdix) { 499 case 1: 500 break; 501 case 2: 502 phy_data |= I82580_PHY_CTRL2_MANUAL_MDIX; 503 break; 504 case 0: 505 default: 506 phy_data |= I82580_PHY_CTRL2_AUTO_MDI_MDIX; 507 break; 508 } 509 ret_val = hw->phy.ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data); 510 511 out: 512 return ret_val; 513 } 514 515 /** 516 * igb_copper_link_setup_m88 - Setup m88 PHY's for copper link 517 * @hw: pointer to the HW structure 518 * 519 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock 520 * and downshift values are set also. 521 **/ 522 s32 igb_copper_link_setup_m88(struct e1000_hw *hw) 523 { 524 struct e1000_phy_info *phy = &hw->phy; 525 s32 ret_val; 526 u16 phy_data; 527 528 if (phy->reset_disable) { 529 ret_val = 0; 530 goto out; 531 } 532 533 /* Enable CRS on TX. This must be set for half-duplex operation. */ 534 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 535 if (ret_val) 536 goto out; 537 538 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; 539 540 /* Options: 541 * MDI/MDI-X = 0 (default) 542 * 0 - Auto for all speeds 543 * 1 - MDI mode 544 * 2 - MDI-X mode 545 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) 546 */ 547 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; 548 549 switch (phy->mdix) { 550 case 1: 551 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; 552 break; 553 case 2: 554 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; 555 break; 556 case 3: 557 phy_data |= M88E1000_PSCR_AUTO_X_1000T; 558 break; 559 case 0: 560 default: 561 phy_data |= M88E1000_PSCR_AUTO_X_MODE; 562 break; 563 } 564 565 /* Options: 566 * disable_polarity_correction = 0 (default) 567 * Automatic Correction for Reversed Cable Polarity 568 * 0 - Disabled 569 * 1 - Enabled 570 */ 571 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; 572 if (phy->disable_polarity_correction == 1) 573 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; 574 575 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 576 if (ret_val) 577 goto out; 578 579 if (phy->revision < E1000_REVISION_4) { 580 /* Force TX_CLK in the Extended PHY Specific Control Register 581 * to 25MHz clock. 582 */ 583 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, 584 &phy_data); 585 if (ret_val) 586 goto out; 587 588 phy_data |= M88E1000_EPSCR_TX_CLK_25; 589 590 if ((phy->revision == E1000_REVISION_2) && 591 (phy->id == M88E1111_I_PHY_ID)) { 592 /* 82573L PHY - set the downshift counter to 5x. */ 593 phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK; 594 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; 595 } else { 596 /* Configure Master and Slave downshift values */ 597 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | 598 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); 599 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | 600 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); 601 } 602 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, 603 phy_data); 604 if (ret_val) 605 goto out; 606 } 607 608 /* Commit the changes. */ 609 ret_val = igb_phy_sw_reset(hw); 610 if (ret_val) { 611 hw_dbg("Error committing the PHY changes\n"); 612 goto out; 613 } 614 615 out: 616 return ret_val; 617 } 618 619 /** 620 * igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link 621 * @hw: pointer to the HW structure 622 * 623 * Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's. 624 * Also enables and sets the downshift parameters. 625 **/ 626 s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw) 627 { 628 struct e1000_phy_info *phy = &hw->phy; 629 s32 ret_val; 630 u16 phy_data; 631 632 if (phy->reset_disable) 633 return 0; 634 635 /* Enable CRS on Tx. This must be set for half-duplex operation. */ 636 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 637 if (ret_val) 638 return ret_val; 639 640 /* Options: 641 * MDI/MDI-X = 0 (default) 642 * 0 - Auto for all speeds 643 * 1 - MDI mode 644 * 2 - MDI-X mode 645 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) 646 */ 647 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; 648 649 switch (phy->mdix) { 650 case 1: 651 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; 652 break; 653 case 2: 654 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; 655 break; 656 case 3: 657 /* M88E1112 does not support this mode) */ 658 if (phy->id != M88E1112_E_PHY_ID) { 659 phy_data |= M88E1000_PSCR_AUTO_X_1000T; 660 break; 661 } 662 fallthrough; 663 case 0: 664 default: 665 phy_data |= M88E1000_PSCR_AUTO_X_MODE; 666 break; 667 } 668 669 /* Options: 670 * disable_polarity_correction = 0 (default) 671 * Automatic Correction for Reversed Cable Polarity 672 * 0 - Disabled 673 * 1 - Enabled 674 */ 675 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; 676 if (phy->disable_polarity_correction == 1) 677 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; 678 679 /* Enable downshift and setting it to X6 */ 680 if (phy->id == M88E1543_E_PHY_ID) { 681 phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE; 682 ret_val = 683 phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 684 if (ret_val) 685 return ret_val; 686 687 ret_val = igb_phy_sw_reset(hw); 688 if (ret_val) { 689 hw_dbg("Error committing the PHY changes\n"); 690 return ret_val; 691 } 692 } 693 694 phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK; 695 phy_data |= I347AT4_PSCR_DOWNSHIFT_6X; 696 phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE; 697 698 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 699 if (ret_val) 700 return ret_val; 701 702 /* Commit the changes. */ 703 ret_val = igb_phy_sw_reset(hw); 704 if (ret_val) { 705 hw_dbg("Error committing the PHY changes\n"); 706 return ret_val; 707 } 708 ret_val = igb_set_master_slave_mode(hw); 709 if (ret_val) 710 return ret_val; 711 712 return 0; 713 } 714 715 /** 716 * igb_copper_link_setup_igp - Setup igp PHY's for copper link 717 * @hw: pointer to the HW structure 718 * 719 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for 720 * igp PHY's. 721 **/ 722 s32 igb_copper_link_setup_igp(struct e1000_hw *hw) 723 { 724 struct e1000_phy_info *phy = &hw->phy; 725 s32 ret_val; 726 u16 data; 727 728 if (phy->reset_disable) { 729 ret_val = 0; 730 goto out; 731 } 732 733 ret_val = phy->ops.reset(hw); 734 if (ret_val) { 735 hw_dbg("Error resetting the PHY.\n"); 736 goto out; 737 } 738 739 /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid 740 * timeout issues when LFS is enabled. 741 */ 742 msleep(100); 743 744 /* The NVM settings will configure LPLU in D3 for 745 * non-IGP1 PHYs. 746 */ 747 if (phy->type == e1000_phy_igp) { 748 /* disable lplu d3 during driver init */ 749 if (phy->ops.set_d3_lplu_state) 750 ret_val = phy->ops.set_d3_lplu_state(hw, false); 751 if (ret_val) { 752 hw_dbg("Error Disabling LPLU D3\n"); 753 goto out; 754 } 755 } 756 757 /* disable lplu d0 during driver init */ 758 ret_val = phy->ops.set_d0_lplu_state(hw, false); 759 if (ret_val) { 760 hw_dbg("Error Disabling LPLU D0\n"); 761 goto out; 762 } 763 /* Configure mdi-mdix settings */ 764 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data); 765 if (ret_val) 766 goto out; 767 768 data &= ~IGP01E1000_PSCR_AUTO_MDIX; 769 770 switch (phy->mdix) { 771 case 1: 772 data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; 773 break; 774 case 2: 775 data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; 776 break; 777 case 0: 778 default: 779 data |= IGP01E1000_PSCR_AUTO_MDIX; 780 break; 781 } 782 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data); 783 if (ret_val) 784 goto out; 785 786 /* set auto-master slave resolution settings */ 787 if (hw->mac.autoneg) { 788 /* when autonegotiation advertisement is only 1000Mbps then we 789 * should disable SmartSpeed and enable Auto MasterSlave 790 * resolution as hardware default. 791 */ 792 if (phy->autoneg_advertised == ADVERTISE_1000_FULL) { 793 /* Disable SmartSpeed */ 794 ret_val = phy->ops.read_reg(hw, 795 IGP01E1000_PHY_PORT_CONFIG, 796 &data); 797 if (ret_val) 798 goto out; 799 800 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 801 ret_val = phy->ops.write_reg(hw, 802 IGP01E1000_PHY_PORT_CONFIG, 803 data); 804 if (ret_val) 805 goto out; 806 807 /* Set auto Master/Slave resolution process */ 808 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data); 809 if (ret_val) 810 goto out; 811 812 data &= ~CR_1000T_MS_ENABLE; 813 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data); 814 if (ret_val) 815 goto out; 816 } 817 818 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data); 819 if (ret_val) 820 goto out; 821 822 /* load defaults for future use */ 823 phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ? 824 ((data & CR_1000T_MS_VALUE) ? 825 e1000_ms_force_master : 826 e1000_ms_force_slave) : 827 e1000_ms_auto; 828 829 switch (phy->ms_type) { 830 case e1000_ms_force_master: 831 data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); 832 break; 833 case e1000_ms_force_slave: 834 data |= CR_1000T_MS_ENABLE; 835 data &= ~(CR_1000T_MS_VALUE); 836 break; 837 case e1000_ms_auto: 838 data &= ~CR_1000T_MS_ENABLE; 839 break; 840 default: 841 break; 842 } 843 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data); 844 if (ret_val) 845 goto out; 846 } 847 848 out: 849 return ret_val; 850 } 851 852 /** 853 * igb_copper_link_autoneg - Setup/Enable autoneg for copper link 854 * @hw: pointer to the HW structure 855 * 856 * Performs initial bounds checking on autoneg advertisement parameter, then 857 * configure to advertise the full capability. Setup the PHY to autoneg 858 * and restart the negotiation process between the link partner. If 859 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting. 860 **/ 861 static s32 igb_copper_link_autoneg(struct e1000_hw *hw) 862 { 863 struct e1000_phy_info *phy = &hw->phy; 864 s32 ret_val; 865 u16 phy_ctrl; 866 867 /* Perform some bounds checking on the autoneg advertisement 868 * parameter. 869 */ 870 phy->autoneg_advertised &= phy->autoneg_mask; 871 872 /* If autoneg_advertised is zero, we assume it was not defaulted 873 * by the calling code so we set to advertise full capability. 874 */ 875 if (phy->autoneg_advertised == 0) 876 phy->autoneg_advertised = phy->autoneg_mask; 877 878 hw_dbg("Reconfiguring auto-neg advertisement params\n"); 879 ret_val = igb_phy_setup_autoneg(hw); 880 if (ret_val) { 881 hw_dbg("Error Setting up Auto-Negotiation\n"); 882 goto out; 883 } 884 hw_dbg("Restarting Auto-Neg\n"); 885 886 /* Restart auto-negotiation by setting the Auto Neg Enable bit and 887 * the Auto Neg Restart bit in the PHY control register. 888 */ 889 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); 890 if (ret_val) 891 goto out; 892 893 phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); 894 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl); 895 if (ret_val) 896 goto out; 897 898 /* Does the user want to wait for Auto-Neg to complete here, or 899 * check at a later time (for example, callback routine). 900 */ 901 if (phy->autoneg_wait_to_complete) { 902 ret_val = igb_wait_autoneg(hw); 903 if (ret_val) { 904 hw_dbg("Error while waiting for autoneg to complete\n"); 905 goto out; 906 } 907 } 908 909 hw->mac.get_link_status = true; 910 911 out: 912 return ret_val; 913 } 914 915 /** 916 * igb_phy_setup_autoneg - Configure PHY for auto-negotiation 917 * @hw: pointer to the HW structure 918 * 919 * Reads the MII auto-neg advertisement register and/or the 1000T control 920 * register and if the PHY is already setup for auto-negotiation, then 921 * return successful. Otherwise, setup advertisement and flow control to 922 * the appropriate values for the wanted auto-negotiation. 923 **/ 924 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw) 925 { 926 struct e1000_phy_info *phy = &hw->phy; 927 s32 ret_val; 928 u16 mii_autoneg_adv_reg; 929 u16 mii_1000t_ctrl_reg = 0; 930 931 phy->autoneg_advertised &= phy->autoneg_mask; 932 933 /* Read the MII Auto-Neg Advertisement Register (Address 4). */ 934 ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); 935 if (ret_val) 936 goto out; 937 938 if (phy->autoneg_mask & ADVERTISE_1000_FULL) { 939 /* Read the MII 1000Base-T Control Register (Address 9). */ 940 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, 941 &mii_1000t_ctrl_reg); 942 if (ret_val) 943 goto out; 944 } 945 946 /* Need to parse both autoneg_advertised and fc and set up 947 * the appropriate PHY registers. First we will parse for 948 * autoneg_advertised software override. Since we can advertise 949 * a plethora of combinations, we need to check each bit 950 * individually. 951 */ 952 953 /* First we clear all the 10/100 mb speed bits in the Auto-Neg 954 * Advertisement Register (Address 4) and the 1000 mb speed bits in 955 * the 1000Base-T Control Register (Address 9). 956 */ 957 mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS | 958 NWAY_AR_100TX_HD_CAPS | 959 NWAY_AR_10T_FD_CAPS | 960 NWAY_AR_10T_HD_CAPS); 961 mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS); 962 963 hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised); 964 965 /* Do we want to advertise 10 Mb Half Duplex? */ 966 if (phy->autoneg_advertised & ADVERTISE_10_HALF) { 967 hw_dbg("Advertise 10mb Half duplex\n"); 968 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; 969 } 970 971 /* Do we want to advertise 10 Mb Full Duplex? */ 972 if (phy->autoneg_advertised & ADVERTISE_10_FULL) { 973 hw_dbg("Advertise 10mb Full duplex\n"); 974 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; 975 } 976 977 /* Do we want to advertise 100 Mb Half Duplex? */ 978 if (phy->autoneg_advertised & ADVERTISE_100_HALF) { 979 hw_dbg("Advertise 100mb Half duplex\n"); 980 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; 981 } 982 983 /* Do we want to advertise 100 Mb Full Duplex? */ 984 if (phy->autoneg_advertised & ADVERTISE_100_FULL) { 985 hw_dbg("Advertise 100mb Full duplex\n"); 986 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; 987 } 988 989 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ 990 if (phy->autoneg_advertised & ADVERTISE_1000_HALF) 991 hw_dbg("Advertise 1000mb Half duplex request denied!\n"); 992 993 /* Do we want to advertise 1000 Mb Full Duplex? */ 994 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) { 995 hw_dbg("Advertise 1000mb Full duplex\n"); 996 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; 997 } 998 999 /* Check for a software override of the flow control settings, and 1000 * setup the PHY advertisement registers accordingly. If 1001 * auto-negotiation is enabled, then software will have to set the 1002 * "PAUSE" bits to the correct value in the Auto-Negotiation 1003 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto- 1004 * negotiation. 1005 * 1006 * The possible values of the "fc" parameter are: 1007 * 0: Flow control is completely disabled 1008 * 1: Rx flow control is enabled (we can receive pause frames 1009 * but not send pause frames). 1010 * 2: Tx flow control is enabled (we can send pause frames 1011 * but we do not support receiving pause frames). 1012 * 3: Both Rx and TX flow control (symmetric) are enabled. 1013 * other: No software override. The flow control configuration 1014 * in the EEPROM is used. 1015 */ 1016 switch (hw->fc.current_mode) { 1017 case e1000_fc_none: 1018 /* Flow control (RX & TX) is completely disabled by a 1019 * software over-ride. 1020 */ 1021 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); 1022 break; 1023 case e1000_fc_rx_pause: 1024 /* RX Flow control is enabled, and TX Flow control is 1025 * disabled, by a software over-ride. 1026 * 1027 * Since there really isn't a way to advertise that we are 1028 * capable of RX Pause ONLY, we will advertise that we 1029 * support both symmetric and asymmetric RX PAUSE. Later 1030 * (in e1000_config_fc_after_link_up) we will disable the 1031 * hw's ability to send PAUSE frames. 1032 */ 1033 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); 1034 break; 1035 case e1000_fc_tx_pause: 1036 /* TX Flow control is enabled, and RX Flow control is 1037 * disabled, by a software over-ride. 1038 */ 1039 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; 1040 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; 1041 break; 1042 case e1000_fc_full: 1043 /* Flow control (both RX and TX) is enabled by a software 1044 * over-ride. 1045 */ 1046 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); 1047 break; 1048 default: 1049 hw_dbg("Flow control param set incorrectly\n"); 1050 ret_val = -E1000_ERR_CONFIG; 1051 goto out; 1052 } 1053 1054 ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); 1055 if (ret_val) 1056 goto out; 1057 1058 hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); 1059 1060 if (phy->autoneg_mask & ADVERTISE_1000_FULL) { 1061 ret_val = phy->ops.write_reg(hw, 1062 PHY_1000T_CTRL, 1063 mii_1000t_ctrl_reg); 1064 if (ret_val) 1065 goto out; 1066 } 1067 1068 out: 1069 return ret_val; 1070 } 1071 1072 /** 1073 * igb_setup_copper_link - Configure copper link settings 1074 * @hw: pointer to the HW structure 1075 * 1076 * Calls the appropriate function to configure the link for auto-neg or forced 1077 * speed and duplex. Then we check for link, once link is established calls 1078 * to configure collision distance and flow control are called. If link is 1079 * not established, we return -E1000_ERR_PHY (-2). 1080 **/ 1081 s32 igb_setup_copper_link(struct e1000_hw *hw) 1082 { 1083 s32 ret_val; 1084 bool link; 1085 1086 if (hw->mac.autoneg) { 1087 /* Setup autoneg and flow control advertisement and perform 1088 * autonegotiation. 1089 */ 1090 ret_val = igb_copper_link_autoneg(hw); 1091 if (ret_val) 1092 goto out; 1093 } else { 1094 /* PHY will be set to 10H, 10F, 100H or 100F 1095 * depending on user settings. 1096 */ 1097 hw_dbg("Forcing Speed and Duplex\n"); 1098 ret_val = hw->phy.ops.force_speed_duplex(hw); 1099 if (ret_val) { 1100 hw_dbg("Error Forcing Speed and Duplex\n"); 1101 goto out; 1102 } 1103 } 1104 1105 /* Check link status. Wait up to 100 microseconds for link to become 1106 * valid. 1107 */ 1108 ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link); 1109 if (ret_val) 1110 goto out; 1111 1112 if (link) { 1113 hw_dbg("Valid link established!!!\n"); 1114 igb_config_collision_dist(hw); 1115 ret_val = igb_config_fc_after_link_up(hw); 1116 } else { 1117 hw_dbg("Unable to establish link!!!\n"); 1118 } 1119 1120 out: 1121 return ret_val; 1122 } 1123 1124 /** 1125 * igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY 1126 * @hw: pointer to the HW structure 1127 * 1128 * Calls the PHY setup function to force speed and duplex. Clears the 1129 * auto-crossover to force MDI manually. Waits for link and returns 1130 * successful if link up is successful, else -E1000_ERR_PHY (-2). 1131 **/ 1132 s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw) 1133 { 1134 struct e1000_phy_info *phy = &hw->phy; 1135 s32 ret_val; 1136 u16 phy_data; 1137 bool link; 1138 1139 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); 1140 if (ret_val) 1141 goto out; 1142 1143 igb_phy_force_speed_duplex_setup(hw, &phy_data); 1144 1145 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); 1146 if (ret_val) 1147 goto out; 1148 1149 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI 1150 * forced whenever speed and duplex are forced. 1151 */ 1152 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); 1153 if (ret_val) 1154 goto out; 1155 1156 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; 1157 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; 1158 1159 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); 1160 if (ret_val) 1161 goto out; 1162 1163 hw_dbg("IGP PSCR: %X\n", phy_data); 1164 1165 udelay(1); 1166 1167 if (phy->autoneg_wait_to_complete) { 1168 hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n"); 1169 1170 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link); 1171 if (ret_val) 1172 goto out; 1173 1174 if (!link) 1175 hw_dbg("Link taking longer than expected.\n"); 1176 1177 /* Try once more */ 1178 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link); 1179 if (ret_val) 1180 goto out; 1181 } 1182 1183 out: 1184 return ret_val; 1185 } 1186 1187 /** 1188 * igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY 1189 * @hw: pointer to the HW structure 1190 * 1191 * Calls the PHY setup function to force speed and duplex. Clears the 1192 * auto-crossover to force MDI manually. Resets the PHY to commit the 1193 * changes. If time expires while waiting for link up, we reset the DSP. 1194 * After reset, TX_CLK and CRS on TX must be set. Return successful upon 1195 * successful completion, else return corresponding error code. 1196 **/ 1197 s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw) 1198 { 1199 struct e1000_phy_info *phy = &hw->phy; 1200 s32 ret_val; 1201 u16 phy_data; 1202 bool link; 1203 1204 /* I210 and I211 devices support Auto-Crossover in forced operation. */ 1205 if (phy->type != e1000_phy_i210) { 1206 /* Clear Auto-Crossover to force MDI manually. M88E1000 1207 * requires MDI forced whenever speed and duplex are forced. 1208 */ 1209 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, 1210 &phy_data); 1211 if (ret_val) 1212 goto out; 1213 1214 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; 1215 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, 1216 phy_data); 1217 if (ret_val) 1218 goto out; 1219 1220 hw_dbg("M88E1000 PSCR: %X\n", phy_data); 1221 } 1222 1223 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); 1224 if (ret_val) 1225 goto out; 1226 1227 igb_phy_force_speed_duplex_setup(hw, &phy_data); 1228 1229 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); 1230 if (ret_val) 1231 goto out; 1232 1233 /* Reset the phy to commit changes. */ 1234 ret_val = igb_phy_sw_reset(hw); 1235 if (ret_val) 1236 goto out; 1237 1238 if (phy->autoneg_wait_to_complete) { 1239 hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n"); 1240 1241 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link); 1242 if (ret_val) 1243 goto out; 1244 1245 if (!link) { 1246 bool reset_dsp = true; 1247 1248 switch (hw->phy.id) { 1249 case I347AT4_E_PHY_ID: 1250 case M88E1112_E_PHY_ID: 1251 case M88E1543_E_PHY_ID: 1252 case M88E1512_E_PHY_ID: 1253 case I210_I_PHY_ID: 1254 reset_dsp = false; 1255 break; 1256 default: 1257 if (hw->phy.type != e1000_phy_m88) 1258 reset_dsp = false; 1259 break; 1260 } 1261 if (!reset_dsp) { 1262 hw_dbg("Link taking longer than expected.\n"); 1263 } else { 1264 /* We didn't get link. 1265 * Reset the DSP and cross our fingers. 1266 */ 1267 ret_val = phy->ops.write_reg(hw, 1268 M88E1000_PHY_PAGE_SELECT, 1269 0x001d); 1270 if (ret_val) 1271 goto out; 1272 ret_val = igb_phy_reset_dsp(hw); 1273 if (ret_val) 1274 goto out; 1275 } 1276 } 1277 1278 /* Try once more */ 1279 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 1280 100000, &link); 1281 if (ret_val) 1282 goto out; 1283 } 1284 1285 if (hw->phy.type != e1000_phy_m88 || 1286 hw->phy.id == I347AT4_E_PHY_ID || 1287 hw->phy.id == M88E1112_E_PHY_ID || 1288 hw->phy.id == M88E1543_E_PHY_ID || 1289 hw->phy.id == M88E1512_E_PHY_ID || 1290 hw->phy.id == I210_I_PHY_ID) 1291 goto out; 1292 1293 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); 1294 if (ret_val) 1295 goto out; 1296 1297 /* Resetting the phy means we need to re-force TX_CLK in the 1298 * Extended PHY Specific Control Register to 25MHz clock from 1299 * the reset value of 2.5MHz. 1300 */ 1301 phy_data |= M88E1000_EPSCR_TX_CLK_25; 1302 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); 1303 if (ret_val) 1304 goto out; 1305 1306 /* In addition, we must re-enable CRS on Tx for both half and full 1307 * duplex. 1308 */ 1309 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 1310 if (ret_val) 1311 goto out; 1312 1313 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; 1314 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 1315 1316 out: 1317 return ret_val; 1318 } 1319 1320 /** 1321 * igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex 1322 * @hw: pointer to the HW structure 1323 * @phy_ctrl: pointer to current value of PHY_CONTROL 1324 * 1325 * Forces speed and duplex on the PHY by doing the following: disable flow 1326 * control, force speed/duplex on the MAC, disable auto speed detection, 1327 * disable auto-negotiation, configure duplex, configure speed, configure 1328 * the collision distance, write configuration to CTRL register. The 1329 * caller must write to the PHY_CONTROL register for these settings to 1330 * take affect. 1331 **/ 1332 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw, 1333 u16 *phy_ctrl) 1334 { 1335 struct e1000_mac_info *mac = &hw->mac; 1336 u32 ctrl; 1337 1338 /* Turn off flow control when forcing speed/duplex */ 1339 hw->fc.current_mode = e1000_fc_none; 1340 1341 /* Force speed/duplex on the mac */ 1342 ctrl = rd32(E1000_CTRL); 1343 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 1344 ctrl &= ~E1000_CTRL_SPD_SEL; 1345 1346 /* Disable Auto Speed Detection */ 1347 ctrl &= ~E1000_CTRL_ASDE; 1348 1349 /* Disable autoneg on the phy */ 1350 *phy_ctrl &= ~MII_CR_AUTO_NEG_EN; 1351 1352 /* Forcing Full or Half Duplex? */ 1353 if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) { 1354 ctrl &= ~E1000_CTRL_FD; 1355 *phy_ctrl &= ~MII_CR_FULL_DUPLEX; 1356 hw_dbg("Half Duplex\n"); 1357 } else { 1358 ctrl |= E1000_CTRL_FD; 1359 *phy_ctrl |= MII_CR_FULL_DUPLEX; 1360 hw_dbg("Full Duplex\n"); 1361 } 1362 1363 /* Forcing 10mb or 100mb? */ 1364 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) { 1365 ctrl |= E1000_CTRL_SPD_100; 1366 *phy_ctrl |= MII_CR_SPEED_100; 1367 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); 1368 hw_dbg("Forcing 100mb\n"); 1369 } else { 1370 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 1371 *phy_ctrl |= MII_CR_SPEED_10; 1372 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); 1373 hw_dbg("Forcing 10mb\n"); 1374 } 1375 1376 igb_config_collision_dist(hw); 1377 1378 wr32(E1000_CTRL, ctrl); 1379 } 1380 1381 /** 1382 * igb_set_d3_lplu_state - Sets low power link up state for D3 1383 * @hw: pointer to the HW structure 1384 * @active: boolean used to enable/disable lplu 1385 * 1386 * Success returns 0, Failure returns 1 1387 * 1388 * The low power link up (lplu) state is set to the power management level D3 1389 * and SmartSpeed is disabled when active is true, else clear lplu for D3 1390 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1391 * is used during Dx states where the power conservation is most important. 1392 * During driver activity, SmartSpeed should be enabled so performance is 1393 * maintained. 1394 **/ 1395 s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active) 1396 { 1397 struct e1000_phy_info *phy = &hw->phy; 1398 s32 ret_val = 0; 1399 u16 data; 1400 1401 if (!(hw->phy.ops.read_reg)) 1402 goto out; 1403 1404 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); 1405 if (ret_val) 1406 goto out; 1407 1408 if (!active) { 1409 data &= ~IGP02E1000_PM_D3_LPLU; 1410 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, 1411 data); 1412 if (ret_val) 1413 goto out; 1414 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 1415 * during Dx states where the power conservation is most 1416 * important. During driver activity we should enable 1417 * SmartSpeed, so performance is maintained. 1418 */ 1419 if (phy->smart_speed == e1000_smart_speed_on) { 1420 ret_val = phy->ops.read_reg(hw, 1421 IGP01E1000_PHY_PORT_CONFIG, 1422 &data); 1423 if (ret_val) 1424 goto out; 1425 1426 data |= IGP01E1000_PSCFR_SMART_SPEED; 1427 ret_val = phy->ops.write_reg(hw, 1428 IGP01E1000_PHY_PORT_CONFIG, 1429 data); 1430 if (ret_val) 1431 goto out; 1432 } else if (phy->smart_speed == e1000_smart_speed_off) { 1433 ret_val = phy->ops.read_reg(hw, 1434 IGP01E1000_PHY_PORT_CONFIG, 1435 &data); 1436 if (ret_val) 1437 goto out; 1438 1439 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 1440 ret_val = phy->ops.write_reg(hw, 1441 IGP01E1000_PHY_PORT_CONFIG, 1442 data); 1443 if (ret_val) 1444 goto out; 1445 } 1446 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || 1447 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || 1448 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { 1449 data |= IGP02E1000_PM_D3_LPLU; 1450 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, 1451 data); 1452 if (ret_val) 1453 goto out; 1454 1455 /* When LPLU is enabled, we should disable SmartSpeed */ 1456 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, 1457 &data); 1458 if (ret_val) 1459 goto out; 1460 1461 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 1462 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, 1463 data); 1464 } 1465 1466 out: 1467 return ret_val; 1468 } 1469 1470 /** 1471 * igb_check_downshift - Checks whether a downshift in speed occurred 1472 * @hw: pointer to the HW structure 1473 * 1474 * Success returns 0, Failure returns 1 1475 * 1476 * A downshift is detected by querying the PHY link health. 1477 **/ 1478 s32 igb_check_downshift(struct e1000_hw *hw) 1479 { 1480 struct e1000_phy_info *phy = &hw->phy; 1481 s32 ret_val; 1482 u16 phy_data, offset, mask; 1483 1484 switch (phy->type) { 1485 case e1000_phy_i210: 1486 case e1000_phy_m88: 1487 case e1000_phy_gg82563: 1488 offset = M88E1000_PHY_SPEC_STATUS; 1489 mask = M88E1000_PSSR_DOWNSHIFT; 1490 break; 1491 case e1000_phy_igp_2: 1492 case e1000_phy_igp: 1493 case e1000_phy_igp_3: 1494 offset = IGP01E1000_PHY_LINK_HEALTH; 1495 mask = IGP01E1000_PLHR_SS_DOWNGRADE; 1496 break; 1497 default: 1498 /* speed downshift not supported */ 1499 phy->speed_downgraded = false; 1500 ret_val = 0; 1501 goto out; 1502 } 1503 1504 ret_val = phy->ops.read_reg(hw, offset, &phy_data); 1505 1506 if (!ret_val) 1507 phy->speed_downgraded = (phy_data & mask) ? true : false; 1508 1509 out: 1510 return ret_val; 1511 } 1512 1513 /** 1514 * igb_check_polarity_m88 - Checks the polarity. 1515 * @hw: pointer to the HW structure 1516 * 1517 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 1518 * 1519 * Polarity is determined based on the PHY specific status register. 1520 **/ 1521 s32 igb_check_polarity_m88(struct e1000_hw *hw) 1522 { 1523 struct e1000_phy_info *phy = &hw->phy; 1524 s32 ret_val; 1525 u16 data; 1526 1527 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data); 1528 1529 if (!ret_val) 1530 phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY) 1531 ? e1000_rev_polarity_reversed 1532 : e1000_rev_polarity_normal; 1533 1534 return ret_val; 1535 } 1536 1537 /** 1538 * igb_check_polarity_igp - Checks the polarity. 1539 * @hw: pointer to the HW structure 1540 * 1541 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 1542 * 1543 * Polarity is determined based on the PHY port status register, and the 1544 * current speed (since there is no polarity at 100Mbps). 1545 **/ 1546 static s32 igb_check_polarity_igp(struct e1000_hw *hw) 1547 { 1548 struct e1000_phy_info *phy = &hw->phy; 1549 s32 ret_val; 1550 u16 data, offset, mask; 1551 1552 /* Polarity is determined based on the speed of 1553 * our connection. 1554 */ 1555 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data); 1556 if (ret_val) 1557 goto out; 1558 1559 if ((data & IGP01E1000_PSSR_SPEED_MASK) == 1560 IGP01E1000_PSSR_SPEED_1000MBPS) { 1561 offset = IGP01E1000_PHY_PCS_INIT_REG; 1562 mask = IGP01E1000_PHY_POLARITY_MASK; 1563 } else { 1564 /* This really only applies to 10Mbps since 1565 * there is no polarity for 100Mbps (always 0). 1566 */ 1567 offset = IGP01E1000_PHY_PORT_STATUS; 1568 mask = IGP01E1000_PSSR_POLARITY_REVERSED; 1569 } 1570 1571 ret_val = phy->ops.read_reg(hw, offset, &data); 1572 1573 if (!ret_val) 1574 phy->cable_polarity = (data & mask) 1575 ? e1000_rev_polarity_reversed 1576 : e1000_rev_polarity_normal; 1577 1578 out: 1579 return ret_val; 1580 } 1581 1582 /** 1583 * igb_wait_autoneg - Wait for auto-neg completion 1584 * @hw: pointer to the HW structure 1585 * 1586 * Waits for auto-negotiation to complete or for the auto-negotiation time 1587 * limit to expire, which ever happens first. 1588 **/ 1589 static s32 igb_wait_autoneg(struct e1000_hw *hw) 1590 { 1591 s32 ret_val = 0; 1592 u16 i, phy_status; 1593 1594 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */ 1595 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) { 1596 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); 1597 if (ret_val) 1598 break; 1599 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); 1600 if (ret_val) 1601 break; 1602 if (phy_status & MII_SR_AUTONEG_COMPLETE) 1603 break; 1604 msleep(100); 1605 } 1606 1607 /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation 1608 * has completed. 1609 */ 1610 return ret_val; 1611 } 1612 1613 /** 1614 * igb_phy_has_link - Polls PHY for link 1615 * @hw: pointer to the HW structure 1616 * @iterations: number of times to poll for link 1617 * @usec_interval: delay between polling attempts 1618 * @success: pointer to whether polling was successful or not 1619 * 1620 * Polls the PHY status register for link, 'iterations' number of times. 1621 **/ 1622 s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations, 1623 u32 usec_interval, bool *success) 1624 { 1625 s32 ret_val = 0; 1626 u16 i, phy_status; 1627 1628 for (i = 0; i < iterations; i++) { 1629 /* Some PHYs require the PHY_STATUS register to be read 1630 * twice due to the link bit being sticky. No harm doing 1631 * it across the board. 1632 */ 1633 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); 1634 if (ret_val && usec_interval > 0) { 1635 /* If the first read fails, another entity may have 1636 * ownership of the resources, wait and try again to 1637 * see if they have relinquished the resources yet. 1638 */ 1639 if (usec_interval >= 1000) 1640 mdelay(usec_interval/1000); 1641 else 1642 udelay(usec_interval); 1643 } 1644 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); 1645 if (ret_val) 1646 break; 1647 if (phy_status & MII_SR_LINK_STATUS) 1648 break; 1649 if (usec_interval >= 1000) 1650 mdelay(usec_interval/1000); 1651 else 1652 udelay(usec_interval); 1653 } 1654 1655 *success = (i < iterations) ? true : false; 1656 1657 return ret_val; 1658 } 1659 1660 /** 1661 * igb_get_cable_length_m88 - Determine cable length for m88 PHY 1662 * @hw: pointer to the HW structure 1663 * 1664 * Reads the PHY specific status register to retrieve the cable length 1665 * information. The cable length is determined by averaging the minimum and 1666 * maximum values to get the "average" cable length. The m88 PHY has four 1667 * possible cable length values, which are: 1668 * Register Value Cable Length 1669 * 0 < 50 meters 1670 * 1 50 - 80 meters 1671 * 2 80 - 110 meters 1672 * 3 110 - 140 meters 1673 * 4 > 140 meters 1674 **/ 1675 s32 igb_get_cable_length_m88(struct e1000_hw *hw) 1676 { 1677 struct e1000_phy_info *phy = &hw->phy; 1678 s32 ret_val; 1679 u16 phy_data, index; 1680 1681 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 1682 if (ret_val) 1683 goto out; 1684 1685 index = FIELD_GET(M88E1000_PSSR_CABLE_LENGTH, phy_data); 1686 if (index >= ARRAY_SIZE(e1000_m88_cable_length_table) - 1) { 1687 ret_val = -E1000_ERR_PHY; 1688 goto out; 1689 } 1690 1691 phy->min_cable_length = e1000_m88_cable_length_table[index]; 1692 phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; 1693 1694 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; 1695 1696 out: 1697 return ret_val; 1698 } 1699 1700 s32 igb_get_cable_length_m88_gen2(struct e1000_hw *hw) 1701 { 1702 struct e1000_phy_info *phy = &hw->phy; 1703 s32 ret_val; 1704 u16 phy_data, phy_data2, index, default_page, is_cm; 1705 int len_tot = 0; 1706 u16 len_min; 1707 u16 len_max; 1708 1709 switch (hw->phy.id) { 1710 case M88E1543_E_PHY_ID: 1711 case M88E1512_E_PHY_ID: 1712 case I347AT4_E_PHY_ID: 1713 case I210_I_PHY_ID: 1714 /* Remember the original page select and set it to 7 */ 1715 ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT, 1716 &default_page); 1717 if (ret_val) 1718 goto out; 1719 1720 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07); 1721 if (ret_val) 1722 goto out; 1723 1724 /* Check if the unit of cable length is meters or cm */ 1725 ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2); 1726 if (ret_val) 1727 goto out; 1728 1729 is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT); 1730 1731 /* Get cable length from Pair 0 length Regs */ 1732 ret_val = phy->ops.read_reg(hw, I347AT4_PCDL0, &phy_data); 1733 if (ret_val) 1734 goto out; 1735 1736 phy->pair_length[0] = phy_data / (is_cm ? 100 : 1); 1737 len_tot = phy->pair_length[0]; 1738 len_min = phy->pair_length[0]; 1739 len_max = phy->pair_length[0]; 1740 1741 /* Get cable length from Pair 1 length Regs */ 1742 ret_val = phy->ops.read_reg(hw, I347AT4_PCDL1, &phy_data); 1743 if (ret_val) 1744 goto out; 1745 1746 phy->pair_length[1] = phy_data / (is_cm ? 100 : 1); 1747 len_tot += phy->pair_length[1]; 1748 len_min = min(len_min, phy->pair_length[1]); 1749 len_max = max(len_max, phy->pair_length[1]); 1750 1751 /* Get cable length from Pair 2 length Regs */ 1752 ret_val = phy->ops.read_reg(hw, I347AT4_PCDL2, &phy_data); 1753 if (ret_val) 1754 goto out; 1755 1756 phy->pair_length[2] = phy_data / (is_cm ? 100 : 1); 1757 len_tot += phy->pair_length[2]; 1758 len_min = min(len_min, phy->pair_length[2]); 1759 len_max = max(len_max, phy->pair_length[2]); 1760 1761 /* Get cable length from Pair 3 length Regs */ 1762 ret_val = phy->ops.read_reg(hw, I347AT4_PCDL3, &phy_data); 1763 if (ret_val) 1764 goto out; 1765 1766 phy->pair_length[3] = phy_data / (is_cm ? 100 : 1); 1767 len_tot += phy->pair_length[3]; 1768 len_min = min(len_min, phy->pair_length[3]); 1769 len_max = max(len_max, phy->pair_length[3]); 1770 1771 /* Populate the phy structure with cable length in meters */ 1772 phy->min_cable_length = len_min; 1773 phy->max_cable_length = len_max; 1774 phy->cable_length = len_tot / 4; 1775 1776 /* Reset the page selec to its original value */ 1777 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 1778 default_page); 1779 if (ret_val) 1780 goto out; 1781 break; 1782 case M88E1112_E_PHY_ID: 1783 /* Remember the original page select and set it to 5 */ 1784 ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT, 1785 &default_page); 1786 if (ret_val) 1787 goto out; 1788 1789 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05); 1790 if (ret_val) 1791 goto out; 1792 1793 ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE, 1794 &phy_data); 1795 if (ret_val) 1796 goto out; 1797 1798 index = FIELD_GET(M88E1000_PSSR_CABLE_LENGTH, phy_data); 1799 if (index >= ARRAY_SIZE(e1000_m88_cable_length_table) - 1) { 1800 ret_val = -E1000_ERR_PHY; 1801 goto out; 1802 } 1803 1804 phy->min_cable_length = e1000_m88_cable_length_table[index]; 1805 phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; 1806 1807 phy->cable_length = (phy->min_cable_length + 1808 phy->max_cable_length) / 2; 1809 1810 /* Reset the page select to its original value */ 1811 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 1812 default_page); 1813 if (ret_val) 1814 goto out; 1815 1816 break; 1817 default: 1818 ret_val = -E1000_ERR_PHY; 1819 goto out; 1820 } 1821 1822 out: 1823 return ret_val; 1824 } 1825 1826 /** 1827 * igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY 1828 * @hw: pointer to the HW structure 1829 * 1830 * The automatic gain control (agc) normalizes the amplitude of the 1831 * received signal, adjusting for the attenuation produced by the 1832 * cable. By reading the AGC registers, which represent the 1833 * combination of coarse and fine gain value, the value can be put 1834 * into a lookup table to obtain the approximate cable length 1835 * for each channel. 1836 **/ 1837 s32 igb_get_cable_length_igp_2(struct e1000_hw *hw) 1838 { 1839 struct e1000_phy_info *phy = &hw->phy; 1840 s32 ret_val = 0; 1841 u16 phy_data, i, agc_value = 0; 1842 u16 cur_agc_index, max_agc_index = 0; 1843 u16 min_agc_index = ARRAY_SIZE(e1000_igp_2_cable_length_table) - 1; 1844 static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = { 1845 IGP02E1000_PHY_AGC_A, 1846 IGP02E1000_PHY_AGC_B, 1847 IGP02E1000_PHY_AGC_C, 1848 IGP02E1000_PHY_AGC_D 1849 }; 1850 1851 /* Read the AGC registers for all channels */ 1852 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { 1853 ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data); 1854 if (ret_val) 1855 goto out; 1856 1857 /* Getting bits 15:9, which represent the combination of 1858 * coarse and fine gain values. The result is a number 1859 * that can be put into the lookup table to obtain the 1860 * approximate cable length. 1861 */ 1862 cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & 1863 IGP02E1000_AGC_LENGTH_MASK; 1864 1865 /* Array index bound check. */ 1866 if ((cur_agc_index >= ARRAY_SIZE(e1000_igp_2_cable_length_table)) || 1867 (cur_agc_index == 0)) { 1868 ret_val = -E1000_ERR_PHY; 1869 goto out; 1870 } 1871 1872 /* Remove min & max AGC values from calculation. */ 1873 if (e1000_igp_2_cable_length_table[min_agc_index] > 1874 e1000_igp_2_cable_length_table[cur_agc_index]) 1875 min_agc_index = cur_agc_index; 1876 if (e1000_igp_2_cable_length_table[max_agc_index] < 1877 e1000_igp_2_cable_length_table[cur_agc_index]) 1878 max_agc_index = cur_agc_index; 1879 1880 agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; 1881 } 1882 1883 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + 1884 e1000_igp_2_cable_length_table[max_agc_index]); 1885 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); 1886 1887 /* Calculate cable length with the error range of +/- 10 meters. */ 1888 phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ? 1889 (agc_value - IGP02E1000_AGC_RANGE) : 0; 1890 phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE; 1891 1892 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; 1893 1894 out: 1895 return ret_val; 1896 } 1897 1898 /** 1899 * igb_get_phy_info_m88 - Retrieve PHY information 1900 * @hw: pointer to the HW structure 1901 * 1902 * Valid for only copper links. Read the PHY status register (sticky read) 1903 * to verify that link is up. Read the PHY special control register to 1904 * determine the polarity and 10base-T extended distance. Read the PHY 1905 * special status register to determine MDI/MDIx and current speed. If 1906 * speed is 1000, then determine cable length, local and remote receiver. 1907 **/ 1908 s32 igb_get_phy_info_m88(struct e1000_hw *hw) 1909 { 1910 struct e1000_phy_info *phy = &hw->phy; 1911 s32 ret_val; 1912 u16 phy_data; 1913 bool link; 1914 1915 if (phy->media_type != e1000_media_type_copper) { 1916 hw_dbg("Phy info is only valid for copper media\n"); 1917 ret_val = -E1000_ERR_CONFIG; 1918 goto out; 1919 } 1920 1921 ret_val = igb_phy_has_link(hw, 1, 0, &link); 1922 if (ret_val) 1923 goto out; 1924 1925 if (!link) { 1926 hw_dbg("Phy info is only valid if link is up\n"); 1927 ret_val = -E1000_ERR_CONFIG; 1928 goto out; 1929 } 1930 1931 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 1932 if (ret_val) 1933 goto out; 1934 1935 phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL) 1936 ? true : false; 1937 1938 ret_val = igb_check_polarity_m88(hw); 1939 if (ret_val) 1940 goto out; 1941 1942 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 1943 if (ret_val) 1944 goto out; 1945 1946 phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false; 1947 1948 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { 1949 ret_val = phy->ops.get_cable_length(hw); 1950 if (ret_val) 1951 goto out; 1952 1953 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data); 1954 if (ret_val) 1955 goto out; 1956 1957 phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) 1958 ? e1000_1000t_rx_status_ok 1959 : e1000_1000t_rx_status_not_ok; 1960 1961 phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) 1962 ? e1000_1000t_rx_status_ok 1963 : e1000_1000t_rx_status_not_ok; 1964 } else { 1965 /* Set values to "undefined" */ 1966 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; 1967 phy->local_rx = e1000_1000t_rx_status_undefined; 1968 phy->remote_rx = e1000_1000t_rx_status_undefined; 1969 } 1970 1971 out: 1972 return ret_val; 1973 } 1974 1975 /** 1976 * igb_get_phy_info_igp - Retrieve igp PHY information 1977 * @hw: pointer to the HW structure 1978 * 1979 * Read PHY status to determine if link is up. If link is up, then 1980 * set/determine 10base-T extended distance and polarity correction. Read 1981 * PHY port status to determine MDI/MDIx and speed. Based on the speed, 1982 * determine on the cable length, local and remote receiver. 1983 **/ 1984 s32 igb_get_phy_info_igp(struct e1000_hw *hw) 1985 { 1986 struct e1000_phy_info *phy = &hw->phy; 1987 s32 ret_val; 1988 u16 data; 1989 bool link; 1990 1991 ret_val = igb_phy_has_link(hw, 1, 0, &link); 1992 if (ret_val) 1993 goto out; 1994 1995 if (!link) { 1996 hw_dbg("Phy info is only valid if link is up\n"); 1997 ret_val = -E1000_ERR_CONFIG; 1998 goto out; 1999 } 2000 2001 phy->polarity_correction = true; 2002 2003 ret_val = igb_check_polarity_igp(hw); 2004 if (ret_val) 2005 goto out; 2006 2007 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data); 2008 if (ret_val) 2009 goto out; 2010 2011 phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false; 2012 2013 if ((data & IGP01E1000_PSSR_SPEED_MASK) == 2014 IGP01E1000_PSSR_SPEED_1000MBPS) { 2015 ret_val = phy->ops.get_cable_length(hw); 2016 if (ret_val) 2017 goto out; 2018 2019 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data); 2020 if (ret_val) 2021 goto out; 2022 2023 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) 2024 ? e1000_1000t_rx_status_ok 2025 : e1000_1000t_rx_status_not_ok; 2026 2027 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) 2028 ? e1000_1000t_rx_status_ok 2029 : e1000_1000t_rx_status_not_ok; 2030 } else { 2031 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; 2032 phy->local_rx = e1000_1000t_rx_status_undefined; 2033 phy->remote_rx = e1000_1000t_rx_status_undefined; 2034 } 2035 2036 out: 2037 return ret_val; 2038 } 2039 2040 /** 2041 * igb_phy_sw_reset - PHY software reset 2042 * @hw: pointer to the HW structure 2043 * 2044 * Does a software reset of the PHY by reading the PHY control register and 2045 * setting/write the control register reset bit to the PHY. 2046 **/ 2047 s32 igb_phy_sw_reset(struct e1000_hw *hw) 2048 { 2049 s32 ret_val = 0; 2050 u16 phy_ctrl; 2051 2052 if (!(hw->phy.ops.read_reg)) 2053 goto out; 2054 2055 ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); 2056 if (ret_val) 2057 goto out; 2058 2059 phy_ctrl |= MII_CR_RESET; 2060 ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl); 2061 if (ret_val) 2062 goto out; 2063 2064 udelay(1); 2065 2066 out: 2067 return ret_val; 2068 } 2069 2070 /** 2071 * igb_phy_hw_reset - PHY hardware reset 2072 * @hw: pointer to the HW structure 2073 * 2074 * Verify the reset block is not blocking us from resetting. Acquire 2075 * semaphore (if necessary) and read/set/write the device control reset 2076 * bit in the PHY. Wait the appropriate delay time for the device to 2077 * reset and release the semaphore (if necessary). 2078 **/ 2079 s32 igb_phy_hw_reset(struct e1000_hw *hw) 2080 { 2081 struct e1000_phy_info *phy = &hw->phy; 2082 s32 ret_val; 2083 u32 ctrl; 2084 2085 ret_val = igb_check_reset_block(hw); 2086 if (ret_val) { 2087 ret_val = 0; 2088 goto out; 2089 } 2090 2091 ret_val = phy->ops.acquire(hw); 2092 if (ret_val) 2093 goto out; 2094 2095 ctrl = rd32(E1000_CTRL); 2096 wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST); 2097 wrfl(); 2098 2099 udelay(phy->reset_delay_us); 2100 2101 wr32(E1000_CTRL, ctrl); 2102 wrfl(); 2103 2104 udelay(150); 2105 2106 phy->ops.release(hw); 2107 2108 ret_val = phy->ops.get_cfg_done(hw); 2109 2110 out: 2111 return ret_val; 2112 } 2113 2114 /** 2115 * igb_phy_init_script_igp3 - Inits the IGP3 PHY 2116 * @hw: pointer to the HW structure 2117 * 2118 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present. 2119 **/ 2120 s32 igb_phy_init_script_igp3(struct e1000_hw *hw) 2121 { 2122 hw_dbg("Running IGP 3 PHY init script\n"); 2123 2124 /* PHY init IGP 3 */ 2125 /* Enable rise/fall, 10-mode work in class-A */ 2126 hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018); 2127 /* Remove all caps from Replica path filter */ 2128 hw->phy.ops.write_reg(hw, 0x2F52, 0x0000); 2129 /* Bias trimming for ADC, AFE and Driver (Default) */ 2130 hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24); 2131 /* Increase Hybrid poly bias */ 2132 hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0); 2133 /* Add 4% to TX amplitude in Giga mode */ 2134 hw->phy.ops.write_reg(hw, 0x2010, 0x10B0); 2135 /* Disable trimming (TTT) */ 2136 hw->phy.ops.write_reg(hw, 0x2011, 0x0000); 2137 /* Poly DC correction to 94.6% + 2% for all channels */ 2138 hw->phy.ops.write_reg(hw, 0x20DD, 0x249A); 2139 /* ABS DC correction to 95.9% */ 2140 hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3); 2141 /* BG temp curve trim */ 2142 hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE); 2143 /* Increasing ADC OPAMP stage 1 currents to max */ 2144 hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4); 2145 /* Force 1000 ( required for enabling PHY regs configuration) */ 2146 hw->phy.ops.write_reg(hw, 0x0000, 0x0140); 2147 /* Set upd_freq to 6 */ 2148 hw->phy.ops.write_reg(hw, 0x1F30, 0x1606); 2149 /* Disable NPDFE */ 2150 hw->phy.ops.write_reg(hw, 0x1F31, 0xB814); 2151 /* Disable adaptive fixed FFE (Default) */ 2152 hw->phy.ops.write_reg(hw, 0x1F35, 0x002A); 2153 /* Enable FFE hysteresis */ 2154 hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067); 2155 /* Fixed FFE for short cable lengths */ 2156 hw->phy.ops.write_reg(hw, 0x1F54, 0x0065); 2157 /* Fixed FFE for medium cable lengths */ 2158 hw->phy.ops.write_reg(hw, 0x1F55, 0x002A); 2159 /* Fixed FFE for long cable lengths */ 2160 hw->phy.ops.write_reg(hw, 0x1F56, 0x002A); 2161 /* Enable Adaptive Clip Threshold */ 2162 hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0); 2163 /* AHT reset limit to 1 */ 2164 hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF); 2165 /* Set AHT master delay to 127 msec */ 2166 hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC); 2167 /* Set scan bits for AHT */ 2168 hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF); 2169 /* Set AHT Preset bits */ 2170 hw->phy.ops.write_reg(hw, 0x1F79, 0x0210); 2171 /* Change integ_factor of channel A to 3 */ 2172 hw->phy.ops.write_reg(hw, 0x1895, 0x0003); 2173 /* Change prop_factor of channels BCD to 8 */ 2174 hw->phy.ops.write_reg(hw, 0x1796, 0x0008); 2175 /* Change cg_icount + enable integbp for channels BCD */ 2176 hw->phy.ops.write_reg(hw, 0x1798, 0xD008); 2177 /* Change cg_icount + enable integbp + change prop_factor_master 2178 * to 8 for channel A 2179 */ 2180 hw->phy.ops.write_reg(hw, 0x1898, 0xD918); 2181 /* Disable AHT in Slave mode on channel A */ 2182 hw->phy.ops.write_reg(hw, 0x187A, 0x0800); 2183 /* Enable LPLU and disable AN to 1000 in non-D0a states, 2184 * Enable SPD+B2B 2185 */ 2186 hw->phy.ops.write_reg(hw, 0x0019, 0x008D); 2187 /* Enable restart AN on an1000_dis change */ 2188 hw->phy.ops.write_reg(hw, 0x001B, 0x2080); 2189 /* Enable wh_fifo read clock in 10/100 modes */ 2190 hw->phy.ops.write_reg(hw, 0x0014, 0x0045); 2191 /* Restart AN, Speed selection is 1000 */ 2192 hw->phy.ops.write_reg(hw, 0x0000, 0x1340); 2193 2194 return 0; 2195 } 2196 2197 /** 2198 * igb_initialize_M88E1512_phy - Initialize M88E1512 PHY 2199 * @hw: pointer to the HW structure 2200 * 2201 * Initialize Marvel 1512 to work correctly with Avoton. 2202 **/ 2203 s32 igb_initialize_M88E1512_phy(struct e1000_hw *hw) 2204 { 2205 struct e1000_phy_info *phy = &hw->phy; 2206 s32 ret_val = 0; 2207 2208 /* Switch to PHY page 0xFF. */ 2209 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF); 2210 if (ret_val) 2211 goto out; 2212 2213 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B); 2214 if (ret_val) 2215 goto out; 2216 2217 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144); 2218 if (ret_val) 2219 goto out; 2220 2221 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28); 2222 if (ret_val) 2223 goto out; 2224 2225 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146); 2226 if (ret_val) 2227 goto out; 2228 2229 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233); 2230 if (ret_val) 2231 goto out; 2232 2233 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D); 2234 if (ret_val) 2235 goto out; 2236 2237 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xCC0C); 2238 if (ret_val) 2239 goto out; 2240 2241 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159); 2242 if (ret_val) 2243 goto out; 2244 2245 /* Switch to PHY page 0xFB. */ 2246 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB); 2247 if (ret_val) 2248 goto out; 2249 2250 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x000D); 2251 if (ret_val) 2252 goto out; 2253 2254 /* Switch to PHY page 0x12. */ 2255 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12); 2256 if (ret_val) 2257 goto out; 2258 2259 /* Change mode to SGMII-to-Copper */ 2260 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001); 2261 if (ret_val) 2262 goto out; 2263 2264 /* Return the PHY to page 0. */ 2265 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0); 2266 if (ret_val) 2267 goto out; 2268 2269 ret_val = igb_phy_sw_reset(hw); 2270 if (ret_val) { 2271 hw_dbg("Error committing the PHY changes\n"); 2272 return ret_val; 2273 } 2274 2275 /* msec_delay(1000); */ 2276 usleep_range(1000, 2000); 2277 out: 2278 return ret_val; 2279 } 2280 2281 /** 2282 * igb_initialize_M88E1543_phy - Initialize M88E1512 PHY 2283 * @hw: pointer to the HW structure 2284 * 2285 * Initialize Marvell 1543 to work correctly with Avoton. 2286 **/ 2287 s32 igb_initialize_M88E1543_phy(struct e1000_hw *hw) 2288 { 2289 struct e1000_phy_info *phy = &hw->phy; 2290 s32 ret_val = 0; 2291 2292 /* Switch to PHY page 0xFF. */ 2293 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF); 2294 if (ret_val) 2295 goto out; 2296 2297 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B); 2298 if (ret_val) 2299 goto out; 2300 2301 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144); 2302 if (ret_val) 2303 goto out; 2304 2305 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28); 2306 if (ret_val) 2307 goto out; 2308 2309 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146); 2310 if (ret_val) 2311 goto out; 2312 2313 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233); 2314 if (ret_val) 2315 goto out; 2316 2317 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D); 2318 if (ret_val) 2319 goto out; 2320 2321 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xDC0C); 2322 if (ret_val) 2323 goto out; 2324 2325 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159); 2326 if (ret_val) 2327 goto out; 2328 2329 /* Switch to PHY page 0xFB. */ 2330 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB); 2331 if (ret_val) 2332 goto out; 2333 2334 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x0C0D); 2335 if (ret_val) 2336 goto out; 2337 2338 /* Switch to PHY page 0x12. */ 2339 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12); 2340 if (ret_val) 2341 goto out; 2342 2343 /* Change mode to SGMII-to-Copper */ 2344 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001); 2345 if (ret_val) 2346 goto out; 2347 2348 /* Switch to PHY page 1. */ 2349 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x1); 2350 if (ret_val) 2351 goto out; 2352 2353 /* Change mode to 1000BASE-X/SGMII and autoneg enable */ 2354 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_FIBER_CTRL, 0x9140); 2355 if (ret_val) 2356 goto out; 2357 2358 /* Return the PHY to page 0. */ 2359 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0); 2360 if (ret_val) 2361 goto out; 2362 2363 ret_val = igb_phy_sw_reset(hw); 2364 if (ret_val) { 2365 hw_dbg("Error committing the PHY changes\n"); 2366 return ret_val; 2367 } 2368 2369 /* msec_delay(1000); */ 2370 usleep_range(1000, 2000); 2371 out: 2372 return ret_val; 2373 } 2374 2375 /** 2376 * igb_power_up_phy_copper - Restore copper link in case of PHY power down 2377 * @hw: pointer to the HW structure 2378 * 2379 * In the case of a PHY power down to save power, or to turn off link during a 2380 * driver unload, restore the link to previous settings. 2381 **/ 2382 void igb_power_up_phy_copper(struct e1000_hw *hw) 2383 { 2384 u16 mii_reg = 0; 2385 2386 /* The PHY will retain its settings across a power down/up cycle */ 2387 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); 2388 mii_reg &= ~MII_CR_POWER_DOWN; 2389 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); 2390 } 2391 2392 /** 2393 * igb_power_down_phy_copper - Power down copper PHY 2394 * @hw: pointer to the HW structure 2395 * 2396 * Power down PHY to save power when interface is down and wake on lan 2397 * is not enabled. 2398 **/ 2399 void igb_power_down_phy_copper(struct e1000_hw *hw) 2400 { 2401 u16 mii_reg = 0; 2402 2403 /* The PHY will retain its settings across a power down/up cycle */ 2404 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); 2405 mii_reg |= MII_CR_POWER_DOWN; 2406 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); 2407 usleep_range(1000, 2000); 2408 } 2409 2410 /** 2411 * igb_check_polarity_82580 - Checks the polarity. 2412 * @hw: pointer to the HW structure 2413 * 2414 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 2415 * 2416 * Polarity is determined based on the PHY specific status register. 2417 **/ 2418 static s32 igb_check_polarity_82580(struct e1000_hw *hw) 2419 { 2420 struct e1000_phy_info *phy = &hw->phy; 2421 s32 ret_val; 2422 u16 data; 2423 2424 2425 ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data); 2426 2427 if (!ret_val) 2428 phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY) 2429 ? e1000_rev_polarity_reversed 2430 : e1000_rev_polarity_normal; 2431 2432 return ret_val; 2433 } 2434 2435 /** 2436 * igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY 2437 * @hw: pointer to the HW structure 2438 * 2439 * Calls the PHY setup function to force speed and duplex. Clears the 2440 * auto-crossover to force MDI manually. Waits for link and returns 2441 * successful if link up is successful, else -E1000_ERR_PHY (-2). 2442 **/ 2443 s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw) 2444 { 2445 struct e1000_phy_info *phy = &hw->phy; 2446 s32 ret_val; 2447 u16 phy_data; 2448 bool link; 2449 2450 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); 2451 if (ret_val) 2452 goto out; 2453 2454 igb_phy_force_speed_duplex_setup(hw, &phy_data); 2455 2456 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); 2457 if (ret_val) 2458 goto out; 2459 2460 /* Clear Auto-Crossover to force MDI manually. 82580 requires MDI 2461 * forced whenever speed and duplex are forced. 2462 */ 2463 ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data); 2464 if (ret_val) 2465 goto out; 2466 2467 phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK; 2468 2469 ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data); 2470 if (ret_val) 2471 goto out; 2472 2473 hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data); 2474 2475 udelay(1); 2476 2477 if (phy->autoneg_wait_to_complete) { 2478 hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n"); 2479 2480 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link); 2481 if (ret_val) 2482 goto out; 2483 2484 if (!link) 2485 hw_dbg("Link taking longer than expected.\n"); 2486 2487 /* Try once more */ 2488 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link); 2489 if (ret_val) 2490 goto out; 2491 } 2492 2493 out: 2494 return ret_val; 2495 } 2496 2497 /** 2498 * igb_get_phy_info_82580 - Retrieve I82580 PHY information 2499 * @hw: pointer to the HW structure 2500 * 2501 * Read PHY status to determine if link is up. If link is up, then 2502 * set/determine 10base-T extended distance and polarity correction. Read 2503 * PHY port status to determine MDI/MDIx and speed. Based on the speed, 2504 * determine on the cable length, local and remote receiver. 2505 **/ 2506 s32 igb_get_phy_info_82580(struct e1000_hw *hw) 2507 { 2508 struct e1000_phy_info *phy = &hw->phy; 2509 s32 ret_val; 2510 u16 data; 2511 bool link; 2512 2513 ret_val = igb_phy_has_link(hw, 1, 0, &link); 2514 if (ret_val) 2515 goto out; 2516 2517 if (!link) { 2518 hw_dbg("Phy info is only valid if link is up\n"); 2519 ret_val = -E1000_ERR_CONFIG; 2520 goto out; 2521 } 2522 2523 phy->polarity_correction = true; 2524 2525 ret_val = igb_check_polarity_82580(hw); 2526 if (ret_val) 2527 goto out; 2528 2529 ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data); 2530 if (ret_val) 2531 goto out; 2532 2533 phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false; 2534 2535 if ((data & I82580_PHY_STATUS2_SPEED_MASK) == 2536 I82580_PHY_STATUS2_SPEED_1000MBPS) { 2537 ret_val = hw->phy.ops.get_cable_length(hw); 2538 if (ret_val) 2539 goto out; 2540 2541 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data); 2542 if (ret_val) 2543 goto out; 2544 2545 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) 2546 ? e1000_1000t_rx_status_ok 2547 : e1000_1000t_rx_status_not_ok; 2548 2549 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) 2550 ? e1000_1000t_rx_status_ok 2551 : e1000_1000t_rx_status_not_ok; 2552 } else { 2553 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; 2554 phy->local_rx = e1000_1000t_rx_status_undefined; 2555 phy->remote_rx = e1000_1000t_rx_status_undefined; 2556 } 2557 2558 out: 2559 return ret_val; 2560 } 2561 2562 /** 2563 * igb_get_cable_length_82580 - Determine cable length for 82580 PHY 2564 * @hw: pointer to the HW structure 2565 * 2566 * Reads the diagnostic status register and verifies result is valid before 2567 * placing it in the phy_cable_length field. 2568 **/ 2569 s32 igb_get_cable_length_82580(struct e1000_hw *hw) 2570 { 2571 struct e1000_phy_info *phy = &hw->phy; 2572 s32 ret_val; 2573 u16 phy_data, length; 2574 2575 ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data); 2576 if (ret_val) 2577 goto out; 2578 2579 length = FIELD_GET(I82580_DSTATUS_CABLE_LENGTH, phy_data); 2580 2581 if (length == E1000_CABLE_LENGTH_UNDEFINED) 2582 ret_val = -E1000_ERR_PHY; 2583 2584 phy->cable_length = length; 2585 2586 out: 2587 return ret_val; 2588 } 2589 2590 /** 2591 * igb_set_master_slave_mode - Setup PHY for Master/slave mode 2592 * @hw: pointer to the HW structure 2593 * 2594 * Sets up Master/slave mode 2595 **/ 2596 static s32 igb_set_master_slave_mode(struct e1000_hw *hw) 2597 { 2598 s32 ret_val; 2599 u16 phy_data; 2600 2601 /* Resolve Master/Slave mode */ 2602 ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data); 2603 if (ret_val) 2604 return ret_val; 2605 2606 /* load defaults for future use */ 2607 hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ? 2608 ((phy_data & CR_1000T_MS_VALUE) ? 2609 e1000_ms_force_master : 2610 e1000_ms_force_slave) : e1000_ms_auto; 2611 2612 switch (hw->phy.ms_type) { 2613 case e1000_ms_force_master: 2614 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); 2615 break; 2616 case e1000_ms_force_slave: 2617 phy_data |= CR_1000T_MS_ENABLE; 2618 phy_data &= ~(CR_1000T_MS_VALUE); 2619 break; 2620 case e1000_ms_auto: 2621 phy_data &= ~CR_1000T_MS_ENABLE; 2622 fallthrough; 2623 default: 2624 break; 2625 } 2626 2627 return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data); 2628 } 2629