1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23 
24 #include <linux/if_ether.h>
25 #include <linux/delay.h>
26 
27 #include "e1000_mac.h"
28 #include "e1000_phy.h"
29 
30 static s32  igb_phy_setup_autoneg(struct e1000_hw *hw);
31 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
32 					     u16 *phy_ctrl);
33 static s32  igb_wait_autoneg(struct e1000_hw *hw);
34 static s32  igb_set_master_slave_mode(struct e1000_hw *hw);
35 
36 /* Cable length tables */
37 static const u16 e1000_m88_cable_length_table[] = {
38 	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
39 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
40 	(sizeof(e1000_m88_cable_length_table) / \
41 	sizeof(e1000_m88_cable_length_table[0]))
42 
43 static const u16 e1000_igp_2_cable_length_table[] = {
44 	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
45 	0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
46 	6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
47 	21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
48 	40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
49 	60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
50 	83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
51 	104, 109, 114, 118, 121, 124};
52 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
53 	(sizeof(e1000_igp_2_cable_length_table) / \
54 	 sizeof(e1000_igp_2_cable_length_table[0]))
55 
56 /**
57  *  igb_check_reset_block - Check if PHY reset is blocked
58  *  @hw: pointer to the HW structure
59  *
60  *  Read the PHY management control register and check whether a PHY reset
61  *  is blocked.  If a reset is not blocked return 0, otherwise
62  *  return E1000_BLK_PHY_RESET (12).
63  **/
64 s32 igb_check_reset_block(struct e1000_hw *hw)
65 {
66 	u32 manc;
67 
68 	manc = rd32(E1000_MANC);
69 
70 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
71 }
72 
73 /**
74  *  igb_get_phy_id - Retrieve the PHY ID and revision
75  *  @hw: pointer to the HW structure
76  *
77  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
78  *  revision in the hardware structure.
79  **/
80 s32 igb_get_phy_id(struct e1000_hw *hw)
81 {
82 	struct e1000_phy_info *phy = &hw->phy;
83 	s32 ret_val = 0;
84 	u16 phy_id;
85 
86 	ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
87 	if (ret_val)
88 		goto out;
89 
90 	phy->id = (u32)(phy_id << 16);
91 	udelay(20);
92 	ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
93 	if (ret_val)
94 		goto out;
95 
96 	phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
97 	phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
98 
99 out:
100 	return ret_val;
101 }
102 
103 /**
104  *  igb_phy_reset_dsp - Reset PHY DSP
105  *  @hw: pointer to the HW structure
106  *
107  *  Reset the digital signal processor.
108  **/
109 static s32 igb_phy_reset_dsp(struct e1000_hw *hw)
110 {
111 	s32 ret_val = 0;
112 
113 	if (!(hw->phy.ops.write_reg))
114 		goto out;
115 
116 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
117 	if (ret_val)
118 		goto out;
119 
120 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
121 
122 out:
123 	return ret_val;
124 }
125 
126 /**
127  *  igb_read_phy_reg_mdic - Read MDI control register
128  *  @hw: pointer to the HW structure
129  *  @offset: register offset to be read
130  *  @data: pointer to the read data
131  *
132  *  Reads the MDI control regsiter in the PHY at offset and stores the
133  *  information read to data.
134  **/
135 s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
136 {
137 	struct e1000_phy_info *phy = &hw->phy;
138 	u32 i, mdic = 0;
139 	s32 ret_val = 0;
140 
141 	if (offset > MAX_PHY_REG_ADDRESS) {
142 		hw_dbg("PHY Address %d is out of range\n", offset);
143 		ret_val = -E1000_ERR_PARAM;
144 		goto out;
145 	}
146 
147 	/* Set up Op-code, Phy Address, and register offset in the MDI
148 	 * Control register.  The MAC will take care of interfacing with the
149 	 * PHY to retrieve the desired data.
150 	 */
151 	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
152 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
153 		(E1000_MDIC_OP_READ));
154 
155 	wr32(E1000_MDIC, mdic);
156 
157 	/* Poll the ready bit to see if the MDI read completed
158 	 * Increasing the time out as testing showed failures with
159 	 * the lower time out
160 	 */
161 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
162 		udelay(50);
163 		mdic = rd32(E1000_MDIC);
164 		if (mdic & E1000_MDIC_READY)
165 			break;
166 	}
167 	if (!(mdic & E1000_MDIC_READY)) {
168 		hw_dbg("MDI Read did not complete\n");
169 		ret_val = -E1000_ERR_PHY;
170 		goto out;
171 	}
172 	if (mdic & E1000_MDIC_ERROR) {
173 		hw_dbg("MDI Error\n");
174 		ret_val = -E1000_ERR_PHY;
175 		goto out;
176 	}
177 	*data = (u16) mdic;
178 
179 out:
180 	return ret_val;
181 }
182 
183 /**
184  *  igb_write_phy_reg_mdic - Write MDI control register
185  *  @hw: pointer to the HW structure
186  *  @offset: register offset to write to
187  *  @data: data to write to register at offset
188  *
189  *  Writes data to MDI control register in the PHY at offset.
190  **/
191 s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
192 {
193 	struct e1000_phy_info *phy = &hw->phy;
194 	u32 i, mdic = 0;
195 	s32 ret_val = 0;
196 
197 	if (offset > MAX_PHY_REG_ADDRESS) {
198 		hw_dbg("PHY Address %d is out of range\n", offset);
199 		ret_val = -E1000_ERR_PARAM;
200 		goto out;
201 	}
202 
203 	/* Set up Op-code, Phy Address, and register offset in the MDI
204 	 * Control register.  The MAC will take care of interfacing with the
205 	 * PHY to retrieve the desired data.
206 	 */
207 	mdic = (((u32)data) |
208 		(offset << E1000_MDIC_REG_SHIFT) |
209 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
210 		(E1000_MDIC_OP_WRITE));
211 
212 	wr32(E1000_MDIC, mdic);
213 
214 	/* Poll the ready bit to see if the MDI read completed
215 	 * Increasing the time out as testing showed failures with
216 	 * the lower time out
217 	 */
218 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
219 		udelay(50);
220 		mdic = rd32(E1000_MDIC);
221 		if (mdic & E1000_MDIC_READY)
222 			break;
223 	}
224 	if (!(mdic & E1000_MDIC_READY)) {
225 		hw_dbg("MDI Write did not complete\n");
226 		ret_val = -E1000_ERR_PHY;
227 		goto out;
228 	}
229 	if (mdic & E1000_MDIC_ERROR) {
230 		hw_dbg("MDI Error\n");
231 		ret_val = -E1000_ERR_PHY;
232 		goto out;
233 	}
234 
235 out:
236 	return ret_val;
237 }
238 
239 /**
240  *  igb_read_phy_reg_i2c - Read PHY register using i2c
241  *  @hw: pointer to the HW structure
242  *  @offset: register offset to be read
243  *  @data: pointer to the read data
244  *
245  *  Reads the PHY register at offset using the i2c interface and stores the
246  *  retrieved information in data.
247  **/
248 s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
249 {
250 	struct e1000_phy_info *phy = &hw->phy;
251 	u32 i, i2ccmd = 0;
252 
253 	/* Set up Op-code, Phy Address, and register address in the I2CCMD
254 	 * register.  The MAC will take care of interfacing with the
255 	 * PHY to retrieve the desired data.
256 	 */
257 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
258 		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
259 		  (E1000_I2CCMD_OPCODE_READ));
260 
261 	wr32(E1000_I2CCMD, i2ccmd);
262 
263 	/* Poll the ready bit to see if the I2C read completed */
264 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
265 		udelay(50);
266 		i2ccmd = rd32(E1000_I2CCMD);
267 		if (i2ccmd & E1000_I2CCMD_READY)
268 			break;
269 	}
270 	if (!(i2ccmd & E1000_I2CCMD_READY)) {
271 		hw_dbg("I2CCMD Read did not complete\n");
272 		return -E1000_ERR_PHY;
273 	}
274 	if (i2ccmd & E1000_I2CCMD_ERROR) {
275 		hw_dbg("I2CCMD Error bit set\n");
276 		return -E1000_ERR_PHY;
277 	}
278 
279 	/* Need to byte-swap the 16-bit value. */
280 	*data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
281 
282 	return 0;
283 }
284 
285 /**
286  *  igb_write_phy_reg_i2c - Write PHY register using i2c
287  *  @hw: pointer to the HW structure
288  *  @offset: register offset to write to
289  *  @data: data to write at register offset
290  *
291  *  Writes the data to PHY register at the offset using the i2c interface.
292  **/
293 s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
294 {
295 	struct e1000_phy_info *phy = &hw->phy;
296 	u32 i, i2ccmd = 0;
297 	u16 phy_data_swapped;
298 
299 	/* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/
300 	if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) {
301 		hw_dbg("PHY I2C Address %d is out of range.\n",
302 			  hw->phy.addr);
303 		return -E1000_ERR_CONFIG;
304 	}
305 
306 	/* Swap the data bytes for the I2C interface */
307 	phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
308 
309 	/* Set up Op-code, Phy Address, and register address in the I2CCMD
310 	 * register.  The MAC will take care of interfacing with the
311 	 * PHY to retrieve the desired data.
312 	 */
313 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
314 		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
315 		  E1000_I2CCMD_OPCODE_WRITE |
316 		  phy_data_swapped);
317 
318 	wr32(E1000_I2CCMD, i2ccmd);
319 
320 	/* Poll the ready bit to see if the I2C read completed */
321 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
322 		udelay(50);
323 		i2ccmd = rd32(E1000_I2CCMD);
324 		if (i2ccmd & E1000_I2CCMD_READY)
325 			break;
326 	}
327 	if (!(i2ccmd & E1000_I2CCMD_READY)) {
328 		hw_dbg("I2CCMD Write did not complete\n");
329 		return -E1000_ERR_PHY;
330 	}
331 	if (i2ccmd & E1000_I2CCMD_ERROR) {
332 		hw_dbg("I2CCMD Error bit set\n");
333 		return -E1000_ERR_PHY;
334 	}
335 
336 	return 0;
337 }
338 
339 /**
340  *  igb_read_sfp_data_byte - Reads SFP module data.
341  *  @hw: pointer to the HW structure
342  *  @offset: byte location offset to be read
343  *  @data: read data buffer pointer
344  *
345  *  Reads one byte from SFP module data stored
346  *  in SFP resided EEPROM memory or SFP diagnostic area.
347  *  Function should be called with
348  *  E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
349  *  E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
350  *  access
351  **/
352 s32 igb_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data)
353 {
354 	u32 i = 0;
355 	u32 i2ccmd = 0;
356 	u32 data_local = 0;
357 
358 	if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
359 		hw_dbg("I2CCMD command address exceeds upper limit\n");
360 		return -E1000_ERR_PHY;
361 	}
362 
363 	/* Set up Op-code, EEPROM Address,in the I2CCMD
364 	 * register. The MAC will take care of interfacing with the
365 	 * EEPROM to retrieve the desired data.
366 	 */
367 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
368 		  E1000_I2CCMD_OPCODE_READ);
369 
370 	wr32(E1000_I2CCMD, i2ccmd);
371 
372 	/* Poll the ready bit to see if the I2C read completed */
373 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
374 		udelay(50);
375 		data_local = rd32(E1000_I2CCMD);
376 		if (data_local & E1000_I2CCMD_READY)
377 			break;
378 	}
379 	if (!(data_local & E1000_I2CCMD_READY)) {
380 		hw_dbg("I2CCMD Read did not complete\n");
381 		return -E1000_ERR_PHY;
382 	}
383 	if (data_local & E1000_I2CCMD_ERROR) {
384 		hw_dbg("I2CCMD Error bit set\n");
385 		return -E1000_ERR_PHY;
386 	}
387 	*data = (u8) data_local & 0xFF;
388 
389 	return 0;
390 }
391 
392 /**
393  *  igb_read_phy_reg_igp - Read igp PHY register
394  *  @hw: pointer to the HW structure
395  *  @offset: register offset to be read
396  *  @data: pointer to the read data
397  *
398  *  Acquires semaphore, if necessary, then reads the PHY register at offset
399  *  and storing the retrieved information in data.  Release any acquired
400  *  semaphores before exiting.
401  **/
402 s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
403 {
404 	s32 ret_val = 0;
405 
406 	if (!(hw->phy.ops.acquire))
407 		goto out;
408 
409 	ret_val = hw->phy.ops.acquire(hw);
410 	if (ret_val)
411 		goto out;
412 
413 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
414 		ret_val = igb_write_phy_reg_mdic(hw,
415 						 IGP01E1000_PHY_PAGE_SELECT,
416 						 (u16)offset);
417 		if (ret_val) {
418 			hw->phy.ops.release(hw);
419 			goto out;
420 		}
421 	}
422 
423 	ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
424 					data);
425 
426 	hw->phy.ops.release(hw);
427 
428 out:
429 	return ret_val;
430 }
431 
432 /**
433  *  igb_write_phy_reg_igp - Write igp PHY register
434  *  @hw: pointer to the HW structure
435  *  @offset: register offset to write to
436  *  @data: data to write at register offset
437  *
438  *  Acquires semaphore, if necessary, then writes the data to PHY register
439  *  at the offset.  Release any acquired semaphores before exiting.
440  **/
441 s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
442 {
443 	s32 ret_val = 0;
444 
445 	if (!(hw->phy.ops.acquire))
446 		goto out;
447 
448 	ret_val = hw->phy.ops.acquire(hw);
449 	if (ret_val)
450 		goto out;
451 
452 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
453 		ret_val = igb_write_phy_reg_mdic(hw,
454 						 IGP01E1000_PHY_PAGE_SELECT,
455 						 (u16)offset);
456 		if (ret_val) {
457 			hw->phy.ops.release(hw);
458 			goto out;
459 		}
460 	}
461 
462 	ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
463 					 data);
464 
465 	hw->phy.ops.release(hw);
466 
467 out:
468 	return ret_val;
469 }
470 
471 /**
472  *  igb_copper_link_setup_82580 - Setup 82580 PHY for copper link
473  *  @hw: pointer to the HW structure
474  *
475  *  Sets up Carrier-sense on Transmit and downshift values.
476  **/
477 s32 igb_copper_link_setup_82580(struct e1000_hw *hw)
478 {
479 	struct e1000_phy_info *phy = &hw->phy;
480 	s32 ret_val;
481 	u16 phy_data;
482 
483 	if (phy->reset_disable) {
484 		ret_val = 0;
485 		goto out;
486 	}
487 
488 	if (phy->type == e1000_phy_82580) {
489 		ret_val = hw->phy.ops.reset(hw);
490 		if (ret_val) {
491 			hw_dbg("Error resetting the PHY.\n");
492 			goto out;
493 		}
494 	}
495 
496 	/* Enable CRS on TX. This must be set for half-duplex operation. */
497 	ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data);
498 	if (ret_val)
499 		goto out;
500 
501 	phy_data |= I82580_CFG_ASSERT_CRS_ON_TX;
502 
503 	/* Enable downshift */
504 	phy_data |= I82580_CFG_ENABLE_DOWNSHIFT;
505 
506 	ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data);
507 	if (ret_val)
508 		goto out;
509 
510 	/* Set MDI/MDIX mode */
511 	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
512 	if (ret_val)
513 		goto out;
514 	phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
515 	/* Options:
516 	 *   0 - Auto (default)
517 	 *   1 - MDI mode
518 	 *   2 - MDI-X mode
519 	 */
520 	switch (hw->phy.mdix) {
521 	case 1:
522 		break;
523 	case 2:
524 		phy_data |= I82580_PHY_CTRL2_MANUAL_MDIX;
525 		break;
526 	case 0:
527 	default:
528 		phy_data |= I82580_PHY_CTRL2_AUTO_MDI_MDIX;
529 		break;
530 	}
531 	ret_val = hw->phy.ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
532 
533 out:
534 	return ret_val;
535 }
536 
537 /**
538  *  igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
539  *  @hw: pointer to the HW structure
540  *
541  *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
542  *  and downshift values are set also.
543  **/
544 s32 igb_copper_link_setup_m88(struct e1000_hw *hw)
545 {
546 	struct e1000_phy_info *phy = &hw->phy;
547 	s32 ret_val;
548 	u16 phy_data;
549 
550 	if (phy->reset_disable) {
551 		ret_val = 0;
552 		goto out;
553 	}
554 
555 	/* Enable CRS on TX. This must be set for half-duplex operation. */
556 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
557 	if (ret_val)
558 		goto out;
559 
560 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
561 
562 	/* Options:
563 	 *   MDI/MDI-X = 0 (default)
564 	 *   0 - Auto for all speeds
565 	 *   1 - MDI mode
566 	 *   2 - MDI-X mode
567 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
568 	 */
569 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
570 
571 	switch (phy->mdix) {
572 	case 1:
573 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
574 		break;
575 	case 2:
576 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
577 		break;
578 	case 3:
579 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
580 		break;
581 	case 0:
582 	default:
583 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
584 		break;
585 	}
586 
587 	/* Options:
588 	 *   disable_polarity_correction = 0 (default)
589 	 *       Automatic Correction for Reversed Cable Polarity
590 	 *   0 - Disabled
591 	 *   1 - Enabled
592 	 */
593 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
594 	if (phy->disable_polarity_correction == 1)
595 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
596 
597 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
598 	if (ret_val)
599 		goto out;
600 
601 	if (phy->revision < E1000_REVISION_4) {
602 		/* Force TX_CLK in the Extended PHY Specific Control Register
603 		 * to 25MHz clock.
604 		 */
605 		ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
606 					    &phy_data);
607 		if (ret_val)
608 			goto out;
609 
610 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
611 
612 		if ((phy->revision == E1000_REVISION_2) &&
613 		    (phy->id == M88E1111_I_PHY_ID)) {
614 			/* 82573L PHY - set the downshift counter to 5x. */
615 			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
616 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
617 		} else {
618 			/* Configure Master and Slave downshift values */
619 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
620 				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
621 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
622 				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
623 		}
624 		ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
625 					     phy_data);
626 		if (ret_val)
627 			goto out;
628 	}
629 
630 	/* Commit the changes. */
631 	ret_val = igb_phy_sw_reset(hw);
632 	if (ret_val) {
633 		hw_dbg("Error committing the PHY changes\n");
634 		goto out;
635 	}
636 
637 out:
638 	return ret_val;
639 }
640 
641 /**
642  *  igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
643  *  @hw: pointer to the HW structure
644  *
645  *  Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
646  *  Also enables and sets the downshift parameters.
647  **/
648 s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw)
649 {
650 	struct e1000_phy_info *phy = &hw->phy;
651 	s32 ret_val;
652 	u16 phy_data;
653 
654 	if (phy->reset_disable)
655 		return 0;
656 
657 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
658 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
659 	if (ret_val)
660 		return ret_val;
661 
662 	/* Options:
663 	 *   MDI/MDI-X = 0 (default)
664 	 *   0 - Auto for all speeds
665 	 *   1 - MDI mode
666 	 *   2 - MDI-X mode
667 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
668 	 */
669 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
670 
671 	switch (phy->mdix) {
672 	case 1:
673 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
674 		break;
675 	case 2:
676 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
677 		break;
678 	case 3:
679 		/* M88E1112 does not support this mode) */
680 		if (phy->id != M88E1112_E_PHY_ID) {
681 			phy_data |= M88E1000_PSCR_AUTO_X_1000T;
682 			break;
683 		}
684 	case 0:
685 	default:
686 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
687 		break;
688 	}
689 
690 	/* Options:
691 	 *   disable_polarity_correction = 0 (default)
692 	 *       Automatic Correction for Reversed Cable Polarity
693 	 *   0 - Disabled
694 	 *   1 - Enabled
695 	 */
696 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
697 	if (phy->disable_polarity_correction == 1)
698 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
699 
700 	/* Enable downshift and setting it to X6 */
701 	if (phy->id == M88E1543_E_PHY_ID) {
702 		phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE;
703 		ret_val =
704 		    phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
705 		if (ret_val)
706 			return ret_val;
707 
708 		ret_val = igb_phy_sw_reset(hw);
709 		if (ret_val) {
710 			hw_dbg("Error committing the PHY changes\n");
711 			return ret_val;
712 		}
713 	}
714 
715 	phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
716 	phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
717 	phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
718 
719 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
720 	if (ret_val)
721 		return ret_val;
722 
723 	/* Commit the changes. */
724 	ret_val = igb_phy_sw_reset(hw);
725 	if (ret_val) {
726 		hw_dbg("Error committing the PHY changes\n");
727 		return ret_val;
728 	}
729 	ret_val = igb_set_master_slave_mode(hw);
730 	if (ret_val)
731 		return ret_val;
732 
733 	return 0;
734 }
735 
736 /**
737  *  igb_copper_link_setup_igp - Setup igp PHY's for copper link
738  *  @hw: pointer to the HW structure
739  *
740  *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
741  *  igp PHY's.
742  **/
743 s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
744 {
745 	struct e1000_phy_info *phy = &hw->phy;
746 	s32 ret_val;
747 	u16 data;
748 
749 	if (phy->reset_disable) {
750 		ret_val = 0;
751 		goto out;
752 	}
753 
754 	ret_val = phy->ops.reset(hw);
755 	if (ret_val) {
756 		hw_dbg("Error resetting the PHY.\n");
757 		goto out;
758 	}
759 
760 	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
761 	 * timeout issues when LFS is enabled.
762 	 */
763 	msleep(100);
764 
765 	/* The NVM settings will configure LPLU in D3 for
766 	 * non-IGP1 PHYs.
767 	 */
768 	if (phy->type == e1000_phy_igp) {
769 		/* disable lplu d3 during driver init */
770 		if (phy->ops.set_d3_lplu_state)
771 			ret_val = phy->ops.set_d3_lplu_state(hw, false);
772 		if (ret_val) {
773 			hw_dbg("Error Disabling LPLU D3\n");
774 			goto out;
775 		}
776 	}
777 
778 	/* disable lplu d0 during driver init */
779 	ret_val = phy->ops.set_d0_lplu_state(hw, false);
780 	if (ret_val) {
781 		hw_dbg("Error Disabling LPLU D0\n");
782 		goto out;
783 	}
784 	/* Configure mdi-mdix settings */
785 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
786 	if (ret_val)
787 		goto out;
788 
789 	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
790 
791 	switch (phy->mdix) {
792 	case 1:
793 		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
794 		break;
795 	case 2:
796 		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
797 		break;
798 	case 0:
799 	default:
800 		data |= IGP01E1000_PSCR_AUTO_MDIX;
801 		break;
802 	}
803 	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
804 	if (ret_val)
805 		goto out;
806 
807 	/* set auto-master slave resolution settings */
808 	if (hw->mac.autoneg) {
809 		/* when autonegotiation advertisement is only 1000Mbps then we
810 		 * should disable SmartSpeed and enable Auto MasterSlave
811 		 * resolution as hardware default.
812 		 */
813 		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
814 			/* Disable SmartSpeed */
815 			ret_val = phy->ops.read_reg(hw,
816 						    IGP01E1000_PHY_PORT_CONFIG,
817 						    &data);
818 			if (ret_val)
819 				goto out;
820 
821 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
822 			ret_val = phy->ops.write_reg(hw,
823 						     IGP01E1000_PHY_PORT_CONFIG,
824 						     data);
825 			if (ret_val)
826 				goto out;
827 
828 			/* Set auto Master/Slave resolution process */
829 			ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
830 			if (ret_val)
831 				goto out;
832 
833 			data &= ~CR_1000T_MS_ENABLE;
834 			ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
835 			if (ret_val)
836 				goto out;
837 		}
838 
839 		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
840 		if (ret_val)
841 			goto out;
842 
843 		/* load defaults for future use */
844 		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
845 			((data & CR_1000T_MS_VALUE) ?
846 			e1000_ms_force_master :
847 			e1000_ms_force_slave) :
848 			e1000_ms_auto;
849 
850 		switch (phy->ms_type) {
851 		case e1000_ms_force_master:
852 			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
853 			break;
854 		case e1000_ms_force_slave:
855 			data |= CR_1000T_MS_ENABLE;
856 			data &= ~(CR_1000T_MS_VALUE);
857 			break;
858 		case e1000_ms_auto:
859 			data &= ~CR_1000T_MS_ENABLE;
860 		default:
861 			break;
862 		}
863 		ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
864 		if (ret_val)
865 			goto out;
866 	}
867 
868 out:
869 	return ret_val;
870 }
871 
872 /**
873  *  igb_copper_link_autoneg - Setup/Enable autoneg for copper link
874  *  @hw: pointer to the HW structure
875  *
876  *  Performs initial bounds checking on autoneg advertisement parameter, then
877  *  configure to advertise the full capability.  Setup the PHY to autoneg
878  *  and restart the negotiation process between the link partner.  If
879  *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
880  **/
881 static s32 igb_copper_link_autoneg(struct e1000_hw *hw)
882 {
883 	struct e1000_phy_info *phy = &hw->phy;
884 	s32 ret_val;
885 	u16 phy_ctrl;
886 
887 	/* Perform some bounds checking on the autoneg advertisement
888 	 * parameter.
889 	 */
890 	phy->autoneg_advertised &= phy->autoneg_mask;
891 
892 	/* If autoneg_advertised is zero, we assume it was not defaulted
893 	 * by the calling code so we set to advertise full capability.
894 	 */
895 	if (phy->autoneg_advertised == 0)
896 		phy->autoneg_advertised = phy->autoneg_mask;
897 
898 	hw_dbg("Reconfiguring auto-neg advertisement params\n");
899 	ret_val = igb_phy_setup_autoneg(hw);
900 	if (ret_val) {
901 		hw_dbg("Error Setting up Auto-Negotiation\n");
902 		goto out;
903 	}
904 	hw_dbg("Restarting Auto-Neg\n");
905 
906 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
907 	 * the Auto Neg Restart bit in the PHY control register.
908 	 */
909 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
910 	if (ret_val)
911 		goto out;
912 
913 	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
914 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
915 	if (ret_val)
916 		goto out;
917 
918 	/* Does the user want to wait for Auto-Neg to complete here, or
919 	 * check at a later time (for example, callback routine).
920 	 */
921 	if (phy->autoneg_wait_to_complete) {
922 		ret_val = igb_wait_autoneg(hw);
923 		if (ret_val) {
924 			hw_dbg("Error while waiting for autoneg to complete\n");
925 			goto out;
926 		}
927 	}
928 
929 	hw->mac.get_link_status = true;
930 
931 out:
932 	return ret_val;
933 }
934 
935 /**
936  *  igb_phy_setup_autoneg - Configure PHY for auto-negotiation
937  *  @hw: pointer to the HW structure
938  *
939  *  Reads the MII auto-neg advertisement register and/or the 1000T control
940  *  register and if the PHY is already setup for auto-negotiation, then
941  *  return successful.  Otherwise, setup advertisement and flow control to
942  *  the appropriate values for the wanted auto-negotiation.
943  **/
944 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
945 {
946 	struct e1000_phy_info *phy = &hw->phy;
947 	s32 ret_val;
948 	u16 mii_autoneg_adv_reg;
949 	u16 mii_1000t_ctrl_reg = 0;
950 
951 	phy->autoneg_advertised &= phy->autoneg_mask;
952 
953 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
954 	ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
955 	if (ret_val)
956 		goto out;
957 
958 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
959 		/* Read the MII 1000Base-T Control Register (Address 9). */
960 		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
961 					    &mii_1000t_ctrl_reg);
962 		if (ret_val)
963 			goto out;
964 	}
965 
966 	/* Need to parse both autoneg_advertised and fc and set up
967 	 * the appropriate PHY registers.  First we will parse for
968 	 * autoneg_advertised software override.  Since we can advertise
969 	 * a plethora of combinations, we need to check each bit
970 	 * individually.
971 	 */
972 
973 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
974 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
975 	 * the  1000Base-T Control Register (Address 9).
976 	 */
977 	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
978 				 NWAY_AR_100TX_HD_CAPS |
979 				 NWAY_AR_10T_FD_CAPS   |
980 				 NWAY_AR_10T_HD_CAPS);
981 	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
982 
983 	hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
984 
985 	/* Do we want to advertise 10 Mb Half Duplex? */
986 	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
987 		hw_dbg("Advertise 10mb Half duplex\n");
988 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
989 	}
990 
991 	/* Do we want to advertise 10 Mb Full Duplex? */
992 	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
993 		hw_dbg("Advertise 10mb Full duplex\n");
994 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
995 	}
996 
997 	/* Do we want to advertise 100 Mb Half Duplex? */
998 	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
999 		hw_dbg("Advertise 100mb Half duplex\n");
1000 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1001 	}
1002 
1003 	/* Do we want to advertise 100 Mb Full Duplex? */
1004 	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
1005 		hw_dbg("Advertise 100mb Full duplex\n");
1006 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1007 	}
1008 
1009 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1010 	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1011 		hw_dbg("Advertise 1000mb Half duplex request denied!\n");
1012 
1013 	/* Do we want to advertise 1000 Mb Full Duplex? */
1014 	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1015 		hw_dbg("Advertise 1000mb Full duplex\n");
1016 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1017 	}
1018 
1019 	/* Check for a software override of the flow control settings, and
1020 	 * setup the PHY advertisement registers accordingly.  If
1021 	 * auto-negotiation is enabled, then software will have to set the
1022 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1023 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1024 	 * negotiation.
1025 	 *
1026 	 * The possible values of the "fc" parameter are:
1027 	 *      0:  Flow control is completely disabled
1028 	 *      1:  Rx flow control is enabled (we can receive pause frames
1029 	 *          but not send pause frames).
1030 	 *      2:  Tx flow control is enabled (we can send pause frames
1031 	 *          but we do not support receiving pause frames).
1032 	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
1033 	 *  other:  No software override.  The flow control configuration
1034 	 *          in the EEPROM is used.
1035 	 */
1036 	switch (hw->fc.current_mode) {
1037 	case e1000_fc_none:
1038 		/* Flow control (RX & TX) is completely disabled by a
1039 		 * software over-ride.
1040 		 */
1041 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1042 		break;
1043 	case e1000_fc_rx_pause:
1044 		/* RX Flow control is enabled, and TX Flow control is
1045 		 * disabled, by a software over-ride.
1046 		 *
1047 		 * Since there really isn't a way to advertise that we are
1048 		 * capable of RX Pause ONLY, we will advertise that we
1049 		 * support both symmetric and asymmetric RX PAUSE.  Later
1050 		 * (in e1000_config_fc_after_link_up) we will disable the
1051 		 * hw's ability to send PAUSE frames.
1052 		 */
1053 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1054 		break;
1055 	case e1000_fc_tx_pause:
1056 		/* TX Flow control is enabled, and RX Flow control is
1057 		 * disabled, by a software over-ride.
1058 		 */
1059 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1060 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1061 		break;
1062 	case e1000_fc_full:
1063 		/* Flow control (both RX and TX) is enabled by a software
1064 		 * over-ride.
1065 		 */
1066 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1067 		break;
1068 	default:
1069 		hw_dbg("Flow control param set incorrectly\n");
1070 		ret_val = -E1000_ERR_CONFIG;
1071 		goto out;
1072 	}
1073 
1074 	ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1075 	if (ret_val)
1076 		goto out;
1077 
1078 	hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1079 
1080 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1081 		ret_val = phy->ops.write_reg(hw,
1082 					     PHY_1000T_CTRL,
1083 					     mii_1000t_ctrl_reg);
1084 		if (ret_val)
1085 			goto out;
1086 	}
1087 
1088 out:
1089 	return ret_val;
1090 }
1091 
1092 /**
1093  *  igb_setup_copper_link - Configure copper link settings
1094  *  @hw: pointer to the HW structure
1095  *
1096  *  Calls the appropriate function to configure the link for auto-neg or forced
1097  *  speed and duplex.  Then we check for link, once link is established calls
1098  *  to configure collision distance and flow control are called.  If link is
1099  *  not established, we return -E1000_ERR_PHY (-2).
1100  **/
1101 s32 igb_setup_copper_link(struct e1000_hw *hw)
1102 {
1103 	s32 ret_val;
1104 	bool link;
1105 
1106 	if (hw->mac.autoneg) {
1107 		/* Setup autoneg and flow control advertisement and perform
1108 		 * autonegotiation.
1109 		 */
1110 		ret_val = igb_copper_link_autoneg(hw);
1111 		if (ret_val)
1112 			goto out;
1113 	} else {
1114 		/* PHY will be set to 10H, 10F, 100H or 100F
1115 		 * depending on user settings.
1116 		 */
1117 		hw_dbg("Forcing Speed and Duplex\n");
1118 		ret_val = hw->phy.ops.force_speed_duplex(hw);
1119 		if (ret_val) {
1120 			hw_dbg("Error Forcing Speed and Duplex\n");
1121 			goto out;
1122 		}
1123 	}
1124 
1125 	/* Check link status. Wait up to 100 microseconds for link to become
1126 	 * valid.
1127 	 */
1128 	ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
1129 	if (ret_val)
1130 		goto out;
1131 
1132 	if (link) {
1133 		hw_dbg("Valid link established!!!\n");
1134 		igb_config_collision_dist(hw);
1135 		ret_val = igb_config_fc_after_link_up(hw);
1136 	} else {
1137 		hw_dbg("Unable to establish link!!!\n");
1138 	}
1139 
1140 out:
1141 	return ret_val;
1142 }
1143 
1144 /**
1145  *  igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1146  *  @hw: pointer to the HW structure
1147  *
1148  *  Calls the PHY setup function to force speed and duplex.  Clears the
1149  *  auto-crossover to force MDI manually.  Waits for link and returns
1150  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1151  **/
1152 s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1153 {
1154 	struct e1000_phy_info *phy = &hw->phy;
1155 	s32 ret_val;
1156 	u16 phy_data;
1157 	bool link;
1158 
1159 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1160 	if (ret_val)
1161 		goto out;
1162 
1163 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1164 
1165 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1166 	if (ret_val)
1167 		goto out;
1168 
1169 	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1170 	 * forced whenever speed and duplex are forced.
1171 	 */
1172 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1173 	if (ret_val)
1174 		goto out;
1175 
1176 	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1177 	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1178 
1179 	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1180 	if (ret_val)
1181 		goto out;
1182 
1183 	hw_dbg("IGP PSCR: %X\n", phy_data);
1184 
1185 	udelay(1);
1186 
1187 	if (phy->autoneg_wait_to_complete) {
1188 		hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1189 
1190 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
1191 		if (ret_val)
1192 			goto out;
1193 
1194 		if (!link)
1195 			hw_dbg("Link taking longer than expected.\n");
1196 
1197 		/* Try once more */
1198 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
1199 		if (ret_val)
1200 			goto out;
1201 	}
1202 
1203 out:
1204 	return ret_val;
1205 }
1206 
1207 /**
1208  *  igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1209  *  @hw: pointer to the HW structure
1210  *
1211  *  Calls the PHY setup function to force speed and duplex.  Clears the
1212  *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1213  *  changes.  If time expires while waiting for link up, we reset the DSP.
1214  *  After reset, TX_CLK and CRS on TX must be set.  Return successful upon
1215  *  successful completion, else return corresponding error code.
1216  **/
1217 s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1218 {
1219 	struct e1000_phy_info *phy = &hw->phy;
1220 	s32 ret_val;
1221 	u16 phy_data;
1222 	bool link;
1223 
1224 	/* I210 and I211 devices support Auto-Crossover in forced operation. */
1225 	if (phy->type != e1000_phy_i210) {
1226 		/* Clear Auto-Crossover to force MDI manually.  M88E1000
1227 		 * requires MDI forced whenever speed and duplex are forced.
1228 		 */
1229 		ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL,
1230 					    &phy_data);
1231 		if (ret_val)
1232 			goto out;
1233 
1234 		phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1235 		ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
1236 					     phy_data);
1237 		if (ret_val)
1238 			goto out;
1239 
1240 		hw_dbg("M88E1000 PSCR: %X\n", phy_data);
1241 	}
1242 
1243 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1244 	if (ret_val)
1245 		goto out;
1246 
1247 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1248 
1249 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1250 	if (ret_val)
1251 		goto out;
1252 
1253 	/* Reset the phy to commit changes. */
1254 	ret_val = igb_phy_sw_reset(hw);
1255 	if (ret_val)
1256 		goto out;
1257 
1258 	if (phy->autoneg_wait_to_complete) {
1259 		hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1260 
1261 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
1262 		if (ret_val)
1263 			goto out;
1264 
1265 		if (!link) {
1266 			bool reset_dsp = true;
1267 
1268 			switch (hw->phy.id) {
1269 			case I347AT4_E_PHY_ID:
1270 			case M88E1112_E_PHY_ID:
1271 			case I210_I_PHY_ID:
1272 				reset_dsp = false;
1273 				break;
1274 			default:
1275 				if (hw->phy.type != e1000_phy_m88)
1276 					reset_dsp = false;
1277 				break;
1278 			}
1279 			if (!reset_dsp)
1280 				hw_dbg("Link taking longer than expected.\n");
1281 			else {
1282 				/* We didn't get link.
1283 				 * Reset the DSP and cross our fingers.
1284 				 */
1285 				ret_val = phy->ops.write_reg(hw,
1286 						M88E1000_PHY_PAGE_SELECT,
1287 						0x001d);
1288 				if (ret_val)
1289 					goto out;
1290 				ret_val = igb_phy_reset_dsp(hw);
1291 				if (ret_val)
1292 					goto out;
1293 			}
1294 		}
1295 
1296 		/* Try once more */
1297 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT,
1298 					   100000, &link);
1299 		if (ret_val)
1300 			goto out;
1301 	}
1302 
1303 	if (hw->phy.type != e1000_phy_m88 ||
1304 	    hw->phy.id == I347AT4_E_PHY_ID ||
1305 	    hw->phy.id == M88E1112_E_PHY_ID ||
1306 	    hw->phy.id == I210_I_PHY_ID)
1307 		goto out;
1308 
1309 	ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1310 	if (ret_val)
1311 		goto out;
1312 
1313 	/* Resetting the phy means we need to re-force TX_CLK in the
1314 	 * Extended PHY Specific Control Register to 25MHz clock from
1315 	 * the reset value of 2.5MHz.
1316 	 */
1317 	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1318 	ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1319 	if (ret_val)
1320 		goto out;
1321 
1322 	/* In addition, we must re-enable CRS on Tx for both half and full
1323 	 * duplex.
1324 	 */
1325 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1326 	if (ret_val)
1327 		goto out;
1328 
1329 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1330 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1331 
1332 out:
1333 	return ret_val;
1334 }
1335 
1336 /**
1337  *  igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1338  *  @hw: pointer to the HW structure
1339  *  @phy_ctrl: pointer to current value of PHY_CONTROL
1340  *
1341  *  Forces speed and duplex on the PHY by doing the following: disable flow
1342  *  control, force speed/duplex on the MAC, disable auto speed detection,
1343  *  disable auto-negotiation, configure duplex, configure speed, configure
1344  *  the collision distance, write configuration to CTRL register.  The
1345  *  caller must write to the PHY_CONTROL register for these settings to
1346  *  take affect.
1347  **/
1348 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
1349 					     u16 *phy_ctrl)
1350 {
1351 	struct e1000_mac_info *mac = &hw->mac;
1352 	u32 ctrl;
1353 
1354 	/* Turn off flow control when forcing speed/duplex */
1355 	hw->fc.current_mode = e1000_fc_none;
1356 
1357 	/* Force speed/duplex on the mac */
1358 	ctrl = rd32(E1000_CTRL);
1359 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1360 	ctrl &= ~E1000_CTRL_SPD_SEL;
1361 
1362 	/* Disable Auto Speed Detection */
1363 	ctrl &= ~E1000_CTRL_ASDE;
1364 
1365 	/* Disable autoneg on the phy */
1366 	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1367 
1368 	/* Forcing Full or Half Duplex? */
1369 	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1370 		ctrl &= ~E1000_CTRL_FD;
1371 		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1372 		hw_dbg("Half Duplex\n");
1373 	} else {
1374 		ctrl |= E1000_CTRL_FD;
1375 		*phy_ctrl |= MII_CR_FULL_DUPLEX;
1376 		hw_dbg("Full Duplex\n");
1377 	}
1378 
1379 	/* Forcing 10mb or 100mb? */
1380 	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1381 		ctrl |= E1000_CTRL_SPD_100;
1382 		*phy_ctrl |= MII_CR_SPEED_100;
1383 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1384 		hw_dbg("Forcing 100mb\n");
1385 	} else {
1386 		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1387 		*phy_ctrl |= MII_CR_SPEED_10;
1388 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1389 		hw_dbg("Forcing 10mb\n");
1390 	}
1391 
1392 	igb_config_collision_dist(hw);
1393 
1394 	wr32(E1000_CTRL, ctrl);
1395 }
1396 
1397 /**
1398  *  igb_set_d3_lplu_state - Sets low power link up state for D3
1399  *  @hw: pointer to the HW structure
1400  *  @active: boolean used to enable/disable lplu
1401  *
1402  *  Success returns 0, Failure returns 1
1403  *
1404  *  The low power link up (lplu) state is set to the power management level D3
1405  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1406  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1407  *  is used during Dx states where the power conservation is most important.
1408  *  During driver activity, SmartSpeed should be enabled so performance is
1409  *  maintained.
1410  **/
1411 s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1412 {
1413 	struct e1000_phy_info *phy = &hw->phy;
1414 	s32 ret_val = 0;
1415 	u16 data;
1416 
1417 	if (!(hw->phy.ops.read_reg))
1418 		goto out;
1419 
1420 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1421 	if (ret_val)
1422 		goto out;
1423 
1424 	if (!active) {
1425 		data &= ~IGP02E1000_PM_D3_LPLU;
1426 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1427 					     data);
1428 		if (ret_val)
1429 			goto out;
1430 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1431 		 * during Dx states where the power conservation is most
1432 		 * important.  During driver activity we should enable
1433 		 * SmartSpeed, so performance is maintained.
1434 		 */
1435 		if (phy->smart_speed == e1000_smart_speed_on) {
1436 			ret_val = phy->ops.read_reg(hw,
1437 						    IGP01E1000_PHY_PORT_CONFIG,
1438 						    &data);
1439 			if (ret_val)
1440 				goto out;
1441 
1442 			data |= IGP01E1000_PSCFR_SMART_SPEED;
1443 			ret_val = phy->ops.write_reg(hw,
1444 						     IGP01E1000_PHY_PORT_CONFIG,
1445 						     data);
1446 			if (ret_val)
1447 				goto out;
1448 		} else if (phy->smart_speed == e1000_smart_speed_off) {
1449 			ret_val = phy->ops.read_reg(hw,
1450 						     IGP01E1000_PHY_PORT_CONFIG,
1451 						     &data);
1452 			if (ret_val)
1453 				goto out;
1454 
1455 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1456 			ret_val = phy->ops.write_reg(hw,
1457 						     IGP01E1000_PHY_PORT_CONFIG,
1458 						     data);
1459 			if (ret_val)
1460 				goto out;
1461 		}
1462 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1463 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1464 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1465 		data |= IGP02E1000_PM_D3_LPLU;
1466 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1467 					      data);
1468 		if (ret_val)
1469 			goto out;
1470 
1471 		/* When LPLU is enabled, we should disable SmartSpeed */
1472 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1473 					    &data);
1474 		if (ret_val)
1475 			goto out;
1476 
1477 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1478 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1479 					     data);
1480 	}
1481 
1482 out:
1483 	return ret_val;
1484 }
1485 
1486 /**
1487  *  igb_check_downshift - Checks whether a downshift in speed occurred
1488  *  @hw: pointer to the HW structure
1489  *
1490  *  Success returns 0, Failure returns 1
1491  *
1492  *  A downshift is detected by querying the PHY link health.
1493  **/
1494 s32 igb_check_downshift(struct e1000_hw *hw)
1495 {
1496 	struct e1000_phy_info *phy = &hw->phy;
1497 	s32 ret_val;
1498 	u16 phy_data, offset, mask;
1499 
1500 	switch (phy->type) {
1501 	case e1000_phy_i210:
1502 	case e1000_phy_m88:
1503 	case e1000_phy_gg82563:
1504 		offset	= M88E1000_PHY_SPEC_STATUS;
1505 		mask	= M88E1000_PSSR_DOWNSHIFT;
1506 		break;
1507 	case e1000_phy_igp_2:
1508 	case e1000_phy_igp:
1509 	case e1000_phy_igp_3:
1510 		offset	= IGP01E1000_PHY_LINK_HEALTH;
1511 		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
1512 		break;
1513 	default:
1514 		/* speed downshift not supported */
1515 		phy->speed_downgraded = false;
1516 		ret_val = 0;
1517 		goto out;
1518 	}
1519 
1520 	ret_val = phy->ops.read_reg(hw, offset, &phy_data);
1521 
1522 	if (!ret_val)
1523 		phy->speed_downgraded = (phy_data & mask) ? true : false;
1524 
1525 out:
1526 	return ret_val;
1527 }
1528 
1529 /**
1530  *  igb_check_polarity_m88 - Checks the polarity.
1531  *  @hw: pointer to the HW structure
1532  *
1533  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1534  *
1535  *  Polarity is determined based on the PHY specific status register.
1536  **/
1537 s32 igb_check_polarity_m88(struct e1000_hw *hw)
1538 {
1539 	struct e1000_phy_info *phy = &hw->phy;
1540 	s32 ret_val;
1541 	u16 data;
1542 
1543 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
1544 
1545 	if (!ret_val)
1546 		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1547 				      ? e1000_rev_polarity_reversed
1548 				      : e1000_rev_polarity_normal;
1549 
1550 	return ret_val;
1551 }
1552 
1553 /**
1554  *  igb_check_polarity_igp - Checks the polarity.
1555  *  @hw: pointer to the HW structure
1556  *
1557  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1558  *
1559  *  Polarity is determined based on the PHY port status register, and the
1560  *  current speed (since there is no polarity at 100Mbps).
1561  **/
1562 static s32 igb_check_polarity_igp(struct e1000_hw *hw)
1563 {
1564 	struct e1000_phy_info *phy = &hw->phy;
1565 	s32 ret_val;
1566 	u16 data, offset, mask;
1567 
1568 	/* Polarity is determined based on the speed of
1569 	 * our connection.
1570 	 */
1571 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1572 	if (ret_val)
1573 		goto out;
1574 
1575 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1576 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1577 		offset	= IGP01E1000_PHY_PCS_INIT_REG;
1578 		mask	= IGP01E1000_PHY_POLARITY_MASK;
1579 	} else {
1580 		/* This really only applies to 10Mbps since
1581 		 * there is no polarity for 100Mbps (always 0).
1582 		 */
1583 		offset	= IGP01E1000_PHY_PORT_STATUS;
1584 		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
1585 	}
1586 
1587 	ret_val = phy->ops.read_reg(hw, offset, &data);
1588 
1589 	if (!ret_val)
1590 		phy->cable_polarity = (data & mask)
1591 				      ? e1000_rev_polarity_reversed
1592 				      : e1000_rev_polarity_normal;
1593 
1594 out:
1595 	return ret_val;
1596 }
1597 
1598 /**
1599  *  igb_wait_autoneg - Wait for auto-neg completion
1600  *  @hw: pointer to the HW structure
1601  *
1602  *  Waits for auto-negotiation to complete or for the auto-negotiation time
1603  *  limit to expire, which ever happens first.
1604  **/
1605 static s32 igb_wait_autoneg(struct e1000_hw *hw)
1606 {
1607 	s32 ret_val = 0;
1608 	u16 i, phy_status;
1609 
1610 	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1611 	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1612 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1613 		if (ret_val)
1614 			break;
1615 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1616 		if (ret_val)
1617 			break;
1618 		if (phy_status & MII_SR_AUTONEG_COMPLETE)
1619 			break;
1620 		msleep(100);
1621 	}
1622 
1623 	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1624 	 * has completed.
1625 	 */
1626 	return ret_val;
1627 }
1628 
1629 /**
1630  *  igb_phy_has_link - Polls PHY for link
1631  *  @hw: pointer to the HW structure
1632  *  @iterations: number of times to poll for link
1633  *  @usec_interval: delay between polling attempts
1634  *  @success: pointer to whether polling was successful or not
1635  *
1636  *  Polls the PHY status register for link, 'iterations' number of times.
1637  **/
1638 s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations,
1639 		     u32 usec_interval, bool *success)
1640 {
1641 	s32 ret_val = 0;
1642 	u16 i, phy_status;
1643 
1644 	for (i = 0; i < iterations; i++) {
1645 		/* Some PHYs require the PHY_STATUS register to be read
1646 		 * twice due to the link bit being sticky.  No harm doing
1647 		 * it across the board.
1648 		 */
1649 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1650 		if (ret_val && usec_interval > 0) {
1651 			/* If the first read fails, another entity may have
1652 			 * ownership of the resources, wait and try again to
1653 			 * see if they have relinquished the resources yet.
1654 			 */
1655 			if (usec_interval >= 1000)
1656 				mdelay(usec_interval/1000);
1657 			else
1658 				udelay(usec_interval);
1659 		}
1660 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1661 		if (ret_val)
1662 			break;
1663 		if (phy_status & MII_SR_LINK_STATUS)
1664 			break;
1665 		if (usec_interval >= 1000)
1666 			mdelay(usec_interval/1000);
1667 		else
1668 			udelay(usec_interval);
1669 	}
1670 
1671 	*success = (i < iterations) ? true : false;
1672 
1673 	return ret_val;
1674 }
1675 
1676 /**
1677  *  igb_get_cable_length_m88 - Determine cable length for m88 PHY
1678  *  @hw: pointer to the HW structure
1679  *
1680  *  Reads the PHY specific status register to retrieve the cable length
1681  *  information.  The cable length is determined by averaging the minimum and
1682  *  maximum values to get the "average" cable length.  The m88 PHY has four
1683  *  possible cable length values, which are:
1684  *	Register Value		Cable Length
1685  *	0			< 50 meters
1686  *	1			50 - 80 meters
1687  *	2			80 - 110 meters
1688  *	3			110 - 140 meters
1689  *	4			> 140 meters
1690  **/
1691 s32 igb_get_cable_length_m88(struct e1000_hw *hw)
1692 {
1693 	struct e1000_phy_info *phy = &hw->phy;
1694 	s32 ret_val;
1695 	u16 phy_data, index;
1696 
1697 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1698 	if (ret_val)
1699 		goto out;
1700 
1701 	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1702 		M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1703 	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1704 		ret_val = -E1000_ERR_PHY;
1705 		goto out;
1706 	}
1707 
1708 	phy->min_cable_length = e1000_m88_cable_length_table[index];
1709 	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1710 
1711 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1712 
1713 out:
1714 	return ret_val;
1715 }
1716 
1717 s32 igb_get_cable_length_m88_gen2(struct e1000_hw *hw)
1718 {
1719 	struct e1000_phy_info *phy = &hw->phy;
1720 	s32 ret_val;
1721 	u16 phy_data, phy_data2, index, default_page, is_cm;
1722 
1723 	switch (hw->phy.id) {
1724 	case I210_I_PHY_ID:
1725 		/* Get cable length from PHY Cable Diagnostics Control Reg */
1726 		ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
1727 					    (I347AT4_PCDL + phy->addr),
1728 					    &phy_data);
1729 		if (ret_val)
1730 			return ret_val;
1731 
1732 		/* Check if the unit of cable length is meters or cm */
1733 		ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
1734 					    I347AT4_PCDC, &phy_data2);
1735 		if (ret_val)
1736 			return ret_val;
1737 
1738 		is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1739 
1740 		/* Populate the phy structure with cable length in meters */
1741 		phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
1742 		phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
1743 		phy->cable_length = phy_data / (is_cm ? 100 : 1);
1744 		break;
1745 	case M88E1543_E_PHY_ID:
1746 	case I347AT4_E_PHY_ID:
1747 		/* Remember the original page select and set it to 7 */
1748 		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1749 					    &default_page);
1750 		if (ret_val)
1751 			goto out;
1752 
1753 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
1754 		if (ret_val)
1755 			goto out;
1756 
1757 		/* Get cable length from PHY Cable Diagnostics Control Reg */
1758 		ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr),
1759 					    &phy_data);
1760 		if (ret_val)
1761 			goto out;
1762 
1763 		/* Check if the unit of cable length is meters or cm */
1764 		ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
1765 		if (ret_val)
1766 			goto out;
1767 
1768 		is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1769 
1770 		/* Populate the phy structure with cable length in meters */
1771 		phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
1772 		phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
1773 		phy->cable_length = phy_data / (is_cm ? 100 : 1);
1774 
1775 		/* Reset the page selec to its original value */
1776 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1777 					     default_page);
1778 		if (ret_val)
1779 			goto out;
1780 		break;
1781 	case M88E1112_E_PHY_ID:
1782 		/* Remember the original page select and set it to 5 */
1783 		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1784 					    &default_page);
1785 		if (ret_val)
1786 			goto out;
1787 
1788 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
1789 		if (ret_val)
1790 			goto out;
1791 
1792 		ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
1793 					    &phy_data);
1794 		if (ret_val)
1795 			goto out;
1796 
1797 		index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1798 			M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1799 		if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1800 			ret_val = -E1000_ERR_PHY;
1801 			goto out;
1802 		}
1803 
1804 		phy->min_cable_length = e1000_m88_cable_length_table[index];
1805 		phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1806 
1807 		phy->cable_length = (phy->min_cable_length +
1808 				     phy->max_cable_length) / 2;
1809 
1810 		/* Reset the page select to its original value */
1811 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1812 					     default_page);
1813 		if (ret_val)
1814 			goto out;
1815 
1816 		break;
1817 	default:
1818 		ret_val = -E1000_ERR_PHY;
1819 		goto out;
1820 	}
1821 
1822 out:
1823 	return ret_val;
1824 }
1825 
1826 /**
1827  *  igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1828  *  @hw: pointer to the HW structure
1829  *
1830  *  The automatic gain control (agc) normalizes the amplitude of the
1831  *  received signal, adjusting for the attenuation produced by the
1832  *  cable.  By reading the AGC registers, which represent the
1833  *  combination of coarse and fine gain value, the value can be put
1834  *  into a lookup table to obtain the approximate cable length
1835  *  for each channel.
1836  **/
1837 s32 igb_get_cable_length_igp_2(struct e1000_hw *hw)
1838 {
1839 	struct e1000_phy_info *phy = &hw->phy;
1840 	s32 ret_val = 0;
1841 	u16 phy_data, i, agc_value = 0;
1842 	u16 cur_agc_index, max_agc_index = 0;
1843 	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1844 	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1845 		IGP02E1000_PHY_AGC_A,
1846 		IGP02E1000_PHY_AGC_B,
1847 		IGP02E1000_PHY_AGC_C,
1848 		IGP02E1000_PHY_AGC_D
1849 	};
1850 
1851 	/* Read the AGC registers for all channels */
1852 	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1853 		ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
1854 		if (ret_val)
1855 			goto out;
1856 
1857 		/* Getting bits 15:9, which represent the combination of
1858 		 * coarse and fine gain values.  The result is a number
1859 		 * that can be put into the lookup table to obtain the
1860 		 * approximate cable length.
1861 		 */
1862 		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1863 				IGP02E1000_AGC_LENGTH_MASK;
1864 
1865 		/* Array index bound check. */
1866 		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1867 		    (cur_agc_index == 0)) {
1868 			ret_val = -E1000_ERR_PHY;
1869 			goto out;
1870 		}
1871 
1872 		/* Remove min & max AGC values from calculation. */
1873 		if (e1000_igp_2_cable_length_table[min_agc_index] >
1874 		    e1000_igp_2_cable_length_table[cur_agc_index])
1875 			min_agc_index = cur_agc_index;
1876 		if (e1000_igp_2_cable_length_table[max_agc_index] <
1877 		    e1000_igp_2_cable_length_table[cur_agc_index])
1878 			max_agc_index = cur_agc_index;
1879 
1880 		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1881 	}
1882 
1883 	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1884 		      e1000_igp_2_cable_length_table[max_agc_index]);
1885 	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1886 
1887 	/* Calculate cable length with the error range of +/- 10 meters. */
1888 	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1889 				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1890 	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1891 
1892 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1893 
1894 out:
1895 	return ret_val;
1896 }
1897 
1898 /**
1899  *  igb_get_phy_info_m88 - Retrieve PHY information
1900  *  @hw: pointer to the HW structure
1901  *
1902  *  Valid for only copper links.  Read the PHY status register (sticky read)
1903  *  to verify that link is up.  Read the PHY special control register to
1904  *  determine the polarity and 10base-T extended distance.  Read the PHY
1905  *  special status register to determine MDI/MDIx and current speed.  If
1906  *  speed is 1000, then determine cable length, local and remote receiver.
1907  **/
1908 s32 igb_get_phy_info_m88(struct e1000_hw *hw)
1909 {
1910 	struct e1000_phy_info *phy = &hw->phy;
1911 	s32  ret_val;
1912 	u16 phy_data;
1913 	bool link;
1914 
1915 	if (phy->media_type != e1000_media_type_copper) {
1916 		hw_dbg("Phy info is only valid for copper media\n");
1917 		ret_val = -E1000_ERR_CONFIG;
1918 		goto out;
1919 	}
1920 
1921 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
1922 	if (ret_val)
1923 		goto out;
1924 
1925 	if (!link) {
1926 		hw_dbg("Phy info is only valid if link is up\n");
1927 		ret_val = -E1000_ERR_CONFIG;
1928 		goto out;
1929 	}
1930 
1931 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1932 	if (ret_val)
1933 		goto out;
1934 
1935 	phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
1936 				   ? true : false;
1937 
1938 	ret_val = igb_check_polarity_m88(hw);
1939 	if (ret_val)
1940 		goto out;
1941 
1942 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1943 	if (ret_val)
1944 		goto out;
1945 
1946 	phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false;
1947 
1948 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1949 		ret_val = phy->ops.get_cable_length(hw);
1950 		if (ret_val)
1951 			goto out;
1952 
1953 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
1954 		if (ret_val)
1955 			goto out;
1956 
1957 		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1958 				? e1000_1000t_rx_status_ok
1959 				: e1000_1000t_rx_status_not_ok;
1960 
1961 		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1962 				 ? e1000_1000t_rx_status_ok
1963 				 : e1000_1000t_rx_status_not_ok;
1964 	} else {
1965 		/* Set values to "undefined" */
1966 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1967 		phy->local_rx = e1000_1000t_rx_status_undefined;
1968 		phy->remote_rx = e1000_1000t_rx_status_undefined;
1969 	}
1970 
1971 out:
1972 	return ret_val;
1973 }
1974 
1975 /**
1976  *  igb_get_phy_info_igp - Retrieve igp PHY information
1977  *  @hw: pointer to the HW structure
1978  *
1979  *  Read PHY status to determine if link is up.  If link is up, then
1980  *  set/determine 10base-T extended distance and polarity correction.  Read
1981  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1982  *  determine on the cable length, local and remote receiver.
1983  **/
1984 s32 igb_get_phy_info_igp(struct e1000_hw *hw)
1985 {
1986 	struct e1000_phy_info *phy = &hw->phy;
1987 	s32 ret_val;
1988 	u16 data;
1989 	bool link;
1990 
1991 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
1992 	if (ret_val)
1993 		goto out;
1994 
1995 	if (!link) {
1996 		hw_dbg("Phy info is only valid if link is up\n");
1997 		ret_val = -E1000_ERR_CONFIG;
1998 		goto out;
1999 	}
2000 
2001 	phy->polarity_correction = true;
2002 
2003 	ret_val = igb_check_polarity_igp(hw);
2004 	if (ret_val)
2005 		goto out;
2006 
2007 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2008 	if (ret_val)
2009 		goto out;
2010 
2011 	phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false;
2012 
2013 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2014 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
2015 		ret_val = phy->ops.get_cable_length(hw);
2016 		if (ret_val)
2017 			goto out;
2018 
2019 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2020 		if (ret_val)
2021 			goto out;
2022 
2023 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2024 				? e1000_1000t_rx_status_ok
2025 				: e1000_1000t_rx_status_not_ok;
2026 
2027 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2028 				 ? e1000_1000t_rx_status_ok
2029 				 : e1000_1000t_rx_status_not_ok;
2030 	} else {
2031 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2032 		phy->local_rx = e1000_1000t_rx_status_undefined;
2033 		phy->remote_rx = e1000_1000t_rx_status_undefined;
2034 	}
2035 
2036 out:
2037 	return ret_val;
2038 }
2039 
2040 /**
2041  *  igb_phy_sw_reset - PHY software reset
2042  *  @hw: pointer to the HW structure
2043  *
2044  *  Does a software reset of the PHY by reading the PHY control register and
2045  *  setting/write the control register reset bit to the PHY.
2046  **/
2047 s32 igb_phy_sw_reset(struct e1000_hw *hw)
2048 {
2049 	s32 ret_val = 0;
2050 	u16 phy_ctrl;
2051 
2052 	if (!(hw->phy.ops.read_reg))
2053 		goto out;
2054 
2055 	ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
2056 	if (ret_val)
2057 		goto out;
2058 
2059 	phy_ctrl |= MII_CR_RESET;
2060 	ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
2061 	if (ret_val)
2062 		goto out;
2063 
2064 	udelay(1);
2065 
2066 out:
2067 	return ret_val;
2068 }
2069 
2070 /**
2071  *  igb_phy_hw_reset - PHY hardware reset
2072  *  @hw: pointer to the HW structure
2073  *
2074  *  Verify the reset block is not blocking us from resetting.  Acquire
2075  *  semaphore (if necessary) and read/set/write the device control reset
2076  *  bit in the PHY.  Wait the appropriate delay time for the device to
2077  *  reset and release the semaphore (if necessary).
2078  **/
2079 s32 igb_phy_hw_reset(struct e1000_hw *hw)
2080 {
2081 	struct e1000_phy_info *phy = &hw->phy;
2082 	s32  ret_val;
2083 	u32 ctrl;
2084 
2085 	ret_val = igb_check_reset_block(hw);
2086 	if (ret_val) {
2087 		ret_val = 0;
2088 		goto out;
2089 	}
2090 
2091 	ret_val = phy->ops.acquire(hw);
2092 	if (ret_val)
2093 		goto out;
2094 
2095 	ctrl = rd32(E1000_CTRL);
2096 	wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
2097 	wrfl();
2098 
2099 	udelay(phy->reset_delay_us);
2100 
2101 	wr32(E1000_CTRL, ctrl);
2102 	wrfl();
2103 
2104 	udelay(150);
2105 
2106 	phy->ops.release(hw);
2107 
2108 	ret_val = phy->ops.get_cfg_done(hw);
2109 
2110 out:
2111 	return ret_val;
2112 }
2113 
2114 /**
2115  *  igb_phy_init_script_igp3 - Inits the IGP3 PHY
2116  *  @hw: pointer to the HW structure
2117  *
2118  *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2119  **/
2120 s32 igb_phy_init_script_igp3(struct e1000_hw *hw)
2121 {
2122 	hw_dbg("Running IGP 3 PHY init script\n");
2123 
2124 	/* PHY init IGP 3 */
2125 	/* Enable rise/fall, 10-mode work in class-A */
2126 	hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
2127 	/* Remove all caps from Replica path filter */
2128 	hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
2129 	/* Bias trimming for ADC, AFE and Driver (Default) */
2130 	hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
2131 	/* Increase Hybrid poly bias */
2132 	hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
2133 	/* Add 4% to TX amplitude in Giga mode */
2134 	hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
2135 	/* Disable trimming (TTT) */
2136 	hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
2137 	/* Poly DC correction to 94.6% + 2% for all channels */
2138 	hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
2139 	/* ABS DC correction to 95.9% */
2140 	hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
2141 	/* BG temp curve trim */
2142 	hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
2143 	/* Increasing ADC OPAMP stage 1 currents to max */
2144 	hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
2145 	/* Force 1000 ( required for enabling PHY regs configuration) */
2146 	hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
2147 	/* Set upd_freq to 6 */
2148 	hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
2149 	/* Disable NPDFE */
2150 	hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
2151 	/* Disable adaptive fixed FFE (Default) */
2152 	hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
2153 	/* Enable FFE hysteresis */
2154 	hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
2155 	/* Fixed FFE for short cable lengths */
2156 	hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
2157 	/* Fixed FFE for medium cable lengths */
2158 	hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
2159 	/* Fixed FFE for long cable lengths */
2160 	hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
2161 	/* Enable Adaptive Clip Threshold */
2162 	hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
2163 	/* AHT reset limit to 1 */
2164 	hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
2165 	/* Set AHT master delay to 127 msec */
2166 	hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
2167 	/* Set scan bits for AHT */
2168 	hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
2169 	/* Set AHT Preset bits */
2170 	hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
2171 	/* Change integ_factor of channel A to 3 */
2172 	hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
2173 	/* Change prop_factor of channels BCD to 8 */
2174 	hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
2175 	/* Change cg_icount + enable integbp for channels BCD */
2176 	hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
2177 	/* Change cg_icount + enable integbp + change prop_factor_master
2178 	 * to 8 for channel A
2179 	 */
2180 	hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
2181 	/* Disable AHT in Slave mode on channel A */
2182 	hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
2183 	/* Enable LPLU and disable AN to 1000 in non-D0a states,
2184 	 * Enable SPD+B2B
2185 	 */
2186 	hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
2187 	/* Enable restart AN on an1000_dis change */
2188 	hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
2189 	/* Enable wh_fifo read clock in 10/100 modes */
2190 	hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
2191 	/* Restart AN, Speed selection is 1000 */
2192 	hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
2193 
2194 	return 0;
2195 }
2196 
2197 /**
2198  * igb_power_up_phy_copper - Restore copper link in case of PHY power down
2199  * @hw: pointer to the HW structure
2200  *
2201  * In the case of a PHY power down to save power, or to turn off link during a
2202  * driver unload, restore the link to previous settings.
2203  **/
2204 void igb_power_up_phy_copper(struct e1000_hw *hw)
2205 {
2206 	u16 mii_reg = 0;
2207 
2208 	/* The PHY will retain its settings across a power down/up cycle */
2209 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2210 	mii_reg &= ~MII_CR_POWER_DOWN;
2211 	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2212 }
2213 
2214 /**
2215  * igb_power_down_phy_copper - Power down copper PHY
2216  * @hw: pointer to the HW structure
2217  *
2218  * Power down PHY to save power when interface is down and wake on lan
2219  * is not enabled.
2220  **/
2221 void igb_power_down_phy_copper(struct e1000_hw *hw)
2222 {
2223 	u16 mii_reg = 0;
2224 
2225 	/* The PHY will retain its settings across a power down/up cycle */
2226 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2227 	mii_reg |= MII_CR_POWER_DOWN;
2228 	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2229 	usleep_range(1000, 2000);
2230 }
2231 
2232 /**
2233  *  igb_check_polarity_82580 - Checks the polarity.
2234  *  @hw: pointer to the HW structure
2235  *
2236  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2237  *
2238  *  Polarity is determined based on the PHY specific status register.
2239  **/
2240 static s32 igb_check_polarity_82580(struct e1000_hw *hw)
2241 {
2242 	struct e1000_phy_info *phy = &hw->phy;
2243 	s32 ret_val;
2244 	u16 data;
2245 
2246 
2247 	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2248 
2249 	if (!ret_val)
2250 		phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY)
2251 				      ? e1000_rev_polarity_reversed
2252 				      : e1000_rev_polarity_normal;
2253 
2254 	return ret_val;
2255 }
2256 
2257 /**
2258  *  igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY
2259  *  @hw: pointer to the HW structure
2260  *
2261  *  Calls the PHY setup function to force speed and duplex.  Clears the
2262  *  auto-crossover to force MDI manually.  Waits for link and returns
2263  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
2264  **/
2265 s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw)
2266 {
2267 	struct e1000_phy_info *phy = &hw->phy;
2268 	s32 ret_val;
2269 	u16 phy_data;
2270 	bool link;
2271 
2272 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
2273 	if (ret_val)
2274 		goto out;
2275 
2276 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
2277 
2278 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
2279 	if (ret_val)
2280 		goto out;
2281 
2282 	/* Clear Auto-Crossover to force MDI manually.  82580 requires MDI
2283 	 * forced whenever speed and duplex are forced.
2284 	 */
2285 	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
2286 	if (ret_val)
2287 		goto out;
2288 
2289 	phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
2290 
2291 	ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
2292 	if (ret_val)
2293 		goto out;
2294 
2295 	hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data);
2296 
2297 	udelay(1);
2298 
2299 	if (phy->autoneg_wait_to_complete) {
2300 		hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n");
2301 
2302 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2303 		if (ret_val)
2304 			goto out;
2305 
2306 		if (!link)
2307 			hw_dbg("Link taking longer than expected.\n");
2308 
2309 		/* Try once more */
2310 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2311 		if (ret_val)
2312 			goto out;
2313 	}
2314 
2315 out:
2316 	return ret_val;
2317 }
2318 
2319 /**
2320  *  igb_get_phy_info_82580 - Retrieve I82580 PHY information
2321  *  @hw: pointer to the HW structure
2322  *
2323  *  Read PHY status to determine if link is up.  If link is up, then
2324  *  set/determine 10base-T extended distance and polarity correction.  Read
2325  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
2326  *  determine on the cable length, local and remote receiver.
2327  **/
2328 s32 igb_get_phy_info_82580(struct e1000_hw *hw)
2329 {
2330 	struct e1000_phy_info *phy = &hw->phy;
2331 	s32 ret_val;
2332 	u16 data;
2333 	bool link;
2334 
2335 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
2336 	if (ret_val)
2337 		goto out;
2338 
2339 	if (!link) {
2340 		hw_dbg("Phy info is only valid if link is up\n");
2341 		ret_val = -E1000_ERR_CONFIG;
2342 		goto out;
2343 	}
2344 
2345 	phy->polarity_correction = true;
2346 
2347 	ret_val = igb_check_polarity_82580(hw);
2348 	if (ret_val)
2349 		goto out;
2350 
2351 	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2352 	if (ret_val)
2353 		goto out;
2354 
2355 	phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false;
2356 
2357 	if ((data & I82580_PHY_STATUS2_SPEED_MASK) ==
2358 	    I82580_PHY_STATUS2_SPEED_1000MBPS) {
2359 		ret_val = hw->phy.ops.get_cable_length(hw);
2360 		if (ret_val)
2361 			goto out;
2362 
2363 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2364 		if (ret_val)
2365 			goto out;
2366 
2367 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2368 				? e1000_1000t_rx_status_ok
2369 				: e1000_1000t_rx_status_not_ok;
2370 
2371 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2372 				 ? e1000_1000t_rx_status_ok
2373 				 : e1000_1000t_rx_status_not_ok;
2374 	} else {
2375 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2376 		phy->local_rx = e1000_1000t_rx_status_undefined;
2377 		phy->remote_rx = e1000_1000t_rx_status_undefined;
2378 	}
2379 
2380 out:
2381 	return ret_val;
2382 }
2383 
2384 /**
2385  *  igb_get_cable_length_82580 - Determine cable length for 82580 PHY
2386  *  @hw: pointer to the HW structure
2387  *
2388  * Reads the diagnostic status register and verifies result is valid before
2389  * placing it in the phy_cable_length field.
2390  **/
2391 s32 igb_get_cable_length_82580(struct e1000_hw *hw)
2392 {
2393 	struct e1000_phy_info *phy = &hw->phy;
2394 	s32 ret_val;
2395 	u16 phy_data, length;
2396 
2397 	ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data);
2398 	if (ret_val)
2399 		goto out;
2400 
2401 	length = (phy_data & I82580_DSTATUS_CABLE_LENGTH) >>
2402 		 I82580_DSTATUS_CABLE_LENGTH_SHIFT;
2403 
2404 	if (length == E1000_CABLE_LENGTH_UNDEFINED)
2405 		ret_val = -E1000_ERR_PHY;
2406 
2407 	phy->cable_length = length;
2408 
2409 out:
2410 	return ret_val;
2411 }
2412 
2413 /**
2414  *  igb_write_phy_reg_gs40g - Write GS40G PHY register
2415  *  @hw: pointer to the HW structure
2416  *  @offset: lower half is register offset to write to
2417  *     upper half is page to use.
2418  *  @data: data to write at register offset
2419  *
2420  *  Acquires semaphore, if necessary, then writes the data to PHY register
2421  *  at the offset.  Release any acquired semaphores before exiting.
2422  **/
2423 s32 igb_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data)
2424 {
2425 	s32 ret_val;
2426 	u16 page = offset >> GS40G_PAGE_SHIFT;
2427 
2428 	offset = offset & GS40G_OFFSET_MASK;
2429 	ret_val = hw->phy.ops.acquire(hw);
2430 	if (ret_val)
2431 		return ret_val;
2432 
2433 	ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
2434 	if (ret_val)
2435 		goto release;
2436 	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2437 
2438 release:
2439 	hw->phy.ops.release(hw);
2440 	return ret_val;
2441 }
2442 
2443 /**
2444  *  igb_read_phy_reg_gs40g - Read GS40G  PHY register
2445  *  @hw: pointer to the HW structure
2446  *  @offset: lower half is register offset to read to
2447  *     upper half is page to use.
2448  *  @data: data to read at register offset
2449  *
2450  *  Acquires semaphore, if necessary, then reads the data in the PHY register
2451  *  at the offset.  Release any acquired semaphores before exiting.
2452  **/
2453 s32 igb_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data)
2454 {
2455 	s32 ret_val;
2456 	u16 page = offset >> GS40G_PAGE_SHIFT;
2457 
2458 	offset = offset & GS40G_OFFSET_MASK;
2459 	ret_val = hw->phy.ops.acquire(hw);
2460 	if (ret_val)
2461 		return ret_val;
2462 
2463 	ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
2464 	if (ret_val)
2465 		goto release;
2466 	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2467 
2468 release:
2469 	hw->phy.ops.release(hw);
2470 	return ret_val;
2471 }
2472 
2473 /**
2474  *  igb_set_master_slave_mode - Setup PHY for Master/slave mode
2475  *  @hw: pointer to the HW structure
2476  *
2477  *  Sets up Master/slave mode
2478  **/
2479 static s32 igb_set_master_slave_mode(struct e1000_hw *hw)
2480 {
2481 	s32 ret_val;
2482 	u16 phy_data;
2483 
2484 	/* Resolve Master/Slave mode */
2485 	ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data);
2486 	if (ret_val)
2487 		return ret_val;
2488 
2489 	/* load defaults for future use */
2490 	hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
2491 				   ((phy_data & CR_1000T_MS_VALUE) ?
2492 				    e1000_ms_force_master :
2493 				    e1000_ms_force_slave) : e1000_ms_auto;
2494 
2495 	switch (hw->phy.ms_type) {
2496 	case e1000_ms_force_master:
2497 		phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2498 		break;
2499 	case e1000_ms_force_slave:
2500 		phy_data |= CR_1000T_MS_ENABLE;
2501 		phy_data &= ~(CR_1000T_MS_VALUE);
2502 		break;
2503 	case e1000_ms_auto:
2504 		phy_data &= ~CR_1000T_MS_ENABLE;
2505 		/* fall-through */
2506 	default:
2507 		break;
2508 	}
2509 
2510 	return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data);
2511 }
2512