1 /*******************************************************************************
2 
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2014 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, see <http://www.gnu.org/licenses/>.
17 
18   The full GNU General Public License is included in this distribution in
19   the file called "COPYING".
20 
21   Contact Information:
22   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 
25 *******************************************************************************/
26 
27 #include <linux/if_ether.h>
28 #include <linux/delay.h>
29 
30 #include "e1000_mac.h"
31 #include "e1000_phy.h"
32 
33 static s32  igb_phy_setup_autoneg(struct e1000_hw *hw);
34 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
35 					     u16 *phy_ctrl);
36 static s32  igb_wait_autoneg(struct e1000_hw *hw);
37 static s32  igb_set_master_slave_mode(struct e1000_hw *hw);
38 
39 /* Cable length tables */
40 static const u16 e1000_m88_cable_length_table[] = {
41 	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
42 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
43 	(sizeof(e1000_m88_cable_length_table) / \
44 	sizeof(e1000_m88_cable_length_table[0]))
45 
46 static const u16 e1000_igp_2_cable_length_table[] = {
47 	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
48 	0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
49 	6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
50 	21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
51 	40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
52 	60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
53 	83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
54 	104, 109, 114, 118, 121, 124};
55 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
56 	(sizeof(e1000_igp_2_cable_length_table) / \
57 	 sizeof(e1000_igp_2_cable_length_table[0]))
58 
59 /**
60  *  igb_check_reset_block - Check if PHY reset is blocked
61  *  @hw: pointer to the HW structure
62  *
63  *  Read the PHY management control register and check whether a PHY reset
64  *  is blocked.  If a reset is not blocked return 0, otherwise
65  *  return E1000_BLK_PHY_RESET (12).
66  **/
67 s32 igb_check_reset_block(struct e1000_hw *hw)
68 {
69 	u32 manc;
70 
71 	manc = rd32(E1000_MANC);
72 
73 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
74 }
75 
76 /**
77  *  igb_get_phy_id - Retrieve the PHY ID and revision
78  *  @hw: pointer to the HW structure
79  *
80  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
81  *  revision in the hardware structure.
82  **/
83 s32 igb_get_phy_id(struct e1000_hw *hw)
84 {
85 	struct e1000_phy_info *phy = &hw->phy;
86 	s32 ret_val = 0;
87 	u16 phy_id;
88 
89 	ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
90 	if (ret_val)
91 		goto out;
92 
93 	phy->id = (u32)(phy_id << 16);
94 	udelay(20);
95 	ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
96 	if (ret_val)
97 		goto out;
98 
99 	phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
100 	phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
101 
102 out:
103 	return ret_val;
104 }
105 
106 /**
107  *  igb_phy_reset_dsp - Reset PHY DSP
108  *  @hw: pointer to the HW structure
109  *
110  *  Reset the digital signal processor.
111  **/
112 static s32 igb_phy_reset_dsp(struct e1000_hw *hw)
113 {
114 	s32 ret_val = 0;
115 
116 	if (!(hw->phy.ops.write_reg))
117 		goto out;
118 
119 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
120 	if (ret_val)
121 		goto out;
122 
123 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
124 
125 out:
126 	return ret_val;
127 }
128 
129 /**
130  *  igb_read_phy_reg_mdic - Read MDI control register
131  *  @hw: pointer to the HW structure
132  *  @offset: register offset to be read
133  *  @data: pointer to the read data
134  *
135  *  Reads the MDI control regsiter in the PHY at offset and stores the
136  *  information read to data.
137  **/
138 s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
139 {
140 	struct e1000_phy_info *phy = &hw->phy;
141 	u32 i, mdic = 0;
142 	s32 ret_val = 0;
143 
144 	if (offset > MAX_PHY_REG_ADDRESS) {
145 		hw_dbg("PHY Address %d is out of range\n", offset);
146 		ret_val = -E1000_ERR_PARAM;
147 		goto out;
148 	}
149 
150 	/* Set up Op-code, Phy Address, and register offset in the MDI
151 	 * Control register.  The MAC will take care of interfacing with the
152 	 * PHY to retrieve the desired data.
153 	 */
154 	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
155 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
156 		(E1000_MDIC_OP_READ));
157 
158 	wr32(E1000_MDIC, mdic);
159 
160 	/* Poll the ready bit to see if the MDI read completed
161 	 * Increasing the time out as testing showed failures with
162 	 * the lower time out
163 	 */
164 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
165 		udelay(50);
166 		mdic = rd32(E1000_MDIC);
167 		if (mdic & E1000_MDIC_READY)
168 			break;
169 	}
170 	if (!(mdic & E1000_MDIC_READY)) {
171 		hw_dbg("MDI Read did not complete\n");
172 		ret_val = -E1000_ERR_PHY;
173 		goto out;
174 	}
175 	if (mdic & E1000_MDIC_ERROR) {
176 		hw_dbg("MDI Error\n");
177 		ret_val = -E1000_ERR_PHY;
178 		goto out;
179 	}
180 	*data = (u16) mdic;
181 
182 out:
183 	return ret_val;
184 }
185 
186 /**
187  *  igb_write_phy_reg_mdic - Write MDI control register
188  *  @hw: pointer to the HW structure
189  *  @offset: register offset to write to
190  *  @data: data to write to register at offset
191  *
192  *  Writes data to MDI control register in the PHY at offset.
193  **/
194 s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
195 {
196 	struct e1000_phy_info *phy = &hw->phy;
197 	u32 i, mdic = 0;
198 	s32 ret_val = 0;
199 
200 	if (offset > MAX_PHY_REG_ADDRESS) {
201 		hw_dbg("PHY Address %d is out of range\n", offset);
202 		ret_val = -E1000_ERR_PARAM;
203 		goto out;
204 	}
205 
206 	/* Set up Op-code, Phy Address, and register offset in the MDI
207 	 * Control register.  The MAC will take care of interfacing with the
208 	 * PHY to retrieve the desired data.
209 	 */
210 	mdic = (((u32)data) |
211 		(offset << E1000_MDIC_REG_SHIFT) |
212 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
213 		(E1000_MDIC_OP_WRITE));
214 
215 	wr32(E1000_MDIC, mdic);
216 
217 	/* Poll the ready bit to see if the MDI read completed
218 	 * Increasing the time out as testing showed failures with
219 	 * the lower time out
220 	 */
221 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
222 		udelay(50);
223 		mdic = rd32(E1000_MDIC);
224 		if (mdic & E1000_MDIC_READY)
225 			break;
226 	}
227 	if (!(mdic & E1000_MDIC_READY)) {
228 		hw_dbg("MDI Write did not complete\n");
229 		ret_val = -E1000_ERR_PHY;
230 		goto out;
231 	}
232 	if (mdic & E1000_MDIC_ERROR) {
233 		hw_dbg("MDI Error\n");
234 		ret_val = -E1000_ERR_PHY;
235 		goto out;
236 	}
237 
238 out:
239 	return ret_val;
240 }
241 
242 /**
243  *  igb_read_phy_reg_i2c - Read PHY register using i2c
244  *  @hw: pointer to the HW structure
245  *  @offset: register offset to be read
246  *  @data: pointer to the read data
247  *
248  *  Reads the PHY register at offset using the i2c interface and stores the
249  *  retrieved information in data.
250  **/
251 s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
252 {
253 	struct e1000_phy_info *phy = &hw->phy;
254 	u32 i, i2ccmd = 0;
255 
256 	/* Set up Op-code, Phy Address, and register address in the I2CCMD
257 	 * register.  The MAC will take care of interfacing with the
258 	 * PHY to retrieve the desired data.
259 	 */
260 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
261 		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
262 		  (E1000_I2CCMD_OPCODE_READ));
263 
264 	wr32(E1000_I2CCMD, i2ccmd);
265 
266 	/* Poll the ready bit to see if the I2C read completed */
267 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
268 		udelay(50);
269 		i2ccmd = rd32(E1000_I2CCMD);
270 		if (i2ccmd & E1000_I2CCMD_READY)
271 			break;
272 	}
273 	if (!(i2ccmd & E1000_I2CCMD_READY)) {
274 		hw_dbg("I2CCMD Read did not complete\n");
275 		return -E1000_ERR_PHY;
276 	}
277 	if (i2ccmd & E1000_I2CCMD_ERROR) {
278 		hw_dbg("I2CCMD Error bit set\n");
279 		return -E1000_ERR_PHY;
280 	}
281 
282 	/* Need to byte-swap the 16-bit value. */
283 	*data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
284 
285 	return 0;
286 }
287 
288 /**
289  *  igb_write_phy_reg_i2c - Write PHY register using i2c
290  *  @hw: pointer to the HW structure
291  *  @offset: register offset to write to
292  *  @data: data to write at register offset
293  *
294  *  Writes the data to PHY register at the offset using the i2c interface.
295  **/
296 s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
297 {
298 	struct e1000_phy_info *phy = &hw->phy;
299 	u32 i, i2ccmd = 0;
300 	u16 phy_data_swapped;
301 
302 	/* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/
303 	if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) {
304 		hw_dbg("PHY I2C Address %d is out of range.\n",
305 			  hw->phy.addr);
306 		return -E1000_ERR_CONFIG;
307 	}
308 
309 	/* Swap the data bytes for the I2C interface */
310 	phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
311 
312 	/* Set up Op-code, Phy Address, and register address in the I2CCMD
313 	 * register.  The MAC will take care of interfacing with the
314 	 * PHY to retrieve the desired data.
315 	 */
316 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
317 		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
318 		  E1000_I2CCMD_OPCODE_WRITE |
319 		  phy_data_swapped);
320 
321 	wr32(E1000_I2CCMD, i2ccmd);
322 
323 	/* Poll the ready bit to see if the I2C read completed */
324 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
325 		udelay(50);
326 		i2ccmd = rd32(E1000_I2CCMD);
327 		if (i2ccmd & E1000_I2CCMD_READY)
328 			break;
329 	}
330 	if (!(i2ccmd & E1000_I2CCMD_READY)) {
331 		hw_dbg("I2CCMD Write did not complete\n");
332 		return -E1000_ERR_PHY;
333 	}
334 	if (i2ccmd & E1000_I2CCMD_ERROR) {
335 		hw_dbg("I2CCMD Error bit set\n");
336 		return -E1000_ERR_PHY;
337 	}
338 
339 	return 0;
340 }
341 
342 /**
343  *  igb_read_sfp_data_byte - Reads SFP module data.
344  *  @hw: pointer to the HW structure
345  *  @offset: byte location offset to be read
346  *  @data: read data buffer pointer
347  *
348  *  Reads one byte from SFP module data stored
349  *  in SFP resided EEPROM memory or SFP diagnostic area.
350  *  Function should be called with
351  *  E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
352  *  E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
353  *  access
354  **/
355 s32 igb_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data)
356 {
357 	u32 i = 0;
358 	u32 i2ccmd = 0;
359 	u32 data_local = 0;
360 
361 	if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
362 		hw_dbg("I2CCMD command address exceeds upper limit\n");
363 		return -E1000_ERR_PHY;
364 	}
365 
366 	/* Set up Op-code, EEPROM Address,in the I2CCMD
367 	 * register. The MAC will take care of interfacing with the
368 	 * EEPROM to retrieve the desired data.
369 	 */
370 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
371 		  E1000_I2CCMD_OPCODE_READ);
372 
373 	wr32(E1000_I2CCMD, i2ccmd);
374 
375 	/* Poll the ready bit to see if the I2C read completed */
376 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
377 		udelay(50);
378 		data_local = rd32(E1000_I2CCMD);
379 		if (data_local & E1000_I2CCMD_READY)
380 			break;
381 	}
382 	if (!(data_local & E1000_I2CCMD_READY)) {
383 		hw_dbg("I2CCMD Read did not complete\n");
384 		return -E1000_ERR_PHY;
385 	}
386 	if (data_local & E1000_I2CCMD_ERROR) {
387 		hw_dbg("I2CCMD Error bit set\n");
388 		return -E1000_ERR_PHY;
389 	}
390 	*data = (u8) data_local & 0xFF;
391 
392 	return 0;
393 }
394 
395 /**
396  *  igb_read_phy_reg_igp - Read igp PHY register
397  *  @hw: pointer to the HW structure
398  *  @offset: register offset to be read
399  *  @data: pointer to the read data
400  *
401  *  Acquires semaphore, if necessary, then reads the PHY register at offset
402  *  and storing the retrieved information in data.  Release any acquired
403  *  semaphores before exiting.
404  **/
405 s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
406 {
407 	s32 ret_val = 0;
408 
409 	if (!(hw->phy.ops.acquire))
410 		goto out;
411 
412 	ret_val = hw->phy.ops.acquire(hw);
413 	if (ret_val)
414 		goto out;
415 
416 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
417 		ret_val = igb_write_phy_reg_mdic(hw,
418 						 IGP01E1000_PHY_PAGE_SELECT,
419 						 (u16)offset);
420 		if (ret_val) {
421 			hw->phy.ops.release(hw);
422 			goto out;
423 		}
424 	}
425 
426 	ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
427 					data);
428 
429 	hw->phy.ops.release(hw);
430 
431 out:
432 	return ret_val;
433 }
434 
435 /**
436  *  igb_write_phy_reg_igp - Write igp PHY register
437  *  @hw: pointer to the HW structure
438  *  @offset: register offset to write to
439  *  @data: data to write at register offset
440  *
441  *  Acquires semaphore, if necessary, then writes the data to PHY register
442  *  at the offset.  Release any acquired semaphores before exiting.
443  **/
444 s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
445 {
446 	s32 ret_val = 0;
447 
448 	if (!(hw->phy.ops.acquire))
449 		goto out;
450 
451 	ret_val = hw->phy.ops.acquire(hw);
452 	if (ret_val)
453 		goto out;
454 
455 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
456 		ret_val = igb_write_phy_reg_mdic(hw,
457 						 IGP01E1000_PHY_PAGE_SELECT,
458 						 (u16)offset);
459 		if (ret_val) {
460 			hw->phy.ops.release(hw);
461 			goto out;
462 		}
463 	}
464 
465 	ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
466 					 data);
467 
468 	hw->phy.ops.release(hw);
469 
470 out:
471 	return ret_val;
472 }
473 
474 /**
475  *  igb_copper_link_setup_82580 - Setup 82580 PHY for copper link
476  *  @hw: pointer to the HW structure
477  *
478  *  Sets up Carrier-sense on Transmit and downshift values.
479  **/
480 s32 igb_copper_link_setup_82580(struct e1000_hw *hw)
481 {
482 	struct e1000_phy_info *phy = &hw->phy;
483 	s32 ret_val;
484 	u16 phy_data;
485 
486 	if (phy->reset_disable) {
487 		ret_val = 0;
488 		goto out;
489 	}
490 
491 	if (phy->type == e1000_phy_82580) {
492 		ret_val = hw->phy.ops.reset(hw);
493 		if (ret_val) {
494 			hw_dbg("Error resetting the PHY.\n");
495 			goto out;
496 		}
497 	}
498 
499 	/* Enable CRS on TX. This must be set for half-duplex operation. */
500 	ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data);
501 	if (ret_val)
502 		goto out;
503 
504 	phy_data |= I82580_CFG_ASSERT_CRS_ON_TX;
505 
506 	/* Enable downshift */
507 	phy_data |= I82580_CFG_ENABLE_DOWNSHIFT;
508 
509 	ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data);
510 	if (ret_val)
511 		goto out;
512 
513 	/* Set MDI/MDIX mode */
514 	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
515 	if (ret_val)
516 		goto out;
517 	phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
518 	/* Options:
519 	 *   0 - Auto (default)
520 	 *   1 - MDI mode
521 	 *   2 - MDI-X mode
522 	 */
523 	switch (hw->phy.mdix) {
524 	case 1:
525 		break;
526 	case 2:
527 		phy_data |= I82580_PHY_CTRL2_MANUAL_MDIX;
528 		break;
529 	case 0:
530 	default:
531 		phy_data |= I82580_PHY_CTRL2_AUTO_MDI_MDIX;
532 		break;
533 	}
534 	ret_val = hw->phy.ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
535 
536 out:
537 	return ret_val;
538 }
539 
540 /**
541  *  igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
542  *  @hw: pointer to the HW structure
543  *
544  *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
545  *  and downshift values are set also.
546  **/
547 s32 igb_copper_link_setup_m88(struct e1000_hw *hw)
548 {
549 	struct e1000_phy_info *phy = &hw->phy;
550 	s32 ret_val;
551 	u16 phy_data;
552 
553 	if (phy->reset_disable) {
554 		ret_val = 0;
555 		goto out;
556 	}
557 
558 	/* Enable CRS on TX. This must be set for half-duplex operation. */
559 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
560 	if (ret_val)
561 		goto out;
562 
563 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
564 
565 	/* Options:
566 	 *   MDI/MDI-X = 0 (default)
567 	 *   0 - Auto for all speeds
568 	 *   1 - MDI mode
569 	 *   2 - MDI-X mode
570 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
571 	 */
572 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
573 
574 	switch (phy->mdix) {
575 	case 1:
576 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
577 		break;
578 	case 2:
579 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
580 		break;
581 	case 3:
582 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
583 		break;
584 	case 0:
585 	default:
586 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
587 		break;
588 	}
589 
590 	/* Options:
591 	 *   disable_polarity_correction = 0 (default)
592 	 *       Automatic Correction for Reversed Cable Polarity
593 	 *   0 - Disabled
594 	 *   1 - Enabled
595 	 */
596 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
597 	if (phy->disable_polarity_correction == 1)
598 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
599 
600 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
601 	if (ret_val)
602 		goto out;
603 
604 	if (phy->revision < E1000_REVISION_4) {
605 		/* Force TX_CLK in the Extended PHY Specific Control Register
606 		 * to 25MHz clock.
607 		 */
608 		ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
609 					    &phy_data);
610 		if (ret_val)
611 			goto out;
612 
613 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
614 
615 		if ((phy->revision == E1000_REVISION_2) &&
616 		    (phy->id == M88E1111_I_PHY_ID)) {
617 			/* 82573L PHY - set the downshift counter to 5x. */
618 			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
619 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
620 		} else {
621 			/* Configure Master and Slave downshift values */
622 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
623 				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
624 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
625 				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
626 		}
627 		ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
628 					     phy_data);
629 		if (ret_val)
630 			goto out;
631 	}
632 
633 	/* Commit the changes. */
634 	ret_val = igb_phy_sw_reset(hw);
635 	if (ret_val) {
636 		hw_dbg("Error committing the PHY changes\n");
637 		goto out;
638 	}
639 
640 out:
641 	return ret_val;
642 }
643 
644 /**
645  *  igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
646  *  @hw: pointer to the HW structure
647  *
648  *  Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
649  *  Also enables and sets the downshift parameters.
650  **/
651 s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw)
652 {
653 	struct e1000_phy_info *phy = &hw->phy;
654 	s32 ret_val;
655 	u16 phy_data;
656 
657 	if (phy->reset_disable)
658 		return 0;
659 
660 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
661 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
662 	if (ret_val)
663 		return ret_val;
664 
665 	/* Options:
666 	 *   MDI/MDI-X = 0 (default)
667 	 *   0 - Auto for all speeds
668 	 *   1 - MDI mode
669 	 *   2 - MDI-X mode
670 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
671 	 */
672 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
673 
674 	switch (phy->mdix) {
675 	case 1:
676 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
677 		break;
678 	case 2:
679 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
680 		break;
681 	case 3:
682 		/* M88E1112 does not support this mode) */
683 		if (phy->id != M88E1112_E_PHY_ID) {
684 			phy_data |= M88E1000_PSCR_AUTO_X_1000T;
685 			break;
686 		}
687 	case 0:
688 	default:
689 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
690 		break;
691 	}
692 
693 	/* Options:
694 	 *   disable_polarity_correction = 0 (default)
695 	 *       Automatic Correction for Reversed Cable Polarity
696 	 *   0 - Disabled
697 	 *   1 - Enabled
698 	 */
699 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
700 	if (phy->disable_polarity_correction == 1)
701 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
702 
703 	/* Enable downshift and setting it to X6 */
704 	if (phy->id == M88E1543_E_PHY_ID) {
705 		phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE;
706 		ret_val =
707 		    phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
708 		if (ret_val)
709 			return ret_val;
710 
711 		ret_val = igb_phy_sw_reset(hw);
712 		if (ret_val) {
713 			hw_dbg("Error committing the PHY changes\n");
714 			return ret_val;
715 		}
716 	}
717 
718 	phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
719 	phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
720 	phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
721 
722 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
723 	if (ret_val)
724 		return ret_val;
725 
726 	/* Commit the changes. */
727 	ret_val = igb_phy_sw_reset(hw);
728 	if (ret_val) {
729 		hw_dbg("Error committing the PHY changes\n");
730 		return ret_val;
731 	}
732 	ret_val = igb_set_master_slave_mode(hw);
733 	if (ret_val)
734 		return ret_val;
735 
736 	return 0;
737 }
738 
739 /**
740  *  igb_copper_link_setup_igp - Setup igp PHY's for copper link
741  *  @hw: pointer to the HW structure
742  *
743  *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
744  *  igp PHY's.
745  **/
746 s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
747 {
748 	struct e1000_phy_info *phy = &hw->phy;
749 	s32 ret_val;
750 	u16 data;
751 
752 	if (phy->reset_disable) {
753 		ret_val = 0;
754 		goto out;
755 	}
756 
757 	ret_val = phy->ops.reset(hw);
758 	if (ret_val) {
759 		hw_dbg("Error resetting the PHY.\n");
760 		goto out;
761 	}
762 
763 	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
764 	 * timeout issues when LFS is enabled.
765 	 */
766 	msleep(100);
767 
768 	/* The NVM settings will configure LPLU in D3 for
769 	 * non-IGP1 PHYs.
770 	 */
771 	if (phy->type == e1000_phy_igp) {
772 		/* disable lplu d3 during driver init */
773 		if (phy->ops.set_d3_lplu_state)
774 			ret_val = phy->ops.set_d3_lplu_state(hw, false);
775 		if (ret_val) {
776 			hw_dbg("Error Disabling LPLU D3\n");
777 			goto out;
778 		}
779 	}
780 
781 	/* disable lplu d0 during driver init */
782 	ret_val = phy->ops.set_d0_lplu_state(hw, false);
783 	if (ret_val) {
784 		hw_dbg("Error Disabling LPLU D0\n");
785 		goto out;
786 	}
787 	/* Configure mdi-mdix settings */
788 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
789 	if (ret_val)
790 		goto out;
791 
792 	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
793 
794 	switch (phy->mdix) {
795 	case 1:
796 		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
797 		break;
798 	case 2:
799 		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
800 		break;
801 	case 0:
802 	default:
803 		data |= IGP01E1000_PSCR_AUTO_MDIX;
804 		break;
805 	}
806 	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
807 	if (ret_val)
808 		goto out;
809 
810 	/* set auto-master slave resolution settings */
811 	if (hw->mac.autoneg) {
812 		/* when autonegotiation advertisement is only 1000Mbps then we
813 		 * should disable SmartSpeed and enable Auto MasterSlave
814 		 * resolution as hardware default.
815 		 */
816 		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
817 			/* Disable SmartSpeed */
818 			ret_val = phy->ops.read_reg(hw,
819 						    IGP01E1000_PHY_PORT_CONFIG,
820 						    &data);
821 			if (ret_val)
822 				goto out;
823 
824 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
825 			ret_val = phy->ops.write_reg(hw,
826 						     IGP01E1000_PHY_PORT_CONFIG,
827 						     data);
828 			if (ret_val)
829 				goto out;
830 
831 			/* Set auto Master/Slave resolution process */
832 			ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
833 			if (ret_val)
834 				goto out;
835 
836 			data &= ~CR_1000T_MS_ENABLE;
837 			ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
838 			if (ret_val)
839 				goto out;
840 		}
841 
842 		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
843 		if (ret_val)
844 			goto out;
845 
846 		/* load defaults for future use */
847 		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
848 			((data & CR_1000T_MS_VALUE) ?
849 			e1000_ms_force_master :
850 			e1000_ms_force_slave) :
851 			e1000_ms_auto;
852 
853 		switch (phy->ms_type) {
854 		case e1000_ms_force_master:
855 			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
856 			break;
857 		case e1000_ms_force_slave:
858 			data |= CR_1000T_MS_ENABLE;
859 			data &= ~(CR_1000T_MS_VALUE);
860 			break;
861 		case e1000_ms_auto:
862 			data &= ~CR_1000T_MS_ENABLE;
863 		default:
864 			break;
865 		}
866 		ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
867 		if (ret_val)
868 			goto out;
869 	}
870 
871 out:
872 	return ret_val;
873 }
874 
875 /**
876  *  igb_copper_link_autoneg - Setup/Enable autoneg for copper link
877  *  @hw: pointer to the HW structure
878  *
879  *  Performs initial bounds checking on autoneg advertisement parameter, then
880  *  configure to advertise the full capability.  Setup the PHY to autoneg
881  *  and restart the negotiation process between the link partner.  If
882  *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
883  **/
884 static s32 igb_copper_link_autoneg(struct e1000_hw *hw)
885 {
886 	struct e1000_phy_info *phy = &hw->phy;
887 	s32 ret_val;
888 	u16 phy_ctrl;
889 
890 	/* Perform some bounds checking on the autoneg advertisement
891 	 * parameter.
892 	 */
893 	phy->autoneg_advertised &= phy->autoneg_mask;
894 
895 	/* If autoneg_advertised is zero, we assume it was not defaulted
896 	 * by the calling code so we set to advertise full capability.
897 	 */
898 	if (phy->autoneg_advertised == 0)
899 		phy->autoneg_advertised = phy->autoneg_mask;
900 
901 	hw_dbg("Reconfiguring auto-neg advertisement params\n");
902 	ret_val = igb_phy_setup_autoneg(hw);
903 	if (ret_val) {
904 		hw_dbg("Error Setting up Auto-Negotiation\n");
905 		goto out;
906 	}
907 	hw_dbg("Restarting Auto-Neg\n");
908 
909 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
910 	 * the Auto Neg Restart bit in the PHY control register.
911 	 */
912 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
913 	if (ret_val)
914 		goto out;
915 
916 	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
917 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
918 	if (ret_val)
919 		goto out;
920 
921 	/* Does the user want to wait for Auto-Neg to complete here, or
922 	 * check at a later time (for example, callback routine).
923 	 */
924 	if (phy->autoneg_wait_to_complete) {
925 		ret_val = igb_wait_autoneg(hw);
926 		if (ret_val) {
927 			hw_dbg("Error while waiting for "
928 			       "autoneg to complete\n");
929 			goto out;
930 		}
931 	}
932 
933 	hw->mac.get_link_status = true;
934 
935 out:
936 	return ret_val;
937 }
938 
939 /**
940  *  igb_phy_setup_autoneg - Configure PHY for auto-negotiation
941  *  @hw: pointer to the HW structure
942  *
943  *  Reads the MII auto-neg advertisement register and/or the 1000T control
944  *  register and if the PHY is already setup for auto-negotiation, then
945  *  return successful.  Otherwise, setup advertisement and flow control to
946  *  the appropriate values for the wanted auto-negotiation.
947  **/
948 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
949 {
950 	struct e1000_phy_info *phy = &hw->phy;
951 	s32 ret_val;
952 	u16 mii_autoneg_adv_reg;
953 	u16 mii_1000t_ctrl_reg = 0;
954 
955 	phy->autoneg_advertised &= phy->autoneg_mask;
956 
957 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
958 	ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
959 	if (ret_val)
960 		goto out;
961 
962 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
963 		/* Read the MII 1000Base-T Control Register (Address 9). */
964 		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
965 					    &mii_1000t_ctrl_reg);
966 		if (ret_val)
967 			goto out;
968 	}
969 
970 	/* Need to parse both autoneg_advertised and fc and set up
971 	 * the appropriate PHY registers.  First we will parse for
972 	 * autoneg_advertised software override.  Since we can advertise
973 	 * a plethora of combinations, we need to check each bit
974 	 * individually.
975 	 */
976 
977 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
978 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
979 	 * the  1000Base-T Control Register (Address 9).
980 	 */
981 	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
982 				 NWAY_AR_100TX_HD_CAPS |
983 				 NWAY_AR_10T_FD_CAPS   |
984 				 NWAY_AR_10T_HD_CAPS);
985 	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
986 
987 	hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
988 
989 	/* Do we want to advertise 10 Mb Half Duplex? */
990 	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
991 		hw_dbg("Advertise 10mb Half duplex\n");
992 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
993 	}
994 
995 	/* Do we want to advertise 10 Mb Full Duplex? */
996 	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
997 		hw_dbg("Advertise 10mb Full duplex\n");
998 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
999 	}
1000 
1001 	/* Do we want to advertise 100 Mb Half Duplex? */
1002 	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
1003 		hw_dbg("Advertise 100mb Half duplex\n");
1004 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1005 	}
1006 
1007 	/* Do we want to advertise 100 Mb Full Duplex? */
1008 	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
1009 		hw_dbg("Advertise 100mb Full duplex\n");
1010 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1011 	}
1012 
1013 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1014 	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1015 		hw_dbg("Advertise 1000mb Half duplex request denied!\n");
1016 
1017 	/* Do we want to advertise 1000 Mb Full Duplex? */
1018 	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1019 		hw_dbg("Advertise 1000mb Full duplex\n");
1020 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1021 	}
1022 
1023 	/* Check for a software override of the flow control settings, and
1024 	 * setup the PHY advertisement registers accordingly.  If
1025 	 * auto-negotiation is enabled, then software will have to set the
1026 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1027 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1028 	 * negotiation.
1029 	 *
1030 	 * The possible values of the "fc" parameter are:
1031 	 *      0:  Flow control is completely disabled
1032 	 *      1:  Rx flow control is enabled (we can receive pause frames
1033 	 *          but not send pause frames).
1034 	 *      2:  Tx flow control is enabled (we can send pause frames
1035 	 *          but we do not support receiving pause frames).
1036 	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
1037 	 *  other:  No software override.  The flow control configuration
1038 	 *          in the EEPROM is used.
1039 	 */
1040 	switch (hw->fc.current_mode) {
1041 	case e1000_fc_none:
1042 		/* Flow control (RX & TX) is completely disabled by a
1043 		 * software over-ride.
1044 		 */
1045 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1046 		break;
1047 	case e1000_fc_rx_pause:
1048 		/* RX Flow control is enabled, and TX Flow control is
1049 		 * disabled, by a software over-ride.
1050 		 *
1051 		 * Since there really isn't a way to advertise that we are
1052 		 * capable of RX Pause ONLY, we will advertise that we
1053 		 * support both symmetric and asymmetric RX PAUSE.  Later
1054 		 * (in e1000_config_fc_after_link_up) we will disable the
1055 		 * hw's ability to send PAUSE frames.
1056 		 */
1057 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1058 		break;
1059 	case e1000_fc_tx_pause:
1060 		/* TX Flow control is enabled, and RX Flow control is
1061 		 * disabled, by a software over-ride.
1062 		 */
1063 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1064 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1065 		break;
1066 	case e1000_fc_full:
1067 		/* Flow control (both RX and TX) is enabled by a software
1068 		 * over-ride.
1069 		 */
1070 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1071 		break;
1072 	default:
1073 		hw_dbg("Flow control param set incorrectly\n");
1074 		ret_val = -E1000_ERR_CONFIG;
1075 		goto out;
1076 	}
1077 
1078 	ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1079 	if (ret_val)
1080 		goto out;
1081 
1082 	hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1083 
1084 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1085 		ret_val = phy->ops.write_reg(hw,
1086 					     PHY_1000T_CTRL,
1087 					     mii_1000t_ctrl_reg);
1088 		if (ret_val)
1089 			goto out;
1090 	}
1091 
1092 out:
1093 	return ret_val;
1094 }
1095 
1096 /**
1097  *  igb_setup_copper_link - Configure copper link settings
1098  *  @hw: pointer to the HW structure
1099  *
1100  *  Calls the appropriate function to configure the link for auto-neg or forced
1101  *  speed and duplex.  Then we check for link, once link is established calls
1102  *  to configure collision distance and flow control are called.  If link is
1103  *  not established, we return -E1000_ERR_PHY (-2).
1104  **/
1105 s32 igb_setup_copper_link(struct e1000_hw *hw)
1106 {
1107 	s32 ret_val;
1108 	bool link;
1109 
1110 	if (hw->mac.autoneg) {
1111 		/* Setup autoneg and flow control advertisement and perform
1112 		 * autonegotiation.
1113 		 */
1114 		ret_val = igb_copper_link_autoneg(hw);
1115 		if (ret_val)
1116 			goto out;
1117 	} else {
1118 		/* PHY will be set to 10H, 10F, 100H or 100F
1119 		 * depending on user settings.
1120 		 */
1121 		hw_dbg("Forcing Speed and Duplex\n");
1122 		ret_val = hw->phy.ops.force_speed_duplex(hw);
1123 		if (ret_val) {
1124 			hw_dbg("Error Forcing Speed and Duplex\n");
1125 			goto out;
1126 		}
1127 	}
1128 
1129 	/* Check link status. Wait up to 100 microseconds for link to become
1130 	 * valid.
1131 	 */
1132 	ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
1133 	if (ret_val)
1134 		goto out;
1135 
1136 	if (link) {
1137 		hw_dbg("Valid link established!!!\n");
1138 		igb_config_collision_dist(hw);
1139 		ret_val = igb_config_fc_after_link_up(hw);
1140 	} else {
1141 		hw_dbg("Unable to establish link!!!\n");
1142 	}
1143 
1144 out:
1145 	return ret_val;
1146 }
1147 
1148 /**
1149  *  igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1150  *  @hw: pointer to the HW structure
1151  *
1152  *  Calls the PHY setup function to force speed and duplex.  Clears the
1153  *  auto-crossover to force MDI manually.  Waits for link and returns
1154  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1155  **/
1156 s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1157 {
1158 	struct e1000_phy_info *phy = &hw->phy;
1159 	s32 ret_val;
1160 	u16 phy_data;
1161 	bool link;
1162 
1163 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1164 	if (ret_val)
1165 		goto out;
1166 
1167 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1168 
1169 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1170 	if (ret_val)
1171 		goto out;
1172 
1173 	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1174 	 * forced whenever speed and duplex are forced.
1175 	 */
1176 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1177 	if (ret_val)
1178 		goto out;
1179 
1180 	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1181 	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1182 
1183 	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1184 	if (ret_val)
1185 		goto out;
1186 
1187 	hw_dbg("IGP PSCR: %X\n", phy_data);
1188 
1189 	udelay(1);
1190 
1191 	if (phy->autoneg_wait_to_complete) {
1192 		hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1193 
1194 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
1195 		if (ret_val)
1196 			goto out;
1197 
1198 		if (!link)
1199 			hw_dbg("Link taking longer than expected.\n");
1200 
1201 		/* Try once more */
1202 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
1203 		if (ret_val)
1204 			goto out;
1205 	}
1206 
1207 out:
1208 	return ret_val;
1209 }
1210 
1211 /**
1212  *  igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1213  *  @hw: pointer to the HW structure
1214  *
1215  *  Calls the PHY setup function to force speed and duplex.  Clears the
1216  *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1217  *  changes.  If time expires while waiting for link up, we reset the DSP.
1218  *  After reset, TX_CLK and CRS on TX must be set.  Return successful upon
1219  *  successful completion, else return corresponding error code.
1220  **/
1221 s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1222 {
1223 	struct e1000_phy_info *phy = &hw->phy;
1224 	s32 ret_val;
1225 	u16 phy_data;
1226 	bool link;
1227 
1228 	/* I210 and I211 devices support Auto-Crossover in forced operation. */
1229 	if (phy->type != e1000_phy_i210) {
1230 		/* Clear Auto-Crossover to force MDI manually.  M88E1000
1231 		 * requires MDI forced whenever speed and duplex are forced.
1232 		 */
1233 		ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL,
1234 					    &phy_data);
1235 		if (ret_val)
1236 			goto out;
1237 
1238 		phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1239 		ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
1240 					     phy_data);
1241 		if (ret_val)
1242 			goto out;
1243 
1244 		hw_dbg("M88E1000 PSCR: %X\n", phy_data);
1245 	}
1246 
1247 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1248 	if (ret_val)
1249 		goto out;
1250 
1251 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1252 
1253 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1254 	if (ret_val)
1255 		goto out;
1256 
1257 	/* Reset the phy to commit changes. */
1258 	ret_val = igb_phy_sw_reset(hw);
1259 	if (ret_val)
1260 		goto out;
1261 
1262 	if (phy->autoneg_wait_to_complete) {
1263 		hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1264 
1265 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
1266 		if (ret_val)
1267 			goto out;
1268 
1269 		if (!link) {
1270 			bool reset_dsp = true;
1271 
1272 			switch (hw->phy.id) {
1273 			case I347AT4_E_PHY_ID:
1274 			case M88E1112_E_PHY_ID:
1275 			case I210_I_PHY_ID:
1276 				reset_dsp = false;
1277 				break;
1278 			default:
1279 				if (hw->phy.type != e1000_phy_m88)
1280 					reset_dsp = false;
1281 				break;
1282 			}
1283 			if (!reset_dsp)
1284 				hw_dbg("Link taking longer than expected.\n");
1285 			else {
1286 				/* We didn't get link.
1287 				 * Reset the DSP and cross our fingers.
1288 				 */
1289 				ret_val = phy->ops.write_reg(hw,
1290 						M88E1000_PHY_PAGE_SELECT,
1291 						0x001d);
1292 				if (ret_val)
1293 					goto out;
1294 				ret_val = igb_phy_reset_dsp(hw);
1295 				if (ret_val)
1296 					goto out;
1297 			}
1298 		}
1299 
1300 		/* Try once more */
1301 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT,
1302 					   100000, &link);
1303 		if (ret_val)
1304 			goto out;
1305 	}
1306 
1307 	if (hw->phy.type != e1000_phy_m88 ||
1308 	    hw->phy.id == I347AT4_E_PHY_ID ||
1309 	    hw->phy.id == M88E1112_E_PHY_ID ||
1310 	    hw->phy.id == I210_I_PHY_ID)
1311 		goto out;
1312 
1313 	ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1314 	if (ret_val)
1315 		goto out;
1316 
1317 	/* Resetting the phy means we need to re-force TX_CLK in the
1318 	 * Extended PHY Specific Control Register to 25MHz clock from
1319 	 * the reset value of 2.5MHz.
1320 	 */
1321 	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1322 	ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1323 	if (ret_val)
1324 		goto out;
1325 
1326 	/* In addition, we must re-enable CRS on Tx for both half and full
1327 	 * duplex.
1328 	 */
1329 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1330 	if (ret_val)
1331 		goto out;
1332 
1333 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1334 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1335 
1336 out:
1337 	return ret_val;
1338 }
1339 
1340 /**
1341  *  igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1342  *  @hw: pointer to the HW structure
1343  *  @phy_ctrl: pointer to current value of PHY_CONTROL
1344  *
1345  *  Forces speed and duplex on the PHY by doing the following: disable flow
1346  *  control, force speed/duplex on the MAC, disable auto speed detection,
1347  *  disable auto-negotiation, configure duplex, configure speed, configure
1348  *  the collision distance, write configuration to CTRL register.  The
1349  *  caller must write to the PHY_CONTROL register for these settings to
1350  *  take affect.
1351  **/
1352 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
1353 					     u16 *phy_ctrl)
1354 {
1355 	struct e1000_mac_info *mac = &hw->mac;
1356 	u32 ctrl;
1357 
1358 	/* Turn off flow control when forcing speed/duplex */
1359 	hw->fc.current_mode = e1000_fc_none;
1360 
1361 	/* Force speed/duplex on the mac */
1362 	ctrl = rd32(E1000_CTRL);
1363 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1364 	ctrl &= ~E1000_CTRL_SPD_SEL;
1365 
1366 	/* Disable Auto Speed Detection */
1367 	ctrl &= ~E1000_CTRL_ASDE;
1368 
1369 	/* Disable autoneg on the phy */
1370 	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1371 
1372 	/* Forcing Full or Half Duplex? */
1373 	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1374 		ctrl &= ~E1000_CTRL_FD;
1375 		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1376 		hw_dbg("Half Duplex\n");
1377 	} else {
1378 		ctrl |= E1000_CTRL_FD;
1379 		*phy_ctrl |= MII_CR_FULL_DUPLEX;
1380 		hw_dbg("Full Duplex\n");
1381 	}
1382 
1383 	/* Forcing 10mb or 100mb? */
1384 	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1385 		ctrl |= E1000_CTRL_SPD_100;
1386 		*phy_ctrl |= MII_CR_SPEED_100;
1387 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1388 		hw_dbg("Forcing 100mb\n");
1389 	} else {
1390 		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1391 		*phy_ctrl |= MII_CR_SPEED_10;
1392 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1393 		hw_dbg("Forcing 10mb\n");
1394 	}
1395 
1396 	igb_config_collision_dist(hw);
1397 
1398 	wr32(E1000_CTRL, ctrl);
1399 }
1400 
1401 /**
1402  *  igb_set_d3_lplu_state - Sets low power link up state for D3
1403  *  @hw: pointer to the HW structure
1404  *  @active: boolean used to enable/disable lplu
1405  *
1406  *  Success returns 0, Failure returns 1
1407  *
1408  *  The low power link up (lplu) state is set to the power management level D3
1409  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1410  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1411  *  is used during Dx states where the power conservation is most important.
1412  *  During driver activity, SmartSpeed should be enabled so performance is
1413  *  maintained.
1414  **/
1415 s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1416 {
1417 	struct e1000_phy_info *phy = &hw->phy;
1418 	s32 ret_val = 0;
1419 	u16 data;
1420 
1421 	if (!(hw->phy.ops.read_reg))
1422 		goto out;
1423 
1424 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1425 	if (ret_val)
1426 		goto out;
1427 
1428 	if (!active) {
1429 		data &= ~IGP02E1000_PM_D3_LPLU;
1430 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1431 					     data);
1432 		if (ret_val)
1433 			goto out;
1434 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1435 		 * during Dx states where the power conservation is most
1436 		 * important.  During driver activity we should enable
1437 		 * SmartSpeed, so performance is maintained.
1438 		 */
1439 		if (phy->smart_speed == e1000_smart_speed_on) {
1440 			ret_val = phy->ops.read_reg(hw,
1441 						    IGP01E1000_PHY_PORT_CONFIG,
1442 						    &data);
1443 			if (ret_val)
1444 				goto out;
1445 
1446 			data |= IGP01E1000_PSCFR_SMART_SPEED;
1447 			ret_val = phy->ops.write_reg(hw,
1448 						     IGP01E1000_PHY_PORT_CONFIG,
1449 						     data);
1450 			if (ret_val)
1451 				goto out;
1452 		} else if (phy->smart_speed == e1000_smart_speed_off) {
1453 			ret_val = phy->ops.read_reg(hw,
1454 						     IGP01E1000_PHY_PORT_CONFIG,
1455 						     &data);
1456 			if (ret_val)
1457 				goto out;
1458 
1459 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1460 			ret_val = phy->ops.write_reg(hw,
1461 						     IGP01E1000_PHY_PORT_CONFIG,
1462 						     data);
1463 			if (ret_val)
1464 				goto out;
1465 		}
1466 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1467 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1468 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1469 		data |= IGP02E1000_PM_D3_LPLU;
1470 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1471 					      data);
1472 		if (ret_val)
1473 			goto out;
1474 
1475 		/* When LPLU is enabled, we should disable SmartSpeed */
1476 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1477 					    &data);
1478 		if (ret_val)
1479 			goto out;
1480 
1481 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1482 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1483 					     data);
1484 	}
1485 
1486 out:
1487 	return ret_val;
1488 }
1489 
1490 /**
1491  *  igb_check_downshift - Checks whether a downshift in speed occurred
1492  *  @hw: pointer to the HW structure
1493  *
1494  *  Success returns 0, Failure returns 1
1495  *
1496  *  A downshift is detected by querying the PHY link health.
1497  **/
1498 s32 igb_check_downshift(struct e1000_hw *hw)
1499 {
1500 	struct e1000_phy_info *phy = &hw->phy;
1501 	s32 ret_val;
1502 	u16 phy_data, offset, mask;
1503 
1504 	switch (phy->type) {
1505 	case e1000_phy_i210:
1506 	case e1000_phy_m88:
1507 	case e1000_phy_gg82563:
1508 		offset	= M88E1000_PHY_SPEC_STATUS;
1509 		mask	= M88E1000_PSSR_DOWNSHIFT;
1510 		break;
1511 	case e1000_phy_igp_2:
1512 	case e1000_phy_igp:
1513 	case e1000_phy_igp_3:
1514 		offset	= IGP01E1000_PHY_LINK_HEALTH;
1515 		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
1516 		break;
1517 	default:
1518 		/* speed downshift not supported */
1519 		phy->speed_downgraded = false;
1520 		ret_val = 0;
1521 		goto out;
1522 	}
1523 
1524 	ret_val = phy->ops.read_reg(hw, offset, &phy_data);
1525 
1526 	if (!ret_val)
1527 		phy->speed_downgraded = (phy_data & mask) ? true : false;
1528 
1529 out:
1530 	return ret_val;
1531 }
1532 
1533 /**
1534  *  igb_check_polarity_m88 - Checks the polarity.
1535  *  @hw: pointer to the HW structure
1536  *
1537  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1538  *
1539  *  Polarity is determined based on the PHY specific status register.
1540  **/
1541 s32 igb_check_polarity_m88(struct e1000_hw *hw)
1542 {
1543 	struct e1000_phy_info *phy = &hw->phy;
1544 	s32 ret_val;
1545 	u16 data;
1546 
1547 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
1548 
1549 	if (!ret_val)
1550 		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1551 				      ? e1000_rev_polarity_reversed
1552 				      : e1000_rev_polarity_normal;
1553 
1554 	return ret_val;
1555 }
1556 
1557 /**
1558  *  igb_check_polarity_igp - Checks the polarity.
1559  *  @hw: pointer to the HW structure
1560  *
1561  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1562  *
1563  *  Polarity is determined based on the PHY port status register, and the
1564  *  current speed (since there is no polarity at 100Mbps).
1565  **/
1566 static s32 igb_check_polarity_igp(struct e1000_hw *hw)
1567 {
1568 	struct e1000_phy_info *phy = &hw->phy;
1569 	s32 ret_val;
1570 	u16 data, offset, mask;
1571 
1572 	/* Polarity is determined based on the speed of
1573 	 * our connection.
1574 	 */
1575 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1576 	if (ret_val)
1577 		goto out;
1578 
1579 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1580 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1581 		offset	= IGP01E1000_PHY_PCS_INIT_REG;
1582 		mask	= IGP01E1000_PHY_POLARITY_MASK;
1583 	} else {
1584 		/* This really only applies to 10Mbps since
1585 		 * there is no polarity for 100Mbps (always 0).
1586 		 */
1587 		offset	= IGP01E1000_PHY_PORT_STATUS;
1588 		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
1589 	}
1590 
1591 	ret_val = phy->ops.read_reg(hw, offset, &data);
1592 
1593 	if (!ret_val)
1594 		phy->cable_polarity = (data & mask)
1595 				      ? e1000_rev_polarity_reversed
1596 				      : e1000_rev_polarity_normal;
1597 
1598 out:
1599 	return ret_val;
1600 }
1601 
1602 /**
1603  *  igb_wait_autoneg - Wait for auto-neg completion
1604  *  @hw: pointer to the HW structure
1605  *
1606  *  Waits for auto-negotiation to complete or for the auto-negotiation time
1607  *  limit to expire, which ever happens first.
1608  **/
1609 static s32 igb_wait_autoneg(struct e1000_hw *hw)
1610 {
1611 	s32 ret_val = 0;
1612 	u16 i, phy_status;
1613 
1614 	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1615 	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1616 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1617 		if (ret_val)
1618 			break;
1619 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1620 		if (ret_val)
1621 			break;
1622 		if (phy_status & MII_SR_AUTONEG_COMPLETE)
1623 			break;
1624 		msleep(100);
1625 	}
1626 
1627 	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1628 	 * has completed.
1629 	 */
1630 	return ret_val;
1631 }
1632 
1633 /**
1634  *  igb_phy_has_link - Polls PHY for link
1635  *  @hw: pointer to the HW structure
1636  *  @iterations: number of times to poll for link
1637  *  @usec_interval: delay between polling attempts
1638  *  @success: pointer to whether polling was successful or not
1639  *
1640  *  Polls the PHY status register for link, 'iterations' number of times.
1641  **/
1642 s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations,
1643 		     u32 usec_interval, bool *success)
1644 {
1645 	s32 ret_val = 0;
1646 	u16 i, phy_status;
1647 
1648 	for (i = 0; i < iterations; i++) {
1649 		/* Some PHYs require the PHY_STATUS register to be read
1650 		 * twice due to the link bit being sticky.  No harm doing
1651 		 * it across the board.
1652 		 */
1653 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1654 		if (ret_val && usec_interval > 0) {
1655 			/* If the first read fails, another entity may have
1656 			 * ownership of the resources, wait and try again to
1657 			 * see if they have relinquished the resources yet.
1658 			 */
1659 			if (usec_interval >= 1000)
1660 				mdelay(usec_interval/1000);
1661 			else
1662 				udelay(usec_interval);
1663 		}
1664 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1665 		if (ret_val)
1666 			break;
1667 		if (phy_status & MII_SR_LINK_STATUS)
1668 			break;
1669 		if (usec_interval >= 1000)
1670 			mdelay(usec_interval/1000);
1671 		else
1672 			udelay(usec_interval);
1673 	}
1674 
1675 	*success = (i < iterations) ? true : false;
1676 
1677 	return ret_val;
1678 }
1679 
1680 /**
1681  *  igb_get_cable_length_m88 - Determine cable length for m88 PHY
1682  *  @hw: pointer to the HW structure
1683  *
1684  *  Reads the PHY specific status register to retrieve the cable length
1685  *  information.  The cable length is determined by averaging the minimum and
1686  *  maximum values to get the "average" cable length.  The m88 PHY has four
1687  *  possible cable length values, which are:
1688  *	Register Value		Cable Length
1689  *	0			< 50 meters
1690  *	1			50 - 80 meters
1691  *	2			80 - 110 meters
1692  *	3			110 - 140 meters
1693  *	4			> 140 meters
1694  **/
1695 s32 igb_get_cable_length_m88(struct e1000_hw *hw)
1696 {
1697 	struct e1000_phy_info *phy = &hw->phy;
1698 	s32 ret_val;
1699 	u16 phy_data, index;
1700 
1701 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1702 	if (ret_val)
1703 		goto out;
1704 
1705 	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1706 		M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1707 	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1708 		ret_val = -E1000_ERR_PHY;
1709 		goto out;
1710 	}
1711 
1712 	phy->min_cable_length = e1000_m88_cable_length_table[index];
1713 	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1714 
1715 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1716 
1717 out:
1718 	return ret_val;
1719 }
1720 
1721 s32 igb_get_cable_length_m88_gen2(struct e1000_hw *hw)
1722 {
1723 	struct e1000_phy_info *phy = &hw->phy;
1724 	s32 ret_val;
1725 	u16 phy_data, phy_data2, index, default_page, is_cm;
1726 
1727 	switch (hw->phy.id) {
1728 	case I210_I_PHY_ID:
1729 		/* Get cable length from PHY Cable Diagnostics Control Reg */
1730 		ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
1731 					    (I347AT4_PCDL + phy->addr),
1732 					    &phy_data);
1733 		if (ret_val)
1734 			return ret_val;
1735 
1736 		/* Check if the unit of cable length is meters or cm */
1737 		ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
1738 					    I347AT4_PCDC, &phy_data2);
1739 		if (ret_val)
1740 			return ret_val;
1741 
1742 		is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1743 
1744 		/* Populate the phy structure with cable length in meters */
1745 		phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
1746 		phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
1747 		phy->cable_length = phy_data / (is_cm ? 100 : 1);
1748 		break;
1749 	case M88E1543_E_PHY_ID:
1750 	case I347AT4_E_PHY_ID:
1751 		/* Remember the original page select and set it to 7 */
1752 		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1753 					    &default_page);
1754 		if (ret_val)
1755 			goto out;
1756 
1757 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
1758 		if (ret_val)
1759 			goto out;
1760 
1761 		/* Get cable length from PHY Cable Diagnostics Control Reg */
1762 		ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr),
1763 					    &phy_data);
1764 		if (ret_val)
1765 			goto out;
1766 
1767 		/* Check if the unit of cable length is meters or cm */
1768 		ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
1769 		if (ret_val)
1770 			goto out;
1771 
1772 		is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1773 
1774 		/* Populate the phy structure with cable length in meters */
1775 		phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
1776 		phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
1777 		phy->cable_length = phy_data / (is_cm ? 100 : 1);
1778 
1779 		/* Reset the page selec to its original value */
1780 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1781 					     default_page);
1782 		if (ret_val)
1783 			goto out;
1784 		break;
1785 	case M88E1112_E_PHY_ID:
1786 		/* Remember the original page select and set it to 5 */
1787 		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1788 					    &default_page);
1789 		if (ret_val)
1790 			goto out;
1791 
1792 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
1793 		if (ret_val)
1794 			goto out;
1795 
1796 		ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
1797 					    &phy_data);
1798 		if (ret_val)
1799 			goto out;
1800 
1801 		index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1802 			M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1803 		if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1804 			ret_val = -E1000_ERR_PHY;
1805 			goto out;
1806 		}
1807 
1808 		phy->min_cable_length = e1000_m88_cable_length_table[index];
1809 		phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1810 
1811 		phy->cable_length = (phy->min_cable_length +
1812 				     phy->max_cable_length) / 2;
1813 
1814 		/* Reset the page select to its original value */
1815 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1816 					     default_page);
1817 		if (ret_val)
1818 			goto out;
1819 
1820 		break;
1821 	default:
1822 		ret_val = -E1000_ERR_PHY;
1823 		goto out;
1824 	}
1825 
1826 out:
1827 	return ret_val;
1828 }
1829 
1830 /**
1831  *  igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1832  *  @hw: pointer to the HW structure
1833  *
1834  *  The automatic gain control (agc) normalizes the amplitude of the
1835  *  received signal, adjusting for the attenuation produced by the
1836  *  cable.  By reading the AGC registers, which represent the
1837  *  combination of coarse and fine gain value, the value can be put
1838  *  into a lookup table to obtain the approximate cable length
1839  *  for each channel.
1840  **/
1841 s32 igb_get_cable_length_igp_2(struct e1000_hw *hw)
1842 {
1843 	struct e1000_phy_info *phy = &hw->phy;
1844 	s32 ret_val = 0;
1845 	u16 phy_data, i, agc_value = 0;
1846 	u16 cur_agc_index, max_agc_index = 0;
1847 	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1848 	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1849 		IGP02E1000_PHY_AGC_A,
1850 		IGP02E1000_PHY_AGC_B,
1851 		IGP02E1000_PHY_AGC_C,
1852 		IGP02E1000_PHY_AGC_D
1853 	};
1854 
1855 	/* Read the AGC registers for all channels */
1856 	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1857 		ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
1858 		if (ret_val)
1859 			goto out;
1860 
1861 		/* Getting bits 15:9, which represent the combination of
1862 		 * coarse and fine gain values.  The result is a number
1863 		 * that can be put into the lookup table to obtain the
1864 		 * approximate cable length.
1865 		 */
1866 		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1867 				IGP02E1000_AGC_LENGTH_MASK;
1868 
1869 		/* Array index bound check. */
1870 		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1871 		    (cur_agc_index == 0)) {
1872 			ret_val = -E1000_ERR_PHY;
1873 			goto out;
1874 		}
1875 
1876 		/* Remove min & max AGC values from calculation. */
1877 		if (e1000_igp_2_cable_length_table[min_agc_index] >
1878 		    e1000_igp_2_cable_length_table[cur_agc_index])
1879 			min_agc_index = cur_agc_index;
1880 		if (e1000_igp_2_cable_length_table[max_agc_index] <
1881 		    e1000_igp_2_cable_length_table[cur_agc_index])
1882 			max_agc_index = cur_agc_index;
1883 
1884 		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1885 	}
1886 
1887 	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1888 		      e1000_igp_2_cable_length_table[max_agc_index]);
1889 	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1890 
1891 	/* Calculate cable length with the error range of +/- 10 meters. */
1892 	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1893 				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1894 	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1895 
1896 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1897 
1898 out:
1899 	return ret_val;
1900 }
1901 
1902 /**
1903  *  igb_get_phy_info_m88 - Retrieve PHY information
1904  *  @hw: pointer to the HW structure
1905  *
1906  *  Valid for only copper links.  Read the PHY status register (sticky read)
1907  *  to verify that link is up.  Read the PHY special control register to
1908  *  determine the polarity and 10base-T extended distance.  Read the PHY
1909  *  special status register to determine MDI/MDIx and current speed.  If
1910  *  speed is 1000, then determine cable length, local and remote receiver.
1911  **/
1912 s32 igb_get_phy_info_m88(struct e1000_hw *hw)
1913 {
1914 	struct e1000_phy_info *phy = &hw->phy;
1915 	s32  ret_val;
1916 	u16 phy_data;
1917 	bool link;
1918 
1919 	if (phy->media_type != e1000_media_type_copper) {
1920 		hw_dbg("Phy info is only valid for copper media\n");
1921 		ret_val = -E1000_ERR_CONFIG;
1922 		goto out;
1923 	}
1924 
1925 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
1926 	if (ret_val)
1927 		goto out;
1928 
1929 	if (!link) {
1930 		hw_dbg("Phy info is only valid if link is up\n");
1931 		ret_val = -E1000_ERR_CONFIG;
1932 		goto out;
1933 	}
1934 
1935 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1936 	if (ret_val)
1937 		goto out;
1938 
1939 	phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
1940 				   ? true : false;
1941 
1942 	ret_val = igb_check_polarity_m88(hw);
1943 	if (ret_val)
1944 		goto out;
1945 
1946 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1947 	if (ret_val)
1948 		goto out;
1949 
1950 	phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false;
1951 
1952 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1953 		ret_val = phy->ops.get_cable_length(hw);
1954 		if (ret_val)
1955 			goto out;
1956 
1957 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
1958 		if (ret_val)
1959 			goto out;
1960 
1961 		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1962 				? e1000_1000t_rx_status_ok
1963 				: e1000_1000t_rx_status_not_ok;
1964 
1965 		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1966 				 ? e1000_1000t_rx_status_ok
1967 				 : e1000_1000t_rx_status_not_ok;
1968 	} else {
1969 		/* Set values to "undefined" */
1970 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1971 		phy->local_rx = e1000_1000t_rx_status_undefined;
1972 		phy->remote_rx = e1000_1000t_rx_status_undefined;
1973 	}
1974 
1975 out:
1976 	return ret_val;
1977 }
1978 
1979 /**
1980  *  igb_get_phy_info_igp - Retrieve igp PHY information
1981  *  @hw: pointer to the HW structure
1982  *
1983  *  Read PHY status to determine if link is up.  If link is up, then
1984  *  set/determine 10base-T extended distance and polarity correction.  Read
1985  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1986  *  determine on the cable length, local and remote receiver.
1987  **/
1988 s32 igb_get_phy_info_igp(struct e1000_hw *hw)
1989 {
1990 	struct e1000_phy_info *phy = &hw->phy;
1991 	s32 ret_val;
1992 	u16 data;
1993 	bool link;
1994 
1995 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
1996 	if (ret_val)
1997 		goto out;
1998 
1999 	if (!link) {
2000 		hw_dbg("Phy info is only valid if link is up\n");
2001 		ret_val = -E1000_ERR_CONFIG;
2002 		goto out;
2003 	}
2004 
2005 	phy->polarity_correction = true;
2006 
2007 	ret_val = igb_check_polarity_igp(hw);
2008 	if (ret_val)
2009 		goto out;
2010 
2011 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2012 	if (ret_val)
2013 		goto out;
2014 
2015 	phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false;
2016 
2017 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2018 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
2019 		ret_val = phy->ops.get_cable_length(hw);
2020 		if (ret_val)
2021 			goto out;
2022 
2023 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2024 		if (ret_val)
2025 			goto out;
2026 
2027 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2028 				? e1000_1000t_rx_status_ok
2029 				: e1000_1000t_rx_status_not_ok;
2030 
2031 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2032 				 ? e1000_1000t_rx_status_ok
2033 				 : e1000_1000t_rx_status_not_ok;
2034 	} else {
2035 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2036 		phy->local_rx = e1000_1000t_rx_status_undefined;
2037 		phy->remote_rx = e1000_1000t_rx_status_undefined;
2038 	}
2039 
2040 out:
2041 	return ret_val;
2042 }
2043 
2044 /**
2045  *  igb_phy_sw_reset - PHY software reset
2046  *  @hw: pointer to the HW structure
2047  *
2048  *  Does a software reset of the PHY by reading the PHY control register and
2049  *  setting/write the control register reset bit to the PHY.
2050  **/
2051 s32 igb_phy_sw_reset(struct e1000_hw *hw)
2052 {
2053 	s32 ret_val = 0;
2054 	u16 phy_ctrl;
2055 
2056 	if (!(hw->phy.ops.read_reg))
2057 		goto out;
2058 
2059 	ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
2060 	if (ret_val)
2061 		goto out;
2062 
2063 	phy_ctrl |= MII_CR_RESET;
2064 	ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
2065 	if (ret_val)
2066 		goto out;
2067 
2068 	udelay(1);
2069 
2070 out:
2071 	return ret_val;
2072 }
2073 
2074 /**
2075  *  igb_phy_hw_reset - PHY hardware reset
2076  *  @hw: pointer to the HW structure
2077  *
2078  *  Verify the reset block is not blocking us from resetting.  Acquire
2079  *  semaphore (if necessary) and read/set/write the device control reset
2080  *  bit in the PHY.  Wait the appropriate delay time for the device to
2081  *  reset and release the semaphore (if necessary).
2082  **/
2083 s32 igb_phy_hw_reset(struct e1000_hw *hw)
2084 {
2085 	struct e1000_phy_info *phy = &hw->phy;
2086 	s32  ret_val;
2087 	u32 ctrl;
2088 
2089 	ret_val = igb_check_reset_block(hw);
2090 	if (ret_val) {
2091 		ret_val = 0;
2092 		goto out;
2093 	}
2094 
2095 	ret_val = phy->ops.acquire(hw);
2096 	if (ret_val)
2097 		goto out;
2098 
2099 	ctrl = rd32(E1000_CTRL);
2100 	wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
2101 	wrfl();
2102 
2103 	udelay(phy->reset_delay_us);
2104 
2105 	wr32(E1000_CTRL, ctrl);
2106 	wrfl();
2107 
2108 	udelay(150);
2109 
2110 	phy->ops.release(hw);
2111 
2112 	ret_val = phy->ops.get_cfg_done(hw);
2113 
2114 out:
2115 	return ret_val;
2116 }
2117 
2118 /**
2119  *  igb_phy_init_script_igp3 - Inits the IGP3 PHY
2120  *  @hw: pointer to the HW structure
2121  *
2122  *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2123  **/
2124 s32 igb_phy_init_script_igp3(struct e1000_hw *hw)
2125 {
2126 	hw_dbg("Running IGP 3 PHY init script\n");
2127 
2128 	/* PHY init IGP 3 */
2129 	/* Enable rise/fall, 10-mode work in class-A */
2130 	hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
2131 	/* Remove all caps from Replica path filter */
2132 	hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
2133 	/* Bias trimming for ADC, AFE and Driver (Default) */
2134 	hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
2135 	/* Increase Hybrid poly bias */
2136 	hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
2137 	/* Add 4% to TX amplitude in Giga mode */
2138 	hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
2139 	/* Disable trimming (TTT) */
2140 	hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
2141 	/* Poly DC correction to 94.6% + 2% for all channels */
2142 	hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
2143 	/* ABS DC correction to 95.9% */
2144 	hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
2145 	/* BG temp curve trim */
2146 	hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
2147 	/* Increasing ADC OPAMP stage 1 currents to max */
2148 	hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
2149 	/* Force 1000 ( required for enabling PHY regs configuration) */
2150 	hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
2151 	/* Set upd_freq to 6 */
2152 	hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
2153 	/* Disable NPDFE */
2154 	hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
2155 	/* Disable adaptive fixed FFE (Default) */
2156 	hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
2157 	/* Enable FFE hysteresis */
2158 	hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
2159 	/* Fixed FFE for short cable lengths */
2160 	hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
2161 	/* Fixed FFE for medium cable lengths */
2162 	hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
2163 	/* Fixed FFE for long cable lengths */
2164 	hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
2165 	/* Enable Adaptive Clip Threshold */
2166 	hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
2167 	/* AHT reset limit to 1 */
2168 	hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
2169 	/* Set AHT master delay to 127 msec */
2170 	hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
2171 	/* Set scan bits for AHT */
2172 	hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
2173 	/* Set AHT Preset bits */
2174 	hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
2175 	/* Change integ_factor of channel A to 3 */
2176 	hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
2177 	/* Change prop_factor of channels BCD to 8 */
2178 	hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
2179 	/* Change cg_icount + enable integbp for channels BCD */
2180 	hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
2181 	/* Change cg_icount + enable integbp + change prop_factor_master
2182 	 * to 8 for channel A
2183 	 */
2184 	hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
2185 	/* Disable AHT in Slave mode on channel A */
2186 	hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
2187 	/* Enable LPLU and disable AN to 1000 in non-D0a states,
2188 	 * Enable SPD+B2B
2189 	 */
2190 	hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
2191 	/* Enable restart AN on an1000_dis change */
2192 	hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
2193 	/* Enable wh_fifo read clock in 10/100 modes */
2194 	hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
2195 	/* Restart AN, Speed selection is 1000 */
2196 	hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
2197 
2198 	return 0;
2199 }
2200 
2201 /**
2202  * igb_power_up_phy_copper - Restore copper link in case of PHY power down
2203  * @hw: pointer to the HW structure
2204  *
2205  * In the case of a PHY power down to save power, or to turn off link during a
2206  * driver unload, restore the link to previous settings.
2207  **/
2208 void igb_power_up_phy_copper(struct e1000_hw *hw)
2209 {
2210 	u16 mii_reg = 0;
2211 	u16 power_reg = 0;
2212 
2213 	/* The PHY will retain its settings across a power down/up cycle */
2214 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2215 	mii_reg &= ~MII_CR_POWER_DOWN;
2216 	if (hw->phy.type == e1000_phy_i210) {
2217 		hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg);
2218 		power_reg &= ~GS40G_CS_POWER_DOWN;
2219 		hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg);
2220 	}
2221 	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2222 }
2223 
2224 /**
2225  * igb_power_down_phy_copper - Power down copper PHY
2226  * @hw: pointer to the HW structure
2227  *
2228  * Power down PHY to save power when interface is down and wake on lan
2229  * is not enabled.
2230  **/
2231 void igb_power_down_phy_copper(struct e1000_hw *hw)
2232 {
2233 	u16 mii_reg = 0;
2234 	u16 power_reg = 0;
2235 
2236 	/* The PHY will retain its settings across a power down/up cycle */
2237 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2238 	mii_reg |= MII_CR_POWER_DOWN;
2239 
2240 	/* i210 Phy requires an additional bit for power up/down */
2241 	if (hw->phy.type == e1000_phy_i210) {
2242 		hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg);
2243 		power_reg |= GS40G_CS_POWER_DOWN;
2244 		hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg);
2245 	}
2246 	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2247 	msleep(1);
2248 }
2249 
2250 /**
2251  *  igb_check_polarity_82580 - Checks the polarity.
2252  *  @hw: pointer to the HW structure
2253  *
2254  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2255  *
2256  *  Polarity is determined based on the PHY specific status register.
2257  **/
2258 static s32 igb_check_polarity_82580(struct e1000_hw *hw)
2259 {
2260 	struct e1000_phy_info *phy = &hw->phy;
2261 	s32 ret_val;
2262 	u16 data;
2263 
2264 
2265 	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2266 
2267 	if (!ret_val)
2268 		phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY)
2269 				      ? e1000_rev_polarity_reversed
2270 				      : e1000_rev_polarity_normal;
2271 
2272 	return ret_val;
2273 }
2274 
2275 /**
2276  *  igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY
2277  *  @hw: pointer to the HW structure
2278  *
2279  *  Calls the PHY setup function to force speed and duplex.  Clears the
2280  *  auto-crossover to force MDI manually.  Waits for link and returns
2281  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
2282  **/
2283 s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw)
2284 {
2285 	struct e1000_phy_info *phy = &hw->phy;
2286 	s32 ret_val;
2287 	u16 phy_data;
2288 	bool link;
2289 
2290 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
2291 	if (ret_val)
2292 		goto out;
2293 
2294 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
2295 
2296 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
2297 	if (ret_val)
2298 		goto out;
2299 
2300 	/* Clear Auto-Crossover to force MDI manually.  82580 requires MDI
2301 	 * forced whenever speed and duplex are forced.
2302 	 */
2303 	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
2304 	if (ret_val)
2305 		goto out;
2306 
2307 	phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
2308 
2309 	ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
2310 	if (ret_val)
2311 		goto out;
2312 
2313 	hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data);
2314 
2315 	udelay(1);
2316 
2317 	if (phy->autoneg_wait_to_complete) {
2318 		hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n");
2319 
2320 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2321 		if (ret_val)
2322 			goto out;
2323 
2324 		if (!link)
2325 			hw_dbg("Link taking longer than expected.\n");
2326 
2327 		/* Try once more */
2328 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2329 		if (ret_val)
2330 			goto out;
2331 	}
2332 
2333 out:
2334 	return ret_val;
2335 }
2336 
2337 /**
2338  *  igb_get_phy_info_82580 - Retrieve I82580 PHY information
2339  *  @hw: pointer to the HW structure
2340  *
2341  *  Read PHY status to determine if link is up.  If link is up, then
2342  *  set/determine 10base-T extended distance and polarity correction.  Read
2343  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
2344  *  determine on the cable length, local and remote receiver.
2345  **/
2346 s32 igb_get_phy_info_82580(struct e1000_hw *hw)
2347 {
2348 	struct e1000_phy_info *phy = &hw->phy;
2349 	s32 ret_val;
2350 	u16 data;
2351 	bool link;
2352 
2353 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
2354 	if (ret_val)
2355 		goto out;
2356 
2357 	if (!link) {
2358 		hw_dbg("Phy info is only valid if link is up\n");
2359 		ret_val = -E1000_ERR_CONFIG;
2360 		goto out;
2361 	}
2362 
2363 	phy->polarity_correction = true;
2364 
2365 	ret_val = igb_check_polarity_82580(hw);
2366 	if (ret_val)
2367 		goto out;
2368 
2369 	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2370 	if (ret_val)
2371 		goto out;
2372 
2373 	phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false;
2374 
2375 	if ((data & I82580_PHY_STATUS2_SPEED_MASK) ==
2376 	    I82580_PHY_STATUS2_SPEED_1000MBPS) {
2377 		ret_val = hw->phy.ops.get_cable_length(hw);
2378 		if (ret_val)
2379 			goto out;
2380 
2381 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2382 		if (ret_val)
2383 			goto out;
2384 
2385 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2386 				? e1000_1000t_rx_status_ok
2387 				: e1000_1000t_rx_status_not_ok;
2388 
2389 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2390 				 ? e1000_1000t_rx_status_ok
2391 				 : e1000_1000t_rx_status_not_ok;
2392 	} else {
2393 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2394 		phy->local_rx = e1000_1000t_rx_status_undefined;
2395 		phy->remote_rx = e1000_1000t_rx_status_undefined;
2396 	}
2397 
2398 out:
2399 	return ret_val;
2400 }
2401 
2402 /**
2403  *  igb_get_cable_length_82580 - Determine cable length for 82580 PHY
2404  *  @hw: pointer to the HW structure
2405  *
2406  * Reads the diagnostic status register and verifies result is valid before
2407  * placing it in the phy_cable_length field.
2408  **/
2409 s32 igb_get_cable_length_82580(struct e1000_hw *hw)
2410 {
2411 	struct e1000_phy_info *phy = &hw->phy;
2412 	s32 ret_val;
2413 	u16 phy_data, length;
2414 
2415 	ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data);
2416 	if (ret_val)
2417 		goto out;
2418 
2419 	length = (phy_data & I82580_DSTATUS_CABLE_LENGTH) >>
2420 		 I82580_DSTATUS_CABLE_LENGTH_SHIFT;
2421 
2422 	if (length == E1000_CABLE_LENGTH_UNDEFINED)
2423 		ret_val = -E1000_ERR_PHY;
2424 
2425 	phy->cable_length = length;
2426 
2427 out:
2428 	return ret_val;
2429 }
2430 
2431 /**
2432  *  igb_write_phy_reg_gs40g - Write GS40G PHY register
2433  *  @hw: pointer to the HW structure
2434  *  @offset: lower half is register offset to write to
2435  *     upper half is page to use.
2436  *  @data: data to write at register offset
2437  *
2438  *  Acquires semaphore, if necessary, then writes the data to PHY register
2439  *  at the offset.  Release any acquired semaphores before exiting.
2440  **/
2441 s32 igb_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data)
2442 {
2443 	s32 ret_val;
2444 	u16 page = offset >> GS40G_PAGE_SHIFT;
2445 
2446 	offset = offset & GS40G_OFFSET_MASK;
2447 	ret_val = hw->phy.ops.acquire(hw);
2448 	if (ret_val)
2449 		return ret_val;
2450 
2451 	ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
2452 	if (ret_val)
2453 		goto release;
2454 	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2455 
2456 release:
2457 	hw->phy.ops.release(hw);
2458 	return ret_val;
2459 }
2460 
2461 /**
2462  *  igb_read_phy_reg_gs40g - Read GS40G  PHY register
2463  *  @hw: pointer to the HW structure
2464  *  @offset: lower half is register offset to read to
2465  *     upper half is page to use.
2466  *  @data: data to read at register offset
2467  *
2468  *  Acquires semaphore, if necessary, then reads the data in the PHY register
2469  *  at the offset.  Release any acquired semaphores before exiting.
2470  **/
2471 s32 igb_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data)
2472 {
2473 	s32 ret_val;
2474 	u16 page = offset >> GS40G_PAGE_SHIFT;
2475 
2476 	offset = offset & GS40G_OFFSET_MASK;
2477 	ret_val = hw->phy.ops.acquire(hw);
2478 	if (ret_val)
2479 		return ret_val;
2480 
2481 	ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
2482 	if (ret_val)
2483 		goto release;
2484 	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2485 
2486 release:
2487 	hw->phy.ops.release(hw);
2488 	return ret_val;
2489 }
2490 
2491 /**
2492  *  igb_set_master_slave_mode - Setup PHY for Master/slave mode
2493  *  @hw: pointer to the HW structure
2494  *
2495  *  Sets up Master/slave mode
2496  **/
2497 static s32 igb_set_master_slave_mode(struct e1000_hw *hw)
2498 {
2499 	s32 ret_val;
2500 	u16 phy_data;
2501 
2502 	/* Resolve Master/Slave mode */
2503 	ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data);
2504 	if (ret_val)
2505 		return ret_val;
2506 
2507 	/* load defaults for future use */
2508 	hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
2509 				   ((phy_data & CR_1000T_MS_VALUE) ?
2510 				    e1000_ms_force_master :
2511 				    e1000_ms_force_slave) : e1000_ms_auto;
2512 
2513 	switch (hw->phy.ms_type) {
2514 	case e1000_ms_force_master:
2515 		phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2516 		break;
2517 	case e1000_ms_force_slave:
2518 		phy_data |= CR_1000T_MS_ENABLE;
2519 		phy_data &= ~(CR_1000T_MS_VALUE);
2520 		break;
2521 	case e1000_ms_auto:
2522 		phy_data &= ~CR_1000T_MS_ENABLE;
2523 		/* fall-through */
2524 	default:
2525 		break;
2526 	}
2527 
2528 	return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data);
2529 }
2530