1 /*******************************************************************************
2 
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2013 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 #include <linux/if_ether.h>
29 #include <linux/delay.h>
30 
31 #include "e1000_mac.h"
32 #include "e1000_phy.h"
33 
34 static s32  igb_phy_setup_autoneg(struct e1000_hw *hw);
35 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
36 					     u16 *phy_ctrl);
37 static s32  igb_wait_autoneg(struct e1000_hw *hw);
38 static s32  igb_set_master_slave_mode(struct e1000_hw *hw);
39 
40 /* Cable length tables */
41 static const u16 e1000_m88_cable_length_table[] = {
42 	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
43 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
44 	(sizeof(e1000_m88_cable_length_table) / \
45 	sizeof(e1000_m88_cable_length_table[0]))
46 
47 static const u16 e1000_igp_2_cable_length_table[] = {
48 	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
49 	0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
50 	6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
51 	21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
52 	40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
53 	60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
54 	83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
55 	104, 109, 114, 118, 121, 124};
56 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
57 	(sizeof(e1000_igp_2_cable_length_table) / \
58 	 sizeof(e1000_igp_2_cable_length_table[0]))
59 
60 /**
61  *  igb_check_reset_block - Check if PHY reset is blocked
62  *  @hw: pointer to the HW structure
63  *
64  *  Read the PHY management control register and check whether a PHY reset
65  *  is blocked.  If a reset is not blocked return 0, otherwise
66  *  return E1000_BLK_PHY_RESET (12).
67  **/
68 s32 igb_check_reset_block(struct e1000_hw *hw)
69 {
70 	u32 manc;
71 
72 	manc = rd32(E1000_MANC);
73 
74 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
75 }
76 
77 /**
78  *  igb_get_phy_id - Retrieve the PHY ID and revision
79  *  @hw: pointer to the HW structure
80  *
81  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
82  *  revision in the hardware structure.
83  **/
84 s32 igb_get_phy_id(struct e1000_hw *hw)
85 {
86 	struct e1000_phy_info *phy = &hw->phy;
87 	s32 ret_val = 0;
88 	u16 phy_id;
89 
90 	ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
91 	if (ret_val)
92 		goto out;
93 
94 	phy->id = (u32)(phy_id << 16);
95 	udelay(20);
96 	ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
97 	if (ret_val)
98 		goto out;
99 
100 	phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
101 	phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
102 
103 out:
104 	return ret_val;
105 }
106 
107 /**
108  *  igb_phy_reset_dsp - Reset PHY DSP
109  *  @hw: pointer to the HW structure
110  *
111  *  Reset the digital signal processor.
112  **/
113 static s32 igb_phy_reset_dsp(struct e1000_hw *hw)
114 {
115 	s32 ret_val = 0;
116 
117 	if (!(hw->phy.ops.write_reg))
118 		goto out;
119 
120 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
121 	if (ret_val)
122 		goto out;
123 
124 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
125 
126 out:
127 	return ret_val;
128 }
129 
130 /**
131  *  igb_read_phy_reg_mdic - Read MDI control register
132  *  @hw: pointer to the HW structure
133  *  @offset: register offset to be read
134  *  @data: pointer to the read data
135  *
136  *  Reads the MDI control regsiter in the PHY at offset and stores the
137  *  information read to data.
138  **/
139 s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
140 {
141 	struct e1000_phy_info *phy = &hw->phy;
142 	u32 i, mdic = 0;
143 	s32 ret_val = 0;
144 
145 	if (offset > MAX_PHY_REG_ADDRESS) {
146 		hw_dbg("PHY Address %d is out of range\n", offset);
147 		ret_val = -E1000_ERR_PARAM;
148 		goto out;
149 	}
150 
151 	/* Set up Op-code, Phy Address, and register offset in the MDI
152 	 * Control register.  The MAC will take care of interfacing with the
153 	 * PHY to retrieve the desired data.
154 	 */
155 	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
156 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
157 		(E1000_MDIC_OP_READ));
158 
159 	wr32(E1000_MDIC, mdic);
160 
161 	/* Poll the ready bit to see if the MDI read completed
162 	 * Increasing the time out as testing showed failures with
163 	 * the lower time out
164 	 */
165 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
166 		udelay(50);
167 		mdic = rd32(E1000_MDIC);
168 		if (mdic & E1000_MDIC_READY)
169 			break;
170 	}
171 	if (!(mdic & E1000_MDIC_READY)) {
172 		hw_dbg("MDI Read did not complete\n");
173 		ret_val = -E1000_ERR_PHY;
174 		goto out;
175 	}
176 	if (mdic & E1000_MDIC_ERROR) {
177 		hw_dbg("MDI Error\n");
178 		ret_val = -E1000_ERR_PHY;
179 		goto out;
180 	}
181 	*data = (u16) mdic;
182 
183 out:
184 	return ret_val;
185 }
186 
187 /**
188  *  igb_write_phy_reg_mdic - Write MDI control register
189  *  @hw: pointer to the HW structure
190  *  @offset: register offset to write to
191  *  @data: data to write to register at offset
192  *
193  *  Writes data to MDI control register in the PHY at offset.
194  **/
195 s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
196 {
197 	struct e1000_phy_info *phy = &hw->phy;
198 	u32 i, mdic = 0;
199 	s32 ret_val = 0;
200 
201 	if (offset > MAX_PHY_REG_ADDRESS) {
202 		hw_dbg("PHY Address %d is out of range\n", offset);
203 		ret_val = -E1000_ERR_PARAM;
204 		goto out;
205 	}
206 
207 	/* Set up Op-code, Phy Address, and register offset in the MDI
208 	 * Control register.  The MAC will take care of interfacing with the
209 	 * PHY to retrieve the desired data.
210 	 */
211 	mdic = (((u32)data) |
212 		(offset << E1000_MDIC_REG_SHIFT) |
213 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
214 		(E1000_MDIC_OP_WRITE));
215 
216 	wr32(E1000_MDIC, mdic);
217 
218 	/* Poll the ready bit to see if the MDI read completed
219 	 * Increasing the time out as testing showed failures with
220 	 * the lower time out
221 	 */
222 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
223 		udelay(50);
224 		mdic = rd32(E1000_MDIC);
225 		if (mdic & E1000_MDIC_READY)
226 			break;
227 	}
228 	if (!(mdic & E1000_MDIC_READY)) {
229 		hw_dbg("MDI Write did not complete\n");
230 		ret_val = -E1000_ERR_PHY;
231 		goto out;
232 	}
233 	if (mdic & E1000_MDIC_ERROR) {
234 		hw_dbg("MDI Error\n");
235 		ret_val = -E1000_ERR_PHY;
236 		goto out;
237 	}
238 
239 out:
240 	return ret_val;
241 }
242 
243 /**
244  *  igb_read_phy_reg_i2c - Read PHY register using i2c
245  *  @hw: pointer to the HW structure
246  *  @offset: register offset to be read
247  *  @data: pointer to the read data
248  *
249  *  Reads the PHY register at offset using the i2c interface and stores the
250  *  retrieved information in data.
251  **/
252 s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
253 {
254 	struct e1000_phy_info *phy = &hw->phy;
255 	u32 i, i2ccmd = 0;
256 
257 	/* Set up Op-code, Phy Address, and register address in the I2CCMD
258 	 * register.  The MAC will take care of interfacing with the
259 	 * PHY to retrieve the desired data.
260 	 */
261 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
262 		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
263 		  (E1000_I2CCMD_OPCODE_READ));
264 
265 	wr32(E1000_I2CCMD, i2ccmd);
266 
267 	/* Poll the ready bit to see if the I2C read completed */
268 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
269 		udelay(50);
270 		i2ccmd = rd32(E1000_I2CCMD);
271 		if (i2ccmd & E1000_I2CCMD_READY)
272 			break;
273 	}
274 	if (!(i2ccmd & E1000_I2CCMD_READY)) {
275 		hw_dbg("I2CCMD Read did not complete\n");
276 		return -E1000_ERR_PHY;
277 	}
278 	if (i2ccmd & E1000_I2CCMD_ERROR) {
279 		hw_dbg("I2CCMD Error bit set\n");
280 		return -E1000_ERR_PHY;
281 	}
282 
283 	/* Need to byte-swap the 16-bit value. */
284 	*data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
285 
286 	return 0;
287 }
288 
289 /**
290  *  igb_write_phy_reg_i2c - Write PHY register using i2c
291  *  @hw: pointer to the HW structure
292  *  @offset: register offset to write to
293  *  @data: data to write at register offset
294  *
295  *  Writes the data to PHY register at the offset using the i2c interface.
296  **/
297 s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
298 {
299 	struct e1000_phy_info *phy = &hw->phy;
300 	u32 i, i2ccmd = 0;
301 	u16 phy_data_swapped;
302 
303 	/* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/
304 	if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) {
305 		hw_dbg("PHY I2C Address %d is out of range.\n",
306 			  hw->phy.addr);
307 		return -E1000_ERR_CONFIG;
308 	}
309 
310 	/* Swap the data bytes for the I2C interface */
311 	phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
312 
313 	/* Set up Op-code, Phy Address, and register address in the I2CCMD
314 	 * register.  The MAC will take care of interfacing with the
315 	 * PHY to retrieve the desired data.
316 	 */
317 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
318 		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
319 		  E1000_I2CCMD_OPCODE_WRITE |
320 		  phy_data_swapped);
321 
322 	wr32(E1000_I2CCMD, i2ccmd);
323 
324 	/* Poll the ready bit to see if the I2C read completed */
325 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
326 		udelay(50);
327 		i2ccmd = rd32(E1000_I2CCMD);
328 		if (i2ccmd & E1000_I2CCMD_READY)
329 			break;
330 	}
331 	if (!(i2ccmd & E1000_I2CCMD_READY)) {
332 		hw_dbg("I2CCMD Write did not complete\n");
333 		return -E1000_ERR_PHY;
334 	}
335 	if (i2ccmd & E1000_I2CCMD_ERROR) {
336 		hw_dbg("I2CCMD Error bit set\n");
337 		return -E1000_ERR_PHY;
338 	}
339 
340 	return 0;
341 }
342 
343 /**
344  *  igb_read_sfp_data_byte - Reads SFP module data.
345  *  @hw: pointer to the HW structure
346  *  @offset: byte location offset to be read
347  *  @data: read data buffer pointer
348  *
349  *  Reads one byte from SFP module data stored
350  *  in SFP resided EEPROM memory or SFP diagnostic area.
351  *  Function should be called with
352  *  E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
353  *  E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
354  *  access
355  **/
356 s32 igb_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data)
357 {
358 	u32 i = 0;
359 	u32 i2ccmd = 0;
360 	u32 data_local = 0;
361 
362 	if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
363 		hw_dbg("I2CCMD command address exceeds upper limit\n");
364 		return -E1000_ERR_PHY;
365 	}
366 
367 	/* Set up Op-code, EEPROM Address,in the I2CCMD
368 	 * register. The MAC will take care of interfacing with the
369 	 * EEPROM to retrieve the desired data.
370 	 */
371 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
372 		  E1000_I2CCMD_OPCODE_READ);
373 
374 	wr32(E1000_I2CCMD, i2ccmd);
375 
376 	/* Poll the ready bit to see if the I2C read completed */
377 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
378 		udelay(50);
379 		data_local = rd32(E1000_I2CCMD);
380 		if (data_local & E1000_I2CCMD_READY)
381 			break;
382 	}
383 	if (!(data_local & E1000_I2CCMD_READY)) {
384 		hw_dbg("I2CCMD Read did not complete\n");
385 		return -E1000_ERR_PHY;
386 	}
387 	if (data_local & E1000_I2CCMD_ERROR) {
388 		hw_dbg("I2CCMD Error bit set\n");
389 		return -E1000_ERR_PHY;
390 	}
391 	*data = (u8) data_local & 0xFF;
392 
393 	return 0;
394 }
395 
396 /**
397  *  e1000_write_sfp_data_byte - Writes SFP module data.
398  *  @hw: pointer to the HW structure
399  *  @offset: byte location offset to write to
400  *  @data: data to write
401  *
402  *  Writes one byte to SFP module data stored
403  *  in SFP resided EEPROM memory or SFP diagnostic area.
404  *  Function should be called with
405  *  E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
406  *  E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
407  *  access
408  **/
409 s32 e1000_write_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 data)
410 {
411 	u32 i = 0;
412 	u32 i2ccmd = 0;
413 	u32 data_local = 0;
414 
415 	if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
416 		hw_dbg("I2CCMD command address exceeds upper limit\n");
417 		return -E1000_ERR_PHY;
418 	}
419 	/* The programming interface is 16 bits wide
420 	 * so we need to read the whole word first
421 	 * then update appropriate byte lane and write
422 	 * the updated word back.
423 	 */
424 	/* Set up Op-code, EEPROM Address,in the I2CCMD
425 	 * register. The MAC will take care of interfacing
426 	 * with an EEPROM to write the data given.
427 	 */
428 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
429 		  E1000_I2CCMD_OPCODE_READ);
430 	/* Set a command to read single word */
431 	wr32(E1000_I2CCMD, i2ccmd);
432 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
433 		udelay(50);
434 		/* Poll the ready bit to see if lastly
435 		 * launched I2C operation completed
436 		 */
437 		i2ccmd = rd32(E1000_I2CCMD);
438 		if (i2ccmd & E1000_I2CCMD_READY) {
439 			/* Check if this is READ or WRITE phase */
440 			if ((i2ccmd & E1000_I2CCMD_OPCODE_READ) ==
441 			    E1000_I2CCMD_OPCODE_READ) {
442 				/* Write the selected byte
443 				 * lane and update whole word
444 				 */
445 				data_local = i2ccmd & 0xFF00;
446 				data_local |= data;
447 				i2ccmd = ((offset <<
448 					E1000_I2CCMD_REG_ADDR_SHIFT) |
449 					E1000_I2CCMD_OPCODE_WRITE | data_local);
450 				wr32(E1000_I2CCMD, i2ccmd);
451 			} else {
452 				break;
453 			}
454 		}
455 	}
456 	if (!(i2ccmd & E1000_I2CCMD_READY)) {
457 		hw_dbg("I2CCMD Write did not complete\n");
458 		return -E1000_ERR_PHY;
459 	}
460 	if (i2ccmd & E1000_I2CCMD_ERROR) {
461 		hw_dbg("I2CCMD Error bit set\n");
462 		return -E1000_ERR_PHY;
463 	}
464 	return 0;
465 }
466 
467 /**
468  *  igb_read_phy_reg_igp - Read igp PHY register
469  *  @hw: pointer to the HW structure
470  *  @offset: register offset to be read
471  *  @data: pointer to the read data
472  *
473  *  Acquires semaphore, if necessary, then reads the PHY register at offset
474  *  and storing the retrieved information in data.  Release any acquired
475  *  semaphores before exiting.
476  **/
477 s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
478 {
479 	s32 ret_val = 0;
480 
481 	if (!(hw->phy.ops.acquire))
482 		goto out;
483 
484 	ret_val = hw->phy.ops.acquire(hw);
485 	if (ret_val)
486 		goto out;
487 
488 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
489 		ret_val = igb_write_phy_reg_mdic(hw,
490 						 IGP01E1000_PHY_PAGE_SELECT,
491 						 (u16)offset);
492 		if (ret_val) {
493 			hw->phy.ops.release(hw);
494 			goto out;
495 		}
496 	}
497 
498 	ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
499 					data);
500 
501 	hw->phy.ops.release(hw);
502 
503 out:
504 	return ret_val;
505 }
506 
507 /**
508  *  igb_write_phy_reg_igp - Write igp PHY register
509  *  @hw: pointer to the HW structure
510  *  @offset: register offset to write to
511  *  @data: data to write at register offset
512  *
513  *  Acquires semaphore, if necessary, then writes the data to PHY register
514  *  at the offset.  Release any acquired semaphores before exiting.
515  **/
516 s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
517 {
518 	s32 ret_val = 0;
519 
520 	if (!(hw->phy.ops.acquire))
521 		goto out;
522 
523 	ret_val = hw->phy.ops.acquire(hw);
524 	if (ret_val)
525 		goto out;
526 
527 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
528 		ret_val = igb_write_phy_reg_mdic(hw,
529 						 IGP01E1000_PHY_PAGE_SELECT,
530 						 (u16)offset);
531 		if (ret_val) {
532 			hw->phy.ops.release(hw);
533 			goto out;
534 		}
535 	}
536 
537 	ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
538 					 data);
539 
540 	hw->phy.ops.release(hw);
541 
542 out:
543 	return ret_val;
544 }
545 
546 /**
547  *  igb_copper_link_setup_82580 - Setup 82580 PHY for copper link
548  *  @hw: pointer to the HW structure
549  *
550  *  Sets up Carrier-sense on Transmit and downshift values.
551  **/
552 s32 igb_copper_link_setup_82580(struct e1000_hw *hw)
553 {
554 	struct e1000_phy_info *phy = &hw->phy;
555 	s32 ret_val;
556 	u16 phy_data;
557 
558 	if (phy->reset_disable) {
559 		ret_val = 0;
560 		goto out;
561 	}
562 
563 	if (phy->type == e1000_phy_82580) {
564 		ret_val = hw->phy.ops.reset(hw);
565 		if (ret_val) {
566 			hw_dbg("Error resetting the PHY.\n");
567 			goto out;
568 		}
569 	}
570 
571 	/* Enable CRS on TX. This must be set for half-duplex operation. */
572 	ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data);
573 	if (ret_val)
574 		goto out;
575 
576 	phy_data |= I82580_CFG_ASSERT_CRS_ON_TX;
577 
578 	/* Enable downshift */
579 	phy_data |= I82580_CFG_ENABLE_DOWNSHIFT;
580 
581 	ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data);
582 	if (ret_val)
583 		goto out;
584 
585 	/* Set MDI/MDIX mode */
586 	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
587 	if (ret_val)
588 		goto out;
589 	phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
590 	/* Options:
591 	 *   0 - Auto (default)
592 	 *   1 - MDI mode
593 	 *   2 - MDI-X mode
594 	 */
595 	switch (hw->phy.mdix) {
596 	case 1:
597 		break;
598 	case 2:
599 		phy_data |= I82580_PHY_CTRL2_MANUAL_MDIX;
600 		break;
601 	case 0:
602 	default:
603 		phy_data |= I82580_PHY_CTRL2_AUTO_MDI_MDIX;
604 		break;
605 	}
606 	ret_val = hw->phy.ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
607 
608 out:
609 	return ret_val;
610 }
611 
612 /**
613  *  igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
614  *  @hw: pointer to the HW structure
615  *
616  *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
617  *  and downshift values are set also.
618  **/
619 s32 igb_copper_link_setup_m88(struct e1000_hw *hw)
620 {
621 	struct e1000_phy_info *phy = &hw->phy;
622 	s32 ret_val;
623 	u16 phy_data;
624 
625 	if (phy->reset_disable) {
626 		ret_val = 0;
627 		goto out;
628 	}
629 
630 	/* Enable CRS on TX. This must be set for half-duplex operation. */
631 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
632 	if (ret_val)
633 		goto out;
634 
635 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
636 
637 	/* Options:
638 	 *   MDI/MDI-X = 0 (default)
639 	 *   0 - Auto for all speeds
640 	 *   1 - MDI mode
641 	 *   2 - MDI-X mode
642 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
643 	 */
644 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
645 
646 	switch (phy->mdix) {
647 	case 1:
648 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
649 		break;
650 	case 2:
651 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
652 		break;
653 	case 3:
654 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
655 		break;
656 	case 0:
657 	default:
658 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
659 		break;
660 	}
661 
662 	/* Options:
663 	 *   disable_polarity_correction = 0 (default)
664 	 *       Automatic Correction for Reversed Cable Polarity
665 	 *   0 - Disabled
666 	 *   1 - Enabled
667 	 */
668 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
669 	if (phy->disable_polarity_correction == 1)
670 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
671 
672 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
673 	if (ret_val)
674 		goto out;
675 
676 	if (phy->revision < E1000_REVISION_4) {
677 		/* Force TX_CLK in the Extended PHY Specific Control Register
678 		 * to 25MHz clock.
679 		 */
680 		ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
681 					    &phy_data);
682 		if (ret_val)
683 			goto out;
684 
685 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
686 
687 		if ((phy->revision == E1000_REVISION_2) &&
688 		    (phy->id == M88E1111_I_PHY_ID)) {
689 			/* 82573L PHY - set the downshift counter to 5x. */
690 			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
691 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
692 		} else {
693 			/* Configure Master and Slave downshift values */
694 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
695 				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
696 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
697 				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
698 		}
699 		ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
700 					     phy_data);
701 		if (ret_val)
702 			goto out;
703 	}
704 
705 	/* Commit the changes. */
706 	ret_val = igb_phy_sw_reset(hw);
707 	if (ret_val) {
708 		hw_dbg("Error committing the PHY changes\n");
709 		goto out;
710 	}
711 
712 out:
713 	return ret_val;
714 }
715 
716 /**
717  *  igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
718  *  @hw: pointer to the HW structure
719  *
720  *  Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
721  *  Also enables and sets the downshift parameters.
722  **/
723 s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw)
724 {
725 	struct e1000_phy_info *phy = &hw->phy;
726 	s32 ret_val;
727 	u16 phy_data;
728 
729 	if (phy->reset_disable)
730 		return 0;
731 
732 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
733 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
734 	if (ret_val)
735 		return ret_val;
736 
737 	/* Options:
738 	 *   MDI/MDI-X = 0 (default)
739 	 *   0 - Auto for all speeds
740 	 *   1 - MDI mode
741 	 *   2 - MDI-X mode
742 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
743 	 */
744 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
745 
746 	switch (phy->mdix) {
747 	case 1:
748 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
749 		break;
750 	case 2:
751 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
752 		break;
753 	case 3:
754 		/* M88E1112 does not support this mode) */
755 		if (phy->id != M88E1112_E_PHY_ID) {
756 			phy_data |= M88E1000_PSCR_AUTO_X_1000T;
757 			break;
758 		}
759 	case 0:
760 	default:
761 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
762 		break;
763 	}
764 
765 	/* Options:
766 	 *   disable_polarity_correction = 0 (default)
767 	 *       Automatic Correction for Reversed Cable Polarity
768 	 *   0 - Disabled
769 	 *   1 - Enabled
770 	 */
771 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
772 	if (phy->disable_polarity_correction == 1)
773 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
774 
775 	/* Enable downshift and setting it to X6 */
776 	if (phy->id == M88E1543_E_PHY_ID) {
777 		phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE;
778 		ret_val =
779 		    phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
780 		if (ret_val)
781 			return ret_val;
782 
783 		ret_val = igb_phy_sw_reset(hw);
784 		if (ret_val) {
785 			hw_dbg("Error committing the PHY changes\n");
786 			return ret_val;
787 		}
788 	}
789 
790 	phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
791 	phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
792 	phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
793 
794 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
795 	if (ret_val)
796 		return ret_val;
797 
798 	/* Commit the changes. */
799 	ret_val = igb_phy_sw_reset(hw);
800 	if (ret_val) {
801 		hw_dbg("Error committing the PHY changes\n");
802 		return ret_val;
803 	}
804 	ret_val = igb_set_master_slave_mode(hw);
805 	if (ret_val)
806 		return ret_val;
807 
808 	return 0;
809 }
810 
811 /**
812  *  igb_copper_link_setup_igp - Setup igp PHY's for copper link
813  *  @hw: pointer to the HW structure
814  *
815  *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
816  *  igp PHY's.
817  **/
818 s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
819 {
820 	struct e1000_phy_info *phy = &hw->phy;
821 	s32 ret_val;
822 	u16 data;
823 
824 	if (phy->reset_disable) {
825 		ret_val = 0;
826 		goto out;
827 	}
828 
829 	ret_val = phy->ops.reset(hw);
830 	if (ret_val) {
831 		hw_dbg("Error resetting the PHY.\n");
832 		goto out;
833 	}
834 
835 	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
836 	 * timeout issues when LFS is enabled.
837 	 */
838 	msleep(100);
839 
840 	/* The NVM settings will configure LPLU in D3 for
841 	 * non-IGP1 PHYs.
842 	 */
843 	if (phy->type == e1000_phy_igp) {
844 		/* disable lplu d3 during driver init */
845 		if (phy->ops.set_d3_lplu_state)
846 			ret_val = phy->ops.set_d3_lplu_state(hw, false);
847 		if (ret_val) {
848 			hw_dbg("Error Disabling LPLU D3\n");
849 			goto out;
850 		}
851 	}
852 
853 	/* disable lplu d0 during driver init */
854 	ret_val = phy->ops.set_d0_lplu_state(hw, false);
855 	if (ret_val) {
856 		hw_dbg("Error Disabling LPLU D0\n");
857 		goto out;
858 	}
859 	/* Configure mdi-mdix settings */
860 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
861 	if (ret_val)
862 		goto out;
863 
864 	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
865 
866 	switch (phy->mdix) {
867 	case 1:
868 		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
869 		break;
870 	case 2:
871 		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
872 		break;
873 	case 0:
874 	default:
875 		data |= IGP01E1000_PSCR_AUTO_MDIX;
876 		break;
877 	}
878 	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
879 	if (ret_val)
880 		goto out;
881 
882 	/* set auto-master slave resolution settings */
883 	if (hw->mac.autoneg) {
884 		/* when autonegotiation advertisement is only 1000Mbps then we
885 		 * should disable SmartSpeed and enable Auto MasterSlave
886 		 * resolution as hardware default.
887 		 */
888 		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
889 			/* Disable SmartSpeed */
890 			ret_val = phy->ops.read_reg(hw,
891 						    IGP01E1000_PHY_PORT_CONFIG,
892 						    &data);
893 			if (ret_val)
894 				goto out;
895 
896 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
897 			ret_val = phy->ops.write_reg(hw,
898 						     IGP01E1000_PHY_PORT_CONFIG,
899 						     data);
900 			if (ret_val)
901 				goto out;
902 
903 			/* Set auto Master/Slave resolution process */
904 			ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
905 			if (ret_val)
906 				goto out;
907 
908 			data &= ~CR_1000T_MS_ENABLE;
909 			ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
910 			if (ret_val)
911 				goto out;
912 		}
913 
914 		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
915 		if (ret_val)
916 			goto out;
917 
918 		/* load defaults for future use */
919 		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
920 			((data & CR_1000T_MS_VALUE) ?
921 			e1000_ms_force_master :
922 			e1000_ms_force_slave) :
923 			e1000_ms_auto;
924 
925 		switch (phy->ms_type) {
926 		case e1000_ms_force_master:
927 			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
928 			break;
929 		case e1000_ms_force_slave:
930 			data |= CR_1000T_MS_ENABLE;
931 			data &= ~(CR_1000T_MS_VALUE);
932 			break;
933 		case e1000_ms_auto:
934 			data &= ~CR_1000T_MS_ENABLE;
935 		default:
936 			break;
937 		}
938 		ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
939 		if (ret_val)
940 			goto out;
941 	}
942 
943 out:
944 	return ret_val;
945 }
946 
947 /**
948  *  igb_copper_link_autoneg - Setup/Enable autoneg for copper link
949  *  @hw: pointer to the HW structure
950  *
951  *  Performs initial bounds checking on autoneg advertisement parameter, then
952  *  configure to advertise the full capability.  Setup the PHY to autoneg
953  *  and restart the negotiation process between the link partner.  If
954  *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
955  **/
956 static s32 igb_copper_link_autoneg(struct e1000_hw *hw)
957 {
958 	struct e1000_phy_info *phy = &hw->phy;
959 	s32 ret_val;
960 	u16 phy_ctrl;
961 
962 	/* Perform some bounds checking on the autoneg advertisement
963 	 * parameter.
964 	 */
965 	phy->autoneg_advertised &= phy->autoneg_mask;
966 
967 	/* If autoneg_advertised is zero, we assume it was not defaulted
968 	 * by the calling code so we set to advertise full capability.
969 	 */
970 	if (phy->autoneg_advertised == 0)
971 		phy->autoneg_advertised = phy->autoneg_mask;
972 
973 	hw_dbg("Reconfiguring auto-neg advertisement params\n");
974 	ret_val = igb_phy_setup_autoneg(hw);
975 	if (ret_val) {
976 		hw_dbg("Error Setting up Auto-Negotiation\n");
977 		goto out;
978 	}
979 	hw_dbg("Restarting Auto-Neg\n");
980 
981 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
982 	 * the Auto Neg Restart bit in the PHY control register.
983 	 */
984 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
985 	if (ret_val)
986 		goto out;
987 
988 	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
989 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
990 	if (ret_val)
991 		goto out;
992 
993 	/* Does the user want to wait for Auto-Neg to complete here, or
994 	 * check at a later time (for example, callback routine).
995 	 */
996 	if (phy->autoneg_wait_to_complete) {
997 		ret_val = igb_wait_autoneg(hw);
998 		if (ret_val) {
999 			hw_dbg("Error while waiting for "
1000 			       "autoneg to complete\n");
1001 			goto out;
1002 		}
1003 	}
1004 
1005 	hw->mac.get_link_status = true;
1006 
1007 out:
1008 	return ret_val;
1009 }
1010 
1011 /**
1012  *  igb_phy_setup_autoneg - Configure PHY for auto-negotiation
1013  *  @hw: pointer to the HW structure
1014  *
1015  *  Reads the MII auto-neg advertisement register and/or the 1000T control
1016  *  register and if the PHY is already setup for auto-negotiation, then
1017  *  return successful.  Otherwise, setup advertisement and flow control to
1018  *  the appropriate values for the wanted auto-negotiation.
1019  **/
1020 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
1021 {
1022 	struct e1000_phy_info *phy = &hw->phy;
1023 	s32 ret_val;
1024 	u16 mii_autoneg_adv_reg;
1025 	u16 mii_1000t_ctrl_reg = 0;
1026 
1027 	phy->autoneg_advertised &= phy->autoneg_mask;
1028 
1029 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
1030 	ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
1031 	if (ret_val)
1032 		goto out;
1033 
1034 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1035 		/* Read the MII 1000Base-T Control Register (Address 9). */
1036 		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
1037 					    &mii_1000t_ctrl_reg);
1038 		if (ret_val)
1039 			goto out;
1040 	}
1041 
1042 	/* Need to parse both autoneg_advertised and fc and set up
1043 	 * the appropriate PHY registers.  First we will parse for
1044 	 * autoneg_advertised software override.  Since we can advertise
1045 	 * a plethora of combinations, we need to check each bit
1046 	 * individually.
1047 	 */
1048 
1049 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
1050 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1051 	 * the  1000Base-T Control Register (Address 9).
1052 	 */
1053 	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
1054 				 NWAY_AR_100TX_HD_CAPS |
1055 				 NWAY_AR_10T_FD_CAPS   |
1056 				 NWAY_AR_10T_HD_CAPS);
1057 	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
1058 
1059 	hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
1060 
1061 	/* Do we want to advertise 10 Mb Half Duplex? */
1062 	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
1063 		hw_dbg("Advertise 10mb Half duplex\n");
1064 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1065 	}
1066 
1067 	/* Do we want to advertise 10 Mb Full Duplex? */
1068 	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
1069 		hw_dbg("Advertise 10mb Full duplex\n");
1070 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1071 	}
1072 
1073 	/* Do we want to advertise 100 Mb Half Duplex? */
1074 	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
1075 		hw_dbg("Advertise 100mb Half duplex\n");
1076 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1077 	}
1078 
1079 	/* Do we want to advertise 100 Mb Full Duplex? */
1080 	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
1081 		hw_dbg("Advertise 100mb Full duplex\n");
1082 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1083 	}
1084 
1085 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1086 	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1087 		hw_dbg("Advertise 1000mb Half duplex request denied!\n");
1088 
1089 	/* Do we want to advertise 1000 Mb Full Duplex? */
1090 	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1091 		hw_dbg("Advertise 1000mb Full duplex\n");
1092 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1093 	}
1094 
1095 	/* Check for a software override of the flow control settings, and
1096 	 * setup the PHY advertisement registers accordingly.  If
1097 	 * auto-negotiation is enabled, then software will have to set the
1098 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1099 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1100 	 * negotiation.
1101 	 *
1102 	 * The possible values of the "fc" parameter are:
1103 	 *      0:  Flow control is completely disabled
1104 	 *      1:  Rx flow control is enabled (we can receive pause frames
1105 	 *          but not send pause frames).
1106 	 *      2:  Tx flow control is enabled (we can send pause frames
1107 	 *          but we do not support receiving pause frames).
1108 	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
1109 	 *  other:  No software override.  The flow control configuration
1110 	 *          in the EEPROM is used.
1111 	 */
1112 	switch (hw->fc.current_mode) {
1113 	case e1000_fc_none:
1114 		/* Flow control (RX & TX) is completely disabled by a
1115 		 * software over-ride.
1116 		 */
1117 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1118 		break;
1119 	case e1000_fc_rx_pause:
1120 		/* RX Flow control is enabled, and TX Flow control is
1121 		 * disabled, by a software over-ride.
1122 		 *
1123 		 * Since there really isn't a way to advertise that we are
1124 		 * capable of RX Pause ONLY, we will advertise that we
1125 		 * support both symmetric and asymmetric RX PAUSE.  Later
1126 		 * (in e1000_config_fc_after_link_up) we will disable the
1127 		 * hw's ability to send PAUSE frames.
1128 		 */
1129 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1130 		break;
1131 	case e1000_fc_tx_pause:
1132 		/* TX Flow control is enabled, and RX Flow control is
1133 		 * disabled, by a software over-ride.
1134 		 */
1135 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1136 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1137 		break;
1138 	case e1000_fc_full:
1139 		/* Flow control (both RX and TX) is enabled by a software
1140 		 * over-ride.
1141 		 */
1142 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1143 		break;
1144 	default:
1145 		hw_dbg("Flow control param set incorrectly\n");
1146 		ret_val = -E1000_ERR_CONFIG;
1147 		goto out;
1148 	}
1149 
1150 	ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1151 	if (ret_val)
1152 		goto out;
1153 
1154 	hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1155 
1156 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1157 		ret_val = phy->ops.write_reg(hw,
1158 					     PHY_1000T_CTRL,
1159 					     mii_1000t_ctrl_reg);
1160 		if (ret_val)
1161 			goto out;
1162 	}
1163 
1164 out:
1165 	return ret_val;
1166 }
1167 
1168 /**
1169  *  igb_setup_copper_link - Configure copper link settings
1170  *  @hw: pointer to the HW structure
1171  *
1172  *  Calls the appropriate function to configure the link for auto-neg or forced
1173  *  speed and duplex.  Then we check for link, once link is established calls
1174  *  to configure collision distance and flow control are called.  If link is
1175  *  not established, we return -E1000_ERR_PHY (-2).
1176  **/
1177 s32 igb_setup_copper_link(struct e1000_hw *hw)
1178 {
1179 	s32 ret_val;
1180 	bool link;
1181 
1182 	if (hw->mac.autoneg) {
1183 		/* Setup autoneg and flow control advertisement and perform
1184 		 * autonegotiation.
1185 		 */
1186 		ret_val = igb_copper_link_autoneg(hw);
1187 		if (ret_val)
1188 			goto out;
1189 	} else {
1190 		/* PHY will be set to 10H, 10F, 100H or 100F
1191 		 * depending on user settings.
1192 		 */
1193 		hw_dbg("Forcing Speed and Duplex\n");
1194 		ret_val = hw->phy.ops.force_speed_duplex(hw);
1195 		if (ret_val) {
1196 			hw_dbg("Error Forcing Speed and Duplex\n");
1197 			goto out;
1198 		}
1199 	}
1200 
1201 	/* Check link status. Wait up to 100 microseconds for link to become
1202 	 * valid.
1203 	 */
1204 	ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
1205 	if (ret_val)
1206 		goto out;
1207 
1208 	if (link) {
1209 		hw_dbg("Valid link established!!!\n");
1210 		igb_config_collision_dist(hw);
1211 		ret_val = igb_config_fc_after_link_up(hw);
1212 	} else {
1213 		hw_dbg("Unable to establish link!!!\n");
1214 	}
1215 
1216 out:
1217 	return ret_val;
1218 }
1219 
1220 /**
1221  *  igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1222  *  @hw: pointer to the HW structure
1223  *
1224  *  Calls the PHY setup function to force speed and duplex.  Clears the
1225  *  auto-crossover to force MDI manually.  Waits for link and returns
1226  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1227  **/
1228 s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1229 {
1230 	struct e1000_phy_info *phy = &hw->phy;
1231 	s32 ret_val;
1232 	u16 phy_data;
1233 	bool link;
1234 
1235 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1236 	if (ret_val)
1237 		goto out;
1238 
1239 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1240 
1241 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1242 	if (ret_val)
1243 		goto out;
1244 
1245 	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1246 	 * forced whenever speed and duplex are forced.
1247 	 */
1248 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1249 	if (ret_val)
1250 		goto out;
1251 
1252 	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1253 	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1254 
1255 	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1256 	if (ret_val)
1257 		goto out;
1258 
1259 	hw_dbg("IGP PSCR: %X\n", phy_data);
1260 
1261 	udelay(1);
1262 
1263 	if (phy->autoneg_wait_to_complete) {
1264 		hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1265 
1266 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
1267 		if (ret_val)
1268 			goto out;
1269 
1270 		if (!link)
1271 			hw_dbg("Link taking longer than expected.\n");
1272 
1273 		/* Try once more */
1274 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
1275 		if (ret_val)
1276 			goto out;
1277 	}
1278 
1279 out:
1280 	return ret_val;
1281 }
1282 
1283 /**
1284  *  igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1285  *  @hw: pointer to the HW structure
1286  *
1287  *  Calls the PHY setup function to force speed and duplex.  Clears the
1288  *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1289  *  changes.  If time expires while waiting for link up, we reset the DSP.
1290  *  After reset, TX_CLK and CRS on TX must be set.  Return successful upon
1291  *  successful completion, else return corresponding error code.
1292  **/
1293 s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1294 {
1295 	struct e1000_phy_info *phy = &hw->phy;
1296 	s32 ret_val;
1297 	u16 phy_data;
1298 	bool link;
1299 
1300 	/* I210 and I211 devices support Auto-Crossover in forced operation. */
1301 	if (phy->type != e1000_phy_i210) {
1302 		/* Clear Auto-Crossover to force MDI manually.  M88E1000
1303 		 * requires MDI forced whenever speed and duplex are forced.
1304 		 */
1305 		ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL,
1306 					    &phy_data);
1307 		if (ret_val)
1308 			goto out;
1309 
1310 		phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1311 		ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
1312 					     phy_data);
1313 		if (ret_val)
1314 			goto out;
1315 
1316 		hw_dbg("M88E1000 PSCR: %X\n", phy_data);
1317 	}
1318 
1319 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1320 	if (ret_val)
1321 		goto out;
1322 
1323 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1324 
1325 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1326 	if (ret_val)
1327 		goto out;
1328 
1329 	/* Reset the phy to commit changes. */
1330 	ret_val = igb_phy_sw_reset(hw);
1331 	if (ret_val)
1332 		goto out;
1333 
1334 	if (phy->autoneg_wait_to_complete) {
1335 		hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1336 
1337 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
1338 		if (ret_val)
1339 			goto out;
1340 
1341 		if (!link) {
1342 			bool reset_dsp = true;
1343 
1344 			switch (hw->phy.id) {
1345 			case I347AT4_E_PHY_ID:
1346 			case M88E1112_E_PHY_ID:
1347 			case I210_I_PHY_ID:
1348 				reset_dsp = false;
1349 				break;
1350 			default:
1351 				if (hw->phy.type != e1000_phy_m88)
1352 					reset_dsp = false;
1353 				break;
1354 			}
1355 			if (!reset_dsp)
1356 				hw_dbg("Link taking longer than expected.\n");
1357 			else {
1358 				/* We didn't get link.
1359 				 * Reset the DSP and cross our fingers.
1360 				 */
1361 				ret_val = phy->ops.write_reg(hw,
1362 						M88E1000_PHY_PAGE_SELECT,
1363 						0x001d);
1364 				if (ret_val)
1365 					goto out;
1366 				ret_val = igb_phy_reset_dsp(hw);
1367 				if (ret_val)
1368 					goto out;
1369 			}
1370 		}
1371 
1372 		/* Try once more */
1373 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT,
1374 					   100000, &link);
1375 		if (ret_val)
1376 			goto out;
1377 	}
1378 
1379 	if (hw->phy.type != e1000_phy_m88 ||
1380 	    hw->phy.id == I347AT4_E_PHY_ID ||
1381 	    hw->phy.id == M88E1112_E_PHY_ID ||
1382 	    hw->phy.id == I210_I_PHY_ID)
1383 		goto out;
1384 
1385 	ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1386 	if (ret_val)
1387 		goto out;
1388 
1389 	/* Resetting the phy means we need to re-force TX_CLK in the
1390 	 * Extended PHY Specific Control Register to 25MHz clock from
1391 	 * the reset value of 2.5MHz.
1392 	 */
1393 	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1394 	ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1395 	if (ret_val)
1396 		goto out;
1397 
1398 	/* In addition, we must re-enable CRS on Tx for both half and full
1399 	 * duplex.
1400 	 */
1401 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1402 	if (ret_val)
1403 		goto out;
1404 
1405 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1406 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1407 
1408 out:
1409 	return ret_val;
1410 }
1411 
1412 /**
1413  *  igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1414  *  @hw: pointer to the HW structure
1415  *  @phy_ctrl: pointer to current value of PHY_CONTROL
1416  *
1417  *  Forces speed and duplex on the PHY by doing the following: disable flow
1418  *  control, force speed/duplex on the MAC, disable auto speed detection,
1419  *  disable auto-negotiation, configure duplex, configure speed, configure
1420  *  the collision distance, write configuration to CTRL register.  The
1421  *  caller must write to the PHY_CONTROL register for these settings to
1422  *  take affect.
1423  **/
1424 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
1425 					     u16 *phy_ctrl)
1426 {
1427 	struct e1000_mac_info *mac = &hw->mac;
1428 	u32 ctrl;
1429 
1430 	/* Turn off flow control when forcing speed/duplex */
1431 	hw->fc.current_mode = e1000_fc_none;
1432 
1433 	/* Force speed/duplex on the mac */
1434 	ctrl = rd32(E1000_CTRL);
1435 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1436 	ctrl &= ~E1000_CTRL_SPD_SEL;
1437 
1438 	/* Disable Auto Speed Detection */
1439 	ctrl &= ~E1000_CTRL_ASDE;
1440 
1441 	/* Disable autoneg on the phy */
1442 	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1443 
1444 	/* Forcing Full or Half Duplex? */
1445 	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1446 		ctrl &= ~E1000_CTRL_FD;
1447 		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1448 		hw_dbg("Half Duplex\n");
1449 	} else {
1450 		ctrl |= E1000_CTRL_FD;
1451 		*phy_ctrl |= MII_CR_FULL_DUPLEX;
1452 		hw_dbg("Full Duplex\n");
1453 	}
1454 
1455 	/* Forcing 10mb or 100mb? */
1456 	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1457 		ctrl |= E1000_CTRL_SPD_100;
1458 		*phy_ctrl |= MII_CR_SPEED_100;
1459 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1460 		hw_dbg("Forcing 100mb\n");
1461 	} else {
1462 		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1463 		*phy_ctrl |= MII_CR_SPEED_10;
1464 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1465 		hw_dbg("Forcing 10mb\n");
1466 	}
1467 
1468 	igb_config_collision_dist(hw);
1469 
1470 	wr32(E1000_CTRL, ctrl);
1471 }
1472 
1473 /**
1474  *  igb_set_d3_lplu_state - Sets low power link up state for D3
1475  *  @hw: pointer to the HW structure
1476  *  @active: boolean used to enable/disable lplu
1477  *
1478  *  Success returns 0, Failure returns 1
1479  *
1480  *  The low power link up (lplu) state is set to the power management level D3
1481  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1482  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1483  *  is used during Dx states where the power conservation is most important.
1484  *  During driver activity, SmartSpeed should be enabled so performance is
1485  *  maintained.
1486  **/
1487 s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1488 {
1489 	struct e1000_phy_info *phy = &hw->phy;
1490 	s32 ret_val = 0;
1491 	u16 data;
1492 
1493 	if (!(hw->phy.ops.read_reg))
1494 		goto out;
1495 
1496 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1497 	if (ret_val)
1498 		goto out;
1499 
1500 	if (!active) {
1501 		data &= ~IGP02E1000_PM_D3_LPLU;
1502 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1503 					     data);
1504 		if (ret_val)
1505 			goto out;
1506 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1507 		 * during Dx states where the power conservation is most
1508 		 * important.  During driver activity we should enable
1509 		 * SmartSpeed, so performance is maintained.
1510 		 */
1511 		if (phy->smart_speed == e1000_smart_speed_on) {
1512 			ret_val = phy->ops.read_reg(hw,
1513 						    IGP01E1000_PHY_PORT_CONFIG,
1514 						    &data);
1515 			if (ret_val)
1516 				goto out;
1517 
1518 			data |= IGP01E1000_PSCFR_SMART_SPEED;
1519 			ret_val = phy->ops.write_reg(hw,
1520 						     IGP01E1000_PHY_PORT_CONFIG,
1521 						     data);
1522 			if (ret_val)
1523 				goto out;
1524 		} else if (phy->smart_speed == e1000_smart_speed_off) {
1525 			ret_val = phy->ops.read_reg(hw,
1526 						     IGP01E1000_PHY_PORT_CONFIG,
1527 						     &data);
1528 			if (ret_val)
1529 				goto out;
1530 
1531 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1532 			ret_val = phy->ops.write_reg(hw,
1533 						     IGP01E1000_PHY_PORT_CONFIG,
1534 						     data);
1535 			if (ret_val)
1536 				goto out;
1537 		}
1538 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1539 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1540 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1541 		data |= IGP02E1000_PM_D3_LPLU;
1542 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1543 					      data);
1544 		if (ret_val)
1545 			goto out;
1546 
1547 		/* When LPLU is enabled, we should disable SmartSpeed */
1548 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1549 					    &data);
1550 		if (ret_val)
1551 			goto out;
1552 
1553 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1554 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1555 					     data);
1556 	}
1557 
1558 out:
1559 	return ret_val;
1560 }
1561 
1562 /**
1563  *  igb_check_downshift - Checks whether a downshift in speed occurred
1564  *  @hw: pointer to the HW structure
1565  *
1566  *  Success returns 0, Failure returns 1
1567  *
1568  *  A downshift is detected by querying the PHY link health.
1569  **/
1570 s32 igb_check_downshift(struct e1000_hw *hw)
1571 {
1572 	struct e1000_phy_info *phy = &hw->phy;
1573 	s32 ret_val;
1574 	u16 phy_data, offset, mask;
1575 
1576 	switch (phy->type) {
1577 	case e1000_phy_i210:
1578 	case e1000_phy_m88:
1579 	case e1000_phy_gg82563:
1580 		offset	= M88E1000_PHY_SPEC_STATUS;
1581 		mask	= M88E1000_PSSR_DOWNSHIFT;
1582 		break;
1583 	case e1000_phy_igp_2:
1584 	case e1000_phy_igp:
1585 	case e1000_phy_igp_3:
1586 		offset	= IGP01E1000_PHY_LINK_HEALTH;
1587 		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
1588 		break;
1589 	default:
1590 		/* speed downshift not supported */
1591 		phy->speed_downgraded = false;
1592 		ret_val = 0;
1593 		goto out;
1594 	}
1595 
1596 	ret_val = phy->ops.read_reg(hw, offset, &phy_data);
1597 
1598 	if (!ret_val)
1599 		phy->speed_downgraded = (phy_data & mask) ? true : false;
1600 
1601 out:
1602 	return ret_val;
1603 }
1604 
1605 /**
1606  *  igb_check_polarity_m88 - Checks the polarity.
1607  *  @hw: pointer to the HW structure
1608  *
1609  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1610  *
1611  *  Polarity is determined based on the PHY specific status register.
1612  **/
1613 s32 igb_check_polarity_m88(struct e1000_hw *hw)
1614 {
1615 	struct e1000_phy_info *phy = &hw->phy;
1616 	s32 ret_val;
1617 	u16 data;
1618 
1619 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
1620 
1621 	if (!ret_val)
1622 		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1623 				      ? e1000_rev_polarity_reversed
1624 				      : e1000_rev_polarity_normal;
1625 
1626 	return ret_val;
1627 }
1628 
1629 /**
1630  *  igb_check_polarity_igp - Checks the polarity.
1631  *  @hw: pointer to the HW structure
1632  *
1633  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1634  *
1635  *  Polarity is determined based on the PHY port status register, and the
1636  *  current speed (since there is no polarity at 100Mbps).
1637  **/
1638 static s32 igb_check_polarity_igp(struct e1000_hw *hw)
1639 {
1640 	struct e1000_phy_info *phy = &hw->phy;
1641 	s32 ret_val;
1642 	u16 data, offset, mask;
1643 
1644 	/* Polarity is determined based on the speed of
1645 	 * our connection.
1646 	 */
1647 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1648 	if (ret_val)
1649 		goto out;
1650 
1651 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1652 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1653 		offset	= IGP01E1000_PHY_PCS_INIT_REG;
1654 		mask	= IGP01E1000_PHY_POLARITY_MASK;
1655 	} else {
1656 		/* This really only applies to 10Mbps since
1657 		 * there is no polarity for 100Mbps (always 0).
1658 		 */
1659 		offset	= IGP01E1000_PHY_PORT_STATUS;
1660 		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
1661 	}
1662 
1663 	ret_val = phy->ops.read_reg(hw, offset, &data);
1664 
1665 	if (!ret_val)
1666 		phy->cable_polarity = (data & mask)
1667 				      ? e1000_rev_polarity_reversed
1668 				      : e1000_rev_polarity_normal;
1669 
1670 out:
1671 	return ret_val;
1672 }
1673 
1674 /**
1675  *  igb_wait_autoneg - Wait for auto-neg completion
1676  *  @hw: pointer to the HW structure
1677  *
1678  *  Waits for auto-negotiation to complete or for the auto-negotiation time
1679  *  limit to expire, which ever happens first.
1680  **/
1681 static s32 igb_wait_autoneg(struct e1000_hw *hw)
1682 {
1683 	s32 ret_val = 0;
1684 	u16 i, phy_status;
1685 
1686 	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1687 	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1688 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1689 		if (ret_val)
1690 			break;
1691 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1692 		if (ret_val)
1693 			break;
1694 		if (phy_status & MII_SR_AUTONEG_COMPLETE)
1695 			break;
1696 		msleep(100);
1697 	}
1698 
1699 	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1700 	 * has completed.
1701 	 */
1702 	return ret_val;
1703 }
1704 
1705 /**
1706  *  igb_phy_has_link - Polls PHY for link
1707  *  @hw: pointer to the HW structure
1708  *  @iterations: number of times to poll for link
1709  *  @usec_interval: delay between polling attempts
1710  *  @success: pointer to whether polling was successful or not
1711  *
1712  *  Polls the PHY status register for link, 'iterations' number of times.
1713  **/
1714 s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations,
1715 		     u32 usec_interval, bool *success)
1716 {
1717 	s32 ret_val = 0;
1718 	u16 i, phy_status;
1719 
1720 	for (i = 0; i < iterations; i++) {
1721 		/* Some PHYs require the PHY_STATUS register to be read
1722 		 * twice due to the link bit being sticky.  No harm doing
1723 		 * it across the board.
1724 		 */
1725 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1726 		if (ret_val && usec_interval > 0) {
1727 			/* If the first read fails, another entity may have
1728 			 * ownership of the resources, wait and try again to
1729 			 * see if they have relinquished the resources yet.
1730 			 */
1731 			udelay(usec_interval);
1732 		}
1733 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1734 		if (ret_val)
1735 			break;
1736 		if (phy_status & MII_SR_LINK_STATUS)
1737 			break;
1738 		if (usec_interval >= 1000)
1739 			mdelay(usec_interval/1000);
1740 		else
1741 			udelay(usec_interval);
1742 	}
1743 
1744 	*success = (i < iterations) ? true : false;
1745 
1746 	return ret_val;
1747 }
1748 
1749 /**
1750  *  igb_get_cable_length_m88 - Determine cable length for m88 PHY
1751  *  @hw: pointer to the HW structure
1752  *
1753  *  Reads the PHY specific status register to retrieve the cable length
1754  *  information.  The cable length is determined by averaging the minimum and
1755  *  maximum values to get the "average" cable length.  The m88 PHY has four
1756  *  possible cable length values, which are:
1757  *	Register Value		Cable Length
1758  *	0			< 50 meters
1759  *	1			50 - 80 meters
1760  *	2			80 - 110 meters
1761  *	3			110 - 140 meters
1762  *	4			> 140 meters
1763  **/
1764 s32 igb_get_cable_length_m88(struct e1000_hw *hw)
1765 {
1766 	struct e1000_phy_info *phy = &hw->phy;
1767 	s32 ret_val;
1768 	u16 phy_data, index;
1769 
1770 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1771 	if (ret_val)
1772 		goto out;
1773 
1774 	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1775 		M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1776 	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1777 		ret_val = -E1000_ERR_PHY;
1778 		goto out;
1779 	}
1780 
1781 	phy->min_cable_length = e1000_m88_cable_length_table[index];
1782 	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1783 
1784 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1785 
1786 out:
1787 	return ret_val;
1788 }
1789 
1790 s32 igb_get_cable_length_m88_gen2(struct e1000_hw *hw)
1791 {
1792 	struct e1000_phy_info *phy = &hw->phy;
1793 	s32 ret_val;
1794 	u16 phy_data, phy_data2, index, default_page, is_cm;
1795 
1796 	switch (hw->phy.id) {
1797 	case I210_I_PHY_ID:
1798 		/* Get cable length from PHY Cable Diagnostics Control Reg */
1799 		ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
1800 					    (I347AT4_PCDL + phy->addr),
1801 					    &phy_data);
1802 		if (ret_val)
1803 			return ret_val;
1804 
1805 		/* Check if the unit of cable length is meters or cm */
1806 		ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
1807 					    I347AT4_PCDC, &phy_data2);
1808 		if (ret_val)
1809 			return ret_val;
1810 
1811 		is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1812 
1813 		/* Populate the phy structure with cable length in meters */
1814 		phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
1815 		phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
1816 		phy->cable_length = phy_data / (is_cm ? 100 : 1);
1817 		break;
1818 	case M88E1543_E_PHY_ID:
1819 	case I347AT4_E_PHY_ID:
1820 		/* Remember the original page select and set it to 7 */
1821 		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1822 					    &default_page);
1823 		if (ret_val)
1824 			goto out;
1825 
1826 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
1827 		if (ret_val)
1828 			goto out;
1829 
1830 		/* Get cable length from PHY Cable Diagnostics Control Reg */
1831 		ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr),
1832 					    &phy_data);
1833 		if (ret_val)
1834 			goto out;
1835 
1836 		/* Check if the unit of cable length is meters or cm */
1837 		ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
1838 		if (ret_val)
1839 			goto out;
1840 
1841 		is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1842 
1843 		/* Populate the phy structure with cable length in meters */
1844 		phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
1845 		phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
1846 		phy->cable_length = phy_data / (is_cm ? 100 : 1);
1847 
1848 		/* Reset the page selec to its original value */
1849 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1850 					     default_page);
1851 		if (ret_val)
1852 			goto out;
1853 		break;
1854 	case M88E1112_E_PHY_ID:
1855 		/* Remember the original page select and set it to 5 */
1856 		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1857 					    &default_page);
1858 		if (ret_val)
1859 			goto out;
1860 
1861 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
1862 		if (ret_val)
1863 			goto out;
1864 
1865 		ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
1866 					    &phy_data);
1867 		if (ret_val)
1868 			goto out;
1869 
1870 		index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1871 			M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1872 		if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1873 			ret_val = -E1000_ERR_PHY;
1874 			goto out;
1875 		}
1876 
1877 		phy->min_cable_length = e1000_m88_cable_length_table[index];
1878 		phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1879 
1880 		phy->cable_length = (phy->min_cable_length +
1881 				     phy->max_cable_length) / 2;
1882 
1883 		/* Reset the page select to its original value */
1884 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1885 					     default_page);
1886 		if (ret_val)
1887 			goto out;
1888 
1889 		break;
1890 	default:
1891 		ret_val = -E1000_ERR_PHY;
1892 		goto out;
1893 	}
1894 
1895 out:
1896 	return ret_val;
1897 }
1898 
1899 /**
1900  *  igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1901  *  @hw: pointer to the HW structure
1902  *
1903  *  The automatic gain control (agc) normalizes the amplitude of the
1904  *  received signal, adjusting for the attenuation produced by the
1905  *  cable.  By reading the AGC registers, which represent the
1906  *  combination of coarse and fine gain value, the value can be put
1907  *  into a lookup table to obtain the approximate cable length
1908  *  for each channel.
1909  **/
1910 s32 igb_get_cable_length_igp_2(struct e1000_hw *hw)
1911 {
1912 	struct e1000_phy_info *phy = &hw->phy;
1913 	s32 ret_val = 0;
1914 	u16 phy_data, i, agc_value = 0;
1915 	u16 cur_agc_index, max_agc_index = 0;
1916 	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1917 	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1918 		IGP02E1000_PHY_AGC_A,
1919 		IGP02E1000_PHY_AGC_B,
1920 		IGP02E1000_PHY_AGC_C,
1921 		IGP02E1000_PHY_AGC_D
1922 	};
1923 
1924 	/* Read the AGC registers for all channels */
1925 	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1926 		ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
1927 		if (ret_val)
1928 			goto out;
1929 
1930 		/* Getting bits 15:9, which represent the combination of
1931 		 * coarse and fine gain values.  The result is a number
1932 		 * that can be put into the lookup table to obtain the
1933 		 * approximate cable length.
1934 		 */
1935 		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1936 				IGP02E1000_AGC_LENGTH_MASK;
1937 
1938 		/* Array index bound check. */
1939 		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1940 		    (cur_agc_index == 0)) {
1941 			ret_val = -E1000_ERR_PHY;
1942 			goto out;
1943 		}
1944 
1945 		/* Remove min & max AGC values from calculation. */
1946 		if (e1000_igp_2_cable_length_table[min_agc_index] >
1947 		    e1000_igp_2_cable_length_table[cur_agc_index])
1948 			min_agc_index = cur_agc_index;
1949 		if (e1000_igp_2_cable_length_table[max_agc_index] <
1950 		    e1000_igp_2_cable_length_table[cur_agc_index])
1951 			max_agc_index = cur_agc_index;
1952 
1953 		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1954 	}
1955 
1956 	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1957 		      e1000_igp_2_cable_length_table[max_agc_index]);
1958 	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1959 
1960 	/* Calculate cable length with the error range of +/- 10 meters. */
1961 	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1962 				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1963 	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1964 
1965 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1966 
1967 out:
1968 	return ret_val;
1969 }
1970 
1971 /**
1972  *  igb_get_phy_info_m88 - Retrieve PHY information
1973  *  @hw: pointer to the HW structure
1974  *
1975  *  Valid for only copper links.  Read the PHY status register (sticky read)
1976  *  to verify that link is up.  Read the PHY special control register to
1977  *  determine the polarity and 10base-T extended distance.  Read the PHY
1978  *  special status register to determine MDI/MDIx and current speed.  If
1979  *  speed is 1000, then determine cable length, local and remote receiver.
1980  **/
1981 s32 igb_get_phy_info_m88(struct e1000_hw *hw)
1982 {
1983 	struct e1000_phy_info *phy = &hw->phy;
1984 	s32  ret_val;
1985 	u16 phy_data;
1986 	bool link;
1987 
1988 	if (phy->media_type != e1000_media_type_copper) {
1989 		hw_dbg("Phy info is only valid for copper media\n");
1990 		ret_val = -E1000_ERR_CONFIG;
1991 		goto out;
1992 	}
1993 
1994 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
1995 	if (ret_val)
1996 		goto out;
1997 
1998 	if (!link) {
1999 		hw_dbg("Phy info is only valid if link is up\n");
2000 		ret_val = -E1000_ERR_CONFIG;
2001 		goto out;
2002 	}
2003 
2004 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2005 	if (ret_val)
2006 		goto out;
2007 
2008 	phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
2009 				   ? true : false;
2010 
2011 	ret_val = igb_check_polarity_m88(hw);
2012 	if (ret_val)
2013 		goto out;
2014 
2015 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
2016 	if (ret_val)
2017 		goto out;
2018 
2019 	phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false;
2020 
2021 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
2022 		ret_val = phy->ops.get_cable_length(hw);
2023 		if (ret_val)
2024 			goto out;
2025 
2026 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
2027 		if (ret_val)
2028 			goto out;
2029 
2030 		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
2031 				? e1000_1000t_rx_status_ok
2032 				: e1000_1000t_rx_status_not_ok;
2033 
2034 		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
2035 				 ? e1000_1000t_rx_status_ok
2036 				 : e1000_1000t_rx_status_not_ok;
2037 	} else {
2038 		/* Set values to "undefined" */
2039 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2040 		phy->local_rx = e1000_1000t_rx_status_undefined;
2041 		phy->remote_rx = e1000_1000t_rx_status_undefined;
2042 	}
2043 
2044 out:
2045 	return ret_val;
2046 }
2047 
2048 /**
2049  *  igb_get_phy_info_igp - Retrieve igp PHY information
2050  *  @hw: pointer to the HW structure
2051  *
2052  *  Read PHY status to determine if link is up.  If link is up, then
2053  *  set/determine 10base-T extended distance and polarity correction.  Read
2054  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
2055  *  determine on the cable length, local and remote receiver.
2056  **/
2057 s32 igb_get_phy_info_igp(struct e1000_hw *hw)
2058 {
2059 	struct e1000_phy_info *phy = &hw->phy;
2060 	s32 ret_val;
2061 	u16 data;
2062 	bool link;
2063 
2064 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
2065 	if (ret_val)
2066 		goto out;
2067 
2068 	if (!link) {
2069 		hw_dbg("Phy info is only valid if link is up\n");
2070 		ret_val = -E1000_ERR_CONFIG;
2071 		goto out;
2072 	}
2073 
2074 	phy->polarity_correction = true;
2075 
2076 	ret_val = igb_check_polarity_igp(hw);
2077 	if (ret_val)
2078 		goto out;
2079 
2080 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2081 	if (ret_val)
2082 		goto out;
2083 
2084 	phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false;
2085 
2086 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2087 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
2088 		ret_val = phy->ops.get_cable_length(hw);
2089 		if (ret_val)
2090 			goto out;
2091 
2092 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2093 		if (ret_val)
2094 			goto out;
2095 
2096 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2097 				? e1000_1000t_rx_status_ok
2098 				: e1000_1000t_rx_status_not_ok;
2099 
2100 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2101 				 ? e1000_1000t_rx_status_ok
2102 				 : e1000_1000t_rx_status_not_ok;
2103 	} else {
2104 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2105 		phy->local_rx = e1000_1000t_rx_status_undefined;
2106 		phy->remote_rx = e1000_1000t_rx_status_undefined;
2107 	}
2108 
2109 out:
2110 	return ret_val;
2111 }
2112 
2113 /**
2114  *  igb_phy_sw_reset - PHY software reset
2115  *  @hw: pointer to the HW structure
2116  *
2117  *  Does a software reset of the PHY by reading the PHY control register and
2118  *  setting/write the control register reset bit to the PHY.
2119  **/
2120 s32 igb_phy_sw_reset(struct e1000_hw *hw)
2121 {
2122 	s32 ret_val = 0;
2123 	u16 phy_ctrl;
2124 
2125 	if (!(hw->phy.ops.read_reg))
2126 		goto out;
2127 
2128 	ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
2129 	if (ret_val)
2130 		goto out;
2131 
2132 	phy_ctrl |= MII_CR_RESET;
2133 	ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
2134 	if (ret_val)
2135 		goto out;
2136 
2137 	udelay(1);
2138 
2139 out:
2140 	return ret_val;
2141 }
2142 
2143 /**
2144  *  igb_phy_hw_reset - PHY hardware reset
2145  *  @hw: pointer to the HW structure
2146  *
2147  *  Verify the reset block is not blocking us from resetting.  Acquire
2148  *  semaphore (if necessary) and read/set/write the device control reset
2149  *  bit in the PHY.  Wait the appropriate delay time for the device to
2150  *  reset and release the semaphore (if necessary).
2151  **/
2152 s32 igb_phy_hw_reset(struct e1000_hw *hw)
2153 {
2154 	struct e1000_phy_info *phy = &hw->phy;
2155 	s32  ret_val;
2156 	u32 ctrl;
2157 
2158 	ret_val = igb_check_reset_block(hw);
2159 	if (ret_val) {
2160 		ret_val = 0;
2161 		goto out;
2162 	}
2163 
2164 	ret_val = phy->ops.acquire(hw);
2165 	if (ret_val)
2166 		goto out;
2167 
2168 	ctrl = rd32(E1000_CTRL);
2169 	wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
2170 	wrfl();
2171 
2172 	udelay(phy->reset_delay_us);
2173 
2174 	wr32(E1000_CTRL, ctrl);
2175 	wrfl();
2176 
2177 	udelay(150);
2178 
2179 	phy->ops.release(hw);
2180 
2181 	ret_val = phy->ops.get_cfg_done(hw);
2182 
2183 out:
2184 	return ret_val;
2185 }
2186 
2187 /**
2188  *  igb_phy_init_script_igp3 - Inits the IGP3 PHY
2189  *  @hw: pointer to the HW structure
2190  *
2191  *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2192  **/
2193 s32 igb_phy_init_script_igp3(struct e1000_hw *hw)
2194 {
2195 	hw_dbg("Running IGP 3 PHY init script\n");
2196 
2197 	/* PHY init IGP 3 */
2198 	/* Enable rise/fall, 10-mode work in class-A */
2199 	hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
2200 	/* Remove all caps from Replica path filter */
2201 	hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
2202 	/* Bias trimming for ADC, AFE and Driver (Default) */
2203 	hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
2204 	/* Increase Hybrid poly bias */
2205 	hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
2206 	/* Add 4% to TX amplitude in Giga mode */
2207 	hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
2208 	/* Disable trimming (TTT) */
2209 	hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
2210 	/* Poly DC correction to 94.6% + 2% for all channels */
2211 	hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
2212 	/* ABS DC correction to 95.9% */
2213 	hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
2214 	/* BG temp curve trim */
2215 	hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
2216 	/* Increasing ADC OPAMP stage 1 currents to max */
2217 	hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
2218 	/* Force 1000 ( required for enabling PHY regs configuration) */
2219 	hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
2220 	/* Set upd_freq to 6 */
2221 	hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
2222 	/* Disable NPDFE */
2223 	hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
2224 	/* Disable adaptive fixed FFE (Default) */
2225 	hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
2226 	/* Enable FFE hysteresis */
2227 	hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
2228 	/* Fixed FFE for short cable lengths */
2229 	hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
2230 	/* Fixed FFE for medium cable lengths */
2231 	hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
2232 	/* Fixed FFE for long cable lengths */
2233 	hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
2234 	/* Enable Adaptive Clip Threshold */
2235 	hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
2236 	/* AHT reset limit to 1 */
2237 	hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
2238 	/* Set AHT master delay to 127 msec */
2239 	hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
2240 	/* Set scan bits for AHT */
2241 	hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
2242 	/* Set AHT Preset bits */
2243 	hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
2244 	/* Change integ_factor of channel A to 3 */
2245 	hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
2246 	/* Change prop_factor of channels BCD to 8 */
2247 	hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
2248 	/* Change cg_icount + enable integbp for channels BCD */
2249 	hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
2250 	/* Change cg_icount + enable integbp + change prop_factor_master
2251 	 * to 8 for channel A
2252 	 */
2253 	hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
2254 	/* Disable AHT in Slave mode on channel A */
2255 	hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
2256 	/* Enable LPLU and disable AN to 1000 in non-D0a states,
2257 	 * Enable SPD+B2B
2258 	 */
2259 	hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
2260 	/* Enable restart AN on an1000_dis change */
2261 	hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
2262 	/* Enable wh_fifo read clock in 10/100 modes */
2263 	hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
2264 	/* Restart AN, Speed selection is 1000 */
2265 	hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
2266 
2267 	return 0;
2268 }
2269 
2270 /**
2271  * igb_power_up_phy_copper - Restore copper link in case of PHY power down
2272  * @hw: pointer to the HW structure
2273  *
2274  * In the case of a PHY power down to save power, or to turn off link during a
2275  * driver unload, restore the link to previous settings.
2276  **/
2277 void igb_power_up_phy_copper(struct e1000_hw *hw)
2278 {
2279 	u16 mii_reg = 0;
2280 	u16 power_reg = 0;
2281 
2282 	/* The PHY will retain its settings across a power down/up cycle */
2283 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2284 	mii_reg &= ~MII_CR_POWER_DOWN;
2285 	if (hw->phy.type == e1000_phy_i210) {
2286 		hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg);
2287 		power_reg &= ~GS40G_CS_POWER_DOWN;
2288 		hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg);
2289 	}
2290 	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2291 }
2292 
2293 /**
2294  * igb_power_down_phy_copper - Power down copper PHY
2295  * @hw: pointer to the HW structure
2296  *
2297  * Power down PHY to save power when interface is down and wake on lan
2298  * is not enabled.
2299  **/
2300 void igb_power_down_phy_copper(struct e1000_hw *hw)
2301 {
2302 	u16 mii_reg = 0;
2303 	u16 power_reg = 0;
2304 
2305 	/* The PHY will retain its settings across a power down/up cycle */
2306 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2307 	mii_reg |= MII_CR_POWER_DOWN;
2308 
2309 	/* i210 Phy requires an additional bit for power up/down */
2310 	if (hw->phy.type == e1000_phy_i210) {
2311 		hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg);
2312 		power_reg |= GS40G_CS_POWER_DOWN;
2313 		hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg);
2314 	}
2315 	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2316 	msleep(1);
2317 }
2318 
2319 /**
2320  *  igb_check_polarity_82580 - Checks the polarity.
2321  *  @hw: pointer to the HW structure
2322  *
2323  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2324  *
2325  *  Polarity is determined based on the PHY specific status register.
2326  **/
2327 static s32 igb_check_polarity_82580(struct e1000_hw *hw)
2328 {
2329 	struct e1000_phy_info *phy = &hw->phy;
2330 	s32 ret_val;
2331 	u16 data;
2332 
2333 
2334 	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2335 
2336 	if (!ret_val)
2337 		phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY)
2338 				      ? e1000_rev_polarity_reversed
2339 				      : e1000_rev_polarity_normal;
2340 
2341 	return ret_val;
2342 }
2343 
2344 /**
2345  *  igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY
2346  *  @hw: pointer to the HW structure
2347  *
2348  *  Calls the PHY setup function to force speed and duplex.  Clears the
2349  *  auto-crossover to force MDI manually.  Waits for link and returns
2350  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
2351  **/
2352 s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw)
2353 {
2354 	struct e1000_phy_info *phy = &hw->phy;
2355 	s32 ret_val;
2356 	u16 phy_data;
2357 	bool link;
2358 
2359 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
2360 	if (ret_val)
2361 		goto out;
2362 
2363 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
2364 
2365 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
2366 	if (ret_val)
2367 		goto out;
2368 
2369 	/* Clear Auto-Crossover to force MDI manually.  82580 requires MDI
2370 	 * forced whenever speed and duplex are forced.
2371 	 */
2372 	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
2373 	if (ret_val)
2374 		goto out;
2375 
2376 	phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
2377 
2378 	ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
2379 	if (ret_val)
2380 		goto out;
2381 
2382 	hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data);
2383 
2384 	udelay(1);
2385 
2386 	if (phy->autoneg_wait_to_complete) {
2387 		hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n");
2388 
2389 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2390 		if (ret_val)
2391 			goto out;
2392 
2393 		if (!link)
2394 			hw_dbg("Link taking longer than expected.\n");
2395 
2396 		/* Try once more */
2397 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2398 		if (ret_val)
2399 			goto out;
2400 	}
2401 
2402 out:
2403 	return ret_val;
2404 }
2405 
2406 /**
2407  *  igb_get_phy_info_82580 - Retrieve I82580 PHY information
2408  *  @hw: pointer to the HW structure
2409  *
2410  *  Read PHY status to determine if link is up.  If link is up, then
2411  *  set/determine 10base-T extended distance and polarity correction.  Read
2412  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
2413  *  determine on the cable length, local and remote receiver.
2414  **/
2415 s32 igb_get_phy_info_82580(struct e1000_hw *hw)
2416 {
2417 	struct e1000_phy_info *phy = &hw->phy;
2418 	s32 ret_val;
2419 	u16 data;
2420 	bool link;
2421 
2422 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
2423 	if (ret_val)
2424 		goto out;
2425 
2426 	if (!link) {
2427 		hw_dbg("Phy info is only valid if link is up\n");
2428 		ret_val = -E1000_ERR_CONFIG;
2429 		goto out;
2430 	}
2431 
2432 	phy->polarity_correction = true;
2433 
2434 	ret_val = igb_check_polarity_82580(hw);
2435 	if (ret_val)
2436 		goto out;
2437 
2438 	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2439 	if (ret_val)
2440 		goto out;
2441 
2442 	phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false;
2443 
2444 	if ((data & I82580_PHY_STATUS2_SPEED_MASK) ==
2445 	    I82580_PHY_STATUS2_SPEED_1000MBPS) {
2446 		ret_val = hw->phy.ops.get_cable_length(hw);
2447 		if (ret_val)
2448 			goto out;
2449 
2450 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2451 		if (ret_val)
2452 			goto out;
2453 
2454 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2455 				? e1000_1000t_rx_status_ok
2456 				: e1000_1000t_rx_status_not_ok;
2457 
2458 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2459 				 ? e1000_1000t_rx_status_ok
2460 				 : e1000_1000t_rx_status_not_ok;
2461 	} else {
2462 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2463 		phy->local_rx = e1000_1000t_rx_status_undefined;
2464 		phy->remote_rx = e1000_1000t_rx_status_undefined;
2465 	}
2466 
2467 out:
2468 	return ret_val;
2469 }
2470 
2471 /**
2472  *  igb_get_cable_length_82580 - Determine cable length for 82580 PHY
2473  *  @hw: pointer to the HW structure
2474  *
2475  * Reads the diagnostic status register and verifies result is valid before
2476  * placing it in the phy_cable_length field.
2477  **/
2478 s32 igb_get_cable_length_82580(struct e1000_hw *hw)
2479 {
2480 	struct e1000_phy_info *phy = &hw->phy;
2481 	s32 ret_val;
2482 	u16 phy_data, length;
2483 
2484 	ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data);
2485 	if (ret_val)
2486 		goto out;
2487 
2488 	length = (phy_data & I82580_DSTATUS_CABLE_LENGTH) >>
2489 		 I82580_DSTATUS_CABLE_LENGTH_SHIFT;
2490 
2491 	if (length == E1000_CABLE_LENGTH_UNDEFINED)
2492 		ret_val = -E1000_ERR_PHY;
2493 
2494 	phy->cable_length = length;
2495 
2496 out:
2497 	return ret_val;
2498 }
2499 
2500 /**
2501  *  igb_write_phy_reg_gs40g - Write GS40G PHY register
2502  *  @hw: pointer to the HW structure
2503  *  @offset: lower half is register offset to write to
2504  *     upper half is page to use.
2505  *  @data: data to write at register offset
2506  *
2507  *  Acquires semaphore, if necessary, then writes the data to PHY register
2508  *  at the offset.  Release any acquired semaphores before exiting.
2509  **/
2510 s32 igb_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data)
2511 {
2512 	s32 ret_val;
2513 	u16 page = offset >> GS40G_PAGE_SHIFT;
2514 
2515 	offset = offset & GS40G_OFFSET_MASK;
2516 	ret_val = hw->phy.ops.acquire(hw);
2517 	if (ret_val)
2518 		return ret_val;
2519 
2520 	ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
2521 	if (ret_val)
2522 		goto release;
2523 	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2524 
2525 release:
2526 	hw->phy.ops.release(hw);
2527 	return ret_val;
2528 }
2529 
2530 /**
2531  *  igb_read_phy_reg_gs40g - Read GS40G  PHY register
2532  *  @hw: pointer to the HW structure
2533  *  @offset: lower half is register offset to read to
2534  *     upper half is page to use.
2535  *  @data: data to read at register offset
2536  *
2537  *  Acquires semaphore, if necessary, then reads the data in the PHY register
2538  *  at the offset.  Release any acquired semaphores before exiting.
2539  **/
2540 s32 igb_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data)
2541 {
2542 	s32 ret_val;
2543 	u16 page = offset >> GS40G_PAGE_SHIFT;
2544 
2545 	offset = offset & GS40G_OFFSET_MASK;
2546 	ret_val = hw->phy.ops.acquire(hw);
2547 	if (ret_val)
2548 		return ret_val;
2549 
2550 	ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
2551 	if (ret_val)
2552 		goto release;
2553 	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2554 
2555 release:
2556 	hw->phy.ops.release(hw);
2557 	return ret_val;
2558 }
2559 
2560 /**
2561  *  igb_set_master_slave_mode - Setup PHY for Master/slave mode
2562  *  @hw: pointer to the HW structure
2563  *
2564  *  Sets up Master/slave mode
2565  **/
2566 static s32 igb_set_master_slave_mode(struct e1000_hw *hw)
2567 {
2568 	s32 ret_val;
2569 	u16 phy_data;
2570 
2571 	/* Resolve Master/Slave mode */
2572 	ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data);
2573 	if (ret_val)
2574 		return ret_val;
2575 
2576 	/* load defaults for future use */
2577 	hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
2578 				   ((phy_data & CR_1000T_MS_VALUE) ?
2579 				    e1000_ms_force_master :
2580 				    e1000_ms_force_slave) : e1000_ms_auto;
2581 
2582 	switch (hw->phy.ms_type) {
2583 	case e1000_ms_force_master:
2584 		phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2585 		break;
2586 	case e1000_ms_force_slave:
2587 		phy_data |= CR_1000T_MS_ENABLE;
2588 		phy_data &= ~(CR_1000T_MS_VALUE);
2589 		break;
2590 	case e1000_ms_auto:
2591 		phy_data &= ~CR_1000T_MS_ENABLE;
2592 		/* fall-through */
2593 	default:
2594 		break;
2595 	}
2596 
2597 	return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data);
2598 }
2599