1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2015 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23 
24 #include <linux/if_ether.h>
25 #include <linux/delay.h>
26 
27 #include "e1000_mac.h"
28 #include "e1000_phy.h"
29 
30 static s32  igb_phy_setup_autoneg(struct e1000_hw *hw);
31 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
32 					     u16 *phy_ctrl);
33 static s32  igb_wait_autoneg(struct e1000_hw *hw);
34 static s32  igb_set_master_slave_mode(struct e1000_hw *hw);
35 
36 /* Cable length tables */
37 static const u16 e1000_m88_cable_length_table[] = {
38 	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
39 
40 static const u16 e1000_igp_2_cable_length_table[] = {
41 	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
42 	0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
43 	6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
44 	21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
45 	40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
46 	60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
47 	83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
48 	104, 109, 114, 118, 121, 124};
49 
50 /**
51  *  igb_check_reset_block - Check if PHY reset is blocked
52  *  @hw: pointer to the HW structure
53  *
54  *  Read the PHY management control register and check whether a PHY reset
55  *  is blocked.  If a reset is not blocked return 0, otherwise
56  *  return E1000_BLK_PHY_RESET (12).
57  **/
58 s32 igb_check_reset_block(struct e1000_hw *hw)
59 {
60 	u32 manc;
61 
62 	manc = rd32(E1000_MANC);
63 
64 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
65 }
66 
67 /**
68  *  igb_get_phy_id - Retrieve the PHY ID and revision
69  *  @hw: pointer to the HW structure
70  *
71  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
72  *  revision in the hardware structure.
73  **/
74 s32 igb_get_phy_id(struct e1000_hw *hw)
75 {
76 	struct e1000_phy_info *phy = &hw->phy;
77 	s32 ret_val = 0;
78 	u16 phy_id;
79 
80 	/* ensure PHY page selection to fix misconfigured i210 */
81 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
82 		phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0);
83 
84 	ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
85 	if (ret_val)
86 		goto out;
87 
88 	phy->id = (u32)(phy_id << 16);
89 	udelay(20);
90 	ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
91 	if (ret_val)
92 		goto out;
93 
94 	phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
95 	phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
96 
97 out:
98 	return ret_val;
99 }
100 
101 /**
102  *  igb_phy_reset_dsp - Reset PHY DSP
103  *  @hw: pointer to the HW structure
104  *
105  *  Reset the digital signal processor.
106  **/
107 static s32 igb_phy_reset_dsp(struct e1000_hw *hw)
108 {
109 	s32 ret_val = 0;
110 
111 	if (!(hw->phy.ops.write_reg))
112 		goto out;
113 
114 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
115 	if (ret_val)
116 		goto out;
117 
118 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
119 
120 out:
121 	return ret_val;
122 }
123 
124 /**
125  *  igb_read_phy_reg_mdic - Read MDI control register
126  *  @hw: pointer to the HW structure
127  *  @offset: register offset to be read
128  *  @data: pointer to the read data
129  *
130  *  Reads the MDI control register in the PHY at offset and stores the
131  *  information read to data.
132  **/
133 s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
134 {
135 	struct e1000_phy_info *phy = &hw->phy;
136 	u32 i, mdic = 0;
137 	s32 ret_val = 0;
138 
139 	if (offset > MAX_PHY_REG_ADDRESS) {
140 		hw_dbg("PHY Address %d is out of range\n", offset);
141 		ret_val = -E1000_ERR_PARAM;
142 		goto out;
143 	}
144 
145 	/* Set up Op-code, Phy Address, and register offset in the MDI
146 	 * Control register.  The MAC will take care of interfacing with the
147 	 * PHY to retrieve the desired data.
148 	 */
149 	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
150 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
151 		(E1000_MDIC_OP_READ));
152 
153 	wr32(E1000_MDIC, mdic);
154 
155 	/* Poll the ready bit to see if the MDI read completed
156 	 * Increasing the time out as testing showed failures with
157 	 * the lower time out
158 	 */
159 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
160 		udelay(50);
161 		mdic = rd32(E1000_MDIC);
162 		if (mdic & E1000_MDIC_READY)
163 			break;
164 	}
165 	if (!(mdic & E1000_MDIC_READY)) {
166 		hw_dbg("MDI Read did not complete\n");
167 		ret_val = -E1000_ERR_PHY;
168 		goto out;
169 	}
170 	if (mdic & E1000_MDIC_ERROR) {
171 		hw_dbg("MDI Error\n");
172 		ret_val = -E1000_ERR_PHY;
173 		goto out;
174 	}
175 	*data = (u16) mdic;
176 
177 out:
178 	return ret_val;
179 }
180 
181 /**
182  *  igb_write_phy_reg_mdic - Write MDI control register
183  *  @hw: pointer to the HW structure
184  *  @offset: register offset to write to
185  *  @data: data to write to register at offset
186  *
187  *  Writes data to MDI control register in the PHY at offset.
188  **/
189 s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
190 {
191 	struct e1000_phy_info *phy = &hw->phy;
192 	u32 i, mdic = 0;
193 	s32 ret_val = 0;
194 
195 	if (offset > MAX_PHY_REG_ADDRESS) {
196 		hw_dbg("PHY Address %d is out of range\n", offset);
197 		ret_val = -E1000_ERR_PARAM;
198 		goto out;
199 	}
200 
201 	/* Set up Op-code, Phy Address, and register offset in the MDI
202 	 * Control register.  The MAC will take care of interfacing with the
203 	 * PHY to retrieve the desired data.
204 	 */
205 	mdic = (((u32)data) |
206 		(offset << E1000_MDIC_REG_SHIFT) |
207 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
208 		(E1000_MDIC_OP_WRITE));
209 
210 	wr32(E1000_MDIC, mdic);
211 
212 	/* Poll the ready bit to see if the MDI read completed
213 	 * Increasing the time out as testing showed failures with
214 	 * the lower time out
215 	 */
216 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
217 		udelay(50);
218 		mdic = rd32(E1000_MDIC);
219 		if (mdic & E1000_MDIC_READY)
220 			break;
221 	}
222 	if (!(mdic & E1000_MDIC_READY)) {
223 		hw_dbg("MDI Write did not complete\n");
224 		ret_val = -E1000_ERR_PHY;
225 		goto out;
226 	}
227 	if (mdic & E1000_MDIC_ERROR) {
228 		hw_dbg("MDI Error\n");
229 		ret_val = -E1000_ERR_PHY;
230 		goto out;
231 	}
232 
233 out:
234 	return ret_val;
235 }
236 
237 /**
238  *  igb_read_phy_reg_i2c - Read PHY register using i2c
239  *  @hw: pointer to the HW structure
240  *  @offset: register offset to be read
241  *  @data: pointer to the read data
242  *
243  *  Reads the PHY register at offset using the i2c interface and stores the
244  *  retrieved information in data.
245  **/
246 s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
247 {
248 	struct e1000_phy_info *phy = &hw->phy;
249 	u32 i, i2ccmd = 0;
250 
251 	/* Set up Op-code, Phy Address, and register address in the I2CCMD
252 	 * register.  The MAC will take care of interfacing with the
253 	 * PHY to retrieve the desired data.
254 	 */
255 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
256 		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
257 		  (E1000_I2CCMD_OPCODE_READ));
258 
259 	wr32(E1000_I2CCMD, i2ccmd);
260 
261 	/* Poll the ready bit to see if the I2C read completed */
262 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
263 		udelay(50);
264 		i2ccmd = rd32(E1000_I2CCMD);
265 		if (i2ccmd & E1000_I2CCMD_READY)
266 			break;
267 	}
268 	if (!(i2ccmd & E1000_I2CCMD_READY)) {
269 		hw_dbg("I2CCMD Read did not complete\n");
270 		return -E1000_ERR_PHY;
271 	}
272 	if (i2ccmd & E1000_I2CCMD_ERROR) {
273 		hw_dbg("I2CCMD Error bit set\n");
274 		return -E1000_ERR_PHY;
275 	}
276 
277 	/* Need to byte-swap the 16-bit value. */
278 	*data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
279 
280 	return 0;
281 }
282 
283 /**
284  *  igb_write_phy_reg_i2c - Write PHY register using i2c
285  *  @hw: pointer to the HW structure
286  *  @offset: register offset to write to
287  *  @data: data to write at register offset
288  *
289  *  Writes the data to PHY register at the offset using the i2c interface.
290  **/
291 s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
292 {
293 	struct e1000_phy_info *phy = &hw->phy;
294 	u32 i, i2ccmd = 0;
295 	u16 phy_data_swapped;
296 
297 	/* Prevent overwriting SFP I2C EEPROM which is at A0 address.*/
298 	if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) {
299 		hw_dbg("PHY I2C Address %d is out of range.\n",
300 			  hw->phy.addr);
301 		return -E1000_ERR_CONFIG;
302 	}
303 
304 	/* Swap the data bytes for the I2C interface */
305 	phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
306 
307 	/* Set up Op-code, Phy Address, and register address in the I2CCMD
308 	 * register.  The MAC will take care of interfacing with the
309 	 * PHY to retrieve the desired data.
310 	 */
311 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
312 		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
313 		  E1000_I2CCMD_OPCODE_WRITE |
314 		  phy_data_swapped);
315 
316 	wr32(E1000_I2CCMD, i2ccmd);
317 
318 	/* Poll the ready bit to see if the I2C read completed */
319 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
320 		udelay(50);
321 		i2ccmd = rd32(E1000_I2CCMD);
322 		if (i2ccmd & E1000_I2CCMD_READY)
323 			break;
324 	}
325 	if (!(i2ccmd & E1000_I2CCMD_READY)) {
326 		hw_dbg("I2CCMD Write did not complete\n");
327 		return -E1000_ERR_PHY;
328 	}
329 	if (i2ccmd & E1000_I2CCMD_ERROR) {
330 		hw_dbg("I2CCMD Error bit set\n");
331 		return -E1000_ERR_PHY;
332 	}
333 
334 	return 0;
335 }
336 
337 /**
338  *  igb_read_sfp_data_byte - Reads SFP module data.
339  *  @hw: pointer to the HW structure
340  *  @offset: byte location offset to be read
341  *  @data: read data buffer pointer
342  *
343  *  Reads one byte from SFP module data stored
344  *  in SFP resided EEPROM memory or SFP diagnostic area.
345  *  Function should be called with
346  *  E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
347  *  E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
348  *  access
349  **/
350 s32 igb_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data)
351 {
352 	u32 i = 0;
353 	u32 i2ccmd = 0;
354 	u32 data_local = 0;
355 
356 	if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
357 		hw_dbg("I2CCMD command address exceeds upper limit\n");
358 		return -E1000_ERR_PHY;
359 	}
360 
361 	/* Set up Op-code, EEPROM Address,in the I2CCMD
362 	 * register. The MAC will take care of interfacing with the
363 	 * EEPROM to retrieve the desired data.
364 	 */
365 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
366 		  E1000_I2CCMD_OPCODE_READ);
367 
368 	wr32(E1000_I2CCMD, i2ccmd);
369 
370 	/* Poll the ready bit to see if the I2C read completed */
371 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
372 		udelay(50);
373 		data_local = rd32(E1000_I2CCMD);
374 		if (data_local & E1000_I2CCMD_READY)
375 			break;
376 	}
377 	if (!(data_local & E1000_I2CCMD_READY)) {
378 		hw_dbg("I2CCMD Read did not complete\n");
379 		return -E1000_ERR_PHY;
380 	}
381 	if (data_local & E1000_I2CCMD_ERROR) {
382 		hw_dbg("I2CCMD Error bit set\n");
383 		return -E1000_ERR_PHY;
384 	}
385 	*data = (u8) data_local & 0xFF;
386 
387 	return 0;
388 }
389 
390 /**
391  *  igb_read_phy_reg_igp - Read igp PHY register
392  *  @hw: pointer to the HW structure
393  *  @offset: register offset to be read
394  *  @data: pointer to the read data
395  *
396  *  Acquires semaphore, if necessary, then reads the PHY register at offset
397  *  and storing the retrieved information in data.  Release any acquired
398  *  semaphores before exiting.
399  **/
400 s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
401 {
402 	s32 ret_val = 0;
403 
404 	if (!(hw->phy.ops.acquire))
405 		goto out;
406 
407 	ret_val = hw->phy.ops.acquire(hw);
408 	if (ret_val)
409 		goto out;
410 
411 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
412 		ret_val = igb_write_phy_reg_mdic(hw,
413 						 IGP01E1000_PHY_PAGE_SELECT,
414 						 (u16)offset);
415 		if (ret_val) {
416 			hw->phy.ops.release(hw);
417 			goto out;
418 		}
419 	}
420 
421 	ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
422 					data);
423 
424 	hw->phy.ops.release(hw);
425 
426 out:
427 	return ret_val;
428 }
429 
430 /**
431  *  igb_write_phy_reg_igp - Write igp PHY register
432  *  @hw: pointer to the HW structure
433  *  @offset: register offset to write to
434  *  @data: data to write at register offset
435  *
436  *  Acquires semaphore, if necessary, then writes the data to PHY register
437  *  at the offset.  Release any acquired semaphores before exiting.
438  **/
439 s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
440 {
441 	s32 ret_val = 0;
442 
443 	if (!(hw->phy.ops.acquire))
444 		goto out;
445 
446 	ret_val = hw->phy.ops.acquire(hw);
447 	if (ret_val)
448 		goto out;
449 
450 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
451 		ret_val = igb_write_phy_reg_mdic(hw,
452 						 IGP01E1000_PHY_PAGE_SELECT,
453 						 (u16)offset);
454 		if (ret_val) {
455 			hw->phy.ops.release(hw);
456 			goto out;
457 		}
458 	}
459 
460 	ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
461 					 data);
462 
463 	hw->phy.ops.release(hw);
464 
465 out:
466 	return ret_val;
467 }
468 
469 /**
470  *  igb_copper_link_setup_82580 - Setup 82580 PHY for copper link
471  *  @hw: pointer to the HW structure
472  *
473  *  Sets up Carrier-sense on Transmit and downshift values.
474  **/
475 s32 igb_copper_link_setup_82580(struct e1000_hw *hw)
476 {
477 	struct e1000_phy_info *phy = &hw->phy;
478 	s32 ret_val;
479 	u16 phy_data;
480 
481 	if (phy->reset_disable) {
482 		ret_val = 0;
483 		goto out;
484 	}
485 
486 	if (phy->type == e1000_phy_82580) {
487 		ret_val = hw->phy.ops.reset(hw);
488 		if (ret_val) {
489 			hw_dbg("Error resetting the PHY.\n");
490 			goto out;
491 		}
492 	}
493 
494 	/* Enable CRS on TX. This must be set for half-duplex operation. */
495 	ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data);
496 	if (ret_val)
497 		goto out;
498 
499 	phy_data |= I82580_CFG_ASSERT_CRS_ON_TX;
500 
501 	/* Enable downshift */
502 	phy_data |= I82580_CFG_ENABLE_DOWNSHIFT;
503 
504 	ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data);
505 	if (ret_val)
506 		goto out;
507 
508 	/* Set MDI/MDIX mode */
509 	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
510 	if (ret_val)
511 		goto out;
512 	phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
513 	/* Options:
514 	 *   0 - Auto (default)
515 	 *   1 - MDI mode
516 	 *   2 - MDI-X mode
517 	 */
518 	switch (hw->phy.mdix) {
519 	case 1:
520 		break;
521 	case 2:
522 		phy_data |= I82580_PHY_CTRL2_MANUAL_MDIX;
523 		break;
524 	case 0:
525 	default:
526 		phy_data |= I82580_PHY_CTRL2_AUTO_MDI_MDIX;
527 		break;
528 	}
529 	ret_val = hw->phy.ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
530 
531 out:
532 	return ret_val;
533 }
534 
535 /**
536  *  igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
537  *  @hw: pointer to the HW structure
538  *
539  *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
540  *  and downshift values are set also.
541  **/
542 s32 igb_copper_link_setup_m88(struct e1000_hw *hw)
543 {
544 	struct e1000_phy_info *phy = &hw->phy;
545 	s32 ret_val;
546 	u16 phy_data;
547 
548 	if (phy->reset_disable) {
549 		ret_val = 0;
550 		goto out;
551 	}
552 
553 	/* Enable CRS on TX. This must be set for half-duplex operation. */
554 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
555 	if (ret_val)
556 		goto out;
557 
558 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
559 
560 	/* Options:
561 	 *   MDI/MDI-X = 0 (default)
562 	 *   0 - Auto for all speeds
563 	 *   1 - MDI mode
564 	 *   2 - MDI-X mode
565 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
566 	 */
567 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
568 
569 	switch (phy->mdix) {
570 	case 1:
571 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
572 		break;
573 	case 2:
574 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
575 		break;
576 	case 3:
577 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
578 		break;
579 	case 0:
580 	default:
581 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
582 		break;
583 	}
584 
585 	/* Options:
586 	 *   disable_polarity_correction = 0 (default)
587 	 *       Automatic Correction for Reversed Cable Polarity
588 	 *   0 - Disabled
589 	 *   1 - Enabled
590 	 */
591 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
592 	if (phy->disable_polarity_correction == 1)
593 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
594 
595 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
596 	if (ret_val)
597 		goto out;
598 
599 	if (phy->revision < E1000_REVISION_4) {
600 		/* Force TX_CLK in the Extended PHY Specific Control Register
601 		 * to 25MHz clock.
602 		 */
603 		ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
604 					    &phy_data);
605 		if (ret_val)
606 			goto out;
607 
608 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
609 
610 		if ((phy->revision == E1000_REVISION_2) &&
611 		    (phy->id == M88E1111_I_PHY_ID)) {
612 			/* 82573L PHY - set the downshift counter to 5x. */
613 			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
614 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
615 		} else {
616 			/* Configure Master and Slave downshift values */
617 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
618 				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
619 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
620 				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
621 		}
622 		ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
623 					     phy_data);
624 		if (ret_val)
625 			goto out;
626 	}
627 
628 	/* Commit the changes. */
629 	ret_val = igb_phy_sw_reset(hw);
630 	if (ret_val) {
631 		hw_dbg("Error committing the PHY changes\n");
632 		goto out;
633 	}
634 
635 out:
636 	return ret_val;
637 }
638 
639 /**
640  *  igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
641  *  @hw: pointer to the HW structure
642  *
643  *  Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
644  *  Also enables and sets the downshift parameters.
645  **/
646 s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw)
647 {
648 	struct e1000_phy_info *phy = &hw->phy;
649 	s32 ret_val;
650 	u16 phy_data;
651 
652 	if (phy->reset_disable)
653 		return 0;
654 
655 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
656 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
657 	if (ret_val)
658 		return ret_val;
659 
660 	/* Options:
661 	 *   MDI/MDI-X = 0 (default)
662 	 *   0 - Auto for all speeds
663 	 *   1 - MDI mode
664 	 *   2 - MDI-X mode
665 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
666 	 */
667 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
668 
669 	switch (phy->mdix) {
670 	case 1:
671 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
672 		break;
673 	case 2:
674 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
675 		break;
676 	case 3:
677 		/* M88E1112 does not support this mode) */
678 		if (phy->id != M88E1112_E_PHY_ID) {
679 			phy_data |= M88E1000_PSCR_AUTO_X_1000T;
680 			break;
681 		}
682 	case 0:
683 	default:
684 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
685 		break;
686 	}
687 
688 	/* Options:
689 	 *   disable_polarity_correction = 0 (default)
690 	 *       Automatic Correction for Reversed Cable Polarity
691 	 *   0 - Disabled
692 	 *   1 - Enabled
693 	 */
694 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
695 	if (phy->disable_polarity_correction == 1)
696 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
697 
698 	/* Enable downshift and setting it to X6 */
699 	if (phy->id == M88E1543_E_PHY_ID) {
700 		phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE;
701 		ret_val =
702 		    phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
703 		if (ret_val)
704 			return ret_val;
705 
706 		ret_val = igb_phy_sw_reset(hw);
707 		if (ret_val) {
708 			hw_dbg("Error committing the PHY changes\n");
709 			return ret_val;
710 		}
711 	}
712 
713 	phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
714 	phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
715 	phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
716 
717 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
718 	if (ret_val)
719 		return ret_val;
720 
721 	/* Commit the changes. */
722 	ret_val = igb_phy_sw_reset(hw);
723 	if (ret_val) {
724 		hw_dbg("Error committing the PHY changes\n");
725 		return ret_val;
726 	}
727 	ret_val = igb_set_master_slave_mode(hw);
728 	if (ret_val)
729 		return ret_val;
730 
731 	return 0;
732 }
733 
734 /**
735  *  igb_copper_link_setup_igp - Setup igp PHY's for copper link
736  *  @hw: pointer to the HW structure
737  *
738  *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
739  *  igp PHY's.
740  **/
741 s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
742 {
743 	struct e1000_phy_info *phy = &hw->phy;
744 	s32 ret_val;
745 	u16 data;
746 
747 	if (phy->reset_disable) {
748 		ret_val = 0;
749 		goto out;
750 	}
751 
752 	ret_val = phy->ops.reset(hw);
753 	if (ret_val) {
754 		hw_dbg("Error resetting the PHY.\n");
755 		goto out;
756 	}
757 
758 	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
759 	 * timeout issues when LFS is enabled.
760 	 */
761 	msleep(100);
762 
763 	/* The NVM settings will configure LPLU in D3 for
764 	 * non-IGP1 PHYs.
765 	 */
766 	if (phy->type == e1000_phy_igp) {
767 		/* disable lplu d3 during driver init */
768 		if (phy->ops.set_d3_lplu_state)
769 			ret_val = phy->ops.set_d3_lplu_state(hw, false);
770 		if (ret_val) {
771 			hw_dbg("Error Disabling LPLU D3\n");
772 			goto out;
773 		}
774 	}
775 
776 	/* disable lplu d0 during driver init */
777 	ret_val = phy->ops.set_d0_lplu_state(hw, false);
778 	if (ret_val) {
779 		hw_dbg("Error Disabling LPLU D0\n");
780 		goto out;
781 	}
782 	/* Configure mdi-mdix settings */
783 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
784 	if (ret_val)
785 		goto out;
786 
787 	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
788 
789 	switch (phy->mdix) {
790 	case 1:
791 		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
792 		break;
793 	case 2:
794 		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
795 		break;
796 	case 0:
797 	default:
798 		data |= IGP01E1000_PSCR_AUTO_MDIX;
799 		break;
800 	}
801 	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
802 	if (ret_val)
803 		goto out;
804 
805 	/* set auto-master slave resolution settings */
806 	if (hw->mac.autoneg) {
807 		/* when autonegotiation advertisement is only 1000Mbps then we
808 		 * should disable SmartSpeed and enable Auto MasterSlave
809 		 * resolution as hardware default.
810 		 */
811 		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
812 			/* Disable SmartSpeed */
813 			ret_val = phy->ops.read_reg(hw,
814 						    IGP01E1000_PHY_PORT_CONFIG,
815 						    &data);
816 			if (ret_val)
817 				goto out;
818 
819 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
820 			ret_val = phy->ops.write_reg(hw,
821 						     IGP01E1000_PHY_PORT_CONFIG,
822 						     data);
823 			if (ret_val)
824 				goto out;
825 
826 			/* Set auto Master/Slave resolution process */
827 			ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
828 			if (ret_val)
829 				goto out;
830 
831 			data &= ~CR_1000T_MS_ENABLE;
832 			ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
833 			if (ret_val)
834 				goto out;
835 		}
836 
837 		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
838 		if (ret_val)
839 			goto out;
840 
841 		/* load defaults for future use */
842 		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
843 			((data & CR_1000T_MS_VALUE) ?
844 			e1000_ms_force_master :
845 			e1000_ms_force_slave) :
846 			e1000_ms_auto;
847 
848 		switch (phy->ms_type) {
849 		case e1000_ms_force_master:
850 			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
851 			break;
852 		case e1000_ms_force_slave:
853 			data |= CR_1000T_MS_ENABLE;
854 			data &= ~(CR_1000T_MS_VALUE);
855 			break;
856 		case e1000_ms_auto:
857 			data &= ~CR_1000T_MS_ENABLE;
858 		default:
859 			break;
860 		}
861 		ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
862 		if (ret_val)
863 			goto out;
864 	}
865 
866 out:
867 	return ret_val;
868 }
869 
870 /**
871  *  igb_copper_link_autoneg - Setup/Enable autoneg for copper link
872  *  @hw: pointer to the HW structure
873  *
874  *  Performs initial bounds checking on autoneg advertisement parameter, then
875  *  configure to advertise the full capability.  Setup the PHY to autoneg
876  *  and restart the negotiation process between the link partner.  If
877  *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
878  **/
879 static s32 igb_copper_link_autoneg(struct e1000_hw *hw)
880 {
881 	struct e1000_phy_info *phy = &hw->phy;
882 	s32 ret_val;
883 	u16 phy_ctrl;
884 
885 	/* Perform some bounds checking on the autoneg advertisement
886 	 * parameter.
887 	 */
888 	phy->autoneg_advertised &= phy->autoneg_mask;
889 
890 	/* If autoneg_advertised is zero, we assume it was not defaulted
891 	 * by the calling code so we set to advertise full capability.
892 	 */
893 	if (phy->autoneg_advertised == 0)
894 		phy->autoneg_advertised = phy->autoneg_mask;
895 
896 	hw_dbg("Reconfiguring auto-neg advertisement params\n");
897 	ret_val = igb_phy_setup_autoneg(hw);
898 	if (ret_val) {
899 		hw_dbg("Error Setting up Auto-Negotiation\n");
900 		goto out;
901 	}
902 	hw_dbg("Restarting Auto-Neg\n");
903 
904 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
905 	 * the Auto Neg Restart bit in the PHY control register.
906 	 */
907 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
908 	if (ret_val)
909 		goto out;
910 
911 	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
912 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
913 	if (ret_val)
914 		goto out;
915 
916 	/* Does the user want to wait for Auto-Neg to complete here, or
917 	 * check at a later time (for example, callback routine).
918 	 */
919 	if (phy->autoneg_wait_to_complete) {
920 		ret_val = igb_wait_autoneg(hw);
921 		if (ret_val) {
922 			hw_dbg("Error while waiting for autoneg to complete\n");
923 			goto out;
924 		}
925 	}
926 
927 	hw->mac.get_link_status = true;
928 
929 out:
930 	return ret_val;
931 }
932 
933 /**
934  *  igb_phy_setup_autoneg - Configure PHY for auto-negotiation
935  *  @hw: pointer to the HW structure
936  *
937  *  Reads the MII auto-neg advertisement register and/or the 1000T control
938  *  register and if the PHY is already setup for auto-negotiation, then
939  *  return successful.  Otherwise, setup advertisement and flow control to
940  *  the appropriate values for the wanted auto-negotiation.
941  **/
942 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
943 {
944 	struct e1000_phy_info *phy = &hw->phy;
945 	s32 ret_val;
946 	u16 mii_autoneg_adv_reg;
947 	u16 mii_1000t_ctrl_reg = 0;
948 
949 	phy->autoneg_advertised &= phy->autoneg_mask;
950 
951 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
952 	ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
953 	if (ret_val)
954 		goto out;
955 
956 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
957 		/* Read the MII 1000Base-T Control Register (Address 9). */
958 		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
959 					    &mii_1000t_ctrl_reg);
960 		if (ret_val)
961 			goto out;
962 	}
963 
964 	/* Need to parse both autoneg_advertised and fc and set up
965 	 * the appropriate PHY registers.  First we will parse for
966 	 * autoneg_advertised software override.  Since we can advertise
967 	 * a plethora of combinations, we need to check each bit
968 	 * individually.
969 	 */
970 
971 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
972 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
973 	 * the  1000Base-T Control Register (Address 9).
974 	 */
975 	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
976 				 NWAY_AR_100TX_HD_CAPS |
977 				 NWAY_AR_10T_FD_CAPS   |
978 				 NWAY_AR_10T_HD_CAPS);
979 	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
980 
981 	hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
982 
983 	/* Do we want to advertise 10 Mb Half Duplex? */
984 	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
985 		hw_dbg("Advertise 10mb Half duplex\n");
986 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
987 	}
988 
989 	/* Do we want to advertise 10 Mb Full Duplex? */
990 	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
991 		hw_dbg("Advertise 10mb Full duplex\n");
992 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
993 	}
994 
995 	/* Do we want to advertise 100 Mb Half Duplex? */
996 	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
997 		hw_dbg("Advertise 100mb Half duplex\n");
998 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
999 	}
1000 
1001 	/* Do we want to advertise 100 Mb Full Duplex? */
1002 	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
1003 		hw_dbg("Advertise 100mb Full duplex\n");
1004 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1005 	}
1006 
1007 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1008 	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1009 		hw_dbg("Advertise 1000mb Half duplex request denied!\n");
1010 
1011 	/* Do we want to advertise 1000 Mb Full Duplex? */
1012 	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1013 		hw_dbg("Advertise 1000mb Full duplex\n");
1014 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1015 	}
1016 
1017 	/* Check for a software override of the flow control settings, and
1018 	 * setup the PHY advertisement registers accordingly.  If
1019 	 * auto-negotiation is enabled, then software will have to set the
1020 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1021 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1022 	 * negotiation.
1023 	 *
1024 	 * The possible values of the "fc" parameter are:
1025 	 *      0:  Flow control is completely disabled
1026 	 *      1:  Rx flow control is enabled (we can receive pause frames
1027 	 *          but not send pause frames).
1028 	 *      2:  Tx flow control is enabled (we can send pause frames
1029 	 *          but we do not support receiving pause frames).
1030 	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
1031 	 *  other:  No software override.  The flow control configuration
1032 	 *          in the EEPROM is used.
1033 	 */
1034 	switch (hw->fc.current_mode) {
1035 	case e1000_fc_none:
1036 		/* Flow control (RX & TX) is completely disabled by a
1037 		 * software over-ride.
1038 		 */
1039 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1040 		break;
1041 	case e1000_fc_rx_pause:
1042 		/* RX Flow control is enabled, and TX Flow control is
1043 		 * disabled, by a software over-ride.
1044 		 *
1045 		 * Since there really isn't a way to advertise that we are
1046 		 * capable of RX Pause ONLY, we will advertise that we
1047 		 * support both symmetric and asymmetric RX PAUSE.  Later
1048 		 * (in e1000_config_fc_after_link_up) we will disable the
1049 		 * hw's ability to send PAUSE frames.
1050 		 */
1051 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1052 		break;
1053 	case e1000_fc_tx_pause:
1054 		/* TX Flow control is enabled, and RX Flow control is
1055 		 * disabled, by a software over-ride.
1056 		 */
1057 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1058 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1059 		break;
1060 	case e1000_fc_full:
1061 		/* Flow control (both RX and TX) is enabled by a software
1062 		 * over-ride.
1063 		 */
1064 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1065 		break;
1066 	default:
1067 		hw_dbg("Flow control param set incorrectly\n");
1068 		ret_val = -E1000_ERR_CONFIG;
1069 		goto out;
1070 	}
1071 
1072 	ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1073 	if (ret_val)
1074 		goto out;
1075 
1076 	hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1077 
1078 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1079 		ret_val = phy->ops.write_reg(hw,
1080 					     PHY_1000T_CTRL,
1081 					     mii_1000t_ctrl_reg);
1082 		if (ret_val)
1083 			goto out;
1084 	}
1085 
1086 out:
1087 	return ret_val;
1088 }
1089 
1090 /**
1091  *  igb_setup_copper_link - Configure copper link settings
1092  *  @hw: pointer to the HW structure
1093  *
1094  *  Calls the appropriate function to configure the link for auto-neg or forced
1095  *  speed and duplex.  Then we check for link, once link is established calls
1096  *  to configure collision distance and flow control are called.  If link is
1097  *  not established, we return -E1000_ERR_PHY (-2).
1098  **/
1099 s32 igb_setup_copper_link(struct e1000_hw *hw)
1100 {
1101 	s32 ret_val;
1102 	bool link;
1103 
1104 	if (hw->mac.autoneg) {
1105 		/* Setup autoneg and flow control advertisement and perform
1106 		 * autonegotiation.
1107 		 */
1108 		ret_val = igb_copper_link_autoneg(hw);
1109 		if (ret_val)
1110 			goto out;
1111 	} else {
1112 		/* PHY will be set to 10H, 10F, 100H or 100F
1113 		 * depending on user settings.
1114 		 */
1115 		hw_dbg("Forcing Speed and Duplex\n");
1116 		ret_val = hw->phy.ops.force_speed_duplex(hw);
1117 		if (ret_val) {
1118 			hw_dbg("Error Forcing Speed and Duplex\n");
1119 			goto out;
1120 		}
1121 	}
1122 
1123 	/* Check link status. Wait up to 100 microseconds for link to become
1124 	 * valid.
1125 	 */
1126 	ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
1127 	if (ret_val)
1128 		goto out;
1129 
1130 	if (link) {
1131 		hw_dbg("Valid link established!!!\n");
1132 		igb_config_collision_dist(hw);
1133 		ret_val = igb_config_fc_after_link_up(hw);
1134 	} else {
1135 		hw_dbg("Unable to establish link!!!\n");
1136 	}
1137 
1138 out:
1139 	return ret_val;
1140 }
1141 
1142 /**
1143  *  igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1144  *  @hw: pointer to the HW structure
1145  *
1146  *  Calls the PHY setup function to force speed and duplex.  Clears the
1147  *  auto-crossover to force MDI manually.  Waits for link and returns
1148  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1149  **/
1150 s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1151 {
1152 	struct e1000_phy_info *phy = &hw->phy;
1153 	s32 ret_val;
1154 	u16 phy_data;
1155 	bool link;
1156 
1157 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1158 	if (ret_val)
1159 		goto out;
1160 
1161 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1162 
1163 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1164 	if (ret_val)
1165 		goto out;
1166 
1167 	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1168 	 * forced whenever speed and duplex are forced.
1169 	 */
1170 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1171 	if (ret_val)
1172 		goto out;
1173 
1174 	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1175 	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1176 
1177 	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1178 	if (ret_val)
1179 		goto out;
1180 
1181 	hw_dbg("IGP PSCR: %X\n", phy_data);
1182 
1183 	udelay(1);
1184 
1185 	if (phy->autoneg_wait_to_complete) {
1186 		hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1187 
1188 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
1189 		if (ret_val)
1190 			goto out;
1191 
1192 		if (!link)
1193 			hw_dbg("Link taking longer than expected.\n");
1194 
1195 		/* Try once more */
1196 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
1197 		if (ret_val)
1198 			goto out;
1199 	}
1200 
1201 out:
1202 	return ret_val;
1203 }
1204 
1205 /**
1206  *  igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1207  *  @hw: pointer to the HW structure
1208  *
1209  *  Calls the PHY setup function to force speed and duplex.  Clears the
1210  *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1211  *  changes.  If time expires while waiting for link up, we reset the DSP.
1212  *  After reset, TX_CLK and CRS on TX must be set.  Return successful upon
1213  *  successful completion, else return corresponding error code.
1214  **/
1215 s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1216 {
1217 	struct e1000_phy_info *phy = &hw->phy;
1218 	s32 ret_val;
1219 	u16 phy_data;
1220 	bool link;
1221 
1222 	/* I210 and I211 devices support Auto-Crossover in forced operation. */
1223 	if (phy->type != e1000_phy_i210) {
1224 		/* Clear Auto-Crossover to force MDI manually.  M88E1000
1225 		 * requires MDI forced whenever speed and duplex are forced.
1226 		 */
1227 		ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL,
1228 					    &phy_data);
1229 		if (ret_val)
1230 			goto out;
1231 
1232 		phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1233 		ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
1234 					     phy_data);
1235 		if (ret_val)
1236 			goto out;
1237 
1238 		hw_dbg("M88E1000 PSCR: %X\n", phy_data);
1239 	}
1240 
1241 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1242 	if (ret_val)
1243 		goto out;
1244 
1245 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1246 
1247 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1248 	if (ret_val)
1249 		goto out;
1250 
1251 	/* Reset the phy to commit changes. */
1252 	ret_val = igb_phy_sw_reset(hw);
1253 	if (ret_val)
1254 		goto out;
1255 
1256 	if (phy->autoneg_wait_to_complete) {
1257 		hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1258 
1259 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
1260 		if (ret_val)
1261 			goto out;
1262 
1263 		if (!link) {
1264 			bool reset_dsp = true;
1265 
1266 			switch (hw->phy.id) {
1267 			case I347AT4_E_PHY_ID:
1268 			case M88E1112_E_PHY_ID:
1269 			case M88E1543_E_PHY_ID:
1270 			case M88E1512_E_PHY_ID:
1271 			case I210_I_PHY_ID:
1272 				reset_dsp = false;
1273 				break;
1274 			default:
1275 				if (hw->phy.type != e1000_phy_m88)
1276 					reset_dsp = false;
1277 				break;
1278 			}
1279 			if (!reset_dsp) {
1280 				hw_dbg("Link taking longer than expected.\n");
1281 			} else {
1282 				/* We didn't get link.
1283 				 * Reset the DSP and cross our fingers.
1284 				 */
1285 				ret_val = phy->ops.write_reg(hw,
1286 						M88E1000_PHY_PAGE_SELECT,
1287 						0x001d);
1288 				if (ret_val)
1289 					goto out;
1290 				ret_val = igb_phy_reset_dsp(hw);
1291 				if (ret_val)
1292 					goto out;
1293 			}
1294 		}
1295 
1296 		/* Try once more */
1297 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT,
1298 					   100000, &link);
1299 		if (ret_val)
1300 			goto out;
1301 	}
1302 
1303 	if (hw->phy.type != e1000_phy_m88 ||
1304 	    hw->phy.id == I347AT4_E_PHY_ID ||
1305 	    hw->phy.id == M88E1112_E_PHY_ID ||
1306 	    hw->phy.id == M88E1543_E_PHY_ID ||
1307 	    hw->phy.id == M88E1512_E_PHY_ID ||
1308 	    hw->phy.id == I210_I_PHY_ID)
1309 		goto out;
1310 
1311 	ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1312 	if (ret_val)
1313 		goto out;
1314 
1315 	/* Resetting the phy means we need to re-force TX_CLK in the
1316 	 * Extended PHY Specific Control Register to 25MHz clock from
1317 	 * the reset value of 2.5MHz.
1318 	 */
1319 	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1320 	ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1321 	if (ret_val)
1322 		goto out;
1323 
1324 	/* In addition, we must re-enable CRS on Tx for both half and full
1325 	 * duplex.
1326 	 */
1327 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1328 	if (ret_val)
1329 		goto out;
1330 
1331 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1332 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1333 
1334 out:
1335 	return ret_val;
1336 }
1337 
1338 /**
1339  *  igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1340  *  @hw: pointer to the HW structure
1341  *  @phy_ctrl: pointer to current value of PHY_CONTROL
1342  *
1343  *  Forces speed and duplex on the PHY by doing the following: disable flow
1344  *  control, force speed/duplex on the MAC, disable auto speed detection,
1345  *  disable auto-negotiation, configure duplex, configure speed, configure
1346  *  the collision distance, write configuration to CTRL register.  The
1347  *  caller must write to the PHY_CONTROL register for these settings to
1348  *  take affect.
1349  **/
1350 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
1351 					     u16 *phy_ctrl)
1352 {
1353 	struct e1000_mac_info *mac = &hw->mac;
1354 	u32 ctrl;
1355 
1356 	/* Turn off flow control when forcing speed/duplex */
1357 	hw->fc.current_mode = e1000_fc_none;
1358 
1359 	/* Force speed/duplex on the mac */
1360 	ctrl = rd32(E1000_CTRL);
1361 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1362 	ctrl &= ~E1000_CTRL_SPD_SEL;
1363 
1364 	/* Disable Auto Speed Detection */
1365 	ctrl &= ~E1000_CTRL_ASDE;
1366 
1367 	/* Disable autoneg on the phy */
1368 	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1369 
1370 	/* Forcing Full or Half Duplex? */
1371 	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1372 		ctrl &= ~E1000_CTRL_FD;
1373 		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1374 		hw_dbg("Half Duplex\n");
1375 	} else {
1376 		ctrl |= E1000_CTRL_FD;
1377 		*phy_ctrl |= MII_CR_FULL_DUPLEX;
1378 		hw_dbg("Full Duplex\n");
1379 	}
1380 
1381 	/* Forcing 10mb or 100mb? */
1382 	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1383 		ctrl |= E1000_CTRL_SPD_100;
1384 		*phy_ctrl |= MII_CR_SPEED_100;
1385 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1386 		hw_dbg("Forcing 100mb\n");
1387 	} else {
1388 		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1389 		*phy_ctrl |= MII_CR_SPEED_10;
1390 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1391 		hw_dbg("Forcing 10mb\n");
1392 	}
1393 
1394 	igb_config_collision_dist(hw);
1395 
1396 	wr32(E1000_CTRL, ctrl);
1397 }
1398 
1399 /**
1400  *  igb_set_d3_lplu_state - Sets low power link up state for D3
1401  *  @hw: pointer to the HW structure
1402  *  @active: boolean used to enable/disable lplu
1403  *
1404  *  Success returns 0, Failure returns 1
1405  *
1406  *  The low power link up (lplu) state is set to the power management level D3
1407  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1408  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1409  *  is used during Dx states where the power conservation is most important.
1410  *  During driver activity, SmartSpeed should be enabled so performance is
1411  *  maintained.
1412  **/
1413 s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1414 {
1415 	struct e1000_phy_info *phy = &hw->phy;
1416 	s32 ret_val = 0;
1417 	u16 data;
1418 
1419 	if (!(hw->phy.ops.read_reg))
1420 		goto out;
1421 
1422 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1423 	if (ret_val)
1424 		goto out;
1425 
1426 	if (!active) {
1427 		data &= ~IGP02E1000_PM_D3_LPLU;
1428 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1429 					     data);
1430 		if (ret_val)
1431 			goto out;
1432 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1433 		 * during Dx states where the power conservation is most
1434 		 * important.  During driver activity we should enable
1435 		 * SmartSpeed, so performance is maintained.
1436 		 */
1437 		if (phy->smart_speed == e1000_smart_speed_on) {
1438 			ret_val = phy->ops.read_reg(hw,
1439 						    IGP01E1000_PHY_PORT_CONFIG,
1440 						    &data);
1441 			if (ret_val)
1442 				goto out;
1443 
1444 			data |= IGP01E1000_PSCFR_SMART_SPEED;
1445 			ret_val = phy->ops.write_reg(hw,
1446 						     IGP01E1000_PHY_PORT_CONFIG,
1447 						     data);
1448 			if (ret_val)
1449 				goto out;
1450 		} else if (phy->smart_speed == e1000_smart_speed_off) {
1451 			ret_val = phy->ops.read_reg(hw,
1452 						     IGP01E1000_PHY_PORT_CONFIG,
1453 						     &data);
1454 			if (ret_val)
1455 				goto out;
1456 
1457 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1458 			ret_val = phy->ops.write_reg(hw,
1459 						     IGP01E1000_PHY_PORT_CONFIG,
1460 						     data);
1461 			if (ret_val)
1462 				goto out;
1463 		}
1464 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1465 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1466 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1467 		data |= IGP02E1000_PM_D3_LPLU;
1468 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1469 					      data);
1470 		if (ret_val)
1471 			goto out;
1472 
1473 		/* When LPLU is enabled, we should disable SmartSpeed */
1474 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1475 					    &data);
1476 		if (ret_val)
1477 			goto out;
1478 
1479 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1480 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1481 					     data);
1482 	}
1483 
1484 out:
1485 	return ret_val;
1486 }
1487 
1488 /**
1489  *  igb_check_downshift - Checks whether a downshift in speed occurred
1490  *  @hw: pointer to the HW structure
1491  *
1492  *  Success returns 0, Failure returns 1
1493  *
1494  *  A downshift is detected by querying the PHY link health.
1495  **/
1496 s32 igb_check_downshift(struct e1000_hw *hw)
1497 {
1498 	struct e1000_phy_info *phy = &hw->phy;
1499 	s32 ret_val;
1500 	u16 phy_data, offset, mask;
1501 
1502 	switch (phy->type) {
1503 	case e1000_phy_i210:
1504 	case e1000_phy_m88:
1505 	case e1000_phy_gg82563:
1506 		offset	= M88E1000_PHY_SPEC_STATUS;
1507 		mask	= M88E1000_PSSR_DOWNSHIFT;
1508 		break;
1509 	case e1000_phy_igp_2:
1510 	case e1000_phy_igp:
1511 	case e1000_phy_igp_3:
1512 		offset	= IGP01E1000_PHY_LINK_HEALTH;
1513 		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
1514 		break;
1515 	default:
1516 		/* speed downshift not supported */
1517 		phy->speed_downgraded = false;
1518 		ret_val = 0;
1519 		goto out;
1520 	}
1521 
1522 	ret_val = phy->ops.read_reg(hw, offset, &phy_data);
1523 
1524 	if (!ret_val)
1525 		phy->speed_downgraded = (phy_data & mask) ? true : false;
1526 
1527 out:
1528 	return ret_val;
1529 }
1530 
1531 /**
1532  *  igb_check_polarity_m88 - Checks the polarity.
1533  *  @hw: pointer to the HW structure
1534  *
1535  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1536  *
1537  *  Polarity is determined based on the PHY specific status register.
1538  **/
1539 s32 igb_check_polarity_m88(struct e1000_hw *hw)
1540 {
1541 	struct e1000_phy_info *phy = &hw->phy;
1542 	s32 ret_val;
1543 	u16 data;
1544 
1545 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
1546 
1547 	if (!ret_val)
1548 		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1549 				      ? e1000_rev_polarity_reversed
1550 				      : e1000_rev_polarity_normal;
1551 
1552 	return ret_val;
1553 }
1554 
1555 /**
1556  *  igb_check_polarity_igp - Checks the polarity.
1557  *  @hw: pointer to the HW structure
1558  *
1559  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1560  *
1561  *  Polarity is determined based on the PHY port status register, and the
1562  *  current speed (since there is no polarity at 100Mbps).
1563  **/
1564 static s32 igb_check_polarity_igp(struct e1000_hw *hw)
1565 {
1566 	struct e1000_phy_info *phy = &hw->phy;
1567 	s32 ret_val;
1568 	u16 data, offset, mask;
1569 
1570 	/* Polarity is determined based on the speed of
1571 	 * our connection.
1572 	 */
1573 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1574 	if (ret_val)
1575 		goto out;
1576 
1577 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1578 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1579 		offset	= IGP01E1000_PHY_PCS_INIT_REG;
1580 		mask	= IGP01E1000_PHY_POLARITY_MASK;
1581 	} else {
1582 		/* This really only applies to 10Mbps since
1583 		 * there is no polarity for 100Mbps (always 0).
1584 		 */
1585 		offset	= IGP01E1000_PHY_PORT_STATUS;
1586 		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
1587 	}
1588 
1589 	ret_val = phy->ops.read_reg(hw, offset, &data);
1590 
1591 	if (!ret_val)
1592 		phy->cable_polarity = (data & mask)
1593 				      ? e1000_rev_polarity_reversed
1594 				      : e1000_rev_polarity_normal;
1595 
1596 out:
1597 	return ret_val;
1598 }
1599 
1600 /**
1601  *  igb_wait_autoneg - Wait for auto-neg completion
1602  *  @hw: pointer to the HW structure
1603  *
1604  *  Waits for auto-negotiation to complete or for the auto-negotiation time
1605  *  limit to expire, which ever happens first.
1606  **/
1607 static s32 igb_wait_autoneg(struct e1000_hw *hw)
1608 {
1609 	s32 ret_val = 0;
1610 	u16 i, phy_status;
1611 
1612 	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1613 	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1614 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1615 		if (ret_val)
1616 			break;
1617 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1618 		if (ret_val)
1619 			break;
1620 		if (phy_status & MII_SR_AUTONEG_COMPLETE)
1621 			break;
1622 		msleep(100);
1623 	}
1624 
1625 	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1626 	 * has completed.
1627 	 */
1628 	return ret_val;
1629 }
1630 
1631 /**
1632  *  igb_phy_has_link - Polls PHY for link
1633  *  @hw: pointer to the HW structure
1634  *  @iterations: number of times to poll for link
1635  *  @usec_interval: delay between polling attempts
1636  *  @success: pointer to whether polling was successful or not
1637  *
1638  *  Polls the PHY status register for link, 'iterations' number of times.
1639  **/
1640 s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations,
1641 		     u32 usec_interval, bool *success)
1642 {
1643 	s32 ret_val = 0;
1644 	u16 i, phy_status;
1645 
1646 	for (i = 0; i < iterations; i++) {
1647 		/* Some PHYs require the PHY_STATUS register to be read
1648 		 * twice due to the link bit being sticky.  No harm doing
1649 		 * it across the board.
1650 		 */
1651 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1652 		if (ret_val && usec_interval > 0) {
1653 			/* If the first read fails, another entity may have
1654 			 * ownership of the resources, wait and try again to
1655 			 * see if they have relinquished the resources yet.
1656 			 */
1657 			if (usec_interval >= 1000)
1658 				mdelay(usec_interval/1000);
1659 			else
1660 				udelay(usec_interval);
1661 		}
1662 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1663 		if (ret_val)
1664 			break;
1665 		if (phy_status & MII_SR_LINK_STATUS)
1666 			break;
1667 		if (usec_interval >= 1000)
1668 			mdelay(usec_interval/1000);
1669 		else
1670 			udelay(usec_interval);
1671 	}
1672 
1673 	*success = (i < iterations) ? true : false;
1674 
1675 	return ret_val;
1676 }
1677 
1678 /**
1679  *  igb_get_cable_length_m88 - Determine cable length for m88 PHY
1680  *  @hw: pointer to the HW structure
1681  *
1682  *  Reads the PHY specific status register to retrieve the cable length
1683  *  information.  The cable length is determined by averaging the minimum and
1684  *  maximum values to get the "average" cable length.  The m88 PHY has four
1685  *  possible cable length values, which are:
1686  *	Register Value		Cable Length
1687  *	0			< 50 meters
1688  *	1			50 - 80 meters
1689  *	2			80 - 110 meters
1690  *	3			110 - 140 meters
1691  *	4			> 140 meters
1692  **/
1693 s32 igb_get_cable_length_m88(struct e1000_hw *hw)
1694 {
1695 	struct e1000_phy_info *phy = &hw->phy;
1696 	s32 ret_val;
1697 	u16 phy_data, index;
1698 
1699 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1700 	if (ret_val)
1701 		goto out;
1702 
1703 	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1704 		M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1705 	if (index >= ARRAY_SIZE(e1000_m88_cable_length_table) - 1) {
1706 		ret_val = -E1000_ERR_PHY;
1707 		goto out;
1708 	}
1709 
1710 	phy->min_cable_length = e1000_m88_cable_length_table[index];
1711 	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1712 
1713 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1714 
1715 out:
1716 	return ret_val;
1717 }
1718 
1719 s32 igb_get_cable_length_m88_gen2(struct e1000_hw *hw)
1720 {
1721 	struct e1000_phy_info *phy = &hw->phy;
1722 	s32 ret_val;
1723 	u16 phy_data, phy_data2, index, default_page, is_cm;
1724 	int len_tot = 0;
1725 	u16 len_min;
1726 	u16 len_max;
1727 
1728 	switch (hw->phy.id) {
1729 	case M88E1543_E_PHY_ID:
1730 	case M88E1512_E_PHY_ID:
1731 	case I347AT4_E_PHY_ID:
1732 	case I210_I_PHY_ID:
1733 		/* Remember the original page select and set it to 7 */
1734 		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1735 					    &default_page);
1736 		if (ret_val)
1737 			goto out;
1738 
1739 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
1740 		if (ret_val)
1741 			goto out;
1742 
1743 		/* Check if the unit of cable length is meters or cm */
1744 		ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
1745 		if (ret_val)
1746 			goto out;
1747 
1748 		is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1749 
1750 		/* Get cable length from Pair 0 length Regs */
1751 		ret_val = phy->ops.read_reg(hw, I347AT4_PCDL0, &phy_data);
1752 		if (ret_val)
1753 			goto out;
1754 
1755 		phy->pair_length[0] = phy_data / (is_cm ? 100 : 1);
1756 		len_tot = phy->pair_length[0];
1757 		len_min = phy->pair_length[0];
1758 		len_max = phy->pair_length[0];
1759 
1760 		/* Get cable length from Pair 1 length Regs */
1761 		ret_val = phy->ops.read_reg(hw, I347AT4_PCDL1, &phy_data);
1762 		if (ret_val)
1763 			goto out;
1764 
1765 		phy->pair_length[1] = phy_data / (is_cm ? 100 : 1);
1766 		len_tot += phy->pair_length[1];
1767 		len_min = min(len_min, phy->pair_length[1]);
1768 		len_max = max(len_max, phy->pair_length[1]);
1769 
1770 		/* Get cable length from Pair 2 length Regs */
1771 		ret_val = phy->ops.read_reg(hw, I347AT4_PCDL2, &phy_data);
1772 		if (ret_val)
1773 			goto out;
1774 
1775 		phy->pair_length[2] = phy_data / (is_cm ? 100 : 1);
1776 		len_tot += phy->pair_length[2];
1777 		len_min = min(len_min, phy->pair_length[2]);
1778 		len_max = max(len_max, phy->pair_length[2]);
1779 
1780 		/* Get cable length from Pair 3 length Regs */
1781 		ret_val = phy->ops.read_reg(hw, I347AT4_PCDL3, &phy_data);
1782 		if (ret_val)
1783 			goto out;
1784 
1785 		phy->pair_length[3] = phy_data / (is_cm ? 100 : 1);
1786 		len_tot += phy->pair_length[3];
1787 		len_min = min(len_min, phy->pair_length[3]);
1788 		len_max = max(len_max, phy->pair_length[3]);
1789 
1790 		/* Populate the phy structure with cable length in meters */
1791 		phy->min_cable_length = len_min;
1792 		phy->max_cable_length = len_max;
1793 		phy->cable_length = len_tot / 4;
1794 
1795 		/* Reset the page selec to its original value */
1796 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1797 					     default_page);
1798 		if (ret_val)
1799 			goto out;
1800 		break;
1801 	case M88E1112_E_PHY_ID:
1802 		/* Remember the original page select and set it to 5 */
1803 		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1804 					    &default_page);
1805 		if (ret_val)
1806 			goto out;
1807 
1808 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
1809 		if (ret_val)
1810 			goto out;
1811 
1812 		ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
1813 					    &phy_data);
1814 		if (ret_val)
1815 			goto out;
1816 
1817 		index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1818 			M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1819 		if (index >= ARRAY_SIZE(e1000_m88_cable_length_table) - 1) {
1820 			ret_val = -E1000_ERR_PHY;
1821 			goto out;
1822 		}
1823 
1824 		phy->min_cable_length = e1000_m88_cable_length_table[index];
1825 		phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1826 
1827 		phy->cable_length = (phy->min_cable_length +
1828 				     phy->max_cable_length) / 2;
1829 
1830 		/* Reset the page select to its original value */
1831 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1832 					     default_page);
1833 		if (ret_val)
1834 			goto out;
1835 
1836 		break;
1837 	default:
1838 		ret_val = -E1000_ERR_PHY;
1839 		goto out;
1840 	}
1841 
1842 out:
1843 	return ret_val;
1844 }
1845 
1846 /**
1847  *  igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1848  *  @hw: pointer to the HW structure
1849  *
1850  *  The automatic gain control (agc) normalizes the amplitude of the
1851  *  received signal, adjusting for the attenuation produced by the
1852  *  cable.  By reading the AGC registers, which represent the
1853  *  combination of coarse and fine gain value, the value can be put
1854  *  into a lookup table to obtain the approximate cable length
1855  *  for each channel.
1856  **/
1857 s32 igb_get_cable_length_igp_2(struct e1000_hw *hw)
1858 {
1859 	struct e1000_phy_info *phy = &hw->phy;
1860 	s32 ret_val = 0;
1861 	u16 phy_data, i, agc_value = 0;
1862 	u16 cur_agc_index, max_agc_index = 0;
1863 	u16 min_agc_index = ARRAY_SIZE(e1000_igp_2_cable_length_table) - 1;
1864 	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1865 		IGP02E1000_PHY_AGC_A,
1866 		IGP02E1000_PHY_AGC_B,
1867 		IGP02E1000_PHY_AGC_C,
1868 		IGP02E1000_PHY_AGC_D
1869 	};
1870 
1871 	/* Read the AGC registers for all channels */
1872 	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1873 		ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
1874 		if (ret_val)
1875 			goto out;
1876 
1877 		/* Getting bits 15:9, which represent the combination of
1878 		 * coarse and fine gain values.  The result is a number
1879 		 * that can be put into the lookup table to obtain the
1880 		 * approximate cable length.
1881 		 */
1882 		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1883 				IGP02E1000_AGC_LENGTH_MASK;
1884 
1885 		/* Array index bound check. */
1886 		if ((cur_agc_index >= ARRAY_SIZE(e1000_igp_2_cable_length_table)) ||
1887 		    (cur_agc_index == 0)) {
1888 			ret_val = -E1000_ERR_PHY;
1889 			goto out;
1890 		}
1891 
1892 		/* Remove min & max AGC values from calculation. */
1893 		if (e1000_igp_2_cable_length_table[min_agc_index] >
1894 		    e1000_igp_2_cable_length_table[cur_agc_index])
1895 			min_agc_index = cur_agc_index;
1896 		if (e1000_igp_2_cable_length_table[max_agc_index] <
1897 		    e1000_igp_2_cable_length_table[cur_agc_index])
1898 			max_agc_index = cur_agc_index;
1899 
1900 		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1901 	}
1902 
1903 	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1904 		      e1000_igp_2_cable_length_table[max_agc_index]);
1905 	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1906 
1907 	/* Calculate cable length with the error range of +/- 10 meters. */
1908 	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1909 				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1910 	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1911 
1912 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1913 
1914 out:
1915 	return ret_val;
1916 }
1917 
1918 /**
1919  *  igb_get_phy_info_m88 - Retrieve PHY information
1920  *  @hw: pointer to the HW structure
1921  *
1922  *  Valid for only copper links.  Read the PHY status register (sticky read)
1923  *  to verify that link is up.  Read the PHY special control register to
1924  *  determine the polarity and 10base-T extended distance.  Read the PHY
1925  *  special status register to determine MDI/MDIx and current speed.  If
1926  *  speed is 1000, then determine cable length, local and remote receiver.
1927  **/
1928 s32 igb_get_phy_info_m88(struct e1000_hw *hw)
1929 {
1930 	struct e1000_phy_info *phy = &hw->phy;
1931 	s32  ret_val;
1932 	u16 phy_data;
1933 	bool link;
1934 
1935 	if (phy->media_type != e1000_media_type_copper) {
1936 		hw_dbg("Phy info is only valid for copper media\n");
1937 		ret_val = -E1000_ERR_CONFIG;
1938 		goto out;
1939 	}
1940 
1941 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
1942 	if (ret_val)
1943 		goto out;
1944 
1945 	if (!link) {
1946 		hw_dbg("Phy info is only valid if link is up\n");
1947 		ret_val = -E1000_ERR_CONFIG;
1948 		goto out;
1949 	}
1950 
1951 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1952 	if (ret_val)
1953 		goto out;
1954 
1955 	phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
1956 				   ? true : false;
1957 
1958 	ret_val = igb_check_polarity_m88(hw);
1959 	if (ret_val)
1960 		goto out;
1961 
1962 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1963 	if (ret_val)
1964 		goto out;
1965 
1966 	phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false;
1967 
1968 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1969 		ret_val = phy->ops.get_cable_length(hw);
1970 		if (ret_val)
1971 			goto out;
1972 
1973 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
1974 		if (ret_val)
1975 			goto out;
1976 
1977 		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1978 				? e1000_1000t_rx_status_ok
1979 				: e1000_1000t_rx_status_not_ok;
1980 
1981 		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1982 				 ? e1000_1000t_rx_status_ok
1983 				 : e1000_1000t_rx_status_not_ok;
1984 	} else {
1985 		/* Set values to "undefined" */
1986 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1987 		phy->local_rx = e1000_1000t_rx_status_undefined;
1988 		phy->remote_rx = e1000_1000t_rx_status_undefined;
1989 	}
1990 
1991 out:
1992 	return ret_val;
1993 }
1994 
1995 /**
1996  *  igb_get_phy_info_igp - Retrieve igp PHY information
1997  *  @hw: pointer to the HW structure
1998  *
1999  *  Read PHY status to determine if link is up.  If link is up, then
2000  *  set/determine 10base-T extended distance and polarity correction.  Read
2001  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
2002  *  determine on the cable length, local and remote receiver.
2003  **/
2004 s32 igb_get_phy_info_igp(struct e1000_hw *hw)
2005 {
2006 	struct e1000_phy_info *phy = &hw->phy;
2007 	s32 ret_val;
2008 	u16 data;
2009 	bool link;
2010 
2011 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
2012 	if (ret_val)
2013 		goto out;
2014 
2015 	if (!link) {
2016 		hw_dbg("Phy info is only valid if link is up\n");
2017 		ret_val = -E1000_ERR_CONFIG;
2018 		goto out;
2019 	}
2020 
2021 	phy->polarity_correction = true;
2022 
2023 	ret_val = igb_check_polarity_igp(hw);
2024 	if (ret_val)
2025 		goto out;
2026 
2027 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2028 	if (ret_val)
2029 		goto out;
2030 
2031 	phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false;
2032 
2033 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2034 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
2035 		ret_val = phy->ops.get_cable_length(hw);
2036 		if (ret_val)
2037 			goto out;
2038 
2039 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2040 		if (ret_val)
2041 			goto out;
2042 
2043 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2044 				? e1000_1000t_rx_status_ok
2045 				: e1000_1000t_rx_status_not_ok;
2046 
2047 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2048 				 ? e1000_1000t_rx_status_ok
2049 				 : e1000_1000t_rx_status_not_ok;
2050 	} else {
2051 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2052 		phy->local_rx = e1000_1000t_rx_status_undefined;
2053 		phy->remote_rx = e1000_1000t_rx_status_undefined;
2054 	}
2055 
2056 out:
2057 	return ret_val;
2058 }
2059 
2060 /**
2061  *  igb_phy_sw_reset - PHY software reset
2062  *  @hw: pointer to the HW structure
2063  *
2064  *  Does a software reset of the PHY by reading the PHY control register and
2065  *  setting/write the control register reset bit to the PHY.
2066  **/
2067 s32 igb_phy_sw_reset(struct e1000_hw *hw)
2068 {
2069 	s32 ret_val = 0;
2070 	u16 phy_ctrl;
2071 
2072 	if (!(hw->phy.ops.read_reg))
2073 		goto out;
2074 
2075 	ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
2076 	if (ret_val)
2077 		goto out;
2078 
2079 	phy_ctrl |= MII_CR_RESET;
2080 	ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
2081 	if (ret_val)
2082 		goto out;
2083 
2084 	udelay(1);
2085 
2086 out:
2087 	return ret_val;
2088 }
2089 
2090 /**
2091  *  igb_phy_hw_reset - PHY hardware reset
2092  *  @hw: pointer to the HW structure
2093  *
2094  *  Verify the reset block is not blocking us from resetting.  Acquire
2095  *  semaphore (if necessary) and read/set/write the device control reset
2096  *  bit in the PHY.  Wait the appropriate delay time for the device to
2097  *  reset and release the semaphore (if necessary).
2098  **/
2099 s32 igb_phy_hw_reset(struct e1000_hw *hw)
2100 {
2101 	struct e1000_phy_info *phy = &hw->phy;
2102 	s32  ret_val;
2103 	u32 ctrl;
2104 
2105 	ret_val = igb_check_reset_block(hw);
2106 	if (ret_val) {
2107 		ret_val = 0;
2108 		goto out;
2109 	}
2110 
2111 	ret_val = phy->ops.acquire(hw);
2112 	if (ret_val)
2113 		goto out;
2114 
2115 	ctrl = rd32(E1000_CTRL);
2116 	wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
2117 	wrfl();
2118 
2119 	udelay(phy->reset_delay_us);
2120 
2121 	wr32(E1000_CTRL, ctrl);
2122 	wrfl();
2123 
2124 	udelay(150);
2125 
2126 	phy->ops.release(hw);
2127 
2128 	ret_val = phy->ops.get_cfg_done(hw);
2129 
2130 out:
2131 	return ret_val;
2132 }
2133 
2134 /**
2135  *  igb_phy_init_script_igp3 - Inits the IGP3 PHY
2136  *  @hw: pointer to the HW structure
2137  *
2138  *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2139  **/
2140 s32 igb_phy_init_script_igp3(struct e1000_hw *hw)
2141 {
2142 	hw_dbg("Running IGP 3 PHY init script\n");
2143 
2144 	/* PHY init IGP 3 */
2145 	/* Enable rise/fall, 10-mode work in class-A */
2146 	hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
2147 	/* Remove all caps from Replica path filter */
2148 	hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
2149 	/* Bias trimming for ADC, AFE and Driver (Default) */
2150 	hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
2151 	/* Increase Hybrid poly bias */
2152 	hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
2153 	/* Add 4% to TX amplitude in Giga mode */
2154 	hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
2155 	/* Disable trimming (TTT) */
2156 	hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
2157 	/* Poly DC correction to 94.6% + 2% for all channels */
2158 	hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
2159 	/* ABS DC correction to 95.9% */
2160 	hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
2161 	/* BG temp curve trim */
2162 	hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
2163 	/* Increasing ADC OPAMP stage 1 currents to max */
2164 	hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
2165 	/* Force 1000 ( required for enabling PHY regs configuration) */
2166 	hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
2167 	/* Set upd_freq to 6 */
2168 	hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
2169 	/* Disable NPDFE */
2170 	hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
2171 	/* Disable adaptive fixed FFE (Default) */
2172 	hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
2173 	/* Enable FFE hysteresis */
2174 	hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
2175 	/* Fixed FFE for short cable lengths */
2176 	hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
2177 	/* Fixed FFE for medium cable lengths */
2178 	hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
2179 	/* Fixed FFE for long cable lengths */
2180 	hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
2181 	/* Enable Adaptive Clip Threshold */
2182 	hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
2183 	/* AHT reset limit to 1 */
2184 	hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
2185 	/* Set AHT master delay to 127 msec */
2186 	hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
2187 	/* Set scan bits for AHT */
2188 	hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
2189 	/* Set AHT Preset bits */
2190 	hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
2191 	/* Change integ_factor of channel A to 3 */
2192 	hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
2193 	/* Change prop_factor of channels BCD to 8 */
2194 	hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
2195 	/* Change cg_icount + enable integbp for channels BCD */
2196 	hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
2197 	/* Change cg_icount + enable integbp + change prop_factor_master
2198 	 * to 8 for channel A
2199 	 */
2200 	hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
2201 	/* Disable AHT in Slave mode on channel A */
2202 	hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
2203 	/* Enable LPLU and disable AN to 1000 in non-D0a states,
2204 	 * Enable SPD+B2B
2205 	 */
2206 	hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
2207 	/* Enable restart AN on an1000_dis change */
2208 	hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
2209 	/* Enable wh_fifo read clock in 10/100 modes */
2210 	hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
2211 	/* Restart AN, Speed selection is 1000 */
2212 	hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
2213 
2214 	return 0;
2215 }
2216 
2217 /**
2218  *  igb_initialize_M88E1512_phy - Initialize M88E1512 PHY
2219  *  @hw: pointer to the HW structure
2220  *
2221  *  Initialize Marvel 1512 to work correctly with Avoton.
2222  **/
2223 s32 igb_initialize_M88E1512_phy(struct e1000_hw *hw)
2224 {
2225 	struct e1000_phy_info *phy = &hw->phy;
2226 	s32 ret_val = 0;
2227 
2228 	/* Switch to PHY page 0xFF. */
2229 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF);
2230 	if (ret_val)
2231 		goto out;
2232 
2233 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B);
2234 	if (ret_val)
2235 		goto out;
2236 
2237 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144);
2238 	if (ret_val)
2239 		goto out;
2240 
2241 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28);
2242 	if (ret_val)
2243 		goto out;
2244 
2245 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146);
2246 	if (ret_val)
2247 		goto out;
2248 
2249 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233);
2250 	if (ret_val)
2251 		goto out;
2252 
2253 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D);
2254 	if (ret_val)
2255 		goto out;
2256 
2257 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xCC0C);
2258 	if (ret_val)
2259 		goto out;
2260 
2261 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159);
2262 	if (ret_val)
2263 		goto out;
2264 
2265 	/* Switch to PHY page 0xFB. */
2266 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB);
2267 	if (ret_val)
2268 		goto out;
2269 
2270 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x000D);
2271 	if (ret_val)
2272 		goto out;
2273 
2274 	/* Switch to PHY page 0x12. */
2275 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12);
2276 	if (ret_val)
2277 		goto out;
2278 
2279 	/* Change mode to SGMII-to-Copper */
2280 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001);
2281 	if (ret_val)
2282 		goto out;
2283 
2284 	/* Return the PHY to page 0. */
2285 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2286 	if (ret_val)
2287 		goto out;
2288 
2289 	ret_val = igb_phy_sw_reset(hw);
2290 	if (ret_val) {
2291 		hw_dbg("Error committing the PHY changes\n");
2292 		return ret_val;
2293 	}
2294 
2295 	/* msec_delay(1000); */
2296 	usleep_range(1000, 2000);
2297 out:
2298 	return ret_val;
2299 }
2300 
2301 /**
2302  *  igb_initialize_M88E1543_phy - Initialize M88E1512 PHY
2303  *  @hw: pointer to the HW structure
2304  *
2305  *  Initialize Marvell 1543 to work correctly with Avoton.
2306  **/
2307 s32 igb_initialize_M88E1543_phy(struct e1000_hw *hw)
2308 {
2309 	struct e1000_phy_info *phy = &hw->phy;
2310 	s32 ret_val = 0;
2311 
2312 	/* Switch to PHY page 0xFF. */
2313 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF);
2314 	if (ret_val)
2315 		goto out;
2316 
2317 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B);
2318 	if (ret_val)
2319 		goto out;
2320 
2321 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144);
2322 	if (ret_val)
2323 		goto out;
2324 
2325 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28);
2326 	if (ret_val)
2327 		goto out;
2328 
2329 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146);
2330 	if (ret_val)
2331 		goto out;
2332 
2333 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233);
2334 	if (ret_val)
2335 		goto out;
2336 
2337 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D);
2338 	if (ret_val)
2339 		goto out;
2340 
2341 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xDC0C);
2342 	if (ret_val)
2343 		goto out;
2344 
2345 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159);
2346 	if (ret_val)
2347 		goto out;
2348 
2349 	/* Switch to PHY page 0xFB. */
2350 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB);
2351 	if (ret_val)
2352 		goto out;
2353 
2354 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x0C0D);
2355 	if (ret_val)
2356 		goto out;
2357 
2358 	/* Switch to PHY page 0x12. */
2359 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12);
2360 	if (ret_val)
2361 		goto out;
2362 
2363 	/* Change mode to SGMII-to-Copper */
2364 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001);
2365 	if (ret_val)
2366 		goto out;
2367 
2368 	/* Switch to PHY page 1. */
2369 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x1);
2370 	if (ret_val)
2371 		goto out;
2372 
2373 	/* Change mode to 1000BASE-X/SGMII and autoneg enable */
2374 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_FIBER_CTRL, 0x9140);
2375 	if (ret_val)
2376 		goto out;
2377 
2378 	/* Return the PHY to page 0. */
2379 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2380 	if (ret_val)
2381 		goto out;
2382 
2383 	ret_val = igb_phy_sw_reset(hw);
2384 	if (ret_val) {
2385 		hw_dbg("Error committing the PHY changes\n");
2386 		return ret_val;
2387 	}
2388 
2389 	/* msec_delay(1000); */
2390 	usleep_range(1000, 2000);
2391 out:
2392 	return ret_val;
2393 }
2394 
2395 /**
2396  * igb_power_up_phy_copper - Restore copper link in case of PHY power down
2397  * @hw: pointer to the HW structure
2398  *
2399  * In the case of a PHY power down to save power, or to turn off link during a
2400  * driver unload, restore the link to previous settings.
2401  **/
2402 void igb_power_up_phy_copper(struct e1000_hw *hw)
2403 {
2404 	u16 mii_reg = 0;
2405 
2406 	/* The PHY will retain its settings across a power down/up cycle */
2407 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2408 	mii_reg &= ~MII_CR_POWER_DOWN;
2409 	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2410 }
2411 
2412 /**
2413  * igb_power_down_phy_copper - Power down copper PHY
2414  * @hw: pointer to the HW structure
2415  *
2416  * Power down PHY to save power when interface is down and wake on lan
2417  * is not enabled.
2418  **/
2419 void igb_power_down_phy_copper(struct e1000_hw *hw)
2420 {
2421 	u16 mii_reg = 0;
2422 
2423 	/* The PHY will retain its settings across a power down/up cycle */
2424 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2425 	mii_reg |= MII_CR_POWER_DOWN;
2426 	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2427 	usleep_range(1000, 2000);
2428 }
2429 
2430 /**
2431  *  igb_check_polarity_82580 - Checks the polarity.
2432  *  @hw: pointer to the HW structure
2433  *
2434  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2435  *
2436  *  Polarity is determined based on the PHY specific status register.
2437  **/
2438 static s32 igb_check_polarity_82580(struct e1000_hw *hw)
2439 {
2440 	struct e1000_phy_info *phy = &hw->phy;
2441 	s32 ret_val;
2442 	u16 data;
2443 
2444 
2445 	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2446 
2447 	if (!ret_val)
2448 		phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY)
2449 				      ? e1000_rev_polarity_reversed
2450 				      : e1000_rev_polarity_normal;
2451 
2452 	return ret_val;
2453 }
2454 
2455 /**
2456  *  igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY
2457  *  @hw: pointer to the HW structure
2458  *
2459  *  Calls the PHY setup function to force speed and duplex.  Clears the
2460  *  auto-crossover to force MDI manually.  Waits for link and returns
2461  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
2462  **/
2463 s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw)
2464 {
2465 	struct e1000_phy_info *phy = &hw->phy;
2466 	s32 ret_val;
2467 	u16 phy_data;
2468 	bool link;
2469 
2470 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
2471 	if (ret_val)
2472 		goto out;
2473 
2474 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
2475 
2476 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
2477 	if (ret_val)
2478 		goto out;
2479 
2480 	/* Clear Auto-Crossover to force MDI manually.  82580 requires MDI
2481 	 * forced whenever speed and duplex are forced.
2482 	 */
2483 	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
2484 	if (ret_val)
2485 		goto out;
2486 
2487 	phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
2488 
2489 	ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
2490 	if (ret_val)
2491 		goto out;
2492 
2493 	hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data);
2494 
2495 	udelay(1);
2496 
2497 	if (phy->autoneg_wait_to_complete) {
2498 		hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n");
2499 
2500 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2501 		if (ret_val)
2502 			goto out;
2503 
2504 		if (!link)
2505 			hw_dbg("Link taking longer than expected.\n");
2506 
2507 		/* Try once more */
2508 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2509 		if (ret_val)
2510 			goto out;
2511 	}
2512 
2513 out:
2514 	return ret_val;
2515 }
2516 
2517 /**
2518  *  igb_get_phy_info_82580 - Retrieve I82580 PHY information
2519  *  @hw: pointer to the HW structure
2520  *
2521  *  Read PHY status to determine if link is up.  If link is up, then
2522  *  set/determine 10base-T extended distance and polarity correction.  Read
2523  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
2524  *  determine on the cable length, local and remote receiver.
2525  **/
2526 s32 igb_get_phy_info_82580(struct e1000_hw *hw)
2527 {
2528 	struct e1000_phy_info *phy = &hw->phy;
2529 	s32 ret_val;
2530 	u16 data;
2531 	bool link;
2532 
2533 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
2534 	if (ret_val)
2535 		goto out;
2536 
2537 	if (!link) {
2538 		hw_dbg("Phy info is only valid if link is up\n");
2539 		ret_val = -E1000_ERR_CONFIG;
2540 		goto out;
2541 	}
2542 
2543 	phy->polarity_correction = true;
2544 
2545 	ret_val = igb_check_polarity_82580(hw);
2546 	if (ret_val)
2547 		goto out;
2548 
2549 	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2550 	if (ret_val)
2551 		goto out;
2552 
2553 	phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false;
2554 
2555 	if ((data & I82580_PHY_STATUS2_SPEED_MASK) ==
2556 	    I82580_PHY_STATUS2_SPEED_1000MBPS) {
2557 		ret_val = hw->phy.ops.get_cable_length(hw);
2558 		if (ret_val)
2559 			goto out;
2560 
2561 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2562 		if (ret_val)
2563 			goto out;
2564 
2565 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2566 				? e1000_1000t_rx_status_ok
2567 				: e1000_1000t_rx_status_not_ok;
2568 
2569 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2570 				 ? e1000_1000t_rx_status_ok
2571 				 : e1000_1000t_rx_status_not_ok;
2572 	} else {
2573 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2574 		phy->local_rx = e1000_1000t_rx_status_undefined;
2575 		phy->remote_rx = e1000_1000t_rx_status_undefined;
2576 	}
2577 
2578 out:
2579 	return ret_val;
2580 }
2581 
2582 /**
2583  *  igb_get_cable_length_82580 - Determine cable length for 82580 PHY
2584  *  @hw: pointer to the HW structure
2585  *
2586  * Reads the diagnostic status register and verifies result is valid before
2587  * placing it in the phy_cable_length field.
2588  **/
2589 s32 igb_get_cable_length_82580(struct e1000_hw *hw)
2590 {
2591 	struct e1000_phy_info *phy = &hw->phy;
2592 	s32 ret_val;
2593 	u16 phy_data, length;
2594 
2595 	ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data);
2596 	if (ret_val)
2597 		goto out;
2598 
2599 	length = (phy_data & I82580_DSTATUS_CABLE_LENGTH) >>
2600 		 I82580_DSTATUS_CABLE_LENGTH_SHIFT;
2601 
2602 	if (length == E1000_CABLE_LENGTH_UNDEFINED)
2603 		ret_val = -E1000_ERR_PHY;
2604 
2605 	phy->cable_length = length;
2606 
2607 out:
2608 	return ret_val;
2609 }
2610 
2611 /**
2612  *  igb_set_master_slave_mode - Setup PHY for Master/slave mode
2613  *  @hw: pointer to the HW structure
2614  *
2615  *  Sets up Master/slave mode
2616  **/
2617 static s32 igb_set_master_slave_mode(struct e1000_hw *hw)
2618 {
2619 	s32 ret_val;
2620 	u16 phy_data;
2621 
2622 	/* Resolve Master/Slave mode */
2623 	ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data);
2624 	if (ret_val)
2625 		return ret_val;
2626 
2627 	/* load defaults for future use */
2628 	hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
2629 				   ((phy_data & CR_1000T_MS_VALUE) ?
2630 				    e1000_ms_force_master :
2631 				    e1000_ms_force_slave) : e1000_ms_auto;
2632 
2633 	switch (hw->phy.ms_type) {
2634 	case e1000_ms_force_master:
2635 		phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2636 		break;
2637 	case e1000_ms_force_slave:
2638 		phy_data |= CR_1000T_MS_ENABLE;
2639 		phy_data &= ~(CR_1000T_MS_VALUE);
2640 		break;
2641 	case e1000_ms_auto:
2642 		phy_data &= ~CR_1000T_MS_ENABLE;
2643 		/* fall-through */
2644 	default:
2645 		break;
2646 	}
2647 
2648 	return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data);
2649 }
2650