1 /*******************************************************************************
2 
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2012 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 #include <linux/if_ether.h>
29 #include <linux/delay.h>
30 
31 #include "e1000_mac.h"
32 #include "e1000_phy.h"
33 
34 static s32  igb_phy_setup_autoneg(struct e1000_hw *hw);
35 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
36 					       u16 *phy_ctrl);
37 static s32  igb_wait_autoneg(struct e1000_hw *hw);
38 
39 /* Cable length tables */
40 static const u16 e1000_m88_cable_length_table[] =
41 	{ 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
42 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
43                 (sizeof(e1000_m88_cable_length_table) / \
44                  sizeof(e1000_m88_cable_length_table[0]))
45 
46 static const u16 e1000_igp_2_cable_length_table[] =
47     { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
48       0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
49       6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
50       21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
51       40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
52       60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
53       83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
54       104, 109, 114, 118, 121, 124};
55 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
56 		(sizeof(e1000_igp_2_cable_length_table) / \
57 		 sizeof(e1000_igp_2_cable_length_table[0]))
58 
59 /**
60  *  igb_check_reset_block - Check if PHY reset is blocked
61  *  @hw: pointer to the HW structure
62  *
63  *  Read the PHY management control register and check whether a PHY reset
64  *  is blocked.  If a reset is not blocked return 0, otherwise
65  *  return E1000_BLK_PHY_RESET (12).
66  **/
67 s32 igb_check_reset_block(struct e1000_hw *hw)
68 {
69 	u32 manc;
70 
71 	manc = rd32(E1000_MANC);
72 
73 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
74 	       E1000_BLK_PHY_RESET : 0;
75 }
76 
77 /**
78  *  igb_get_phy_id - Retrieve the PHY ID and revision
79  *  @hw: pointer to the HW structure
80  *
81  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
82  *  revision in the hardware structure.
83  **/
84 s32 igb_get_phy_id(struct e1000_hw *hw)
85 {
86 	struct e1000_phy_info *phy = &hw->phy;
87 	s32 ret_val = 0;
88 	u16 phy_id;
89 
90 	ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
91 	if (ret_val)
92 		goto out;
93 
94 	phy->id = (u32)(phy_id << 16);
95 	udelay(20);
96 	ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
97 	if (ret_val)
98 		goto out;
99 
100 	phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
101 	phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
102 
103 out:
104 	return ret_val;
105 }
106 
107 /**
108  *  igb_phy_reset_dsp - Reset PHY DSP
109  *  @hw: pointer to the HW structure
110  *
111  *  Reset the digital signal processor.
112  **/
113 static s32 igb_phy_reset_dsp(struct e1000_hw *hw)
114 {
115 	s32 ret_val = 0;
116 
117 	if (!(hw->phy.ops.write_reg))
118 		goto out;
119 
120 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
121 	if (ret_val)
122 		goto out;
123 
124 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
125 
126 out:
127 	return ret_val;
128 }
129 
130 /**
131  *  igb_read_phy_reg_mdic - Read MDI control register
132  *  @hw: pointer to the HW structure
133  *  @offset: register offset to be read
134  *  @data: pointer to the read data
135  *
136  *  Reads the MDI control regsiter in the PHY at offset and stores the
137  *  information read to data.
138  **/
139 s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
140 {
141 	struct e1000_phy_info *phy = &hw->phy;
142 	u32 i, mdic = 0;
143 	s32 ret_val = 0;
144 
145 	if (offset > MAX_PHY_REG_ADDRESS) {
146 		hw_dbg("PHY Address %d is out of range\n", offset);
147 		ret_val = -E1000_ERR_PARAM;
148 		goto out;
149 	}
150 
151 	/*
152 	 * Set up Op-code, Phy Address, and register offset in the MDI
153 	 * Control register.  The MAC will take care of interfacing with the
154 	 * PHY to retrieve the desired data.
155 	 */
156 	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
157 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
158 		(E1000_MDIC_OP_READ));
159 
160 	wr32(E1000_MDIC, mdic);
161 
162 	/*
163 	 * Poll the ready bit to see if the MDI read completed
164 	 * Increasing the time out as testing showed failures with
165 	 * the lower time out
166 	 */
167 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
168 		udelay(50);
169 		mdic = rd32(E1000_MDIC);
170 		if (mdic & E1000_MDIC_READY)
171 			break;
172 	}
173 	if (!(mdic & E1000_MDIC_READY)) {
174 		hw_dbg("MDI Read did not complete\n");
175 		ret_val = -E1000_ERR_PHY;
176 		goto out;
177 	}
178 	if (mdic & E1000_MDIC_ERROR) {
179 		hw_dbg("MDI Error\n");
180 		ret_val = -E1000_ERR_PHY;
181 		goto out;
182 	}
183 	*data = (u16) mdic;
184 
185 out:
186 	return ret_val;
187 }
188 
189 /**
190  *  igb_write_phy_reg_mdic - Write MDI control register
191  *  @hw: pointer to the HW structure
192  *  @offset: register offset to write to
193  *  @data: data to write to register at offset
194  *
195  *  Writes data to MDI control register in the PHY at offset.
196  **/
197 s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
198 {
199 	struct e1000_phy_info *phy = &hw->phy;
200 	u32 i, mdic = 0;
201 	s32 ret_val = 0;
202 
203 	if (offset > MAX_PHY_REG_ADDRESS) {
204 		hw_dbg("PHY Address %d is out of range\n", offset);
205 		ret_val = -E1000_ERR_PARAM;
206 		goto out;
207 	}
208 
209 	/*
210 	 * Set up Op-code, Phy Address, and register offset in the MDI
211 	 * Control register.  The MAC will take care of interfacing with the
212 	 * PHY to retrieve the desired data.
213 	 */
214 	mdic = (((u32)data) |
215 		(offset << E1000_MDIC_REG_SHIFT) |
216 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
217 		(E1000_MDIC_OP_WRITE));
218 
219 	wr32(E1000_MDIC, mdic);
220 
221 	/*
222 	 * Poll the ready bit to see if the MDI read completed
223 	 * Increasing the time out as testing showed failures with
224 	 * the lower time out
225 	 */
226 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
227 		udelay(50);
228 		mdic = rd32(E1000_MDIC);
229 		if (mdic & E1000_MDIC_READY)
230 			break;
231 	}
232 	if (!(mdic & E1000_MDIC_READY)) {
233 		hw_dbg("MDI Write did not complete\n");
234 		ret_val = -E1000_ERR_PHY;
235 		goto out;
236 	}
237 	if (mdic & E1000_MDIC_ERROR) {
238 		hw_dbg("MDI Error\n");
239 		ret_val = -E1000_ERR_PHY;
240 		goto out;
241 	}
242 
243 out:
244 	return ret_val;
245 }
246 
247 /**
248  *  igb_read_phy_reg_i2c - Read PHY register using i2c
249  *  @hw: pointer to the HW structure
250  *  @offset: register offset to be read
251  *  @data: pointer to the read data
252  *
253  *  Reads the PHY register at offset using the i2c interface and stores the
254  *  retrieved information in data.
255  **/
256 s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
257 {
258 	struct e1000_phy_info *phy = &hw->phy;
259 	u32 i, i2ccmd = 0;
260 
261 
262 	/*
263 	 * Set up Op-code, Phy Address, and register address in the I2CCMD
264 	 * register.  The MAC will take care of interfacing with the
265 	 * PHY to retrieve the desired data.
266 	 */
267 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
268 	          (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
269 	          (E1000_I2CCMD_OPCODE_READ));
270 
271 	wr32(E1000_I2CCMD, i2ccmd);
272 
273 	/* Poll the ready bit to see if the I2C read completed */
274 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
275 		udelay(50);
276 		i2ccmd = rd32(E1000_I2CCMD);
277 		if (i2ccmd & E1000_I2CCMD_READY)
278 			break;
279 	}
280 	if (!(i2ccmd & E1000_I2CCMD_READY)) {
281 		hw_dbg("I2CCMD Read did not complete\n");
282 		return -E1000_ERR_PHY;
283 	}
284 	if (i2ccmd & E1000_I2CCMD_ERROR) {
285 		hw_dbg("I2CCMD Error bit set\n");
286 		return -E1000_ERR_PHY;
287 	}
288 
289 	/* Need to byte-swap the 16-bit value. */
290 	*data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
291 
292 	return 0;
293 }
294 
295 /**
296  *  igb_write_phy_reg_i2c - Write PHY register using i2c
297  *  @hw: pointer to the HW structure
298  *  @offset: register offset to write to
299  *  @data: data to write at register offset
300  *
301  *  Writes the data to PHY register at the offset using the i2c interface.
302  **/
303 s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
304 {
305 	struct e1000_phy_info *phy = &hw->phy;
306 	u32 i, i2ccmd = 0;
307 	u16 phy_data_swapped;
308 
309 	/* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/
310 	if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) {
311 		hw_dbg("PHY I2C Address %d is out of range.\n",
312 			  hw->phy.addr);
313 		return -E1000_ERR_CONFIG;
314 	}
315 
316 	/* Swap the data bytes for the I2C interface */
317 	phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
318 
319 	/*
320 	 * Set up Op-code, Phy Address, and register address in the I2CCMD
321 	 * register.  The MAC will take care of interfacing with the
322 	 * PHY to retrieve the desired data.
323 	 */
324 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
325 	          (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
326 	          E1000_I2CCMD_OPCODE_WRITE |
327 	          phy_data_swapped);
328 
329 	wr32(E1000_I2CCMD, i2ccmd);
330 
331 	/* Poll the ready bit to see if the I2C read completed */
332 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
333 		udelay(50);
334 		i2ccmd = rd32(E1000_I2CCMD);
335 		if (i2ccmd & E1000_I2CCMD_READY)
336 			break;
337 	}
338 	if (!(i2ccmd & E1000_I2CCMD_READY)) {
339 		hw_dbg("I2CCMD Write did not complete\n");
340 		return -E1000_ERR_PHY;
341 	}
342 	if (i2ccmd & E1000_I2CCMD_ERROR) {
343 		hw_dbg("I2CCMD Error bit set\n");
344 		return -E1000_ERR_PHY;
345 	}
346 
347 	return 0;
348 }
349 
350 /**
351  *  igb_read_phy_reg_igp - Read igp PHY register
352  *  @hw: pointer to the HW structure
353  *  @offset: register offset to be read
354  *  @data: pointer to the read data
355  *
356  *  Acquires semaphore, if necessary, then reads the PHY register at offset
357  *  and storing the retrieved information in data.  Release any acquired
358  *  semaphores before exiting.
359  **/
360 s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
361 {
362 	s32 ret_val = 0;
363 
364 	if (!(hw->phy.ops.acquire))
365 		goto out;
366 
367 	ret_val = hw->phy.ops.acquire(hw);
368 	if (ret_val)
369 		goto out;
370 
371 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
372 		ret_val = igb_write_phy_reg_mdic(hw,
373 						   IGP01E1000_PHY_PAGE_SELECT,
374 						   (u16)offset);
375 		if (ret_val) {
376 			hw->phy.ops.release(hw);
377 			goto out;
378 		}
379 	}
380 
381 	ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
382 					data);
383 
384 	hw->phy.ops.release(hw);
385 
386 out:
387 	return ret_val;
388 }
389 
390 /**
391  *  igb_write_phy_reg_igp - Write igp PHY register
392  *  @hw: pointer to the HW structure
393  *  @offset: register offset to write to
394  *  @data: data to write at register offset
395  *
396  *  Acquires semaphore, if necessary, then writes the data to PHY register
397  *  at the offset.  Release any acquired semaphores before exiting.
398  **/
399 s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
400 {
401 	s32 ret_val = 0;
402 
403 	if (!(hw->phy.ops.acquire))
404 		goto out;
405 
406 	ret_val = hw->phy.ops.acquire(hw);
407 	if (ret_val)
408 		goto out;
409 
410 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
411 		ret_val = igb_write_phy_reg_mdic(hw,
412 						   IGP01E1000_PHY_PAGE_SELECT,
413 						   (u16)offset);
414 		if (ret_val) {
415 			hw->phy.ops.release(hw);
416 			goto out;
417 		}
418 	}
419 
420 	ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
421 					   data);
422 
423 	hw->phy.ops.release(hw);
424 
425 out:
426 	return ret_val;
427 }
428 
429 /**
430  *  igb_copper_link_setup_82580 - Setup 82580 PHY for copper link
431  *  @hw: pointer to the HW structure
432  *
433  *  Sets up Carrier-sense on Transmit and downshift values.
434  **/
435 s32 igb_copper_link_setup_82580(struct e1000_hw *hw)
436 {
437 	struct e1000_phy_info *phy = &hw->phy;
438 	s32 ret_val;
439 	u16 phy_data;
440 
441 
442 	if (phy->reset_disable) {
443 		ret_val = 0;
444 		goto out;
445 	}
446 
447 	if (phy->type == e1000_phy_82580) {
448 		ret_val = hw->phy.ops.reset(hw);
449 		if (ret_val) {
450 			hw_dbg("Error resetting the PHY.\n");
451 			goto out;
452 		}
453 	}
454 
455 	/* Enable CRS on TX. This must be set for half-duplex operation. */
456 	ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data);
457 	if (ret_val)
458 		goto out;
459 
460 	phy_data |= I82580_CFG_ASSERT_CRS_ON_TX;
461 
462 	/* Enable downshift */
463 	phy_data |= I82580_CFG_ENABLE_DOWNSHIFT;
464 
465 	ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data);
466 
467 out:
468 	return ret_val;
469 }
470 
471 /**
472  *  igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
473  *  @hw: pointer to the HW structure
474  *
475  *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
476  *  and downshift values are set also.
477  **/
478 s32 igb_copper_link_setup_m88(struct e1000_hw *hw)
479 {
480 	struct e1000_phy_info *phy = &hw->phy;
481 	s32 ret_val;
482 	u16 phy_data;
483 
484 	if (phy->reset_disable) {
485 		ret_val = 0;
486 		goto out;
487 	}
488 
489 	/* Enable CRS on TX. This must be set for half-duplex operation. */
490 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
491 	if (ret_val)
492 		goto out;
493 
494 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
495 
496 	/*
497 	 * Options:
498 	 *   MDI/MDI-X = 0 (default)
499 	 *   0 - Auto for all speeds
500 	 *   1 - MDI mode
501 	 *   2 - MDI-X mode
502 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
503 	 */
504 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
505 
506 	switch (phy->mdix) {
507 	case 1:
508 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
509 		break;
510 	case 2:
511 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
512 		break;
513 	case 3:
514 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
515 		break;
516 	case 0:
517 	default:
518 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
519 		break;
520 	}
521 
522 	/*
523 	 * Options:
524 	 *   disable_polarity_correction = 0 (default)
525 	 *       Automatic Correction for Reversed Cable Polarity
526 	 *   0 - Disabled
527 	 *   1 - Enabled
528 	 */
529 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
530 	if (phy->disable_polarity_correction == 1)
531 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
532 
533 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
534 	if (ret_val)
535 		goto out;
536 
537 	if (phy->revision < E1000_REVISION_4) {
538 		/*
539 		 * Force TX_CLK in the Extended PHY Specific Control Register
540 		 * to 25MHz clock.
541 		 */
542 		ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
543 					     &phy_data);
544 		if (ret_val)
545 			goto out;
546 
547 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
548 
549 		if ((phy->revision == E1000_REVISION_2) &&
550 		    (phy->id == M88E1111_I_PHY_ID)) {
551 			/* 82573L PHY - set the downshift counter to 5x. */
552 			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
553 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
554 		} else {
555 			/* Configure Master and Slave downshift values */
556 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
557 				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
558 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
559 				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
560 		}
561 		ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
562 					     phy_data);
563 		if (ret_val)
564 			goto out;
565 	}
566 
567 	/* Commit the changes. */
568 	ret_val = igb_phy_sw_reset(hw);
569 	if (ret_val) {
570 		hw_dbg("Error committing the PHY changes\n");
571 		goto out;
572 	}
573 
574 out:
575 	return ret_val;
576 }
577 
578 /**
579  *  igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
580  *  @hw: pointer to the HW structure
581  *
582  *  Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
583  *  Also enables and sets the downshift parameters.
584  **/
585 s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw)
586 {
587 	struct e1000_phy_info *phy = &hw->phy;
588 	s32 ret_val;
589 	u16 phy_data;
590 
591 	if (phy->reset_disable) {
592 		ret_val = 0;
593 		goto out;
594 	}
595 
596 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
597 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
598 	if (ret_val)
599 		goto out;
600 
601 	/*
602 	 * Options:
603 	 *   MDI/MDI-X = 0 (default)
604 	 *   0 - Auto for all speeds
605 	 *   1 - MDI mode
606 	 *   2 - MDI-X mode
607 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
608 	 */
609 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
610 
611 	switch (phy->mdix) {
612 	case 1:
613 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
614 		break;
615 	case 2:
616 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
617 		break;
618 	case 3:
619 		/* M88E1112 does not support this mode) */
620 		if (phy->id != M88E1112_E_PHY_ID) {
621 			phy_data |= M88E1000_PSCR_AUTO_X_1000T;
622 			break;
623 		}
624 	case 0:
625 	default:
626 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
627 		break;
628 	}
629 
630 	/*
631 	 * Options:
632 	 *   disable_polarity_correction = 0 (default)
633 	 *       Automatic Correction for Reversed Cable Polarity
634 	 *   0 - Disabled
635 	 *   1 - Enabled
636 	 */
637 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
638 	if (phy->disable_polarity_correction == 1)
639 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
640 
641 	/* Enable downshift and setting it to X6 */
642 	phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
643 	phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
644 	phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
645 
646 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
647 	if (ret_val)
648 		goto out;
649 
650 	/* Commit the changes. */
651 	ret_val = igb_phy_sw_reset(hw);
652 	if (ret_val) {
653 		hw_dbg("Error committing the PHY changes\n");
654 		goto out;
655 	}
656 
657 out:
658 	return ret_val;
659 }
660 
661 /**
662  *  igb_copper_link_setup_igp - Setup igp PHY's for copper link
663  *  @hw: pointer to the HW structure
664  *
665  *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
666  *  igp PHY's.
667  **/
668 s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
669 {
670 	struct e1000_phy_info *phy = &hw->phy;
671 	s32 ret_val;
672 	u16 data;
673 
674 	if (phy->reset_disable) {
675 		ret_val = 0;
676 		goto out;
677 	}
678 
679 	ret_val = phy->ops.reset(hw);
680 	if (ret_val) {
681 		hw_dbg("Error resetting the PHY.\n");
682 		goto out;
683 	}
684 
685 	/*
686 	 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
687 	 * timeout issues when LFS is enabled.
688 	 */
689 	msleep(100);
690 
691 	/*
692 	 * The NVM settings will configure LPLU in D3 for
693 	 * non-IGP1 PHYs.
694 	 */
695 	if (phy->type == e1000_phy_igp) {
696 		/* disable lplu d3 during driver init */
697 		if (phy->ops.set_d3_lplu_state)
698 			ret_val = phy->ops.set_d3_lplu_state(hw, false);
699 		if (ret_val) {
700 			hw_dbg("Error Disabling LPLU D3\n");
701 			goto out;
702 		}
703 	}
704 
705 	/* disable lplu d0 during driver init */
706 	ret_val = phy->ops.set_d0_lplu_state(hw, false);
707 	if (ret_val) {
708 		hw_dbg("Error Disabling LPLU D0\n");
709 		goto out;
710 	}
711 	/* Configure mdi-mdix settings */
712 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
713 	if (ret_val)
714 		goto out;
715 
716 	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
717 
718 	switch (phy->mdix) {
719 	case 1:
720 		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
721 		break;
722 	case 2:
723 		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
724 		break;
725 	case 0:
726 	default:
727 		data |= IGP01E1000_PSCR_AUTO_MDIX;
728 		break;
729 	}
730 	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
731 	if (ret_val)
732 		goto out;
733 
734 	/* set auto-master slave resolution settings */
735 	if (hw->mac.autoneg) {
736 		/*
737 		 * when autonegotiation advertisement is only 1000Mbps then we
738 		 * should disable SmartSpeed and enable Auto MasterSlave
739 		 * resolution as hardware default.
740 		 */
741 		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
742 			/* Disable SmartSpeed */
743 			ret_val = phy->ops.read_reg(hw,
744 						    IGP01E1000_PHY_PORT_CONFIG,
745 						    &data);
746 			if (ret_val)
747 				goto out;
748 
749 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
750 			ret_val = phy->ops.write_reg(hw,
751 						     IGP01E1000_PHY_PORT_CONFIG,
752 						     data);
753 			if (ret_val)
754 				goto out;
755 
756 			/* Set auto Master/Slave resolution process */
757 			ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
758 			if (ret_val)
759 				goto out;
760 
761 			data &= ~CR_1000T_MS_ENABLE;
762 			ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
763 			if (ret_val)
764 				goto out;
765 		}
766 
767 		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
768 		if (ret_val)
769 			goto out;
770 
771 		/* load defaults for future use */
772 		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
773 			((data & CR_1000T_MS_VALUE) ?
774 			e1000_ms_force_master :
775 			e1000_ms_force_slave) :
776 			e1000_ms_auto;
777 
778 		switch (phy->ms_type) {
779 		case e1000_ms_force_master:
780 			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
781 			break;
782 		case e1000_ms_force_slave:
783 			data |= CR_1000T_MS_ENABLE;
784 			data &= ~(CR_1000T_MS_VALUE);
785 			break;
786 		case e1000_ms_auto:
787 			data &= ~CR_1000T_MS_ENABLE;
788 		default:
789 			break;
790 		}
791 		ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
792 		if (ret_val)
793 			goto out;
794 	}
795 
796 out:
797 	return ret_val;
798 }
799 
800 /**
801  *  igb_copper_link_autoneg - Setup/Enable autoneg for copper link
802  *  @hw: pointer to the HW structure
803  *
804  *  Performs initial bounds checking on autoneg advertisement parameter, then
805  *  configure to advertise the full capability.  Setup the PHY to autoneg
806  *  and restart the negotiation process between the link partner.  If
807  *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
808  **/
809 static s32 igb_copper_link_autoneg(struct e1000_hw *hw)
810 {
811 	struct e1000_phy_info *phy = &hw->phy;
812 	s32 ret_val;
813 	u16 phy_ctrl;
814 
815 	/*
816 	 * Perform some bounds checking on the autoneg advertisement
817 	 * parameter.
818 	 */
819 	phy->autoneg_advertised &= phy->autoneg_mask;
820 
821 	/*
822 	 * If autoneg_advertised is zero, we assume it was not defaulted
823 	 * by the calling code so we set to advertise full capability.
824 	 */
825 	if (phy->autoneg_advertised == 0)
826 		phy->autoneg_advertised = phy->autoneg_mask;
827 
828 	hw_dbg("Reconfiguring auto-neg advertisement params\n");
829 	ret_val = igb_phy_setup_autoneg(hw);
830 	if (ret_val) {
831 		hw_dbg("Error Setting up Auto-Negotiation\n");
832 		goto out;
833 	}
834 	hw_dbg("Restarting Auto-Neg\n");
835 
836 	/*
837 	 * Restart auto-negotiation by setting the Auto Neg Enable bit and
838 	 * the Auto Neg Restart bit in the PHY control register.
839 	 */
840 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
841 	if (ret_val)
842 		goto out;
843 
844 	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
845 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
846 	if (ret_val)
847 		goto out;
848 
849 	/*
850 	 * Does the user want to wait for Auto-Neg to complete here, or
851 	 * check at a later time (for example, callback routine).
852 	 */
853 	if (phy->autoneg_wait_to_complete) {
854 		ret_val = igb_wait_autoneg(hw);
855 		if (ret_val) {
856 			hw_dbg("Error while waiting for "
857 			       "autoneg to complete\n");
858 			goto out;
859 		}
860 	}
861 
862 	hw->mac.get_link_status = true;
863 
864 out:
865 	return ret_val;
866 }
867 
868 /**
869  *  igb_phy_setup_autoneg - Configure PHY for auto-negotiation
870  *  @hw: pointer to the HW structure
871  *
872  *  Reads the MII auto-neg advertisement register and/or the 1000T control
873  *  register and if the PHY is already setup for auto-negotiation, then
874  *  return successful.  Otherwise, setup advertisement and flow control to
875  *  the appropriate values for the wanted auto-negotiation.
876  **/
877 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
878 {
879 	struct e1000_phy_info *phy = &hw->phy;
880 	s32 ret_val;
881 	u16 mii_autoneg_adv_reg;
882 	u16 mii_1000t_ctrl_reg = 0;
883 
884 	phy->autoneg_advertised &= phy->autoneg_mask;
885 
886 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
887 	ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
888 	if (ret_val)
889 		goto out;
890 
891 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
892 		/* Read the MII 1000Base-T Control Register (Address 9). */
893 		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
894 					    &mii_1000t_ctrl_reg);
895 		if (ret_val)
896 			goto out;
897 	}
898 
899 	/*
900 	 * Need to parse both autoneg_advertised and fc and set up
901 	 * the appropriate PHY registers.  First we will parse for
902 	 * autoneg_advertised software override.  Since we can advertise
903 	 * a plethora of combinations, we need to check each bit
904 	 * individually.
905 	 */
906 
907 	/*
908 	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
909 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
910 	 * the  1000Base-T Control Register (Address 9).
911 	 */
912 	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
913 				 NWAY_AR_100TX_HD_CAPS |
914 				 NWAY_AR_10T_FD_CAPS   |
915 				 NWAY_AR_10T_HD_CAPS);
916 	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
917 
918 	hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
919 
920 	/* Do we want to advertise 10 Mb Half Duplex? */
921 	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
922 		hw_dbg("Advertise 10mb Half duplex\n");
923 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
924 	}
925 
926 	/* Do we want to advertise 10 Mb Full Duplex? */
927 	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
928 		hw_dbg("Advertise 10mb Full duplex\n");
929 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
930 	}
931 
932 	/* Do we want to advertise 100 Mb Half Duplex? */
933 	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
934 		hw_dbg("Advertise 100mb Half duplex\n");
935 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
936 	}
937 
938 	/* Do we want to advertise 100 Mb Full Duplex? */
939 	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
940 		hw_dbg("Advertise 100mb Full duplex\n");
941 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
942 	}
943 
944 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
945 	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
946 		hw_dbg("Advertise 1000mb Half duplex request denied!\n");
947 
948 	/* Do we want to advertise 1000 Mb Full Duplex? */
949 	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
950 		hw_dbg("Advertise 1000mb Full duplex\n");
951 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
952 	}
953 
954 	/*
955 	 * Check for a software override of the flow control settings, and
956 	 * setup the PHY advertisement registers accordingly.  If
957 	 * auto-negotiation is enabled, then software will have to set the
958 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
959 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
960 	 * negotiation.
961 	 *
962 	 * The possible values of the "fc" parameter are:
963 	 *      0:  Flow control is completely disabled
964 	 *      1:  Rx flow control is enabled (we can receive pause frames
965 	 *          but not send pause frames).
966 	 *      2:  Tx flow control is enabled (we can send pause frames
967 	 *          but we do not support receiving pause frames).
968 	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
969 	 *  other:  No software override.  The flow control configuration
970 	 *          in the EEPROM is used.
971 	 */
972 	switch (hw->fc.current_mode) {
973 	case e1000_fc_none:
974 		/*
975 		 * Flow control (RX & TX) is completely disabled by a
976 		 * software over-ride.
977 		 */
978 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
979 		break;
980 	case e1000_fc_rx_pause:
981 		/*
982 		 * RX Flow control is enabled, and TX Flow control is
983 		 * disabled, by a software over-ride.
984 		 *
985 		 * Since there really isn't a way to advertise that we are
986 		 * capable of RX Pause ONLY, we will advertise that we
987 		 * support both symmetric and asymmetric RX PAUSE.  Later
988 		 * (in e1000_config_fc_after_link_up) we will disable the
989 		 * hw's ability to send PAUSE frames.
990 		 */
991 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
992 		break;
993 	case e1000_fc_tx_pause:
994 		/*
995 		 * TX Flow control is enabled, and RX Flow control is
996 		 * disabled, by a software over-ride.
997 		 */
998 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
999 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1000 		break;
1001 	case e1000_fc_full:
1002 		/*
1003 		 * Flow control (both RX and TX) is enabled by a software
1004 		 * over-ride.
1005 		 */
1006 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1007 		break;
1008 	default:
1009 		hw_dbg("Flow control param set incorrectly\n");
1010 		ret_val = -E1000_ERR_CONFIG;
1011 		goto out;
1012 	}
1013 
1014 	ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1015 	if (ret_val)
1016 		goto out;
1017 
1018 	hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1019 
1020 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1021 		ret_val = phy->ops.write_reg(hw,
1022 					     PHY_1000T_CTRL,
1023 					     mii_1000t_ctrl_reg);
1024 		if (ret_val)
1025 			goto out;
1026 	}
1027 
1028 out:
1029 	return ret_val;
1030 }
1031 
1032 /**
1033  *  igb_setup_copper_link - Configure copper link settings
1034  *  @hw: pointer to the HW structure
1035  *
1036  *  Calls the appropriate function to configure the link for auto-neg or forced
1037  *  speed and duplex.  Then we check for link, once link is established calls
1038  *  to configure collision distance and flow control are called.  If link is
1039  *  not established, we return -E1000_ERR_PHY (-2).
1040  **/
1041 s32 igb_setup_copper_link(struct e1000_hw *hw)
1042 {
1043 	s32 ret_val;
1044 	bool link;
1045 
1046 
1047 	if (hw->mac.autoneg) {
1048 		/*
1049 		 * Setup autoneg and flow control advertisement and perform
1050 		 * autonegotiation.
1051 		 */
1052 		ret_val = igb_copper_link_autoneg(hw);
1053 		if (ret_val)
1054 			goto out;
1055 	} else {
1056 		/*
1057 		 * PHY will be set to 10H, 10F, 100H or 100F
1058 		 * depending on user settings.
1059 		 */
1060 		hw_dbg("Forcing Speed and Duplex\n");
1061 		ret_val = hw->phy.ops.force_speed_duplex(hw);
1062 		if (ret_val) {
1063 			hw_dbg("Error Forcing Speed and Duplex\n");
1064 			goto out;
1065 		}
1066 	}
1067 
1068 	/*
1069 	 * Check link status. Wait up to 100 microseconds for link to become
1070 	 * valid.
1071 	 */
1072 	ret_val = igb_phy_has_link(hw,
1073 	                           COPPER_LINK_UP_LIMIT,
1074 	                           10,
1075 	                           &link);
1076 	if (ret_val)
1077 		goto out;
1078 
1079 	if (link) {
1080 		hw_dbg("Valid link established!!!\n");
1081 		igb_config_collision_dist(hw);
1082 		ret_val = igb_config_fc_after_link_up(hw);
1083 	} else {
1084 		hw_dbg("Unable to establish link!!!\n");
1085 	}
1086 
1087 out:
1088 	return ret_val;
1089 }
1090 
1091 /**
1092  *  igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1093  *  @hw: pointer to the HW structure
1094  *
1095  *  Calls the PHY setup function to force speed and duplex.  Clears the
1096  *  auto-crossover to force MDI manually.  Waits for link and returns
1097  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1098  **/
1099 s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1100 {
1101 	struct e1000_phy_info *phy = &hw->phy;
1102 	s32 ret_val;
1103 	u16 phy_data;
1104 	bool link;
1105 
1106 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1107 	if (ret_val)
1108 		goto out;
1109 
1110 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1111 
1112 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1113 	if (ret_val)
1114 		goto out;
1115 
1116 	/*
1117 	 * Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1118 	 * forced whenever speed and duplex are forced.
1119 	 */
1120 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1121 	if (ret_val)
1122 		goto out;
1123 
1124 	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1125 	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1126 
1127 	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1128 	if (ret_val)
1129 		goto out;
1130 
1131 	hw_dbg("IGP PSCR: %X\n", phy_data);
1132 
1133 	udelay(1);
1134 
1135 	if (phy->autoneg_wait_to_complete) {
1136 		hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1137 
1138 		ret_val = igb_phy_has_link(hw,
1139 						     PHY_FORCE_LIMIT,
1140 						     100000,
1141 						     &link);
1142 		if (ret_val)
1143 			goto out;
1144 
1145 		if (!link)
1146 			hw_dbg("Link taking longer than expected.\n");
1147 
1148 		/* Try once more */
1149 		ret_val = igb_phy_has_link(hw,
1150 						     PHY_FORCE_LIMIT,
1151 						     100000,
1152 						     &link);
1153 		if (ret_val)
1154 			goto out;
1155 	}
1156 
1157 out:
1158 	return ret_val;
1159 }
1160 
1161 /**
1162  *  igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1163  *  @hw: pointer to the HW structure
1164  *
1165  *  Calls the PHY setup function to force speed and duplex.  Clears the
1166  *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1167  *  changes.  If time expires while waiting for link up, we reset the DSP.
1168  *  After reset, TX_CLK and CRS on TX must be set.  Return successful upon
1169  *  successful completion, else return corresponding error code.
1170  **/
1171 s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1172 {
1173 	struct e1000_phy_info *phy = &hw->phy;
1174 	s32 ret_val;
1175 	u16 phy_data;
1176 	bool link;
1177 
1178 	/*
1179 	 * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
1180 	 * forced whenever speed and duplex are forced.
1181 	 */
1182 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1183 	if (ret_val)
1184 		goto out;
1185 
1186 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1187 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1188 	if (ret_val)
1189 		goto out;
1190 
1191 	hw_dbg("M88E1000 PSCR: %X\n", phy_data);
1192 
1193 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1194 	if (ret_val)
1195 		goto out;
1196 
1197 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1198 
1199 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1200 	if (ret_val)
1201 		goto out;
1202 
1203 	/* Reset the phy to commit changes. */
1204 	ret_val = igb_phy_sw_reset(hw);
1205 	if (ret_val)
1206 		goto out;
1207 
1208 	if (phy->autoneg_wait_to_complete) {
1209 		hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1210 
1211 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
1212 		if (ret_val)
1213 			goto out;
1214 
1215 		if (!link) {
1216 			if (hw->phy.type != e1000_phy_m88 ||
1217 			    hw->phy.id == I347AT4_E_PHY_ID ||
1218 			    hw->phy.id == M88E1112_E_PHY_ID) {
1219 				hw_dbg("Link taking longer than expected.\n");
1220 			} else {
1221 
1222 				/*
1223 				 * We didn't get link.
1224 				 * Reset the DSP and cross our fingers.
1225 				 */
1226 				ret_val = phy->ops.write_reg(hw,
1227 							     M88E1000_PHY_PAGE_SELECT,
1228 							     0x001d);
1229 				if (ret_val)
1230 					goto out;
1231 				ret_val = igb_phy_reset_dsp(hw);
1232 				if (ret_val)
1233 					goto out;
1234 			}
1235 		}
1236 
1237 		/* Try once more */
1238 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT,
1239 					   100000, &link);
1240 		if (ret_val)
1241 			goto out;
1242 	}
1243 
1244 	if (hw->phy.type != e1000_phy_m88 ||
1245 	    hw->phy.id == I347AT4_E_PHY_ID ||
1246 	    hw->phy.id == M88E1112_E_PHY_ID)
1247 		goto out;
1248 
1249 	ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1250 	if (ret_val)
1251 		goto out;
1252 
1253 	/*
1254 	 * Resetting the phy means we need to re-force TX_CLK in the
1255 	 * Extended PHY Specific Control Register to 25MHz clock from
1256 	 * the reset value of 2.5MHz.
1257 	 */
1258 	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1259 	ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1260 	if (ret_val)
1261 		goto out;
1262 
1263 	/*
1264 	 * In addition, we must re-enable CRS on Tx for both half and full
1265 	 * duplex.
1266 	 */
1267 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1268 	if (ret_val)
1269 		goto out;
1270 
1271 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1272 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1273 
1274 out:
1275 	return ret_val;
1276 }
1277 
1278 /**
1279  *  igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1280  *  @hw: pointer to the HW structure
1281  *  @phy_ctrl: pointer to current value of PHY_CONTROL
1282  *
1283  *  Forces speed and duplex on the PHY by doing the following: disable flow
1284  *  control, force speed/duplex on the MAC, disable auto speed detection,
1285  *  disable auto-negotiation, configure duplex, configure speed, configure
1286  *  the collision distance, write configuration to CTRL register.  The
1287  *  caller must write to the PHY_CONTROL register for these settings to
1288  *  take affect.
1289  **/
1290 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
1291 					       u16 *phy_ctrl)
1292 {
1293 	struct e1000_mac_info *mac = &hw->mac;
1294 	u32 ctrl;
1295 
1296 	/* Turn off flow control when forcing speed/duplex */
1297 	hw->fc.current_mode = e1000_fc_none;
1298 
1299 	/* Force speed/duplex on the mac */
1300 	ctrl = rd32(E1000_CTRL);
1301 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1302 	ctrl &= ~E1000_CTRL_SPD_SEL;
1303 
1304 	/* Disable Auto Speed Detection */
1305 	ctrl &= ~E1000_CTRL_ASDE;
1306 
1307 	/* Disable autoneg on the phy */
1308 	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1309 
1310 	/* Forcing Full or Half Duplex? */
1311 	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1312 		ctrl &= ~E1000_CTRL_FD;
1313 		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1314 		hw_dbg("Half Duplex\n");
1315 	} else {
1316 		ctrl |= E1000_CTRL_FD;
1317 		*phy_ctrl |= MII_CR_FULL_DUPLEX;
1318 		hw_dbg("Full Duplex\n");
1319 	}
1320 
1321 	/* Forcing 10mb or 100mb? */
1322 	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1323 		ctrl |= E1000_CTRL_SPD_100;
1324 		*phy_ctrl |= MII_CR_SPEED_100;
1325 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1326 		hw_dbg("Forcing 100mb\n");
1327 	} else {
1328 		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1329 		*phy_ctrl |= MII_CR_SPEED_10;
1330 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1331 		hw_dbg("Forcing 10mb\n");
1332 	}
1333 
1334 	igb_config_collision_dist(hw);
1335 
1336 	wr32(E1000_CTRL, ctrl);
1337 }
1338 
1339 /**
1340  *  igb_set_d3_lplu_state - Sets low power link up state for D3
1341  *  @hw: pointer to the HW structure
1342  *  @active: boolean used to enable/disable lplu
1343  *
1344  *  Success returns 0, Failure returns 1
1345  *
1346  *  The low power link up (lplu) state is set to the power management level D3
1347  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1348  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1349  *  is used during Dx states where the power conservation is most important.
1350  *  During driver activity, SmartSpeed should be enabled so performance is
1351  *  maintained.
1352  **/
1353 s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1354 {
1355 	struct e1000_phy_info *phy = &hw->phy;
1356 	s32 ret_val = 0;
1357 	u16 data;
1358 
1359 	if (!(hw->phy.ops.read_reg))
1360 		goto out;
1361 
1362 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1363 	if (ret_val)
1364 		goto out;
1365 
1366 	if (!active) {
1367 		data &= ~IGP02E1000_PM_D3_LPLU;
1368 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1369 					     data);
1370 		if (ret_val)
1371 			goto out;
1372 		/*
1373 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1374 		 * during Dx states where the power conservation is most
1375 		 * important.  During driver activity we should enable
1376 		 * SmartSpeed, so performance is maintained.
1377 		 */
1378 		if (phy->smart_speed == e1000_smart_speed_on) {
1379 			ret_val = phy->ops.read_reg(hw,
1380 						    IGP01E1000_PHY_PORT_CONFIG,
1381 						    &data);
1382 			if (ret_val)
1383 				goto out;
1384 
1385 			data |= IGP01E1000_PSCFR_SMART_SPEED;
1386 			ret_val = phy->ops.write_reg(hw,
1387 						     IGP01E1000_PHY_PORT_CONFIG,
1388 						     data);
1389 			if (ret_val)
1390 				goto out;
1391 		} else if (phy->smart_speed == e1000_smart_speed_off) {
1392 			ret_val = phy->ops.read_reg(hw,
1393 						     IGP01E1000_PHY_PORT_CONFIG,
1394 						     &data);
1395 			if (ret_val)
1396 				goto out;
1397 
1398 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1399 			ret_val = phy->ops.write_reg(hw,
1400 						     IGP01E1000_PHY_PORT_CONFIG,
1401 						     data);
1402 			if (ret_val)
1403 				goto out;
1404 		}
1405 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1406 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1407 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1408 		data |= IGP02E1000_PM_D3_LPLU;
1409 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1410 					      data);
1411 		if (ret_val)
1412 			goto out;
1413 
1414 		/* When LPLU is enabled, we should disable SmartSpeed */
1415 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1416 					     &data);
1417 		if (ret_val)
1418 			goto out;
1419 
1420 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1421 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1422 					      data);
1423 	}
1424 
1425 out:
1426 	return ret_val;
1427 }
1428 
1429 /**
1430  *  igb_check_downshift - Checks whether a downshift in speed occurred
1431  *  @hw: pointer to the HW structure
1432  *
1433  *  Success returns 0, Failure returns 1
1434  *
1435  *  A downshift is detected by querying the PHY link health.
1436  **/
1437 s32 igb_check_downshift(struct e1000_hw *hw)
1438 {
1439 	struct e1000_phy_info *phy = &hw->phy;
1440 	s32 ret_val;
1441 	u16 phy_data, offset, mask;
1442 
1443 	switch (phy->type) {
1444 	case e1000_phy_m88:
1445 	case e1000_phy_gg82563:
1446 		offset	= M88E1000_PHY_SPEC_STATUS;
1447 		mask	= M88E1000_PSSR_DOWNSHIFT;
1448 		break;
1449 	case e1000_phy_igp_2:
1450 	case e1000_phy_igp:
1451 	case e1000_phy_igp_3:
1452 		offset	= IGP01E1000_PHY_LINK_HEALTH;
1453 		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
1454 		break;
1455 	default:
1456 		/* speed downshift not supported */
1457 		phy->speed_downgraded = false;
1458 		ret_val = 0;
1459 		goto out;
1460 	}
1461 
1462 	ret_val = phy->ops.read_reg(hw, offset, &phy_data);
1463 
1464 	if (!ret_val)
1465 		phy->speed_downgraded = (phy_data & mask) ? true : false;
1466 
1467 out:
1468 	return ret_val;
1469 }
1470 
1471 /**
1472  *  igb_check_polarity_m88 - Checks the polarity.
1473  *  @hw: pointer to the HW structure
1474  *
1475  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1476  *
1477  *  Polarity is determined based on the PHY specific status register.
1478  **/
1479 static s32 igb_check_polarity_m88(struct e1000_hw *hw)
1480 {
1481 	struct e1000_phy_info *phy = &hw->phy;
1482 	s32 ret_val;
1483 	u16 data;
1484 
1485 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
1486 
1487 	if (!ret_val)
1488 		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1489 				      ? e1000_rev_polarity_reversed
1490 				      : e1000_rev_polarity_normal;
1491 
1492 	return ret_val;
1493 }
1494 
1495 /**
1496  *  igb_check_polarity_igp - Checks the polarity.
1497  *  @hw: pointer to the HW structure
1498  *
1499  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1500  *
1501  *  Polarity is determined based on the PHY port status register, and the
1502  *  current speed (since there is no polarity at 100Mbps).
1503  **/
1504 static s32 igb_check_polarity_igp(struct e1000_hw *hw)
1505 {
1506 	struct e1000_phy_info *phy = &hw->phy;
1507 	s32 ret_val;
1508 	u16 data, offset, mask;
1509 
1510 	/*
1511 	 * Polarity is determined based on the speed of
1512 	 * our connection.
1513 	 */
1514 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1515 	if (ret_val)
1516 		goto out;
1517 
1518 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1519 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1520 		offset	= IGP01E1000_PHY_PCS_INIT_REG;
1521 		mask	= IGP01E1000_PHY_POLARITY_MASK;
1522 	} else {
1523 		/*
1524 		 * This really only applies to 10Mbps since
1525 		 * there is no polarity for 100Mbps (always 0).
1526 		 */
1527 		offset	= IGP01E1000_PHY_PORT_STATUS;
1528 		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
1529 	}
1530 
1531 	ret_val = phy->ops.read_reg(hw, offset, &data);
1532 
1533 	if (!ret_val)
1534 		phy->cable_polarity = (data & mask)
1535 				      ? e1000_rev_polarity_reversed
1536 				      : e1000_rev_polarity_normal;
1537 
1538 out:
1539 	return ret_val;
1540 }
1541 
1542 /**
1543  *  igb_wait_autoneg - Wait for auto-neg compeletion
1544  *  @hw: pointer to the HW structure
1545  *
1546  *  Waits for auto-negotiation to complete or for the auto-negotiation time
1547  *  limit to expire, which ever happens first.
1548  **/
1549 static s32 igb_wait_autoneg(struct e1000_hw *hw)
1550 {
1551 	s32 ret_val = 0;
1552 	u16 i, phy_status;
1553 
1554 	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1555 	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1556 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1557 		if (ret_val)
1558 			break;
1559 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1560 		if (ret_val)
1561 			break;
1562 		if (phy_status & MII_SR_AUTONEG_COMPLETE)
1563 			break;
1564 		msleep(100);
1565 	}
1566 
1567 	/*
1568 	 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1569 	 * has completed.
1570 	 */
1571 	return ret_val;
1572 }
1573 
1574 /**
1575  *  igb_phy_has_link - Polls PHY for link
1576  *  @hw: pointer to the HW structure
1577  *  @iterations: number of times to poll for link
1578  *  @usec_interval: delay between polling attempts
1579  *  @success: pointer to whether polling was successful or not
1580  *
1581  *  Polls the PHY status register for link, 'iterations' number of times.
1582  **/
1583 s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations,
1584 			       u32 usec_interval, bool *success)
1585 {
1586 	s32 ret_val = 0;
1587 	u16 i, phy_status;
1588 
1589 	for (i = 0; i < iterations; i++) {
1590 		/*
1591 		 * Some PHYs require the PHY_STATUS register to be read
1592 		 * twice due to the link bit being sticky.  No harm doing
1593 		 * it across the board.
1594 		 */
1595 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1596 		if (ret_val) {
1597 			/*
1598 			 * If the first read fails, another entity may have
1599 			 * ownership of the resources, wait and try again to
1600 			 * see if they have relinquished the resources yet.
1601 			 */
1602 			udelay(usec_interval);
1603 		}
1604 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1605 		if (ret_val)
1606 			break;
1607 		if (phy_status & MII_SR_LINK_STATUS)
1608 			break;
1609 		if (usec_interval >= 1000)
1610 			mdelay(usec_interval/1000);
1611 		else
1612 			udelay(usec_interval);
1613 	}
1614 
1615 	*success = (i < iterations) ? true : false;
1616 
1617 	return ret_val;
1618 }
1619 
1620 /**
1621  *  igb_get_cable_length_m88 - Determine cable length for m88 PHY
1622  *  @hw: pointer to the HW structure
1623  *
1624  *  Reads the PHY specific status register to retrieve the cable length
1625  *  information.  The cable length is determined by averaging the minimum and
1626  *  maximum values to get the "average" cable length.  The m88 PHY has four
1627  *  possible cable length values, which are:
1628  *	Register Value		Cable Length
1629  *	0			< 50 meters
1630  *	1			50 - 80 meters
1631  *	2			80 - 110 meters
1632  *	3			110 - 140 meters
1633  *	4			> 140 meters
1634  **/
1635 s32 igb_get_cable_length_m88(struct e1000_hw *hw)
1636 {
1637 	struct e1000_phy_info *phy = &hw->phy;
1638 	s32 ret_val;
1639 	u16 phy_data, index;
1640 
1641 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1642 	if (ret_val)
1643 		goto out;
1644 
1645 	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1646 		M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1647 	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1648 		ret_val = -E1000_ERR_PHY;
1649 		goto out;
1650 	}
1651 
1652 	phy->min_cable_length = e1000_m88_cable_length_table[index];
1653 	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1654 
1655 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1656 
1657 out:
1658 	return ret_val;
1659 }
1660 
1661 s32 igb_get_cable_length_m88_gen2(struct e1000_hw *hw)
1662 {
1663 	struct e1000_phy_info *phy = &hw->phy;
1664 	s32 ret_val;
1665 	u16 phy_data, phy_data2, index, default_page, is_cm;
1666 
1667 	switch (hw->phy.id) {
1668 	case I347AT4_E_PHY_ID:
1669 		/* Remember the original page select and set it to 7 */
1670 		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1671 					    &default_page);
1672 		if (ret_val)
1673 			goto out;
1674 
1675 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
1676 		if (ret_val)
1677 			goto out;
1678 
1679 		/* Get cable length from PHY Cable Diagnostics Control Reg */
1680 		ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr),
1681 					    &phy_data);
1682 		if (ret_val)
1683 			goto out;
1684 
1685 		/* Check if the unit of cable length is meters or cm */
1686 		ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
1687 		if (ret_val)
1688 			goto out;
1689 
1690 		is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1691 
1692 		/* Populate the phy structure with cable length in meters */
1693 		phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
1694 		phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
1695 		phy->cable_length = phy_data / (is_cm ? 100 : 1);
1696 
1697 		/* Reset the page selec to its original value */
1698 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1699 					     default_page);
1700 		if (ret_val)
1701 			goto out;
1702 		break;
1703 	case M88E1112_E_PHY_ID:
1704 		/* Remember the original page select and set it to 5 */
1705 		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1706 					    &default_page);
1707 		if (ret_val)
1708 			goto out;
1709 
1710 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
1711 		if (ret_val)
1712 			goto out;
1713 
1714 		ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
1715 					    &phy_data);
1716 		if (ret_val)
1717 			goto out;
1718 
1719 		index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1720 			M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1721 		if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1722 			ret_val = -E1000_ERR_PHY;
1723 			goto out;
1724 		}
1725 
1726 		phy->min_cable_length = e1000_m88_cable_length_table[index];
1727 		phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1728 
1729 		phy->cable_length = (phy->min_cable_length +
1730 				     phy->max_cable_length) / 2;
1731 
1732 		/* Reset the page select to its original value */
1733 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1734 					     default_page);
1735 		if (ret_val)
1736 			goto out;
1737 
1738 		break;
1739 	default:
1740 		ret_val = -E1000_ERR_PHY;
1741 		goto out;
1742 	}
1743 
1744 out:
1745 	return ret_val;
1746 }
1747 
1748 /**
1749  *  igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1750  *  @hw: pointer to the HW structure
1751  *
1752  *  The automatic gain control (agc) normalizes the amplitude of the
1753  *  received signal, adjusting for the attenuation produced by the
1754  *  cable.  By reading the AGC registers, which represent the
1755  *  combination of coarse and fine gain value, the value can be put
1756  *  into a lookup table to obtain the approximate cable length
1757  *  for each channel.
1758  **/
1759 s32 igb_get_cable_length_igp_2(struct e1000_hw *hw)
1760 {
1761 	struct e1000_phy_info *phy = &hw->phy;
1762 	s32 ret_val = 0;
1763 	u16 phy_data, i, agc_value = 0;
1764 	u16 cur_agc_index, max_agc_index = 0;
1765 	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1766 	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1767 	       IGP02E1000_PHY_AGC_A,
1768 	       IGP02E1000_PHY_AGC_B,
1769 	       IGP02E1000_PHY_AGC_C,
1770 	       IGP02E1000_PHY_AGC_D
1771 	};
1772 
1773 	/* Read the AGC registers for all channels */
1774 	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1775 		ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
1776 		if (ret_val)
1777 			goto out;
1778 
1779 		/*
1780 		 * Getting bits 15:9, which represent the combination of
1781 		 * coarse and fine gain values.  The result is a number
1782 		 * that can be put into the lookup table to obtain the
1783 		 * approximate cable length.
1784 		 */
1785 		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1786 				IGP02E1000_AGC_LENGTH_MASK;
1787 
1788 		/* Array index bound check. */
1789 		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1790 		    (cur_agc_index == 0)) {
1791 			ret_val = -E1000_ERR_PHY;
1792 			goto out;
1793 		}
1794 
1795 		/* Remove min & max AGC values from calculation. */
1796 		if (e1000_igp_2_cable_length_table[min_agc_index] >
1797 		    e1000_igp_2_cable_length_table[cur_agc_index])
1798 			min_agc_index = cur_agc_index;
1799 		if (e1000_igp_2_cable_length_table[max_agc_index] <
1800 		    e1000_igp_2_cable_length_table[cur_agc_index])
1801 			max_agc_index = cur_agc_index;
1802 
1803 		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1804 	}
1805 
1806 	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1807 		      e1000_igp_2_cable_length_table[max_agc_index]);
1808 	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1809 
1810 	/* Calculate cable length with the error range of +/- 10 meters. */
1811 	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1812 				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1813 	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1814 
1815 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1816 
1817 out:
1818 	return ret_val;
1819 }
1820 
1821 /**
1822  *  igb_get_phy_info_m88 - Retrieve PHY information
1823  *  @hw: pointer to the HW structure
1824  *
1825  *  Valid for only copper links.  Read the PHY status register (sticky read)
1826  *  to verify that link is up.  Read the PHY special control register to
1827  *  determine the polarity and 10base-T extended distance.  Read the PHY
1828  *  special status register to determine MDI/MDIx and current speed.  If
1829  *  speed is 1000, then determine cable length, local and remote receiver.
1830  **/
1831 s32 igb_get_phy_info_m88(struct e1000_hw *hw)
1832 {
1833 	struct e1000_phy_info *phy = &hw->phy;
1834 	s32  ret_val;
1835 	u16 phy_data;
1836 	bool link;
1837 
1838 	if (phy->media_type != e1000_media_type_copper) {
1839 		hw_dbg("Phy info is only valid for copper media\n");
1840 		ret_val = -E1000_ERR_CONFIG;
1841 		goto out;
1842 	}
1843 
1844 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
1845 	if (ret_val)
1846 		goto out;
1847 
1848 	if (!link) {
1849 		hw_dbg("Phy info is only valid if link is up\n");
1850 		ret_val = -E1000_ERR_CONFIG;
1851 		goto out;
1852 	}
1853 
1854 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1855 	if (ret_val)
1856 		goto out;
1857 
1858 	phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
1859 				   ? true : false;
1860 
1861 	ret_val = igb_check_polarity_m88(hw);
1862 	if (ret_val)
1863 		goto out;
1864 
1865 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1866 	if (ret_val)
1867 		goto out;
1868 
1869 	phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false;
1870 
1871 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1872 		ret_val = phy->ops.get_cable_length(hw);
1873 		if (ret_val)
1874 			goto out;
1875 
1876 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
1877 		if (ret_val)
1878 			goto out;
1879 
1880 		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1881 				? e1000_1000t_rx_status_ok
1882 				: e1000_1000t_rx_status_not_ok;
1883 
1884 		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1885 				 ? e1000_1000t_rx_status_ok
1886 				 : e1000_1000t_rx_status_not_ok;
1887 	} else {
1888 		/* Set values to "undefined" */
1889 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1890 		phy->local_rx = e1000_1000t_rx_status_undefined;
1891 		phy->remote_rx = e1000_1000t_rx_status_undefined;
1892 	}
1893 
1894 out:
1895 	return ret_val;
1896 }
1897 
1898 /**
1899  *  igb_get_phy_info_igp - Retrieve igp PHY information
1900  *  @hw: pointer to the HW structure
1901  *
1902  *  Read PHY status to determine if link is up.  If link is up, then
1903  *  set/determine 10base-T extended distance and polarity correction.  Read
1904  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1905  *  determine on the cable length, local and remote receiver.
1906  **/
1907 s32 igb_get_phy_info_igp(struct e1000_hw *hw)
1908 {
1909 	struct e1000_phy_info *phy = &hw->phy;
1910 	s32 ret_val;
1911 	u16 data;
1912 	bool link;
1913 
1914 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
1915 	if (ret_val)
1916 		goto out;
1917 
1918 	if (!link) {
1919 		hw_dbg("Phy info is only valid if link is up\n");
1920 		ret_val = -E1000_ERR_CONFIG;
1921 		goto out;
1922 	}
1923 
1924 	phy->polarity_correction = true;
1925 
1926 	ret_val = igb_check_polarity_igp(hw);
1927 	if (ret_val)
1928 		goto out;
1929 
1930 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1931 	if (ret_val)
1932 		goto out;
1933 
1934 	phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false;
1935 
1936 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1937 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1938 		ret_val = phy->ops.get_cable_length(hw);
1939 		if (ret_val)
1940 			goto out;
1941 
1942 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
1943 		if (ret_val)
1944 			goto out;
1945 
1946 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
1947 				? e1000_1000t_rx_status_ok
1948 				: e1000_1000t_rx_status_not_ok;
1949 
1950 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
1951 				 ? e1000_1000t_rx_status_ok
1952 				 : e1000_1000t_rx_status_not_ok;
1953 	} else {
1954 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1955 		phy->local_rx = e1000_1000t_rx_status_undefined;
1956 		phy->remote_rx = e1000_1000t_rx_status_undefined;
1957 	}
1958 
1959 out:
1960 	return ret_val;
1961 }
1962 
1963 /**
1964  *  igb_phy_sw_reset - PHY software reset
1965  *  @hw: pointer to the HW structure
1966  *
1967  *  Does a software reset of the PHY by reading the PHY control register and
1968  *  setting/write the control register reset bit to the PHY.
1969  **/
1970 s32 igb_phy_sw_reset(struct e1000_hw *hw)
1971 {
1972 	s32 ret_val = 0;
1973 	u16 phy_ctrl;
1974 
1975 	if (!(hw->phy.ops.read_reg))
1976 		goto out;
1977 
1978 	ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
1979 	if (ret_val)
1980 		goto out;
1981 
1982 	phy_ctrl |= MII_CR_RESET;
1983 	ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
1984 	if (ret_val)
1985 		goto out;
1986 
1987 	udelay(1);
1988 
1989 out:
1990 	return ret_val;
1991 }
1992 
1993 /**
1994  *  igb_phy_hw_reset - PHY hardware reset
1995  *  @hw: pointer to the HW structure
1996  *
1997  *  Verify the reset block is not blocking us from resetting.  Acquire
1998  *  semaphore (if necessary) and read/set/write the device control reset
1999  *  bit in the PHY.  Wait the appropriate delay time for the device to
2000  *  reset and relase the semaphore (if necessary).
2001  **/
2002 s32 igb_phy_hw_reset(struct e1000_hw *hw)
2003 {
2004 	struct e1000_phy_info *phy = &hw->phy;
2005 	s32  ret_val;
2006 	u32 ctrl;
2007 
2008 	ret_val = igb_check_reset_block(hw);
2009 	if (ret_val) {
2010 		ret_val = 0;
2011 		goto out;
2012 	}
2013 
2014 	ret_val = phy->ops.acquire(hw);
2015 	if (ret_val)
2016 		goto out;
2017 
2018 	ctrl = rd32(E1000_CTRL);
2019 	wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
2020 	wrfl();
2021 
2022 	udelay(phy->reset_delay_us);
2023 
2024 	wr32(E1000_CTRL, ctrl);
2025 	wrfl();
2026 
2027 	udelay(150);
2028 
2029 	phy->ops.release(hw);
2030 
2031 	ret_val = phy->ops.get_cfg_done(hw);
2032 
2033 out:
2034 	return ret_val;
2035 }
2036 
2037 /**
2038  *  igb_phy_init_script_igp3 - Inits the IGP3 PHY
2039  *  @hw: pointer to the HW structure
2040  *
2041  *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2042  **/
2043 s32 igb_phy_init_script_igp3(struct e1000_hw *hw)
2044 {
2045 	hw_dbg("Running IGP 3 PHY init script\n");
2046 
2047 	/* PHY init IGP 3 */
2048 	/* Enable rise/fall, 10-mode work in class-A */
2049 	hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
2050 	/* Remove all caps from Replica path filter */
2051 	hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
2052 	/* Bias trimming for ADC, AFE and Driver (Default) */
2053 	hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
2054 	/* Increase Hybrid poly bias */
2055 	hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
2056 	/* Add 4% to TX amplitude in Giga mode */
2057 	hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
2058 	/* Disable trimming (TTT) */
2059 	hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
2060 	/* Poly DC correction to 94.6% + 2% for all channels */
2061 	hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
2062 	/* ABS DC correction to 95.9% */
2063 	hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
2064 	/* BG temp curve trim */
2065 	hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
2066 	/* Increasing ADC OPAMP stage 1 currents to max */
2067 	hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
2068 	/* Force 1000 ( required for enabling PHY regs configuration) */
2069 	hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
2070 	/* Set upd_freq to 6 */
2071 	hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
2072 	/* Disable NPDFE */
2073 	hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
2074 	/* Disable adaptive fixed FFE (Default) */
2075 	hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
2076 	/* Enable FFE hysteresis */
2077 	hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
2078 	/* Fixed FFE for short cable lengths */
2079 	hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
2080 	/* Fixed FFE for medium cable lengths */
2081 	hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
2082 	/* Fixed FFE for long cable lengths */
2083 	hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
2084 	/* Enable Adaptive Clip Threshold */
2085 	hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
2086 	/* AHT reset limit to 1 */
2087 	hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
2088 	/* Set AHT master delay to 127 msec */
2089 	hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
2090 	/* Set scan bits for AHT */
2091 	hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
2092 	/* Set AHT Preset bits */
2093 	hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
2094 	/* Change integ_factor of channel A to 3 */
2095 	hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
2096 	/* Change prop_factor of channels BCD to 8 */
2097 	hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
2098 	/* Change cg_icount + enable integbp for channels BCD */
2099 	hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
2100 	/*
2101 	 * Change cg_icount + enable integbp + change prop_factor_master
2102 	 * to 8 for channel A
2103 	 */
2104 	hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
2105 	/* Disable AHT in Slave mode on channel A */
2106 	hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
2107 	/*
2108 	 * Enable LPLU and disable AN to 1000 in non-D0a states,
2109 	 * Enable SPD+B2B
2110 	 */
2111 	hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
2112 	/* Enable restart AN on an1000_dis change */
2113 	hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
2114 	/* Enable wh_fifo read clock in 10/100 modes */
2115 	hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
2116 	/* Restart AN, Speed selection is 1000 */
2117 	hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
2118 
2119 	return 0;
2120 }
2121 
2122 /**
2123  * igb_power_up_phy_copper - Restore copper link in case of PHY power down
2124  * @hw: pointer to the HW structure
2125  *
2126  * In the case of a PHY power down to save power, or to turn off link during a
2127  * driver unload, restore the link to previous settings.
2128  **/
2129 void igb_power_up_phy_copper(struct e1000_hw *hw)
2130 {
2131 	u16 mii_reg = 0;
2132 
2133 	/* The PHY will retain its settings across a power down/up cycle */
2134 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2135 	mii_reg &= ~MII_CR_POWER_DOWN;
2136 	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2137 }
2138 
2139 /**
2140  * igb_power_down_phy_copper - Power down copper PHY
2141  * @hw: pointer to the HW structure
2142  *
2143  * Power down PHY to save power when interface is down and wake on lan
2144  * is not enabled.
2145  **/
2146 void igb_power_down_phy_copper(struct e1000_hw *hw)
2147 {
2148 	u16 mii_reg = 0;
2149 
2150 	/* The PHY will retain its settings across a power down/up cycle */
2151 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2152 	mii_reg |= MII_CR_POWER_DOWN;
2153 	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2154 	msleep(1);
2155 }
2156 
2157 /**
2158  *  igb_check_polarity_82580 - Checks the polarity.
2159  *  @hw: pointer to the HW structure
2160  *
2161  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2162  *
2163  *  Polarity is determined based on the PHY specific status register.
2164  **/
2165 static s32 igb_check_polarity_82580(struct e1000_hw *hw)
2166 {
2167 	struct e1000_phy_info *phy = &hw->phy;
2168 	s32 ret_val;
2169 	u16 data;
2170 
2171 
2172 	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2173 
2174 	if (!ret_val)
2175 		phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY)
2176 		                      ? e1000_rev_polarity_reversed
2177 		                      : e1000_rev_polarity_normal;
2178 
2179 	return ret_val;
2180 }
2181 
2182 /**
2183  *  igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY
2184  *  @hw: pointer to the HW structure
2185  *
2186  *  Calls the PHY setup function to force speed and duplex.  Clears the
2187  *  auto-crossover to force MDI manually.  Waits for link and returns
2188  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
2189  **/
2190 s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw)
2191 {
2192 	struct e1000_phy_info *phy = &hw->phy;
2193 	s32 ret_val;
2194 	u16 phy_data;
2195 	bool link;
2196 
2197 
2198 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
2199 	if (ret_val)
2200 		goto out;
2201 
2202 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
2203 
2204 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
2205 	if (ret_val)
2206 		goto out;
2207 
2208 	/*
2209 	 * Clear Auto-Crossover to force MDI manually.  82580 requires MDI
2210 	 * forced whenever speed and duplex are forced.
2211 	 */
2212 	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
2213 	if (ret_val)
2214 		goto out;
2215 
2216 	phy_data &= ~I82580_PHY_CTRL2_AUTO_MDIX;
2217 	phy_data &= ~I82580_PHY_CTRL2_FORCE_MDI_MDIX;
2218 
2219 	ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
2220 	if (ret_val)
2221 		goto out;
2222 
2223 	hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data);
2224 
2225 	udelay(1);
2226 
2227 	if (phy->autoneg_wait_to_complete) {
2228 		hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n");
2229 
2230 		ret_val = igb_phy_has_link(hw,
2231 		                           PHY_FORCE_LIMIT,
2232 		                           100000,
2233 		                           &link);
2234 		if (ret_val)
2235 			goto out;
2236 
2237 		if (!link)
2238 			hw_dbg("Link taking longer than expected.\n");
2239 
2240 		/* Try once more */
2241 		ret_val = igb_phy_has_link(hw,
2242 		                           PHY_FORCE_LIMIT,
2243 		                           100000,
2244 		                           &link);
2245 		if (ret_val)
2246 			goto out;
2247 	}
2248 
2249 out:
2250 	return ret_val;
2251 }
2252 
2253 /**
2254  *  igb_get_phy_info_82580 - Retrieve I82580 PHY information
2255  *  @hw: pointer to the HW structure
2256  *
2257  *  Read PHY status to determine if link is up.  If link is up, then
2258  *  set/determine 10base-T extended distance and polarity correction.  Read
2259  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
2260  *  determine on the cable length, local and remote receiver.
2261  **/
2262 s32 igb_get_phy_info_82580(struct e1000_hw *hw)
2263 {
2264 	struct e1000_phy_info *phy = &hw->phy;
2265 	s32 ret_val;
2266 	u16 data;
2267 	bool link;
2268 
2269 
2270 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
2271 	if (ret_val)
2272 		goto out;
2273 
2274 	if (!link) {
2275 		hw_dbg("Phy info is only valid if link is up\n");
2276 		ret_val = -E1000_ERR_CONFIG;
2277 		goto out;
2278 	}
2279 
2280 	phy->polarity_correction = true;
2281 
2282 	ret_val = igb_check_polarity_82580(hw);
2283 	if (ret_val)
2284 		goto out;
2285 
2286 	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2287 	if (ret_val)
2288 		goto out;
2289 
2290 	phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false;
2291 
2292 	if ((data & I82580_PHY_STATUS2_SPEED_MASK) ==
2293 	    I82580_PHY_STATUS2_SPEED_1000MBPS) {
2294 		ret_val = hw->phy.ops.get_cable_length(hw);
2295 		if (ret_val)
2296 			goto out;
2297 
2298 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2299 		if (ret_val)
2300 			goto out;
2301 
2302 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2303 		                ? e1000_1000t_rx_status_ok
2304 		                : e1000_1000t_rx_status_not_ok;
2305 
2306 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2307 		                 ? e1000_1000t_rx_status_ok
2308 		                 : e1000_1000t_rx_status_not_ok;
2309 	} else {
2310 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2311 		phy->local_rx = e1000_1000t_rx_status_undefined;
2312 		phy->remote_rx = e1000_1000t_rx_status_undefined;
2313 	}
2314 
2315 out:
2316 	return ret_val;
2317 }
2318 
2319 /**
2320  *  igb_get_cable_length_82580 - Determine cable length for 82580 PHY
2321  *  @hw: pointer to the HW structure
2322  *
2323  * Reads the diagnostic status register and verifies result is valid before
2324  * placing it in the phy_cable_length field.
2325  **/
2326 s32 igb_get_cable_length_82580(struct e1000_hw *hw)
2327 {
2328 	struct e1000_phy_info *phy = &hw->phy;
2329 	s32 ret_val;
2330 	u16 phy_data, length;
2331 
2332 
2333 	ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data);
2334 	if (ret_val)
2335 		goto out;
2336 
2337 	length = (phy_data & I82580_DSTATUS_CABLE_LENGTH) >>
2338 	         I82580_DSTATUS_CABLE_LENGTH_SHIFT;
2339 
2340 	if (length == E1000_CABLE_LENGTH_UNDEFINED)
2341 		ret_val = -E1000_ERR_PHY;
2342 
2343 	phy->cable_length = length;
2344 
2345 out:
2346 	return ret_val;
2347 }
2348