1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2007 - 2018 Intel Corporation. */ 3 4 #include <linux/if_ether.h> 5 #include <linux/delay.h> 6 7 #include "e1000_mac.h" 8 #include "e1000_phy.h" 9 10 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw); 11 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw, 12 u16 *phy_ctrl); 13 static s32 igb_wait_autoneg(struct e1000_hw *hw); 14 static s32 igb_set_master_slave_mode(struct e1000_hw *hw); 15 16 /* Cable length tables */ 17 static const u16 e1000_m88_cable_length_table[] = { 18 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED }; 19 20 static const u16 e1000_igp_2_cable_length_table[] = { 21 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 22 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 23 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 24 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 25 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 26 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 27 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124, 28 104, 109, 114, 118, 121, 124}; 29 30 /** 31 * igb_check_reset_block - Check if PHY reset is blocked 32 * @hw: pointer to the HW structure 33 * 34 * Read the PHY management control register and check whether a PHY reset 35 * is blocked. If a reset is not blocked return 0, otherwise 36 * return E1000_BLK_PHY_RESET (12). 37 **/ 38 s32 igb_check_reset_block(struct e1000_hw *hw) 39 { 40 u32 manc; 41 42 manc = rd32(E1000_MANC); 43 44 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0; 45 } 46 47 /** 48 * igb_get_phy_id - Retrieve the PHY ID and revision 49 * @hw: pointer to the HW structure 50 * 51 * Reads the PHY registers and stores the PHY ID and possibly the PHY 52 * revision in the hardware structure. 53 **/ 54 s32 igb_get_phy_id(struct e1000_hw *hw) 55 { 56 struct e1000_phy_info *phy = &hw->phy; 57 s32 ret_val = 0; 58 u16 phy_id; 59 60 /* ensure PHY page selection to fix misconfigured i210 */ 61 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) 62 phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0); 63 64 ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id); 65 if (ret_val) 66 goto out; 67 68 phy->id = (u32)(phy_id << 16); 69 udelay(20); 70 ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id); 71 if (ret_val) 72 goto out; 73 74 phy->id |= (u32)(phy_id & PHY_REVISION_MASK); 75 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); 76 77 out: 78 return ret_val; 79 } 80 81 /** 82 * igb_phy_reset_dsp - Reset PHY DSP 83 * @hw: pointer to the HW structure 84 * 85 * Reset the digital signal processor. 86 **/ 87 static s32 igb_phy_reset_dsp(struct e1000_hw *hw) 88 { 89 s32 ret_val = 0; 90 91 if (!(hw->phy.ops.write_reg)) 92 goto out; 93 94 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1); 95 if (ret_val) 96 goto out; 97 98 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0); 99 100 out: 101 return ret_val; 102 } 103 104 /** 105 * igb_read_phy_reg_mdic - Read MDI control register 106 * @hw: pointer to the HW structure 107 * @offset: register offset to be read 108 * @data: pointer to the read data 109 * 110 * Reads the MDI control register in the PHY at offset and stores the 111 * information read to data. 112 **/ 113 s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data) 114 { 115 struct e1000_phy_info *phy = &hw->phy; 116 u32 i, mdic = 0; 117 s32 ret_val = 0; 118 119 if (offset > MAX_PHY_REG_ADDRESS) { 120 hw_dbg("PHY Address %d is out of range\n", offset); 121 ret_val = -E1000_ERR_PARAM; 122 goto out; 123 } 124 125 /* Set up Op-code, Phy Address, and register offset in the MDI 126 * Control register. The MAC will take care of interfacing with the 127 * PHY to retrieve the desired data. 128 */ 129 mdic = ((offset << E1000_MDIC_REG_SHIFT) | 130 (phy->addr << E1000_MDIC_PHY_SHIFT) | 131 (E1000_MDIC_OP_READ)); 132 133 wr32(E1000_MDIC, mdic); 134 135 /* Poll the ready bit to see if the MDI read completed 136 * Increasing the time out as testing showed failures with 137 * the lower time out 138 */ 139 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { 140 udelay(50); 141 mdic = rd32(E1000_MDIC); 142 if (mdic & E1000_MDIC_READY) 143 break; 144 } 145 if (!(mdic & E1000_MDIC_READY)) { 146 hw_dbg("MDI Read did not complete\n"); 147 ret_val = -E1000_ERR_PHY; 148 goto out; 149 } 150 if (mdic & E1000_MDIC_ERROR) { 151 hw_dbg("MDI Error\n"); 152 ret_val = -E1000_ERR_PHY; 153 goto out; 154 } 155 *data = (u16) mdic; 156 157 out: 158 return ret_val; 159 } 160 161 /** 162 * igb_write_phy_reg_mdic - Write MDI control register 163 * @hw: pointer to the HW structure 164 * @offset: register offset to write to 165 * @data: data to write to register at offset 166 * 167 * Writes data to MDI control register in the PHY at offset. 168 **/ 169 s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data) 170 { 171 struct e1000_phy_info *phy = &hw->phy; 172 u32 i, mdic = 0; 173 s32 ret_val = 0; 174 175 if (offset > MAX_PHY_REG_ADDRESS) { 176 hw_dbg("PHY Address %d is out of range\n", offset); 177 ret_val = -E1000_ERR_PARAM; 178 goto out; 179 } 180 181 /* Set up Op-code, Phy Address, and register offset in the MDI 182 * Control register. The MAC will take care of interfacing with the 183 * PHY to retrieve the desired data. 184 */ 185 mdic = (((u32)data) | 186 (offset << E1000_MDIC_REG_SHIFT) | 187 (phy->addr << E1000_MDIC_PHY_SHIFT) | 188 (E1000_MDIC_OP_WRITE)); 189 190 wr32(E1000_MDIC, mdic); 191 192 /* Poll the ready bit to see if the MDI read completed 193 * Increasing the time out as testing showed failures with 194 * the lower time out 195 */ 196 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { 197 udelay(50); 198 mdic = rd32(E1000_MDIC); 199 if (mdic & E1000_MDIC_READY) 200 break; 201 } 202 if (!(mdic & E1000_MDIC_READY)) { 203 hw_dbg("MDI Write did not complete\n"); 204 ret_val = -E1000_ERR_PHY; 205 goto out; 206 } 207 if (mdic & E1000_MDIC_ERROR) { 208 hw_dbg("MDI Error\n"); 209 ret_val = -E1000_ERR_PHY; 210 goto out; 211 } 212 213 out: 214 return ret_val; 215 } 216 217 /** 218 * igb_read_phy_reg_i2c - Read PHY register using i2c 219 * @hw: pointer to the HW structure 220 * @offset: register offset to be read 221 * @data: pointer to the read data 222 * 223 * Reads the PHY register at offset using the i2c interface and stores the 224 * retrieved information in data. 225 **/ 226 s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data) 227 { 228 struct e1000_phy_info *phy = &hw->phy; 229 u32 i, i2ccmd = 0; 230 231 /* Set up Op-code, Phy Address, and register address in the I2CCMD 232 * register. The MAC will take care of interfacing with the 233 * PHY to retrieve the desired data. 234 */ 235 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | 236 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | 237 (E1000_I2CCMD_OPCODE_READ)); 238 239 wr32(E1000_I2CCMD, i2ccmd); 240 241 /* Poll the ready bit to see if the I2C read completed */ 242 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { 243 udelay(50); 244 i2ccmd = rd32(E1000_I2CCMD); 245 if (i2ccmd & E1000_I2CCMD_READY) 246 break; 247 } 248 if (!(i2ccmd & E1000_I2CCMD_READY)) { 249 hw_dbg("I2CCMD Read did not complete\n"); 250 return -E1000_ERR_PHY; 251 } 252 if (i2ccmd & E1000_I2CCMD_ERROR) { 253 hw_dbg("I2CCMD Error bit set\n"); 254 return -E1000_ERR_PHY; 255 } 256 257 /* Need to byte-swap the 16-bit value. */ 258 *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00); 259 260 return 0; 261 } 262 263 /** 264 * igb_write_phy_reg_i2c - Write PHY register using i2c 265 * @hw: pointer to the HW structure 266 * @offset: register offset to write to 267 * @data: data to write at register offset 268 * 269 * Writes the data to PHY register at the offset using the i2c interface. 270 **/ 271 s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data) 272 { 273 struct e1000_phy_info *phy = &hw->phy; 274 u32 i, i2ccmd = 0; 275 u16 phy_data_swapped; 276 277 /* Prevent overwriting SFP I2C EEPROM which is at A0 address.*/ 278 if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) { 279 hw_dbg("PHY I2C Address %d is out of range.\n", 280 hw->phy.addr); 281 return -E1000_ERR_CONFIG; 282 } 283 284 /* Swap the data bytes for the I2C interface */ 285 phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00); 286 287 /* Set up Op-code, Phy Address, and register address in the I2CCMD 288 * register. The MAC will take care of interfacing with the 289 * PHY to retrieve the desired data. 290 */ 291 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | 292 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | 293 E1000_I2CCMD_OPCODE_WRITE | 294 phy_data_swapped); 295 296 wr32(E1000_I2CCMD, i2ccmd); 297 298 /* Poll the ready bit to see if the I2C read completed */ 299 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { 300 udelay(50); 301 i2ccmd = rd32(E1000_I2CCMD); 302 if (i2ccmd & E1000_I2CCMD_READY) 303 break; 304 } 305 if (!(i2ccmd & E1000_I2CCMD_READY)) { 306 hw_dbg("I2CCMD Write did not complete\n"); 307 return -E1000_ERR_PHY; 308 } 309 if (i2ccmd & E1000_I2CCMD_ERROR) { 310 hw_dbg("I2CCMD Error bit set\n"); 311 return -E1000_ERR_PHY; 312 } 313 314 return 0; 315 } 316 317 /** 318 * igb_read_sfp_data_byte - Reads SFP module data. 319 * @hw: pointer to the HW structure 320 * @offset: byte location offset to be read 321 * @data: read data buffer pointer 322 * 323 * Reads one byte from SFP module data stored 324 * in SFP resided EEPROM memory or SFP diagnostic area. 325 * Function should be called with 326 * E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access 327 * E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters 328 * access 329 **/ 330 s32 igb_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data) 331 { 332 u32 i = 0; 333 u32 i2ccmd = 0; 334 u32 data_local = 0; 335 336 if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) { 337 hw_dbg("I2CCMD command address exceeds upper limit\n"); 338 return -E1000_ERR_PHY; 339 } 340 341 /* Set up Op-code, EEPROM Address,in the I2CCMD 342 * register. The MAC will take care of interfacing with the 343 * EEPROM to retrieve the desired data. 344 */ 345 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | 346 E1000_I2CCMD_OPCODE_READ); 347 348 wr32(E1000_I2CCMD, i2ccmd); 349 350 /* Poll the ready bit to see if the I2C read completed */ 351 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { 352 udelay(50); 353 data_local = rd32(E1000_I2CCMD); 354 if (data_local & E1000_I2CCMD_READY) 355 break; 356 } 357 if (!(data_local & E1000_I2CCMD_READY)) { 358 hw_dbg("I2CCMD Read did not complete\n"); 359 return -E1000_ERR_PHY; 360 } 361 if (data_local & E1000_I2CCMD_ERROR) { 362 hw_dbg("I2CCMD Error bit set\n"); 363 return -E1000_ERR_PHY; 364 } 365 *data = (u8) data_local & 0xFF; 366 367 return 0; 368 } 369 370 /** 371 * igb_read_phy_reg_igp - Read igp PHY register 372 * @hw: pointer to the HW structure 373 * @offset: register offset to be read 374 * @data: pointer to the read data 375 * 376 * Acquires semaphore, if necessary, then reads the PHY register at offset 377 * and storing the retrieved information in data. Release any acquired 378 * semaphores before exiting. 379 **/ 380 s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data) 381 { 382 s32 ret_val = 0; 383 384 if (!(hw->phy.ops.acquire)) 385 goto out; 386 387 ret_val = hw->phy.ops.acquire(hw); 388 if (ret_val) 389 goto out; 390 391 if (offset > MAX_PHY_MULTI_PAGE_REG) { 392 ret_val = igb_write_phy_reg_mdic(hw, 393 IGP01E1000_PHY_PAGE_SELECT, 394 (u16)offset); 395 if (ret_val) { 396 hw->phy.ops.release(hw); 397 goto out; 398 } 399 } 400 401 ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 402 data); 403 404 hw->phy.ops.release(hw); 405 406 out: 407 return ret_val; 408 } 409 410 /** 411 * igb_write_phy_reg_igp - Write igp PHY register 412 * @hw: pointer to the HW structure 413 * @offset: register offset to write to 414 * @data: data to write at register offset 415 * 416 * Acquires semaphore, if necessary, then writes the data to PHY register 417 * at the offset. Release any acquired semaphores before exiting. 418 **/ 419 s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data) 420 { 421 s32 ret_val = 0; 422 423 if (!(hw->phy.ops.acquire)) 424 goto out; 425 426 ret_val = hw->phy.ops.acquire(hw); 427 if (ret_val) 428 goto out; 429 430 if (offset > MAX_PHY_MULTI_PAGE_REG) { 431 ret_val = igb_write_phy_reg_mdic(hw, 432 IGP01E1000_PHY_PAGE_SELECT, 433 (u16)offset); 434 if (ret_val) { 435 hw->phy.ops.release(hw); 436 goto out; 437 } 438 } 439 440 ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 441 data); 442 443 hw->phy.ops.release(hw); 444 445 out: 446 return ret_val; 447 } 448 449 /** 450 * igb_copper_link_setup_82580 - Setup 82580 PHY for copper link 451 * @hw: pointer to the HW structure 452 * 453 * Sets up Carrier-sense on Transmit and downshift values. 454 **/ 455 s32 igb_copper_link_setup_82580(struct e1000_hw *hw) 456 { 457 struct e1000_phy_info *phy = &hw->phy; 458 s32 ret_val; 459 u16 phy_data; 460 461 if (phy->reset_disable) { 462 ret_val = 0; 463 goto out; 464 } 465 466 if (phy->type == e1000_phy_82580) { 467 ret_val = hw->phy.ops.reset(hw); 468 if (ret_val) { 469 hw_dbg("Error resetting the PHY.\n"); 470 goto out; 471 } 472 } 473 474 /* Enable CRS on TX. This must be set for half-duplex operation. */ 475 ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data); 476 if (ret_val) 477 goto out; 478 479 phy_data |= I82580_CFG_ASSERT_CRS_ON_TX; 480 481 /* Enable downshift */ 482 phy_data |= I82580_CFG_ENABLE_DOWNSHIFT; 483 484 ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data); 485 if (ret_val) 486 goto out; 487 488 /* Set MDI/MDIX mode */ 489 ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data); 490 if (ret_val) 491 goto out; 492 phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK; 493 /* Options: 494 * 0 - Auto (default) 495 * 1 - MDI mode 496 * 2 - MDI-X mode 497 */ 498 switch (hw->phy.mdix) { 499 case 1: 500 break; 501 case 2: 502 phy_data |= I82580_PHY_CTRL2_MANUAL_MDIX; 503 break; 504 case 0: 505 default: 506 phy_data |= I82580_PHY_CTRL2_AUTO_MDI_MDIX; 507 break; 508 } 509 ret_val = hw->phy.ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data); 510 511 out: 512 return ret_val; 513 } 514 515 /** 516 * igb_copper_link_setup_m88 - Setup m88 PHY's for copper link 517 * @hw: pointer to the HW structure 518 * 519 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock 520 * and downshift values are set also. 521 **/ 522 s32 igb_copper_link_setup_m88(struct e1000_hw *hw) 523 { 524 struct e1000_phy_info *phy = &hw->phy; 525 s32 ret_val; 526 u16 phy_data; 527 528 if (phy->reset_disable) { 529 ret_val = 0; 530 goto out; 531 } 532 533 /* Enable CRS on TX. This must be set for half-duplex operation. */ 534 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 535 if (ret_val) 536 goto out; 537 538 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; 539 540 /* Options: 541 * MDI/MDI-X = 0 (default) 542 * 0 - Auto for all speeds 543 * 1 - MDI mode 544 * 2 - MDI-X mode 545 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) 546 */ 547 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; 548 549 switch (phy->mdix) { 550 case 1: 551 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; 552 break; 553 case 2: 554 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; 555 break; 556 case 3: 557 phy_data |= M88E1000_PSCR_AUTO_X_1000T; 558 break; 559 case 0: 560 default: 561 phy_data |= M88E1000_PSCR_AUTO_X_MODE; 562 break; 563 } 564 565 /* Options: 566 * disable_polarity_correction = 0 (default) 567 * Automatic Correction for Reversed Cable Polarity 568 * 0 - Disabled 569 * 1 - Enabled 570 */ 571 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; 572 if (phy->disable_polarity_correction == 1) 573 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; 574 575 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 576 if (ret_val) 577 goto out; 578 579 if (phy->revision < E1000_REVISION_4) { 580 /* Force TX_CLK in the Extended PHY Specific Control Register 581 * to 25MHz clock. 582 */ 583 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, 584 &phy_data); 585 if (ret_val) 586 goto out; 587 588 phy_data |= M88E1000_EPSCR_TX_CLK_25; 589 590 if ((phy->revision == E1000_REVISION_2) && 591 (phy->id == M88E1111_I_PHY_ID)) { 592 /* 82573L PHY - set the downshift counter to 5x. */ 593 phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK; 594 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; 595 } else { 596 /* Configure Master and Slave downshift values */ 597 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | 598 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); 599 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | 600 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); 601 } 602 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, 603 phy_data); 604 if (ret_val) 605 goto out; 606 } 607 608 /* Commit the changes. */ 609 ret_val = igb_phy_sw_reset(hw); 610 if (ret_val) { 611 hw_dbg("Error committing the PHY changes\n"); 612 goto out; 613 } 614 615 out: 616 return ret_val; 617 } 618 619 /** 620 * igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link 621 * @hw: pointer to the HW structure 622 * 623 * Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's. 624 * Also enables and sets the downshift parameters. 625 **/ 626 s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw) 627 { 628 struct e1000_phy_info *phy = &hw->phy; 629 s32 ret_val; 630 u16 phy_data; 631 632 if (phy->reset_disable) 633 return 0; 634 635 /* Enable CRS on Tx. This must be set for half-duplex operation. */ 636 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 637 if (ret_val) 638 return ret_val; 639 640 /* Options: 641 * MDI/MDI-X = 0 (default) 642 * 0 - Auto for all speeds 643 * 1 - MDI mode 644 * 2 - MDI-X mode 645 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) 646 */ 647 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; 648 649 switch (phy->mdix) { 650 case 1: 651 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; 652 break; 653 case 2: 654 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; 655 break; 656 case 3: 657 /* M88E1112 does not support this mode) */ 658 if (phy->id != M88E1112_E_PHY_ID) { 659 phy_data |= M88E1000_PSCR_AUTO_X_1000T; 660 break; 661 } 662 fallthrough; 663 case 0: 664 default: 665 phy_data |= M88E1000_PSCR_AUTO_X_MODE; 666 break; 667 } 668 669 /* Options: 670 * disable_polarity_correction = 0 (default) 671 * Automatic Correction for Reversed Cable Polarity 672 * 0 - Disabled 673 * 1 - Enabled 674 */ 675 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; 676 if (phy->disable_polarity_correction == 1) 677 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; 678 679 /* Enable downshift and setting it to X6 */ 680 if (phy->id == M88E1543_E_PHY_ID) { 681 phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE; 682 ret_val = 683 phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 684 if (ret_val) 685 return ret_val; 686 687 ret_val = igb_phy_sw_reset(hw); 688 if (ret_val) { 689 hw_dbg("Error committing the PHY changes\n"); 690 return ret_val; 691 } 692 } 693 694 phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK; 695 phy_data |= I347AT4_PSCR_DOWNSHIFT_6X; 696 phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE; 697 698 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 699 if (ret_val) 700 return ret_val; 701 702 /* Commit the changes. */ 703 ret_val = igb_phy_sw_reset(hw); 704 if (ret_val) { 705 hw_dbg("Error committing the PHY changes\n"); 706 return ret_val; 707 } 708 ret_val = igb_set_master_slave_mode(hw); 709 if (ret_val) 710 return ret_val; 711 712 return 0; 713 } 714 715 /** 716 * igb_copper_link_setup_igp - Setup igp PHY's for copper link 717 * @hw: pointer to the HW structure 718 * 719 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for 720 * igp PHY's. 721 **/ 722 s32 igb_copper_link_setup_igp(struct e1000_hw *hw) 723 { 724 struct e1000_phy_info *phy = &hw->phy; 725 s32 ret_val; 726 u16 data; 727 728 if (phy->reset_disable) { 729 ret_val = 0; 730 goto out; 731 } 732 733 ret_val = phy->ops.reset(hw); 734 if (ret_val) { 735 hw_dbg("Error resetting the PHY.\n"); 736 goto out; 737 } 738 739 /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid 740 * timeout issues when LFS is enabled. 741 */ 742 msleep(100); 743 744 /* The NVM settings will configure LPLU in D3 for 745 * non-IGP1 PHYs. 746 */ 747 if (phy->type == e1000_phy_igp) { 748 /* disable lplu d3 during driver init */ 749 if (phy->ops.set_d3_lplu_state) 750 ret_val = phy->ops.set_d3_lplu_state(hw, false); 751 if (ret_val) { 752 hw_dbg("Error Disabling LPLU D3\n"); 753 goto out; 754 } 755 } 756 757 /* disable lplu d0 during driver init */ 758 ret_val = phy->ops.set_d0_lplu_state(hw, false); 759 if (ret_val) { 760 hw_dbg("Error Disabling LPLU D0\n"); 761 goto out; 762 } 763 /* Configure mdi-mdix settings */ 764 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data); 765 if (ret_val) 766 goto out; 767 768 data &= ~IGP01E1000_PSCR_AUTO_MDIX; 769 770 switch (phy->mdix) { 771 case 1: 772 data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; 773 break; 774 case 2: 775 data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; 776 break; 777 case 0: 778 default: 779 data |= IGP01E1000_PSCR_AUTO_MDIX; 780 break; 781 } 782 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data); 783 if (ret_val) 784 goto out; 785 786 /* set auto-master slave resolution settings */ 787 if (hw->mac.autoneg) { 788 /* when autonegotiation advertisement is only 1000Mbps then we 789 * should disable SmartSpeed and enable Auto MasterSlave 790 * resolution as hardware default. 791 */ 792 if (phy->autoneg_advertised == ADVERTISE_1000_FULL) { 793 /* Disable SmartSpeed */ 794 ret_val = phy->ops.read_reg(hw, 795 IGP01E1000_PHY_PORT_CONFIG, 796 &data); 797 if (ret_val) 798 goto out; 799 800 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 801 ret_val = phy->ops.write_reg(hw, 802 IGP01E1000_PHY_PORT_CONFIG, 803 data); 804 if (ret_val) 805 goto out; 806 807 /* Set auto Master/Slave resolution process */ 808 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data); 809 if (ret_val) 810 goto out; 811 812 data &= ~CR_1000T_MS_ENABLE; 813 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data); 814 if (ret_val) 815 goto out; 816 } 817 818 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data); 819 if (ret_val) 820 goto out; 821 822 /* load defaults for future use */ 823 phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ? 824 ((data & CR_1000T_MS_VALUE) ? 825 e1000_ms_force_master : 826 e1000_ms_force_slave) : 827 e1000_ms_auto; 828 829 switch (phy->ms_type) { 830 case e1000_ms_force_master: 831 data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); 832 break; 833 case e1000_ms_force_slave: 834 data |= CR_1000T_MS_ENABLE; 835 data &= ~(CR_1000T_MS_VALUE); 836 break; 837 case e1000_ms_auto: 838 data &= ~CR_1000T_MS_ENABLE; 839 default: 840 break; 841 } 842 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data); 843 if (ret_val) 844 goto out; 845 } 846 847 out: 848 return ret_val; 849 } 850 851 /** 852 * igb_copper_link_autoneg - Setup/Enable autoneg for copper link 853 * @hw: pointer to the HW structure 854 * 855 * Performs initial bounds checking on autoneg advertisement parameter, then 856 * configure to advertise the full capability. Setup the PHY to autoneg 857 * and restart the negotiation process between the link partner. If 858 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting. 859 **/ 860 static s32 igb_copper_link_autoneg(struct e1000_hw *hw) 861 { 862 struct e1000_phy_info *phy = &hw->phy; 863 s32 ret_val; 864 u16 phy_ctrl; 865 866 /* Perform some bounds checking on the autoneg advertisement 867 * parameter. 868 */ 869 phy->autoneg_advertised &= phy->autoneg_mask; 870 871 /* If autoneg_advertised is zero, we assume it was not defaulted 872 * by the calling code so we set to advertise full capability. 873 */ 874 if (phy->autoneg_advertised == 0) 875 phy->autoneg_advertised = phy->autoneg_mask; 876 877 hw_dbg("Reconfiguring auto-neg advertisement params\n"); 878 ret_val = igb_phy_setup_autoneg(hw); 879 if (ret_val) { 880 hw_dbg("Error Setting up Auto-Negotiation\n"); 881 goto out; 882 } 883 hw_dbg("Restarting Auto-Neg\n"); 884 885 /* Restart auto-negotiation by setting the Auto Neg Enable bit and 886 * the Auto Neg Restart bit in the PHY control register. 887 */ 888 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); 889 if (ret_val) 890 goto out; 891 892 phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); 893 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl); 894 if (ret_val) 895 goto out; 896 897 /* Does the user want to wait for Auto-Neg to complete here, or 898 * check at a later time (for example, callback routine). 899 */ 900 if (phy->autoneg_wait_to_complete) { 901 ret_val = igb_wait_autoneg(hw); 902 if (ret_val) { 903 hw_dbg("Error while waiting for autoneg to complete\n"); 904 goto out; 905 } 906 } 907 908 hw->mac.get_link_status = true; 909 910 out: 911 return ret_val; 912 } 913 914 /** 915 * igb_phy_setup_autoneg - Configure PHY for auto-negotiation 916 * @hw: pointer to the HW structure 917 * 918 * Reads the MII auto-neg advertisement register and/or the 1000T control 919 * register and if the PHY is already setup for auto-negotiation, then 920 * return successful. Otherwise, setup advertisement and flow control to 921 * the appropriate values for the wanted auto-negotiation. 922 **/ 923 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw) 924 { 925 struct e1000_phy_info *phy = &hw->phy; 926 s32 ret_val; 927 u16 mii_autoneg_adv_reg; 928 u16 mii_1000t_ctrl_reg = 0; 929 930 phy->autoneg_advertised &= phy->autoneg_mask; 931 932 /* Read the MII Auto-Neg Advertisement Register (Address 4). */ 933 ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); 934 if (ret_val) 935 goto out; 936 937 if (phy->autoneg_mask & ADVERTISE_1000_FULL) { 938 /* Read the MII 1000Base-T Control Register (Address 9). */ 939 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, 940 &mii_1000t_ctrl_reg); 941 if (ret_val) 942 goto out; 943 } 944 945 /* Need to parse both autoneg_advertised and fc and set up 946 * the appropriate PHY registers. First we will parse for 947 * autoneg_advertised software override. Since we can advertise 948 * a plethora of combinations, we need to check each bit 949 * individually. 950 */ 951 952 /* First we clear all the 10/100 mb speed bits in the Auto-Neg 953 * Advertisement Register (Address 4) and the 1000 mb speed bits in 954 * the 1000Base-T Control Register (Address 9). 955 */ 956 mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS | 957 NWAY_AR_100TX_HD_CAPS | 958 NWAY_AR_10T_FD_CAPS | 959 NWAY_AR_10T_HD_CAPS); 960 mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS); 961 962 hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised); 963 964 /* Do we want to advertise 10 Mb Half Duplex? */ 965 if (phy->autoneg_advertised & ADVERTISE_10_HALF) { 966 hw_dbg("Advertise 10mb Half duplex\n"); 967 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; 968 } 969 970 /* Do we want to advertise 10 Mb Full Duplex? */ 971 if (phy->autoneg_advertised & ADVERTISE_10_FULL) { 972 hw_dbg("Advertise 10mb Full duplex\n"); 973 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; 974 } 975 976 /* Do we want to advertise 100 Mb Half Duplex? */ 977 if (phy->autoneg_advertised & ADVERTISE_100_HALF) { 978 hw_dbg("Advertise 100mb Half duplex\n"); 979 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; 980 } 981 982 /* Do we want to advertise 100 Mb Full Duplex? */ 983 if (phy->autoneg_advertised & ADVERTISE_100_FULL) { 984 hw_dbg("Advertise 100mb Full duplex\n"); 985 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; 986 } 987 988 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ 989 if (phy->autoneg_advertised & ADVERTISE_1000_HALF) 990 hw_dbg("Advertise 1000mb Half duplex request denied!\n"); 991 992 /* Do we want to advertise 1000 Mb Full Duplex? */ 993 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) { 994 hw_dbg("Advertise 1000mb Full duplex\n"); 995 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; 996 } 997 998 /* Check for a software override of the flow control settings, and 999 * setup the PHY advertisement registers accordingly. If 1000 * auto-negotiation is enabled, then software will have to set the 1001 * "PAUSE" bits to the correct value in the Auto-Negotiation 1002 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto- 1003 * negotiation. 1004 * 1005 * The possible values of the "fc" parameter are: 1006 * 0: Flow control is completely disabled 1007 * 1: Rx flow control is enabled (we can receive pause frames 1008 * but not send pause frames). 1009 * 2: Tx flow control is enabled (we can send pause frames 1010 * but we do not support receiving pause frames). 1011 * 3: Both Rx and TX flow control (symmetric) are enabled. 1012 * other: No software override. The flow control configuration 1013 * in the EEPROM is used. 1014 */ 1015 switch (hw->fc.current_mode) { 1016 case e1000_fc_none: 1017 /* Flow control (RX & TX) is completely disabled by a 1018 * software over-ride. 1019 */ 1020 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); 1021 break; 1022 case e1000_fc_rx_pause: 1023 /* RX Flow control is enabled, and TX Flow control is 1024 * disabled, by a software over-ride. 1025 * 1026 * Since there really isn't a way to advertise that we are 1027 * capable of RX Pause ONLY, we will advertise that we 1028 * support both symmetric and asymmetric RX PAUSE. Later 1029 * (in e1000_config_fc_after_link_up) we will disable the 1030 * hw's ability to send PAUSE frames. 1031 */ 1032 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); 1033 break; 1034 case e1000_fc_tx_pause: 1035 /* TX Flow control is enabled, and RX Flow control is 1036 * disabled, by a software over-ride. 1037 */ 1038 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; 1039 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; 1040 break; 1041 case e1000_fc_full: 1042 /* Flow control (both RX and TX) is enabled by a software 1043 * over-ride. 1044 */ 1045 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); 1046 break; 1047 default: 1048 hw_dbg("Flow control param set incorrectly\n"); 1049 ret_val = -E1000_ERR_CONFIG; 1050 goto out; 1051 } 1052 1053 ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); 1054 if (ret_val) 1055 goto out; 1056 1057 hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); 1058 1059 if (phy->autoneg_mask & ADVERTISE_1000_FULL) { 1060 ret_val = phy->ops.write_reg(hw, 1061 PHY_1000T_CTRL, 1062 mii_1000t_ctrl_reg); 1063 if (ret_val) 1064 goto out; 1065 } 1066 1067 out: 1068 return ret_val; 1069 } 1070 1071 /** 1072 * igb_setup_copper_link - Configure copper link settings 1073 * @hw: pointer to the HW structure 1074 * 1075 * Calls the appropriate function to configure the link for auto-neg or forced 1076 * speed and duplex. Then we check for link, once link is established calls 1077 * to configure collision distance and flow control are called. If link is 1078 * not established, we return -E1000_ERR_PHY (-2). 1079 **/ 1080 s32 igb_setup_copper_link(struct e1000_hw *hw) 1081 { 1082 s32 ret_val; 1083 bool link; 1084 1085 if (hw->mac.autoneg) { 1086 /* Setup autoneg and flow control advertisement and perform 1087 * autonegotiation. 1088 */ 1089 ret_val = igb_copper_link_autoneg(hw); 1090 if (ret_val) 1091 goto out; 1092 } else { 1093 /* PHY will be set to 10H, 10F, 100H or 100F 1094 * depending on user settings. 1095 */ 1096 hw_dbg("Forcing Speed and Duplex\n"); 1097 ret_val = hw->phy.ops.force_speed_duplex(hw); 1098 if (ret_val) { 1099 hw_dbg("Error Forcing Speed and Duplex\n"); 1100 goto out; 1101 } 1102 } 1103 1104 /* Check link status. Wait up to 100 microseconds for link to become 1105 * valid. 1106 */ 1107 ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link); 1108 if (ret_val) 1109 goto out; 1110 1111 if (link) { 1112 hw_dbg("Valid link established!!!\n"); 1113 igb_config_collision_dist(hw); 1114 ret_val = igb_config_fc_after_link_up(hw); 1115 } else { 1116 hw_dbg("Unable to establish link!!!\n"); 1117 } 1118 1119 out: 1120 return ret_val; 1121 } 1122 1123 /** 1124 * igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY 1125 * @hw: pointer to the HW structure 1126 * 1127 * Calls the PHY setup function to force speed and duplex. Clears the 1128 * auto-crossover to force MDI manually. Waits for link and returns 1129 * successful if link up is successful, else -E1000_ERR_PHY (-2). 1130 **/ 1131 s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw) 1132 { 1133 struct e1000_phy_info *phy = &hw->phy; 1134 s32 ret_val; 1135 u16 phy_data; 1136 bool link; 1137 1138 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); 1139 if (ret_val) 1140 goto out; 1141 1142 igb_phy_force_speed_duplex_setup(hw, &phy_data); 1143 1144 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); 1145 if (ret_val) 1146 goto out; 1147 1148 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI 1149 * forced whenever speed and duplex are forced. 1150 */ 1151 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); 1152 if (ret_val) 1153 goto out; 1154 1155 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; 1156 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; 1157 1158 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); 1159 if (ret_val) 1160 goto out; 1161 1162 hw_dbg("IGP PSCR: %X\n", phy_data); 1163 1164 udelay(1); 1165 1166 if (phy->autoneg_wait_to_complete) { 1167 hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n"); 1168 1169 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link); 1170 if (ret_val) 1171 goto out; 1172 1173 if (!link) 1174 hw_dbg("Link taking longer than expected.\n"); 1175 1176 /* Try once more */ 1177 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link); 1178 if (ret_val) 1179 goto out; 1180 } 1181 1182 out: 1183 return ret_val; 1184 } 1185 1186 /** 1187 * igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY 1188 * @hw: pointer to the HW structure 1189 * 1190 * Calls the PHY setup function to force speed and duplex. Clears the 1191 * auto-crossover to force MDI manually. Resets the PHY to commit the 1192 * changes. If time expires while waiting for link up, we reset the DSP. 1193 * After reset, TX_CLK and CRS on TX must be set. Return successful upon 1194 * successful completion, else return corresponding error code. 1195 **/ 1196 s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw) 1197 { 1198 struct e1000_phy_info *phy = &hw->phy; 1199 s32 ret_val; 1200 u16 phy_data; 1201 bool link; 1202 1203 /* I210 and I211 devices support Auto-Crossover in forced operation. */ 1204 if (phy->type != e1000_phy_i210) { 1205 /* Clear Auto-Crossover to force MDI manually. M88E1000 1206 * requires MDI forced whenever speed and duplex are forced. 1207 */ 1208 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, 1209 &phy_data); 1210 if (ret_val) 1211 goto out; 1212 1213 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; 1214 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, 1215 phy_data); 1216 if (ret_val) 1217 goto out; 1218 1219 hw_dbg("M88E1000 PSCR: %X\n", phy_data); 1220 } 1221 1222 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); 1223 if (ret_val) 1224 goto out; 1225 1226 igb_phy_force_speed_duplex_setup(hw, &phy_data); 1227 1228 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); 1229 if (ret_val) 1230 goto out; 1231 1232 /* Reset the phy to commit changes. */ 1233 ret_val = igb_phy_sw_reset(hw); 1234 if (ret_val) 1235 goto out; 1236 1237 if (phy->autoneg_wait_to_complete) { 1238 hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n"); 1239 1240 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link); 1241 if (ret_val) 1242 goto out; 1243 1244 if (!link) { 1245 bool reset_dsp = true; 1246 1247 switch (hw->phy.id) { 1248 case I347AT4_E_PHY_ID: 1249 case M88E1112_E_PHY_ID: 1250 case M88E1543_E_PHY_ID: 1251 case M88E1512_E_PHY_ID: 1252 case I210_I_PHY_ID: 1253 reset_dsp = false; 1254 break; 1255 default: 1256 if (hw->phy.type != e1000_phy_m88) 1257 reset_dsp = false; 1258 break; 1259 } 1260 if (!reset_dsp) { 1261 hw_dbg("Link taking longer than expected.\n"); 1262 } else { 1263 /* We didn't get link. 1264 * Reset the DSP and cross our fingers. 1265 */ 1266 ret_val = phy->ops.write_reg(hw, 1267 M88E1000_PHY_PAGE_SELECT, 1268 0x001d); 1269 if (ret_val) 1270 goto out; 1271 ret_val = igb_phy_reset_dsp(hw); 1272 if (ret_val) 1273 goto out; 1274 } 1275 } 1276 1277 /* Try once more */ 1278 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 1279 100000, &link); 1280 if (ret_val) 1281 goto out; 1282 } 1283 1284 if (hw->phy.type != e1000_phy_m88 || 1285 hw->phy.id == I347AT4_E_PHY_ID || 1286 hw->phy.id == M88E1112_E_PHY_ID || 1287 hw->phy.id == M88E1543_E_PHY_ID || 1288 hw->phy.id == M88E1512_E_PHY_ID || 1289 hw->phy.id == I210_I_PHY_ID) 1290 goto out; 1291 1292 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); 1293 if (ret_val) 1294 goto out; 1295 1296 /* Resetting the phy means we need to re-force TX_CLK in the 1297 * Extended PHY Specific Control Register to 25MHz clock from 1298 * the reset value of 2.5MHz. 1299 */ 1300 phy_data |= M88E1000_EPSCR_TX_CLK_25; 1301 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); 1302 if (ret_val) 1303 goto out; 1304 1305 /* In addition, we must re-enable CRS on Tx for both half and full 1306 * duplex. 1307 */ 1308 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 1309 if (ret_val) 1310 goto out; 1311 1312 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; 1313 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 1314 1315 out: 1316 return ret_val; 1317 } 1318 1319 /** 1320 * igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex 1321 * @hw: pointer to the HW structure 1322 * @phy_ctrl: pointer to current value of PHY_CONTROL 1323 * 1324 * Forces speed and duplex on the PHY by doing the following: disable flow 1325 * control, force speed/duplex on the MAC, disable auto speed detection, 1326 * disable auto-negotiation, configure duplex, configure speed, configure 1327 * the collision distance, write configuration to CTRL register. The 1328 * caller must write to the PHY_CONTROL register for these settings to 1329 * take affect. 1330 **/ 1331 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw, 1332 u16 *phy_ctrl) 1333 { 1334 struct e1000_mac_info *mac = &hw->mac; 1335 u32 ctrl; 1336 1337 /* Turn off flow control when forcing speed/duplex */ 1338 hw->fc.current_mode = e1000_fc_none; 1339 1340 /* Force speed/duplex on the mac */ 1341 ctrl = rd32(E1000_CTRL); 1342 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 1343 ctrl &= ~E1000_CTRL_SPD_SEL; 1344 1345 /* Disable Auto Speed Detection */ 1346 ctrl &= ~E1000_CTRL_ASDE; 1347 1348 /* Disable autoneg on the phy */ 1349 *phy_ctrl &= ~MII_CR_AUTO_NEG_EN; 1350 1351 /* Forcing Full or Half Duplex? */ 1352 if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) { 1353 ctrl &= ~E1000_CTRL_FD; 1354 *phy_ctrl &= ~MII_CR_FULL_DUPLEX; 1355 hw_dbg("Half Duplex\n"); 1356 } else { 1357 ctrl |= E1000_CTRL_FD; 1358 *phy_ctrl |= MII_CR_FULL_DUPLEX; 1359 hw_dbg("Full Duplex\n"); 1360 } 1361 1362 /* Forcing 10mb or 100mb? */ 1363 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) { 1364 ctrl |= E1000_CTRL_SPD_100; 1365 *phy_ctrl |= MII_CR_SPEED_100; 1366 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); 1367 hw_dbg("Forcing 100mb\n"); 1368 } else { 1369 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 1370 *phy_ctrl |= MII_CR_SPEED_10; 1371 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); 1372 hw_dbg("Forcing 10mb\n"); 1373 } 1374 1375 igb_config_collision_dist(hw); 1376 1377 wr32(E1000_CTRL, ctrl); 1378 } 1379 1380 /** 1381 * igb_set_d3_lplu_state - Sets low power link up state for D3 1382 * @hw: pointer to the HW structure 1383 * @active: boolean used to enable/disable lplu 1384 * 1385 * Success returns 0, Failure returns 1 1386 * 1387 * The low power link up (lplu) state is set to the power management level D3 1388 * and SmartSpeed is disabled when active is true, else clear lplu for D3 1389 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1390 * is used during Dx states where the power conservation is most important. 1391 * During driver activity, SmartSpeed should be enabled so performance is 1392 * maintained. 1393 **/ 1394 s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active) 1395 { 1396 struct e1000_phy_info *phy = &hw->phy; 1397 s32 ret_val = 0; 1398 u16 data; 1399 1400 if (!(hw->phy.ops.read_reg)) 1401 goto out; 1402 1403 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); 1404 if (ret_val) 1405 goto out; 1406 1407 if (!active) { 1408 data &= ~IGP02E1000_PM_D3_LPLU; 1409 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, 1410 data); 1411 if (ret_val) 1412 goto out; 1413 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 1414 * during Dx states where the power conservation is most 1415 * important. During driver activity we should enable 1416 * SmartSpeed, so performance is maintained. 1417 */ 1418 if (phy->smart_speed == e1000_smart_speed_on) { 1419 ret_val = phy->ops.read_reg(hw, 1420 IGP01E1000_PHY_PORT_CONFIG, 1421 &data); 1422 if (ret_val) 1423 goto out; 1424 1425 data |= IGP01E1000_PSCFR_SMART_SPEED; 1426 ret_val = phy->ops.write_reg(hw, 1427 IGP01E1000_PHY_PORT_CONFIG, 1428 data); 1429 if (ret_val) 1430 goto out; 1431 } else if (phy->smart_speed == e1000_smart_speed_off) { 1432 ret_val = phy->ops.read_reg(hw, 1433 IGP01E1000_PHY_PORT_CONFIG, 1434 &data); 1435 if (ret_val) 1436 goto out; 1437 1438 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 1439 ret_val = phy->ops.write_reg(hw, 1440 IGP01E1000_PHY_PORT_CONFIG, 1441 data); 1442 if (ret_val) 1443 goto out; 1444 } 1445 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || 1446 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || 1447 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { 1448 data |= IGP02E1000_PM_D3_LPLU; 1449 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, 1450 data); 1451 if (ret_val) 1452 goto out; 1453 1454 /* When LPLU is enabled, we should disable SmartSpeed */ 1455 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, 1456 &data); 1457 if (ret_val) 1458 goto out; 1459 1460 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 1461 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, 1462 data); 1463 } 1464 1465 out: 1466 return ret_val; 1467 } 1468 1469 /** 1470 * igb_check_downshift - Checks whether a downshift in speed occurred 1471 * @hw: pointer to the HW structure 1472 * 1473 * Success returns 0, Failure returns 1 1474 * 1475 * A downshift is detected by querying the PHY link health. 1476 **/ 1477 s32 igb_check_downshift(struct e1000_hw *hw) 1478 { 1479 struct e1000_phy_info *phy = &hw->phy; 1480 s32 ret_val; 1481 u16 phy_data, offset, mask; 1482 1483 switch (phy->type) { 1484 case e1000_phy_i210: 1485 case e1000_phy_m88: 1486 case e1000_phy_gg82563: 1487 offset = M88E1000_PHY_SPEC_STATUS; 1488 mask = M88E1000_PSSR_DOWNSHIFT; 1489 break; 1490 case e1000_phy_igp_2: 1491 case e1000_phy_igp: 1492 case e1000_phy_igp_3: 1493 offset = IGP01E1000_PHY_LINK_HEALTH; 1494 mask = IGP01E1000_PLHR_SS_DOWNGRADE; 1495 break; 1496 default: 1497 /* speed downshift not supported */ 1498 phy->speed_downgraded = false; 1499 ret_val = 0; 1500 goto out; 1501 } 1502 1503 ret_val = phy->ops.read_reg(hw, offset, &phy_data); 1504 1505 if (!ret_val) 1506 phy->speed_downgraded = (phy_data & mask) ? true : false; 1507 1508 out: 1509 return ret_val; 1510 } 1511 1512 /** 1513 * igb_check_polarity_m88 - Checks the polarity. 1514 * @hw: pointer to the HW structure 1515 * 1516 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 1517 * 1518 * Polarity is determined based on the PHY specific status register. 1519 **/ 1520 s32 igb_check_polarity_m88(struct e1000_hw *hw) 1521 { 1522 struct e1000_phy_info *phy = &hw->phy; 1523 s32 ret_val; 1524 u16 data; 1525 1526 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data); 1527 1528 if (!ret_val) 1529 phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY) 1530 ? e1000_rev_polarity_reversed 1531 : e1000_rev_polarity_normal; 1532 1533 return ret_val; 1534 } 1535 1536 /** 1537 * igb_check_polarity_igp - Checks the polarity. 1538 * @hw: pointer to the HW structure 1539 * 1540 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 1541 * 1542 * Polarity is determined based on the PHY port status register, and the 1543 * current speed (since there is no polarity at 100Mbps). 1544 **/ 1545 static s32 igb_check_polarity_igp(struct e1000_hw *hw) 1546 { 1547 struct e1000_phy_info *phy = &hw->phy; 1548 s32 ret_val; 1549 u16 data, offset, mask; 1550 1551 /* Polarity is determined based on the speed of 1552 * our connection. 1553 */ 1554 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data); 1555 if (ret_val) 1556 goto out; 1557 1558 if ((data & IGP01E1000_PSSR_SPEED_MASK) == 1559 IGP01E1000_PSSR_SPEED_1000MBPS) { 1560 offset = IGP01E1000_PHY_PCS_INIT_REG; 1561 mask = IGP01E1000_PHY_POLARITY_MASK; 1562 } else { 1563 /* This really only applies to 10Mbps since 1564 * there is no polarity for 100Mbps (always 0). 1565 */ 1566 offset = IGP01E1000_PHY_PORT_STATUS; 1567 mask = IGP01E1000_PSSR_POLARITY_REVERSED; 1568 } 1569 1570 ret_val = phy->ops.read_reg(hw, offset, &data); 1571 1572 if (!ret_val) 1573 phy->cable_polarity = (data & mask) 1574 ? e1000_rev_polarity_reversed 1575 : e1000_rev_polarity_normal; 1576 1577 out: 1578 return ret_val; 1579 } 1580 1581 /** 1582 * igb_wait_autoneg - Wait for auto-neg completion 1583 * @hw: pointer to the HW structure 1584 * 1585 * Waits for auto-negotiation to complete or for the auto-negotiation time 1586 * limit to expire, which ever happens first. 1587 **/ 1588 static s32 igb_wait_autoneg(struct e1000_hw *hw) 1589 { 1590 s32 ret_val = 0; 1591 u16 i, phy_status; 1592 1593 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */ 1594 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) { 1595 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); 1596 if (ret_val) 1597 break; 1598 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); 1599 if (ret_val) 1600 break; 1601 if (phy_status & MII_SR_AUTONEG_COMPLETE) 1602 break; 1603 msleep(100); 1604 } 1605 1606 /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation 1607 * has completed. 1608 */ 1609 return ret_val; 1610 } 1611 1612 /** 1613 * igb_phy_has_link - Polls PHY for link 1614 * @hw: pointer to the HW structure 1615 * @iterations: number of times to poll for link 1616 * @usec_interval: delay between polling attempts 1617 * @success: pointer to whether polling was successful or not 1618 * 1619 * Polls the PHY status register for link, 'iterations' number of times. 1620 **/ 1621 s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations, 1622 u32 usec_interval, bool *success) 1623 { 1624 s32 ret_val = 0; 1625 u16 i, phy_status; 1626 1627 for (i = 0; i < iterations; i++) { 1628 /* Some PHYs require the PHY_STATUS register to be read 1629 * twice due to the link bit being sticky. No harm doing 1630 * it across the board. 1631 */ 1632 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); 1633 if (ret_val && usec_interval > 0) { 1634 /* If the first read fails, another entity may have 1635 * ownership of the resources, wait and try again to 1636 * see if they have relinquished the resources yet. 1637 */ 1638 if (usec_interval >= 1000) 1639 mdelay(usec_interval/1000); 1640 else 1641 udelay(usec_interval); 1642 } 1643 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); 1644 if (ret_val) 1645 break; 1646 if (phy_status & MII_SR_LINK_STATUS) 1647 break; 1648 if (usec_interval >= 1000) 1649 mdelay(usec_interval/1000); 1650 else 1651 udelay(usec_interval); 1652 } 1653 1654 *success = (i < iterations) ? true : false; 1655 1656 return ret_val; 1657 } 1658 1659 /** 1660 * igb_get_cable_length_m88 - Determine cable length for m88 PHY 1661 * @hw: pointer to the HW structure 1662 * 1663 * Reads the PHY specific status register to retrieve the cable length 1664 * information. The cable length is determined by averaging the minimum and 1665 * maximum values to get the "average" cable length. The m88 PHY has four 1666 * possible cable length values, which are: 1667 * Register Value Cable Length 1668 * 0 < 50 meters 1669 * 1 50 - 80 meters 1670 * 2 80 - 110 meters 1671 * 3 110 - 140 meters 1672 * 4 > 140 meters 1673 **/ 1674 s32 igb_get_cable_length_m88(struct e1000_hw *hw) 1675 { 1676 struct e1000_phy_info *phy = &hw->phy; 1677 s32 ret_val; 1678 u16 phy_data, index; 1679 1680 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 1681 if (ret_val) 1682 goto out; 1683 1684 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> 1685 M88E1000_PSSR_CABLE_LENGTH_SHIFT; 1686 if (index >= ARRAY_SIZE(e1000_m88_cable_length_table) - 1) { 1687 ret_val = -E1000_ERR_PHY; 1688 goto out; 1689 } 1690 1691 phy->min_cable_length = e1000_m88_cable_length_table[index]; 1692 phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; 1693 1694 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; 1695 1696 out: 1697 return ret_val; 1698 } 1699 1700 s32 igb_get_cable_length_m88_gen2(struct e1000_hw *hw) 1701 { 1702 struct e1000_phy_info *phy = &hw->phy; 1703 s32 ret_val; 1704 u16 phy_data, phy_data2, index, default_page, is_cm; 1705 int len_tot = 0; 1706 u16 len_min; 1707 u16 len_max; 1708 1709 switch (hw->phy.id) { 1710 case M88E1543_E_PHY_ID: 1711 case M88E1512_E_PHY_ID: 1712 case I347AT4_E_PHY_ID: 1713 case I210_I_PHY_ID: 1714 /* Remember the original page select and set it to 7 */ 1715 ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT, 1716 &default_page); 1717 if (ret_val) 1718 goto out; 1719 1720 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07); 1721 if (ret_val) 1722 goto out; 1723 1724 /* Check if the unit of cable length is meters or cm */ 1725 ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2); 1726 if (ret_val) 1727 goto out; 1728 1729 is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT); 1730 1731 /* Get cable length from Pair 0 length Regs */ 1732 ret_val = phy->ops.read_reg(hw, I347AT4_PCDL0, &phy_data); 1733 if (ret_val) 1734 goto out; 1735 1736 phy->pair_length[0] = phy_data / (is_cm ? 100 : 1); 1737 len_tot = phy->pair_length[0]; 1738 len_min = phy->pair_length[0]; 1739 len_max = phy->pair_length[0]; 1740 1741 /* Get cable length from Pair 1 length Regs */ 1742 ret_val = phy->ops.read_reg(hw, I347AT4_PCDL1, &phy_data); 1743 if (ret_val) 1744 goto out; 1745 1746 phy->pair_length[1] = phy_data / (is_cm ? 100 : 1); 1747 len_tot += phy->pair_length[1]; 1748 len_min = min(len_min, phy->pair_length[1]); 1749 len_max = max(len_max, phy->pair_length[1]); 1750 1751 /* Get cable length from Pair 2 length Regs */ 1752 ret_val = phy->ops.read_reg(hw, I347AT4_PCDL2, &phy_data); 1753 if (ret_val) 1754 goto out; 1755 1756 phy->pair_length[2] = phy_data / (is_cm ? 100 : 1); 1757 len_tot += phy->pair_length[2]; 1758 len_min = min(len_min, phy->pair_length[2]); 1759 len_max = max(len_max, phy->pair_length[2]); 1760 1761 /* Get cable length from Pair 3 length Regs */ 1762 ret_val = phy->ops.read_reg(hw, I347AT4_PCDL3, &phy_data); 1763 if (ret_val) 1764 goto out; 1765 1766 phy->pair_length[3] = phy_data / (is_cm ? 100 : 1); 1767 len_tot += phy->pair_length[3]; 1768 len_min = min(len_min, phy->pair_length[3]); 1769 len_max = max(len_max, phy->pair_length[3]); 1770 1771 /* Populate the phy structure with cable length in meters */ 1772 phy->min_cable_length = len_min; 1773 phy->max_cable_length = len_max; 1774 phy->cable_length = len_tot / 4; 1775 1776 /* Reset the page selec to its original value */ 1777 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 1778 default_page); 1779 if (ret_val) 1780 goto out; 1781 break; 1782 case M88E1112_E_PHY_ID: 1783 /* Remember the original page select and set it to 5 */ 1784 ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT, 1785 &default_page); 1786 if (ret_val) 1787 goto out; 1788 1789 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05); 1790 if (ret_val) 1791 goto out; 1792 1793 ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE, 1794 &phy_data); 1795 if (ret_val) 1796 goto out; 1797 1798 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> 1799 M88E1000_PSSR_CABLE_LENGTH_SHIFT; 1800 if (index >= ARRAY_SIZE(e1000_m88_cable_length_table) - 1) { 1801 ret_val = -E1000_ERR_PHY; 1802 goto out; 1803 } 1804 1805 phy->min_cable_length = e1000_m88_cable_length_table[index]; 1806 phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; 1807 1808 phy->cable_length = (phy->min_cable_length + 1809 phy->max_cable_length) / 2; 1810 1811 /* Reset the page select to its original value */ 1812 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 1813 default_page); 1814 if (ret_val) 1815 goto out; 1816 1817 break; 1818 default: 1819 ret_val = -E1000_ERR_PHY; 1820 goto out; 1821 } 1822 1823 out: 1824 return ret_val; 1825 } 1826 1827 /** 1828 * igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY 1829 * @hw: pointer to the HW structure 1830 * 1831 * The automatic gain control (agc) normalizes the amplitude of the 1832 * received signal, adjusting for the attenuation produced by the 1833 * cable. By reading the AGC registers, which represent the 1834 * combination of coarse and fine gain value, the value can be put 1835 * into a lookup table to obtain the approximate cable length 1836 * for each channel. 1837 **/ 1838 s32 igb_get_cable_length_igp_2(struct e1000_hw *hw) 1839 { 1840 struct e1000_phy_info *phy = &hw->phy; 1841 s32 ret_val = 0; 1842 u16 phy_data, i, agc_value = 0; 1843 u16 cur_agc_index, max_agc_index = 0; 1844 u16 min_agc_index = ARRAY_SIZE(e1000_igp_2_cable_length_table) - 1; 1845 static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = { 1846 IGP02E1000_PHY_AGC_A, 1847 IGP02E1000_PHY_AGC_B, 1848 IGP02E1000_PHY_AGC_C, 1849 IGP02E1000_PHY_AGC_D 1850 }; 1851 1852 /* Read the AGC registers for all channels */ 1853 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { 1854 ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data); 1855 if (ret_val) 1856 goto out; 1857 1858 /* Getting bits 15:9, which represent the combination of 1859 * coarse and fine gain values. The result is a number 1860 * that can be put into the lookup table to obtain the 1861 * approximate cable length. 1862 */ 1863 cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & 1864 IGP02E1000_AGC_LENGTH_MASK; 1865 1866 /* Array index bound check. */ 1867 if ((cur_agc_index >= ARRAY_SIZE(e1000_igp_2_cable_length_table)) || 1868 (cur_agc_index == 0)) { 1869 ret_val = -E1000_ERR_PHY; 1870 goto out; 1871 } 1872 1873 /* Remove min & max AGC values from calculation. */ 1874 if (e1000_igp_2_cable_length_table[min_agc_index] > 1875 e1000_igp_2_cable_length_table[cur_agc_index]) 1876 min_agc_index = cur_agc_index; 1877 if (e1000_igp_2_cable_length_table[max_agc_index] < 1878 e1000_igp_2_cable_length_table[cur_agc_index]) 1879 max_agc_index = cur_agc_index; 1880 1881 agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; 1882 } 1883 1884 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + 1885 e1000_igp_2_cable_length_table[max_agc_index]); 1886 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); 1887 1888 /* Calculate cable length with the error range of +/- 10 meters. */ 1889 phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ? 1890 (agc_value - IGP02E1000_AGC_RANGE) : 0; 1891 phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE; 1892 1893 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; 1894 1895 out: 1896 return ret_val; 1897 } 1898 1899 /** 1900 * igb_get_phy_info_m88 - Retrieve PHY information 1901 * @hw: pointer to the HW structure 1902 * 1903 * Valid for only copper links. Read the PHY status register (sticky read) 1904 * to verify that link is up. Read the PHY special control register to 1905 * determine the polarity and 10base-T extended distance. Read the PHY 1906 * special status register to determine MDI/MDIx and current speed. If 1907 * speed is 1000, then determine cable length, local and remote receiver. 1908 **/ 1909 s32 igb_get_phy_info_m88(struct e1000_hw *hw) 1910 { 1911 struct e1000_phy_info *phy = &hw->phy; 1912 s32 ret_val; 1913 u16 phy_data; 1914 bool link; 1915 1916 if (phy->media_type != e1000_media_type_copper) { 1917 hw_dbg("Phy info is only valid for copper media\n"); 1918 ret_val = -E1000_ERR_CONFIG; 1919 goto out; 1920 } 1921 1922 ret_val = igb_phy_has_link(hw, 1, 0, &link); 1923 if (ret_val) 1924 goto out; 1925 1926 if (!link) { 1927 hw_dbg("Phy info is only valid if link is up\n"); 1928 ret_val = -E1000_ERR_CONFIG; 1929 goto out; 1930 } 1931 1932 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 1933 if (ret_val) 1934 goto out; 1935 1936 phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL) 1937 ? true : false; 1938 1939 ret_val = igb_check_polarity_m88(hw); 1940 if (ret_val) 1941 goto out; 1942 1943 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 1944 if (ret_val) 1945 goto out; 1946 1947 phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false; 1948 1949 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { 1950 ret_val = phy->ops.get_cable_length(hw); 1951 if (ret_val) 1952 goto out; 1953 1954 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data); 1955 if (ret_val) 1956 goto out; 1957 1958 phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) 1959 ? e1000_1000t_rx_status_ok 1960 : e1000_1000t_rx_status_not_ok; 1961 1962 phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) 1963 ? e1000_1000t_rx_status_ok 1964 : e1000_1000t_rx_status_not_ok; 1965 } else { 1966 /* Set values to "undefined" */ 1967 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; 1968 phy->local_rx = e1000_1000t_rx_status_undefined; 1969 phy->remote_rx = e1000_1000t_rx_status_undefined; 1970 } 1971 1972 out: 1973 return ret_val; 1974 } 1975 1976 /** 1977 * igb_get_phy_info_igp - Retrieve igp PHY information 1978 * @hw: pointer to the HW structure 1979 * 1980 * Read PHY status to determine if link is up. If link is up, then 1981 * set/determine 10base-T extended distance and polarity correction. Read 1982 * PHY port status to determine MDI/MDIx and speed. Based on the speed, 1983 * determine on the cable length, local and remote receiver. 1984 **/ 1985 s32 igb_get_phy_info_igp(struct e1000_hw *hw) 1986 { 1987 struct e1000_phy_info *phy = &hw->phy; 1988 s32 ret_val; 1989 u16 data; 1990 bool link; 1991 1992 ret_val = igb_phy_has_link(hw, 1, 0, &link); 1993 if (ret_val) 1994 goto out; 1995 1996 if (!link) { 1997 hw_dbg("Phy info is only valid if link is up\n"); 1998 ret_val = -E1000_ERR_CONFIG; 1999 goto out; 2000 } 2001 2002 phy->polarity_correction = true; 2003 2004 ret_val = igb_check_polarity_igp(hw); 2005 if (ret_val) 2006 goto out; 2007 2008 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data); 2009 if (ret_val) 2010 goto out; 2011 2012 phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false; 2013 2014 if ((data & IGP01E1000_PSSR_SPEED_MASK) == 2015 IGP01E1000_PSSR_SPEED_1000MBPS) { 2016 ret_val = phy->ops.get_cable_length(hw); 2017 if (ret_val) 2018 goto out; 2019 2020 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data); 2021 if (ret_val) 2022 goto out; 2023 2024 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) 2025 ? e1000_1000t_rx_status_ok 2026 : e1000_1000t_rx_status_not_ok; 2027 2028 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) 2029 ? e1000_1000t_rx_status_ok 2030 : e1000_1000t_rx_status_not_ok; 2031 } else { 2032 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; 2033 phy->local_rx = e1000_1000t_rx_status_undefined; 2034 phy->remote_rx = e1000_1000t_rx_status_undefined; 2035 } 2036 2037 out: 2038 return ret_val; 2039 } 2040 2041 /** 2042 * igb_phy_sw_reset - PHY software reset 2043 * @hw: pointer to the HW structure 2044 * 2045 * Does a software reset of the PHY by reading the PHY control register and 2046 * setting/write the control register reset bit to the PHY. 2047 **/ 2048 s32 igb_phy_sw_reset(struct e1000_hw *hw) 2049 { 2050 s32 ret_val = 0; 2051 u16 phy_ctrl; 2052 2053 if (!(hw->phy.ops.read_reg)) 2054 goto out; 2055 2056 ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); 2057 if (ret_val) 2058 goto out; 2059 2060 phy_ctrl |= MII_CR_RESET; 2061 ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl); 2062 if (ret_val) 2063 goto out; 2064 2065 udelay(1); 2066 2067 out: 2068 return ret_val; 2069 } 2070 2071 /** 2072 * igb_phy_hw_reset - PHY hardware reset 2073 * @hw: pointer to the HW structure 2074 * 2075 * Verify the reset block is not blocking us from resetting. Acquire 2076 * semaphore (if necessary) and read/set/write the device control reset 2077 * bit in the PHY. Wait the appropriate delay time for the device to 2078 * reset and release the semaphore (if necessary). 2079 **/ 2080 s32 igb_phy_hw_reset(struct e1000_hw *hw) 2081 { 2082 struct e1000_phy_info *phy = &hw->phy; 2083 s32 ret_val; 2084 u32 ctrl; 2085 2086 ret_val = igb_check_reset_block(hw); 2087 if (ret_val) { 2088 ret_val = 0; 2089 goto out; 2090 } 2091 2092 ret_val = phy->ops.acquire(hw); 2093 if (ret_val) 2094 goto out; 2095 2096 ctrl = rd32(E1000_CTRL); 2097 wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST); 2098 wrfl(); 2099 2100 udelay(phy->reset_delay_us); 2101 2102 wr32(E1000_CTRL, ctrl); 2103 wrfl(); 2104 2105 udelay(150); 2106 2107 phy->ops.release(hw); 2108 2109 ret_val = phy->ops.get_cfg_done(hw); 2110 2111 out: 2112 return ret_val; 2113 } 2114 2115 /** 2116 * igb_phy_init_script_igp3 - Inits the IGP3 PHY 2117 * @hw: pointer to the HW structure 2118 * 2119 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present. 2120 **/ 2121 s32 igb_phy_init_script_igp3(struct e1000_hw *hw) 2122 { 2123 hw_dbg("Running IGP 3 PHY init script\n"); 2124 2125 /* PHY init IGP 3 */ 2126 /* Enable rise/fall, 10-mode work in class-A */ 2127 hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018); 2128 /* Remove all caps from Replica path filter */ 2129 hw->phy.ops.write_reg(hw, 0x2F52, 0x0000); 2130 /* Bias trimming for ADC, AFE and Driver (Default) */ 2131 hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24); 2132 /* Increase Hybrid poly bias */ 2133 hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0); 2134 /* Add 4% to TX amplitude in Giga mode */ 2135 hw->phy.ops.write_reg(hw, 0x2010, 0x10B0); 2136 /* Disable trimming (TTT) */ 2137 hw->phy.ops.write_reg(hw, 0x2011, 0x0000); 2138 /* Poly DC correction to 94.6% + 2% for all channels */ 2139 hw->phy.ops.write_reg(hw, 0x20DD, 0x249A); 2140 /* ABS DC correction to 95.9% */ 2141 hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3); 2142 /* BG temp curve trim */ 2143 hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE); 2144 /* Increasing ADC OPAMP stage 1 currents to max */ 2145 hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4); 2146 /* Force 1000 ( required for enabling PHY regs configuration) */ 2147 hw->phy.ops.write_reg(hw, 0x0000, 0x0140); 2148 /* Set upd_freq to 6 */ 2149 hw->phy.ops.write_reg(hw, 0x1F30, 0x1606); 2150 /* Disable NPDFE */ 2151 hw->phy.ops.write_reg(hw, 0x1F31, 0xB814); 2152 /* Disable adaptive fixed FFE (Default) */ 2153 hw->phy.ops.write_reg(hw, 0x1F35, 0x002A); 2154 /* Enable FFE hysteresis */ 2155 hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067); 2156 /* Fixed FFE for short cable lengths */ 2157 hw->phy.ops.write_reg(hw, 0x1F54, 0x0065); 2158 /* Fixed FFE for medium cable lengths */ 2159 hw->phy.ops.write_reg(hw, 0x1F55, 0x002A); 2160 /* Fixed FFE for long cable lengths */ 2161 hw->phy.ops.write_reg(hw, 0x1F56, 0x002A); 2162 /* Enable Adaptive Clip Threshold */ 2163 hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0); 2164 /* AHT reset limit to 1 */ 2165 hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF); 2166 /* Set AHT master delay to 127 msec */ 2167 hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC); 2168 /* Set scan bits for AHT */ 2169 hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF); 2170 /* Set AHT Preset bits */ 2171 hw->phy.ops.write_reg(hw, 0x1F79, 0x0210); 2172 /* Change integ_factor of channel A to 3 */ 2173 hw->phy.ops.write_reg(hw, 0x1895, 0x0003); 2174 /* Change prop_factor of channels BCD to 8 */ 2175 hw->phy.ops.write_reg(hw, 0x1796, 0x0008); 2176 /* Change cg_icount + enable integbp for channels BCD */ 2177 hw->phy.ops.write_reg(hw, 0x1798, 0xD008); 2178 /* Change cg_icount + enable integbp + change prop_factor_master 2179 * to 8 for channel A 2180 */ 2181 hw->phy.ops.write_reg(hw, 0x1898, 0xD918); 2182 /* Disable AHT in Slave mode on channel A */ 2183 hw->phy.ops.write_reg(hw, 0x187A, 0x0800); 2184 /* Enable LPLU and disable AN to 1000 in non-D0a states, 2185 * Enable SPD+B2B 2186 */ 2187 hw->phy.ops.write_reg(hw, 0x0019, 0x008D); 2188 /* Enable restart AN on an1000_dis change */ 2189 hw->phy.ops.write_reg(hw, 0x001B, 0x2080); 2190 /* Enable wh_fifo read clock in 10/100 modes */ 2191 hw->phy.ops.write_reg(hw, 0x0014, 0x0045); 2192 /* Restart AN, Speed selection is 1000 */ 2193 hw->phy.ops.write_reg(hw, 0x0000, 0x1340); 2194 2195 return 0; 2196 } 2197 2198 /** 2199 * igb_initialize_M88E1512_phy - Initialize M88E1512 PHY 2200 * @hw: pointer to the HW structure 2201 * 2202 * Initialize Marvel 1512 to work correctly with Avoton. 2203 **/ 2204 s32 igb_initialize_M88E1512_phy(struct e1000_hw *hw) 2205 { 2206 struct e1000_phy_info *phy = &hw->phy; 2207 s32 ret_val = 0; 2208 2209 /* Switch to PHY page 0xFF. */ 2210 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF); 2211 if (ret_val) 2212 goto out; 2213 2214 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B); 2215 if (ret_val) 2216 goto out; 2217 2218 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144); 2219 if (ret_val) 2220 goto out; 2221 2222 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28); 2223 if (ret_val) 2224 goto out; 2225 2226 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146); 2227 if (ret_val) 2228 goto out; 2229 2230 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233); 2231 if (ret_val) 2232 goto out; 2233 2234 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D); 2235 if (ret_val) 2236 goto out; 2237 2238 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xCC0C); 2239 if (ret_val) 2240 goto out; 2241 2242 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159); 2243 if (ret_val) 2244 goto out; 2245 2246 /* Switch to PHY page 0xFB. */ 2247 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB); 2248 if (ret_val) 2249 goto out; 2250 2251 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x000D); 2252 if (ret_val) 2253 goto out; 2254 2255 /* Switch to PHY page 0x12. */ 2256 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12); 2257 if (ret_val) 2258 goto out; 2259 2260 /* Change mode to SGMII-to-Copper */ 2261 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001); 2262 if (ret_val) 2263 goto out; 2264 2265 /* Return the PHY to page 0. */ 2266 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0); 2267 if (ret_val) 2268 goto out; 2269 2270 ret_val = igb_phy_sw_reset(hw); 2271 if (ret_val) { 2272 hw_dbg("Error committing the PHY changes\n"); 2273 return ret_val; 2274 } 2275 2276 /* msec_delay(1000); */ 2277 usleep_range(1000, 2000); 2278 out: 2279 return ret_val; 2280 } 2281 2282 /** 2283 * igb_initialize_M88E1543_phy - Initialize M88E1512 PHY 2284 * @hw: pointer to the HW structure 2285 * 2286 * Initialize Marvell 1543 to work correctly with Avoton. 2287 **/ 2288 s32 igb_initialize_M88E1543_phy(struct e1000_hw *hw) 2289 { 2290 struct e1000_phy_info *phy = &hw->phy; 2291 s32 ret_val = 0; 2292 2293 /* Switch to PHY page 0xFF. */ 2294 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF); 2295 if (ret_val) 2296 goto out; 2297 2298 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B); 2299 if (ret_val) 2300 goto out; 2301 2302 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144); 2303 if (ret_val) 2304 goto out; 2305 2306 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28); 2307 if (ret_val) 2308 goto out; 2309 2310 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146); 2311 if (ret_val) 2312 goto out; 2313 2314 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233); 2315 if (ret_val) 2316 goto out; 2317 2318 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D); 2319 if (ret_val) 2320 goto out; 2321 2322 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xDC0C); 2323 if (ret_val) 2324 goto out; 2325 2326 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159); 2327 if (ret_val) 2328 goto out; 2329 2330 /* Switch to PHY page 0xFB. */ 2331 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB); 2332 if (ret_val) 2333 goto out; 2334 2335 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x0C0D); 2336 if (ret_val) 2337 goto out; 2338 2339 /* Switch to PHY page 0x12. */ 2340 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12); 2341 if (ret_val) 2342 goto out; 2343 2344 /* Change mode to SGMII-to-Copper */ 2345 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001); 2346 if (ret_val) 2347 goto out; 2348 2349 /* Switch to PHY page 1. */ 2350 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x1); 2351 if (ret_val) 2352 goto out; 2353 2354 /* Change mode to 1000BASE-X/SGMII and autoneg enable */ 2355 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_FIBER_CTRL, 0x9140); 2356 if (ret_val) 2357 goto out; 2358 2359 /* Return the PHY to page 0. */ 2360 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0); 2361 if (ret_val) 2362 goto out; 2363 2364 ret_val = igb_phy_sw_reset(hw); 2365 if (ret_val) { 2366 hw_dbg("Error committing the PHY changes\n"); 2367 return ret_val; 2368 } 2369 2370 /* msec_delay(1000); */ 2371 usleep_range(1000, 2000); 2372 out: 2373 return ret_val; 2374 } 2375 2376 /** 2377 * igb_power_up_phy_copper - Restore copper link in case of PHY power down 2378 * @hw: pointer to the HW structure 2379 * 2380 * In the case of a PHY power down to save power, or to turn off link during a 2381 * driver unload, restore the link to previous settings. 2382 **/ 2383 void igb_power_up_phy_copper(struct e1000_hw *hw) 2384 { 2385 u16 mii_reg = 0; 2386 2387 /* The PHY will retain its settings across a power down/up cycle */ 2388 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); 2389 mii_reg &= ~MII_CR_POWER_DOWN; 2390 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); 2391 } 2392 2393 /** 2394 * igb_power_down_phy_copper - Power down copper PHY 2395 * @hw: pointer to the HW structure 2396 * 2397 * Power down PHY to save power when interface is down and wake on lan 2398 * is not enabled. 2399 **/ 2400 void igb_power_down_phy_copper(struct e1000_hw *hw) 2401 { 2402 u16 mii_reg = 0; 2403 2404 /* The PHY will retain its settings across a power down/up cycle */ 2405 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); 2406 mii_reg |= MII_CR_POWER_DOWN; 2407 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); 2408 usleep_range(1000, 2000); 2409 } 2410 2411 /** 2412 * igb_check_polarity_82580 - Checks the polarity. 2413 * @hw: pointer to the HW structure 2414 * 2415 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 2416 * 2417 * Polarity is determined based on the PHY specific status register. 2418 **/ 2419 static s32 igb_check_polarity_82580(struct e1000_hw *hw) 2420 { 2421 struct e1000_phy_info *phy = &hw->phy; 2422 s32 ret_val; 2423 u16 data; 2424 2425 2426 ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data); 2427 2428 if (!ret_val) 2429 phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY) 2430 ? e1000_rev_polarity_reversed 2431 : e1000_rev_polarity_normal; 2432 2433 return ret_val; 2434 } 2435 2436 /** 2437 * igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY 2438 * @hw: pointer to the HW structure 2439 * 2440 * Calls the PHY setup function to force speed and duplex. Clears the 2441 * auto-crossover to force MDI manually. Waits for link and returns 2442 * successful if link up is successful, else -E1000_ERR_PHY (-2). 2443 **/ 2444 s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw) 2445 { 2446 struct e1000_phy_info *phy = &hw->phy; 2447 s32 ret_val; 2448 u16 phy_data; 2449 bool link; 2450 2451 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); 2452 if (ret_val) 2453 goto out; 2454 2455 igb_phy_force_speed_duplex_setup(hw, &phy_data); 2456 2457 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); 2458 if (ret_val) 2459 goto out; 2460 2461 /* Clear Auto-Crossover to force MDI manually. 82580 requires MDI 2462 * forced whenever speed and duplex are forced. 2463 */ 2464 ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data); 2465 if (ret_val) 2466 goto out; 2467 2468 phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK; 2469 2470 ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data); 2471 if (ret_val) 2472 goto out; 2473 2474 hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data); 2475 2476 udelay(1); 2477 2478 if (phy->autoneg_wait_to_complete) { 2479 hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n"); 2480 2481 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link); 2482 if (ret_val) 2483 goto out; 2484 2485 if (!link) 2486 hw_dbg("Link taking longer than expected.\n"); 2487 2488 /* Try once more */ 2489 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link); 2490 if (ret_val) 2491 goto out; 2492 } 2493 2494 out: 2495 return ret_val; 2496 } 2497 2498 /** 2499 * igb_get_phy_info_82580 - Retrieve I82580 PHY information 2500 * @hw: pointer to the HW structure 2501 * 2502 * Read PHY status to determine if link is up. If link is up, then 2503 * set/determine 10base-T extended distance and polarity correction. Read 2504 * PHY port status to determine MDI/MDIx and speed. Based on the speed, 2505 * determine on the cable length, local and remote receiver. 2506 **/ 2507 s32 igb_get_phy_info_82580(struct e1000_hw *hw) 2508 { 2509 struct e1000_phy_info *phy = &hw->phy; 2510 s32 ret_val; 2511 u16 data; 2512 bool link; 2513 2514 ret_val = igb_phy_has_link(hw, 1, 0, &link); 2515 if (ret_val) 2516 goto out; 2517 2518 if (!link) { 2519 hw_dbg("Phy info is only valid if link is up\n"); 2520 ret_val = -E1000_ERR_CONFIG; 2521 goto out; 2522 } 2523 2524 phy->polarity_correction = true; 2525 2526 ret_val = igb_check_polarity_82580(hw); 2527 if (ret_val) 2528 goto out; 2529 2530 ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data); 2531 if (ret_val) 2532 goto out; 2533 2534 phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false; 2535 2536 if ((data & I82580_PHY_STATUS2_SPEED_MASK) == 2537 I82580_PHY_STATUS2_SPEED_1000MBPS) { 2538 ret_val = hw->phy.ops.get_cable_length(hw); 2539 if (ret_val) 2540 goto out; 2541 2542 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data); 2543 if (ret_val) 2544 goto out; 2545 2546 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) 2547 ? e1000_1000t_rx_status_ok 2548 : e1000_1000t_rx_status_not_ok; 2549 2550 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) 2551 ? e1000_1000t_rx_status_ok 2552 : e1000_1000t_rx_status_not_ok; 2553 } else { 2554 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; 2555 phy->local_rx = e1000_1000t_rx_status_undefined; 2556 phy->remote_rx = e1000_1000t_rx_status_undefined; 2557 } 2558 2559 out: 2560 return ret_val; 2561 } 2562 2563 /** 2564 * igb_get_cable_length_82580 - Determine cable length for 82580 PHY 2565 * @hw: pointer to the HW structure 2566 * 2567 * Reads the diagnostic status register and verifies result is valid before 2568 * placing it in the phy_cable_length field. 2569 **/ 2570 s32 igb_get_cable_length_82580(struct e1000_hw *hw) 2571 { 2572 struct e1000_phy_info *phy = &hw->phy; 2573 s32 ret_val; 2574 u16 phy_data, length; 2575 2576 ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data); 2577 if (ret_val) 2578 goto out; 2579 2580 length = (phy_data & I82580_DSTATUS_CABLE_LENGTH) >> 2581 I82580_DSTATUS_CABLE_LENGTH_SHIFT; 2582 2583 if (length == E1000_CABLE_LENGTH_UNDEFINED) 2584 ret_val = -E1000_ERR_PHY; 2585 2586 phy->cable_length = length; 2587 2588 out: 2589 return ret_val; 2590 } 2591 2592 /** 2593 * igb_set_master_slave_mode - Setup PHY for Master/slave mode 2594 * @hw: pointer to the HW structure 2595 * 2596 * Sets up Master/slave mode 2597 **/ 2598 static s32 igb_set_master_slave_mode(struct e1000_hw *hw) 2599 { 2600 s32 ret_val; 2601 u16 phy_data; 2602 2603 /* Resolve Master/Slave mode */ 2604 ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data); 2605 if (ret_val) 2606 return ret_val; 2607 2608 /* load defaults for future use */ 2609 hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ? 2610 ((phy_data & CR_1000T_MS_VALUE) ? 2611 e1000_ms_force_master : 2612 e1000_ms_force_slave) : e1000_ms_auto; 2613 2614 switch (hw->phy.ms_type) { 2615 case e1000_ms_force_master: 2616 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); 2617 break; 2618 case e1000_ms_force_slave: 2619 phy_data |= CR_1000T_MS_ENABLE; 2620 phy_data &= ~(CR_1000T_MS_VALUE); 2621 break; 2622 case e1000_ms_auto: 2623 phy_data &= ~CR_1000T_MS_ENABLE; 2624 fallthrough; 2625 default: 2626 break; 2627 } 2628 2629 return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data); 2630 } 2631