1 /* Intel(R) Gigabit Ethernet Linux driver 2 * Copyright(c) 2007-2014 Intel Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, see <http://www.gnu.org/licenses/>. 15 * 16 * The full GNU General Public License is included in this distribution in 17 * the file called "COPYING". 18 * 19 * Contact Information: 20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 22 */ 23 24 #include <linux/if_ether.h> 25 #include <linux/delay.h> 26 27 #include "e1000_mac.h" 28 #include "e1000_phy.h" 29 30 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw); 31 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw, 32 u16 *phy_ctrl); 33 static s32 igb_wait_autoneg(struct e1000_hw *hw); 34 static s32 igb_set_master_slave_mode(struct e1000_hw *hw); 35 36 /* Cable length tables */ 37 static const u16 e1000_m88_cable_length_table[] = { 38 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED }; 39 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \ 40 (sizeof(e1000_m88_cable_length_table) / \ 41 sizeof(e1000_m88_cable_length_table[0])) 42 43 static const u16 e1000_igp_2_cable_length_table[] = { 44 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 45 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 46 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 47 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 48 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 49 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 50 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124, 51 104, 109, 114, 118, 121, 124}; 52 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \ 53 (sizeof(e1000_igp_2_cable_length_table) / \ 54 sizeof(e1000_igp_2_cable_length_table[0])) 55 56 /** 57 * igb_check_reset_block - Check if PHY reset is blocked 58 * @hw: pointer to the HW structure 59 * 60 * Read the PHY management control register and check whether a PHY reset 61 * is blocked. If a reset is not blocked return 0, otherwise 62 * return E1000_BLK_PHY_RESET (12). 63 **/ 64 s32 igb_check_reset_block(struct e1000_hw *hw) 65 { 66 u32 manc; 67 68 manc = rd32(E1000_MANC); 69 70 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0; 71 } 72 73 /** 74 * igb_get_phy_id - Retrieve the PHY ID and revision 75 * @hw: pointer to the HW structure 76 * 77 * Reads the PHY registers and stores the PHY ID and possibly the PHY 78 * revision in the hardware structure. 79 **/ 80 s32 igb_get_phy_id(struct e1000_hw *hw) 81 { 82 struct e1000_phy_info *phy = &hw->phy; 83 s32 ret_val = 0; 84 u16 phy_id; 85 86 ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id); 87 if (ret_val) 88 goto out; 89 90 phy->id = (u32)(phy_id << 16); 91 udelay(20); 92 ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id); 93 if (ret_val) 94 goto out; 95 96 phy->id |= (u32)(phy_id & PHY_REVISION_MASK); 97 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); 98 99 out: 100 return ret_val; 101 } 102 103 /** 104 * igb_phy_reset_dsp - Reset PHY DSP 105 * @hw: pointer to the HW structure 106 * 107 * Reset the digital signal processor. 108 **/ 109 static s32 igb_phy_reset_dsp(struct e1000_hw *hw) 110 { 111 s32 ret_val = 0; 112 113 if (!(hw->phy.ops.write_reg)) 114 goto out; 115 116 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1); 117 if (ret_val) 118 goto out; 119 120 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0); 121 122 out: 123 return ret_val; 124 } 125 126 /** 127 * igb_read_phy_reg_mdic - Read MDI control register 128 * @hw: pointer to the HW structure 129 * @offset: register offset to be read 130 * @data: pointer to the read data 131 * 132 * Reads the MDI control regsiter in the PHY at offset and stores the 133 * information read to data. 134 **/ 135 s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data) 136 { 137 struct e1000_phy_info *phy = &hw->phy; 138 u32 i, mdic = 0; 139 s32 ret_val = 0; 140 141 if (offset > MAX_PHY_REG_ADDRESS) { 142 hw_dbg("PHY Address %d is out of range\n", offset); 143 ret_val = -E1000_ERR_PARAM; 144 goto out; 145 } 146 147 /* Set up Op-code, Phy Address, and register offset in the MDI 148 * Control register. The MAC will take care of interfacing with the 149 * PHY to retrieve the desired data. 150 */ 151 mdic = ((offset << E1000_MDIC_REG_SHIFT) | 152 (phy->addr << E1000_MDIC_PHY_SHIFT) | 153 (E1000_MDIC_OP_READ)); 154 155 wr32(E1000_MDIC, mdic); 156 157 /* Poll the ready bit to see if the MDI read completed 158 * Increasing the time out as testing showed failures with 159 * the lower time out 160 */ 161 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { 162 udelay(50); 163 mdic = rd32(E1000_MDIC); 164 if (mdic & E1000_MDIC_READY) 165 break; 166 } 167 if (!(mdic & E1000_MDIC_READY)) { 168 hw_dbg("MDI Read did not complete\n"); 169 ret_val = -E1000_ERR_PHY; 170 goto out; 171 } 172 if (mdic & E1000_MDIC_ERROR) { 173 hw_dbg("MDI Error\n"); 174 ret_val = -E1000_ERR_PHY; 175 goto out; 176 } 177 *data = (u16) mdic; 178 179 out: 180 return ret_val; 181 } 182 183 /** 184 * igb_write_phy_reg_mdic - Write MDI control register 185 * @hw: pointer to the HW structure 186 * @offset: register offset to write to 187 * @data: data to write to register at offset 188 * 189 * Writes data to MDI control register in the PHY at offset. 190 **/ 191 s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data) 192 { 193 struct e1000_phy_info *phy = &hw->phy; 194 u32 i, mdic = 0; 195 s32 ret_val = 0; 196 197 if (offset > MAX_PHY_REG_ADDRESS) { 198 hw_dbg("PHY Address %d is out of range\n", offset); 199 ret_val = -E1000_ERR_PARAM; 200 goto out; 201 } 202 203 /* Set up Op-code, Phy Address, and register offset in the MDI 204 * Control register. The MAC will take care of interfacing with the 205 * PHY to retrieve the desired data. 206 */ 207 mdic = (((u32)data) | 208 (offset << E1000_MDIC_REG_SHIFT) | 209 (phy->addr << E1000_MDIC_PHY_SHIFT) | 210 (E1000_MDIC_OP_WRITE)); 211 212 wr32(E1000_MDIC, mdic); 213 214 /* Poll the ready bit to see if the MDI read completed 215 * Increasing the time out as testing showed failures with 216 * the lower time out 217 */ 218 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { 219 udelay(50); 220 mdic = rd32(E1000_MDIC); 221 if (mdic & E1000_MDIC_READY) 222 break; 223 } 224 if (!(mdic & E1000_MDIC_READY)) { 225 hw_dbg("MDI Write did not complete\n"); 226 ret_val = -E1000_ERR_PHY; 227 goto out; 228 } 229 if (mdic & E1000_MDIC_ERROR) { 230 hw_dbg("MDI Error\n"); 231 ret_val = -E1000_ERR_PHY; 232 goto out; 233 } 234 235 out: 236 return ret_val; 237 } 238 239 /** 240 * igb_read_phy_reg_i2c - Read PHY register using i2c 241 * @hw: pointer to the HW structure 242 * @offset: register offset to be read 243 * @data: pointer to the read data 244 * 245 * Reads the PHY register at offset using the i2c interface and stores the 246 * retrieved information in data. 247 **/ 248 s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data) 249 { 250 struct e1000_phy_info *phy = &hw->phy; 251 u32 i, i2ccmd = 0; 252 253 /* Set up Op-code, Phy Address, and register address in the I2CCMD 254 * register. The MAC will take care of interfacing with the 255 * PHY to retrieve the desired data. 256 */ 257 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | 258 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | 259 (E1000_I2CCMD_OPCODE_READ)); 260 261 wr32(E1000_I2CCMD, i2ccmd); 262 263 /* Poll the ready bit to see if the I2C read completed */ 264 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { 265 udelay(50); 266 i2ccmd = rd32(E1000_I2CCMD); 267 if (i2ccmd & E1000_I2CCMD_READY) 268 break; 269 } 270 if (!(i2ccmd & E1000_I2CCMD_READY)) { 271 hw_dbg("I2CCMD Read did not complete\n"); 272 return -E1000_ERR_PHY; 273 } 274 if (i2ccmd & E1000_I2CCMD_ERROR) { 275 hw_dbg("I2CCMD Error bit set\n"); 276 return -E1000_ERR_PHY; 277 } 278 279 /* Need to byte-swap the 16-bit value. */ 280 *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00); 281 282 return 0; 283 } 284 285 /** 286 * igb_write_phy_reg_i2c - Write PHY register using i2c 287 * @hw: pointer to the HW structure 288 * @offset: register offset to write to 289 * @data: data to write at register offset 290 * 291 * Writes the data to PHY register at the offset using the i2c interface. 292 **/ 293 s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data) 294 { 295 struct e1000_phy_info *phy = &hw->phy; 296 u32 i, i2ccmd = 0; 297 u16 phy_data_swapped; 298 299 /* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/ 300 if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) { 301 hw_dbg("PHY I2C Address %d is out of range.\n", 302 hw->phy.addr); 303 return -E1000_ERR_CONFIG; 304 } 305 306 /* Swap the data bytes for the I2C interface */ 307 phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00); 308 309 /* Set up Op-code, Phy Address, and register address in the I2CCMD 310 * register. The MAC will take care of interfacing with the 311 * PHY to retrieve the desired data. 312 */ 313 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | 314 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | 315 E1000_I2CCMD_OPCODE_WRITE | 316 phy_data_swapped); 317 318 wr32(E1000_I2CCMD, i2ccmd); 319 320 /* Poll the ready bit to see if the I2C read completed */ 321 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { 322 udelay(50); 323 i2ccmd = rd32(E1000_I2CCMD); 324 if (i2ccmd & E1000_I2CCMD_READY) 325 break; 326 } 327 if (!(i2ccmd & E1000_I2CCMD_READY)) { 328 hw_dbg("I2CCMD Write did not complete\n"); 329 return -E1000_ERR_PHY; 330 } 331 if (i2ccmd & E1000_I2CCMD_ERROR) { 332 hw_dbg("I2CCMD Error bit set\n"); 333 return -E1000_ERR_PHY; 334 } 335 336 return 0; 337 } 338 339 /** 340 * igb_read_sfp_data_byte - Reads SFP module data. 341 * @hw: pointer to the HW structure 342 * @offset: byte location offset to be read 343 * @data: read data buffer pointer 344 * 345 * Reads one byte from SFP module data stored 346 * in SFP resided EEPROM memory or SFP diagnostic area. 347 * Function should be called with 348 * E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access 349 * E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters 350 * access 351 **/ 352 s32 igb_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data) 353 { 354 u32 i = 0; 355 u32 i2ccmd = 0; 356 u32 data_local = 0; 357 358 if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) { 359 hw_dbg("I2CCMD command address exceeds upper limit\n"); 360 return -E1000_ERR_PHY; 361 } 362 363 /* Set up Op-code, EEPROM Address,in the I2CCMD 364 * register. The MAC will take care of interfacing with the 365 * EEPROM to retrieve the desired data. 366 */ 367 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | 368 E1000_I2CCMD_OPCODE_READ); 369 370 wr32(E1000_I2CCMD, i2ccmd); 371 372 /* Poll the ready bit to see if the I2C read completed */ 373 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { 374 udelay(50); 375 data_local = rd32(E1000_I2CCMD); 376 if (data_local & E1000_I2CCMD_READY) 377 break; 378 } 379 if (!(data_local & E1000_I2CCMD_READY)) { 380 hw_dbg("I2CCMD Read did not complete\n"); 381 return -E1000_ERR_PHY; 382 } 383 if (data_local & E1000_I2CCMD_ERROR) { 384 hw_dbg("I2CCMD Error bit set\n"); 385 return -E1000_ERR_PHY; 386 } 387 *data = (u8) data_local & 0xFF; 388 389 return 0; 390 } 391 392 /** 393 * igb_read_phy_reg_igp - Read igp PHY register 394 * @hw: pointer to the HW structure 395 * @offset: register offset to be read 396 * @data: pointer to the read data 397 * 398 * Acquires semaphore, if necessary, then reads the PHY register at offset 399 * and storing the retrieved information in data. Release any acquired 400 * semaphores before exiting. 401 **/ 402 s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data) 403 { 404 s32 ret_val = 0; 405 406 if (!(hw->phy.ops.acquire)) 407 goto out; 408 409 ret_val = hw->phy.ops.acquire(hw); 410 if (ret_val) 411 goto out; 412 413 if (offset > MAX_PHY_MULTI_PAGE_REG) { 414 ret_val = igb_write_phy_reg_mdic(hw, 415 IGP01E1000_PHY_PAGE_SELECT, 416 (u16)offset); 417 if (ret_val) { 418 hw->phy.ops.release(hw); 419 goto out; 420 } 421 } 422 423 ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 424 data); 425 426 hw->phy.ops.release(hw); 427 428 out: 429 return ret_val; 430 } 431 432 /** 433 * igb_write_phy_reg_igp - Write igp PHY register 434 * @hw: pointer to the HW structure 435 * @offset: register offset to write to 436 * @data: data to write at register offset 437 * 438 * Acquires semaphore, if necessary, then writes the data to PHY register 439 * at the offset. Release any acquired semaphores before exiting. 440 **/ 441 s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data) 442 { 443 s32 ret_val = 0; 444 445 if (!(hw->phy.ops.acquire)) 446 goto out; 447 448 ret_val = hw->phy.ops.acquire(hw); 449 if (ret_val) 450 goto out; 451 452 if (offset > MAX_PHY_MULTI_PAGE_REG) { 453 ret_val = igb_write_phy_reg_mdic(hw, 454 IGP01E1000_PHY_PAGE_SELECT, 455 (u16)offset); 456 if (ret_val) { 457 hw->phy.ops.release(hw); 458 goto out; 459 } 460 } 461 462 ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 463 data); 464 465 hw->phy.ops.release(hw); 466 467 out: 468 return ret_val; 469 } 470 471 /** 472 * igb_copper_link_setup_82580 - Setup 82580 PHY for copper link 473 * @hw: pointer to the HW structure 474 * 475 * Sets up Carrier-sense on Transmit and downshift values. 476 **/ 477 s32 igb_copper_link_setup_82580(struct e1000_hw *hw) 478 { 479 struct e1000_phy_info *phy = &hw->phy; 480 s32 ret_val; 481 u16 phy_data; 482 483 if (phy->reset_disable) { 484 ret_val = 0; 485 goto out; 486 } 487 488 if (phy->type == e1000_phy_82580) { 489 ret_val = hw->phy.ops.reset(hw); 490 if (ret_val) { 491 hw_dbg("Error resetting the PHY.\n"); 492 goto out; 493 } 494 } 495 496 /* Enable CRS on TX. This must be set for half-duplex operation. */ 497 ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data); 498 if (ret_val) 499 goto out; 500 501 phy_data |= I82580_CFG_ASSERT_CRS_ON_TX; 502 503 /* Enable downshift */ 504 phy_data |= I82580_CFG_ENABLE_DOWNSHIFT; 505 506 ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data); 507 if (ret_val) 508 goto out; 509 510 /* Set MDI/MDIX mode */ 511 ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data); 512 if (ret_val) 513 goto out; 514 phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK; 515 /* Options: 516 * 0 - Auto (default) 517 * 1 - MDI mode 518 * 2 - MDI-X mode 519 */ 520 switch (hw->phy.mdix) { 521 case 1: 522 break; 523 case 2: 524 phy_data |= I82580_PHY_CTRL2_MANUAL_MDIX; 525 break; 526 case 0: 527 default: 528 phy_data |= I82580_PHY_CTRL2_AUTO_MDI_MDIX; 529 break; 530 } 531 ret_val = hw->phy.ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data); 532 533 out: 534 return ret_val; 535 } 536 537 /** 538 * igb_copper_link_setup_m88 - Setup m88 PHY's for copper link 539 * @hw: pointer to the HW structure 540 * 541 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock 542 * and downshift values are set also. 543 **/ 544 s32 igb_copper_link_setup_m88(struct e1000_hw *hw) 545 { 546 struct e1000_phy_info *phy = &hw->phy; 547 s32 ret_val; 548 u16 phy_data; 549 550 if (phy->reset_disable) { 551 ret_val = 0; 552 goto out; 553 } 554 555 /* Enable CRS on TX. This must be set for half-duplex operation. */ 556 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 557 if (ret_val) 558 goto out; 559 560 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; 561 562 /* Options: 563 * MDI/MDI-X = 0 (default) 564 * 0 - Auto for all speeds 565 * 1 - MDI mode 566 * 2 - MDI-X mode 567 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) 568 */ 569 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; 570 571 switch (phy->mdix) { 572 case 1: 573 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; 574 break; 575 case 2: 576 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; 577 break; 578 case 3: 579 phy_data |= M88E1000_PSCR_AUTO_X_1000T; 580 break; 581 case 0: 582 default: 583 phy_data |= M88E1000_PSCR_AUTO_X_MODE; 584 break; 585 } 586 587 /* Options: 588 * disable_polarity_correction = 0 (default) 589 * Automatic Correction for Reversed Cable Polarity 590 * 0 - Disabled 591 * 1 - Enabled 592 */ 593 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; 594 if (phy->disable_polarity_correction == 1) 595 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; 596 597 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 598 if (ret_val) 599 goto out; 600 601 if (phy->revision < E1000_REVISION_4) { 602 /* Force TX_CLK in the Extended PHY Specific Control Register 603 * to 25MHz clock. 604 */ 605 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, 606 &phy_data); 607 if (ret_val) 608 goto out; 609 610 phy_data |= M88E1000_EPSCR_TX_CLK_25; 611 612 if ((phy->revision == E1000_REVISION_2) && 613 (phy->id == M88E1111_I_PHY_ID)) { 614 /* 82573L PHY - set the downshift counter to 5x. */ 615 phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK; 616 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; 617 } else { 618 /* Configure Master and Slave downshift values */ 619 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | 620 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); 621 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | 622 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); 623 } 624 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, 625 phy_data); 626 if (ret_val) 627 goto out; 628 } 629 630 /* Commit the changes. */ 631 ret_val = igb_phy_sw_reset(hw); 632 if (ret_val) { 633 hw_dbg("Error committing the PHY changes\n"); 634 goto out; 635 } 636 637 out: 638 return ret_val; 639 } 640 641 /** 642 * igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link 643 * @hw: pointer to the HW structure 644 * 645 * Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's. 646 * Also enables and sets the downshift parameters. 647 **/ 648 s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw) 649 { 650 struct e1000_phy_info *phy = &hw->phy; 651 s32 ret_val; 652 u16 phy_data; 653 654 if (phy->reset_disable) 655 return 0; 656 657 /* Enable CRS on Tx. This must be set for half-duplex operation. */ 658 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 659 if (ret_val) 660 return ret_val; 661 662 /* Options: 663 * MDI/MDI-X = 0 (default) 664 * 0 - Auto for all speeds 665 * 1 - MDI mode 666 * 2 - MDI-X mode 667 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) 668 */ 669 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; 670 671 switch (phy->mdix) { 672 case 1: 673 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; 674 break; 675 case 2: 676 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; 677 break; 678 case 3: 679 /* M88E1112 does not support this mode) */ 680 if (phy->id != M88E1112_E_PHY_ID) { 681 phy_data |= M88E1000_PSCR_AUTO_X_1000T; 682 break; 683 } 684 case 0: 685 default: 686 phy_data |= M88E1000_PSCR_AUTO_X_MODE; 687 break; 688 } 689 690 /* Options: 691 * disable_polarity_correction = 0 (default) 692 * Automatic Correction for Reversed Cable Polarity 693 * 0 - Disabled 694 * 1 - Enabled 695 */ 696 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; 697 if (phy->disable_polarity_correction == 1) 698 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; 699 700 /* Enable downshift and setting it to X6 */ 701 if (phy->id == M88E1543_E_PHY_ID) { 702 phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE; 703 ret_val = 704 phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 705 if (ret_val) 706 return ret_val; 707 708 ret_val = igb_phy_sw_reset(hw); 709 if (ret_val) { 710 hw_dbg("Error committing the PHY changes\n"); 711 return ret_val; 712 } 713 } 714 715 phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK; 716 phy_data |= I347AT4_PSCR_DOWNSHIFT_6X; 717 phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE; 718 719 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 720 if (ret_val) 721 return ret_val; 722 723 /* Commit the changes. */ 724 ret_val = igb_phy_sw_reset(hw); 725 if (ret_val) { 726 hw_dbg("Error committing the PHY changes\n"); 727 return ret_val; 728 } 729 ret_val = igb_set_master_slave_mode(hw); 730 if (ret_val) 731 return ret_val; 732 733 return 0; 734 } 735 736 /** 737 * igb_copper_link_setup_igp - Setup igp PHY's for copper link 738 * @hw: pointer to the HW structure 739 * 740 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for 741 * igp PHY's. 742 **/ 743 s32 igb_copper_link_setup_igp(struct e1000_hw *hw) 744 { 745 struct e1000_phy_info *phy = &hw->phy; 746 s32 ret_val; 747 u16 data; 748 749 if (phy->reset_disable) { 750 ret_val = 0; 751 goto out; 752 } 753 754 ret_val = phy->ops.reset(hw); 755 if (ret_val) { 756 hw_dbg("Error resetting the PHY.\n"); 757 goto out; 758 } 759 760 /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid 761 * timeout issues when LFS is enabled. 762 */ 763 msleep(100); 764 765 /* The NVM settings will configure LPLU in D3 for 766 * non-IGP1 PHYs. 767 */ 768 if (phy->type == e1000_phy_igp) { 769 /* disable lplu d3 during driver init */ 770 if (phy->ops.set_d3_lplu_state) 771 ret_val = phy->ops.set_d3_lplu_state(hw, false); 772 if (ret_val) { 773 hw_dbg("Error Disabling LPLU D3\n"); 774 goto out; 775 } 776 } 777 778 /* disable lplu d0 during driver init */ 779 ret_val = phy->ops.set_d0_lplu_state(hw, false); 780 if (ret_val) { 781 hw_dbg("Error Disabling LPLU D0\n"); 782 goto out; 783 } 784 /* Configure mdi-mdix settings */ 785 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data); 786 if (ret_val) 787 goto out; 788 789 data &= ~IGP01E1000_PSCR_AUTO_MDIX; 790 791 switch (phy->mdix) { 792 case 1: 793 data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; 794 break; 795 case 2: 796 data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; 797 break; 798 case 0: 799 default: 800 data |= IGP01E1000_PSCR_AUTO_MDIX; 801 break; 802 } 803 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data); 804 if (ret_val) 805 goto out; 806 807 /* set auto-master slave resolution settings */ 808 if (hw->mac.autoneg) { 809 /* when autonegotiation advertisement is only 1000Mbps then we 810 * should disable SmartSpeed and enable Auto MasterSlave 811 * resolution as hardware default. 812 */ 813 if (phy->autoneg_advertised == ADVERTISE_1000_FULL) { 814 /* Disable SmartSpeed */ 815 ret_val = phy->ops.read_reg(hw, 816 IGP01E1000_PHY_PORT_CONFIG, 817 &data); 818 if (ret_val) 819 goto out; 820 821 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 822 ret_val = phy->ops.write_reg(hw, 823 IGP01E1000_PHY_PORT_CONFIG, 824 data); 825 if (ret_val) 826 goto out; 827 828 /* Set auto Master/Slave resolution process */ 829 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data); 830 if (ret_val) 831 goto out; 832 833 data &= ~CR_1000T_MS_ENABLE; 834 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data); 835 if (ret_val) 836 goto out; 837 } 838 839 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data); 840 if (ret_val) 841 goto out; 842 843 /* load defaults for future use */ 844 phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ? 845 ((data & CR_1000T_MS_VALUE) ? 846 e1000_ms_force_master : 847 e1000_ms_force_slave) : 848 e1000_ms_auto; 849 850 switch (phy->ms_type) { 851 case e1000_ms_force_master: 852 data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); 853 break; 854 case e1000_ms_force_slave: 855 data |= CR_1000T_MS_ENABLE; 856 data &= ~(CR_1000T_MS_VALUE); 857 break; 858 case e1000_ms_auto: 859 data &= ~CR_1000T_MS_ENABLE; 860 default: 861 break; 862 } 863 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data); 864 if (ret_val) 865 goto out; 866 } 867 868 out: 869 return ret_val; 870 } 871 872 /** 873 * igb_copper_link_autoneg - Setup/Enable autoneg for copper link 874 * @hw: pointer to the HW structure 875 * 876 * Performs initial bounds checking on autoneg advertisement parameter, then 877 * configure to advertise the full capability. Setup the PHY to autoneg 878 * and restart the negotiation process between the link partner. If 879 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting. 880 **/ 881 static s32 igb_copper_link_autoneg(struct e1000_hw *hw) 882 { 883 struct e1000_phy_info *phy = &hw->phy; 884 s32 ret_val; 885 u16 phy_ctrl; 886 887 /* Perform some bounds checking on the autoneg advertisement 888 * parameter. 889 */ 890 phy->autoneg_advertised &= phy->autoneg_mask; 891 892 /* If autoneg_advertised is zero, we assume it was not defaulted 893 * by the calling code so we set to advertise full capability. 894 */ 895 if (phy->autoneg_advertised == 0) 896 phy->autoneg_advertised = phy->autoneg_mask; 897 898 hw_dbg("Reconfiguring auto-neg advertisement params\n"); 899 ret_val = igb_phy_setup_autoneg(hw); 900 if (ret_val) { 901 hw_dbg("Error Setting up Auto-Negotiation\n"); 902 goto out; 903 } 904 hw_dbg("Restarting Auto-Neg\n"); 905 906 /* Restart auto-negotiation by setting the Auto Neg Enable bit and 907 * the Auto Neg Restart bit in the PHY control register. 908 */ 909 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); 910 if (ret_val) 911 goto out; 912 913 phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); 914 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl); 915 if (ret_val) 916 goto out; 917 918 /* Does the user want to wait for Auto-Neg to complete here, or 919 * check at a later time (for example, callback routine). 920 */ 921 if (phy->autoneg_wait_to_complete) { 922 ret_val = igb_wait_autoneg(hw); 923 if (ret_val) { 924 hw_dbg("Error while waiting for autoneg to complete\n"); 925 goto out; 926 } 927 } 928 929 hw->mac.get_link_status = true; 930 931 out: 932 return ret_val; 933 } 934 935 /** 936 * igb_phy_setup_autoneg - Configure PHY for auto-negotiation 937 * @hw: pointer to the HW structure 938 * 939 * Reads the MII auto-neg advertisement register and/or the 1000T control 940 * register and if the PHY is already setup for auto-negotiation, then 941 * return successful. Otherwise, setup advertisement and flow control to 942 * the appropriate values for the wanted auto-negotiation. 943 **/ 944 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw) 945 { 946 struct e1000_phy_info *phy = &hw->phy; 947 s32 ret_val; 948 u16 mii_autoneg_adv_reg; 949 u16 mii_1000t_ctrl_reg = 0; 950 951 phy->autoneg_advertised &= phy->autoneg_mask; 952 953 /* Read the MII Auto-Neg Advertisement Register (Address 4). */ 954 ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); 955 if (ret_val) 956 goto out; 957 958 if (phy->autoneg_mask & ADVERTISE_1000_FULL) { 959 /* Read the MII 1000Base-T Control Register (Address 9). */ 960 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, 961 &mii_1000t_ctrl_reg); 962 if (ret_val) 963 goto out; 964 } 965 966 /* Need to parse both autoneg_advertised and fc and set up 967 * the appropriate PHY registers. First we will parse for 968 * autoneg_advertised software override. Since we can advertise 969 * a plethora of combinations, we need to check each bit 970 * individually. 971 */ 972 973 /* First we clear all the 10/100 mb speed bits in the Auto-Neg 974 * Advertisement Register (Address 4) and the 1000 mb speed bits in 975 * the 1000Base-T Control Register (Address 9). 976 */ 977 mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS | 978 NWAY_AR_100TX_HD_CAPS | 979 NWAY_AR_10T_FD_CAPS | 980 NWAY_AR_10T_HD_CAPS); 981 mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS); 982 983 hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised); 984 985 /* Do we want to advertise 10 Mb Half Duplex? */ 986 if (phy->autoneg_advertised & ADVERTISE_10_HALF) { 987 hw_dbg("Advertise 10mb Half duplex\n"); 988 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; 989 } 990 991 /* Do we want to advertise 10 Mb Full Duplex? */ 992 if (phy->autoneg_advertised & ADVERTISE_10_FULL) { 993 hw_dbg("Advertise 10mb Full duplex\n"); 994 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; 995 } 996 997 /* Do we want to advertise 100 Mb Half Duplex? */ 998 if (phy->autoneg_advertised & ADVERTISE_100_HALF) { 999 hw_dbg("Advertise 100mb Half duplex\n"); 1000 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; 1001 } 1002 1003 /* Do we want to advertise 100 Mb Full Duplex? */ 1004 if (phy->autoneg_advertised & ADVERTISE_100_FULL) { 1005 hw_dbg("Advertise 100mb Full duplex\n"); 1006 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; 1007 } 1008 1009 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ 1010 if (phy->autoneg_advertised & ADVERTISE_1000_HALF) 1011 hw_dbg("Advertise 1000mb Half duplex request denied!\n"); 1012 1013 /* Do we want to advertise 1000 Mb Full Duplex? */ 1014 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) { 1015 hw_dbg("Advertise 1000mb Full duplex\n"); 1016 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; 1017 } 1018 1019 /* Check for a software override of the flow control settings, and 1020 * setup the PHY advertisement registers accordingly. If 1021 * auto-negotiation is enabled, then software will have to set the 1022 * "PAUSE" bits to the correct value in the Auto-Negotiation 1023 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto- 1024 * negotiation. 1025 * 1026 * The possible values of the "fc" parameter are: 1027 * 0: Flow control is completely disabled 1028 * 1: Rx flow control is enabled (we can receive pause frames 1029 * but not send pause frames). 1030 * 2: Tx flow control is enabled (we can send pause frames 1031 * but we do not support receiving pause frames). 1032 * 3: Both Rx and TX flow control (symmetric) are enabled. 1033 * other: No software override. The flow control configuration 1034 * in the EEPROM is used. 1035 */ 1036 switch (hw->fc.current_mode) { 1037 case e1000_fc_none: 1038 /* Flow control (RX & TX) is completely disabled by a 1039 * software over-ride. 1040 */ 1041 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); 1042 break; 1043 case e1000_fc_rx_pause: 1044 /* RX Flow control is enabled, and TX Flow control is 1045 * disabled, by a software over-ride. 1046 * 1047 * Since there really isn't a way to advertise that we are 1048 * capable of RX Pause ONLY, we will advertise that we 1049 * support both symmetric and asymmetric RX PAUSE. Later 1050 * (in e1000_config_fc_after_link_up) we will disable the 1051 * hw's ability to send PAUSE frames. 1052 */ 1053 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); 1054 break; 1055 case e1000_fc_tx_pause: 1056 /* TX Flow control is enabled, and RX Flow control is 1057 * disabled, by a software over-ride. 1058 */ 1059 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; 1060 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; 1061 break; 1062 case e1000_fc_full: 1063 /* Flow control (both RX and TX) is enabled by a software 1064 * over-ride. 1065 */ 1066 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); 1067 break; 1068 default: 1069 hw_dbg("Flow control param set incorrectly\n"); 1070 ret_val = -E1000_ERR_CONFIG; 1071 goto out; 1072 } 1073 1074 ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); 1075 if (ret_val) 1076 goto out; 1077 1078 hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); 1079 1080 if (phy->autoneg_mask & ADVERTISE_1000_FULL) { 1081 ret_val = phy->ops.write_reg(hw, 1082 PHY_1000T_CTRL, 1083 mii_1000t_ctrl_reg); 1084 if (ret_val) 1085 goto out; 1086 } 1087 1088 out: 1089 return ret_val; 1090 } 1091 1092 /** 1093 * igb_setup_copper_link - Configure copper link settings 1094 * @hw: pointer to the HW structure 1095 * 1096 * Calls the appropriate function to configure the link for auto-neg or forced 1097 * speed and duplex. Then we check for link, once link is established calls 1098 * to configure collision distance and flow control are called. If link is 1099 * not established, we return -E1000_ERR_PHY (-2). 1100 **/ 1101 s32 igb_setup_copper_link(struct e1000_hw *hw) 1102 { 1103 s32 ret_val; 1104 bool link; 1105 1106 if (hw->mac.autoneg) { 1107 /* Setup autoneg and flow control advertisement and perform 1108 * autonegotiation. 1109 */ 1110 ret_val = igb_copper_link_autoneg(hw); 1111 if (ret_val) 1112 goto out; 1113 } else { 1114 /* PHY will be set to 10H, 10F, 100H or 100F 1115 * depending on user settings. 1116 */ 1117 hw_dbg("Forcing Speed and Duplex\n"); 1118 ret_val = hw->phy.ops.force_speed_duplex(hw); 1119 if (ret_val) { 1120 hw_dbg("Error Forcing Speed and Duplex\n"); 1121 goto out; 1122 } 1123 } 1124 1125 /* Check link status. Wait up to 100 microseconds for link to become 1126 * valid. 1127 */ 1128 ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link); 1129 if (ret_val) 1130 goto out; 1131 1132 if (link) { 1133 hw_dbg("Valid link established!!!\n"); 1134 igb_config_collision_dist(hw); 1135 ret_val = igb_config_fc_after_link_up(hw); 1136 } else { 1137 hw_dbg("Unable to establish link!!!\n"); 1138 } 1139 1140 out: 1141 return ret_val; 1142 } 1143 1144 /** 1145 * igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY 1146 * @hw: pointer to the HW structure 1147 * 1148 * Calls the PHY setup function to force speed and duplex. Clears the 1149 * auto-crossover to force MDI manually. Waits for link and returns 1150 * successful if link up is successful, else -E1000_ERR_PHY (-2). 1151 **/ 1152 s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw) 1153 { 1154 struct e1000_phy_info *phy = &hw->phy; 1155 s32 ret_val; 1156 u16 phy_data; 1157 bool link; 1158 1159 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); 1160 if (ret_val) 1161 goto out; 1162 1163 igb_phy_force_speed_duplex_setup(hw, &phy_data); 1164 1165 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); 1166 if (ret_val) 1167 goto out; 1168 1169 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI 1170 * forced whenever speed and duplex are forced. 1171 */ 1172 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); 1173 if (ret_val) 1174 goto out; 1175 1176 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; 1177 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; 1178 1179 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); 1180 if (ret_val) 1181 goto out; 1182 1183 hw_dbg("IGP PSCR: %X\n", phy_data); 1184 1185 udelay(1); 1186 1187 if (phy->autoneg_wait_to_complete) { 1188 hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n"); 1189 1190 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link); 1191 if (ret_val) 1192 goto out; 1193 1194 if (!link) 1195 hw_dbg("Link taking longer than expected.\n"); 1196 1197 /* Try once more */ 1198 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link); 1199 if (ret_val) 1200 goto out; 1201 } 1202 1203 out: 1204 return ret_val; 1205 } 1206 1207 /** 1208 * igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY 1209 * @hw: pointer to the HW structure 1210 * 1211 * Calls the PHY setup function to force speed and duplex. Clears the 1212 * auto-crossover to force MDI manually. Resets the PHY to commit the 1213 * changes. If time expires while waiting for link up, we reset the DSP. 1214 * After reset, TX_CLK and CRS on TX must be set. Return successful upon 1215 * successful completion, else return corresponding error code. 1216 **/ 1217 s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw) 1218 { 1219 struct e1000_phy_info *phy = &hw->phy; 1220 s32 ret_val; 1221 u16 phy_data; 1222 bool link; 1223 1224 /* I210 and I211 devices support Auto-Crossover in forced operation. */ 1225 if (phy->type != e1000_phy_i210) { 1226 /* Clear Auto-Crossover to force MDI manually. M88E1000 1227 * requires MDI forced whenever speed and duplex are forced. 1228 */ 1229 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, 1230 &phy_data); 1231 if (ret_val) 1232 goto out; 1233 1234 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; 1235 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, 1236 phy_data); 1237 if (ret_val) 1238 goto out; 1239 1240 hw_dbg("M88E1000 PSCR: %X\n", phy_data); 1241 } 1242 1243 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); 1244 if (ret_val) 1245 goto out; 1246 1247 igb_phy_force_speed_duplex_setup(hw, &phy_data); 1248 1249 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); 1250 if (ret_val) 1251 goto out; 1252 1253 /* Reset the phy to commit changes. */ 1254 ret_val = igb_phy_sw_reset(hw); 1255 if (ret_val) 1256 goto out; 1257 1258 if (phy->autoneg_wait_to_complete) { 1259 hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n"); 1260 1261 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link); 1262 if (ret_val) 1263 goto out; 1264 1265 if (!link) { 1266 bool reset_dsp = true; 1267 1268 switch (hw->phy.id) { 1269 case I347AT4_E_PHY_ID: 1270 case M88E1112_E_PHY_ID: 1271 case I210_I_PHY_ID: 1272 reset_dsp = false; 1273 break; 1274 default: 1275 if (hw->phy.type != e1000_phy_m88) 1276 reset_dsp = false; 1277 break; 1278 } 1279 if (!reset_dsp) 1280 hw_dbg("Link taking longer than expected.\n"); 1281 else { 1282 /* We didn't get link. 1283 * Reset the DSP and cross our fingers. 1284 */ 1285 ret_val = phy->ops.write_reg(hw, 1286 M88E1000_PHY_PAGE_SELECT, 1287 0x001d); 1288 if (ret_val) 1289 goto out; 1290 ret_val = igb_phy_reset_dsp(hw); 1291 if (ret_val) 1292 goto out; 1293 } 1294 } 1295 1296 /* Try once more */ 1297 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 1298 100000, &link); 1299 if (ret_val) 1300 goto out; 1301 } 1302 1303 if (hw->phy.type != e1000_phy_m88 || 1304 hw->phy.id == I347AT4_E_PHY_ID || 1305 hw->phy.id == M88E1112_E_PHY_ID || 1306 hw->phy.id == I210_I_PHY_ID) 1307 goto out; 1308 1309 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); 1310 if (ret_val) 1311 goto out; 1312 1313 /* Resetting the phy means we need to re-force TX_CLK in the 1314 * Extended PHY Specific Control Register to 25MHz clock from 1315 * the reset value of 2.5MHz. 1316 */ 1317 phy_data |= M88E1000_EPSCR_TX_CLK_25; 1318 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); 1319 if (ret_val) 1320 goto out; 1321 1322 /* In addition, we must re-enable CRS on Tx for both half and full 1323 * duplex. 1324 */ 1325 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 1326 if (ret_val) 1327 goto out; 1328 1329 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; 1330 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 1331 1332 out: 1333 return ret_val; 1334 } 1335 1336 /** 1337 * igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex 1338 * @hw: pointer to the HW structure 1339 * @phy_ctrl: pointer to current value of PHY_CONTROL 1340 * 1341 * Forces speed and duplex on the PHY by doing the following: disable flow 1342 * control, force speed/duplex on the MAC, disable auto speed detection, 1343 * disable auto-negotiation, configure duplex, configure speed, configure 1344 * the collision distance, write configuration to CTRL register. The 1345 * caller must write to the PHY_CONTROL register for these settings to 1346 * take affect. 1347 **/ 1348 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw, 1349 u16 *phy_ctrl) 1350 { 1351 struct e1000_mac_info *mac = &hw->mac; 1352 u32 ctrl; 1353 1354 /* Turn off flow control when forcing speed/duplex */ 1355 hw->fc.current_mode = e1000_fc_none; 1356 1357 /* Force speed/duplex on the mac */ 1358 ctrl = rd32(E1000_CTRL); 1359 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 1360 ctrl &= ~E1000_CTRL_SPD_SEL; 1361 1362 /* Disable Auto Speed Detection */ 1363 ctrl &= ~E1000_CTRL_ASDE; 1364 1365 /* Disable autoneg on the phy */ 1366 *phy_ctrl &= ~MII_CR_AUTO_NEG_EN; 1367 1368 /* Forcing Full or Half Duplex? */ 1369 if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) { 1370 ctrl &= ~E1000_CTRL_FD; 1371 *phy_ctrl &= ~MII_CR_FULL_DUPLEX; 1372 hw_dbg("Half Duplex\n"); 1373 } else { 1374 ctrl |= E1000_CTRL_FD; 1375 *phy_ctrl |= MII_CR_FULL_DUPLEX; 1376 hw_dbg("Full Duplex\n"); 1377 } 1378 1379 /* Forcing 10mb or 100mb? */ 1380 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) { 1381 ctrl |= E1000_CTRL_SPD_100; 1382 *phy_ctrl |= MII_CR_SPEED_100; 1383 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); 1384 hw_dbg("Forcing 100mb\n"); 1385 } else { 1386 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 1387 *phy_ctrl |= MII_CR_SPEED_10; 1388 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); 1389 hw_dbg("Forcing 10mb\n"); 1390 } 1391 1392 igb_config_collision_dist(hw); 1393 1394 wr32(E1000_CTRL, ctrl); 1395 } 1396 1397 /** 1398 * igb_set_d3_lplu_state - Sets low power link up state for D3 1399 * @hw: pointer to the HW structure 1400 * @active: boolean used to enable/disable lplu 1401 * 1402 * Success returns 0, Failure returns 1 1403 * 1404 * The low power link up (lplu) state is set to the power management level D3 1405 * and SmartSpeed is disabled when active is true, else clear lplu for D3 1406 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1407 * is used during Dx states where the power conservation is most important. 1408 * During driver activity, SmartSpeed should be enabled so performance is 1409 * maintained. 1410 **/ 1411 s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active) 1412 { 1413 struct e1000_phy_info *phy = &hw->phy; 1414 s32 ret_val = 0; 1415 u16 data; 1416 1417 if (!(hw->phy.ops.read_reg)) 1418 goto out; 1419 1420 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); 1421 if (ret_val) 1422 goto out; 1423 1424 if (!active) { 1425 data &= ~IGP02E1000_PM_D3_LPLU; 1426 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, 1427 data); 1428 if (ret_val) 1429 goto out; 1430 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 1431 * during Dx states where the power conservation is most 1432 * important. During driver activity we should enable 1433 * SmartSpeed, so performance is maintained. 1434 */ 1435 if (phy->smart_speed == e1000_smart_speed_on) { 1436 ret_val = phy->ops.read_reg(hw, 1437 IGP01E1000_PHY_PORT_CONFIG, 1438 &data); 1439 if (ret_val) 1440 goto out; 1441 1442 data |= IGP01E1000_PSCFR_SMART_SPEED; 1443 ret_val = phy->ops.write_reg(hw, 1444 IGP01E1000_PHY_PORT_CONFIG, 1445 data); 1446 if (ret_val) 1447 goto out; 1448 } else if (phy->smart_speed == e1000_smart_speed_off) { 1449 ret_val = phy->ops.read_reg(hw, 1450 IGP01E1000_PHY_PORT_CONFIG, 1451 &data); 1452 if (ret_val) 1453 goto out; 1454 1455 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 1456 ret_val = phy->ops.write_reg(hw, 1457 IGP01E1000_PHY_PORT_CONFIG, 1458 data); 1459 if (ret_val) 1460 goto out; 1461 } 1462 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || 1463 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || 1464 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { 1465 data |= IGP02E1000_PM_D3_LPLU; 1466 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, 1467 data); 1468 if (ret_val) 1469 goto out; 1470 1471 /* When LPLU is enabled, we should disable SmartSpeed */ 1472 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, 1473 &data); 1474 if (ret_val) 1475 goto out; 1476 1477 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 1478 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, 1479 data); 1480 } 1481 1482 out: 1483 return ret_val; 1484 } 1485 1486 /** 1487 * igb_check_downshift - Checks whether a downshift in speed occurred 1488 * @hw: pointer to the HW structure 1489 * 1490 * Success returns 0, Failure returns 1 1491 * 1492 * A downshift is detected by querying the PHY link health. 1493 **/ 1494 s32 igb_check_downshift(struct e1000_hw *hw) 1495 { 1496 struct e1000_phy_info *phy = &hw->phy; 1497 s32 ret_val; 1498 u16 phy_data, offset, mask; 1499 1500 switch (phy->type) { 1501 case e1000_phy_i210: 1502 case e1000_phy_m88: 1503 case e1000_phy_gg82563: 1504 offset = M88E1000_PHY_SPEC_STATUS; 1505 mask = M88E1000_PSSR_DOWNSHIFT; 1506 break; 1507 case e1000_phy_igp_2: 1508 case e1000_phy_igp: 1509 case e1000_phy_igp_3: 1510 offset = IGP01E1000_PHY_LINK_HEALTH; 1511 mask = IGP01E1000_PLHR_SS_DOWNGRADE; 1512 break; 1513 default: 1514 /* speed downshift not supported */ 1515 phy->speed_downgraded = false; 1516 ret_val = 0; 1517 goto out; 1518 } 1519 1520 ret_val = phy->ops.read_reg(hw, offset, &phy_data); 1521 1522 if (!ret_val) 1523 phy->speed_downgraded = (phy_data & mask) ? true : false; 1524 1525 out: 1526 return ret_val; 1527 } 1528 1529 /** 1530 * igb_check_polarity_m88 - Checks the polarity. 1531 * @hw: pointer to the HW structure 1532 * 1533 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 1534 * 1535 * Polarity is determined based on the PHY specific status register. 1536 **/ 1537 s32 igb_check_polarity_m88(struct e1000_hw *hw) 1538 { 1539 struct e1000_phy_info *phy = &hw->phy; 1540 s32 ret_val; 1541 u16 data; 1542 1543 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data); 1544 1545 if (!ret_val) 1546 phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY) 1547 ? e1000_rev_polarity_reversed 1548 : e1000_rev_polarity_normal; 1549 1550 return ret_val; 1551 } 1552 1553 /** 1554 * igb_check_polarity_igp - Checks the polarity. 1555 * @hw: pointer to the HW structure 1556 * 1557 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 1558 * 1559 * Polarity is determined based on the PHY port status register, and the 1560 * current speed (since there is no polarity at 100Mbps). 1561 **/ 1562 static s32 igb_check_polarity_igp(struct e1000_hw *hw) 1563 { 1564 struct e1000_phy_info *phy = &hw->phy; 1565 s32 ret_val; 1566 u16 data, offset, mask; 1567 1568 /* Polarity is determined based on the speed of 1569 * our connection. 1570 */ 1571 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data); 1572 if (ret_val) 1573 goto out; 1574 1575 if ((data & IGP01E1000_PSSR_SPEED_MASK) == 1576 IGP01E1000_PSSR_SPEED_1000MBPS) { 1577 offset = IGP01E1000_PHY_PCS_INIT_REG; 1578 mask = IGP01E1000_PHY_POLARITY_MASK; 1579 } else { 1580 /* This really only applies to 10Mbps since 1581 * there is no polarity for 100Mbps (always 0). 1582 */ 1583 offset = IGP01E1000_PHY_PORT_STATUS; 1584 mask = IGP01E1000_PSSR_POLARITY_REVERSED; 1585 } 1586 1587 ret_val = phy->ops.read_reg(hw, offset, &data); 1588 1589 if (!ret_val) 1590 phy->cable_polarity = (data & mask) 1591 ? e1000_rev_polarity_reversed 1592 : e1000_rev_polarity_normal; 1593 1594 out: 1595 return ret_val; 1596 } 1597 1598 /** 1599 * igb_wait_autoneg - Wait for auto-neg completion 1600 * @hw: pointer to the HW structure 1601 * 1602 * Waits for auto-negotiation to complete or for the auto-negotiation time 1603 * limit to expire, which ever happens first. 1604 **/ 1605 static s32 igb_wait_autoneg(struct e1000_hw *hw) 1606 { 1607 s32 ret_val = 0; 1608 u16 i, phy_status; 1609 1610 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */ 1611 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) { 1612 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); 1613 if (ret_val) 1614 break; 1615 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); 1616 if (ret_val) 1617 break; 1618 if (phy_status & MII_SR_AUTONEG_COMPLETE) 1619 break; 1620 msleep(100); 1621 } 1622 1623 /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation 1624 * has completed. 1625 */ 1626 return ret_val; 1627 } 1628 1629 /** 1630 * igb_phy_has_link - Polls PHY for link 1631 * @hw: pointer to the HW structure 1632 * @iterations: number of times to poll for link 1633 * @usec_interval: delay between polling attempts 1634 * @success: pointer to whether polling was successful or not 1635 * 1636 * Polls the PHY status register for link, 'iterations' number of times. 1637 **/ 1638 s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations, 1639 u32 usec_interval, bool *success) 1640 { 1641 s32 ret_val = 0; 1642 u16 i, phy_status; 1643 1644 for (i = 0; i < iterations; i++) { 1645 /* Some PHYs require the PHY_STATUS register to be read 1646 * twice due to the link bit being sticky. No harm doing 1647 * it across the board. 1648 */ 1649 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); 1650 if (ret_val && usec_interval > 0) { 1651 /* If the first read fails, another entity may have 1652 * ownership of the resources, wait and try again to 1653 * see if they have relinquished the resources yet. 1654 */ 1655 if (usec_interval >= 1000) 1656 mdelay(usec_interval/1000); 1657 else 1658 udelay(usec_interval); 1659 } 1660 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); 1661 if (ret_val) 1662 break; 1663 if (phy_status & MII_SR_LINK_STATUS) 1664 break; 1665 if (usec_interval >= 1000) 1666 mdelay(usec_interval/1000); 1667 else 1668 udelay(usec_interval); 1669 } 1670 1671 *success = (i < iterations) ? true : false; 1672 1673 return ret_val; 1674 } 1675 1676 /** 1677 * igb_get_cable_length_m88 - Determine cable length for m88 PHY 1678 * @hw: pointer to the HW structure 1679 * 1680 * Reads the PHY specific status register to retrieve the cable length 1681 * information. The cable length is determined by averaging the minimum and 1682 * maximum values to get the "average" cable length. The m88 PHY has four 1683 * possible cable length values, which are: 1684 * Register Value Cable Length 1685 * 0 < 50 meters 1686 * 1 50 - 80 meters 1687 * 2 80 - 110 meters 1688 * 3 110 - 140 meters 1689 * 4 > 140 meters 1690 **/ 1691 s32 igb_get_cable_length_m88(struct e1000_hw *hw) 1692 { 1693 struct e1000_phy_info *phy = &hw->phy; 1694 s32 ret_val; 1695 u16 phy_data, index; 1696 1697 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 1698 if (ret_val) 1699 goto out; 1700 1701 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> 1702 M88E1000_PSSR_CABLE_LENGTH_SHIFT; 1703 if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) { 1704 ret_val = -E1000_ERR_PHY; 1705 goto out; 1706 } 1707 1708 phy->min_cable_length = e1000_m88_cable_length_table[index]; 1709 phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; 1710 1711 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; 1712 1713 out: 1714 return ret_val; 1715 } 1716 1717 s32 igb_get_cable_length_m88_gen2(struct e1000_hw *hw) 1718 { 1719 struct e1000_phy_info *phy = &hw->phy; 1720 s32 ret_val; 1721 u16 phy_data, phy_data2, index, default_page, is_cm; 1722 1723 switch (hw->phy.id) { 1724 case I210_I_PHY_ID: 1725 /* Get cable length from PHY Cable Diagnostics Control Reg */ 1726 ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) + 1727 (I347AT4_PCDL + phy->addr), 1728 &phy_data); 1729 if (ret_val) 1730 return ret_val; 1731 1732 /* Check if the unit of cable length is meters or cm */ 1733 ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) + 1734 I347AT4_PCDC, &phy_data2); 1735 if (ret_val) 1736 return ret_val; 1737 1738 is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT); 1739 1740 /* Populate the phy structure with cable length in meters */ 1741 phy->min_cable_length = phy_data / (is_cm ? 100 : 1); 1742 phy->max_cable_length = phy_data / (is_cm ? 100 : 1); 1743 phy->cable_length = phy_data / (is_cm ? 100 : 1); 1744 break; 1745 case M88E1543_E_PHY_ID: 1746 case I347AT4_E_PHY_ID: 1747 /* Remember the original page select and set it to 7 */ 1748 ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT, 1749 &default_page); 1750 if (ret_val) 1751 goto out; 1752 1753 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07); 1754 if (ret_val) 1755 goto out; 1756 1757 /* Get cable length from PHY Cable Diagnostics Control Reg */ 1758 ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr), 1759 &phy_data); 1760 if (ret_val) 1761 goto out; 1762 1763 /* Check if the unit of cable length is meters or cm */ 1764 ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2); 1765 if (ret_val) 1766 goto out; 1767 1768 is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT); 1769 1770 /* Populate the phy structure with cable length in meters */ 1771 phy->min_cable_length = phy_data / (is_cm ? 100 : 1); 1772 phy->max_cable_length = phy_data / (is_cm ? 100 : 1); 1773 phy->cable_length = phy_data / (is_cm ? 100 : 1); 1774 1775 /* Reset the page selec to its original value */ 1776 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 1777 default_page); 1778 if (ret_val) 1779 goto out; 1780 break; 1781 case M88E1112_E_PHY_ID: 1782 /* Remember the original page select and set it to 5 */ 1783 ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT, 1784 &default_page); 1785 if (ret_val) 1786 goto out; 1787 1788 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05); 1789 if (ret_val) 1790 goto out; 1791 1792 ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE, 1793 &phy_data); 1794 if (ret_val) 1795 goto out; 1796 1797 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> 1798 M88E1000_PSSR_CABLE_LENGTH_SHIFT; 1799 if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) { 1800 ret_val = -E1000_ERR_PHY; 1801 goto out; 1802 } 1803 1804 phy->min_cable_length = e1000_m88_cable_length_table[index]; 1805 phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; 1806 1807 phy->cable_length = (phy->min_cable_length + 1808 phy->max_cable_length) / 2; 1809 1810 /* Reset the page select to its original value */ 1811 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 1812 default_page); 1813 if (ret_val) 1814 goto out; 1815 1816 break; 1817 default: 1818 ret_val = -E1000_ERR_PHY; 1819 goto out; 1820 } 1821 1822 out: 1823 return ret_val; 1824 } 1825 1826 /** 1827 * igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY 1828 * @hw: pointer to the HW structure 1829 * 1830 * The automatic gain control (agc) normalizes the amplitude of the 1831 * received signal, adjusting for the attenuation produced by the 1832 * cable. By reading the AGC registers, which represent the 1833 * combination of coarse and fine gain value, the value can be put 1834 * into a lookup table to obtain the approximate cable length 1835 * for each channel. 1836 **/ 1837 s32 igb_get_cable_length_igp_2(struct e1000_hw *hw) 1838 { 1839 struct e1000_phy_info *phy = &hw->phy; 1840 s32 ret_val = 0; 1841 u16 phy_data, i, agc_value = 0; 1842 u16 cur_agc_index, max_agc_index = 0; 1843 u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1; 1844 static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = { 1845 IGP02E1000_PHY_AGC_A, 1846 IGP02E1000_PHY_AGC_B, 1847 IGP02E1000_PHY_AGC_C, 1848 IGP02E1000_PHY_AGC_D 1849 }; 1850 1851 /* Read the AGC registers for all channels */ 1852 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { 1853 ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data); 1854 if (ret_val) 1855 goto out; 1856 1857 /* Getting bits 15:9, which represent the combination of 1858 * coarse and fine gain values. The result is a number 1859 * that can be put into the lookup table to obtain the 1860 * approximate cable length. 1861 */ 1862 cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & 1863 IGP02E1000_AGC_LENGTH_MASK; 1864 1865 /* Array index bound check. */ 1866 if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) || 1867 (cur_agc_index == 0)) { 1868 ret_val = -E1000_ERR_PHY; 1869 goto out; 1870 } 1871 1872 /* Remove min & max AGC values from calculation. */ 1873 if (e1000_igp_2_cable_length_table[min_agc_index] > 1874 e1000_igp_2_cable_length_table[cur_agc_index]) 1875 min_agc_index = cur_agc_index; 1876 if (e1000_igp_2_cable_length_table[max_agc_index] < 1877 e1000_igp_2_cable_length_table[cur_agc_index]) 1878 max_agc_index = cur_agc_index; 1879 1880 agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; 1881 } 1882 1883 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + 1884 e1000_igp_2_cable_length_table[max_agc_index]); 1885 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); 1886 1887 /* Calculate cable length with the error range of +/- 10 meters. */ 1888 phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ? 1889 (agc_value - IGP02E1000_AGC_RANGE) : 0; 1890 phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE; 1891 1892 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; 1893 1894 out: 1895 return ret_val; 1896 } 1897 1898 /** 1899 * igb_get_phy_info_m88 - Retrieve PHY information 1900 * @hw: pointer to the HW structure 1901 * 1902 * Valid for only copper links. Read the PHY status register (sticky read) 1903 * to verify that link is up. Read the PHY special control register to 1904 * determine the polarity and 10base-T extended distance. Read the PHY 1905 * special status register to determine MDI/MDIx and current speed. If 1906 * speed is 1000, then determine cable length, local and remote receiver. 1907 **/ 1908 s32 igb_get_phy_info_m88(struct e1000_hw *hw) 1909 { 1910 struct e1000_phy_info *phy = &hw->phy; 1911 s32 ret_val; 1912 u16 phy_data; 1913 bool link; 1914 1915 if (phy->media_type != e1000_media_type_copper) { 1916 hw_dbg("Phy info is only valid for copper media\n"); 1917 ret_val = -E1000_ERR_CONFIG; 1918 goto out; 1919 } 1920 1921 ret_val = igb_phy_has_link(hw, 1, 0, &link); 1922 if (ret_val) 1923 goto out; 1924 1925 if (!link) { 1926 hw_dbg("Phy info is only valid if link is up\n"); 1927 ret_val = -E1000_ERR_CONFIG; 1928 goto out; 1929 } 1930 1931 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 1932 if (ret_val) 1933 goto out; 1934 1935 phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL) 1936 ? true : false; 1937 1938 ret_val = igb_check_polarity_m88(hw); 1939 if (ret_val) 1940 goto out; 1941 1942 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 1943 if (ret_val) 1944 goto out; 1945 1946 phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false; 1947 1948 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { 1949 ret_val = phy->ops.get_cable_length(hw); 1950 if (ret_val) 1951 goto out; 1952 1953 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data); 1954 if (ret_val) 1955 goto out; 1956 1957 phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) 1958 ? e1000_1000t_rx_status_ok 1959 : e1000_1000t_rx_status_not_ok; 1960 1961 phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) 1962 ? e1000_1000t_rx_status_ok 1963 : e1000_1000t_rx_status_not_ok; 1964 } else { 1965 /* Set values to "undefined" */ 1966 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; 1967 phy->local_rx = e1000_1000t_rx_status_undefined; 1968 phy->remote_rx = e1000_1000t_rx_status_undefined; 1969 } 1970 1971 out: 1972 return ret_val; 1973 } 1974 1975 /** 1976 * igb_get_phy_info_igp - Retrieve igp PHY information 1977 * @hw: pointer to the HW structure 1978 * 1979 * Read PHY status to determine if link is up. If link is up, then 1980 * set/determine 10base-T extended distance and polarity correction. Read 1981 * PHY port status to determine MDI/MDIx and speed. Based on the speed, 1982 * determine on the cable length, local and remote receiver. 1983 **/ 1984 s32 igb_get_phy_info_igp(struct e1000_hw *hw) 1985 { 1986 struct e1000_phy_info *phy = &hw->phy; 1987 s32 ret_val; 1988 u16 data; 1989 bool link; 1990 1991 ret_val = igb_phy_has_link(hw, 1, 0, &link); 1992 if (ret_val) 1993 goto out; 1994 1995 if (!link) { 1996 hw_dbg("Phy info is only valid if link is up\n"); 1997 ret_val = -E1000_ERR_CONFIG; 1998 goto out; 1999 } 2000 2001 phy->polarity_correction = true; 2002 2003 ret_val = igb_check_polarity_igp(hw); 2004 if (ret_val) 2005 goto out; 2006 2007 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data); 2008 if (ret_val) 2009 goto out; 2010 2011 phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false; 2012 2013 if ((data & IGP01E1000_PSSR_SPEED_MASK) == 2014 IGP01E1000_PSSR_SPEED_1000MBPS) { 2015 ret_val = phy->ops.get_cable_length(hw); 2016 if (ret_val) 2017 goto out; 2018 2019 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data); 2020 if (ret_val) 2021 goto out; 2022 2023 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) 2024 ? e1000_1000t_rx_status_ok 2025 : e1000_1000t_rx_status_not_ok; 2026 2027 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) 2028 ? e1000_1000t_rx_status_ok 2029 : e1000_1000t_rx_status_not_ok; 2030 } else { 2031 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; 2032 phy->local_rx = e1000_1000t_rx_status_undefined; 2033 phy->remote_rx = e1000_1000t_rx_status_undefined; 2034 } 2035 2036 out: 2037 return ret_val; 2038 } 2039 2040 /** 2041 * igb_phy_sw_reset - PHY software reset 2042 * @hw: pointer to the HW structure 2043 * 2044 * Does a software reset of the PHY by reading the PHY control register and 2045 * setting/write the control register reset bit to the PHY. 2046 **/ 2047 s32 igb_phy_sw_reset(struct e1000_hw *hw) 2048 { 2049 s32 ret_val = 0; 2050 u16 phy_ctrl; 2051 2052 if (!(hw->phy.ops.read_reg)) 2053 goto out; 2054 2055 ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); 2056 if (ret_val) 2057 goto out; 2058 2059 phy_ctrl |= MII_CR_RESET; 2060 ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl); 2061 if (ret_val) 2062 goto out; 2063 2064 udelay(1); 2065 2066 out: 2067 return ret_val; 2068 } 2069 2070 /** 2071 * igb_phy_hw_reset - PHY hardware reset 2072 * @hw: pointer to the HW structure 2073 * 2074 * Verify the reset block is not blocking us from resetting. Acquire 2075 * semaphore (if necessary) and read/set/write the device control reset 2076 * bit in the PHY. Wait the appropriate delay time for the device to 2077 * reset and release the semaphore (if necessary). 2078 **/ 2079 s32 igb_phy_hw_reset(struct e1000_hw *hw) 2080 { 2081 struct e1000_phy_info *phy = &hw->phy; 2082 s32 ret_val; 2083 u32 ctrl; 2084 2085 ret_val = igb_check_reset_block(hw); 2086 if (ret_val) { 2087 ret_val = 0; 2088 goto out; 2089 } 2090 2091 ret_val = phy->ops.acquire(hw); 2092 if (ret_val) 2093 goto out; 2094 2095 ctrl = rd32(E1000_CTRL); 2096 wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST); 2097 wrfl(); 2098 2099 udelay(phy->reset_delay_us); 2100 2101 wr32(E1000_CTRL, ctrl); 2102 wrfl(); 2103 2104 udelay(150); 2105 2106 phy->ops.release(hw); 2107 2108 ret_val = phy->ops.get_cfg_done(hw); 2109 2110 out: 2111 return ret_val; 2112 } 2113 2114 /** 2115 * igb_phy_init_script_igp3 - Inits the IGP3 PHY 2116 * @hw: pointer to the HW structure 2117 * 2118 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present. 2119 **/ 2120 s32 igb_phy_init_script_igp3(struct e1000_hw *hw) 2121 { 2122 hw_dbg("Running IGP 3 PHY init script\n"); 2123 2124 /* PHY init IGP 3 */ 2125 /* Enable rise/fall, 10-mode work in class-A */ 2126 hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018); 2127 /* Remove all caps from Replica path filter */ 2128 hw->phy.ops.write_reg(hw, 0x2F52, 0x0000); 2129 /* Bias trimming for ADC, AFE and Driver (Default) */ 2130 hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24); 2131 /* Increase Hybrid poly bias */ 2132 hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0); 2133 /* Add 4% to TX amplitude in Giga mode */ 2134 hw->phy.ops.write_reg(hw, 0x2010, 0x10B0); 2135 /* Disable trimming (TTT) */ 2136 hw->phy.ops.write_reg(hw, 0x2011, 0x0000); 2137 /* Poly DC correction to 94.6% + 2% for all channels */ 2138 hw->phy.ops.write_reg(hw, 0x20DD, 0x249A); 2139 /* ABS DC correction to 95.9% */ 2140 hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3); 2141 /* BG temp curve trim */ 2142 hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE); 2143 /* Increasing ADC OPAMP stage 1 currents to max */ 2144 hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4); 2145 /* Force 1000 ( required for enabling PHY regs configuration) */ 2146 hw->phy.ops.write_reg(hw, 0x0000, 0x0140); 2147 /* Set upd_freq to 6 */ 2148 hw->phy.ops.write_reg(hw, 0x1F30, 0x1606); 2149 /* Disable NPDFE */ 2150 hw->phy.ops.write_reg(hw, 0x1F31, 0xB814); 2151 /* Disable adaptive fixed FFE (Default) */ 2152 hw->phy.ops.write_reg(hw, 0x1F35, 0x002A); 2153 /* Enable FFE hysteresis */ 2154 hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067); 2155 /* Fixed FFE for short cable lengths */ 2156 hw->phy.ops.write_reg(hw, 0x1F54, 0x0065); 2157 /* Fixed FFE for medium cable lengths */ 2158 hw->phy.ops.write_reg(hw, 0x1F55, 0x002A); 2159 /* Fixed FFE for long cable lengths */ 2160 hw->phy.ops.write_reg(hw, 0x1F56, 0x002A); 2161 /* Enable Adaptive Clip Threshold */ 2162 hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0); 2163 /* AHT reset limit to 1 */ 2164 hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF); 2165 /* Set AHT master delay to 127 msec */ 2166 hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC); 2167 /* Set scan bits for AHT */ 2168 hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF); 2169 /* Set AHT Preset bits */ 2170 hw->phy.ops.write_reg(hw, 0x1F79, 0x0210); 2171 /* Change integ_factor of channel A to 3 */ 2172 hw->phy.ops.write_reg(hw, 0x1895, 0x0003); 2173 /* Change prop_factor of channels BCD to 8 */ 2174 hw->phy.ops.write_reg(hw, 0x1796, 0x0008); 2175 /* Change cg_icount + enable integbp for channels BCD */ 2176 hw->phy.ops.write_reg(hw, 0x1798, 0xD008); 2177 /* Change cg_icount + enable integbp + change prop_factor_master 2178 * to 8 for channel A 2179 */ 2180 hw->phy.ops.write_reg(hw, 0x1898, 0xD918); 2181 /* Disable AHT in Slave mode on channel A */ 2182 hw->phy.ops.write_reg(hw, 0x187A, 0x0800); 2183 /* Enable LPLU and disable AN to 1000 in non-D0a states, 2184 * Enable SPD+B2B 2185 */ 2186 hw->phy.ops.write_reg(hw, 0x0019, 0x008D); 2187 /* Enable restart AN on an1000_dis change */ 2188 hw->phy.ops.write_reg(hw, 0x001B, 0x2080); 2189 /* Enable wh_fifo read clock in 10/100 modes */ 2190 hw->phy.ops.write_reg(hw, 0x0014, 0x0045); 2191 /* Restart AN, Speed selection is 1000 */ 2192 hw->phy.ops.write_reg(hw, 0x0000, 0x1340); 2193 2194 return 0; 2195 } 2196 2197 /** 2198 * igb_power_up_phy_copper - Restore copper link in case of PHY power down 2199 * @hw: pointer to the HW structure 2200 * 2201 * In the case of a PHY power down to save power, or to turn off link during a 2202 * driver unload, restore the link to previous settings. 2203 **/ 2204 void igb_power_up_phy_copper(struct e1000_hw *hw) 2205 { 2206 u16 mii_reg = 0; 2207 2208 /* The PHY will retain its settings across a power down/up cycle */ 2209 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); 2210 mii_reg &= ~MII_CR_POWER_DOWN; 2211 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); 2212 } 2213 2214 /** 2215 * igb_power_down_phy_copper - Power down copper PHY 2216 * @hw: pointer to the HW structure 2217 * 2218 * Power down PHY to save power when interface is down and wake on lan 2219 * is not enabled. 2220 **/ 2221 void igb_power_down_phy_copper(struct e1000_hw *hw) 2222 { 2223 u16 mii_reg = 0; 2224 2225 /* The PHY will retain its settings across a power down/up cycle */ 2226 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); 2227 mii_reg |= MII_CR_POWER_DOWN; 2228 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); 2229 usleep_range(1000, 2000); 2230 } 2231 2232 /** 2233 * igb_check_polarity_82580 - Checks the polarity. 2234 * @hw: pointer to the HW structure 2235 * 2236 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 2237 * 2238 * Polarity is determined based on the PHY specific status register. 2239 **/ 2240 static s32 igb_check_polarity_82580(struct e1000_hw *hw) 2241 { 2242 struct e1000_phy_info *phy = &hw->phy; 2243 s32 ret_val; 2244 u16 data; 2245 2246 2247 ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data); 2248 2249 if (!ret_val) 2250 phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY) 2251 ? e1000_rev_polarity_reversed 2252 : e1000_rev_polarity_normal; 2253 2254 return ret_val; 2255 } 2256 2257 /** 2258 * igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY 2259 * @hw: pointer to the HW structure 2260 * 2261 * Calls the PHY setup function to force speed and duplex. Clears the 2262 * auto-crossover to force MDI manually. Waits for link and returns 2263 * successful if link up is successful, else -E1000_ERR_PHY (-2). 2264 **/ 2265 s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw) 2266 { 2267 struct e1000_phy_info *phy = &hw->phy; 2268 s32 ret_val; 2269 u16 phy_data; 2270 bool link; 2271 2272 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); 2273 if (ret_val) 2274 goto out; 2275 2276 igb_phy_force_speed_duplex_setup(hw, &phy_data); 2277 2278 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); 2279 if (ret_val) 2280 goto out; 2281 2282 /* Clear Auto-Crossover to force MDI manually. 82580 requires MDI 2283 * forced whenever speed and duplex are forced. 2284 */ 2285 ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data); 2286 if (ret_val) 2287 goto out; 2288 2289 phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK; 2290 2291 ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data); 2292 if (ret_val) 2293 goto out; 2294 2295 hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data); 2296 2297 udelay(1); 2298 2299 if (phy->autoneg_wait_to_complete) { 2300 hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n"); 2301 2302 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link); 2303 if (ret_val) 2304 goto out; 2305 2306 if (!link) 2307 hw_dbg("Link taking longer than expected.\n"); 2308 2309 /* Try once more */ 2310 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link); 2311 if (ret_val) 2312 goto out; 2313 } 2314 2315 out: 2316 return ret_val; 2317 } 2318 2319 /** 2320 * igb_get_phy_info_82580 - Retrieve I82580 PHY information 2321 * @hw: pointer to the HW structure 2322 * 2323 * Read PHY status to determine if link is up. If link is up, then 2324 * set/determine 10base-T extended distance and polarity correction. Read 2325 * PHY port status to determine MDI/MDIx and speed. Based on the speed, 2326 * determine on the cable length, local and remote receiver. 2327 **/ 2328 s32 igb_get_phy_info_82580(struct e1000_hw *hw) 2329 { 2330 struct e1000_phy_info *phy = &hw->phy; 2331 s32 ret_val; 2332 u16 data; 2333 bool link; 2334 2335 ret_val = igb_phy_has_link(hw, 1, 0, &link); 2336 if (ret_val) 2337 goto out; 2338 2339 if (!link) { 2340 hw_dbg("Phy info is only valid if link is up\n"); 2341 ret_val = -E1000_ERR_CONFIG; 2342 goto out; 2343 } 2344 2345 phy->polarity_correction = true; 2346 2347 ret_val = igb_check_polarity_82580(hw); 2348 if (ret_val) 2349 goto out; 2350 2351 ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data); 2352 if (ret_val) 2353 goto out; 2354 2355 phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false; 2356 2357 if ((data & I82580_PHY_STATUS2_SPEED_MASK) == 2358 I82580_PHY_STATUS2_SPEED_1000MBPS) { 2359 ret_val = hw->phy.ops.get_cable_length(hw); 2360 if (ret_val) 2361 goto out; 2362 2363 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data); 2364 if (ret_val) 2365 goto out; 2366 2367 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) 2368 ? e1000_1000t_rx_status_ok 2369 : e1000_1000t_rx_status_not_ok; 2370 2371 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) 2372 ? e1000_1000t_rx_status_ok 2373 : e1000_1000t_rx_status_not_ok; 2374 } else { 2375 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; 2376 phy->local_rx = e1000_1000t_rx_status_undefined; 2377 phy->remote_rx = e1000_1000t_rx_status_undefined; 2378 } 2379 2380 out: 2381 return ret_val; 2382 } 2383 2384 /** 2385 * igb_get_cable_length_82580 - Determine cable length for 82580 PHY 2386 * @hw: pointer to the HW structure 2387 * 2388 * Reads the diagnostic status register and verifies result is valid before 2389 * placing it in the phy_cable_length field. 2390 **/ 2391 s32 igb_get_cable_length_82580(struct e1000_hw *hw) 2392 { 2393 struct e1000_phy_info *phy = &hw->phy; 2394 s32 ret_val; 2395 u16 phy_data, length; 2396 2397 ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data); 2398 if (ret_val) 2399 goto out; 2400 2401 length = (phy_data & I82580_DSTATUS_CABLE_LENGTH) >> 2402 I82580_DSTATUS_CABLE_LENGTH_SHIFT; 2403 2404 if (length == E1000_CABLE_LENGTH_UNDEFINED) 2405 ret_val = -E1000_ERR_PHY; 2406 2407 phy->cable_length = length; 2408 2409 out: 2410 return ret_val; 2411 } 2412 2413 /** 2414 * igb_write_phy_reg_gs40g - Write GS40G PHY register 2415 * @hw: pointer to the HW structure 2416 * @offset: lower half is register offset to write to 2417 * upper half is page to use. 2418 * @data: data to write at register offset 2419 * 2420 * Acquires semaphore, if necessary, then writes the data to PHY register 2421 * at the offset. Release any acquired semaphores before exiting. 2422 **/ 2423 s32 igb_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data) 2424 { 2425 s32 ret_val; 2426 u16 page = offset >> GS40G_PAGE_SHIFT; 2427 2428 offset = offset & GS40G_OFFSET_MASK; 2429 ret_val = hw->phy.ops.acquire(hw); 2430 if (ret_val) 2431 return ret_val; 2432 2433 ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page); 2434 if (ret_val) 2435 goto release; 2436 ret_val = igb_write_phy_reg_mdic(hw, offset, data); 2437 2438 release: 2439 hw->phy.ops.release(hw); 2440 return ret_val; 2441 } 2442 2443 /** 2444 * igb_read_phy_reg_gs40g - Read GS40G PHY register 2445 * @hw: pointer to the HW structure 2446 * @offset: lower half is register offset to read to 2447 * upper half is page to use. 2448 * @data: data to read at register offset 2449 * 2450 * Acquires semaphore, if necessary, then reads the data in the PHY register 2451 * at the offset. Release any acquired semaphores before exiting. 2452 **/ 2453 s32 igb_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data) 2454 { 2455 s32 ret_val; 2456 u16 page = offset >> GS40G_PAGE_SHIFT; 2457 2458 offset = offset & GS40G_OFFSET_MASK; 2459 ret_val = hw->phy.ops.acquire(hw); 2460 if (ret_val) 2461 return ret_val; 2462 2463 ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page); 2464 if (ret_val) 2465 goto release; 2466 ret_val = igb_read_phy_reg_mdic(hw, offset, data); 2467 2468 release: 2469 hw->phy.ops.release(hw); 2470 return ret_val; 2471 } 2472 2473 /** 2474 * igb_set_master_slave_mode - Setup PHY for Master/slave mode 2475 * @hw: pointer to the HW structure 2476 * 2477 * Sets up Master/slave mode 2478 **/ 2479 static s32 igb_set_master_slave_mode(struct e1000_hw *hw) 2480 { 2481 s32 ret_val; 2482 u16 phy_data; 2483 2484 /* Resolve Master/Slave mode */ 2485 ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data); 2486 if (ret_val) 2487 return ret_val; 2488 2489 /* load defaults for future use */ 2490 hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ? 2491 ((phy_data & CR_1000T_MS_VALUE) ? 2492 e1000_ms_force_master : 2493 e1000_ms_force_slave) : e1000_ms_auto; 2494 2495 switch (hw->phy.ms_type) { 2496 case e1000_ms_force_master: 2497 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); 2498 break; 2499 case e1000_ms_force_slave: 2500 phy_data |= CR_1000T_MS_ENABLE; 2501 phy_data &= ~(CR_1000T_MS_VALUE); 2502 break; 2503 case e1000_ms_auto: 2504 phy_data &= ~CR_1000T_MS_ENABLE; 2505 /* fall-through */ 2506 default: 2507 break; 2508 } 2509 2510 return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data); 2511 } 2512