1 /*******************************************************************************
2 
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2013 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 #include <linux/if_ether.h>
29 #include <linux/delay.h>
30 
31 #include "e1000_mac.h"
32 #include "e1000_phy.h"
33 
34 static s32  igb_phy_setup_autoneg(struct e1000_hw *hw);
35 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
36 					     u16 *phy_ctrl);
37 static s32  igb_wait_autoneg(struct e1000_hw *hw);
38 static s32  igb_set_master_slave_mode(struct e1000_hw *hw);
39 
40 /* Cable length tables */
41 static const u16 e1000_m88_cable_length_table[] = {
42 	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
43 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
44 	(sizeof(e1000_m88_cable_length_table) / \
45 	sizeof(e1000_m88_cable_length_table[0]))
46 
47 static const u16 e1000_igp_2_cable_length_table[] = {
48 	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
49 	0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
50 	6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
51 	21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
52 	40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
53 	60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
54 	83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
55 	104, 109, 114, 118, 121, 124};
56 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
57 	(sizeof(e1000_igp_2_cable_length_table) / \
58 	 sizeof(e1000_igp_2_cable_length_table[0]))
59 
60 /**
61  *  igb_check_reset_block - Check if PHY reset is blocked
62  *  @hw: pointer to the HW structure
63  *
64  *  Read the PHY management control register and check whether a PHY reset
65  *  is blocked.  If a reset is not blocked return 0, otherwise
66  *  return E1000_BLK_PHY_RESET (12).
67  **/
68 s32 igb_check_reset_block(struct e1000_hw *hw)
69 {
70 	u32 manc;
71 
72 	manc = rd32(E1000_MANC);
73 
74 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
75 }
76 
77 /**
78  *  igb_get_phy_id - Retrieve the PHY ID and revision
79  *  @hw: pointer to the HW structure
80  *
81  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
82  *  revision in the hardware structure.
83  **/
84 s32 igb_get_phy_id(struct e1000_hw *hw)
85 {
86 	struct e1000_phy_info *phy = &hw->phy;
87 	s32 ret_val = 0;
88 	u16 phy_id;
89 
90 	ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
91 	if (ret_val)
92 		goto out;
93 
94 	phy->id = (u32)(phy_id << 16);
95 	udelay(20);
96 	ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
97 	if (ret_val)
98 		goto out;
99 
100 	phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
101 	phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
102 
103 out:
104 	return ret_val;
105 }
106 
107 /**
108  *  igb_phy_reset_dsp - Reset PHY DSP
109  *  @hw: pointer to the HW structure
110  *
111  *  Reset the digital signal processor.
112  **/
113 static s32 igb_phy_reset_dsp(struct e1000_hw *hw)
114 {
115 	s32 ret_val = 0;
116 
117 	if (!(hw->phy.ops.write_reg))
118 		goto out;
119 
120 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
121 	if (ret_val)
122 		goto out;
123 
124 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
125 
126 out:
127 	return ret_val;
128 }
129 
130 /**
131  *  igb_read_phy_reg_mdic - Read MDI control register
132  *  @hw: pointer to the HW structure
133  *  @offset: register offset to be read
134  *  @data: pointer to the read data
135  *
136  *  Reads the MDI control regsiter in the PHY at offset and stores the
137  *  information read to data.
138  **/
139 s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
140 {
141 	struct e1000_phy_info *phy = &hw->phy;
142 	u32 i, mdic = 0;
143 	s32 ret_val = 0;
144 
145 	if (offset > MAX_PHY_REG_ADDRESS) {
146 		hw_dbg("PHY Address %d is out of range\n", offset);
147 		ret_val = -E1000_ERR_PARAM;
148 		goto out;
149 	}
150 
151 	/* Set up Op-code, Phy Address, and register offset in the MDI
152 	 * Control register.  The MAC will take care of interfacing with the
153 	 * PHY to retrieve the desired data.
154 	 */
155 	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
156 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
157 		(E1000_MDIC_OP_READ));
158 
159 	wr32(E1000_MDIC, mdic);
160 
161 	/* Poll the ready bit to see if the MDI read completed
162 	 * Increasing the time out as testing showed failures with
163 	 * the lower time out
164 	 */
165 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
166 		udelay(50);
167 		mdic = rd32(E1000_MDIC);
168 		if (mdic & E1000_MDIC_READY)
169 			break;
170 	}
171 	if (!(mdic & E1000_MDIC_READY)) {
172 		hw_dbg("MDI Read did not complete\n");
173 		ret_val = -E1000_ERR_PHY;
174 		goto out;
175 	}
176 	if (mdic & E1000_MDIC_ERROR) {
177 		hw_dbg("MDI Error\n");
178 		ret_val = -E1000_ERR_PHY;
179 		goto out;
180 	}
181 	*data = (u16) mdic;
182 
183 out:
184 	return ret_val;
185 }
186 
187 /**
188  *  igb_write_phy_reg_mdic - Write MDI control register
189  *  @hw: pointer to the HW structure
190  *  @offset: register offset to write to
191  *  @data: data to write to register at offset
192  *
193  *  Writes data to MDI control register in the PHY at offset.
194  **/
195 s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
196 {
197 	struct e1000_phy_info *phy = &hw->phy;
198 	u32 i, mdic = 0;
199 	s32 ret_val = 0;
200 
201 	if (offset > MAX_PHY_REG_ADDRESS) {
202 		hw_dbg("PHY Address %d is out of range\n", offset);
203 		ret_val = -E1000_ERR_PARAM;
204 		goto out;
205 	}
206 
207 	/* Set up Op-code, Phy Address, and register offset in the MDI
208 	 * Control register.  The MAC will take care of interfacing with the
209 	 * PHY to retrieve the desired data.
210 	 */
211 	mdic = (((u32)data) |
212 		(offset << E1000_MDIC_REG_SHIFT) |
213 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
214 		(E1000_MDIC_OP_WRITE));
215 
216 	wr32(E1000_MDIC, mdic);
217 
218 	/* Poll the ready bit to see if the MDI read completed
219 	 * Increasing the time out as testing showed failures with
220 	 * the lower time out
221 	 */
222 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
223 		udelay(50);
224 		mdic = rd32(E1000_MDIC);
225 		if (mdic & E1000_MDIC_READY)
226 			break;
227 	}
228 	if (!(mdic & E1000_MDIC_READY)) {
229 		hw_dbg("MDI Write did not complete\n");
230 		ret_val = -E1000_ERR_PHY;
231 		goto out;
232 	}
233 	if (mdic & E1000_MDIC_ERROR) {
234 		hw_dbg("MDI Error\n");
235 		ret_val = -E1000_ERR_PHY;
236 		goto out;
237 	}
238 
239 out:
240 	return ret_val;
241 }
242 
243 /**
244  *  igb_read_phy_reg_i2c - Read PHY register using i2c
245  *  @hw: pointer to the HW structure
246  *  @offset: register offset to be read
247  *  @data: pointer to the read data
248  *
249  *  Reads the PHY register at offset using the i2c interface and stores the
250  *  retrieved information in data.
251  **/
252 s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
253 {
254 	struct e1000_phy_info *phy = &hw->phy;
255 	u32 i, i2ccmd = 0;
256 
257 	/* Set up Op-code, Phy Address, and register address in the I2CCMD
258 	 * register.  The MAC will take care of interfacing with the
259 	 * PHY to retrieve the desired data.
260 	 */
261 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
262 		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
263 		  (E1000_I2CCMD_OPCODE_READ));
264 
265 	wr32(E1000_I2CCMD, i2ccmd);
266 
267 	/* Poll the ready bit to see if the I2C read completed */
268 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
269 		udelay(50);
270 		i2ccmd = rd32(E1000_I2CCMD);
271 		if (i2ccmd & E1000_I2CCMD_READY)
272 			break;
273 	}
274 	if (!(i2ccmd & E1000_I2CCMD_READY)) {
275 		hw_dbg("I2CCMD Read did not complete\n");
276 		return -E1000_ERR_PHY;
277 	}
278 	if (i2ccmd & E1000_I2CCMD_ERROR) {
279 		hw_dbg("I2CCMD Error bit set\n");
280 		return -E1000_ERR_PHY;
281 	}
282 
283 	/* Need to byte-swap the 16-bit value. */
284 	*data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
285 
286 	return 0;
287 }
288 
289 /**
290  *  igb_write_phy_reg_i2c - Write PHY register using i2c
291  *  @hw: pointer to the HW structure
292  *  @offset: register offset to write to
293  *  @data: data to write at register offset
294  *
295  *  Writes the data to PHY register at the offset using the i2c interface.
296  **/
297 s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
298 {
299 	struct e1000_phy_info *phy = &hw->phy;
300 	u32 i, i2ccmd = 0;
301 	u16 phy_data_swapped;
302 
303 	/* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/
304 	if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) {
305 		hw_dbg("PHY I2C Address %d is out of range.\n",
306 			  hw->phy.addr);
307 		return -E1000_ERR_CONFIG;
308 	}
309 
310 	/* Swap the data bytes for the I2C interface */
311 	phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
312 
313 	/* Set up Op-code, Phy Address, and register address in the I2CCMD
314 	 * register.  The MAC will take care of interfacing with the
315 	 * PHY to retrieve the desired data.
316 	 */
317 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
318 		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
319 		  E1000_I2CCMD_OPCODE_WRITE |
320 		  phy_data_swapped);
321 
322 	wr32(E1000_I2CCMD, i2ccmd);
323 
324 	/* Poll the ready bit to see if the I2C read completed */
325 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
326 		udelay(50);
327 		i2ccmd = rd32(E1000_I2CCMD);
328 		if (i2ccmd & E1000_I2CCMD_READY)
329 			break;
330 	}
331 	if (!(i2ccmd & E1000_I2CCMD_READY)) {
332 		hw_dbg("I2CCMD Write did not complete\n");
333 		return -E1000_ERR_PHY;
334 	}
335 	if (i2ccmd & E1000_I2CCMD_ERROR) {
336 		hw_dbg("I2CCMD Error bit set\n");
337 		return -E1000_ERR_PHY;
338 	}
339 
340 	return 0;
341 }
342 
343 /**
344  *  igb_read_sfp_data_byte - Reads SFP module data.
345  *  @hw: pointer to the HW structure
346  *  @offset: byte location offset to be read
347  *  @data: read data buffer pointer
348  *
349  *  Reads one byte from SFP module data stored
350  *  in SFP resided EEPROM memory or SFP diagnostic area.
351  *  Function should be called with
352  *  E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
353  *  E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
354  *  access
355  **/
356 s32 igb_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data)
357 {
358 	u32 i = 0;
359 	u32 i2ccmd = 0;
360 	u32 data_local = 0;
361 
362 	if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
363 		hw_dbg("I2CCMD command address exceeds upper limit\n");
364 		return -E1000_ERR_PHY;
365 	}
366 
367 	/* Set up Op-code, EEPROM Address,in the I2CCMD
368 	 * register. The MAC will take care of interfacing with the
369 	 * EEPROM to retrieve the desired data.
370 	 */
371 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
372 		  E1000_I2CCMD_OPCODE_READ);
373 
374 	wr32(E1000_I2CCMD, i2ccmd);
375 
376 	/* Poll the ready bit to see if the I2C read completed */
377 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
378 		udelay(50);
379 		data_local = rd32(E1000_I2CCMD);
380 		if (data_local & E1000_I2CCMD_READY)
381 			break;
382 	}
383 	if (!(data_local & E1000_I2CCMD_READY)) {
384 		hw_dbg("I2CCMD Read did not complete\n");
385 		return -E1000_ERR_PHY;
386 	}
387 	if (data_local & E1000_I2CCMD_ERROR) {
388 		hw_dbg("I2CCMD Error bit set\n");
389 		return -E1000_ERR_PHY;
390 	}
391 	*data = (u8) data_local & 0xFF;
392 
393 	return 0;
394 }
395 
396 /**
397  *  e1000_write_sfp_data_byte - Writes SFP module data.
398  *  @hw: pointer to the HW structure
399  *  @offset: byte location offset to write to
400  *  @data: data to write
401  *
402  *  Writes one byte to SFP module data stored
403  *  in SFP resided EEPROM memory or SFP diagnostic area.
404  *  Function should be called with
405  *  E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
406  *  E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
407  *  access
408  **/
409 s32 e1000_write_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 data)
410 {
411 	u32 i = 0;
412 	u32 i2ccmd = 0;
413 	u32 data_local = 0;
414 
415 	if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
416 		hw_dbg("I2CCMD command address exceeds upper limit\n");
417 		return -E1000_ERR_PHY;
418 	}
419 	/* The programming interface is 16 bits wide
420 	 * so we need to read the whole word first
421 	 * then update appropriate byte lane and write
422 	 * the updated word back.
423 	 */
424 	/* Set up Op-code, EEPROM Address,in the I2CCMD
425 	 * register. The MAC will take care of interfacing
426 	 * with an EEPROM to write the data given.
427 	 */
428 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
429 		  E1000_I2CCMD_OPCODE_READ);
430 	/* Set a command to read single word */
431 	wr32(E1000_I2CCMD, i2ccmd);
432 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
433 		udelay(50);
434 		/* Poll the ready bit to see if lastly
435 		 * launched I2C operation completed
436 		 */
437 		i2ccmd = rd32(E1000_I2CCMD);
438 		if (i2ccmd & E1000_I2CCMD_READY) {
439 			/* Check if this is READ or WRITE phase */
440 			if ((i2ccmd & E1000_I2CCMD_OPCODE_READ) ==
441 			    E1000_I2CCMD_OPCODE_READ) {
442 				/* Write the selected byte
443 				 * lane and update whole word
444 				 */
445 				data_local = i2ccmd & 0xFF00;
446 				data_local |= data;
447 				i2ccmd = ((offset <<
448 					E1000_I2CCMD_REG_ADDR_SHIFT) |
449 					E1000_I2CCMD_OPCODE_WRITE | data_local);
450 				wr32(E1000_I2CCMD, i2ccmd);
451 			} else {
452 				break;
453 			}
454 		}
455 	}
456 	if (!(i2ccmd & E1000_I2CCMD_READY)) {
457 		hw_dbg("I2CCMD Write did not complete\n");
458 		return -E1000_ERR_PHY;
459 	}
460 	if (i2ccmd & E1000_I2CCMD_ERROR) {
461 		hw_dbg("I2CCMD Error bit set\n");
462 		return -E1000_ERR_PHY;
463 	}
464 	return 0;
465 }
466 
467 /**
468  *  igb_read_phy_reg_igp - Read igp PHY register
469  *  @hw: pointer to the HW structure
470  *  @offset: register offset to be read
471  *  @data: pointer to the read data
472  *
473  *  Acquires semaphore, if necessary, then reads the PHY register at offset
474  *  and storing the retrieved information in data.  Release any acquired
475  *  semaphores before exiting.
476  **/
477 s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
478 {
479 	s32 ret_val = 0;
480 
481 	if (!(hw->phy.ops.acquire))
482 		goto out;
483 
484 	ret_val = hw->phy.ops.acquire(hw);
485 	if (ret_val)
486 		goto out;
487 
488 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
489 		ret_val = igb_write_phy_reg_mdic(hw,
490 						 IGP01E1000_PHY_PAGE_SELECT,
491 						 (u16)offset);
492 		if (ret_val) {
493 			hw->phy.ops.release(hw);
494 			goto out;
495 		}
496 	}
497 
498 	ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
499 					data);
500 
501 	hw->phy.ops.release(hw);
502 
503 out:
504 	return ret_val;
505 }
506 
507 /**
508  *  igb_write_phy_reg_igp - Write igp PHY register
509  *  @hw: pointer to the HW structure
510  *  @offset: register offset to write to
511  *  @data: data to write at register offset
512  *
513  *  Acquires semaphore, if necessary, then writes the data to PHY register
514  *  at the offset.  Release any acquired semaphores before exiting.
515  **/
516 s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
517 {
518 	s32 ret_val = 0;
519 
520 	if (!(hw->phy.ops.acquire))
521 		goto out;
522 
523 	ret_val = hw->phy.ops.acquire(hw);
524 	if (ret_val)
525 		goto out;
526 
527 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
528 		ret_val = igb_write_phy_reg_mdic(hw,
529 						 IGP01E1000_PHY_PAGE_SELECT,
530 						 (u16)offset);
531 		if (ret_val) {
532 			hw->phy.ops.release(hw);
533 			goto out;
534 		}
535 	}
536 
537 	ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
538 					 data);
539 
540 	hw->phy.ops.release(hw);
541 
542 out:
543 	return ret_val;
544 }
545 
546 /**
547  *  igb_copper_link_setup_82580 - Setup 82580 PHY for copper link
548  *  @hw: pointer to the HW structure
549  *
550  *  Sets up Carrier-sense on Transmit and downshift values.
551  **/
552 s32 igb_copper_link_setup_82580(struct e1000_hw *hw)
553 {
554 	struct e1000_phy_info *phy = &hw->phy;
555 	s32 ret_val;
556 	u16 phy_data;
557 
558 	if (phy->reset_disable) {
559 		ret_val = 0;
560 		goto out;
561 	}
562 
563 	if (phy->type == e1000_phy_82580) {
564 		ret_val = hw->phy.ops.reset(hw);
565 		if (ret_val) {
566 			hw_dbg("Error resetting the PHY.\n");
567 			goto out;
568 		}
569 	}
570 
571 	/* Enable CRS on TX. This must be set for half-duplex operation. */
572 	ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data);
573 	if (ret_val)
574 		goto out;
575 
576 	phy_data |= I82580_CFG_ASSERT_CRS_ON_TX;
577 
578 	/* Enable downshift */
579 	phy_data |= I82580_CFG_ENABLE_DOWNSHIFT;
580 
581 	ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data);
582 	if (ret_val)
583 		goto out;
584 
585 	/* Set MDI/MDIX mode */
586 	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
587 	if (ret_val)
588 		goto out;
589 	phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
590 	/* Options:
591 	 *   0 - Auto (default)
592 	 *   1 - MDI mode
593 	 *   2 - MDI-X mode
594 	 */
595 	switch (hw->phy.mdix) {
596 	case 1:
597 		break;
598 	case 2:
599 		phy_data |= I82580_PHY_CTRL2_MANUAL_MDIX;
600 		break;
601 	case 0:
602 	default:
603 		phy_data |= I82580_PHY_CTRL2_AUTO_MDI_MDIX;
604 		break;
605 	}
606 	ret_val = hw->phy.ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
607 
608 out:
609 	return ret_val;
610 }
611 
612 /**
613  *  igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
614  *  @hw: pointer to the HW structure
615  *
616  *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
617  *  and downshift values are set also.
618  **/
619 s32 igb_copper_link_setup_m88(struct e1000_hw *hw)
620 {
621 	struct e1000_phy_info *phy = &hw->phy;
622 	s32 ret_val;
623 	u16 phy_data;
624 
625 	if (phy->reset_disable) {
626 		ret_val = 0;
627 		goto out;
628 	}
629 
630 	/* Enable CRS on TX. This must be set for half-duplex operation. */
631 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
632 	if (ret_val)
633 		goto out;
634 
635 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
636 
637 	/* Options:
638 	 *   MDI/MDI-X = 0 (default)
639 	 *   0 - Auto for all speeds
640 	 *   1 - MDI mode
641 	 *   2 - MDI-X mode
642 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
643 	 */
644 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
645 
646 	switch (phy->mdix) {
647 	case 1:
648 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
649 		break;
650 	case 2:
651 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
652 		break;
653 	case 3:
654 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
655 		break;
656 	case 0:
657 	default:
658 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
659 		break;
660 	}
661 
662 	/* Options:
663 	 *   disable_polarity_correction = 0 (default)
664 	 *       Automatic Correction for Reversed Cable Polarity
665 	 *   0 - Disabled
666 	 *   1 - Enabled
667 	 */
668 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
669 	if (phy->disable_polarity_correction == 1)
670 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
671 
672 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
673 	if (ret_val)
674 		goto out;
675 
676 	if (phy->revision < E1000_REVISION_4) {
677 		/* Force TX_CLK in the Extended PHY Specific Control Register
678 		 * to 25MHz clock.
679 		 */
680 		ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
681 					    &phy_data);
682 		if (ret_val)
683 			goto out;
684 
685 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
686 
687 		if ((phy->revision == E1000_REVISION_2) &&
688 		    (phy->id == M88E1111_I_PHY_ID)) {
689 			/* 82573L PHY - set the downshift counter to 5x. */
690 			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
691 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
692 		} else {
693 			/* Configure Master and Slave downshift values */
694 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
695 				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
696 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
697 				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
698 		}
699 		ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
700 					     phy_data);
701 		if (ret_val)
702 			goto out;
703 	}
704 
705 	/* Commit the changes. */
706 	ret_val = igb_phy_sw_reset(hw);
707 	if (ret_val) {
708 		hw_dbg("Error committing the PHY changes\n");
709 		goto out;
710 	}
711 
712 out:
713 	return ret_val;
714 }
715 
716 /**
717  *  igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
718  *  @hw: pointer to the HW structure
719  *
720  *  Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
721  *  Also enables and sets the downshift parameters.
722  **/
723 s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw)
724 {
725 	struct e1000_phy_info *phy = &hw->phy;
726 	s32 ret_val;
727 	u16 phy_data;
728 
729 	if (phy->reset_disable)
730 		return 0;
731 
732 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
733 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
734 	if (ret_val)
735 		return ret_val;
736 
737 	/* Options:
738 	 *   MDI/MDI-X = 0 (default)
739 	 *   0 - Auto for all speeds
740 	 *   1 - MDI mode
741 	 *   2 - MDI-X mode
742 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
743 	 */
744 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
745 
746 	switch (phy->mdix) {
747 	case 1:
748 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
749 		break;
750 	case 2:
751 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
752 		break;
753 	case 3:
754 		/* M88E1112 does not support this mode) */
755 		if (phy->id != M88E1112_E_PHY_ID) {
756 			phy_data |= M88E1000_PSCR_AUTO_X_1000T;
757 			break;
758 		}
759 	case 0:
760 	default:
761 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
762 		break;
763 	}
764 
765 	/* Options:
766 	 *   disable_polarity_correction = 0 (default)
767 	 *       Automatic Correction for Reversed Cable Polarity
768 	 *   0 - Disabled
769 	 *   1 - Enabled
770 	 */
771 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
772 	if (phy->disable_polarity_correction == 1)
773 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
774 
775 	/* Enable downshift and setting it to X6 */
776 	if (phy->id == M88E1543_E_PHY_ID) {
777 		phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE;
778 		ret_val =
779 		    phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
780 		if (ret_val)
781 			return ret_val;
782 
783 		ret_val = igb_phy_sw_reset(hw);
784 		if (ret_val) {
785 			hw_dbg("Error committing the PHY changes\n");
786 			return ret_val;
787 		}
788 	}
789 
790 	phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
791 	phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
792 	phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
793 
794 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
795 	if (ret_val)
796 		return ret_val;
797 
798 	/* Commit the changes. */
799 	ret_val = igb_phy_sw_reset(hw);
800 	if (ret_val) {
801 		hw_dbg("Error committing the PHY changes\n");
802 		return ret_val;
803 	}
804 	ret_val = igb_set_master_slave_mode(hw);
805 	if (ret_val)
806 		return ret_val;
807 
808 	return 0;
809 }
810 
811 /**
812  *  igb_copper_link_setup_igp - Setup igp PHY's for copper link
813  *  @hw: pointer to the HW structure
814  *
815  *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
816  *  igp PHY's.
817  **/
818 s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
819 {
820 	struct e1000_phy_info *phy = &hw->phy;
821 	s32 ret_val;
822 	u16 data;
823 
824 	if (phy->reset_disable) {
825 		ret_val = 0;
826 		goto out;
827 	}
828 
829 	ret_val = phy->ops.reset(hw);
830 	if (ret_val) {
831 		hw_dbg("Error resetting the PHY.\n");
832 		goto out;
833 	}
834 
835 	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
836 	 * timeout issues when LFS is enabled.
837 	 */
838 	msleep(100);
839 
840 	/* The NVM settings will configure LPLU in D3 for
841 	 * non-IGP1 PHYs.
842 	 */
843 	if (phy->type == e1000_phy_igp) {
844 		/* disable lplu d3 during driver init */
845 		if (phy->ops.set_d3_lplu_state)
846 			ret_val = phy->ops.set_d3_lplu_state(hw, false);
847 		if (ret_val) {
848 			hw_dbg("Error Disabling LPLU D3\n");
849 			goto out;
850 		}
851 	}
852 
853 	/* disable lplu d0 during driver init */
854 	ret_val = phy->ops.set_d0_lplu_state(hw, false);
855 	if (ret_val) {
856 		hw_dbg("Error Disabling LPLU D0\n");
857 		goto out;
858 	}
859 	/* Configure mdi-mdix settings */
860 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
861 	if (ret_val)
862 		goto out;
863 
864 	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
865 
866 	switch (phy->mdix) {
867 	case 1:
868 		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
869 		break;
870 	case 2:
871 		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
872 		break;
873 	case 0:
874 	default:
875 		data |= IGP01E1000_PSCR_AUTO_MDIX;
876 		break;
877 	}
878 	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
879 	if (ret_val)
880 		goto out;
881 
882 	/* set auto-master slave resolution settings */
883 	if (hw->mac.autoneg) {
884 		/* when autonegotiation advertisement is only 1000Mbps then we
885 		 * should disable SmartSpeed and enable Auto MasterSlave
886 		 * resolution as hardware default.
887 		 */
888 		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
889 			/* Disable SmartSpeed */
890 			ret_val = phy->ops.read_reg(hw,
891 						    IGP01E1000_PHY_PORT_CONFIG,
892 						    &data);
893 			if (ret_val)
894 				goto out;
895 
896 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
897 			ret_val = phy->ops.write_reg(hw,
898 						     IGP01E1000_PHY_PORT_CONFIG,
899 						     data);
900 			if (ret_val)
901 				goto out;
902 
903 			/* Set auto Master/Slave resolution process */
904 			ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
905 			if (ret_val)
906 				goto out;
907 
908 			data &= ~CR_1000T_MS_ENABLE;
909 			ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
910 			if (ret_val)
911 				goto out;
912 		}
913 
914 		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
915 		if (ret_val)
916 			goto out;
917 
918 		/* load defaults for future use */
919 		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
920 			((data & CR_1000T_MS_VALUE) ?
921 			e1000_ms_force_master :
922 			e1000_ms_force_slave) :
923 			e1000_ms_auto;
924 
925 		switch (phy->ms_type) {
926 		case e1000_ms_force_master:
927 			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
928 			break;
929 		case e1000_ms_force_slave:
930 			data |= CR_1000T_MS_ENABLE;
931 			data &= ~(CR_1000T_MS_VALUE);
932 			break;
933 		case e1000_ms_auto:
934 			data &= ~CR_1000T_MS_ENABLE;
935 		default:
936 			break;
937 		}
938 		ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
939 		if (ret_val)
940 			goto out;
941 	}
942 
943 out:
944 	return ret_val;
945 }
946 
947 /**
948  *  igb_copper_link_autoneg - Setup/Enable autoneg for copper link
949  *  @hw: pointer to the HW structure
950  *
951  *  Performs initial bounds checking on autoneg advertisement parameter, then
952  *  configure to advertise the full capability.  Setup the PHY to autoneg
953  *  and restart the negotiation process between the link partner.  If
954  *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
955  **/
956 static s32 igb_copper_link_autoneg(struct e1000_hw *hw)
957 {
958 	struct e1000_phy_info *phy = &hw->phy;
959 	s32 ret_val;
960 	u16 phy_ctrl;
961 
962 	/* Perform some bounds checking on the autoneg advertisement
963 	 * parameter.
964 	 */
965 	phy->autoneg_advertised &= phy->autoneg_mask;
966 
967 	/* If autoneg_advertised is zero, we assume it was not defaulted
968 	 * by the calling code so we set to advertise full capability.
969 	 */
970 	if (phy->autoneg_advertised == 0)
971 		phy->autoneg_advertised = phy->autoneg_mask;
972 
973 	hw_dbg("Reconfiguring auto-neg advertisement params\n");
974 	ret_val = igb_phy_setup_autoneg(hw);
975 	if (ret_val) {
976 		hw_dbg("Error Setting up Auto-Negotiation\n");
977 		goto out;
978 	}
979 	hw_dbg("Restarting Auto-Neg\n");
980 
981 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
982 	 * the Auto Neg Restart bit in the PHY control register.
983 	 */
984 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
985 	if (ret_val)
986 		goto out;
987 
988 	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
989 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
990 	if (ret_val)
991 		goto out;
992 
993 	/* Does the user want to wait for Auto-Neg to complete here, or
994 	 * check at a later time (for example, callback routine).
995 	 */
996 	if (phy->autoneg_wait_to_complete) {
997 		ret_val = igb_wait_autoneg(hw);
998 		if (ret_val) {
999 			hw_dbg("Error while waiting for "
1000 			       "autoneg to complete\n");
1001 			goto out;
1002 		}
1003 	}
1004 
1005 	hw->mac.get_link_status = true;
1006 
1007 out:
1008 	return ret_val;
1009 }
1010 
1011 /**
1012  *  igb_phy_setup_autoneg - Configure PHY for auto-negotiation
1013  *  @hw: pointer to the HW structure
1014  *
1015  *  Reads the MII auto-neg advertisement register and/or the 1000T control
1016  *  register and if the PHY is already setup for auto-negotiation, then
1017  *  return successful.  Otherwise, setup advertisement and flow control to
1018  *  the appropriate values for the wanted auto-negotiation.
1019  **/
1020 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
1021 {
1022 	struct e1000_phy_info *phy = &hw->phy;
1023 	s32 ret_val;
1024 	u16 mii_autoneg_adv_reg;
1025 	u16 mii_1000t_ctrl_reg = 0;
1026 
1027 	phy->autoneg_advertised &= phy->autoneg_mask;
1028 
1029 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
1030 	ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
1031 	if (ret_val)
1032 		goto out;
1033 
1034 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1035 		/* Read the MII 1000Base-T Control Register (Address 9). */
1036 		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
1037 					    &mii_1000t_ctrl_reg);
1038 		if (ret_val)
1039 			goto out;
1040 	}
1041 
1042 	/* Need to parse both autoneg_advertised and fc and set up
1043 	 * the appropriate PHY registers.  First we will parse for
1044 	 * autoneg_advertised software override.  Since we can advertise
1045 	 * a plethora of combinations, we need to check each bit
1046 	 * individually.
1047 	 */
1048 
1049 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
1050 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1051 	 * the  1000Base-T Control Register (Address 9).
1052 	 */
1053 	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
1054 				 NWAY_AR_100TX_HD_CAPS |
1055 				 NWAY_AR_10T_FD_CAPS   |
1056 				 NWAY_AR_10T_HD_CAPS);
1057 	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
1058 
1059 	hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
1060 
1061 	/* Do we want to advertise 10 Mb Half Duplex? */
1062 	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
1063 		hw_dbg("Advertise 10mb Half duplex\n");
1064 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1065 	}
1066 
1067 	/* Do we want to advertise 10 Mb Full Duplex? */
1068 	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
1069 		hw_dbg("Advertise 10mb Full duplex\n");
1070 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1071 	}
1072 
1073 	/* Do we want to advertise 100 Mb Half Duplex? */
1074 	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
1075 		hw_dbg("Advertise 100mb Half duplex\n");
1076 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1077 	}
1078 
1079 	/* Do we want to advertise 100 Mb Full Duplex? */
1080 	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
1081 		hw_dbg("Advertise 100mb Full duplex\n");
1082 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1083 	}
1084 
1085 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1086 	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1087 		hw_dbg("Advertise 1000mb Half duplex request denied!\n");
1088 
1089 	/* Do we want to advertise 1000 Mb Full Duplex? */
1090 	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1091 		hw_dbg("Advertise 1000mb Full duplex\n");
1092 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1093 	}
1094 
1095 	/* Check for a software override of the flow control settings, and
1096 	 * setup the PHY advertisement registers accordingly.  If
1097 	 * auto-negotiation is enabled, then software will have to set the
1098 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1099 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1100 	 * negotiation.
1101 	 *
1102 	 * The possible values of the "fc" parameter are:
1103 	 *      0:  Flow control is completely disabled
1104 	 *      1:  Rx flow control is enabled (we can receive pause frames
1105 	 *          but not send pause frames).
1106 	 *      2:  Tx flow control is enabled (we can send pause frames
1107 	 *          but we do not support receiving pause frames).
1108 	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
1109 	 *  other:  No software override.  The flow control configuration
1110 	 *          in the EEPROM is used.
1111 	 */
1112 	switch (hw->fc.current_mode) {
1113 	case e1000_fc_none:
1114 		/* Flow control (RX & TX) is completely disabled by a
1115 		 * software over-ride.
1116 		 */
1117 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1118 		break;
1119 	case e1000_fc_rx_pause:
1120 		/* RX Flow control is enabled, and TX Flow control is
1121 		 * disabled, by a software over-ride.
1122 		 *
1123 		 * Since there really isn't a way to advertise that we are
1124 		 * capable of RX Pause ONLY, we will advertise that we
1125 		 * support both symmetric and asymmetric RX PAUSE.  Later
1126 		 * (in e1000_config_fc_after_link_up) we will disable the
1127 		 * hw's ability to send PAUSE frames.
1128 		 */
1129 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1130 		break;
1131 	case e1000_fc_tx_pause:
1132 		/* TX Flow control is enabled, and RX Flow control is
1133 		 * disabled, by a software over-ride.
1134 		 */
1135 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1136 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1137 		break;
1138 	case e1000_fc_full:
1139 		/* Flow control (both RX and TX) is enabled by a software
1140 		 * over-ride.
1141 		 */
1142 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1143 		break;
1144 	default:
1145 		hw_dbg("Flow control param set incorrectly\n");
1146 		ret_val = -E1000_ERR_CONFIG;
1147 		goto out;
1148 	}
1149 
1150 	ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1151 	if (ret_val)
1152 		goto out;
1153 
1154 	hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1155 
1156 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1157 		ret_val = phy->ops.write_reg(hw,
1158 					     PHY_1000T_CTRL,
1159 					     mii_1000t_ctrl_reg);
1160 		if (ret_val)
1161 			goto out;
1162 	}
1163 
1164 out:
1165 	return ret_val;
1166 }
1167 
1168 /**
1169  *  igb_setup_copper_link - Configure copper link settings
1170  *  @hw: pointer to the HW structure
1171  *
1172  *  Calls the appropriate function to configure the link for auto-neg or forced
1173  *  speed and duplex.  Then we check for link, once link is established calls
1174  *  to configure collision distance and flow control are called.  If link is
1175  *  not established, we return -E1000_ERR_PHY (-2).
1176  **/
1177 s32 igb_setup_copper_link(struct e1000_hw *hw)
1178 {
1179 	s32 ret_val;
1180 	bool link;
1181 
1182 	if (hw->mac.autoneg) {
1183 		/* Setup autoneg and flow control advertisement and perform
1184 		 * autonegotiation.
1185 		 */
1186 		ret_val = igb_copper_link_autoneg(hw);
1187 		if (ret_val)
1188 			goto out;
1189 	} else {
1190 		/* PHY will be set to 10H, 10F, 100H or 100F
1191 		 * depending on user settings.
1192 		 */
1193 		hw_dbg("Forcing Speed and Duplex\n");
1194 		ret_val = hw->phy.ops.force_speed_duplex(hw);
1195 		if (ret_val) {
1196 			hw_dbg("Error Forcing Speed and Duplex\n");
1197 			goto out;
1198 		}
1199 	}
1200 
1201 	/* Check link status. Wait up to 100 microseconds for link to become
1202 	 * valid.
1203 	 */
1204 	ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
1205 	if (ret_val)
1206 		goto out;
1207 
1208 	if (link) {
1209 		hw_dbg("Valid link established!!!\n");
1210 		igb_config_collision_dist(hw);
1211 		ret_val = igb_config_fc_after_link_up(hw);
1212 	} else {
1213 		hw_dbg("Unable to establish link!!!\n");
1214 	}
1215 
1216 out:
1217 	return ret_val;
1218 }
1219 
1220 /**
1221  *  igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1222  *  @hw: pointer to the HW structure
1223  *
1224  *  Calls the PHY setup function to force speed and duplex.  Clears the
1225  *  auto-crossover to force MDI manually.  Waits for link and returns
1226  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1227  **/
1228 s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1229 {
1230 	struct e1000_phy_info *phy = &hw->phy;
1231 	s32 ret_val;
1232 	u16 phy_data;
1233 	bool link;
1234 
1235 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1236 	if (ret_val)
1237 		goto out;
1238 
1239 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1240 
1241 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1242 	if (ret_val)
1243 		goto out;
1244 
1245 	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1246 	 * forced whenever speed and duplex are forced.
1247 	 */
1248 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1249 	if (ret_val)
1250 		goto out;
1251 
1252 	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1253 	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1254 
1255 	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1256 	if (ret_val)
1257 		goto out;
1258 
1259 	hw_dbg("IGP PSCR: %X\n", phy_data);
1260 
1261 	udelay(1);
1262 
1263 	if (phy->autoneg_wait_to_complete) {
1264 		hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1265 
1266 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
1267 		if (ret_val)
1268 			goto out;
1269 
1270 		if (!link)
1271 			hw_dbg("Link taking longer than expected.\n");
1272 
1273 		/* Try once more */
1274 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
1275 		if (ret_val)
1276 			goto out;
1277 	}
1278 
1279 out:
1280 	return ret_val;
1281 }
1282 
1283 /**
1284  *  igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1285  *  @hw: pointer to the HW structure
1286  *
1287  *  Calls the PHY setup function to force speed and duplex.  Clears the
1288  *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1289  *  changes.  If time expires while waiting for link up, we reset the DSP.
1290  *  After reset, TX_CLK and CRS on TX must be set.  Return successful upon
1291  *  successful completion, else return corresponding error code.
1292  **/
1293 s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1294 {
1295 	struct e1000_phy_info *phy = &hw->phy;
1296 	s32 ret_val;
1297 	u16 phy_data;
1298 	bool link;
1299 
1300 	/* I210 and I211 devices support Auto-Crossover in forced operation. */
1301 	if (phy->type != e1000_phy_i210) {
1302 		/* Clear Auto-Crossover to force MDI manually.  M88E1000
1303 		 * requires MDI forced whenever speed and duplex are forced.
1304 		 */
1305 		ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL,
1306 					    &phy_data);
1307 		if (ret_val)
1308 			goto out;
1309 
1310 		phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1311 		ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
1312 					     phy_data);
1313 		if (ret_val)
1314 			goto out;
1315 
1316 		hw_dbg("M88E1000 PSCR: %X\n", phy_data);
1317 	}
1318 
1319 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1320 	if (ret_val)
1321 		goto out;
1322 
1323 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1324 
1325 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1326 	if (ret_val)
1327 		goto out;
1328 
1329 	/* Reset the phy to commit changes. */
1330 	ret_val = igb_phy_sw_reset(hw);
1331 	if (ret_val)
1332 		goto out;
1333 
1334 	if (phy->autoneg_wait_to_complete) {
1335 		hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1336 
1337 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
1338 		if (ret_val)
1339 			goto out;
1340 
1341 		if (!link) {
1342 			bool reset_dsp = true;
1343 
1344 			switch (hw->phy.id) {
1345 			case I347AT4_E_PHY_ID:
1346 			case M88E1112_E_PHY_ID:
1347 			case I210_I_PHY_ID:
1348 				reset_dsp = false;
1349 				break;
1350 			default:
1351 				if (hw->phy.type != e1000_phy_m88)
1352 					reset_dsp = false;
1353 				break;
1354 			}
1355 			if (!reset_dsp)
1356 				hw_dbg("Link taking longer than expected.\n");
1357 			else {
1358 				/* We didn't get link.
1359 				 * Reset the DSP and cross our fingers.
1360 				 */
1361 				ret_val = phy->ops.write_reg(hw,
1362 						M88E1000_PHY_PAGE_SELECT,
1363 						0x001d);
1364 				if (ret_val)
1365 					goto out;
1366 				ret_val = igb_phy_reset_dsp(hw);
1367 				if (ret_val)
1368 					goto out;
1369 			}
1370 		}
1371 
1372 		/* Try once more */
1373 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT,
1374 					   100000, &link);
1375 		if (ret_val)
1376 			goto out;
1377 	}
1378 
1379 	if (hw->phy.type != e1000_phy_m88 ||
1380 	    hw->phy.id == I347AT4_E_PHY_ID ||
1381 	    hw->phy.id == M88E1112_E_PHY_ID ||
1382 	    hw->phy.id == I210_I_PHY_ID)
1383 		goto out;
1384 
1385 	ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1386 	if (ret_val)
1387 		goto out;
1388 
1389 	/* Resetting the phy means we need to re-force TX_CLK in the
1390 	 * Extended PHY Specific Control Register to 25MHz clock from
1391 	 * the reset value of 2.5MHz.
1392 	 */
1393 	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1394 	ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1395 	if (ret_val)
1396 		goto out;
1397 
1398 	/* In addition, we must re-enable CRS on Tx for both half and full
1399 	 * duplex.
1400 	 */
1401 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1402 	if (ret_val)
1403 		goto out;
1404 
1405 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1406 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1407 
1408 out:
1409 	return ret_val;
1410 }
1411 
1412 /**
1413  *  igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1414  *  @hw: pointer to the HW structure
1415  *  @phy_ctrl: pointer to current value of PHY_CONTROL
1416  *
1417  *  Forces speed and duplex on the PHY by doing the following: disable flow
1418  *  control, force speed/duplex on the MAC, disable auto speed detection,
1419  *  disable auto-negotiation, configure duplex, configure speed, configure
1420  *  the collision distance, write configuration to CTRL register.  The
1421  *  caller must write to the PHY_CONTROL register for these settings to
1422  *  take affect.
1423  **/
1424 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
1425 					     u16 *phy_ctrl)
1426 {
1427 	struct e1000_mac_info *mac = &hw->mac;
1428 	u32 ctrl;
1429 
1430 	/* Turn off flow control when forcing speed/duplex */
1431 	hw->fc.current_mode = e1000_fc_none;
1432 
1433 	/* Force speed/duplex on the mac */
1434 	ctrl = rd32(E1000_CTRL);
1435 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1436 	ctrl &= ~E1000_CTRL_SPD_SEL;
1437 
1438 	/* Disable Auto Speed Detection */
1439 	ctrl &= ~E1000_CTRL_ASDE;
1440 
1441 	/* Disable autoneg on the phy */
1442 	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1443 
1444 	/* Forcing Full or Half Duplex? */
1445 	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1446 		ctrl &= ~E1000_CTRL_FD;
1447 		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1448 		hw_dbg("Half Duplex\n");
1449 	} else {
1450 		ctrl |= E1000_CTRL_FD;
1451 		*phy_ctrl |= MII_CR_FULL_DUPLEX;
1452 		hw_dbg("Full Duplex\n");
1453 	}
1454 
1455 	/* Forcing 10mb or 100mb? */
1456 	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1457 		ctrl |= E1000_CTRL_SPD_100;
1458 		*phy_ctrl |= MII_CR_SPEED_100;
1459 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1460 		hw_dbg("Forcing 100mb\n");
1461 	} else {
1462 		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1463 		*phy_ctrl |= MII_CR_SPEED_10;
1464 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1465 		hw_dbg("Forcing 10mb\n");
1466 	}
1467 
1468 	igb_config_collision_dist(hw);
1469 
1470 	wr32(E1000_CTRL, ctrl);
1471 }
1472 
1473 /**
1474  *  igb_set_d3_lplu_state - Sets low power link up state for D3
1475  *  @hw: pointer to the HW structure
1476  *  @active: boolean used to enable/disable lplu
1477  *
1478  *  Success returns 0, Failure returns 1
1479  *
1480  *  The low power link up (lplu) state is set to the power management level D3
1481  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1482  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1483  *  is used during Dx states where the power conservation is most important.
1484  *  During driver activity, SmartSpeed should be enabled so performance is
1485  *  maintained.
1486  **/
1487 s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1488 {
1489 	struct e1000_phy_info *phy = &hw->phy;
1490 	s32 ret_val = 0;
1491 	u16 data;
1492 
1493 	if (!(hw->phy.ops.read_reg))
1494 		goto out;
1495 
1496 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1497 	if (ret_val)
1498 		goto out;
1499 
1500 	if (!active) {
1501 		data &= ~IGP02E1000_PM_D3_LPLU;
1502 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1503 					     data);
1504 		if (ret_val)
1505 			goto out;
1506 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1507 		 * during Dx states where the power conservation is most
1508 		 * important.  During driver activity we should enable
1509 		 * SmartSpeed, so performance is maintained.
1510 		 */
1511 		if (phy->smart_speed == e1000_smart_speed_on) {
1512 			ret_val = phy->ops.read_reg(hw,
1513 						    IGP01E1000_PHY_PORT_CONFIG,
1514 						    &data);
1515 			if (ret_val)
1516 				goto out;
1517 
1518 			data |= IGP01E1000_PSCFR_SMART_SPEED;
1519 			ret_val = phy->ops.write_reg(hw,
1520 						     IGP01E1000_PHY_PORT_CONFIG,
1521 						     data);
1522 			if (ret_val)
1523 				goto out;
1524 		} else if (phy->smart_speed == e1000_smart_speed_off) {
1525 			ret_val = phy->ops.read_reg(hw,
1526 						     IGP01E1000_PHY_PORT_CONFIG,
1527 						     &data);
1528 			if (ret_val)
1529 				goto out;
1530 
1531 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1532 			ret_val = phy->ops.write_reg(hw,
1533 						     IGP01E1000_PHY_PORT_CONFIG,
1534 						     data);
1535 			if (ret_val)
1536 				goto out;
1537 		}
1538 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1539 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1540 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1541 		data |= IGP02E1000_PM_D3_LPLU;
1542 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1543 					      data);
1544 		if (ret_val)
1545 			goto out;
1546 
1547 		/* When LPLU is enabled, we should disable SmartSpeed */
1548 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1549 					    &data);
1550 		if (ret_val)
1551 			goto out;
1552 
1553 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1554 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1555 					     data);
1556 	}
1557 
1558 out:
1559 	return ret_val;
1560 }
1561 
1562 /**
1563  *  igb_check_downshift - Checks whether a downshift in speed occurred
1564  *  @hw: pointer to the HW structure
1565  *
1566  *  Success returns 0, Failure returns 1
1567  *
1568  *  A downshift is detected by querying the PHY link health.
1569  **/
1570 s32 igb_check_downshift(struct e1000_hw *hw)
1571 {
1572 	struct e1000_phy_info *phy = &hw->phy;
1573 	s32 ret_val;
1574 	u16 phy_data, offset, mask;
1575 
1576 	switch (phy->type) {
1577 	case e1000_phy_i210:
1578 	case e1000_phy_m88:
1579 	case e1000_phy_gg82563:
1580 		offset	= M88E1000_PHY_SPEC_STATUS;
1581 		mask	= M88E1000_PSSR_DOWNSHIFT;
1582 		break;
1583 	case e1000_phy_igp_2:
1584 	case e1000_phy_igp:
1585 	case e1000_phy_igp_3:
1586 		offset	= IGP01E1000_PHY_LINK_HEALTH;
1587 		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
1588 		break;
1589 	default:
1590 		/* speed downshift not supported */
1591 		phy->speed_downgraded = false;
1592 		ret_val = 0;
1593 		goto out;
1594 	}
1595 
1596 	ret_val = phy->ops.read_reg(hw, offset, &phy_data);
1597 
1598 	if (!ret_val)
1599 		phy->speed_downgraded = (phy_data & mask) ? true : false;
1600 
1601 out:
1602 	return ret_val;
1603 }
1604 
1605 /**
1606  *  igb_check_polarity_m88 - Checks the polarity.
1607  *  @hw: pointer to the HW structure
1608  *
1609  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1610  *
1611  *  Polarity is determined based on the PHY specific status register.
1612  **/
1613 s32 igb_check_polarity_m88(struct e1000_hw *hw)
1614 {
1615 	struct e1000_phy_info *phy = &hw->phy;
1616 	s32 ret_val;
1617 	u16 data;
1618 
1619 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
1620 
1621 	if (!ret_val)
1622 		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1623 				      ? e1000_rev_polarity_reversed
1624 				      : e1000_rev_polarity_normal;
1625 
1626 	return ret_val;
1627 }
1628 
1629 /**
1630  *  igb_check_polarity_igp - Checks the polarity.
1631  *  @hw: pointer to the HW structure
1632  *
1633  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1634  *
1635  *  Polarity is determined based on the PHY port status register, and the
1636  *  current speed (since there is no polarity at 100Mbps).
1637  **/
1638 static s32 igb_check_polarity_igp(struct e1000_hw *hw)
1639 {
1640 	struct e1000_phy_info *phy = &hw->phy;
1641 	s32 ret_val;
1642 	u16 data, offset, mask;
1643 
1644 	/* Polarity is determined based on the speed of
1645 	 * our connection.
1646 	 */
1647 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1648 	if (ret_val)
1649 		goto out;
1650 
1651 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1652 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1653 		offset	= IGP01E1000_PHY_PCS_INIT_REG;
1654 		mask	= IGP01E1000_PHY_POLARITY_MASK;
1655 	} else {
1656 		/* This really only applies to 10Mbps since
1657 		 * there is no polarity for 100Mbps (always 0).
1658 		 */
1659 		offset	= IGP01E1000_PHY_PORT_STATUS;
1660 		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
1661 	}
1662 
1663 	ret_val = phy->ops.read_reg(hw, offset, &data);
1664 
1665 	if (!ret_val)
1666 		phy->cable_polarity = (data & mask)
1667 				      ? e1000_rev_polarity_reversed
1668 				      : e1000_rev_polarity_normal;
1669 
1670 out:
1671 	return ret_val;
1672 }
1673 
1674 /**
1675  *  igb_wait_autoneg - Wait for auto-neg completion
1676  *  @hw: pointer to the HW structure
1677  *
1678  *  Waits for auto-negotiation to complete or for the auto-negotiation time
1679  *  limit to expire, which ever happens first.
1680  **/
1681 static s32 igb_wait_autoneg(struct e1000_hw *hw)
1682 {
1683 	s32 ret_val = 0;
1684 	u16 i, phy_status;
1685 
1686 	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1687 	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1688 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1689 		if (ret_val)
1690 			break;
1691 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1692 		if (ret_val)
1693 			break;
1694 		if (phy_status & MII_SR_AUTONEG_COMPLETE)
1695 			break;
1696 		msleep(100);
1697 	}
1698 
1699 	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1700 	 * has completed.
1701 	 */
1702 	return ret_val;
1703 }
1704 
1705 /**
1706  *  igb_phy_has_link - Polls PHY for link
1707  *  @hw: pointer to the HW structure
1708  *  @iterations: number of times to poll for link
1709  *  @usec_interval: delay between polling attempts
1710  *  @success: pointer to whether polling was successful or not
1711  *
1712  *  Polls the PHY status register for link, 'iterations' number of times.
1713  **/
1714 s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations,
1715 		     u32 usec_interval, bool *success)
1716 {
1717 	s32 ret_val = 0;
1718 	u16 i, phy_status;
1719 
1720 	for (i = 0; i < iterations; i++) {
1721 		/* Some PHYs require the PHY_STATUS register to be read
1722 		 * twice due to the link bit being sticky.  No harm doing
1723 		 * it across the board.
1724 		 */
1725 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1726 		if (ret_val && usec_interval > 0) {
1727 			/* If the first read fails, another entity may have
1728 			 * ownership of the resources, wait and try again to
1729 			 * see if they have relinquished the resources yet.
1730 			 */
1731 			if (usec_interval >= 1000)
1732 				mdelay(usec_interval/1000);
1733 			else
1734 				udelay(usec_interval);
1735 		}
1736 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1737 		if (ret_val)
1738 			break;
1739 		if (phy_status & MII_SR_LINK_STATUS)
1740 			break;
1741 		if (usec_interval >= 1000)
1742 			mdelay(usec_interval/1000);
1743 		else
1744 			udelay(usec_interval);
1745 	}
1746 
1747 	*success = (i < iterations) ? true : false;
1748 
1749 	return ret_val;
1750 }
1751 
1752 /**
1753  *  igb_get_cable_length_m88 - Determine cable length for m88 PHY
1754  *  @hw: pointer to the HW structure
1755  *
1756  *  Reads the PHY specific status register to retrieve the cable length
1757  *  information.  The cable length is determined by averaging the minimum and
1758  *  maximum values to get the "average" cable length.  The m88 PHY has four
1759  *  possible cable length values, which are:
1760  *	Register Value		Cable Length
1761  *	0			< 50 meters
1762  *	1			50 - 80 meters
1763  *	2			80 - 110 meters
1764  *	3			110 - 140 meters
1765  *	4			> 140 meters
1766  **/
1767 s32 igb_get_cable_length_m88(struct e1000_hw *hw)
1768 {
1769 	struct e1000_phy_info *phy = &hw->phy;
1770 	s32 ret_val;
1771 	u16 phy_data, index;
1772 
1773 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1774 	if (ret_val)
1775 		goto out;
1776 
1777 	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1778 		M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1779 	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1780 		ret_val = -E1000_ERR_PHY;
1781 		goto out;
1782 	}
1783 
1784 	phy->min_cable_length = e1000_m88_cable_length_table[index];
1785 	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1786 
1787 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1788 
1789 out:
1790 	return ret_val;
1791 }
1792 
1793 s32 igb_get_cable_length_m88_gen2(struct e1000_hw *hw)
1794 {
1795 	struct e1000_phy_info *phy = &hw->phy;
1796 	s32 ret_val;
1797 	u16 phy_data, phy_data2, index, default_page, is_cm;
1798 
1799 	switch (hw->phy.id) {
1800 	case I210_I_PHY_ID:
1801 		/* Get cable length from PHY Cable Diagnostics Control Reg */
1802 		ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
1803 					    (I347AT4_PCDL + phy->addr),
1804 					    &phy_data);
1805 		if (ret_val)
1806 			return ret_val;
1807 
1808 		/* Check if the unit of cable length is meters or cm */
1809 		ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
1810 					    I347AT4_PCDC, &phy_data2);
1811 		if (ret_val)
1812 			return ret_val;
1813 
1814 		is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1815 
1816 		/* Populate the phy structure with cable length in meters */
1817 		phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
1818 		phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
1819 		phy->cable_length = phy_data / (is_cm ? 100 : 1);
1820 		break;
1821 	case M88E1543_E_PHY_ID:
1822 	case I347AT4_E_PHY_ID:
1823 		/* Remember the original page select and set it to 7 */
1824 		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1825 					    &default_page);
1826 		if (ret_val)
1827 			goto out;
1828 
1829 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
1830 		if (ret_val)
1831 			goto out;
1832 
1833 		/* Get cable length from PHY Cable Diagnostics Control Reg */
1834 		ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr),
1835 					    &phy_data);
1836 		if (ret_val)
1837 			goto out;
1838 
1839 		/* Check if the unit of cable length is meters or cm */
1840 		ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
1841 		if (ret_val)
1842 			goto out;
1843 
1844 		is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1845 
1846 		/* Populate the phy structure with cable length in meters */
1847 		phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
1848 		phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
1849 		phy->cable_length = phy_data / (is_cm ? 100 : 1);
1850 
1851 		/* Reset the page selec to its original value */
1852 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1853 					     default_page);
1854 		if (ret_val)
1855 			goto out;
1856 		break;
1857 	case M88E1112_E_PHY_ID:
1858 		/* Remember the original page select and set it to 5 */
1859 		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1860 					    &default_page);
1861 		if (ret_val)
1862 			goto out;
1863 
1864 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
1865 		if (ret_val)
1866 			goto out;
1867 
1868 		ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
1869 					    &phy_data);
1870 		if (ret_val)
1871 			goto out;
1872 
1873 		index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1874 			M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1875 		if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
1876 			ret_val = -E1000_ERR_PHY;
1877 			goto out;
1878 		}
1879 
1880 		phy->min_cable_length = e1000_m88_cable_length_table[index];
1881 		phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1882 
1883 		phy->cable_length = (phy->min_cable_length +
1884 				     phy->max_cable_length) / 2;
1885 
1886 		/* Reset the page select to its original value */
1887 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1888 					     default_page);
1889 		if (ret_val)
1890 			goto out;
1891 
1892 		break;
1893 	default:
1894 		ret_val = -E1000_ERR_PHY;
1895 		goto out;
1896 	}
1897 
1898 out:
1899 	return ret_val;
1900 }
1901 
1902 /**
1903  *  igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1904  *  @hw: pointer to the HW structure
1905  *
1906  *  The automatic gain control (agc) normalizes the amplitude of the
1907  *  received signal, adjusting for the attenuation produced by the
1908  *  cable.  By reading the AGC registers, which represent the
1909  *  combination of coarse and fine gain value, the value can be put
1910  *  into a lookup table to obtain the approximate cable length
1911  *  for each channel.
1912  **/
1913 s32 igb_get_cable_length_igp_2(struct e1000_hw *hw)
1914 {
1915 	struct e1000_phy_info *phy = &hw->phy;
1916 	s32 ret_val = 0;
1917 	u16 phy_data, i, agc_value = 0;
1918 	u16 cur_agc_index, max_agc_index = 0;
1919 	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1920 	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1921 		IGP02E1000_PHY_AGC_A,
1922 		IGP02E1000_PHY_AGC_B,
1923 		IGP02E1000_PHY_AGC_C,
1924 		IGP02E1000_PHY_AGC_D
1925 	};
1926 
1927 	/* Read the AGC registers for all channels */
1928 	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1929 		ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
1930 		if (ret_val)
1931 			goto out;
1932 
1933 		/* Getting bits 15:9, which represent the combination of
1934 		 * coarse and fine gain values.  The result is a number
1935 		 * that can be put into the lookup table to obtain the
1936 		 * approximate cable length.
1937 		 */
1938 		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1939 				IGP02E1000_AGC_LENGTH_MASK;
1940 
1941 		/* Array index bound check. */
1942 		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1943 		    (cur_agc_index == 0)) {
1944 			ret_val = -E1000_ERR_PHY;
1945 			goto out;
1946 		}
1947 
1948 		/* Remove min & max AGC values from calculation. */
1949 		if (e1000_igp_2_cable_length_table[min_agc_index] >
1950 		    e1000_igp_2_cable_length_table[cur_agc_index])
1951 			min_agc_index = cur_agc_index;
1952 		if (e1000_igp_2_cable_length_table[max_agc_index] <
1953 		    e1000_igp_2_cable_length_table[cur_agc_index])
1954 			max_agc_index = cur_agc_index;
1955 
1956 		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1957 	}
1958 
1959 	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1960 		      e1000_igp_2_cable_length_table[max_agc_index]);
1961 	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1962 
1963 	/* Calculate cable length with the error range of +/- 10 meters. */
1964 	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1965 				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1966 	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1967 
1968 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1969 
1970 out:
1971 	return ret_val;
1972 }
1973 
1974 /**
1975  *  igb_get_phy_info_m88 - Retrieve PHY information
1976  *  @hw: pointer to the HW structure
1977  *
1978  *  Valid for only copper links.  Read the PHY status register (sticky read)
1979  *  to verify that link is up.  Read the PHY special control register to
1980  *  determine the polarity and 10base-T extended distance.  Read the PHY
1981  *  special status register to determine MDI/MDIx and current speed.  If
1982  *  speed is 1000, then determine cable length, local and remote receiver.
1983  **/
1984 s32 igb_get_phy_info_m88(struct e1000_hw *hw)
1985 {
1986 	struct e1000_phy_info *phy = &hw->phy;
1987 	s32  ret_val;
1988 	u16 phy_data;
1989 	bool link;
1990 
1991 	if (phy->media_type != e1000_media_type_copper) {
1992 		hw_dbg("Phy info is only valid for copper media\n");
1993 		ret_val = -E1000_ERR_CONFIG;
1994 		goto out;
1995 	}
1996 
1997 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
1998 	if (ret_val)
1999 		goto out;
2000 
2001 	if (!link) {
2002 		hw_dbg("Phy info is only valid if link is up\n");
2003 		ret_val = -E1000_ERR_CONFIG;
2004 		goto out;
2005 	}
2006 
2007 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
2008 	if (ret_val)
2009 		goto out;
2010 
2011 	phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
2012 				   ? true : false;
2013 
2014 	ret_val = igb_check_polarity_m88(hw);
2015 	if (ret_val)
2016 		goto out;
2017 
2018 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
2019 	if (ret_val)
2020 		goto out;
2021 
2022 	phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false;
2023 
2024 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
2025 		ret_val = phy->ops.get_cable_length(hw);
2026 		if (ret_val)
2027 			goto out;
2028 
2029 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
2030 		if (ret_val)
2031 			goto out;
2032 
2033 		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
2034 				? e1000_1000t_rx_status_ok
2035 				: e1000_1000t_rx_status_not_ok;
2036 
2037 		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
2038 				 ? e1000_1000t_rx_status_ok
2039 				 : e1000_1000t_rx_status_not_ok;
2040 	} else {
2041 		/* Set values to "undefined" */
2042 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2043 		phy->local_rx = e1000_1000t_rx_status_undefined;
2044 		phy->remote_rx = e1000_1000t_rx_status_undefined;
2045 	}
2046 
2047 out:
2048 	return ret_val;
2049 }
2050 
2051 /**
2052  *  igb_get_phy_info_igp - Retrieve igp PHY information
2053  *  @hw: pointer to the HW structure
2054  *
2055  *  Read PHY status to determine if link is up.  If link is up, then
2056  *  set/determine 10base-T extended distance and polarity correction.  Read
2057  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
2058  *  determine on the cable length, local and remote receiver.
2059  **/
2060 s32 igb_get_phy_info_igp(struct e1000_hw *hw)
2061 {
2062 	struct e1000_phy_info *phy = &hw->phy;
2063 	s32 ret_val;
2064 	u16 data;
2065 	bool link;
2066 
2067 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
2068 	if (ret_val)
2069 		goto out;
2070 
2071 	if (!link) {
2072 		hw_dbg("Phy info is only valid if link is up\n");
2073 		ret_val = -E1000_ERR_CONFIG;
2074 		goto out;
2075 	}
2076 
2077 	phy->polarity_correction = true;
2078 
2079 	ret_val = igb_check_polarity_igp(hw);
2080 	if (ret_val)
2081 		goto out;
2082 
2083 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2084 	if (ret_val)
2085 		goto out;
2086 
2087 	phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false;
2088 
2089 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2090 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
2091 		ret_val = phy->ops.get_cable_length(hw);
2092 		if (ret_val)
2093 			goto out;
2094 
2095 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2096 		if (ret_val)
2097 			goto out;
2098 
2099 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2100 				? e1000_1000t_rx_status_ok
2101 				: e1000_1000t_rx_status_not_ok;
2102 
2103 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2104 				 ? e1000_1000t_rx_status_ok
2105 				 : e1000_1000t_rx_status_not_ok;
2106 	} else {
2107 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2108 		phy->local_rx = e1000_1000t_rx_status_undefined;
2109 		phy->remote_rx = e1000_1000t_rx_status_undefined;
2110 	}
2111 
2112 out:
2113 	return ret_val;
2114 }
2115 
2116 /**
2117  *  igb_phy_sw_reset - PHY software reset
2118  *  @hw: pointer to the HW structure
2119  *
2120  *  Does a software reset of the PHY by reading the PHY control register and
2121  *  setting/write the control register reset bit to the PHY.
2122  **/
2123 s32 igb_phy_sw_reset(struct e1000_hw *hw)
2124 {
2125 	s32 ret_val = 0;
2126 	u16 phy_ctrl;
2127 
2128 	if (!(hw->phy.ops.read_reg))
2129 		goto out;
2130 
2131 	ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
2132 	if (ret_val)
2133 		goto out;
2134 
2135 	phy_ctrl |= MII_CR_RESET;
2136 	ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
2137 	if (ret_val)
2138 		goto out;
2139 
2140 	udelay(1);
2141 
2142 out:
2143 	return ret_val;
2144 }
2145 
2146 /**
2147  *  igb_phy_hw_reset - PHY hardware reset
2148  *  @hw: pointer to the HW structure
2149  *
2150  *  Verify the reset block is not blocking us from resetting.  Acquire
2151  *  semaphore (if necessary) and read/set/write the device control reset
2152  *  bit in the PHY.  Wait the appropriate delay time for the device to
2153  *  reset and release the semaphore (if necessary).
2154  **/
2155 s32 igb_phy_hw_reset(struct e1000_hw *hw)
2156 {
2157 	struct e1000_phy_info *phy = &hw->phy;
2158 	s32  ret_val;
2159 	u32 ctrl;
2160 
2161 	ret_val = igb_check_reset_block(hw);
2162 	if (ret_val) {
2163 		ret_val = 0;
2164 		goto out;
2165 	}
2166 
2167 	ret_val = phy->ops.acquire(hw);
2168 	if (ret_val)
2169 		goto out;
2170 
2171 	ctrl = rd32(E1000_CTRL);
2172 	wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
2173 	wrfl();
2174 
2175 	udelay(phy->reset_delay_us);
2176 
2177 	wr32(E1000_CTRL, ctrl);
2178 	wrfl();
2179 
2180 	udelay(150);
2181 
2182 	phy->ops.release(hw);
2183 
2184 	ret_val = phy->ops.get_cfg_done(hw);
2185 
2186 out:
2187 	return ret_val;
2188 }
2189 
2190 /**
2191  *  igb_phy_init_script_igp3 - Inits the IGP3 PHY
2192  *  @hw: pointer to the HW structure
2193  *
2194  *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2195  **/
2196 s32 igb_phy_init_script_igp3(struct e1000_hw *hw)
2197 {
2198 	hw_dbg("Running IGP 3 PHY init script\n");
2199 
2200 	/* PHY init IGP 3 */
2201 	/* Enable rise/fall, 10-mode work in class-A */
2202 	hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
2203 	/* Remove all caps from Replica path filter */
2204 	hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
2205 	/* Bias trimming for ADC, AFE and Driver (Default) */
2206 	hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
2207 	/* Increase Hybrid poly bias */
2208 	hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
2209 	/* Add 4% to TX amplitude in Giga mode */
2210 	hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
2211 	/* Disable trimming (TTT) */
2212 	hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
2213 	/* Poly DC correction to 94.6% + 2% for all channels */
2214 	hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
2215 	/* ABS DC correction to 95.9% */
2216 	hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
2217 	/* BG temp curve trim */
2218 	hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
2219 	/* Increasing ADC OPAMP stage 1 currents to max */
2220 	hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
2221 	/* Force 1000 ( required for enabling PHY regs configuration) */
2222 	hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
2223 	/* Set upd_freq to 6 */
2224 	hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
2225 	/* Disable NPDFE */
2226 	hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
2227 	/* Disable adaptive fixed FFE (Default) */
2228 	hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
2229 	/* Enable FFE hysteresis */
2230 	hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
2231 	/* Fixed FFE for short cable lengths */
2232 	hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
2233 	/* Fixed FFE for medium cable lengths */
2234 	hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
2235 	/* Fixed FFE for long cable lengths */
2236 	hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
2237 	/* Enable Adaptive Clip Threshold */
2238 	hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
2239 	/* AHT reset limit to 1 */
2240 	hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
2241 	/* Set AHT master delay to 127 msec */
2242 	hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
2243 	/* Set scan bits for AHT */
2244 	hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
2245 	/* Set AHT Preset bits */
2246 	hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
2247 	/* Change integ_factor of channel A to 3 */
2248 	hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
2249 	/* Change prop_factor of channels BCD to 8 */
2250 	hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
2251 	/* Change cg_icount + enable integbp for channels BCD */
2252 	hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
2253 	/* Change cg_icount + enable integbp + change prop_factor_master
2254 	 * to 8 for channel A
2255 	 */
2256 	hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
2257 	/* Disable AHT in Slave mode on channel A */
2258 	hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
2259 	/* Enable LPLU and disable AN to 1000 in non-D0a states,
2260 	 * Enable SPD+B2B
2261 	 */
2262 	hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
2263 	/* Enable restart AN on an1000_dis change */
2264 	hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
2265 	/* Enable wh_fifo read clock in 10/100 modes */
2266 	hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
2267 	/* Restart AN, Speed selection is 1000 */
2268 	hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
2269 
2270 	return 0;
2271 }
2272 
2273 /**
2274  * igb_power_up_phy_copper - Restore copper link in case of PHY power down
2275  * @hw: pointer to the HW structure
2276  *
2277  * In the case of a PHY power down to save power, or to turn off link during a
2278  * driver unload, restore the link to previous settings.
2279  **/
2280 void igb_power_up_phy_copper(struct e1000_hw *hw)
2281 {
2282 	u16 mii_reg = 0;
2283 	u16 power_reg = 0;
2284 
2285 	/* The PHY will retain its settings across a power down/up cycle */
2286 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2287 	mii_reg &= ~MII_CR_POWER_DOWN;
2288 	if (hw->phy.type == e1000_phy_i210) {
2289 		hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg);
2290 		power_reg &= ~GS40G_CS_POWER_DOWN;
2291 		hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg);
2292 	}
2293 	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2294 }
2295 
2296 /**
2297  * igb_power_down_phy_copper - Power down copper PHY
2298  * @hw: pointer to the HW structure
2299  *
2300  * Power down PHY to save power when interface is down and wake on lan
2301  * is not enabled.
2302  **/
2303 void igb_power_down_phy_copper(struct e1000_hw *hw)
2304 {
2305 	u16 mii_reg = 0;
2306 	u16 power_reg = 0;
2307 
2308 	/* The PHY will retain its settings across a power down/up cycle */
2309 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2310 	mii_reg |= MII_CR_POWER_DOWN;
2311 
2312 	/* i210 Phy requires an additional bit for power up/down */
2313 	if (hw->phy.type == e1000_phy_i210) {
2314 		hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg);
2315 		power_reg |= GS40G_CS_POWER_DOWN;
2316 		hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg);
2317 	}
2318 	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2319 	msleep(1);
2320 }
2321 
2322 /**
2323  *  igb_check_polarity_82580 - Checks the polarity.
2324  *  @hw: pointer to the HW structure
2325  *
2326  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2327  *
2328  *  Polarity is determined based on the PHY specific status register.
2329  **/
2330 static s32 igb_check_polarity_82580(struct e1000_hw *hw)
2331 {
2332 	struct e1000_phy_info *phy = &hw->phy;
2333 	s32 ret_val;
2334 	u16 data;
2335 
2336 
2337 	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2338 
2339 	if (!ret_val)
2340 		phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY)
2341 				      ? e1000_rev_polarity_reversed
2342 				      : e1000_rev_polarity_normal;
2343 
2344 	return ret_val;
2345 }
2346 
2347 /**
2348  *  igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY
2349  *  @hw: pointer to the HW structure
2350  *
2351  *  Calls the PHY setup function to force speed and duplex.  Clears the
2352  *  auto-crossover to force MDI manually.  Waits for link and returns
2353  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
2354  **/
2355 s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw)
2356 {
2357 	struct e1000_phy_info *phy = &hw->phy;
2358 	s32 ret_val;
2359 	u16 phy_data;
2360 	bool link;
2361 
2362 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
2363 	if (ret_val)
2364 		goto out;
2365 
2366 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
2367 
2368 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
2369 	if (ret_val)
2370 		goto out;
2371 
2372 	/* Clear Auto-Crossover to force MDI manually.  82580 requires MDI
2373 	 * forced whenever speed and duplex are forced.
2374 	 */
2375 	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
2376 	if (ret_val)
2377 		goto out;
2378 
2379 	phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
2380 
2381 	ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
2382 	if (ret_val)
2383 		goto out;
2384 
2385 	hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data);
2386 
2387 	udelay(1);
2388 
2389 	if (phy->autoneg_wait_to_complete) {
2390 		hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n");
2391 
2392 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2393 		if (ret_val)
2394 			goto out;
2395 
2396 		if (!link)
2397 			hw_dbg("Link taking longer than expected.\n");
2398 
2399 		/* Try once more */
2400 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2401 		if (ret_val)
2402 			goto out;
2403 	}
2404 
2405 out:
2406 	return ret_val;
2407 }
2408 
2409 /**
2410  *  igb_get_phy_info_82580 - Retrieve I82580 PHY information
2411  *  @hw: pointer to the HW structure
2412  *
2413  *  Read PHY status to determine if link is up.  If link is up, then
2414  *  set/determine 10base-T extended distance and polarity correction.  Read
2415  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
2416  *  determine on the cable length, local and remote receiver.
2417  **/
2418 s32 igb_get_phy_info_82580(struct e1000_hw *hw)
2419 {
2420 	struct e1000_phy_info *phy = &hw->phy;
2421 	s32 ret_val;
2422 	u16 data;
2423 	bool link;
2424 
2425 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
2426 	if (ret_val)
2427 		goto out;
2428 
2429 	if (!link) {
2430 		hw_dbg("Phy info is only valid if link is up\n");
2431 		ret_val = -E1000_ERR_CONFIG;
2432 		goto out;
2433 	}
2434 
2435 	phy->polarity_correction = true;
2436 
2437 	ret_val = igb_check_polarity_82580(hw);
2438 	if (ret_val)
2439 		goto out;
2440 
2441 	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2442 	if (ret_val)
2443 		goto out;
2444 
2445 	phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false;
2446 
2447 	if ((data & I82580_PHY_STATUS2_SPEED_MASK) ==
2448 	    I82580_PHY_STATUS2_SPEED_1000MBPS) {
2449 		ret_val = hw->phy.ops.get_cable_length(hw);
2450 		if (ret_val)
2451 			goto out;
2452 
2453 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2454 		if (ret_val)
2455 			goto out;
2456 
2457 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2458 				? e1000_1000t_rx_status_ok
2459 				: e1000_1000t_rx_status_not_ok;
2460 
2461 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2462 				 ? e1000_1000t_rx_status_ok
2463 				 : e1000_1000t_rx_status_not_ok;
2464 	} else {
2465 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2466 		phy->local_rx = e1000_1000t_rx_status_undefined;
2467 		phy->remote_rx = e1000_1000t_rx_status_undefined;
2468 	}
2469 
2470 out:
2471 	return ret_val;
2472 }
2473 
2474 /**
2475  *  igb_get_cable_length_82580 - Determine cable length for 82580 PHY
2476  *  @hw: pointer to the HW structure
2477  *
2478  * Reads the diagnostic status register and verifies result is valid before
2479  * placing it in the phy_cable_length field.
2480  **/
2481 s32 igb_get_cable_length_82580(struct e1000_hw *hw)
2482 {
2483 	struct e1000_phy_info *phy = &hw->phy;
2484 	s32 ret_val;
2485 	u16 phy_data, length;
2486 
2487 	ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data);
2488 	if (ret_val)
2489 		goto out;
2490 
2491 	length = (phy_data & I82580_DSTATUS_CABLE_LENGTH) >>
2492 		 I82580_DSTATUS_CABLE_LENGTH_SHIFT;
2493 
2494 	if (length == E1000_CABLE_LENGTH_UNDEFINED)
2495 		ret_val = -E1000_ERR_PHY;
2496 
2497 	phy->cable_length = length;
2498 
2499 out:
2500 	return ret_val;
2501 }
2502 
2503 /**
2504  *  igb_write_phy_reg_gs40g - Write GS40G PHY register
2505  *  @hw: pointer to the HW structure
2506  *  @offset: lower half is register offset to write to
2507  *     upper half is page to use.
2508  *  @data: data to write at register offset
2509  *
2510  *  Acquires semaphore, if necessary, then writes the data to PHY register
2511  *  at the offset.  Release any acquired semaphores before exiting.
2512  **/
2513 s32 igb_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data)
2514 {
2515 	s32 ret_val;
2516 	u16 page = offset >> GS40G_PAGE_SHIFT;
2517 
2518 	offset = offset & GS40G_OFFSET_MASK;
2519 	ret_val = hw->phy.ops.acquire(hw);
2520 	if (ret_val)
2521 		return ret_val;
2522 
2523 	ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
2524 	if (ret_val)
2525 		goto release;
2526 	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2527 
2528 release:
2529 	hw->phy.ops.release(hw);
2530 	return ret_val;
2531 }
2532 
2533 /**
2534  *  igb_read_phy_reg_gs40g - Read GS40G  PHY register
2535  *  @hw: pointer to the HW structure
2536  *  @offset: lower half is register offset to read to
2537  *     upper half is page to use.
2538  *  @data: data to read at register offset
2539  *
2540  *  Acquires semaphore, if necessary, then reads the data in the PHY register
2541  *  at the offset.  Release any acquired semaphores before exiting.
2542  **/
2543 s32 igb_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data)
2544 {
2545 	s32 ret_val;
2546 	u16 page = offset >> GS40G_PAGE_SHIFT;
2547 
2548 	offset = offset & GS40G_OFFSET_MASK;
2549 	ret_val = hw->phy.ops.acquire(hw);
2550 	if (ret_val)
2551 		return ret_val;
2552 
2553 	ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
2554 	if (ret_val)
2555 		goto release;
2556 	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2557 
2558 release:
2559 	hw->phy.ops.release(hw);
2560 	return ret_val;
2561 }
2562 
2563 /**
2564  *  igb_set_master_slave_mode - Setup PHY for Master/slave mode
2565  *  @hw: pointer to the HW structure
2566  *
2567  *  Sets up Master/slave mode
2568  **/
2569 static s32 igb_set_master_slave_mode(struct e1000_hw *hw)
2570 {
2571 	s32 ret_val;
2572 	u16 phy_data;
2573 
2574 	/* Resolve Master/Slave mode */
2575 	ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data);
2576 	if (ret_val)
2577 		return ret_val;
2578 
2579 	/* load defaults for future use */
2580 	hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
2581 				   ((phy_data & CR_1000T_MS_VALUE) ?
2582 				    e1000_ms_force_master :
2583 				    e1000_ms_force_slave) : e1000_ms_auto;
2584 
2585 	switch (hw->phy.ms_type) {
2586 	case e1000_ms_force_master:
2587 		phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2588 		break;
2589 	case e1000_ms_force_slave:
2590 		phy_data |= CR_1000T_MS_ENABLE;
2591 		phy_data &= ~(CR_1000T_MS_VALUE);
2592 		break;
2593 	case e1000_ms_auto:
2594 		phy_data &= ~CR_1000T_MS_ENABLE;
2595 		/* fall-through */
2596 	default:
2597 		break;
2598 	}
2599 
2600 	return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data);
2601 }
2602