1 /******************************************************************************* 2 3 Intel(R) Gigabit Ethernet Linux driver 4 Copyright(c) 2007-2013 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 25 26 *******************************************************************************/ 27 28 #include <linux/if_ether.h> 29 #include <linux/delay.h> 30 31 #include "e1000_mac.h" 32 #include "e1000_phy.h" 33 34 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw); 35 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw, 36 u16 *phy_ctrl); 37 static s32 igb_wait_autoneg(struct e1000_hw *hw); 38 static s32 igb_set_master_slave_mode(struct e1000_hw *hw); 39 40 /* Cable length tables */ 41 static const u16 e1000_m88_cable_length_table[] = { 42 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED }; 43 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \ 44 (sizeof(e1000_m88_cable_length_table) / \ 45 sizeof(e1000_m88_cable_length_table[0])) 46 47 static const u16 e1000_igp_2_cable_length_table[] = { 48 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 49 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 50 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 51 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 52 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 53 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 54 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124, 55 104, 109, 114, 118, 121, 124}; 56 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \ 57 (sizeof(e1000_igp_2_cable_length_table) / \ 58 sizeof(e1000_igp_2_cable_length_table[0])) 59 60 /** 61 * igb_check_reset_block - Check if PHY reset is blocked 62 * @hw: pointer to the HW structure 63 * 64 * Read the PHY management control register and check whether a PHY reset 65 * is blocked. If a reset is not blocked return 0, otherwise 66 * return E1000_BLK_PHY_RESET (12). 67 **/ 68 s32 igb_check_reset_block(struct e1000_hw *hw) 69 { 70 u32 manc; 71 72 manc = rd32(E1000_MANC); 73 74 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0; 75 } 76 77 /** 78 * igb_get_phy_id - Retrieve the PHY ID and revision 79 * @hw: pointer to the HW structure 80 * 81 * Reads the PHY registers and stores the PHY ID and possibly the PHY 82 * revision in the hardware structure. 83 **/ 84 s32 igb_get_phy_id(struct e1000_hw *hw) 85 { 86 struct e1000_phy_info *phy = &hw->phy; 87 s32 ret_val = 0; 88 u16 phy_id; 89 90 ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id); 91 if (ret_val) 92 goto out; 93 94 phy->id = (u32)(phy_id << 16); 95 udelay(20); 96 ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id); 97 if (ret_val) 98 goto out; 99 100 phy->id |= (u32)(phy_id & PHY_REVISION_MASK); 101 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); 102 103 out: 104 return ret_val; 105 } 106 107 /** 108 * igb_phy_reset_dsp - Reset PHY DSP 109 * @hw: pointer to the HW structure 110 * 111 * Reset the digital signal processor. 112 **/ 113 static s32 igb_phy_reset_dsp(struct e1000_hw *hw) 114 { 115 s32 ret_val = 0; 116 117 if (!(hw->phy.ops.write_reg)) 118 goto out; 119 120 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1); 121 if (ret_val) 122 goto out; 123 124 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0); 125 126 out: 127 return ret_val; 128 } 129 130 /** 131 * igb_read_phy_reg_mdic - Read MDI control register 132 * @hw: pointer to the HW structure 133 * @offset: register offset to be read 134 * @data: pointer to the read data 135 * 136 * Reads the MDI control regsiter in the PHY at offset and stores the 137 * information read to data. 138 **/ 139 s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data) 140 { 141 struct e1000_phy_info *phy = &hw->phy; 142 u32 i, mdic = 0; 143 s32 ret_val = 0; 144 145 if (offset > MAX_PHY_REG_ADDRESS) { 146 hw_dbg("PHY Address %d is out of range\n", offset); 147 ret_val = -E1000_ERR_PARAM; 148 goto out; 149 } 150 151 /* Set up Op-code, Phy Address, and register offset in the MDI 152 * Control register. The MAC will take care of interfacing with the 153 * PHY to retrieve the desired data. 154 */ 155 mdic = ((offset << E1000_MDIC_REG_SHIFT) | 156 (phy->addr << E1000_MDIC_PHY_SHIFT) | 157 (E1000_MDIC_OP_READ)); 158 159 wr32(E1000_MDIC, mdic); 160 161 /* Poll the ready bit to see if the MDI read completed 162 * Increasing the time out as testing showed failures with 163 * the lower time out 164 */ 165 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { 166 udelay(50); 167 mdic = rd32(E1000_MDIC); 168 if (mdic & E1000_MDIC_READY) 169 break; 170 } 171 if (!(mdic & E1000_MDIC_READY)) { 172 hw_dbg("MDI Read did not complete\n"); 173 ret_val = -E1000_ERR_PHY; 174 goto out; 175 } 176 if (mdic & E1000_MDIC_ERROR) { 177 hw_dbg("MDI Error\n"); 178 ret_val = -E1000_ERR_PHY; 179 goto out; 180 } 181 *data = (u16) mdic; 182 183 out: 184 return ret_val; 185 } 186 187 /** 188 * igb_write_phy_reg_mdic - Write MDI control register 189 * @hw: pointer to the HW structure 190 * @offset: register offset to write to 191 * @data: data to write to register at offset 192 * 193 * Writes data to MDI control register in the PHY at offset. 194 **/ 195 s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data) 196 { 197 struct e1000_phy_info *phy = &hw->phy; 198 u32 i, mdic = 0; 199 s32 ret_val = 0; 200 201 if (offset > MAX_PHY_REG_ADDRESS) { 202 hw_dbg("PHY Address %d is out of range\n", offset); 203 ret_val = -E1000_ERR_PARAM; 204 goto out; 205 } 206 207 /* Set up Op-code, Phy Address, and register offset in the MDI 208 * Control register. The MAC will take care of interfacing with the 209 * PHY to retrieve the desired data. 210 */ 211 mdic = (((u32)data) | 212 (offset << E1000_MDIC_REG_SHIFT) | 213 (phy->addr << E1000_MDIC_PHY_SHIFT) | 214 (E1000_MDIC_OP_WRITE)); 215 216 wr32(E1000_MDIC, mdic); 217 218 /* Poll the ready bit to see if the MDI read completed 219 * Increasing the time out as testing showed failures with 220 * the lower time out 221 */ 222 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { 223 udelay(50); 224 mdic = rd32(E1000_MDIC); 225 if (mdic & E1000_MDIC_READY) 226 break; 227 } 228 if (!(mdic & E1000_MDIC_READY)) { 229 hw_dbg("MDI Write did not complete\n"); 230 ret_val = -E1000_ERR_PHY; 231 goto out; 232 } 233 if (mdic & E1000_MDIC_ERROR) { 234 hw_dbg("MDI Error\n"); 235 ret_val = -E1000_ERR_PHY; 236 goto out; 237 } 238 239 out: 240 return ret_val; 241 } 242 243 /** 244 * igb_read_phy_reg_i2c - Read PHY register using i2c 245 * @hw: pointer to the HW structure 246 * @offset: register offset to be read 247 * @data: pointer to the read data 248 * 249 * Reads the PHY register at offset using the i2c interface and stores the 250 * retrieved information in data. 251 **/ 252 s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data) 253 { 254 struct e1000_phy_info *phy = &hw->phy; 255 u32 i, i2ccmd = 0; 256 257 /* Set up Op-code, Phy Address, and register address in the I2CCMD 258 * register. The MAC will take care of interfacing with the 259 * PHY to retrieve the desired data. 260 */ 261 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | 262 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | 263 (E1000_I2CCMD_OPCODE_READ)); 264 265 wr32(E1000_I2CCMD, i2ccmd); 266 267 /* Poll the ready bit to see if the I2C read completed */ 268 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { 269 udelay(50); 270 i2ccmd = rd32(E1000_I2CCMD); 271 if (i2ccmd & E1000_I2CCMD_READY) 272 break; 273 } 274 if (!(i2ccmd & E1000_I2CCMD_READY)) { 275 hw_dbg("I2CCMD Read did not complete\n"); 276 return -E1000_ERR_PHY; 277 } 278 if (i2ccmd & E1000_I2CCMD_ERROR) { 279 hw_dbg("I2CCMD Error bit set\n"); 280 return -E1000_ERR_PHY; 281 } 282 283 /* Need to byte-swap the 16-bit value. */ 284 *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00); 285 286 return 0; 287 } 288 289 /** 290 * igb_write_phy_reg_i2c - Write PHY register using i2c 291 * @hw: pointer to the HW structure 292 * @offset: register offset to write to 293 * @data: data to write at register offset 294 * 295 * Writes the data to PHY register at the offset using the i2c interface. 296 **/ 297 s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data) 298 { 299 struct e1000_phy_info *phy = &hw->phy; 300 u32 i, i2ccmd = 0; 301 u16 phy_data_swapped; 302 303 /* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/ 304 if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) { 305 hw_dbg("PHY I2C Address %d is out of range.\n", 306 hw->phy.addr); 307 return -E1000_ERR_CONFIG; 308 } 309 310 /* Swap the data bytes for the I2C interface */ 311 phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00); 312 313 /* Set up Op-code, Phy Address, and register address in the I2CCMD 314 * register. The MAC will take care of interfacing with the 315 * PHY to retrieve the desired data. 316 */ 317 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | 318 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | 319 E1000_I2CCMD_OPCODE_WRITE | 320 phy_data_swapped); 321 322 wr32(E1000_I2CCMD, i2ccmd); 323 324 /* Poll the ready bit to see if the I2C read completed */ 325 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { 326 udelay(50); 327 i2ccmd = rd32(E1000_I2CCMD); 328 if (i2ccmd & E1000_I2CCMD_READY) 329 break; 330 } 331 if (!(i2ccmd & E1000_I2CCMD_READY)) { 332 hw_dbg("I2CCMD Write did not complete\n"); 333 return -E1000_ERR_PHY; 334 } 335 if (i2ccmd & E1000_I2CCMD_ERROR) { 336 hw_dbg("I2CCMD Error bit set\n"); 337 return -E1000_ERR_PHY; 338 } 339 340 return 0; 341 } 342 343 /** 344 * igb_read_sfp_data_byte - Reads SFP module data. 345 * @hw: pointer to the HW structure 346 * @offset: byte location offset to be read 347 * @data: read data buffer pointer 348 * 349 * Reads one byte from SFP module data stored 350 * in SFP resided EEPROM memory or SFP diagnostic area. 351 * Function should be called with 352 * E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access 353 * E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters 354 * access 355 **/ 356 s32 igb_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data) 357 { 358 u32 i = 0; 359 u32 i2ccmd = 0; 360 u32 data_local = 0; 361 362 if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) { 363 hw_dbg("I2CCMD command address exceeds upper limit\n"); 364 return -E1000_ERR_PHY; 365 } 366 367 /* Set up Op-code, EEPROM Address,in the I2CCMD 368 * register. The MAC will take care of interfacing with the 369 * EEPROM to retrieve the desired data. 370 */ 371 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | 372 E1000_I2CCMD_OPCODE_READ); 373 374 wr32(E1000_I2CCMD, i2ccmd); 375 376 /* Poll the ready bit to see if the I2C read completed */ 377 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { 378 udelay(50); 379 data_local = rd32(E1000_I2CCMD); 380 if (data_local & E1000_I2CCMD_READY) 381 break; 382 } 383 if (!(data_local & E1000_I2CCMD_READY)) { 384 hw_dbg("I2CCMD Read did not complete\n"); 385 return -E1000_ERR_PHY; 386 } 387 if (data_local & E1000_I2CCMD_ERROR) { 388 hw_dbg("I2CCMD Error bit set\n"); 389 return -E1000_ERR_PHY; 390 } 391 *data = (u8) data_local & 0xFF; 392 393 return 0; 394 } 395 396 /** 397 * e1000_write_sfp_data_byte - Writes SFP module data. 398 * @hw: pointer to the HW structure 399 * @offset: byte location offset to write to 400 * @data: data to write 401 * 402 * Writes one byte to SFP module data stored 403 * in SFP resided EEPROM memory or SFP diagnostic area. 404 * Function should be called with 405 * E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access 406 * E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters 407 * access 408 **/ 409 s32 e1000_write_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 data) 410 { 411 u32 i = 0; 412 u32 i2ccmd = 0; 413 u32 data_local = 0; 414 415 if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) { 416 hw_dbg("I2CCMD command address exceeds upper limit\n"); 417 return -E1000_ERR_PHY; 418 } 419 /* The programming interface is 16 bits wide 420 * so we need to read the whole word first 421 * then update appropriate byte lane and write 422 * the updated word back. 423 */ 424 /* Set up Op-code, EEPROM Address,in the I2CCMD 425 * register. The MAC will take care of interfacing 426 * with an EEPROM to write the data given. 427 */ 428 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | 429 E1000_I2CCMD_OPCODE_READ); 430 /* Set a command to read single word */ 431 wr32(E1000_I2CCMD, i2ccmd); 432 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { 433 udelay(50); 434 /* Poll the ready bit to see if lastly 435 * launched I2C operation completed 436 */ 437 i2ccmd = rd32(E1000_I2CCMD); 438 if (i2ccmd & E1000_I2CCMD_READY) { 439 /* Check if this is READ or WRITE phase */ 440 if ((i2ccmd & E1000_I2CCMD_OPCODE_READ) == 441 E1000_I2CCMD_OPCODE_READ) { 442 /* Write the selected byte 443 * lane and update whole word 444 */ 445 data_local = i2ccmd & 0xFF00; 446 data_local |= data; 447 i2ccmd = ((offset << 448 E1000_I2CCMD_REG_ADDR_SHIFT) | 449 E1000_I2CCMD_OPCODE_WRITE | data_local); 450 wr32(E1000_I2CCMD, i2ccmd); 451 } else { 452 break; 453 } 454 } 455 } 456 if (!(i2ccmd & E1000_I2CCMD_READY)) { 457 hw_dbg("I2CCMD Write did not complete\n"); 458 return -E1000_ERR_PHY; 459 } 460 if (i2ccmd & E1000_I2CCMD_ERROR) { 461 hw_dbg("I2CCMD Error bit set\n"); 462 return -E1000_ERR_PHY; 463 } 464 return 0; 465 } 466 467 /** 468 * igb_read_phy_reg_igp - Read igp PHY register 469 * @hw: pointer to the HW structure 470 * @offset: register offset to be read 471 * @data: pointer to the read data 472 * 473 * Acquires semaphore, if necessary, then reads the PHY register at offset 474 * and storing the retrieved information in data. Release any acquired 475 * semaphores before exiting. 476 **/ 477 s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data) 478 { 479 s32 ret_val = 0; 480 481 if (!(hw->phy.ops.acquire)) 482 goto out; 483 484 ret_val = hw->phy.ops.acquire(hw); 485 if (ret_val) 486 goto out; 487 488 if (offset > MAX_PHY_MULTI_PAGE_REG) { 489 ret_val = igb_write_phy_reg_mdic(hw, 490 IGP01E1000_PHY_PAGE_SELECT, 491 (u16)offset); 492 if (ret_val) { 493 hw->phy.ops.release(hw); 494 goto out; 495 } 496 } 497 498 ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 499 data); 500 501 hw->phy.ops.release(hw); 502 503 out: 504 return ret_val; 505 } 506 507 /** 508 * igb_write_phy_reg_igp - Write igp PHY register 509 * @hw: pointer to the HW structure 510 * @offset: register offset to write to 511 * @data: data to write at register offset 512 * 513 * Acquires semaphore, if necessary, then writes the data to PHY register 514 * at the offset. Release any acquired semaphores before exiting. 515 **/ 516 s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data) 517 { 518 s32 ret_val = 0; 519 520 if (!(hw->phy.ops.acquire)) 521 goto out; 522 523 ret_val = hw->phy.ops.acquire(hw); 524 if (ret_val) 525 goto out; 526 527 if (offset > MAX_PHY_MULTI_PAGE_REG) { 528 ret_val = igb_write_phy_reg_mdic(hw, 529 IGP01E1000_PHY_PAGE_SELECT, 530 (u16)offset); 531 if (ret_val) { 532 hw->phy.ops.release(hw); 533 goto out; 534 } 535 } 536 537 ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, 538 data); 539 540 hw->phy.ops.release(hw); 541 542 out: 543 return ret_val; 544 } 545 546 /** 547 * igb_copper_link_setup_82580 - Setup 82580 PHY for copper link 548 * @hw: pointer to the HW structure 549 * 550 * Sets up Carrier-sense on Transmit and downshift values. 551 **/ 552 s32 igb_copper_link_setup_82580(struct e1000_hw *hw) 553 { 554 struct e1000_phy_info *phy = &hw->phy; 555 s32 ret_val; 556 u16 phy_data; 557 558 if (phy->reset_disable) { 559 ret_val = 0; 560 goto out; 561 } 562 563 if (phy->type == e1000_phy_82580) { 564 ret_val = hw->phy.ops.reset(hw); 565 if (ret_val) { 566 hw_dbg("Error resetting the PHY.\n"); 567 goto out; 568 } 569 } 570 571 /* Enable CRS on TX. This must be set for half-duplex operation. */ 572 ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data); 573 if (ret_val) 574 goto out; 575 576 phy_data |= I82580_CFG_ASSERT_CRS_ON_TX; 577 578 /* Enable downshift */ 579 phy_data |= I82580_CFG_ENABLE_DOWNSHIFT; 580 581 ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data); 582 if (ret_val) 583 goto out; 584 585 /* Set MDI/MDIX mode */ 586 ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data); 587 if (ret_val) 588 goto out; 589 phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK; 590 /* Options: 591 * 0 - Auto (default) 592 * 1 - MDI mode 593 * 2 - MDI-X mode 594 */ 595 switch (hw->phy.mdix) { 596 case 1: 597 break; 598 case 2: 599 phy_data |= I82580_PHY_CTRL2_MANUAL_MDIX; 600 break; 601 case 0: 602 default: 603 phy_data |= I82580_PHY_CTRL2_AUTO_MDI_MDIX; 604 break; 605 } 606 ret_val = hw->phy.ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data); 607 608 out: 609 return ret_val; 610 } 611 612 /** 613 * igb_copper_link_setup_m88 - Setup m88 PHY's for copper link 614 * @hw: pointer to the HW structure 615 * 616 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock 617 * and downshift values are set also. 618 **/ 619 s32 igb_copper_link_setup_m88(struct e1000_hw *hw) 620 { 621 struct e1000_phy_info *phy = &hw->phy; 622 s32 ret_val; 623 u16 phy_data; 624 625 if (phy->reset_disable) { 626 ret_val = 0; 627 goto out; 628 } 629 630 /* Enable CRS on TX. This must be set for half-duplex operation. */ 631 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 632 if (ret_val) 633 goto out; 634 635 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; 636 637 /* Options: 638 * MDI/MDI-X = 0 (default) 639 * 0 - Auto for all speeds 640 * 1 - MDI mode 641 * 2 - MDI-X mode 642 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) 643 */ 644 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; 645 646 switch (phy->mdix) { 647 case 1: 648 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; 649 break; 650 case 2: 651 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; 652 break; 653 case 3: 654 phy_data |= M88E1000_PSCR_AUTO_X_1000T; 655 break; 656 case 0: 657 default: 658 phy_data |= M88E1000_PSCR_AUTO_X_MODE; 659 break; 660 } 661 662 /* Options: 663 * disable_polarity_correction = 0 (default) 664 * Automatic Correction for Reversed Cable Polarity 665 * 0 - Disabled 666 * 1 - Enabled 667 */ 668 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; 669 if (phy->disable_polarity_correction == 1) 670 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; 671 672 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 673 if (ret_val) 674 goto out; 675 676 if (phy->revision < E1000_REVISION_4) { 677 /* Force TX_CLK in the Extended PHY Specific Control Register 678 * to 25MHz clock. 679 */ 680 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, 681 &phy_data); 682 if (ret_val) 683 goto out; 684 685 phy_data |= M88E1000_EPSCR_TX_CLK_25; 686 687 if ((phy->revision == E1000_REVISION_2) && 688 (phy->id == M88E1111_I_PHY_ID)) { 689 /* 82573L PHY - set the downshift counter to 5x. */ 690 phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK; 691 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; 692 } else { 693 /* Configure Master and Slave downshift values */ 694 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | 695 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); 696 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | 697 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); 698 } 699 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, 700 phy_data); 701 if (ret_val) 702 goto out; 703 } 704 705 /* Commit the changes. */ 706 ret_val = igb_phy_sw_reset(hw); 707 if (ret_val) { 708 hw_dbg("Error committing the PHY changes\n"); 709 goto out; 710 } 711 712 out: 713 return ret_val; 714 } 715 716 /** 717 * igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link 718 * @hw: pointer to the HW structure 719 * 720 * Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's. 721 * Also enables and sets the downshift parameters. 722 **/ 723 s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw) 724 { 725 struct e1000_phy_info *phy = &hw->phy; 726 s32 ret_val; 727 u16 phy_data; 728 729 if (phy->reset_disable) 730 return 0; 731 732 /* Enable CRS on Tx. This must be set for half-duplex operation. */ 733 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 734 if (ret_val) 735 return ret_val; 736 737 /* Options: 738 * MDI/MDI-X = 0 (default) 739 * 0 - Auto for all speeds 740 * 1 - MDI mode 741 * 2 - MDI-X mode 742 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) 743 */ 744 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; 745 746 switch (phy->mdix) { 747 case 1: 748 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; 749 break; 750 case 2: 751 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; 752 break; 753 case 3: 754 /* M88E1112 does not support this mode) */ 755 if (phy->id != M88E1112_E_PHY_ID) { 756 phy_data |= M88E1000_PSCR_AUTO_X_1000T; 757 break; 758 } 759 case 0: 760 default: 761 phy_data |= M88E1000_PSCR_AUTO_X_MODE; 762 break; 763 } 764 765 /* Options: 766 * disable_polarity_correction = 0 (default) 767 * Automatic Correction for Reversed Cable Polarity 768 * 0 - Disabled 769 * 1 - Enabled 770 */ 771 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; 772 if (phy->disable_polarity_correction == 1) 773 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; 774 775 /* Enable downshift and setting it to X6 */ 776 if (phy->id == M88E1543_E_PHY_ID) { 777 phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE; 778 ret_val = 779 phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 780 if (ret_val) 781 return ret_val; 782 783 ret_val = igb_phy_sw_reset(hw); 784 if (ret_val) { 785 hw_dbg("Error committing the PHY changes\n"); 786 return ret_val; 787 } 788 } 789 790 phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK; 791 phy_data |= I347AT4_PSCR_DOWNSHIFT_6X; 792 phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE; 793 794 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 795 if (ret_val) 796 return ret_val; 797 798 /* Commit the changes. */ 799 ret_val = igb_phy_sw_reset(hw); 800 if (ret_val) { 801 hw_dbg("Error committing the PHY changes\n"); 802 return ret_val; 803 } 804 ret_val = igb_set_master_slave_mode(hw); 805 if (ret_val) 806 return ret_val; 807 808 return 0; 809 } 810 811 /** 812 * igb_copper_link_setup_igp - Setup igp PHY's for copper link 813 * @hw: pointer to the HW structure 814 * 815 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for 816 * igp PHY's. 817 **/ 818 s32 igb_copper_link_setup_igp(struct e1000_hw *hw) 819 { 820 struct e1000_phy_info *phy = &hw->phy; 821 s32 ret_val; 822 u16 data; 823 824 if (phy->reset_disable) { 825 ret_val = 0; 826 goto out; 827 } 828 829 ret_val = phy->ops.reset(hw); 830 if (ret_val) { 831 hw_dbg("Error resetting the PHY.\n"); 832 goto out; 833 } 834 835 /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid 836 * timeout issues when LFS is enabled. 837 */ 838 msleep(100); 839 840 /* The NVM settings will configure LPLU in D3 for 841 * non-IGP1 PHYs. 842 */ 843 if (phy->type == e1000_phy_igp) { 844 /* disable lplu d3 during driver init */ 845 if (phy->ops.set_d3_lplu_state) 846 ret_val = phy->ops.set_d3_lplu_state(hw, false); 847 if (ret_val) { 848 hw_dbg("Error Disabling LPLU D3\n"); 849 goto out; 850 } 851 } 852 853 /* disable lplu d0 during driver init */ 854 ret_val = phy->ops.set_d0_lplu_state(hw, false); 855 if (ret_val) { 856 hw_dbg("Error Disabling LPLU D0\n"); 857 goto out; 858 } 859 /* Configure mdi-mdix settings */ 860 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data); 861 if (ret_val) 862 goto out; 863 864 data &= ~IGP01E1000_PSCR_AUTO_MDIX; 865 866 switch (phy->mdix) { 867 case 1: 868 data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; 869 break; 870 case 2: 871 data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; 872 break; 873 case 0: 874 default: 875 data |= IGP01E1000_PSCR_AUTO_MDIX; 876 break; 877 } 878 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data); 879 if (ret_val) 880 goto out; 881 882 /* set auto-master slave resolution settings */ 883 if (hw->mac.autoneg) { 884 /* when autonegotiation advertisement is only 1000Mbps then we 885 * should disable SmartSpeed and enable Auto MasterSlave 886 * resolution as hardware default. 887 */ 888 if (phy->autoneg_advertised == ADVERTISE_1000_FULL) { 889 /* Disable SmartSpeed */ 890 ret_val = phy->ops.read_reg(hw, 891 IGP01E1000_PHY_PORT_CONFIG, 892 &data); 893 if (ret_val) 894 goto out; 895 896 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 897 ret_val = phy->ops.write_reg(hw, 898 IGP01E1000_PHY_PORT_CONFIG, 899 data); 900 if (ret_val) 901 goto out; 902 903 /* Set auto Master/Slave resolution process */ 904 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data); 905 if (ret_val) 906 goto out; 907 908 data &= ~CR_1000T_MS_ENABLE; 909 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data); 910 if (ret_val) 911 goto out; 912 } 913 914 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data); 915 if (ret_val) 916 goto out; 917 918 /* load defaults for future use */ 919 phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ? 920 ((data & CR_1000T_MS_VALUE) ? 921 e1000_ms_force_master : 922 e1000_ms_force_slave) : 923 e1000_ms_auto; 924 925 switch (phy->ms_type) { 926 case e1000_ms_force_master: 927 data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); 928 break; 929 case e1000_ms_force_slave: 930 data |= CR_1000T_MS_ENABLE; 931 data &= ~(CR_1000T_MS_VALUE); 932 break; 933 case e1000_ms_auto: 934 data &= ~CR_1000T_MS_ENABLE; 935 default: 936 break; 937 } 938 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data); 939 if (ret_val) 940 goto out; 941 } 942 943 out: 944 return ret_val; 945 } 946 947 /** 948 * igb_copper_link_autoneg - Setup/Enable autoneg for copper link 949 * @hw: pointer to the HW structure 950 * 951 * Performs initial bounds checking on autoneg advertisement parameter, then 952 * configure to advertise the full capability. Setup the PHY to autoneg 953 * and restart the negotiation process between the link partner. If 954 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting. 955 **/ 956 static s32 igb_copper_link_autoneg(struct e1000_hw *hw) 957 { 958 struct e1000_phy_info *phy = &hw->phy; 959 s32 ret_val; 960 u16 phy_ctrl; 961 962 /* Perform some bounds checking on the autoneg advertisement 963 * parameter. 964 */ 965 phy->autoneg_advertised &= phy->autoneg_mask; 966 967 /* If autoneg_advertised is zero, we assume it was not defaulted 968 * by the calling code so we set to advertise full capability. 969 */ 970 if (phy->autoneg_advertised == 0) 971 phy->autoneg_advertised = phy->autoneg_mask; 972 973 hw_dbg("Reconfiguring auto-neg advertisement params\n"); 974 ret_val = igb_phy_setup_autoneg(hw); 975 if (ret_val) { 976 hw_dbg("Error Setting up Auto-Negotiation\n"); 977 goto out; 978 } 979 hw_dbg("Restarting Auto-Neg\n"); 980 981 /* Restart auto-negotiation by setting the Auto Neg Enable bit and 982 * the Auto Neg Restart bit in the PHY control register. 983 */ 984 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); 985 if (ret_val) 986 goto out; 987 988 phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); 989 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl); 990 if (ret_val) 991 goto out; 992 993 /* Does the user want to wait for Auto-Neg to complete here, or 994 * check at a later time (for example, callback routine). 995 */ 996 if (phy->autoneg_wait_to_complete) { 997 ret_val = igb_wait_autoneg(hw); 998 if (ret_val) { 999 hw_dbg("Error while waiting for " 1000 "autoneg to complete\n"); 1001 goto out; 1002 } 1003 } 1004 1005 hw->mac.get_link_status = true; 1006 1007 out: 1008 return ret_val; 1009 } 1010 1011 /** 1012 * igb_phy_setup_autoneg - Configure PHY for auto-negotiation 1013 * @hw: pointer to the HW structure 1014 * 1015 * Reads the MII auto-neg advertisement register and/or the 1000T control 1016 * register and if the PHY is already setup for auto-negotiation, then 1017 * return successful. Otherwise, setup advertisement and flow control to 1018 * the appropriate values for the wanted auto-negotiation. 1019 **/ 1020 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw) 1021 { 1022 struct e1000_phy_info *phy = &hw->phy; 1023 s32 ret_val; 1024 u16 mii_autoneg_adv_reg; 1025 u16 mii_1000t_ctrl_reg = 0; 1026 1027 phy->autoneg_advertised &= phy->autoneg_mask; 1028 1029 /* Read the MII Auto-Neg Advertisement Register (Address 4). */ 1030 ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); 1031 if (ret_val) 1032 goto out; 1033 1034 if (phy->autoneg_mask & ADVERTISE_1000_FULL) { 1035 /* Read the MII 1000Base-T Control Register (Address 9). */ 1036 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, 1037 &mii_1000t_ctrl_reg); 1038 if (ret_val) 1039 goto out; 1040 } 1041 1042 /* Need to parse both autoneg_advertised and fc and set up 1043 * the appropriate PHY registers. First we will parse for 1044 * autoneg_advertised software override. Since we can advertise 1045 * a plethora of combinations, we need to check each bit 1046 * individually. 1047 */ 1048 1049 /* First we clear all the 10/100 mb speed bits in the Auto-Neg 1050 * Advertisement Register (Address 4) and the 1000 mb speed bits in 1051 * the 1000Base-T Control Register (Address 9). 1052 */ 1053 mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS | 1054 NWAY_AR_100TX_HD_CAPS | 1055 NWAY_AR_10T_FD_CAPS | 1056 NWAY_AR_10T_HD_CAPS); 1057 mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS); 1058 1059 hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised); 1060 1061 /* Do we want to advertise 10 Mb Half Duplex? */ 1062 if (phy->autoneg_advertised & ADVERTISE_10_HALF) { 1063 hw_dbg("Advertise 10mb Half duplex\n"); 1064 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; 1065 } 1066 1067 /* Do we want to advertise 10 Mb Full Duplex? */ 1068 if (phy->autoneg_advertised & ADVERTISE_10_FULL) { 1069 hw_dbg("Advertise 10mb Full duplex\n"); 1070 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; 1071 } 1072 1073 /* Do we want to advertise 100 Mb Half Duplex? */ 1074 if (phy->autoneg_advertised & ADVERTISE_100_HALF) { 1075 hw_dbg("Advertise 100mb Half duplex\n"); 1076 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; 1077 } 1078 1079 /* Do we want to advertise 100 Mb Full Duplex? */ 1080 if (phy->autoneg_advertised & ADVERTISE_100_FULL) { 1081 hw_dbg("Advertise 100mb Full duplex\n"); 1082 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; 1083 } 1084 1085 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ 1086 if (phy->autoneg_advertised & ADVERTISE_1000_HALF) 1087 hw_dbg("Advertise 1000mb Half duplex request denied!\n"); 1088 1089 /* Do we want to advertise 1000 Mb Full Duplex? */ 1090 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) { 1091 hw_dbg("Advertise 1000mb Full duplex\n"); 1092 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; 1093 } 1094 1095 /* Check for a software override of the flow control settings, and 1096 * setup the PHY advertisement registers accordingly. If 1097 * auto-negotiation is enabled, then software will have to set the 1098 * "PAUSE" bits to the correct value in the Auto-Negotiation 1099 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto- 1100 * negotiation. 1101 * 1102 * The possible values of the "fc" parameter are: 1103 * 0: Flow control is completely disabled 1104 * 1: Rx flow control is enabled (we can receive pause frames 1105 * but not send pause frames). 1106 * 2: Tx flow control is enabled (we can send pause frames 1107 * but we do not support receiving pause frames). 1108 * 3: Both Rx and TX flow control (symmetric) are enabled. 1109 * other: No software override. The flow control configuration 1110 * in the EEPROM is used. 1111 */ 1112 switch (hw->fc.current_mode) { 1113 case e1000_fc_none: 1114 /* Flow control (RX & TX) is completely disabled by a 1115 * software over-ride. 1116 */ 1117 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); 1118 break; 1119 case e1000_fc_rx_pause: 1120 /* RX Flow control is enabled, and TX Flow control is 1121 * disabled, by a software over-ride. 1122 * 1123 * Since there really isn't a way to advertise that we are 1124 * capable of RX Pause ONLY, we will advertise that we 1125 * support both symmetric and asymmetric RX PAUSE. Later 1126 * (in e1000_config_fc_after_link_up) we will disable the 1127 * hw's ability to send PAUSE frames. 1128 */ 1129 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); 1130 break; 1131 case e1000_fc_tx_pause: 1132 /* TX Flow control is enabled, and RX Flow control is 1133 * disabled, by a software over-ride. 1134 */ 1135 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; 1136 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; 1137 break; 1138 case e1000_fc_full: 1139 /* Flow control (both RX and TX) is enabled by a software 1140 * over-ride. 1141 */ 1142 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); 1143 break; 1144 default: 1145 hw_dbg("Flow control param set incorrectly\n"); 1146 ret_val = -E1000_ERR_CONFIG; 1147 goto out; 1148 } 1149 1150 ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); 1151 if (ret_val) 1152 goto out; 1153 1154 hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); 1155 1156 if (phy->autoneg_mask & ADVERTISE_1000_FULL) { 1157 ret_val = phy->ops.write_reg(hw, 1158 PHY_1000T_CTRL, 1159 mii_1000t_ctrl_reg); 1160 if (ret_val) 1161 goto out; 1162 } 1163 1164 out: 1165 return ret_val; 1166 } 1167 1168 /** 1169 * igb_setup_copper_link - Configure copper link settings 1170 * @hw: pointer to the HW structure 1171 * 1172 * Calls the appropriate function to configure the link for auto-neg or forced 1173 * speed and duplex. Then we check for link, once link is established calls 1174 * to configure collision distance and flow control are called. If link is 1175 * not established, we return -E1000_ERR_PHY (-2). 1176 **/ 1177 s32 igb_setup_copper_link(struct e1000_hw *hw) 1178 { 1179 s32 ret_val; 1180 bool link; 1181 1182 if (hw->mac.autoneg) { 1183 /* Setup autoneg and flow control advertisement and perform 1184 * autonegotiation. 1185 */ 1186 ret_val = igb_copper_link_autoneg(hw); 1187 if (ret_val) 1188 goto out; 1189 } else { 1190 /* PHY will be set to 10H, 10F, 100H or 100F 1191 * depending on user settings. 1192 */ 1193 hw_dbg("Forcing Speed and Duplex\n"); 1194 ret_val = hw->phy.ops.force_speed_duplex(hw); 1195 if (ret_val) { 1196 hw_dbg("Error Forcing Speed and Duplex\n"); 1197 goto out; 1198 } 1199 } 1200 1201 /* Check link status. Wait up to 100 microseconds for link to become 1202 * valid. 1203 */ 1204 ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link); 1205 if (ret_val) 1206 goto out; 1207 1208 if (link) { 1209 hw_dbg("Valid link established!!!\n"); 1210 igb_config_collision_dist(hw); 1211 ret_val = igb_config_fc_after_link_up(hw); 1212 } else { 1213 hw_dbg("Unable to establish link!!!\n"); 1214 } 1215 1216 out: 1217 return ret_val; 1218 } 1219 1220 /** 1221 * igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY 1222 * @hw: pointer to the HW structure 1223 * 1224 * Calls the PHY setup function to force speed and duplex. Clears the 1225 * auto-crossover to force MDI manually. Waits for link and returns 1226 * successful if link up is successful, else -E1000_ERR_PHY (-2). 1227 **/ 1228 s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw) 1229 { 1230 struct e1000_phy_info *phy = &hw->phy; 1231 s32 ret_val; 1232 u16 phy_data; 1233 bool link; 1234 1235 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); 1236 if (ret_val) 1237 goto out; 1238 1239 igb_phy_force_speed_duplex_setup(hw, &phy_data); 1240 1241 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); 1242 if (ret_val) 1243 goto out; 1244 1245 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI 1246 * forced whenever speed and duplex are forced. 1247 */ 1248 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); 1249 if (ret_val) 1250 goto out; 1251 1252 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; 1253 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; 1254 1255 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); 1256 if (ret_val) 1257 goto out; 1258 1259 hw_dbg("IGP PSCR: %X\n", phy_data); 1260 1261 udelay(1); 1262 1263 if (phy->autoneg_wait_to_complete) { 1264 hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n"); 1265 1266 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link); 1267 if (ret_val) 1268 goto out; 1269 1270 if (!link) 1271 hw_dbg("Link taking longer than expected.\n"); 1272 1273 /* Try once more */ 1274 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link); 1275 if (ret_val) 1276 goto out; 1277 } 1278 1279 out: 1280 return ret_val; 1281 } 1282 1283 /** 1284 * igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY 1285 * @hw: pointer to the HW structure 1286 * 1287 * Calls the PHY setup function to force speed and duplex. Clears the 1288 * auto-crossover to force MDI manually. Resets the PHY to commit the 1289 * changes. If time expires while waiting for link up, we reset the DSP. 1290 * After reset, TX_CLK and CRS on TX must be set. Return successful upon 1291 * successful completion, else return corresponding error code. 1292 **/ 1293 s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw) 1294 { 1295 struct e1000_phy_info *phy = &hw->phy; 1296 s32 ret_val; 1297 u16 phy_data; 1298 bool link; 1299 1300 /* I210 and I211 devices support Auto-Crossover in forced operation. */ 1301 if (phy->type != e1000_phy_i210) { 1302 /* Clear Auto-Crossover to force MDI manually. M88E1000 1303 * requires MDI forced whenever speed and duplex are forced. 1304 */ 1305 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, 1306 &phy_data); 1307 if (ret_val) 1308 goto out; 1309 1310 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; 1311 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, 1312 phy_data); 1313 if (ret_val) 1314 goto out; 1315 1316 hw_dbg("M88E1000 PSCR: %X\n", phy_data); 1317 } 1318 1319 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); 1320 if (ret_val) 1321 goto out; 1322 1323 igb_phy_force_speed_duplex_setup(hw, &phy_data); 1324 1325 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); 1326 if (ret_val) 1327 goto out; 1328 1329 /* Reset the phy to commit changes. */ 1330 ret_val = igb_phy_sw_reset(hw); 1331 if (ret_val) 1332 goto out; 1333 1334 if (phy->autoneg_wait_to_complete) { 1335 hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n"); 1336 1337 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link); 1338 if (ret_val) 1339 goto out; 1340 1341 if (!link) { 1342 bool reset_dsp = true; 1343 1344 switch (hw->phy.id) { 1345 case I347AT4_E_PHY_ID: 1346 case M88E1112_E_PHY_ID: 1347 case I210_I_PHY_ID: 1348 reset_dsp = false; 1349 break; 1350 default: 1351 if (hw->phy.type != e1000_phy_m88) 1352 reset_dsp = false; 1353 break; 1354 } 1355 if (!reset_dsp) 1356 hw_dbg("Link taking longer than expected.\n"); 1357 else { 1358 /* We didn't get link. 1359 * Reset the DSP and cross our fingers. 1360 */ 1361 ret_val = phy->ops.write_reg(hw, 1362 M88E1000_PHY_PAGE_SELECT, 1363 0x001d); 1364 if (ret_val) 1365 goto out; 1366 ret_val = igb_phy_reset_dsp(hw); 1367 if (ret_val) 1368 goto out; 1369 } 1370 } 1371 1372 /* Try once more */ 1373 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 1374 100000, &link); 1375 if (ret_val) 1376 goto out; 1377 } 1378 1379 if (hw->phy.type != e1000_phy_m88 || 1380 hw->phy.id == I347AT4_E_PHY_ID || 1381 hw->phy.id == M88E1112_E_PHY_ID || 1382 hw->phy.id == I210_I_PHY_ID) 1383 goto out; 1384 1385 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); 1386 if (ret_val) 1387 goto out; 1388 1389 /* Resetting the phy means we need to re-force TX_CLK in the 1390 * Extended PHY Specific Control Register to 25MHz clock from 1391 * the reset value of 2.5MHz. 1392 */ 1393 phy_data |= M88E1000_EPSCR_TX_CLK_25; 1394 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); 1395 if (ret_val) 1396 goto out; 1397 1398 /* In addition, we must re-enable CRS on Tx for both half and full 1399 * duplex. 1400 */ 1401 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 1402 if (ret_val) 1403 goto out; 1404 1405 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; 1406 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 1407 1408 out: 1409 return ret_val; 1410 } 1411 1412 /** 1413 * igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex 1414 * @hw: pointer to the HW structure 1415 * @phy_ctrl: pointer to current value of PHY_CONTROL 1416 * 1417 * Forces speed and duplex on the PHY by doing the following: disable flow 1418 * control, force speed/duplex on the MAC, disable auto speed detection, 1419 * disable auto-negotiation, configure duplex, configure speed, configure 1420 * the collision distance, write configuration to CTRL register. The 1421 * caller must write to the PHY_CONTROL register for these settings to 1422 * take affect. 1423 **/ 1424 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw, 1425 u16 *phy_ctrl) 1426 { 1427 struct e1000_mac_info *mac = &hw->mac; 1428 u32 ctrl; 1429 1430 /* Turn off flow control when forcing speed/duplex */ 1431 hw->fc.current_mode = e1000_fc_none; 1432 1433 /* Force speed/duplex on the mac */ 1434 ctrl = rd32(E1000_CTRL); 1435 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 1436 ctrl &= ~E1000_CTRL_SPD_SEL; 1437 1438 /* Disable Auto Speed Detection */ 1439 ctrl &= ~E1000_CTRL_ASDE; 1440 1441 /* Disable autoneg on the phy */ 1442 *phy_ctrl &= ~MII_CR_AUTO_NEG_EN; 1443 1444 /* Forcing Full or Half Duplex? */ 1445 if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) { 1446 ctrl &= ~E1000_CTRL_FD; 1447 *phy_ctrl &= ~MII_CR_FULL_DUPLEX; 1448 hw_dbg("Half Duplex\n"); 1449 } else { 1450 ctrl |= E1000_CTRL_FD; 1451 *phy_ctrl |= MII_CR_FULL_DUPLEX; 1452 hw_dbg("Full Duplex\n"); 1453 } 1454 1455 /* Forcing 10mb or 100mb? */ 1456 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) { 1457 ctrl |= E1000_CTRL_SPD_100; 1458 *phy_ctrl |= MII_CR_SPEED_100; 1459 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); 1460 hw_dbg("Forcing 100mb\n"); 1461 } else { 1462 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 1463 *phy_ctrl |= MII_CR_SPEED_10; 1464 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); 1465 hw_dbg("Forcing 10mb\n"); 1466 } 1467 1468 igb_config_collision_dist(hw); 1469 1470 wr32(E1000_CTRL, ctrl); 1471 } 1472 1473 /** 1474 * igb_set_d3_lplu_state - Sets low power link up state for D3 1475 * @hw: pointer to the HW structure 1476 * @active: boolean used to enable/disable lplu 1477 * 1478 * Success returns 0, Failure returns 1 1479 * 1480 * The low power link up (lplu) state is set to the power management level D3 1481 * and SmartSpeed is disabled when active is true, else clear lplu for D3 1482 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1483 * is used during Dx states where the power conservation is most important. 1484 * During driver activity, SmartSpeed should be enabled so performance is 1485 * maintained. 1486 **/ 1487 s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active) 1488 { 1489 struct e1000_phy_info *phy = &hw->phy; 1490 s32 ret_val = 0; 1491 u16 data; 1492 1493 if (!(hw->phy.ops.read_reg)) 1494 goto out; 1495 1496 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); 1497 if (ret_val) 1498 goto out; 1499 1500 if (!active) { 1501 data &= ~IGP02E1000_PM_D3_LPLU; 1502 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, 1503 data); 1504 if (ret_val) 1505 goto out; 1506 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 1507 * during Dx states where the power conservation is most 1508 * important. During driver activity we should enable 1509 * SmartSpeed, so performance is maintained. 1510 */ 1511 if (phy->smart_speed == e1000_smart_speed_on) { 1512 ret_val = phy->ops.read_reg(hw, 1513 IGP01E1000_PHY_PORT_CONFIG, 1514 &data); 1515 if (ret_val) 1516 goto out; 1517 1518 data |= IGP01E1000_PSCFR_SMART_SPEED; 1519 ret_val = phy->ops.write_reg(hw, 1520 IGP01E1000_PHY_PORT_CONFIG, 1521 data); 1522 if (ret_val) 1523 goto out; 1524 } else if (phy->smart_speed == e1000_smart_speed_off) { 1525 ret_val = phy->ops.read_reg(hw, 1526 IGP01E1000_PHY_PORT_CONFIG, 1527 &data); 1528 if (ret_val) 1529 goto out; 1530 1531 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 1532 ret_val = phy->ops.write_reg(hw, 1533 IGP01E1000_PHY_PORT_CONFIG, 1534 data); 1535 if (ret_val) 1536 goto out; 1537 } 1538 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || 1539 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || 1540 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { 1541 data |= IGP02E1000_PM_D3_LPLU; 1542 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, 1543 data); 1544 if (ret_val) 1545 goto out; 1546 1547 /* When LPLU is enabled, we should disable SmartSpeed */ 1548 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, 1549 &data); 1550 if (ret_val) 1551 goto out; 1552 1553 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 1554 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, 1555 data); 1556 } 1557 1558 out: 1559 return ret_val; 1560 } 1561 1562 /** 1563 * igb_check_downshift - Checks whether a downshift in speed occurred 1564 * @hw: pointer to the HW structure 1565 * 1566 * Success returns 0, Failure returns 1 1567 * 1568 * A downshift is detected by querying the PHY link health. 1569 **/ 1570 s32 igb_check_downshift(struct e1000_hw *hw) 1571 { 1572 struct e1000_phy_info *phy = &hw->phy; 1573 s32 ret_val; 1574 u16 phy_data, offset, mask; 1575 1576 switch (phy->type) { 1577 case e1000_phy_i210: 1578 case e1000_phy_m88: 1579 case e1000_phy_gg82563: 1580 offset = M88E1000_PHY_SPEC_STATUS; 1581 mask = M88E1000_PSSR_DOWNSHIFT; 1582 break; 1583 case e1000_phy_igp_2: 1584 case e1000_phy_igp: 1585 case e1000_phy_igp_3: 1586 offset = IGP01E1000_PHY_LINK_HEALTH; 1587 mask = IGP01E1000_PLHR_SS_DOWNGRADE; 1588 break; 1589 default: 1590 /* speed downshift not supported */ 1591 phy->speed_downgraded = false; 1592 ret_val = 0; 1593 goto out; 1594 } 1595 1596 ret_val = phy->ops.read_reg(hw, offset, &phy_data); 1597 1598 if (!ret_val) 1599 phy->speed_downgraded = (phy_data & mask) ? true : false; 1600 1601 out: 1602 return ret_val; 1603 } 1604 1605 /** 1606 * igb_check_polarity_m88 - Checks the polarity. 1607 * @hw: pointer to the HW structure 1608 * 1609 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 1610 * 1611 * Polarity is determined based on the PHY specific status register. 1612 **/ 1613 s32 igb_check_polarity_m88(struct e1000_hw *hw) 1614 { 1615 struct e1000_phy_info *phy = &hw->phy; 1616 s32 ret_val; 1617 u16 data; 1618 1619 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data); 1620 1621 if (!ret_val) 1622 phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY) 1623 ? e1000_rev_polarity_reversed 1624 : e1000_rev_polarity_normal; 1625 1626 return ret_val; 1627 } 1628 1629 /** 1630 * igb_check_polarity_igp - Checks the polarity. 1631 * @hw: pointer to the HW structure 1632 * 1633 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 1634 * 1635 * Polarity is determined based on the PHY port status register, and the 1636 * current speed (since there is no polarity at 100Mbps). 1637 **/ 1638 static s32 igb_check_polarity_igp(struct e1000_hw *hw) 1639 { 1640 struct e1000_phy_info *phy = &hw->phy; 1641 s32 ret_val; 1642 u16 data, offset, mask; 1643 1644 /* Polarity is determined based on the speed of 1645 * our connection. 1646 */ 1647 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data); 1648 if (ret_val) 1649 goto out; 1650 1651 if ((data & IGP01E1000_PSSR_SPEED_MASK) == 1652 IGP01E1000_PSSR_SPEED_1000MBPS) { 1653 offset = IGP01E1000_PHY_PCS_INIT_REG; 1654 mask = IGP01E1000_PHY_POLARITY_MASK; 1655 } else { 1656 /* This really only applies to 10Mbps since 1657 * there is no polarity for 100Mbps (always 0). 1658 */ 1659 offset = IGP01E1000_PHY_PORT_STATUS; 1660 mask = IGP01E1000_PSSR_POLARITY_REVERSED; 1661 } 1662 1663 ret_val = phy->ops.read_reg(hw, offset, &data); 1664 1665 if (!ret_val) 1666 phy->cable_polarity = (data & mask) 1667 ? e1000_rev_polarity_reversed 1668 : e1000_rev_polarity_normal; 1669 1670 out: 1671 return ret_val; 1672 } 1673 1674 /** 1675 * igb_wait_autoneg - Wait for auto-neg completion 1676 * @hw: pointer to the HW structure 1677 * 1678 * Waits for auto-negotiation to complete or for the auto-negotiation time 1679 * limit to expire, which ever happens first. 1680 **/ 1681 static s32 igb_wait_autoneg(struct e1000_hw *hw) 1682 { 1683 s32 ret_val = 0; 1684 u16 i, phy_status; 1685 1686 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */ 1687 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) { 1688 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); 1689 if (ret_val) 1690 break; 1691 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); 1692 if (ret_val) 1693 break; 1694 if (phy_status & MII_SR_AUTONEG_COMPLETE) 1695 break; 1696 msleep(100); 1697 } 1698 1699 /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation 1700 * has completed. 1701 */ 1702 return ret_val; 1703 } 1704 1705 /** 1706 * igb_phy_has_link - Polls PHY for link 1707 * @hw: pointer to the HW structure 1708 * @iterations: number of times to poll for link 1709 * @usec_interval: delay between polling attempts 1710 * @success: pointer to whether polling was successful or not 1711 * 1712 * Polls the PHY status register for link, 'iterations' number of times. 1713 **/ 1714 s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations, 1715 u32 usec_interval, bool *success) 1716 { 1717 s32 ret_val = 0; 1718 u16 i, phy_status; 1719 1720 for (i = 0; i < iterations; i++) { 1721 /* Some PHYs require the PHY_STATUS register to be read 1722 * twice due to the link bit being sticky. No harm doing 1723 * it across the board. 1724 */ 1725 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); 1726 if (ret_val && usec_interval > 0) { 1727 /* If the first read fails, another entity may have 1728 * ownership of the resources, wait and try again to 1729 * see if they have relinquished the resources yet. 1730 */ 1731 if (usec_interval >= 1000) 1732 mdelay(usec_interval/1000); 1733 else 1734 udelay(usec_interval); 1735 } 1736 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); 1737 if (ret_val) 1738 break; 1739 if (phy_status & MII_SR_LINK_STATUS) 1740 break; 1741 if (usec_interval >= 1000) 1742 mdelay(usec_interval/1000); 1743 else 1744 udelay(usec_interval); 1745 } 1746 1747 *success = (i < iterations) ? true : false; 1748 1749 return ret_val; 1750 } 1751 1752 /** 1753 * igb_get_cable_length_m88 - Determine cable length for m88 PHY 1754 * @hw: pointer to the HW structure 1755 * 1756 * Reads the PHY specific status register to retrieve the cable length 1757 * information. The cable length is determined by averaging the minimum and 1758 * maximum values to get the "average" cable length. The m88 PHY has four 1759 * possible cable length values, which are: 1760 * Register Value Cable Length 1761 * 0 < 50 meters 1762 * 1 50 - 80 meters 1763 * 2 80 - 110 meters 1764 * 3 110 - 140 meters 1765 * 4 > 140 meters 1766 **/ 1767 s32 igb_get_cable_length_m88(struct e1000_hw *hw) 1768 { 1769 struct e1000_phy_info *phy = &hw->phy; 1770 s32 ret_val; 1771 u16 phy_data, index; 1772 1773 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 1774 if (ret_val) 1775 goto out; 1776 1777 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> 1778 M88E1000_PSSR_CABLE_LENGTH_SHIFT; 1779 if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) { 1780 ret_val = -E1000_ERR_PHY; 1781 goto out; 1782 } 1783 1784 phy->min_cable_length = e1000_m88_cable_length_table[index]; 1785 phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; 1786 1787 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; 1788 1789 out: 1790 return ret_val; 1791 } 1792 1793 s32 igb_get_cable_length_m88_gen2(struct e1000_hw *hw) 1794 { 1795 struct e1000_phy_info *phy = &hw->phy; 1796 s32 ret_val; 1797 u16 phy_data, phy_data2, index, default_page, is_cm; 1798 1799 switch (hw->phy.id) { 1800 case I210_I_PHY_ID: 1801 /* Get cable length from PHY Cable Diagnostics Control Reg */ 1802 ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) + 1803 (I347AT4_PCDL + phy->addr), 1804 &phy_data); 1805 if (ret_val) 1806 return ret_val; 1807 1808 /* Check if the unit of cable length is meters or cm */ 1809 ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) + 1810 I347AT4_PCDC, &phy_data2); 1811 if (ret_val) 1812 return ret_val; 1813 1814 is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT); 1815 1816 /* Populate the phy structure with cable length in meters */ 1817 phy->min_cable_length = phy_data / (is_cm ? 100 : 1); 1818 phy->max_cable_length = phy_data / (is_cm ? 100 : 1); 1819 phy->cable_length = phy_data / (is_cm ? 100 : 1); 1820 break; 1821 case M88E1543_E_PHY_ID: 1822 case I347AT4_E_PHY_ID: 1823 /* Remember the original page select and set it to 7 */ 1824 ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT, 1825 &default_page); 1826 if (ret_val) 1827 goto out; 1828 1829 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07); 1830 if (ret_val) 1831 goto out; 1832 1833 /* Get cable length from PHY Cable Diagnostics Control Reg */ 1834 ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr), 1835 &phy_data); 1836 if (ret_val) 1837 goto out; 1838 1839 /* Check if the unit of cable length is meters or cm */ 1840 ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2); 1841 if (ret_val) 1842 goto out; 1843 1844 is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT); 1845 1846 /* Populate the phy structure with cable length in meters */ 1847 phy->min_cable_length = phy_data / (is_cm ? 100 : 1); 1848 phy->max_cable_length = phy_data / (is_cm ? 100 : 1); 1849 phy->cable_length = phy_data / (is_cm ? 100 : 1); 1850 1851 /* Reset the page selec to its original value */ 1852 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 1853 default_page); 1854 if (ret_val) 1855 goto out; 1856 break; 1857 case M88E1112_E_PHY_ID: 1858 /* Remember the original page select and set it to 5 */ 1859 ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT, 1860 &default_page); 1861 if (ret_val) 1862 goto out; 1863 1864 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05); 1865 if (ret_val) 1866 goto out; 1867 1868 ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE, 1869 &phy_data); 1870 if (ret_val) 1871 goto out; 1872 1873 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> 1874 M88E1000_PSSR_CABLE_LENGTH_SHIFT; 1875 if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) { 1876 ret_val = -E1000_ERR_PHY; 1877 goto out; 1878 } 1879 1880 phy->min_cable_length = e1000_m88_cable_length_table[index]; 1881 phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; 1882 1883 phy->cable_length = (phy->min_cable_length + 1884 phy->max_cable_length) / 2; 1885 1886 /* Reset the page select to its original value */ 1887 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 1888 default_page); 1889 if (ret_val) 1890 goto out; 1891 1892 break; 1893 default: 1894 ret_val = -E1000_ERR_PHY; 1895 goto out; 1896 } 1897 1898 out: 1899 return ret_val; 1900 } 1901 1902 /** 1903 * igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY 1904 * @hw: pointer to the HW structure 1905 * 1906 * The automatic gain control (agc) normalizes the amplitude of the 1907 * received signal, adjusting for the attenuation produced by the 1908 * cable. By reading the AGC registers, which represent the 1909 * combination of coarse and fine gain value, the value can be put 1910 * into a lookup table to obtain the approximate cable length 1911 * for each channel. 1912 **/ 1913 s32 igb_get_cable_length_igp_2(struct e1000_hw *hw) 1914 { 1915 struct e1000_phy_info *phy = &hw->phy; 1916 s32 ret_val = 0; 1917 u16 phy_data, i, agc_value = 0; 1918 u16 cur_agc_index, max_agc_index = 0; 1919 u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1; 1920 static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = { 1921 IGP02E1000_PHY_AGC_A, 1922 IGP02E1000_PHY_AGC_B, 1923 IGP02E1000_PHY_AGC_C, 1924 IGP02E1000_PHY_AGC_D 1925 }; 1926 1927 /* Read the AGC registers for all channels */ 1928 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { 1929 ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data); 1930 if (ret_val) 1931 goto out; 1932 1933 /* Getting bits 15:9, which represent the combination of 1934 * coarse and fine gain values. The result is a number 1935 * that can be put into the lookup table to obtain the 1936 * approximate cable length. 1937 */ 1938 cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & 1939 IGP02E1000_AGC_LENGTH_MASK; 1940 1941 /* Array index bound check. */ 1942 if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) || 1943 (cur_agc_index == 0)) { 1944 ret_val = -E1000_ERR_PHY; 1945 goto out; 1946 } 1947 1948 /* Remove min & max AGC values from calculation. */ 1949 if (e1000_igp_2_cable_length_table[min_agc_index] > 1950 e1000_igp_2_cable_length_table[cur_agc_index]) 1951 min_agc_index = cur_agc_index; 1952 if (e1000_igp_2_cable_length_table[max_agc_index] < 1953 e1000_igp_2_cable_length_table[cur_agc_index]) 1954 max_agc_index = cur_agc_index; 1955 1956 agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; 1957 } 1958 1959 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + 1960 e1000_igp_2_cable_length_table[max_agc_index]); 1961 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); 1962 1963 /* Calculate cable length with the error range of +/- 10 meters. */ 1964 phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ? 1965 (agc_value - IGP02E1000_AGC_RANGE) : 0; 1966 phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE; 1967 1968 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; 1969 1970 out: 1971 return ret_val; 1972 } 1973 1974 /** 1975 * igb_get_phy_info_m88 - Retrieve PHY information 1976 * @hw: pointer to the HW structure 1977 * 1978 * Valid for only copper links. Read the PHY status register (sticky read) 1979 * to verify that link is up. Read the PHY special control register to 1980 * determine the polarity and 10base-T extended distance. Read the PHY 1981 * special status register to determine MDI/MDIx and current speed. If 1982 * speed is 1000, then determine cable length, local and remote receiver. 1983 **/ 1984 s32 igb_get_phy_info_m88(struct e1000_hw *hw) 1985 { 1986 struct e1000_phy_info *phy = &hw->phy; 1987 s32 ret_val; 1988 u16 phy_data; 1989 bool link; 1990 1991 if (phy->media_type != e1000_media_type_copper) { 1992 hw_dbg("Phy info is only valid for copper media\n"); 1993 ret_val = -E1000_ERR_CONFIG; 1994 goto out; 1995 } 1996 1997 ret_val = igb_phy_has_link(hw, 1, 0, &link); 1998 if (ret_val) 1999 goto out; 2000 2001 if (!link) { 2002 hw_dbg("Phy info is only valid if link is up\n"); 2003 ret_val = -E1000_ERR_CONFIG; 2004 goto out; 2005 } 2006 2007 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 2008 if (ret_val) 2009 goto out; 2010 2011 phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL) 2012 ? true : false; 2013 2014 ret_val = igb_check_polarity_m88(hw); 2015 if (ret_val) 2016 goto out; 2017 2018 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 2019 if (ret_val) 2020 goto out; 2021 2022 phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false; 2023 2024 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { 2025 ret_val = phy->ops.get_cable_length(hw); 2026 if (ret_val) 2027 goto out; 2028 2029 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data); 2030 if (ret_val) 2031 goto out; 2032 2033 phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) 2034 ? e1000_1000t_rx_status_ok 2035 : e1000_1000t_rx_status_not_ok; 2036 2037 phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) 2038 ? e1000_1000t_rx_status_ok 2039 : e1000_1000t_rx_status_not_ok; 2040 } else { 2041 /* Set values to "undefined" */ 2042 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; 2043 phy->local_rx = e1000_1000t_rx_status_undefined; 2044 phy->remote_rx = e1000_1000t_rx_status_undefined; 2045 } 2046 2047 out: 2048 return ret_val; 2049 } 2050 2051 /** 2052 * igb_get_phy_info_igp - Retrieve igp PHY information 2053 * @hw: pointer to the HW structure 2054 * 2055 * Read PHY status to determine if link is up. If link is up, then 2056 * set/determine 10base-T extended distance and polarity correction. Read 2057 * PHY port status to determine MDI/MDIx and speed. Based on the speed, 2058 * determine on the cable length, local and remote receiver. 2059 **/ 2060 s32 igb_get_phy_info_igp(struct e1000_hw *hw) 2061 { 2062 struct e1000_phy_info *phy = &hw->phy; 2063 s32 ret_val; 2064 u16 data; 2065 bool link; 2066 2067 ret_val = igb_phy_has_link(hw, 1, 0, &link); 2068 if (ret_val) 2069 goto out; 2070 2071 if (!link) { 2072 hw_dbg("Phy info is only valid if link is up\n"); 2073 ret_val = -E1000_ERR_CONFIG; 2074 goto out; 2075 } 2076 2077 phy->polarity_correction = true; 2078 2079 ret_val = igb_check_polarity_igp(hw); 2080 if (ret_val) 2081 goto out; 2082 2083 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data); 2084 if (ret_val) 2085 goto out; 2086 2087 phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false; 2088 2089 if ((data & IGP01E1000_PSSR_SPEED_MASK) == 2090 IGP01E1000_PSSR_SPEED_1000MBPS) { 2091 ret_val = phy->ops.get_cable_length(hw); 2092 if (ret_val) 2093 goto out; 2094 2095 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data); 2096 if (ret_val) 2097 goto out; 2098 2099 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) 2100 ? e1000_1000t_rx_status_ok 2101 : e1000_1000t_rx_status_not_ok; 2102 2103 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) 2104 ? e1000_1000t_rx_status_ok 2105 : e1000_1000t_rx_status_not_ok; 2106 } else { 2107 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; 2108 phy->local_rx = e1000_1000t_rx_status_undefined; 2109 phy->remote_rx = e1000_1000t_rx_status_undefined; 2110 } 2111 2112 out: 2113 return ret_val; 2114 } 2115 2116 /** 2117 * igb_phy_sw_reset - PHY software reset 2118 * @hw: pointer to the HW structure 2119 * 2120 * Does a software reset of the PHY by reading the PHY control register and 2121 * setting/write the control register reset bit to the PHY. 2122 **/ 2123 s32 igb_phy_sw_reset(struct e1000_hw *hw) 2124 { 2125 s32 ret_val = 0; 2126 u16 phy_ctrl; 2127 2128 if (!(hw->phy.ops.read_reg)) 2129 goto out; 2130 2131 ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); 2132 if (ret_val) 2133 goto out; 2134 2135 phy_ctrl |= MII_CR_RESET; 2136 ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl); 2137 if (ret_val) 2138 goto out; 2139 2140 udelay(1); 2141 2142 out: 2143 return ret_val; 2144 } 2145 2146 /** 2147 * igb_phy_hw_reset - PHY hardware reset 2148 * @hw: pointer to the HW structure 2149 * 2150 * Verify the reset block is not blocking us from resetting. Acquire 2151 * semaphore (if necessary) and read/set/write the device control reset 2152 * bit in the PHY. Wait the appropriate delay time for the device to 2153 * reset and release the semaphore (if necessary). 2154 **/ 2155 s32 igb_phy_hw_reset(struct e1000_hw *hw) 2156 { 2157 struct e1000_phy_info *phy = &hw->phy; 2158 s32 ret_val; 2159 u32 ctrl; 2160 2161 ret_val = igb_check_reset_block(hw); 2162 if (ret_val) { 2163 ret_val = 0; 2164 goto out; 2165 } 2166 2167 ret_val = phy->ops.acquire(hw); 2168 if (ret_val) 2169 goto out; 2170 2171 ctrl = rd32(E1000_CTRL); 2172 wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST); 2173 wrfl(); 2174 2175 udelay(phy->reset_delay_us); 2176 2177 wr32(E1000_CTRL, ctrl); 2178 wrfl(); 2179 2180 udelay(150); 2181 2182 phy->ops.release(hw); 2183 2184 ret_val = phy->ops.get_cfg_done(hw); 2185 2186 out: 2187 return ret_val; 2188 } 2189 2190 /** 2191 * igb_phy_init_script_igp3 - Inits the IGP3 PHY 2192 * @hw: pointer to the HW structure 2193 * 2194 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present. 2195 **/ 2196 s32 igb_phy_init_script_igp3(struct e1000_hw *hw) 2197 { 2198 hw_dbg("Running IGP 3 PHY init script\n"); 2199 2200 /* PHY init IGP 3 */ 2201 /* Enable rise/fall, 10-mode work in class-A */ 2202 hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018); 2203 /* Remove all caps from Replica path filter */ 2204 hw->phy.ops.write_reg(hw, 0x2F52, 0x0000); 2205 /* Bias trimming for ADC, AFE and Driver (Default) */ 2206 hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24); 2207 /* Increase Hybrid poly bias */ 2208 hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0); 2209 /* Add 4% to TX amplitude in Giga mode */ 2210 hw->phy.ops.write_reg(hw, 0x2010, 0x10B0); 2211 /* Disable trimming (TTT) */ 2212 hw->phy.ops.write_reg(hw, 0x2011, 0x0000); 2213 /* Poly DC correction to 94.6% + 2% for all channels */ 2214 hw->phy.ops.write_reg(hw, 0x20DD, 0x249A); 2215 /* ABS DC correction to 95.9% */ 2216 hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3); 2217 /* BG temp curve trim */ 2218 hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE); 2219 /* Increasing ADC OPAMP stage 1 currents to max */ 2220 hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4); 2221 /* Force 1000 ( required for enabling PHY regs configuration) */ 2222 hw->phy.ops.write_reg(hw, 0x0000, 0x0140); 2223 /* Set upd_freq to 6 */ 2224 hw->phy.ops.write_reg(hw, 0x1F30, 0x1606); 2225 /* Disable NPDFE */ 2226 hw->phy.ops.write_reg(hw, 0x1F31, 0xB814); 2227 /* Disable adaptive fixed FFE (Default) */ 2228 hw->phy.ops.write_reg(hw, 0x1F35, 0x002A); 2229 /* Enable FFE hysteresis */ 2230 hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067); 2231 /* Fixed FFE for short cable lengths */ 2232 hw->phy.ops.write_reg(hw, 0x1F54, 0x0065); 2233 /* Fixed FFE for medium cable lengths */ 2234 hw->phy.ops.write_reg(hw, 0x1F55, 0x002A); 2235 /* Fixed FFE for long cable lengths */ 2236 hw->phy.ops.write_reg(hw, 0x1F56, 0x002A); 2237 /* Enable Adaptive Clip Threshold */ 2238 hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0); 2239 /* AHT reset limit to 1 */ 2240 hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF); 2241 /* Set AHT master delay to 127 msec */ 2242 hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC); 2243 /* Set scan bits for AHT */ 2244 hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF); 2245 /* Set AHT Preset bits */ 2246 hw->phy.ops.write_reg(hw, 0x1F79, 0x0210); 2247 /* Change integ_factor of channel A to 3 */ 2248 hw->phy.ops.write_reg(hw, 0x1895, 0x0003); 2249 /* Change prop_factor of channels BCD to 8 */ 2250 hw->phy.ops.write_reg(hw, 0x1796, 0x0008); 2251 /* Change cg_icount + enable integbp for channels BCD */ 2252 hw->phy.ops.write_reg(hw, 0x1798, 0xD008); 2253 /* Change cg_icount + enable integbp + change prop_factor_master 2254 * to 8 for channel A 2255 */ 2256 hw->phy.ops.write_reg(hw, 0x1898, 0xD918); 2257 /* Disable AHT in Slave mode on channel A */ 2258 hw->phy.ops.write_reg(hw, 0x187A, 0x0800); 2259 /* Enable LPLU and disable AN to 1000 in non-D0a states, 2260 * Enable SPD+B2B 2261 */ 2262 hw->phy.ops.write_reg(hw, 0x0019, 0x008D); 2263 /* Enable restart AN on an1000_dis change */ 2264 hw->phy.ops.write_reg(hw, 0x001B, 0x2080); 2265 /* Enable wh_fifo read clock in 10/100 modes */ 2266 hw->phy.ops.write_reg(hw, 0x0014, 0x0045); 2267 /* Restart AN, Speed selection is 1000 */ 2268 hw->phy.ops.write_reg(hw, 0x0000, 0x1340); 2269 2270 return 0; 2271 } 2272 2273 /** 2274 * igb_power_up_phy_copper - Restore copper link in case of PHY power down 2275 * @hw: pointer to the HW structure 2276 * 2277 * In the case of a PHY power down to save power, or to turn off link during a 2278 * driver unload, restore the link to previous settings. 2279 **/ 2280 void igb_power_up_phy_copper(struct e1000_hw *hw) 2281 { 2282 u16 mii_reg = 0; 2283 u16 power_reg = 0; 2284 2285 /* The PHY will retain its settings across a power down/up cycle */ 2286 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); 2287 mii_reg &= ~MII_CR_POWER_DOWN; 2288 if (hw->phy.type == e1000_phy_i210) { 2289 hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg); 2290 power_reg &= ~GS40G_CS_POWER_DOWN; 2291 hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg); 2292 } 2293 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); 2294 } 2295 2296 /** 2297 * igb_power_down_phy_copper - Power down copper PHY 2298 * @hw: pointer to the HW structure 2299 * 2300 * Power down PHY to save power when interface is down and wake on lan 2301 * is not enabled. 2302 **/ 2303 void igb_power_down_phy_copper(struct e1000_hw *hw) 2304 { 2305 u16 mii_reg = 0; 2306 u16 power_reg = 0; 2307 2308 /* The PHY will retain its settings across a power down/up cycle */ 2309 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); 2310 mii_reg |= MII_CR_POWER_DOWN; 2311 2312 /* i210 Phy requires an additional bit for power up/down */ 2313 if (hw->phy.type == e1000_phy_i210) { 2314 hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg); 2315 power_reg |= GS40G_CS_POWER_DOWN; 2316 hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg); 2317 } 2318 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); 2319 msleep(1); 2320 } 2321 2322 /** 2323 * igb_check_polarity_82580 - Checks the polarity. 2324 * @hw: pointer to the HW structure 2325 * 2326 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 2327 * 2328 * Polarity is determined based on the PHY specific status register. 2329 **/ 2330 static s32 igb_check_polarity_82580(struct e1000_hw *hw) 2331 { 2332 struct e1000_phy_info *phy = &hw->phy; 2333 s32 ret_val; 2334 u16 data; 2335 2336 2337 ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data); 2338 2339 if (!ret_val) 2340 phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY) 2341 ? e1000_rev_polarity_reversed 2342 : e1000_rev_polarity_normal; 2343 2344 return ret_val; 2345 } 2346 2347 /** 2348 * igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY 2349 * @hw: pointer to the HW structure 2350 * 2351 * Calls the PHY setup function to force speed and duplex. Clears the 2352 * auto-crossover to force MDI manually. Waits for link and returns 2353 * successful if link up is successful, else -E1000_ERR_PHY (-2). 2354 **/ 2355 s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw) 2356 { 2357 struct e1000_phy_info *phy = &hw->phy; 2358 s32 ret_val; 2359 u16 phy_data; 2360 bool link; 2361 2362 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); 2363 if (ret_val) 2364 goto out; 2365 2366 igb_phy_force_speed_duplex_setup(hw, &phy_data); 2367 2368 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); 2369 if (ret_val) 2370 goto out; 2371 2372 /* Clear Auto-Crossover to force MDI manually. 82580 requires MDI 2373 * forced whenever speed and duplex are forced. 2374 */ 2375 ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data); 2376 if (ret_val) 2377 goto out; 2378 2379 phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK; 2380 2381 ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data); 2382 if (ret_val) 2383 goto out; 2384 2385 hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data); 2386 2387 udelay(1); 2388 2389 if (phy->autoneg_wait_to_complete) { 2390 hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n"); 2391 2392 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link); 2393 if (ret_val) 2394 goto out; 2395 2396 if (!link) 2397 hw_dbg("Link taking longer than expected.\n"); 2398 2399 /* Try once more */ 2400 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link); 2401 if (ret_val) 2402 goto out; 2403 } 2404 2405 out: 2406 return ret_val; 2407 } 2408 2409 /** 2410 * igb_get_phy_info_82580 - Retrieve I82580 PHY information 2411 * @hw: pointer to the HW structure 2412 * 2413 * Read PHY status to determine if link is up. If link is up, then 2414 * set/determine 10base-T extended distance and polarity correction. Read 2415 * PHY port status to determine MDI/MDIx and speed. Based on the speed, 2416 * determine on the cable length, local and remote receiver. 2417 **/ 2418 s32 igb_get_phy_info_82580(struct e1000_hw *hw) 2419 { 2420 struct e1000_phy_info *phy = &hw->phy; 2421 s32 ret_val; 2422 u16 data; 2423 bool link; 2424 2425 ret_val = igb_phy_has_link(hw, 1, 0, &link); 2426 if (ret_val) 2427 goto out; 2428 2429 if (!link) { 2430 hw_dbg("Phy info is only valid if link is up\n"); 2431 ret_val = -E1000_ERR_CONFIG; 2432 goto out; 2433 } 2434 2435 phy->polarity_correction = true; 2436 2437 ret_val = igb_check_polarity_82580(hw); 2438 if (ret_val) 2439 goto out; 2440 2441 ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data); 2442 if (ret_val) 2443 goto out; 2444 2445 phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false; 2446 2447 if ((data & I82580_PHY_STATUS2_SPEED_MASK) == 2448 I82580_PHY_STATUS2_SPEED_1000MBPS) { 2449 ret_val = hw->phy.ops.get_cable_length(hw); 2450 if (ret_val) 2451 goto out; 2452 2453 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data); 2454 if (ret_val) 2455 goto out; 2456 2457 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) 2458 ? e1000_1000t_rx_status_ok 2459 : e1000_1000t_rx_status_not_ok; 2460 2461 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) 2462 ? e1000_1000t_rx_status_ok 2463 : e1000_1000t_rx_status_not_ok; 2464 } else { 2465 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; 2466 phy->local_rx = e1000_1000t_rx_status_undefined; 2467 phy->remote_rx = e1000_1000t_rx_status_undefined; 2468 } 2469 2470 out: 2471 return ret_val; 2472 } 2473 2474 /** 2475 * igb_get_cable_length_82580 - Determine cable length for 82580 PHY 2476 * @hw: pointer to the HW structure 2477 * 2478 * Reads the diagnostic status register and verifies result is valid before 2479 * placing it in the phy_cable_length field. 2480 **/ 2481 s32 igb_get_cable_length_82580(struct e1000_hw *hw) 2482 { 2483 struct e1000_phy_info *phy = &hw->phy; 2484 s32 ret_val; 2485 u16 phy_data, length; 2486 2487 ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data); 2488 if (ret_val) 2489 goto out; 2490 2491 length = (phy_data & I82580_DSTATUS_CABLE_LENGTH) >> 2492 I82580_DSTATUS_CABLE_LENGTH_SHIFT; 2493 2494 if (length == E1000_CABLE_LENGTH_UNDEFINED) 2495 ret_val = -E1000_ERR_PHY; 2496 2497 phy->cable_length = length; 2498 2499 out: 2500 return ret_val; 2501 } 2502 2503 /** 2504 * igb_write_phy_reg_gs40g - Write GS40G PHY register 2505 * @hw: pointer to the HW structure 2506 * @offset: lower half is register offset to write to 2507 * upper half is page to use. 2508 * @data: data to write at register offset 2509 * 2510 * Acquires semaphore, if necessary, then writes the data to PHY register 2511 * at the offset. Release any acquired semaphores before exiting. 2512 **/ 2513 s32 igb_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data) 2514 { 2515 s32 ret_val; 2516 u16 page = offset >> GS40G_PAGE_SHIFT; 2517 2518 offset = offset & GS40G_OFFSET_MASK; 2519 ret_val = hw->phy.ops.acquire(hw); 2520 if (ret_val) 2521 return ret_val; 2522 2523 ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page); 2524 if (ret_val) 2525 goto release; 2526 ret_val = igb_write_phy_reg_mdic(hw, offset, data); 2527 2528 release: 2529 hw->phy.ops.release(hw); 2530 return ret_val; 2531 } 2532 2533 /** 2534 * igb_read_phy_reg_gs40g - Read GS40G PHY register 2535 * @hw: pointer to the HW structure 2536 * @offset: lower half is register offset to read to 2537 * upper half is page to use. 2538 * @data: data to read at register offset 2539 * 2540 * Acquires semaphore, if necessary, then reads the data in the PHY register 2541 * at the offset. Release any acquired semaphores before exiting. 2542 **/ 2543 s32 igb_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data) 2544 { 2545 s32 ret_val; 2546 u16 page = offset >> GS40G_PAGE_SHIFT; 2547 2548 offset = offset & GS40G_OFFSET_MASK; 2549 ret_val = hw->phy.ops.acquire(hw); 2550 if (ret_val) 2551 return ret_val; 2552 2553 ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page); 2554 if (ret_val) 2555 goto release; 2556 ret_val = igb_read_phy_reg_mdic(hw, offset, data); 2557 2558 release: 2559 hw->phy.ops.release(hw); 2560 return ret_val; 2561 } 2562 2563 /** 2564 * igb_set_master_slave_mode - Setup PHY for Master/slave mode 2565 * @hw: pointer to the HW structure 2566 * 2567 * Sets up Master/slave mode 2568 **/ 2569 static s32 igb_set_master_slave_mode(struct e1000_hw *hw) 2570 { 2571 s32 ret_val; 2572 u16 phy_data; 2573 2574 /* Resolve Master/Slave mode */ 2575 ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data); 2576 if (ret_val) 2577 return ret_val; 2578 2579 /* load defaults for future use */ 2580 hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ? 2581 ((phy_data & CR_1000T_MS_VALUE) ? 2582 e1000_ms_force_master : 2583 e1000_ms_force_slave) : e1000_ms_auto; 2584 2585 switch (hw->phy.ms_type) { 2586 case e1000_ms_force_master: 2587 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); 2588 break; 2589 case e1000_ms_force_slave: 2590 phy_data |= CR_1000T_MS_ENABLE; 2591 phy_data &= ~(CR_1000T_MS_VALUE); 2592 break; 2593 case e1000_ms_auto: 2594 phy_data &= ~CR_1000T_MS_ENABLE; 2595 /* fall-through */ 2596 default: 2597 break; 2598 } 2599 2600 return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data); 2601 } 2602