xref: /openbmc/linux/drivers/net/ethernet/intel/igb/e1000_nvm.c (revision e33bbe69149b802c0c77bfb822685772f85388ca)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Intel(R) Gigabit Ethernet Linux driver
3  * Copyright(c) 2007-2014 Intel Corporation.
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23 
24 #include <linux/if_ether.h>
25 #include <linux/delay.h>
26 
27 #include "e1000_mac.h"
28 #include "e1000_nvm.h"
29 
30 /**
31  *  igb_raise_eec_clk - Raise EEPROM clock
32  *  @hw: pointer to the HW structure
33  *  @eecd: pointer to the EEPROM
34  *
35  *  Enable/Raise the EEPROM clock bit.
36  **/
37 static void igb_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
38 {
39 	*eecd = *eecd | E1000_EECD_SK;
40 	wr32(E1000_EECD, *eecd);
41 	wrfl();
42 	udelay(hw->nvm.delay_usec);
43 }
44 
45 /**
46  *  igb_lower_eec_clk - Lower EEPROM clock
47  *  @hw: pointer to the HW structure
48  *  @eecd: pointer to the EEPROM
49  *
50  *  Clear/Lower the EEPROM clock bit.
51  **/
52 static void igb_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
53 {
54 	*eecd = *eecd & ~E1000_EECD_SK;
55 	wr32(E1000_EECD, *eecd);
56 	wrfl();
57 	udelay(hw->nvm.delay_usec);
58 }
59 
60 /**
61  *  igb_shift_out_eec_bits - Shift data bits our to the EEPROM
62  *  @hw: pointer to the HW structure
63  *  @data: data to send to the EEPROM
64  *  @count: number of bits to shift out
65  *
66  *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
67  *  "data" parameter will be shifted out to the EEPROM one bit at a time.
68  *  In order to do this, "data" must be broken down into bits.
69  **/
70 static void igb_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
71 {
72 	struct e1000_nvm_info *nvm = &hw->nvm;
73 	u32 eecd = rd32(E1000_EECD);
74 	u32 mask;
75 
76 	mask = 1u << (count - 1);
77 	if (nvm->type == e1000_nvm_eeprom_spi)
78 		eecd |= E1000_EECD_DO;
79 
80 	do {
81 		eecd &= ~E1000_EECD_DI;
82 
83 		if (data & mask)
84 			eecd |= E1000_EECD_DI;
85 
86 		wr32(E1000_EECD, eecd);
87 		wrfl();
88 
89 		udelay(nvm->delay_usec);
90 
91 		igb_raise_eec_clk(hw, &eecd);
92 		igb_lower_eec_clk(hw, &eecd);
93 
94 		mask >>= 1;
95 	} while (mask);
96 
97 	eecd &= ~E1000_EECD_DI;
98 	wr32(E1000_EECD, eecd);
99 }
100 
101 /**
102  *  igb_shift_in_eec_bits - Shift data bits in from the EEPROM
103  *  @hw: pointer to the HW structure
104  *  @count: number of bits to shift in
105  *
106  *  In order to read a register from the EEPROM, we need to shift 'count' bits
107  *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
108  *  the EEPROM (setting the SK bit), and then reading the value of the data out
109  *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
110  *  always be clear.
111  **/
112 static u16 igb_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
113 {
114 	u32 eecd;
115 	u32 i;
116 	u16 data;
117 
118 	eecd = rd32(E1000_EECD);
119 
120 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
121 	data = 0;
122 
123 	for (i = 0; i < count; i++) {
124 		data <<= 1;
125 		igb_raise_eec_clk(hw, &eecd);
126 
127 		eecd = rd32(E1000_EECD);
128 
129 		eecd &= ~E1000_EECD_DI;
130 		if (eecd & E1000_EECD_DO)
131 			data |= 1;
132 
133 		igb_lower_eec_clk(hw, &eecd);
134 	}
135 
136 	return data;
137 }
138 
139 /**
140  *  igb_poll_eerd_eewr_done - Poll for EEPROM read/write completion
141  *  @hw: pointer to the HW structure
142  *  @ee_reg: EEPROM flag for polling
143  *
144  *  Polls the EEPROM status bit for either read or write completion based
145  *  upon the value of 'ee_reg'.
146  **/
147 static s32 igb_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
148 {
149 	u32 attempts = 100000;
150 	u32 i, reg = 0;
151 	s32 ret_val = -E1000_ERR_NVM;
152 
153 	for (i = 0; i < attempts; i++) {
154 		if (ee_reg == E1000_NVM_POLL_READ)
155 			reg = rd32(E1000_EERD);
156 		else
157 			reg = rd32(E1000_EEWR);
158 
159 		if (reg & E1000_NVM_RW_REG_DONE) {
160 			ret_val = 0;
161 			break;
162 		}
163 
164 		udelay(5);
165 	}
166 
167 	return ret_val;
168 }
169 
170 /**
171  *  igb_acquire_nvm - Generic request for access to EEPROM
172  *  @hw: pointer to the HW structure
173  *
174  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
175  *  Return successful if access grant bit set, else clear the request for
176  *  EEPROM access and return -E1000_ERR_NVM (-1).
177  **/
178 s32 igb_acquire_nvm(struct e1000_hw *hw)
179 {
180 	u32 eecd = rd32(E1000_EECD);
181 	s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
182 	s32 ret_val = 0;
183 
184 
185 	wr32(E1000_EECD, eecd | E1000_EECD_REQ);
186 	eecd = rd32(E1000_EECD);
187 
188 	while (timeout) {
189 		if (eecd & E1000_EECD_GNT)
190 			break;
191 		udelay(5);
192 		eecd = rd32(E1000_EECD);
193 		timeout--;
194 	}
195 
196 	if (!timeout) {
197 		eecd &= ~E1000_EECD_REQ;
198 		wr32(E1000_EECD, eecd);
199 		hw_dbg("Could not acquire NVM grant\n");
200 		ret_val = -E1000_ERR_NVM;
201 	}
202 
203 	return ret_val;
204 }
205 
206 /**
207  *  igb_standby_nvm - Return EEPROM to standby state
208  *  @hw: pointer to the HW structure
209  *
210  *  Return the EEPROM to a standby state.
211  **/
212 static void igb_standby_nvm(struct e1000_hw *hw)
213 {
214 	struct e1000_nvm_info *nvm = &hw->nvm;
215 	u32 eecd = rd32(E1000_EECD);
216 
217 	if (nvm->type == e1000_nvm_eeprom_spi) {
218 		/* Toggle CS to flush commands */
219 		eecd |= E1000_EECD_CS;
220 		wr32(E1000_EECD, eecd);
221 		wrfl();
222 		udelay(nvm->delay_usec);
223 		eecd &= ~E1000_EECD_CS;
224 		wr32(E1000_EECD, eecd);
225 		wrfl();
226 		udelay(nvm->delay_usec);
227 	}
228 }
229 
230 /**
231  *  e1000_stop_nvm - Terminate EEPROM command
232  *  @hw: pointer to the HW structure
233  *
234  *  Terminates the current command by inverting the EEPROM's chip select pin.
235  **/
236 static void e1000_stop_nvm(struct e1000_hw *hw)
237 {
238 	u32 eecd;
239 
240 	eecd = rd32(E1000_EECD);
241 	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
242 		/* Pull CS high */
243 		eecd |= E1000_EECD_CS;
244 		igb_lower_eec_clk(hw, &eecd);
245 	}
246 }
247 
248 /**
249  *  igb_release_nvm - Release exclusive access to EEPROM
250  *  @hw: pointer to the HW structure
251  *
252  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
253  **/
254 void igb_release_nvm(struct e1000_hw *hw)
255 {
256 	u32 eecd;
257 
258 	e1000_stop_nvm(hw);
259 
260 	eecd = rd32(E1000_EECD);
261 	eecd &= ~E1000_EECD_REQ;
262 	wr32(E1000_EECD, eecd);
263 }
264 
265 /**
266  *  igb_ready_nvm_eeprom - Prepares EEPROM for read/write
267  *  @hw: pointer to the HW structure
268  *
269  *  Setups the EEPROM for reading and writing.
270  **/
271 static s32 igb_ready_nvm_eeprom(struct e1000_hw *hw)
272 {
273 	struct e1000_nvm_info *nvm = &hw->nvm;
274 	u32 eecd = rd32(E1000_EECD);
275 	s32 ret_val = 0;
276 	u16 timeout = 0;
277 	u8 spi_stat_reg;
278 
279 
280 	if (nvm->type == e1000_nvm_eeprom_spi) {
281 		/* Clear SK and CS */
282 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
283 		wr32(E1000_EECD, eecd);
284 		wrfl();
285 		udelay(1);
286 		timeout = NVM_MAX_RETRY_SPI;
287 
288 		/* Read "Status Register" repeatedly until the LSB is cleared.
289 		 * The EEPROM will signal that the command has been completed
290 		 * by clearing bit 0 of the internal status register.  If it's
291 		 * not cleared within 'timeout', then error out.
292 		 */
293 		while (timeout) {
294 			igb_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
295 					       hw->nvm.opcode_bits);
296 			spi_stat_reg = (u8)igb_shift_in_eec_bits(hw, 8);
297 			if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
298 				break;
299 
300 			udelay(5);
301 			igb_standby_nvm(hw);
302 			timeout--;
303 		}
304 
305 		if (!timeout) {
306 			hw_dbg("SPI NVM Status error\n");
307 			ret_val = -E1000_ERR_NVM;
308 			goto out;
309 		}
310 	}
311 
312 out:
313 	return ret_val;
314 }
315 
316 /**
317  *  igb_read_nvm_spi - Read EEPROM's using SPI
318  *  @hw: pointer to the HW structure
319  *  @offset: offset of word in the EEPROM to read
320  *  @words: number of words to read
321  *  @data: word read from the EEPROM
322  *
323  *  Reads a 16 bit word from the EEPROM.
324  **/
325 s32 igb_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
326 {
327 	struct e1000_nvm_info *nvm = &hw->nvm;
328 	u32 i = 0;
329 	s32 ret_val;
330 	u16 word_in;
331 	u8 read_opcode = NVM_READ_OPCODE_SPI;
332 
333 	/* A check for invalid values:  offset too large, too many words,
334 	 * and not enough words.
335 	 */
336 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
337 	    (words == 0)) {
338 		hw_dbg("nvm parameter(s) out of bounds\n");
339 		ret_val = -E1000_ERR_NVM;
340 		goto out;
341 	}
342 
343 	ret_val = nvm->ops.acquire(hw);
344 	if (ret_val)
345 		goto out;
346 
347 	ret_val = igb_ready_nvm_eeprom(hw);
348 	if (ret_val)
349 		goto release;
350 
351 	igb_standby_nvm(hw);
352 
353 	if ((nvm->address_bits == 8) && (offset >= 128))
354 		read_opcode |= NVM_A8_OPCODE_SPI;
355 
356 	/* Send the READ command (opcode + addr) */
357 	igb_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
358 	igb_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
359 
360 	/* Read the data.  SPI NVMs increment the address with each byte
361 	 * read and will roll over if reading beyond the end.  This allows
362 	 * us to read the whole NVM from any offset
363 	 */
364 	for (i = 0; i < words; i++) {
365 		word_in = igb_shift_in_eec_bits(hw, 16);
366 		data[i] = (word_in >> 8) | (word_in << 8);
367 	}
368 
369 release:
370 	nvm->ops.release(hw);
371 
372 out:
373 	return ret_val;
374 }
375 
376 /**
377  *  igb_read_nvm_eerd - Reads EEPROM using EERD register
378  *  @hw: pointer to the HW structure
379  *  @offset: offset of word in the EEPROM to read
380  *  @words: number of words to read
381  *  @data: word read from the EEPROM
382  *
383  *  Reads a 16 bit word from the EEPROM using the EERD register.
384  **/
385 s32 igb_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
386 {
387 	struct e1000_nvm_info *nvm = &hw->nvm;
388 	u32 i, eerd = 0;
389 	s32 ret_val = 0;
390 
391 	/* A check for invalid values:  offset too large, too many words,
392 	 * and not enough words.
393 	 */
394 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
395 	    (words == 0)) {
396 		hw_dbg("nvm parameter(s) out of bounds\n");
397 		ret_val = -E1000_ERR_NVM;
398 		goto out;
399 	}
400 
401 	for (i = 0; i < words; i++) {
402 		eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
403 			E1000_NVM_RW_REG_START;
404 
405 		wr32(E1000_EERD, eerd);
406 		ret_val = igb_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
407 		if (ret_val)
408 			break;
409 
410 		data[i] = (rd32(E1000_EERD) >>
411 			E1000_NVM_RW_REG_DATA);
412 	}
413 
414 out:
415 	return ret_val;
416 }
417 
418 /**
419  *  igb_write_nvm_spi - Write to EEPROM using SPI
420  *  @hw: pointer to the HW structure
421  *  @offset: offset within the EEPROM to be written to
422  *  @words: number of words to write
423  *  @data: 16 bit word(s) to be written to the EEPROM
424  *
425  *  Writes data to EEPROM at offset using SPI interface.
426  *
427  *  If e1000_update_nvm_checksum is not called after this function , the
428  *  EEPROM will most likley contain an invalid checksum.
429  **/
430 s32 igb_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
431 {
432 	struct e1000_nvm_info *nvm = &hw->nvm;
433 	s32 ret_val = -E1000_ERR_NVM;
434 	u16 widx = 0;
435 
436 	/* A check for invalid values:  offset too large, too many words,
437 	 * and not enough words.
438 	 */
439 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
440 	    (words == 0)) {
441 		hw_dbg("nvm parameter(s) out of bounds\n");
442 		return ret_val;
443 	}
444 
445 	while (widx < words) {
446 		u8 write_opcode = NVM_WRITE_OPCODE_SPI;
447 
448 		ret_val = nvm->ops.acquire(hw);
449 		if (ret_val)
450 			return ret_val;
451 
452 		ret_val = igb_ready_nvm_eeprom(hw);
453 		if (ret_val) {
454 			nvm->ops.release(hw);
455 			return ret_val;
456 		}
457 
458 		igb_standby_nvm(hw);
459 
460 		/* Send the WRITE ENABLE command (8 bit opcode) */
461 		igb_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
462 					 nvm->opcode_bits);
463 
464 		igb_standby_nvm(hw);
465 
466 		/* Some SPI eeproms use the 8th address bit embedded in the
467 		 * opcode
468 		 */
469 		if ((nvm->address_bits == 8) && (offset >= 128))
470 			write_opcode |= NVM_A8_OPCODE_SPI;
471 
472 		/* Send the Write command (8-bit opcode + addr) */
473 		igb_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
474 		igb_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
475 					 nvm->address_bits);
476 
477 		/* Loop to allow for up to whole page write of eeprom */
478 		while (widx < words) {
479 			u16 word_out = data[widx];
480 
481 			word_out = (word_out >> 8) | (word_out << 8);
482 			igb_shift_out_eec_bits(hw, word_out, 16);
483 			widx++;
484 
485 			if ((((offset + widx) * 2) % nvm->page_size) == 0) {
486 				igb_standby_nvm(hw);
487 				break;
488 			}
489 		}
490 		usleep_range(1000, 2000);
491 		nvm->ops.release(hw);
492 	}
493 
494 	return ret_val;
495 }
496 
497 /**
498  *  igb_read_part_string - Read device part number
499  *  @hw: pointer to the HW structure
500  *  @part_num: pointer to device part number
501  *  @part_num_size: size of part number buffer
502  *
503  *  Reads the product board assembly (PBA) number from the EEPROM and stores
504  *  the value in part_num.
505  **/
506 s32 igb_read_part_string(struct e1000_hw *hw, u8 *part_num, u32 part_num_size)
507 {
508 	s32 ret_val;
509 	u16 nvm_data;
510 	u16 pointer;
511 	u16 offset;
512 	u16 length;
513 
514 	if (part_num == NULL) {
515 		hw_dbg("PBA string buffer was null\n");
516 		ret_val = E1000_ERR_INVALID_ARGUMENT;
517 		goto out;
518 	}
519 
520 	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
521 	if (ret_val) {
522 		hw_dbg("NVM Read Error\n");
523 		goto out;
524 	}
525 
526 	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pointer);
527 	if (ret_val) {
528 		hw_dbg("NVM Read Error\n");
529 		goto out;
530 	}
531 
532 	/* if nvm_data is not ptr guard the PBA must be in legacy format which
533 	 * means pointer is actually our second data word for the PBA number
534 	 * and we can decode it into an ascii string
535 	 */
536 	if (nvm_data != NVM_PBA_PTR_GUARD) {
537 		hw_dbg("NVM PBA number is not stored as string\n");
538 
539 		/* we will need 11 characters to store the PBA */
540 		if (part_num_size < 11) {
541 			hw_dbg("PBA string buffer too small\n");
542 			return E1000_ERR_NO_SPACE;
543 		}
544 
545 		/* extract hex string from data and pointer */
546 		part_num[0] = (nvm_data >> 12) & 0xF;
547 		part_num[1] = (nvm_data >> 8) & 0xF;
548 		part_num[2] = (nvm_data >> 4) & 0xF;
549 		part_num[3] = nvm_data & 0xF;
550 		part_num[4] = (pointer >> 12) & 0xF;
551 		part_num[5] = (pointer >> 8) & 0xF;
552 		part_num[6] = '-';
553 		part_num[7] = 0;
554 		part_num[8] = (pointer >> 4) & 0xF;
555 		part_num[9] = pointer & 0xF;
556 
557 		/* put a null character on the end of our string */
558 		part_num[10] = '\0';
559 
560 		/* switch all the data but the '-' to hex char */
561 		for (offset = 0; offset < 10; offset++) {
562 			if (part_num[offset] < 0xA)
563 				part_num[offset] += '0';
564 			else if (part_num[offset] < 0x10)
565 				part_num[offset] += 'A' - 0xA;
566 		}
567 
568 		goto out;
569 	}
570 
571 	ret_val = hw->nvm.ops.read(hw, pointer, 1, &length);
572 	if (ret_val) {
573 		hw_dbg("NVM Read Error\n");
574 		goto out;
575 	}
576 
577 	if (length == 0xFFFF || length == 0) {
578 		hw_dbg("NVM PBA number section invalid length\n");
579 		ret_val = E1000_ERR_NVM_PBA_SECTION;
580 		goto out;
581 	}
582 	/* check if part_num buffer is big enough */
583 	if (part_num_size < (((u32)length * 2) - 1)) {
584 		hw_dbg("PBA string buffer too small\n");
585 		ret_val = E1000_ERR_NO_SPACE;
586 		goto out;
587 	}
588 
589 	/* trim pba length from start of string */
590 	pointer++;
591 	length--;
592 
593 	for (offset = 0; offset < length; offset++) {
594 		ret_val = hw->nvm.ops.read(hw, pointer + offset, 1, &nvm_data);
595 		if (ret_val) {
596 			hw_dbg("NVM Read Error\n");
597 			goto out;
598 		}
599 		part_num[offset * 2] = (u8)(nvm_data >> 8);
600 		part_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
601 	}
602 	part_num[offset * 2] = '\0';
603 
604 out:
605 	return ret_val;
606 }
607 
608 /**
609  *  igb_read_mac_addr - Read device MAC address
610  *  @hw: pointer to the HW structure
611  *
612  *  Reads the device MAC address from the EEPROM and stores the value.
613  *  Since devices with two ports use the same EEPROM, we increment the
614  *  last bit in the MAC address for the second port.
615  **/
616 s32 igb_read_mac_addr(struct e1000_hw *hw)
617 {
618 	u32 rar_high;
619 	u32 rar_low;
620 	u16 i;
621 
622 	rar_high = rd32(E1000_RAH(0));
623 	rar_low = rd32(E1000_RAL(0));
624 
625 	for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
626 		hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
627 
628 	for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
629 		hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
630 
631 	for (i = 0; i < ETH_ALEN; i++)
632 		hw->mac.addr[i] = hw->mac.perm_addr[i];
633 
634 	return 0;
635 }
636 
637 /**
638  *  igb_validate_nvm_checksum - Validate EEPROM checksum
639  *  @hw: pointer to the HW structure
640  *
641  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
642  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
643  **/
644 s32 igb_validate_nvm_checksum(struct e1000_hw *hw)
645 {
646 	s32 ret_val = 0;
647 	u16 checksum = 0;
648 	u16 i, nvm_data;
649 
650 	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
651 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
652 		if (ret_val) {
653 			hw_dbg("NVM Read Error\n");
654 			goto out;
655 		}
656 		checksum += nvm_data;
657 	}
658 
659 	if (checksum != (u16) NVM_SUM) {
660 		hw_dbg("NVM Checksum Invalid\n");
661 		ret_val = -E1000_ERR_NVM;
662 		goto out;
663 	}
664 
665 out:
666 	return ret_val;
667 }
668 
669 /**
670  *  igb_update_nvm_checksum - Update EEPROM checksum
671  *  @hw: pointer to the HW structure
672  *
673  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
674  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
675  *  value to the EEPROM.
676  **/
677 s32 igb_update_nvm_checksum(struct e1000_hw *hw)
678 {
679 	s32  ret_val;
680 	u16 checksum = 0;
681 	u16 i, nvm_data;
682 
683 	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
684 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
685 		if (ret_val) {
686 			hw_dbg("NVM Read Error while updating checksum.\n");
687 			goto out;
688 		}
689 		checksum += nvm_data;
690 	}
691 	checksum = (u16) NVM_SUM - checksum;
692 	ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
693 	if (ret_val)
694 		hw_dbg("NVM Write Error while updating checksum.\n");
695 
696 out:
697 	return ret_val;
698 }
699 
700 /**
701  *  igb_get_fw_version - Get firmware version information
702  *  @hw: pointer to the HW structure
703  *  @fw_vers: pointer to output structure
704  *
705  *  unsupported MAC types will return all 0 version structure
706  **/
707 void igb_get_fw_version(struct e1000_hw *hw, struct e1000_fw_version *fw_vers)
708 {
709 	u16 eeprom_verh, eeprom_verl, etrack_test, fw_version;
710 	u8 q, hval, rem, result;
711 	u16 comb_verh, comb_verl, comb_offset;
712 
713 	memset(fw_vers, 0, sizeof(struct e1000_fw_version));
714 
715 	/* basic eeprom version numbers and bits used vary by part and by tool
716 	 * used to create the nvm images. Check which data format we have.
717 	 */
718 	hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test);
719 	switch (hw->mac.type) {
720 	case e1000_i211:
721 		igb_read_invm_version(hw, fw_vers);
722 		return;
723 	case e1000_82575:
724 	case e1000_82576:
725 	case e1000_82580:
726 		/* Use this format, unless EETRACK ID exists,
727 		 * then use alternate format
728 		 */
729 		if ((etrack_test &  NVM_MAJOR_MASK) != NVM_ETRACK_VALID) {
730 			hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
731 			fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
732 					      >> NVM_MAJOR_SHIFT;
733 			fw_vers->eep_minor = (fw_version & NVM_MINOR_MASK)
734 					      >> NVM_MINOR_SHIFT;
735 			fw_vers->eep_build = (fw_version & NVM_IMAGE_ID_MASK);
736 			goto etrack_id;
737 		}
738 		break;
739 	case e1000_i210:
740 		if (!(igb_get_flash_presence_i210(hw))) {
741 			igb_read_invm_version(hw, fw_vers);
742 			return;
743 		}
744 		/* fall through */
745 	case e1000_i350:
746 		/* find combo image version */
747 		hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset);
748 		if ((comb_offset != 0x0) &&
749 		    (comb_offset != NVM_VER_INVALID)) {
750 
751 			hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset
752 					 + 1), 1, &comb_verh);
753 			hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset),
754 					 1, &comb_verl);
755 
756 			/* get Option Rom version if it exists and is valid */
757 			if ((comb_verh && comb_verl) &&
758 			    ((comb_verh != NVM_VER_INVALID) &&
759 			     (comb_verl != NVM_VER_INVALID))) {
760 
761 				fw_vers->or_valid = true;
762 				fw_vers->or_major =
763 					comb_verl >> NVM_COMB_VER_SHFT;
764 				fw_vers->or_build =
765 					(comb_verl << NVM_COMB_VER_SHFT)
766 					| (comb_verh >> NVM_COMB_VER_SHFT);
767 				fw_vers->or_patch =
768 					comb_verh & NVM_COMB_VER_MASK;
769 			}
770 		}
771 		break;
772 	default:
773 		return;
774 	}
775 	hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
776 	fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
777 			      >> NVM_MAJOR_SHIFT;
778 
779 	/* check for old style version format in newer images*/
780 	if ((fw_version & NVM_NEW_DEC_MASK) == 0x0) {
781 		eeprom_verl = (fw_version & NVM_COMB_VER_MASK);
782 	} else {
783 		eeprom_verl = (fw_version & NVM_MINOR_MASK)
784 				>> NVM_MINOR_SHIFT;
785 	}
786 	/* Convert minor value to hex before assigning to output struct
787 	 * Val to be converted will not be higher than 99, per tool output
788 	 */
789 	q = eeprom_verl / NVM_HEX_CONV;
790 	hval = q * NVM_HEX_TENS;
791 	rem = eeprom_verl % NVM_HEX_CONV;
792 	result = hval + rem;
793 	fw_vers->eep_minor = result;
794 
795 etrack_id:
796 	if ((etrack_test &  NVM_MAJOR_MASK) == NVM_ETRACK_VALID) {
797 		hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verl);
798 		hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verh);
799 		fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT)
800 			| eeprom_verl;
801 	}
802 }
803