1 /*******************************************************************************
2 
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2013 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 #include <linux/if_ether.h>
29 #include <linux/delay.h>
30 #include <linux/pci.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 
34 #include "e1000_mac.h"
35 
36 #include "igb.h"
37 
38 static s32 igb_set_default_fc(struct e1000_hw *hw);
39 static s32 igb_set_fc_watermarks(struct e1000_hw *hw);
40 
41 /**
42  *  igb_get_bus_info_pcie - Get PCIe bus information
43  *  @hw: pointer to the HW structure
44  *
45  *  Determines and stores the system bus information for a particular
46  *  network interface.  The following bus information is determined and stored:
47  *  bus speed, bus width, type (PCIe), and PCIe function.
48  **/
49 s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
50 {
51 	struct e1000_bus_info *bus = &hw->bus;
52 	s32 ret_val;
53 	u32 reg;
54 	u16 pcie_link_status;
55 
56 	bus->type = e1000_bus_type_pci_express;
57 
58 	ret_val = igb_read_pcie_cap_reg(hw,
59 					PCI_EXP_LNKSTA,
60 					&pcie_link_status);
61 	if (ret_val) {
62 		bus->width = e1000_bus_width_unknown;
63 		bus->speed = e1000_bus_speed_unknown;
64 	} else {
65 		switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) {
66 		case PCI_EXP_LNKSTA_CLS_2_5GB:
67 			bus->speed = e1000_bus_speed_2500;
68 			break;
69 		case PCI_EXP_LNKSTA_CLS_5_0GB:
70 			bus->speed = e1000_bus_speed_5000;
71 			break;
72 		default:
73 			bus->speed = e1000_bus_speed_unknown;
74 			break;
75 		}
76 
77 		bus->width = (enum e1000_bus_width)((pcie_link_status &
78 						     PCI_EXP_LNKSTA_NLW) >>
79 						     PCI_EXP_LNKSTA_NLW_SHIFT);
80 	}
81 
82 	reg = rd32(E1000_STATUS);
83 	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
84 
85 	return 0;
86 }
87 
88 /**
89  *  igb_clear_vfta - Clear VLAN filter table
90  *  @hw: pointer to the HW structure
91  *
92  *  Clears the register array which contains the VLAN filter table by
93  *  setting all the values to 0.
94  **/
95 void igb_clear_vfta(struct e1000_hw *hw)
96 {
97 	u32 offset;
98 
99 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
100 		array_wr32(E1000_VFTA, offset, 0);
101 		wrfl();
102 	}
103 }
104 
105 /**
106  *  igb_write_vfta - Write value to VLAN filter table
107  *  @hw: pointer to the HW structure
108  *  @offset: register offset in VLAN filter table
109  *  @value: register value written to VLAN filter table
110  *
111  *  Writes value at the given offset in the register array which stores
112  *  the VLAN filter table.
113  **/
114 static void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
115 {
116 	array_wr32(E1000_VFTA, offset, value);
117 	wrfl();
118 }
119 
120 /* Due to a hw errata, if the host tries to  configure the VFTA register
121  * while performing queries from the BMC or DMA, then the VFTA in some
122  * cases won't be written.
123  */
124 
125 /**
126  *  igb_clear_vfta_i350 - Clear VLAN filter table
127  *  @hw: pointer to the HW structure
128  *
129  *  Clears the register array which contains the VLAN filter table by
130  *  setting all the values to 0.
131  **/
132 void igb_clear_vfta_i350(struct e1000_hw *hw)
133 {
134 	u32 offset;
135 	int i;
136 
137 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
138 		for (i = 0; i < 10; i++)
139 			array_wr32(E1000_VFTA, offset, 0);
140 
141 		wrfl();
142 	}
143 }
144 
145 /**
146  *  igb_write_vfta_i350 - Write value to VLAN filter table
147  *  @hw: pointer to the HW structure
148  *  @offset: register offset in VLAN filter table
149  *  @value: register value written to VLAN filter table
150  *
151  *  Writes value at the given offset in the register array which stores
152  *  the VLAN filter table.
153  **/
154 static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
155 {
156 	int i;
157 
158 	for (i = 0; i < 10; i++)
159 		array_wr32(E1000_VFTA, offset, value);
160 
161 	wrfl();
162 }
163 
164 /**
165  *  igb_init_rx_addrs - Initialize receive address's
166  *  @hw: pointer to the HW structure
167  *  @rar_count: receive address registers
168  *
169  *  Setups the receive address registers by setting the base receive address
170  *  register to the devices MAC address and clearing all the other receive
171  *  address registers to 0.
172  **/
173 void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
174 {
175 	u32 i;
176 	u8 mac_addr[ETH_ALEN] = {0};
177 
178 	/* Setup the receive address */
179 	hw_dbg("Programming MAC Address into RAR[0]\n");
180 
181 	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
182 
183 	/* Zero out the other (rar_entry_count - 1) receive addresses */
184 	hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
185 	for (i = 1; i < rar_count; i++)
186 		hw->mac.ops.rar_set(hw, mac_addr, i);
187 }
188 
189 /**
190  *  igb_vfta_set - enable or disable vlan in VLAN filter table
191  *  @hw: pointer to the HW structure
192  *  @vid: VLAN id to add or remove
193  *  @add: if true add filter, if false remove
194  *
195  *  Sets or clears a bit in the VLAN filter table array based on VLAN id
196  *  and if we are adding or removing the filter
197  **/
198 s32 igb_vfta_set(struct e1000_hw *hw, u32 vid, bool add)
199 {
200 	u32 index = (vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK;
201 	u32 mask = 1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
202 	u32 vfta;
203 	struct igb_adapter *adapter = hw->back;
204 	s32 ret_val = 0;
205 
206 	vfta = adapter->shadow_vfta[index];
207 
208 	/* bit was set/cleared before we started */
209 	if ((!!(vfta & mask)) == add) {
210 		ret_val = -E1000_ERR_CONFIG;
211 	} else {
212 		if (add)
213 			vfta |= mask;
214 		else
215 			vfta &= ~mask;
216 	}
217 	if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
218 		igb_write_vfta_i350(hw, index, vfta);
219 	else
220 		igb_write_vfta(hw, index, vfta);
221 	adapter->shadow_vfta[index] = vfta;
222 
223 	return ret_val;
224 }
225 
226 /**
227  *  igb_check_alt_mac_addr - Check for alternate MAC addr
228  *  @hw: pointer to the HW structure
229  *
230  *  Checks the nvm for an alternate MAC address.  An alternate MAC address
231  *  can be setup by pre-boot software and must be treated like a permanent
232  *  address and must override the actual permanent MAC address.  If an
233  *  alternate MAC address is found it is saved in the hw struct and
234  *  programmed into RAR0 and the function returns success, otherwise the
235  *  function returns an error.
236  **/
237 s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
238 {
239 	u32 i;
240 	s32 ret_val = 0;
241 	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
242 	u8 alt_mac_addr[ETH_ALEN];
243 
244 	/* Alternate MAC address is handled by the option ROM for 82580
245 	 * and newer. SW support not required.
246 	 */
247 	if (hw->mac.type >= e1000_82580)
248 		goto out;
249 
250 	ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
251 				 &nvm_alt_mac_addr_offset);
252 	if (ret_val) {
253 		hw_dbg("NVM Read Error\n");
254 		goto out;
255 	}
256 
257 	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
258 	    (nvm_alt_mac_addr_offset == 0x0000))
259 		/* There is no Alternate MAC Address */
260 		goto out;
261 
262 	if (hw->bus.func == E1000_FUNC_1)
263 		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
264 	if (hw->bus.func == E1000_FUNC_2)
265 		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
266 
267 	if (hw->bus.func == E1000_FUNC_3)
268 		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
269 	for (i = 0; i < ETH_ALEN; i += 2) {
270 		offset = nvm_alt_mac_addr_offset + (i >> 1);
271 		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
272 		if (ret_val) {
273 			hw_dbg("NVM Read Error\n");
274 			goto out;
275 		}
276 
277 		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
278 		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
279 	}
280 
281 	/* if multicast bit is set, the alternate address will not be used */
282 	if (is_multicast_ether_addr(alt_mac_addr)) {
283 		hw_dbg("Ignoring Alternate Mac Address with MC bit set\n");
284 		goto out;
285 	}
286 
287 	/* We have a valid alternate MAC address, and we want to treat it the
288 	 * same as the normal permanent MAC address stored by the HW into the
289 	 * RAR. Do this by mapping this address into RAR0.
290 	 */
291 	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
292 
293 out:
294 	return ret_val;
295 }
296 
297 /**
298  *  igb_rar_set - Set receive address register
299  *  @hw: pointer to the HW structure
300  *  @addr: pointer to the receive address
301  *  @index: receive address array register
302  *
303  *  Sets the receive address array register at index to the address passed
304  *  in by addr.
305  **/
306 void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
307 {
308 	u32 rar_low, rar_high;
309 
310 	/* HW expects these in little endian so we reverse the byte order
311 	 * from network order (big endian) to little endian
312 	 */
313 	rar_low = ((u32) addr[0] |
314 		   ((u32) addr[1] << 8) |
315 		    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
316 
317 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
318 
319 	/* If MAC address zero, no need to set the AV bit */
320 	if (rar_low || rar_high)
321 		rar_high |= E1000_RAH_AV;
322 
323 	/* Some bridges will combine consecutive 32-bit writes into
324 	 * a single burst write, which will malfunction on some parts.
325 	 * The flushes avoid this.
326 	 */
327 	wr32(E1000_RAL(index), rar_low);
328 	wrfl();
329 	wr32(E1000_RAH(index), rar_high);
330 	wrfl();
331 }
332 
333 /**
334  *  igb_mta_set - Set multicast filter table address
335  *  @hw: pointer to the HW structure
336  *  @hash_value: determines the MTA register and bit to set
337  *
338  *  The multicast table address is a register array of 32-bit registers.
339  *  The hash_value is used to determine what register the bit is in, the
340  *  current value is read, the new bit is OR'd in and the new value is
341  *  written back into the register.
342  **/
343 void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
344 {
345 	u32 hash_bit, hash_reg, mta;
346 
347 	/* The MTA is a register array of 32-bit registers. It is
348 	 * treated like an array of (32*mta_reg_count) bits.  We want to
349 	 * set bit BitArray[hash_value]. So we figure out what register
350 	 * the bit is in, read it, OR in the new bit, then write
351 	 * back the new value.  The (hw->mac.mta_reg_count - 1) serves as a
352 	 * mask to bits 31:5 of the hash value which gives us the
353 	 * register we're modifying.  The hash bit within that register
354 	 * is determined by the lower 5 bits of the hash value.
355 	 */
356 	hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
357 	hash_bit = hash_value & 0x1F;
358 
359 	mta = array_rd32(E1000_MTA, hash_reg);
360 
361 	mta |= (1 << hash_bit);
362 
363 	array_wr32(E1000_MTA, hash_reg, mta);
364 	wrfl();
365 }
366 
367 /**
368  *  igb_hash_mc_addr - Generate a multicast hash value
369  *  @hw: pointer to the HW structure
370  *  @mc_addr: pointer to a multicast address
371  *
372  *  Generates a multicast address hash value which is used to determine
373  *  the multicast filter table array address and new table value.  See
374  *  igb_mta_set()
375  **/
376 static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
377 {
378 	u32 hash_value, hash_mask;
379 	u8 bit_shift = 0;
380 
381 	/* Register count multiplied by bits per register */
382 	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
383 
384 	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
385 	 * where 0xFF would still fall within the hash mask.
386 	 */
387 	while (hash_mask >> bit_shift != 0xFF)
388 		bit_shift++;
389 
390 	/* The portion of the address that is used for the hash table
391 	 * is determined by the mc_filter_type setting.
392 	 * The algorithm is such that there is a total of 8 bits of shifting.
393 	 * The bit_shift for a mc_filter_type of 0 represents the number of
394 	 * left-shifts where the MSB of mc_addr[5] would still fall within
395 	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
396 	 * of 8 bits of shifting, then mc_addr[4] will shift right the
397 	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
398 	 * cases are a variation of this algorithm...essentially raising the
399 	 * number of bits to shift mc_addr[5] left, while still keeping the
400 	 * 8-bit shifting total.
401 	 *
402 	 * For example, given the following Destination MAC Address and an
403 	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
404 	 * we can see that the bit_shift for case 0 is 4.  These are the hash
405 	 * values resulting from each mc_filter_type...
406 	 * [0] [1] [2] [3] [4] [5]
407 	 * 01  AA  00  12  34  56
408 	 * LSB                 MSB
409 	 *
410 	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
411 	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
412 	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
413 	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
414 	 */
415 	switch (hw->mac.mc_filter_type) {
416 	default:
417 	case 0:
418 		break;
419 	case 1:
420 		bit_shift += 1;
421 		break;
422 	case 2:
423 		bit_shift += 2;
424 		break;
425 	case 3:
426 		bit_shift += 4;
427 		break;
428 	}
429 
430 	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
431 				  (((u16) mc_addr[5]) << bit_shift)));
432 
433 	return hash_value;
434 }
435 
436 /**
437  *  igb_update_mc_addr_list - Update Multicast addresses
438  *  @hw: pointer to the HW structure
439  *  @mc_addr_list: array of multicast addresses to program
440  *  @mc_addr_count: number of multicast addresses to program
441  *
442  *  Updates entire Multicast Table Array.
443  *  The caller must have a packed mc_addr_list of multicast addresses.
444  **/
445 void igb_update_mc_addr_list(struct e1000_hw *hw,
446                              u8 *mc_addr_list, u32 mc_addr_count)
447 {
448 	u32 hash_value, hash_bit, hash_reg;
449 	int i;
450 
451 	/* clear mta_shadow */
452 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
453 
454 	/* update mta_shadow from mc_addr_list */
455 	for (i = 0; (u32) i < mc_addr_count; i++) {
456 		hash_value = igb_hash_mc_addr(hw, mc_addr_list);
457 
458 		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
459 		hash_bit = hash_value & 0x1F;
460 
461 		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
462 		mc_addr_list += (ETH_ALEN);
463 	}
464 
465 	/* replace the entire MTA table */
466 	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
467 		array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
468 	wrfl();
469 }
470 
471 /**
472  *  igb_clear_hw_cntrs_base - Clear base hardware counters
473  *  @hw: pointer to the HW structure
474  *
475  *  Clears the base hardware counters by reading the counter registers.
476  **/
477 void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
478 {
479 	rd32(E1000_CRCERRS);
480 	rd32(E1000_SYMERRS);
481 	rd32(E1000_MPC);
482 	rd32(E1000_SCC);
483 	rd32(E1000_ECOL);
484 	rd32(E1000_MCC);
485 	rd32(E1000_LATECOL);
486 	rd32(E1000_COLC);
487 	rd32(E1000_DC);
488 	rd32(E1000_SEC);
489 	rd32(E1000_RLEC);
490 	rd32(E1000_XONRXC);
491 	rd32(E1000_XONTXC);
492 	rd32(E1000_XOFFRXC);
493 	rd32(E1000_XOFFTXC);
494 	rd32(E1000_FCRUC);
495 	rd32(E1000_GPRC);
496 	rd32(E1000_BPRC);
497 	rd32(E1000_MPRC);
498 	rd32(E1000_GPTC);
499 	rd32(E1000_GORCL);
500 	rd32(E1000_GORCH);
501 	rd32(E1000_GOTCL);
502 	rd32(E1000_GOTCH);
503 	rd32(E1000_RNBC);
504 	rd32(E1000_RUC);
505 	rd32(E1000_RFC);
506 	rd32(E1000_ROC);
507 	rd32(E1000_RJC);
508 	rd32(E1000_TORL);
509 	rd32(E1000_TORH);
510 	rd32(E1000_TOTL);
511 	rd32(E1000_TOTH);
512 	rd32(E1000_TPR);
513 	rd32(E1000_TPT);
514 	rd32(E1000_MPTC);
515 	rd32(E1000_BPTC);
516 }
517 
518 /**
519  *  igb_check_for_copper_link - Check for link (Copper)
520  *  @hw: pointer to the HW structure
521  *
522  *  Checks to see of the link status of the hardware has changed.  If a
523  *  change in link status has been detected, then we read the PHY registers
524  *  to get the current speed/duplex if link exists.
525  **/
526 s32 igb_check_for_copper_link(struct e1000_hw *hw)
527 {
528 	struct e1000_mac_info *mac = &hw->mac;
529 	s32 ret_val;
530 	bool link;
531 
532 	/* We only want to go out to the PHY registers to see if Auto-Neg
533 	 * has completed and/or if our link status has changed.  The
534 	 * get_link_status flag is set upon receiving a Link Status
535 	 * Change or Rx Sequence Error interrupt.
536 	 */
537 	if (!mac->get_link_status) {
538 		ret_val = 0;
539 		goto out;
540 	}
541 
542 	/* First we want to see if the MII Status Register reports
543 	 * link.  If so, then we want to get the current speed/duplex
544 	 * of the PHY.
545 	 */
546 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
547 	if (ret_val)
548 		goto out;
549 
550 	if (!link)
551 		goto out; /* No link detected */
552 
553 	mac->get_link_status = false;
554 
555 	/* Check if there was DownShift, must be checked
556 	 * immediately after link-up
557 	 */
558 	igb_check_downshift(hw);
559 
560 	/* If we are forcing speed/duplex, then we simply return since
561 	 * we have already determined whether we have link or not.
562 	 */
563 	if (!mac->autoneg) {
564 		ret_val = -E1000_ERR_CONFIG;
565 		goto out;
566 	}
567 
568 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
569 	 * of MAC speed/duplex configuration.  So we only need to
570 	 * configure Collision Distance in the MAC.
571 	 */
572 	igb_config_collision_dist(hw);
573 
574 	/* Configure Flow Control now that Auto-Neg has completed.
575 	 * First, we need to restore the desired flow control
576 	 * settings because we may have had to re-autoneg with a
577 	 * different link partner.
578 	 */
579 	ret_val = igb_config_fc_after_link_up(hw);
580 	if (ret_val)
581 		hw_dbg("Error configuring flow control\n");
582 
583 out:
584 	return ret_val;
585 }
586 
587 /**
588  *  igb_setup_link - Setup flow control and link settings
589  *  @hw: pointer to the HW structure
590  *
591  *  Determines which flow control settings to use, then configures flow
592  *  control.  Calls the appropriate media-specific link configuration
593  *  function.  Assuming the adapter has a valid link partner, a valid link
594  *  should be established.  Assumes the hardware has previously been reset
595  *  and the transmitter and receiver are not enabled.
596  **/
597 s32 igb_setup_link(struct e1000_hw *hw)
598 {
599 	s32 ret_val = 0;
600 
601 	/* In the case of the phy reset being blocked, we already have a link.
602 	 * We do not need to set it up again.
603 	 */
604 	if (igb_check_reset_block(hw))
605 		goto out;
606 
607 	/* If requested flow control is set to default, set flow control
608 	 * based on the EEPROM flow control settings.
609 	 */
610 	if (hw->fc.requested_mode == e1000_fc_default) {
611 		ret_val = igb_set_default_fc(hw);
612 		if (ret_val)
613 			goto out;
614 	}
615 
616 	/* We want to save off the original Flow Control configuration just
617 	 * in case we get disconnected and then reconnected into a different
618 	 * hub or switch with different Flow Control capabilities.
619 	 */
620 	hw->fc.current_mode = hw->fc.requested_mode;
621 
622 	hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
623 
624 	/* Call the necessary media_type subroutine to configure the link. */
625 	ret_val = hw->mac.ops.setup_physical_interface(hw);
626 	if (ret_val)
627 		goto out;
628 
629 	/* Initialize the flow control address, type, and PAUSE timer
630 	 * registers to their default values.  This is done even if flow
631 	 * control is disabled, because it does not hurt anything to
632 	 * initialize these registers.
633 	 */
634 	hw_dbg("Initializing the Flow Control address, type and timer regs\n");
635 	wr32(E1000_FCT, FLOW_CONTROL_TYPE);
636 	wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
637 	wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
638 
639 	wr32(E1000_FCTTV, hw->fc.pause_time);
640 
641 	ret_val = igb_set_fc_watermarks(hw);
642 
643 out:
644 
645 	return ret_val;
646 }
647 
648 /**
649  *  igb_config_collision_dist - Configure collision distance
650  *  @hw: pointer to the HW structure
651  *
652  *  Configures the collision distance to the default value and is used
653  *  during link setup. Currently no func pointer exists and all
654  *  implementations are handled in the generic version of this function.
655  **/
656 void igb_config_collision_dist(struct e1000_hw *hw)
657 {
658 	u32 tctl;
659 
660 	tctl = rd32(E1000_TCTL);
661 
662 	tctl &= ~E1000_TCTL_COLD;
663 	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
664 
665 	wr32(E1000_TCTL, tctl);
666 	wrfl();
667 }
668 
669 /**
670  *  igb_set_fc_watermarks - Set flow control high/low watermarks
671  *  @hw: pointer to the HW structure
672  *
673  *  Sets the flow control high/low threshold (watermark) registers.  If
674  *  flow control XON frame transmission is enabled, then set XON frame
675  *  tansmission as well.
676  **/
677 static s32 igb_set_fc_watermarks(struct e1000_hw *hw)
678 {
679 	s32 ret_val = 0;
680 	u32 fcrtl = 0, fcrth = 0;
681 
682 	/* Set the flow control receive threshold registers.  Normally,
683 	 * these registers will be set to a default threshold that may be
684 	 * adjusted later by the driver's runtime code.  However, if the
685 	 * ability to transmit pause frames is not enabled, then these
686 	 * registers will be set to 0.
687 	 */
688 	if (hw->fc.current_mode & e1000_fc_tx_pause) {
689 		/* We need to set up the Receive Threshold high and low water
690 		 * marks as well as (optionally) enabling the transmission of
691 		 * XON frames.
692 		 */
693 		fcrtl = hw->fc.low_water;
694 		if (hw->fc.send_xon)
695 			fcrtl |= E1000_FCRTL_XONE;
696 
697 		fcrth = hw->fc.high_water;
698 	}
699 	wr32(E1000_FCRTL, fcrtl);
700 	wr32(E1000_FCRTH, fcrth);
701 
702 	return ret_val;
703 }
704 
705 /**
706  *  igb_set_default_fc - Set flow control default values
707  *  @hw: pointer to the HW structure
708  *
709  *  Read the EEPROM for the default values for flow control and store the
710  *  values.
711  **/
712 static s32 igb_set_default_fc(struct e1000_hw *hw)
713 {
714 	s32 ret_val = 0;
715 	u16 nvm_data;
716 
717 	/* Read and store word 0x0F of the EEPROM. This word contains bits
718 	 * that determine the hardware's default PAUSE (flow control) mode,
719 	 * a bit that determines whether the HW defaults to enabling or
720 	 * disabling auto-negotiation, and the direction of the
721 	 * SW defined pins. If there is no SW over-ride of the flow
722 	 * control setting, then the variable hw->fc will
723 	 * be initialized based on a value in the EEPROM.
724 	 */
725 	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
726 
727 	if (ret_val) {
728 		hw_dbg("NVM Read Error\n");
729 		goto out;
730 	}
731 
732 	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
733 		hw->fc.requested_mode = e1000_fc_none;
734 	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
735 		 NVM_WORD0F_ASM_DIR)
736 		hw->fc.requested_mode = e1000_fc_tx_pause;
737 	else
738 		hw->fc.requested_mode = e1000_fc_full;
739 
740 out:
741 	return ret_val;
742 }
743 
744 /**
745  *  igb_force_mac_fc - Force the MAC's flow control settings
746  *  @hw: pointer to the HW structure
747  *
748  *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
749  *  device control register to reflect the adapter settings.  TFCE and RFCE
750  *  need to be explicitly set by software when a copper PHY is used because
751  *  autonegotiation is managed by the PHY rather than the MAC.  Software must
752  *  also configure these bits when link is forced on a fiber connection.
753  **/
754 s32 igb_force_mac_fc(struct e1000_hw *hw)
755 {
756 	u32 ctrl;
757 	s32 ret_val = 0;
758 
759 	ctrl = rd32(E1000_CTRL);
760 
761 	/* Because we didn't get link via the internal auto-negotiation
762 	 * mechanism (we either forced link or we got link via PHY
763 	 * auto-neg), we have to manually enable/disable transmit an
764 	 * receive flow control.
765 	 *
766 	 * The "Case" statement below enables/disable flow control
767 	 * according to the "hw->fc.current_mode" parameter.
768 	 *
769 	 * The possible values of the "fc" parameter are:
770 	 *      0:  Flow control is completely disabled
771 	 *      1:  Rx flow control is enabled (we can receive pause
772 	 *          frames but not send pause frames).
773 	 *      2:  Tx flow control is enabled (we can send pause frames
774 	 *          frames but we do not receive pause frames).
775 	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
776 	 *  other:  No other values should be possible at this point.
777 	 */
778 	hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
779 
780 	switch (hw->fc.current_mode) {
781 	case e1000_fc_none:
782 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
783 		break;
784 	case e1000_fc_rx_pause:
785 		ctrl &= (~E1000_CTRL_TFCE);
786 		ctrl |= E1000_CTRL_RFCE;
787 		break;
788 	case e1000_fc_tx_pause:
789 		ctrl &= (~E1000_CTRL_RFCE);
790 		ctrl |= E1000_CTRL_TFCE;
791 		break;
792 	case e1000_fc_full:
793 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
794 		break;
795 	default:
796 		hw_dbg("Flow control param set incorrectly\n");
797 		ret_val = -E1000_ERR_CONFIG;
798 		goto out;
799 	}
800 
801 	wr32(E1000_CTRL, ctrl);
802 
803 out:
804 	return ret_val;
805 }
806 
807 /**
808  *  igb_config_fc_after_link_up - Configures flow control after link
809  *  @hw: pointer to the HW structure
810  *
811  *  Checks the status of auto-negotiation after link up to ensure that the
812  *  speed and duplex were not forced.  If the link needed to be forced, then
813  *  flow control needs to be forced also.  If auto-negotiation is enabled
814  *  and did not fail, then we configure flow control based on our link
815  *  partner.
816  **/
817 s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
818 {
819 	struct e1000_mac_info *mac = &hw->mac;
820 	s32 ret_val = 0;
821 	u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
822 	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
823 	u16 speed, duplex;
824 
825 	/* Check for the case where we have fiber media and auto-neg failed
826 	 * so we had to force link.  In this case, we need to force the
827 	 * configuration of the MAC to match the "fc" parameter.
828 	 */
829 	if (mac->autoneg_failed) {
830 		if (hw->phy.media_type == e1000_media_type_internal_serdes)
831 			ret_val = igb_force_mac_fc(hw);
832 	} else {
833 		if (hw->phy.media_type == e1000_media_type_copper)
834 			ret_val = igb_force_mac_fc(hw);
835 	}
836 
837 	if (ret_val) {
838 		hw_dbg("Error forcing flow control settings\n");
839 		goto out;
840 	}
841 
842 	/* Check for the case where we have copper media and auto-neg is
843 	 * enabled.  In this case, we need to check and see if Auto-Neg
844 	 * has completed, and if so, how the PHY and link partner has
845 	 * flow control configured.
846 	 */
847 	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
848 		/* Read the MII Status Register and check to see if AutoNeg
849 		 * has completed.  We read this twice because this reg has
850 		 * some "sticky" (latched) bits.
851 		 */
852 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
853 						   &mii_status_reg);
854 		if (ret_val)
855 			goto out;
856 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
857 						   &mii_status_reg);
858 		if (ret_val)
859 			goto out;
860 
861 		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
862 			hw_dbg("Copper PHY and Auto Neg "
863 				 "has not completed.\n");
864 			goto out;
865 		}
866 
867 		/* The AutoNeg process has completed, so we now need to
868 		 * read both the Auto Negotiation Advertisement
869 		 * Register (Address 4) and the Auto_Negotiation Base
870 		 * Page Ability Register (Address 5) to determine how
871 		 * flow control was negotiated.
872 		 */
873 		ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
874 					    &mii_nway_adv_reg);
875 		if (ret_val)
876 			goto out;
877 		ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
878 					    &mii_nway_lp_ability_reg);
879 		if (ret_val)
880 			goto out;
881 
882 		/* Two bits in the Auto Negotiation Advertisement Register
883 		 * (Address 4) and two bits in the Auto Negotiation Base
884 		 * Page Ability Register (Address 5) determine flow control
885 		 * for both the PHY and the link partner.  The following
886 		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
887 		 * 1999, describes these PAUSE resolution bits and how flow
888 		 * control is determined based upon these settings.
889 		 * NOTE:  DC = Don't Care
890 		 *
891 		 *   LOCAL DEVICE  |   LINK PARTNER
892 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
893 		 *-------|---------|-------|---------|--------------------
894 		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
895 		 *   0   |    1    |   0   |   DC    | e1000_fc_none
896 		 *   0   |    1    |   1   |    0    | e1000_fc_none
897 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
898 		 *   1   |    0    |   0   |   DC    | e1000_fc_none
899 		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
900 		 *   1   |    1    |   0   |    0    | e1000_fc_none
901 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
902 		 *
903 		 * Are both PAUSE bits set to 1?  If so, this implies
904 		 * Symmetric Flow Control is enabled at both ends.  The
905 		 * ASM_DIR bits are irrelevant per the spec.
906 		 *
907 		 * For Symmetric Flow Control:
908 		 *
909 		 *   LOCAL DEVICE  |   LINK PARTNER
910 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
911 		 *-------|---------|-------|---------|--------------------
912 		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
913 		 *
914 		 */
915 		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
916 		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
917 			/* Now we need to check if the user selected RX ONLY
918 			 * of pause frames.  In this case, we had to advertise
919 			 * FULL flow control because we could not advertise RX
920 			 * ONLY. Hence, we must now check to see if we need to
921 			 * turn OFF  the TRANSMISSION of PAUSE frames.
922 			 */
923 			if (hw->fc.requested_mode == e1000_fc_full) {
924 				hw->fc.current_mode = e1000_fc_full;
925 				hw_dbg("Flow Control = FULL.\r\n");
926 			} else {
927 				hw->fc.current_mode = e1000_fc_rx_pause;
928 				hw_dbg("Flow Control = "
929 				       "RX PAUSE frames only.\r\n");
930 			}
931 		}
932 		/* For receiving PAUSE frames ONLY.
933 		 *
934 		 *   LOCAL DEVICE  |   LINK PARTNER
935 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
936 		 *-------|---------|-------|---------|--------------------
937 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
938 		 */
939 		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
940 			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
941 			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
942 			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
943 			hw->fc.current_mode = e1000_fc_tx_pause;
944 			hw_dbg("Flow Control = TX PAUSE frames only.\r\n");
945 		}
946 		/* For transmitting PAUSE frames ONLY.
947 		 *
948 		 *   LOCAL DEVICE  |   LINK PARTNER
949 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
950 		 *-------|---------|-------|---------|--------------------
951 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
952 		 */
953 		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
954 			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
955 			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
956 			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
957 			hw->fc.current_mode = e1000_fc_rx_pause;
958 			hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
959 		}
960 		/* Per the IEEE spec, at this point flow control should be
961 		 * disabled.  However, we want to consider that we could
962 		 * be connected to a legacy switch that doesn't advertise
963 		 * desired flow control, but can be forced on the link
964 		 * partner.  So if we advertised no flow control, that is
965 		 * what we will resolve to.  If we advertised some kind of
966 		 * receive capability (Rx Pause Only or Full Flow Control)
967 		 * and the link partner advertised none, we will configure
968 		 * ourselves to enable Rx Flow Control only.  We can do
969 		 * this safely for two reasons:  If the link partner really
970 		 * didn't want flow control enabled, and we enable Rx, no
971 		 * harm done since we won't be receiving any PAUSE frames
972 		 * anyway.  If the intent on the link partner was to have
973 		 * flow control enabled, then by us enabling RX only, we
974 		 * can at least receive pause frames and process them.
975 		 * This is a good idea because in most cases, since we are
976 		 * predominantly a server NIC, more times than not we will
977 		 * be asked to delay transmission of packets than asking
978 		 * our link partner to pause transmission of frames.
979 		 */
980 		else if ((hw->fc.requested_mode == e1000_fc_none) ||
981 			 (hw->fc.requested_mode == e1000_fc_tx_pause) ||
982 			 (hw->fc.strict_ieee)) {
983 			hw->fc.current_mode = e1000_fc_none;
984 			hw_dbg("Flow Control = NONE.\r\n");
985 		} else {
986 			hw->fc.current_mode = e1000_fc_rx_pause;
987 			hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
988 		}
989 
990 		/* Now we need to do one last check...  If we auto-
991 		 * negotiated to HALF DUPLEX, flow control should not be
992 		 * enabled per IEEE 802.3 spec.
993 		 */
994 		ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
995 		if (ret_val) {
996 			hw_dbg("Error getting link speed and duplex\n");
997 			goto out;
998 		}
999 
1000 		if (duplex == HALF_DUPLEX)
1001 			hw->fc.current_mode = e1000_fc_none;
1002 
1003 		/* Now we call a subroutine to actually force the MAC
1004 		 * controller to use the correct flow control settings.
1005 		 */
1006 		ret_val = igb_force_mac_fc(hw);
1007 		if (ret_val) {
1008 			hw_dbg("Error forcing flow control settings\n");
1009 			goto out;
1010 		}
1011 	}
1012 	/* Check for the case where we have SerDes media and auto-neg is
1013 	 * enabled.  In this case, we need to check and see if Auto-Neg
1014 	 * has completed, and if so, how the PHY and link partner has
1015 	 * flow control configured.
1016 	 */
1017 	if ((hw->phy.media_type == e1000_media_type_internal_serdes)
1018 		&& mac->autoneg) {
1019 		/* Read the PCS_LSTS and check to see if AutoNeg
1020 		 * has completed.
1021 		 */
1022 		pcs_status_reg = rd32(E1000_PCS_LSTAT);
1023 
1024 		if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
1025 			hw_dbg("PCS Auto Neg has not completed.\n");
1026 			return ret_val;
1027 		}
1028 
1029 		/* The AutoNeg process has completed, so we now need to
1030 		 * read both the Auto Negotiation Advertisement
1031 		 * Register (PCS_ANADV) and the Auto_Negotiation Base
1032 		 * Page Ability Register (PCS_LPAB) to determine how
1033 		 * flow control was negotiated.
1034 		 */
1035 		pcs_adv_reg = rd32(E1000_PCS_ANADV);
1036 		pcs_lp_ability_reg = rd32(E1000_PCS_LPAB);
1037 
1038 		/* Two bits in the Auto Negotiation Advertisement Register
1039 		 * (PCS_ANADV) and two bits in the Auto Negotiation Base
1040 		 * Page Ability Register (PCS_LPAB) determine flow control
1041 		 * for both the PHY and the link partner.  The following
1042 		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1043 		 * 1999, describes these PAUSE resolution bits and how flow
1044 		 * control is determined based upon these settings.
1045 		 * NOTE:  DC = Don't Care
1046 		 *
1047 		 *   LOCAL DEVICE  |   LINK PARTNER
1048 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1049 		 *-------|---------|-------|---------|--------------------
1050 		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1051 		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1052 		 *   0   |    1    |   1   |    0    | e1000_fc_none
1053 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1054 		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1055 		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1056 		 *   1   |    1    |   0   |    0    | e1000_fc_none
1057 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1058 		 *
1059 		 * Are both PAUSE bits set to 1?  If so, this implies
1060 		 * Symmetric Flow Control is enabled at both ends.  The
1061 		 * ASM_DIR bits are irrelevant per the spec.
1062 		 *
1063 		 * For Symmetric Flow Control:
1064 		 *
1065 		 *   LOCAL DEVICE  |   LINK PARTNER
1066 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1067 		 *-------|---------|-------|---------|--------------------
1068 		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1069 		 *
1070 		 */
1071 		if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1072 		    (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
1073 			/* Now we need to check if the user selected Rx ONLY
1074 			 * of pause frames.  In this case, we had to advertise
1075 			 * FULL flow control because we could not advertise Rx
1076 			 * ONLY. Hence, we must now check to see if we need to
1077 			 * turn OFF the TRANSMISSION of PAUSE frames.
1078 			 */
1079 			if (hw->fc.requested_mode == e1000_fc_full) {
1080 				hw->fc.current_mode = e1000_fc_full;
1081 				hw_dbg("Flow Control = FULL.\n");
1082 			} else {
1083 				hw->fc.current_mode = e1000_fc_rx_pause;
1084 				hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1085 			}
1086 		}
1087 		/* For receiving PAUSE frames ONLY.
1088 		 *
1089 		 *   LOCAL DEVICE  |   LINK PARTNER
1090 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1091 		 *-------|---------|-------|---------|--------------------
1092 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1093 		 */
1094 		else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
1095 			  (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1096 			  (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1097 			  (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1098 			hw->fc.current_mode = e1000_fc_tx_pause;
1099 			hw_dbg("Flow Control = Tx PAUSE frames only.\n");
1100 		}
1101 		/* For transmitting PAUSE frames ONLY.
1102 		 *
1103 		 *   LOCAL DEVICE  |   LINK PARTNER
1104 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1105 		 *-------|---------|-------|---------|--------------------
1106 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1107 		 */
1108 		else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1109 			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1110 			 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1111 			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1112 			hw->fc.current_mode = e1000_fc_rx_pause;
1113 			hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1114 		} else {
1115 			/* Per the IEEE spec, at this point flow control
1116 			 * should be disabled.
1117 			 */
1118 			hw->fc.current_mode = e1000_fc_none;
1119 			hw_dbg("Flow Control = NONE.\n");
1120 		}
1121 
1122 		/* Now we call a subroutine to actually force the MAC
1123 		 * controller to use the correct flow control settings.
1124 		 */
1125 		pcs_ctrl_reg = rd32(E1000_PCS_LCTL);
1126 		pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1127 		wr32(E1000_PCS_LCTL, pcs_ctrl_reg);
1128 
1129 		ret_val = igb_force_mac_fc(hw);
1130 		if (ret_val) {
1131 			hw_dbg("Error forcing flow control settings\n");
1132 			return ret_val;
1133 		}
1134 	}
1135 
1136 out:
1137 	return ret_val;
1138 }
1139 
1140 /**
1141  *  igb_get_speed_and_duplex_copper - Retrieve current speed/duplex
1142  *  @hw: pointer to the HW structure
1143  *  @speed: stores the current speed
1144  *  @duplex: stores the current duplex
1145  *
1146  *  Read the status register for the current speed/duplex and store the current
1147  *  speed and duplex for copper connections.
1148  **/
1149 s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1150 				      u16 *duplex)
1151 {
1152 	u32 status;
1153 
1154 	status = rd32(E1000_STATUS);
1155 	if (status & E1000_STATUS_SPEED_1000) {
1156 		*speed = SPEED_1000;
1157 		hw_dbg("1000 Mbs, ");
1158 	} else if (status & E1000_STATUS_SPEED_100) {
1159 		*speed = SPEED_100;
1160 		hw_dbg("100 Mbs, ");
1161 	} else {
1162 		*speed = SPEED_10;
1163 		hw_dbg("10 Mbs, ");
1164 	}
1165 
1166 	if (status & E1000_STATUS_FD) {
1167 		*duplex = FULL_DUPLEX;
1168 		hw_dbg("Full Duplex\n");
1169 	} else {
1170 		*duplex = HALF_DUPLEX;
1171 		hw_dbg("Half Duplex\n");
1172 	}
1173 
1174 	/* Check if it is an I354 2.5Gb backplane connection. */
1175 	if (hw->mac.type == e1000_i354) {
1176 		if ((status & E1000_STATUS_2P5_SKU) &&
1177 		    !(status & E1000_STATUS_2P5_SKU_OVER)) {
1178 			*speed = SPEED_2500;
1179 			*duplex = FULL_DUPLEX;
1180 			hw_dbg("2500 Mbs, ");
1181 			hw_dbg("Full Duplex\n");
1182 		}
1183 	}
1184 
1185 	return 0;
1186 }
1187 
1188 /**
1189  *  igb_get_hw_semaphore - Acquire hardware semaphore
1190  *  @hw: pointer to the HW structure
1191  *
1192  *  Acquire the HW semaphore to access the PHY or NVM
1193  **/
1194 s32 igb_get_hw_semaphore(struct e1000_hw *hw)
1195 {
1196 	u32 swsm;
1197 	s32 ret_val = 0;
1198 	s32 timeout = hw->nvm.word_size + 1;
1199 	s32 i = 0;
1200 
1201 	/* Get the SW semaphore */
1202 	while (i < timeout) {
1203 		swsm = rd32(E1000_SWSM);
1204 		if (!(swsm & E1000_SWSM_SMBI))
1205 			break;
1206 
1207 		udelay(50);
1208 		i++;
1209 	}
1210 
1211 	if (i == timeout) {
1212 		hw_dbg("Driver can't access device - SMBI bit is set.\n");
1213 		ret_val = -E1000_ERR_NVM;
1214 		goto out;
1215 	}
1216 
1217 	/* Get the FW semaphore. */
1218 	for (i = 0; i < timeout; i++) {
1219 		swsm = rd32(E1000_SWSM);
1220 		wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
1221 
1222 		/* Semaphore acquired if bit latched */
1223 		if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
1224 			break;
1225 
1226 		udelay(50);
1227 	}
1228 
1229 	if (i == timeout) {
1230 		/* Release semaphores */
1231 		igb_put_hw_semaphore(hw);
1232 		hw_dbg("Driver can't access the NVM\n");
1233 		ret_val = -E1000_ERR_NVM;
1234 		goto out;
1235 	}
1236 
1237 out:
1238 	return ret_val;
1239 }
1240 
1241 /**
1242  *  igb_put_hw_semaphore - Release hardware semaphore
1243  *  @hw: pointer to the HW structure
1244  *
1245  *  Release hardware semaphore used to access the PHY or NVM
1246  **/
1247 void igb_put_hw_semaphore(struct e1000_hw *hw)
1248 {
1249 	u32 swsm;
1250 
1251 	swsm = rd32(E1000_SWSM);
1252 
1253 	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1254 
1255 	wr32(E1000_SWSM, swsm);
1256 }
1257 
1258 /**
1259  *  igb_get_auto_rd_done - Check for auto read completion
1260  *  @hw: pointer to the HW structure
1261  *
1262  *  Check EEPROM for Auto Read done bit.
1263  **/
1264 s32 igb_get_auto_rd_done(struct e1000_hw *hw)
1265 {
1266 	s32 i = 0;
1267 	s32 ret_val = 0;
1268 
1269 
1270 	while (i < AUTO_READ_DONE_TIMEOUT) {
1271 		if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
1272 			break;
1273 		msleep(1);
1274 		i++;
1275 	}
1276 
1277 	if (i == AUTO_READ_DONE_TIMEOUT) {
1278 		hw_dbg("Auto read by HW from NVM has not completed.\n");
1279 		ret_val = -E1000_ERR_RESET;
1280 		goto out;
1281 	}
1282 
1283 out:
1284 	return ret_val;
1285 }
1286 
1287 /**
1288  *  igb_valid_led_default - Verify a valid default LED config
1289  *  @hw: pointer to the HW structure
1290  *  @data: pointer to the NVM (EEPROM)
1291  *
1292  *  Read the EEPROM for the current default LED configuration.  If the
1293  *  LED configuration is not valid, set to a valid LED configuration.
1294  **/
1295 static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
1296 {
1297 	s32 ret_val;
1298 
1299 	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1300 	if (ret_val) {
1301 		hw_dbg("NVM Read Error\n");
1302 		goto out;
1303 	}
1304 
1305 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
1306 		switch(hw->phy.media_type) {
1307 		case e1000_media_type_internal_serdes:
1308 			*data = ID_LED_DEFAULT_82575_SERDES;
1309 			break;
1310 		case e1000_media_type_copper:
1311 		default:
1312 			*data = ID_LED_DEFAULT;
1313 			break;
1314 		}
1315 	}
1316 out:
1317 	return ret_val;
1318 }
1319 
1320 /**
1321  *  igb_id_led_init -
1322  *  @hw: pointer to the HW structure
1323  *
1324  **/
1325 s32 igb_id_led_init(struct e1000_hw *hw)
1326 {
1327 	struct e1000_mac_info *mac = &hw->mac;
1328 	s32 ret_val;
1329 	const u32 ledctl_mask = 0x000000FF;
1330 	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1331 	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1332 	u16 data, i, temp;
1333 	const u16 led_mask = 0x0F;
1334 
1335 	ret_val = igb_valid_led_default(hw, &data);
1336 	if (ret_val)
1337 		goto out;
1338 
1339 	mac->ledctl_default = rd32(E1000_LEDCTL);
1340 	mac->ledctl_mode1 = mac->ledctl_default;
1341 	mac->ledctl_mode2 = mac->ledctl_default;
1342 
1343 	for (i = 0; i < 4; i++) {
1344 		temp = (data >> (i << 2)) & led_mask;
1345 		switch (temp) {
1346 		case ID_LED_ON1_DEF2:
1347 		case ID_LED_ON1_ON2:
1348 		case ID_LED_ON1_OFF2:
1349 			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1350 			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1351 			break;
1352 		case ID_LED_OFF1_DEF2:
1353 		case ID_LED_OFF1_ON2:
1354 		case ID_LED_OFF1_OFF2:
1355 			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1356 			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1357 			break;
1358 		default:
1359 			/* Do nothing */
1360 			break;
1361 		}
1362 		switch (temp) {
1363 		case ID_LED_DEF1_ON2:
1364 		case ID_LED_ON1_ON2:
1365 		case ID_LED_OFF1_ON2:
1366 			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1367 			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1368 			break;
1369 		case ID_LED_DEF1_OFF2:
1370 		case ID_LED_ON1_OFF2:
1371 		case ID_LED_OFF1_OFF2:
1372 			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1373 			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1374 			break;
1375 		default:
1376 			/* Do nothing */
1377 			break;
1378 		}
1379 	}
1380 
1381 out:
1382 	return ret_val;
1383 }
1384 
1385 /**
1386  *  igb_cleanup_led - Set LED config to default operation
1387  *  @hw: pointer to the HW structure
1388  *
1389  *  Remove the current LED configuration and set the LED configuration
1390  *  to the default value, saved from the EEPROM.
1391  **/
1392 s32 igb_cleanup_led(struct e1000_hw *hw)
1393 {
1394 	wr32(E1000_LEDCTL, hw->mac.ledctl_default);
1395 	return 0;
1396 }
1397 
1398 /**
1399  *  igb_blink_led - Blink LED
1400  *  @hw: pointer to the HW structure
1401  *
1402  *  Blink the led's which are set to be on.
1403  **/
1404 s32 igb_blink_led(struct e1000_hw *hw)
1405 {
1406 	u32 ledctl_blink = 0;
1407 	u32 i;
1408 
1409 	/* set the blink bit for each LED that's "on" (0x0E)
1410 	 * in ledctl_mode2
1411 	 */
1412 	ledctl_blink = hw->mac.ledctl_mode2;
1413 	for (i = 0; i < 4; i++)
1414 		if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1415 		    E1000_LEDCTL_MODE_LED_ON)
1416 			ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
1417 					 (i * 8));
1418 
1419 	wr32(E1000_LEDCTL, ledctl_blink);
1420 
1421 	return 0;
1422 }
1423 
1424 /**
1425  *  igb_led_off - Turn LED off
1426  *  @hw: pointer to the HW structure
1427  *
1428  *  Turn LED off.
1429  **/
1430 s32 igb_led_off(struct e1000_hw *hw)
1431 {
1432 	switch (hw->phy.media_type) {
1433 	case e1000_media_type_copper:
1434 		wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
1435 		break;
1436 	default:
1437 		break;
1438 	}
1439 
1440 	return 0;
1441 }
1442 
1443 /**
1444  *  igb_disable_pcie_master - Disables PCI-express master access
1445  *  @hw: pointer to the HW structure
1446  *
1447  *  Returns 0 (0) if successful, else returns -10
1448  *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1449  *  the master requests to be disabled.
1450  *
1451  *  Disables PCI-Express master access and verifies there are no pending
1452  *  requests.
1453  **/
1454 s32 igb_disable_pcie_master(struct e1000_hw *hw)
1455 {
1456 	u32 ctrl;
1457 	s32 timeout = MASTER_DISABLE_TIMEOUT;
1458 	s32 ret_val = 0;
1459 
1460 	if (hw->bus.type != e1000_bus_type_pci_express)
1461 		goto out;
1462 
1463 	ctrl = rd32(E1000_CTRL);
1464 	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1465 	wr32(E1000_CTRL, ctrl);
1466 
1467 	while (timeout) {
1468 		if (!(rd32(E1000_STATUS) &
1469 		      E1000_STATUS_GIO_MASTER_ENABLE))
1470 			break;
1471 		udelay(100);
1472 		timeout--;
1473 	}
1474 
1475 	if (!timeout) {
1476 		hw_dbg("Master requests are pending.\n");
1477 		ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
1478 		goto out;
1479 	}
1480 
1481 out:
1482 	return ret_val;
1483 }
1484 
1485 /**
1486  *  igb_validate_mdi_setting - Verify MDI/MDIx settings
1487  *  @hw: pointer to the HW structure
1488  *
1489  *  Verify that when not using auto-negotitation that MDI/MDIx is correctly
1490  *  set, which is forced to MDI mode only.
1491  **/
1492 s32 igb_validate_mdi_setting(struct e1000_hw *hw)
1493 {
1494 	s32 ret_val = 0;
1495 
1496 	/* All MDI settings are supported on 82580 and newer. */
1497 	if (hw->mac.type >= e1000_82580)
1498 		goto out;
1499 
1500 	if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
1501 		hw_dbg("Invalid MDI setting detected\n");
1502 		hw->phy.mdix = 1;
1503 		ret_val = -E1000_ERR_CONFIG;
1504 		goto out;
1505 	}
1506 
1507 out:
1508 	return ret_val;
1509 }
1510 
1511 /**
1512  *  igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
1513  *  @hw: pointer to the HW structure
1514  *  @reg: 32bit register offset such as E1000_SCTL
1515  *  @offset: register offset to write to
1516  *  @data: data to write at register offset
1517  *
1518  *  Writes an address/data control type register.  There are several of these
1519  *  and they all have the format address << 8 | data and bit 31 is polled for
1520  *  completion.
1521  **/
1522 s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
1523 			      u32 offset, u8 data)
1524 {
1525 	u32 i, regvalue = 0;
1526 	s32 ret_val = 0;
1527 
1528 	/* Set up the address and data */
1529 	regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
1530 	wr32(reg, regvalue);
1531 
1532 	/* Poll the ready bit to see if the MDI read completed */
1533 	for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
1534 		udelay(5);
1535 		regvalue = rd32(reg);
1536 		if (regvalue & E1000_GEN_CTL_READY)
1537 			break;
1538 	}
1539 	if (!(regvalue & E1000_GEN_CTL_READY)) {
1540 		hw_dbg("Reg %08x did not indicate ready\n", reg);
1541 		ret_val = -E1000_ERR_PHY;
1542 		goto out;
1543 	}
1544 
1545 out:
1546 	return ret_val;
1547 }
1548 
1549 /**
1550  *  igb_enable_mng_pass_thru - Enable processing of ARP's
1551  *  @hw: pointer to the HW structure
1552  *
1553  *  Verifies the hardware needs to leave interface enabled so that frames can
1554  *  be directed to and from the management interface.
1555  **/
1556 bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
1557 {
1558 	u32 manc;
1559 	u32 fwsm, factps;
1560 	bool ret_val = false;
1561 
1562 	if (!hw->mac.asf_firmware_present)
1563 		goto out;
1564 
1565 	manc = rd32(E1000_MANC);
1566 
1567 	if (!(manc & E1000_MANC_RCV_TCO_EN))
1568 		goto out;
1569 
1570 	if (hw->mac.arc_subsystem_valid) {
1571 		fwsm = rd32(E1000_FWSM);
1572 		factps = rd32(E1000_FACTPS);
1573 
1574 		if (!(factps & E1000_FACTPS_MNGCG) &&
1575 		    ((fwsm & E1000_FWSM_MODE_MASK) ==
1576 		     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
1577 			ret_val = true;
1578 			goto out;
1579 		}
1580 	} else {
1581 		if ((manc & E1000_MANC_SMBUS_EN) &&
1582 		    !(manc & E1000_MANC_ASF_EN)) {
1583 			ret_val = true;
1584 			goto out;
1585 		}
1586 	}
1587 
1588 out:
1589 	return ret_val;
1590 }
1591