1 /*******************************************************************************
2 
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2014 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, see <http://www.gnu.org/licenses/>.
17 
18   The full GNU General Public License is included in this distribution in
19   the file called "COPYING".
20 
21   Contact Information:
22   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 
25 *******************************************************************************/
26 
27 #include <linux/if_ether.h>
28 #include <linux/delay.h>
29 #include <linux/pci.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 
33 #include "e1000_mac.h"
34 
35 #include "igb.h"
36 
37 static s32 igb_set_default_fc(struct e1000_hw *hw);
38 static s32 igb_set_fc_watermarks(struct e1000_hw *hw);
39 
40 /**
41  *  igb_get_bus_info_pcie - Get PCIe bus information
42  *  @hw: pointer to the HW structure
43  *
44  *  Determines and stores the system bus information for a particular
45  *  network interface.  The following bus information is determined and stored:
46  *  bus speed, bus width, type (PCIe), and PCIe function.
47  **/
48 s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
49 {
50 	struct e1000_bus_info *bus = &hw->bus;
51 	s32 ret_val;
52 	u32 reg;
53 	u16 pcie_link_status;
54 
55 	bus->type = e1000_bus_type_pci_express;
56 
57 	ret_val = igb_read_pcie_cap_reg(hw,
58 					PCI_EXP_LNKSTA,
59 					&pcie_link_status);
60 	if (ret_val) {
61 		bus->width = e1000_bus_width_unknown;
62 		bus->speed = e1000_bus_speed_unknown;
63 	} else {
64 		switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) {
65 		case PCI_EXP_LNKSTA_CLS_2_5GB:
66 			bus->speed = e1000_bus_speed_2500;
67 			break;
68 		case PCI_EXP_LNKSTA_CLS_5_0GB:
69 			bus->speed = e1000_bus_speed_5000;
70 			break;
71 		default:
72 			bus->speed = e1000_bus_speed_unknown;
73 			break;
74 		}
75 
76 		bus->width = (enum e1000_bus_width)((pcie_link_status &
77 						     PCI_EXP_LNKSTA_NLW) >>
78 						     PCI_EXP_LNKSTA_NLW_SHIFT);
79 	}
80 
81 	reg = rd32(E1000_STATUS);
82 	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
83 
84 	return 0;
85 }
86 
87 /**
88  *  igb_clear_vfta - Clear VLAN filter table
89  *  @hw: pointer to the HW structure
90  *
91  *  Clears the register array which contains the VLAN filter table by
92  *  setting all the values to 0.
93  **/
94 void igb_clear_vfta(struct e1000_hw *hw)
95 {
96 	u32 offset;
97 
98 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
99 		array_wr32(E1000_VFTA, offset, 0);
100 		wrfl();
101 	}
102 }
103 
104 /**
105  *  igb_write_vfta - Write value to VLAN filter table
106  *  @hw: pointer to the HW structure
107  *  @offset: register offset in VLAN filter table
108  *  @value: register value written to VLAN filter table
109  *
110  *  Writes value at the given offset in the register array which stores
111  *  the VLAN filter table.
112  **/
113 static void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
114 {
115 	array_wr32(E1000_VFTA, offset, value);
116 	wrfl();
117 }
118 
119 /* Due to a hw errata, if the host tries to  configure the VFTA register
120  * while performing queries from the BMC or DMA, then the VFTA in some
121  * cases won't be written.
122  */
123 
124 /**
125  *  igb_clear_vfta_i350 - Clear VLAN filter table
126  *  @hw: pointer to the HW structure
127  *
128  *  Clears the register array which contains the VLAN filter table by
129  *  setting all the values to 0.
130  **/
131 void igb_clear_vfta_i350(struct e1000_hw *hw)
132 {
133 	u32 offset;
134 	int i;
135 
136 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
137 		for (i = 0; i < 10; i++)
138 			array_wr32(E1000_VFTA, offset, 0);
139 
140 		wrfl();
141 	}
142 }
143 
144 /**
145  *  igb_write_vfta_i350 - Write value to VLAN filter table
146  *  @hw: pointer to the HW structure
147  *  @offset: register offset in VLAN filter table
148  *  @value: register value written to VLAN filter table
149  *
150  *  Writes value at the given offset in the register array which stores
151  *  the VLAN filter table.
152  **/
153 static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
154 {
155 	int i;
156 
157 	for (i = 0; i < 10; i++)
158 		array_wr32(E1000_VFTA, offset, value);
159 
160 	wrfl();
161 }
162 
163 /**
164  *  igb_init_rx_addrs - Initialize receive address's
165  *  @hw: pointer to the HW structure
166  *  @rar_count: receive address registers
167  *
168  *  Setups the receive address registers by setting the base receive address
169  *  register to the devices MAC address and clearing all the other receive
170  *  address registers to 0.
171  **/
172 void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
173 {
174 	u32 i;
175 	u8 mac_addr[ETH_ALEN] = {0};
176 
177 	/* Setup the receive address */
178 	hw_dbg("Programming MAC Address into RAR[0]\n");
179 
180 	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
181 
182 	/* Zero out the other (rar_entry_count - 1) receive addresses */
183 	hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
184 	for (i = 1; i < rar_count; i++)
185 		hw->mac.ops.rar_set(hw, mac_addr, i);
186 }
187 
188 /**
189  *  igb_vfta_set - enable or disable vlan in VLAN filter table
190  *  @hw: pointer to the HW structure
191  *  @vid: VLAN id to add or remove
192  *  @add: if true add filter, if false remove
193  *
194  *  Sets or clears a bit in the VLAN filter table array based on VLAN id
195  *  and if we are adding or removing the filter
196  **/
197 s32 igb_vfta_set(struct e1000_hw *hw, u32 vid, bool add)
198 {
199 	u32 index = (vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK;
200 	u32 mask = 1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
201 	u32 vfta;
202 	struct igb_adapter *adapter = hw->back;
203 	s32 ret_val = 0;
204 
205 	vfta = adapter->shadow_vfta[index];
206 
207 	/* bit was set/cleared before we started */
208 	if ((!!(vfta & mask)) == add) {
209 		ret_val = -E1000_ERR_CONFIG;
210 	} else {
211 		if (add)
212 			vfta |= mask;
213 		else
214 			vfta &= ~mask;
215 	}
216 	if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
217 		igb_write_vfta_i350(hw, index, vfta);
218 	else
219 		igb_write_vfta(hw, index, vfta);
220 	adapter->shadow_vfta[index] = vfta;
221 
222 	return ret_val;
223 }
224 
225 /**
226  *  igb_check_alt_mac_addr - Check for alternate MAC addr
227  *  @hw: pointer to the HW structure
228  *
229  *  Checks the nvm for an alternate MAC address.  An alternate MAC address
230  *  can be setup by pre-boot software and must be treated like a permanent
231  *  address and must override the actual permanent MAC address.  If an
232  *  alternate MAC address is found it is saved in the hw struct and
233  *  programmed into RAR0 and the function returns success, otherwise the
234  *  function returns an error.
235  **/
236 s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
237 {
238 	u32 i;
239 	s32 ret_val = 0;
240 	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
241 	u8 alt_mac_addr[ETH_ALEN];
242 
243 	/* Alternate MAC address is handled by the option ROM for 82580
244 	 * and newer. SW support not required.
245 	 */
246 	if (hw->mac.type >= e1000_82580)
247 		goto out;
248 
249 	ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
250 				 &nvm_alt_mac_addr_offset);
251 	if (ret_val) {
252 		hw_dbg("NVM Read Error\n");
253 		goto out;
254 	}
255 
256 	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
257 	    (nvm_alt_mac_addr_offset == 0x0000))
258 		/* There is no Alternate MAC Address */
259 		goto out;
260 
261 	if (hw->bus.func == E1000_FUNC_1)
262 		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
263 	if (hw->bus.func == E1000_FUNC_2)
264 		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
265 
266 	if (hw->bus.func == E1000_FUNC_3)
267 		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
268 	for (i = 0; i < ETH_ALEN; i += 2) {
269 		offset = nvm_alt_mac_addr_offset + (i >> 1);
270 		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
271 		if (ret_val) {
272 			hw_dbg("NVM Read Error\n");
273 			goto out;
274 		}
275 
276 		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
277 		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
278 	}
279 
280 	/* if multicast bit is set, the alternate address will not be used */
281 	if (is_multicast_ether_addr(alt_mac_addr)) {
282 		hw_dbg("Ignoring Alternate Mac Address with MC bit set\n");
283 		goto out;
284 	}
285 
286 	/* We have a valid alternate MAC address, and we want to treat it the
287 	 * same as the normal permanent MAC address stored by the HW into the
288 	 * RAR. Do this by mapping this address into RAR0.
289 	 */
290 	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
291 
292 out:
293 	return ret_val;
294 }
295 
296 /**
297  *  igb_rar_set - Set receive address register
298  *  @hw: pointer to the HW structure
299  *  @addr: pointer to the receive address
300  *  @index: receive address array register
301  *
302  *  Sets the receive address array register at index to the address passed
303  *  in by addr.
304  **/
305 void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
306 {
307 	u32 rar_low, rar_high;
308 
309 	/* HW expects these in little endian so we reverse the byte order
310 	 * from network order (big endian) to little endian
311 	 */
312 	rar_low = ((u32) addr[0] |
313 		   ((u32) addr[1] << 8) |
314 		    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
315 
316 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
317 
318 	/* If MAC address zero, no need to set the AV bit */
319 	if (rar_low || rar_high)
320 		rar_high |= E1000_RAH_AV;
321 
322 	/* Some bridges will combine consecutive 32-bit writes into
323 	 * a single burst write, which will malfunction on some parts.
324 	 * The flushes avoid this.
325 	 */
326 	wr32(E1000_RAL(index), rar_low);
327 	wrfl();
328 	wr32(E1000_RAH(index), rar_high);
329 	wrfl();
330 }
331 
332 /**
333  *  igb_mta_set - Set multicast filter table address
334  *  @hw: pointer to the HW structure
335  *  @hash_value: determines the MTA register and bit to set
336  *
337  *  The multicast table address is a register array of 32-bit registers.
338  *  The hash_value is used to determine what register the bit is in, the
339  *  current value is read, the new bit is OR'd in and the new value is
340  *  written back into the register.
341  **/
342 void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
343 {
344 	u32 hash_bit, hash_reg, mta;
345 
346 	/* The MTA is a register array of 32-bit registers. It is
347 	 * treated like an array of (32*mta_reg_count) bits.  We want to
348 	 * set bit BitArray[hash_value]. So we figure out what register
349 	 * the bit is in, read it, OR in the new bit, then write
350 	 * back the new value.  The (hw->mac.mta_reg_count - 1) serves as a
351 	 * mask to bits 31:5 of the hash value which gives us the
352 	 * register we're modifying.  The hash bit within that register
353 	 * is determined by the lower 5 bits of the hash value.
354 	 */
355 	hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
356 	hash_bit = hash_value & 0x1F;
357 
358 	mta = array_rd32(E1000_MTA, hash_reg);
359 
360 	mta |= (1 << hash_bit);
361 
362 	array_wr32(E1000_MTA, hash_reg, mta);
363 	wrfl();
364 }
365 
366 /**
367  *  igb_hash_mc_addr - Generate a multicast hash value
368  *  @hw: pointer to the HW structure
369  *  @mc_addr: pointer to a multicast address
370  *
371  *  Generates a multicast address hash value which is used to determine
372  *  the multicast filter table array address and new table value.  See
373  *  igb_mta_set()
374  **/
375 static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
376 {
377 	u32 hash_value, hash_mask;
378 	u8 bit_shift = 0;
379 
380 	/* Register count multiplied by bits per register */
381 	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
382 
383 	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
384 	 * where 0xFF would still fall within the hash mask.
385 	 */
386 	while (hash_mask >> bit_shift != 0xFF)
387 		bit_shift++;
388 
389 	/* The portion of the address that is used for the hash table
390 	 * is determined by the mc_filter_type setting.
391 	 * The algorithm is such that there is a total of 8 bits of shifting.
392 	 * The bit_shift for a mc_filter_type of 0 represents the number of
393 	 * left-shifts where the MSB of mc_addr[5] would still fall within
394 	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
395 	 * of 8 bits of shifting, then mc_addr[4] will shift right the
396 	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
397 	 * cases are a variation of this algorithm...essentially raising the
398 	 * number of bits to shift mc_addr[5] left, while still keeping the
399 	 * 8-bit shifting total.
400 	 *
401 	 * For example, given the following Destination MAC Address and an
402 	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
403 	 * we can see that the bit_shift for case 0 is 4.  These are the hash
404 	 * values resulting from each mc_filter_type...
405 	 * [0] [1] [2] [3] [4] [5]
406 	 * 01  AA  00  12  34  56
407 	 * LSB                 MSB
408 	 *
409 	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
410 	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
411 	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
412 	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
413 	 */
414 	switch (hw->mac.mc_filter_type) {
415 	default:
416 	case 0:
417 		break;
418 	case 1:
419 		bit_shift += 1;
420 		break;
421 	case 2:
422 		bit_shift += 2;
423 		break;
424 	case 3:
425 		bit_shift += 4;
426 		break;
427 	}
428 
429 	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
430 				  (((u16) mc_addr[5]) << bit_shift)));
431 
432 	return hash_value;
433 }
434 
435 /**
436  *  igb_update_mc_addr_list - Update Multicast addresses
437  *  @hw: pointer to the HW structure
438  *  @mc_addr_list: array of multicast addresses to program
439  *  @mc_addr_count: number of multicast addresses to program
440  *
441  *  Updates entire Multicast Table Array.
442  *  The caller must have a packed mc_addr_list of multicast addresses.
443  **/
444 void igb_update_mc_addr_list(struct e1000_hw *hw,
445                              u8 *mc_addr_list, u32 mc_addr_count)
446 {
447 	u32 hash_value, hash_bit, hash_reg;
448 	int i;
449 
450 	/* clear mta_shadow */
451 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
452 
453 	/* update mta_shadow from mc_addr_list */
454 	for (i = 0; (u32) i < mc_addr_count; i++) {
455 		hash_value = igb_hash_mc_addr(hw, mc_addr_list);
456 
457 		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
458 		hash_bit = hash_value & 0x1F;
459 
460 		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
461 		mc_addr_list += (ETH_ALEN);
462 	}
463 
464 	/* replace the entire MTA table */
465 	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
466 		array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
467 	wrfl();
468 }
469 
470 /**
471  *  igb_clear_hw_cntrs_base - Clear base hardware counters
472  *  @hw: pointer to the HW structure
473  *
474  *  Clears the base hardware counters by reading the counter registers.
475  **/
476 void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
477 {
478 	rd32(E1000_CRCERRS);
479 	rd32(E1000_SYMERRS);
480 	rd32(E1000_MPC);
481 	rd32(E1000_SCC);
482 	rd32(E1000_ECOL);
483 	rd32(E1000_MCC);
484 	rd32(E1000_LATECOL);
485 	rd32(E1000_COLC);
486 	rd32(E1000_DC);
487 	rd32(E1000_SEC);
488 	rd32(E1000_RLEC);
489 	rd32(E1000_XONRXC);
490 	rd32(E1000_XONTXC);
491 	rd32(E1000_XOFFRXC);
492 	rd32(E1000_XOFFTXC);
493 	rd32(E1000_FCRUC);
494 	rd32(E1000_GPRC);
495 	rd32(E1000_BPRC);
496 	rd32(E1000_MPRC);
497 	rd32(E1000_GPTC);
498 	rd32(E1000_GORCL);
499 	rd32(E1000_GORCH);
500 	rd32(E1000_GOTCL);
501 	rd32(E1000_GOTCH);
502 	rd32(E1000_RNBC);
503 	rd32(E1000_RUC);
504 	rd32(E1000_RFC);
505 	rd32(E1000_ROC);
506 	rd32(E1000_RJC);
507 	rd32(E1000_TORL);
508 	rd32(E1000_TORH);
509 	rd32(E1000_TOTL);
510 	rd32(E1000_TOTH);
511 	rd32(E1000_TPR);
512 	rd32(E1000_TPT);
513 	rd32(E1000_MPTC);
514 	rd32(E1000_BPTC);
515 }
516 
517 /**
518  *  igb_check_for_copper_link - Check for link (Copper)
519  *  @hw: pointer to the HW structure
520  *
521  *  Checks to see of the link status of the hardware has changed.  If a
522  *  change in link status has been detected, then we read the PHY registers
523  *  to get the current speed/duplex if link exists.
524  **/
525 s32 igb_check_for_copper_link(struct e1000_hw *hw)
526 {
527 	struct e1000_mac_info *mac = &hw->mac;
528 	s32 ret_val;
529 	bool link;
530 
531 	/* We only want to go out to the PHY registers to see if Auto-Neg
532 	 * has completed and/or if our link status has changed.  The
533 	 * get_link_status flag is set upon receiving a Link Status
534 	 * Change or Rx Sequence Error interrupt.
535 	 */
536 	if (!mac->get_link_status) {
537 		ret_val = 0;
538 		goto out;
539 	}
540 
541 	/* First we want to see if the MII Status Register reports
542 	 * link.  If so, then we want to get the current speed/duplex
543 	 * of the PHY.
544 	 */
545 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
546 	if (ret_val)
547 		goto out;
548 
549 	if (!link)
550 		goto out; /* No link detected */
551 
552 	mac->get_link_status = false;
553 
554 	/* Check if there was DownShift, must be checked
555 	 * immediately after link-up
556 	 */
557 	igb_check_downshift(hw);
558 
559 	/* If we are forcing speed/duplex, then we simply return since
560 	 * we have already determined whether we have link or not.
561 	 */
562 	if (!mac->autoneg) {
563 		ret_val = -E1000_ERR_CONFIG;
564 		goto out;
565 	}
566 
567 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
568 	 * of MAC speed/duplex configuration.  So we only need to
569 	 * configure Collision Distance in the MAC.
570 	 */
571 	igb_config_collision_dist(hw);
572 
573 	/* Configure Flow Control now that Auto-Neg has completed.
574 	 * First, we need to restore the desired flow control
575 	 * settings because we may have had to re-autoneg with a
576 	 * different link partner.
577 	 */
578 	ret_val = igb_config_fc_after_link_up(hw);
579 	if (ret_val)
580 		hw_dbg("Error configuring flow control\n");
581 
582 out:
583 	return ret_val;
584 }
585 
586 /**
587  *  igb_setup_link - Setup flow control and link settings
588  *  @hw: pointer to the HW structure
589  *
590  *  Determines which flow control settings to use, then configures flow
591  *  control.  Calls the appropriate media-specific link configuration
592  *  function.  Assuming the adapter has a valid link partner, a valid link
593  *  should be established.  Assumes the hardware has previously been reset
594  *  and the transmitter and receiver are not enabled.
595  **/
596 s32 igb_setup_link(struct e1000_hw *hw)
597 {
598 	s32 ret_val = 0;
599 
600 	/* In the case of the phy reset being blocked, we already have a link.
601 	 * We do not need to set it up again.
602 	 */
603 	if (igb_check_reset_block(hw))
604 		goto out;
605 
606 	/* If requested flow control is set to default, set flow control
607 	 * based on the EEPROM flow control settings.
608 	 */
609 	if (hw->fc.requested_mode == e1000_fc_default) {
610 		ret_val = igb_set_default_fc(hw);
611 		if (ret_val)
612 			goto out;
613 	}
614 
615 	/* We want to save off the original Flow Control configuration just
616 	 * in case we get disconnected and then reconnected into a different
617 	 * hub or switch with different Flow Control capabilities.
618 	 */
619 	hw->fc.current_mode = hw->fc.requested_mode;
620 
621 	hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
622 
623 	/* Call the necessary media_type subroutine to configure the link. */
624 	ret_val = hw->mac.ops.setup_physical_interface(hw);
625 	if (ret_val)
626 		goto out;
627 
628 	/* Initialize the flow control address, type, and PAUSE timer
629 	 * registers to their default values.  This is done even if flow
630 	 * control is disabled, because it does not hurt anything to
631 	 * initialize these registers.
632 	 */
633 	hw_dbg("Initializing the Flow Control address, type and timer regs\n");
634 	wr32(E1000_FCT, FLOW_CONTROL_TYPE);
635 	wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
636 	wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
637 
638 	wr32(E1000_FCTTV, hw->fc.pause_time);
639 
640 	ret_val = igb_set_fc_watermarks(hw);
641 
642 out:
643 
644 	return ret_val;
645 }
646 
647 /**
648  *  igb_config_collision_dist - Configure collision distance
649  *  @hw: pointer to the HW structure
650  *
651  *  Configures the collision distance to the default value and is used
652  *  during link setup. Currently no func pointer exists and all
653  *  implementations are handled in the generic version of this function.
654  **/
655 void igb_config_collision_dist(struct e1000_hw *hw)
656 {
657 	u32 tctl;
658 
659 	tctl = rd32(E1000_TCTL);
660 
661 	tctl &= ~E1000_TCTL_COLD;
662 	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
663 
664 	wr32(E1000_TCTL, tctl);
665 	wrfl();
666 }
667 
668 /**
669  *  igb_set_fc_watermarks - Set flow control high/low watermarks
670  *  @hw: pointer to the HW structure
671  *
672  *  Sets the flow control high/low threshold (watermark) registers.  If
673  *  flow control XON frame transmission is enabled, then set XON frame
674  *  tansmission as well.
675  **/
676 static s32 igb_set_fc_watermarks(struct e1000_hw *hw)
677 {
678 	s32 ret_val = 0;
679 	u32 fcrtl = 0, fcrth = 0;
680 
681 	/* Set the flow control receive threshold registers.  Normally,
682 	 * these registers will be set to a default threshold that may be
683 	 * adjusted later by the driver's runtime code.  However, if the
684 	 * ability to transmit pause frames is not enabled, then these
685 	 * registers will be set to 0.
686 	 */
687 	if (hw->fc.current_mode & e1000_fc_tx_pause) {
688 		/* We need to set up the Receive Threshold high and low water
689 		 * marks as well as (optionally) enabling the transmission of
690 		 * XON frames.
691 		 */
692 		fcrtl = hw->fc.low_water;
693 		if (hw->fc.send_xon)
694 			fcrtl |= E1000_FCRTL_XONE;
695 
696 		fcrth = hw->fc.high_water;
697 	}
698 	wr32(E1000_FCRTL, fcrtl);
699 	wr32(E1000_FCRTH, fcrth);
700 
701 	return ret_val;
702 }
703 
704 /**
705  *  igb_set_default_fc - Set flow control default values
706  *  @hw: pointer to the HW structure
707  *
708  *  Read the EEPROM for the default values for flow control and store the
709  *  values.
710  **/
711 static s32 igb_set_default_fc(struct e1000_hw *hw)
712 {
713 	s32 ret_val = 0;
714 	u16 lan_offset;
715 	u16 nvm_data;
716 
717 	/* Read and store word 0x0F of the EEPROM. This word contains bits
718 	 * that determine the hardware's default PAUSE (flow control) mode,
719 	 * a bit that determines whether the HW defaults to enabling or
720 	 * disabling auto-negotiation, and the direction of the
721 	 * SW defined pins. If there is no SW over-ride of the flow
722 	 * control setting, then the variable hw->fc will
723 	 * be initialized based on a value in the EEPROM.
724 	 */
725 	if (hw->mac.type == e1000_i350) {
726 		lan_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func);
727 		ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG
728 					   + lan_offset, 1, &nvm_data);
729 	 } else {
730 		ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG,
731 					   1, &nvm_data);
732 	 }
733 
734 	if (ret_val) {
735 		hw_dbg("NVM Read Error\n");
736 		goto out;
737 	}
738 
739 	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
740 		hw->fc.requested_mode = e1000_fc_none;
741 	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
742 		 NVM_WORD0F_ASM_DIR)
743 		hw->fc.requested_mode = e1000_fc_tx_pause;
744 	else
745 		hw->fc.requested_mode = e1000_fc_full;
746 
747 out:
748 	return ret_val;
749 }
750 
751 /**
752  *  igb_force_mac_fc - Force the MAC's flow control settings
753  *  @hw: pointer to the HW structure
754  *
755  *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
756  *  device control register to reflect the adapter settings.  TFCE and RFCE
757  *  need to be explicitly set by software when a copper PHY is used because
758  *  autonegotiation is managed by the PHY rather than the MAC.  Software must
759  *  also configure these bits when link is forced on a fiber connection.
760  **/
761 s32 igb_force_mac_fc(struct e1000_hw *hw)
762 {
763 	u32 ctrl;
764 	s32 ret_val = 0;
765 
766 	ctrl = rd32(E1000_CTRL);
767 
768 	/* Because we didn't get link via the internal auto-negotiation
769 	 * mechanism (we either forced link or we got link via PHY
770 	 * auto-neg), we have to manually enable/disable transmit an
771 	 * receive flow control.
772 	 *
773 	 * The "Case" statement below enables/disable flow control
774 	 * according to the "hw->fc.current_mode" parameter.
775 	 *
776 	 * The possible values of the "fc" parameter are:
777 	 *      0:  Flow control is completely disabled
778 	 *      1:  Rx flow control is enabled (we can receive pause
779 	 *          frames but not send pause frames).
780 	 *      2:  Tx flow control is enabled (we can send pause frames
781 	 *          frames but we do not receive pause frames).
782 	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
783 	 *  other:  No other values should be possible at this point.
784 	 */
785 	hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
786 
787 	switch (hw->fc.current_mode) {
788 	case e1000_fc_none:
789 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
790 		break;
791 	case e1000_fc_rx_pause:
792 		ctrl &= (~E1000_CTRL_TFCE);
793 		ctrl |= E1000_CTRL_RFCE;
794 		break;
795 	case e1000_fc_tx_pause:
796 		ctrl &= (~E1000_CTRL_RFCE);
797 		ctrl |= E1000_CTRL_TFCE;
798 		break;
799 	case e1000_fc_full:
800 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
801 		break;
802 	default:
803 		hw_dbg("Flow control param set incorrectly\n");
804 		ret_val = -E1000_ERR_CONFIG;
805 		goto out;
806 	}
807 
808 	wr32(E1000_CTRL, ctrl);
809 
810 out:
811 	return ret_val;
812 }
813 
814 /**
815  *  igb_config_fc_after_link_up - Configures flow control after link
816  *  @hw: pointer to the HW structure
817  *
818  *  Checks the status of auto-negotiation after link up to ensure that the
819  *  speed and duplex were not forced.  If the link needed to be forced, then
820  *  flow control needs to be forced also.  If auto-negotiation is enabled
821  *  and did not fail, then we configure flow control based on our link
822  *  partner.
823  **/
824 s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
825 {
826 	struct e1000_mac_info *mac = &hw->mac;
827 	s32 ret_val = 0;
828 	u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
829 	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
830 	u16 speed, duplex;
831 
832 	/* Check for the case where we have fiber media and auto-neg failed
833 	 * so we had to force link.  In this case, we need to force the
834 	 * configuration of the MAC to match the "fc" parameter.
835 	 */
836 	if (mac->autoneg_failed) {
837 		if (hw->phy.media_type == e1000_media_type_internal_serdes)
838 			ret_val = igb_force_mac_fc(hw);
839 	} else {
840 		if (hw->phy.media_type == e1000_media_type_copper)
841 			ret_val = igb_force_mac_fc(hw);
842 	}
843 
844 	if (ret_val) {
845 		hw_dbg("Error forcing flow control settings\n");
846 		goto out;
847 	}
848 
849 	/* Check for the case where we have copper media and auto-neg is
850 	 * enabled.  In this case, we need to check and see if Auto-Neg
851 	 * has completed, and if so, how the PHY and link partner has
852 	 * flow control configured.
853 	 */
854 	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
855 		/* Read the MII Status Register and check to see if AutoNeg
856 		 * has completed.  We read this twice because this reg has
857 		 * some "sticky" (latched) bits.
858 		 */
859 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
860 						   &mii_status_reg);
861 		if (ret_val)
862 			goto out;
863 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
864 						   &mii_status_reg);
865 		if (ret_val)
866 			goto out;
867 
868 		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
869 			hw_dbg("Copper PHY and Auto Neg "
870 				 "has not completed.\n");
871 			goto out;
872 		}
873 
874 		/* The AutoNeg process has completed, so we now need to
875 		 * read both the Auto Negotiation Advertisement
876 		 * Register (Address 4) and the Auto_Negotiation Base
877 		 * Page Ability Register (Address 5) to determine how
878 		 * flow control was negotiated.
879 		 */
880 		ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
881 					    &mii_nway_adv_reg);
882 		if (ret_val)
883 			goto out;
884 		ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
885 					    &mii_nway_lp_ability_reg);
886 		if (ret_val)
887 			goto out;
888 
889 		/* Two bits in the Auto Negotiation Advertisement Register
890 		 * (Address 4) and two bits in the Auto Negotiation Base
891 		 * Page Ability Register (Address 5) determine flow control
892 		 * for both the PHY and the link partner.  The following
893 		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
894 		 * 1999, describes these PAUSE resolution bits and how flow
895 		 * control is determined based upon these settings.
896 		 * NOTE:  DC = Don't Care
897 		 *
898 		 *   LOCAL DEVICE  |   LINK PARTNER
899 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
900 		 *-------|---------|-------|---------|--------------------
901 		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
902 		 *   0   |    1    |   0   |   DC    | e1000_fc_none
903 		 *   0   |    1    |   1   |    0    | e1000_fc_none
904 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
905 		 *   1   |    0    |   0   |   DC    | e1000_fc_none
906 		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
907 		 *   1   |    1    |   0   |    0    | e1000_fc_none
908 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
909 		 *
910 		 * Are both PAUSE bits set to 1?  If so, this implies
911 		 * Symmetric Flow Control is enabled at both ends.  The
912 		 * ASM_DIR bits are irrelevant per the spec.
913 		 *
914 		 * For Symmetric Flow Control:
915 		 *
916 		 *   LOCAL DEVICE  |   LINK PARTNER
917 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
918 		 *-------|---------|-------|---------|--------------------
919 		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
920 		 *
921 		 */
922 		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
923 		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
924 			/* Now we need to check if the user selected RX ONLY
925 			 * of pause frames.  In this case, we had to advertise
926 			 * FULL flow control because we could not advertise RX
927 			 * ONLY. Hence, we must now check to see if we need to
928 			 * turn OFF  the TRANSMISSION of PAUSE frames.
929 			 */
930 			if (hw->fc.requested_mode == e1000_fc_full) {
931 				hw->fc.current_mode = e1000_fc_full;
932 				hw_dbg("Flow Control = FULL.\r\n");
933 			} else {
934 				hw->fc.current_mode = e1000_fc_rx_pause;
935 				hw_dbg("Flow Control = "
936 				       "RX PAUSE frames only.\r\n");
937 			}
938 		}
939 		/* For receiving PAUSE frames ONLY.
940 		 *
941 		 *   LOCAL DEVICE  |   LINK PARTNER
942 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
943 		 *-------|---------|-------|---------|--------------------
944 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
945 		 */
946 		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
947 			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
948 			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
949 			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
950 			hw->fc.current_mode = e1000_fc_tx_pause;
951 			hw_dbg("Flow Control = TX PAUSE frames only.\r\n");
952 		}
953 		/* For transmitting PAUSE frames ONLY.
954 		 *
955 		 *   LOCAL DEVICE  |   LINK PARTNER
956 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
957 		 *-------|---------|-------|---------|--------------------
958 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
959 		 */
960 		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
961 			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
962 			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
963 			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
964 			hw->fc.current_mode = e1000_fc_rx_pause;
965 			hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
966 		}
967 		/* Per the IEEE spec, at this point flow control should be
968 		 * disabled.  However, we want to consider that we could
969 		 * be connected to a legacy switch that doesn't advertise
970 		 * desired flow control, but can be forced on the link
971 		 * partner.  So if we advertised no flow control, that is
972 		 * what we will resolve to.  If we advertised some kind of
973 		 * receive capability (Rx Pause Only or Full Flow Control)
974 		 * and the link partner advertised none, we will configure
975 		 * ourselves to enable Rx Flow Control only.  We can do
976 		 * this safely for two reasons:  If the link partner really
977 		 * didn't want flow control enabled, and we enable Rx, no
978 		 * harm done since we won't be receiving any PAUSE frames
979 		 * anyway.  If the intent on the link partner was to have
980 		 * flow control enabled, then by us enabling RX only, we
981 		 * can at least receive pause frames and process them.
982 		 * This is a good idea because in most cases, since we are
983 		 * predominantly a server NIC, more times than not we will
984 		 * be asked to delay transmission of packets than asking
985 		 * our link partner to pause transmission of frames.
986 		 */
987 		else if ((hw->fc.requested_mode == e1000_fc_none) ||
988 			 (hw->fc.requested_mode == e1000_fc_tx_pause) ||
989 			 (hw->fc.strict_ieee)) {
990 			hw->fc.current_mode = e1000_fc_none;
991 			hw_dbg("Flow Control = NONE.\r\n");
992 		} else {
993 			hw->fc.current_mode = e1000_fc_rx_pause;
994 			hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
995 		}
996 
997 		/* Now we need to do one last check...  If we auto-
998 		 * negotiated to HALF DUPLEX, flow control should not be
999 		 * enabled per IEEE 802.3 spec.
1000 		 */
1001 		ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
1002 		if (ret_val) {
1003 			hw_dbg("Error getting link speed and duplex\n");
1004 			goto out;
1005 		}
1006 
1007 		if (duplex == HALF_DUPLEX)
1008 			hw->fc.current_mode = e1000_fc_none;
1009 
1010 		/* Now we call a subroutine to actually force the MAC
1011 		 * controller to use the correct flow control settings.
1012 		 */
1013 		ret_val = igb_force_mac_fc(hw);
1014 		if (ret_val) {
1015 			hw_dbg("Error forcing flow control settings\n");
1016 			goto out;
1017 		}
1018 	}
1019 	/* Check for the case where we have SerDes media and auto-neg is
1020 	 * enabled.  In this case, we need to check and see if Auto-Neg
1021 	 * has completed, and if so, how the PHY and link partner has
1022 	 * flow control configured.
1023 	 */
1024 	if ((hw->phy.media_type == e1000_media_type_internal_serdes)
1025 		&& mac->autoneg) {
1026 		/* Read the PCS_LSTS and check to see if AutoNeg
1027 		 * has completed.
1028 		 */
1029 		pcs_status_reg = rd32(E1000_PCS_LSTAT);
1030 
1031 		if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
1032 			hw_dbg("PCS Auto Neg has not completed.\n");
1033 			return ret_val;
1034 		}
1035 
1036 		/* The AutoNeg process has completed, so we now need to
1037 		 * read both the Auto Negotiation Advertisement
1038 		 * Register (PCS_ANADV) and the Auto_Negotiation Base
1039 		 * Page Ability Register (PCS_LPAB) to determine how
1040 		 * flow control was negotiated.
1041 		 */
1042 		pcs_adv_reg = rd32(E1000_PCS_ANADV);
1043 		pcs_lp_ability_reg = rd32(E1000_PCS_LPAB);
1044 
1045 		/* Two bits in the Auto Negotiation Advertisement Register
1046 		 * (PCS_ANADV) and two bits in the Auto Negotiation Base
1047 		 * Page Ability Register (PCS_LPAB) determine flow control
1048 		 * for both the PHY and the link partner.  The following
1049 		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1050 		 * 1999, describes these PAUSE resolution bits and how flow
1051 		 * control is determined based upon these settings.
1052 		 * NOTE:  DC = Don't Care
1053 		 *
1054 		 *   LOCAL DEVICE  |   LINK PARTNER
1055 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1056 		 *-------|---------|-------|---------|--------------------
1057 		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1058 		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1059 		 *   0   |    1    |   1   |    0    | e1000_fc_none
1060 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1061 		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1062 		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1063 		 *   1   |    1    |   0   |    0    | e1000_fc_none
1064 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1065 		 *
1066 		 * Are both PAUSE bits set to 1?  If so, this implies
1067 		 * Symmetric Flow Control is enabled at both ends.  The
1068 		 * ASM_DIR bits are irrelevant per the spec.
1069 		 *
1070 		 * For Symmetric Flow Control:
1071 		 *
1072 		 *   LOCAL DEVICE  |   LINK PARTNER
1073 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1074 		 *-------|---------|-------|---------|--------------------
1075 		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1076 		 *
1077 		 */
1078 		if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1079 		    (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
1080 			/* Now we need to check if the user selected Rx ONLY
1081 			 * of pause frames.  In this case, we had to advertise
1082 			 * FULL flow control because we could not advertise Rx
1083 			 * ONLY. Hence, we must now check to see if we need to
1084 			 * turn OFF the TRANSMISSION of PAUSE frames.
1085 			 */
1086 			if (hw->fc.requested_mode == e1000_fc_full) {
1087 				hw->fc.current_mode = e1000_fc_full;
1088 				hw_dbg("Flow Control = FULL.\n");
1089 			} else {
1090 				hw->fc.current_mode = e1000_fc_rx_pause;
1091 				hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1092 			}
1093 		}
1094 		/* For receiving PAUSE frames ONLY.
1095 		 *
1096 		 *   LOCAL DEVICE  |   LINK PARTNER
1097 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1098 		 *-------|---------|-------|---------|--------------------
1099 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1100 		 */
1101 		else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
1102 			  (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1103 			  (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1104 			  (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1105 			hw->fc.current_mode = e1000_fc_tx_pause;
1106 			hw_dbg("Flow Control = Tx PAUSE frames only.\n");
1107 		}
1108 		/* For transmitting PAUSE frames ONLY.
1109 		 *
1110 		 *   LOCAL DEVICE  |   LINK PARTNER
1111 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1112 		 *-------|---------|-------|---------|--------------------
1113 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1114 		 */
1115 		else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1116 			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1117 			 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1118 			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1119 			hw->fc.current_mode = e1000_fc_rx_pause;
1120 			hw_dbg("Flow Control = Rx PAUSE frames only.\n");
1121 		} else {
1122 			/* Per the IEEE spec, at this point flow control
1123 			 * should be disabled.
1124 			 */
1125 			hw->fc.current_mode = e1000_fc_none;
1126 			hw_dbg("Flow Control = NONE.\n");
1127 		}
1128 
1129 		/* Now we call a subroutine to actually force the MAC
1130 		 * controller to use the correct flow control settings.
1131 		 */
1132 		pcs_ctrl_reg = rd32(E1000_PCS_LCTL);
1133 		pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1134 		wr32(E1000_PCS_LCTL, pcs_ctrl_reg);
1135 
1136 		ret_val = igb_force_mac_fc(hw);
1137 		if (ret_val) {
1138 			hw_dbg("Error forcing flow control settings\n");
1139 			return ret_val;
1140 		}
1141 	}
1142 
1143 out:
1144 	return ret_val;
1145 }
1146 
1147 /**
1148  *  igb_get_speed_and_duplex_copper - Retrieve current speed/duplex
1149  *  @hw: pointer to the HW structure
1150  *  @speed: stores the current speed
1151  *  @duplex: stores the current duplex
1152  *
1153  *  Read the status register for the current speed/duplex and store the current
1154  *  speed and duplex for copper connections.
1155  **/
1156 s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1157 				      u16 *duplex)
1158 {
1159 	u32 status;
1160 
1161 	status = rd32(E1000_STATUS);
1162 	if (status & E1000_STATUS_SPEED_1000) {
1163 		*speed = SPEED_1000;
1164 		hw_dbg("1000 Mbs, ");
1165 	} else if (status & E1000_STATUS_SPEED_100) {
1166 		*speed = SPEED_100;
1167 		hw_dbg("100 Mbs, ");
1168 	} else {
1169 		*speed = SPEED_10;
1170 		hw_dbg("10 Mbs, ");
1171 	}
1172 
1173 	if (status & E1000_STATUS_FD) {
1174 		*duplex = FULL_DUPLEX;
1175 		hw_dbg("Full Duplex\n");
1176 	} else {
1177 		*duplex = HALF_DUPLEX;
1178 		hw_dbg("Half Duplex\n");
1179 	}
1180 
1181 	return 0;
1182 }
1183 
1184 /**
1185  *  igb_get_hw_semaphore - Acquire hardware semaphore
1186  *  @hw: pointer to the HW structure
1187  *
1188  *  Acquire the HW semaphore to access the PHY or NVM
1189  **/
1190 s32 igb_get_hw_semaphore(struct e1000_hw *hw)
1191 {
1192 	u32 swsm;
1193 	s32 ret_val = 0;
1194 	s32 timeout = hw->nvm.word_size + 1;
1195 	s32 i = 0;
1196 
1197 	/* Get the SW semaphore */
1198 	while (i < timeout) {
1199 		swsm = rd32(E1000_SWSM);
1200 		if (!(swsm & E1000_SWSM_SMBI))
1201 			break;
1202 
1203 		udelay(50);
1204 		i++;
1205 	}
1206 
1207 	if (i == timeout) {
1208 		hw_dbg("Driver can't access device - SMBI bit is set.\n");
1209 		ret_val = -E1000_ERR_NVM;
1210 		goto out;
1211 	}
1212 
1213 	/* Get the FW semaphore. */
1214 	for (i = 0; i < timeout; i++) {
1215 		swsm = rd32(E1000_SWSM);
1216 		wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
1217 
1218 		/* Semaphore acquired if bit latched */
1219 		if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
1220 			break;
1221 
1222 		udelay(50);
1223 	}
1224 
1225 	if (i == timeout) {
1226 		/* Release semaphores */
1227 		igb_put_hw_semaphore(hw);
1228 		hw_dbg("Driver can't access the NVM\n");
1229 		ret_val = -E1000_ERR_NVM;
1230 		goto out;
1231 	}
1232 
1233 out:
1234 	return ret_val;
1235 }
1236 
1237 /**
1238  *  igb_put_hw_semaphore - Release hardware semaphore
1239  *  @hw: pointer to the HW structure
1240  *
1241  *  Release hardware semaphore used to access the PHY or NVM
1242  **/
1243 void igb_put_hw_semaphore(struct e1000_hw *hw)
1244 {
1245 	u32 swsm;
1246 
1247 	swsm = rd32(E1000_SWSM);
1248 
1249 	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1250 
1251 	wr32(E1000_SWSM, swsm);
1252 }
1253 
1254 /**
1255  *  igb_get_auto_rd_done - Check for auto read completion
1256  *  @hw: pointer to the HW structure
1257  *
1258  *  Check EEPROM for Auto Read done bit.
1259  **/
1260 s32 igb_get_auto_rd_done(struct e1000_hw *hw)
1261 {
1262 	s32 i = 0;
1263 	s32 ret_val = 0;
1264 
1265 
1266 	while (i < AUTO_READ_DONE_TIMEOUT) {
1267 		if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
1268 			break;
1269 		msleep(1);
1270 		i++;
1271 	}
1272 
1273 	if (i == AUTO_READ_DONE_TIMEOUT) {
1274 		hw_dbg("Auto read by HW from NVM has not completed.\n");
1275 		ret_val = -E1000_ERR_RESET;
1276 		goto out;
1277 	}
1278 
1279 out:
1280 	return ret_val;
1281 }
1282 
1283 /**
1284  *  igb_valid_led_default - Verify a valid default LED config
1285  *  @hw: pointer to the HW structure
1286  *  @data: pointer to the NVM (EEPROM)
1287  *
1288  *  Read the EEPROM for the current default LED configuration.  If the
1289  *  LED configuration is not valid, set to a valid LED configuration.
1290  **/
1291 static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
1292 {
1293 	s32 ret_val;
1294 
1295 	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
1296 	if (ret_val) {
1297 		hw_dbg("NVM Read Error\n");
1298 		goto out;
1299 	}
1300 
1301 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
1302 		switch(hw->phy.media_type) {
1303 		case e1000_media_type_internal_serdes:
1304 			*data = ID_LED_DEFAULT_82575_SERDES;
1305 			break;
1306 		case e1000_media_type_copper:
1307 		default:
1308 			*data = ID_LED_DEFAULT;
1309 			break;
1310 		}
1311 	}
1312 out:
1313 	return ret_val;
1314 }
1315 
1316 /**
1317  *  igb_id_led_init -
1318  *  @hw: pointer to the HW structure
1319  *
1320  **/
1321 s32 igb_id_led_init(struct e1000_hw *hw)
1322 {
1323 	struct e1000_mac_info *mac = &hw->mac;
1324 	s32 ret_val;
1325 	const u32 ledctl_mask = 0x000000FF;
1326 	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1327 	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1328 	u16 data, i, temp;
1329 	const u16 led_mask = 0x0F;
1330 
1331 	/* i210 and i211 devices have different LED mechanism */
1332 	if ((hw->mac.type == e1000_i210) ||
1333 	    (hw->mac.type == e1000_i211))
1334 		ret_val = igb_valid_led_default_i210(hw, &data);
1335 	else
1336 		ret_val = igb_valid_led_default(hw, &data);
1337 
1338 	if (ret_val)
1339 		goto out;
1340 
1341 	mac->ledctl_default = rd32(E1000_LEDCTL);
1342 	mac->ledctl_mode1 = mac->ledctl_default;
1343 	mac->ledctl_mode2 = mac->ledctl_default;
1344 
1345 	for (i = 0; i < 4; i++) {
1346 		temp = (data >> (i << 2)) & led_mask;
1347 		switch (temp) {
1348 		case ID_LED_ON1_DEF2:
1349 		case ID_LED_ON1_ON2:
1350 		case ID_LED_ON1_OFF2:
1351 			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1352 			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1353 			break;
1354 		case ID_LED_OFF1_DEF2:
1355 		case ID_LED_OFF1_ON2:
1356 		case ID_LED_OFF1_OFF2:
1357 			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1358 			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1359 			break;
1360 		default:
1361 			/* Do nothing */
1362 			break;
1363 		}
1364 		switch (temp) {
1365 		case ID_LED_DEF1_ON2:
1366 		case ID_LED_ON1_ON2:
1367 		case ID_LED_OFF1_ON2:
1368 			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1369 			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1370 			break;
1371 		case ID_LED_DEF1_OFF2:
1372 		case ID_LED_ON1_OFF2:
1373 		case ID_LED_OFF1_OFF2:
1374 			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1375 			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1376 			break;
1377 		default:
1378 			/* Do nothing */
1379 			break;
1380 		}
1381 	}
1382 
1383 out:
1384 	return ret_val;
1385 }
1386 
1387 /**
1388  *  igb_cleanup_led - Set LED config to default operation
1389  *  @hw: pointer to the HW structure
1390  *
1391  *  Remove the current LED configuration and set the LED configuration
1392  *  to the default value, saved from the EEPROM.
1393  **/
1394 s32 igb_cleanup_led(struct e1000_hw *hw)
1395 {
1396 	wr32(E1000_LEDCTL, hw->mac.ledctl_default);
1397 	return 0;
1398 }
1399 
1400 /**
1401  *  igb_blink_led - Blink LED
1402  *  @hw: pointer to the HW structure
1403  *
1404  *  Blink the led's which are set to be on.
1405  **/
1406 s32 igb_blink_led(struct e1000_hw *hw)
1407 {
1408 	u32 ledctl_blink = 0;
1409 	u32 i;
1410 
1411 	if (hw->phy.media_type == e1000_media_type_fiber) {
1412 		/* always blink LED0 for PCI-E fiber */
1413 		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1414 		     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1415 	} else {
1416 		/* Set the blink bit for each LED that's "on" (0x0E)
1417 		 * (or "off" if inverted) in ledctl_mode2.  The blink
1418 		 * logic in hardware only works when mode is set to "on"
1419 		 * so it must be changed accordingly when the mode is
1420 		 * "off" and inverted.
1421 		 */
1422 		ledctl_blink = hw->mac.ledctl_mode2;
1423 		for (i = 0; i < 32; i += 8) {
1424 			u32 mode = (hw->mac.ledctl_mode2 >> i) &
1425 			    E1000_LEDCTL_LED0_MODE_MASK;
1426 			u32 led_default = hw->mac.ledctl_default >> i;
1427 
1428 			if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
1429 			     (mode == E1000_LEDCTL_MODE_LED_ON)) ||
1430 			    ((led_default & E1000_LEDCTL_LED0_IVRT) &&
1431 			     (mode == E1000_LEDCTL_MODE_LED_OFF))) {
1432 				ledctl_blink &=
1433 				    ~(E1000_LEDCTL_LED0_MODE_MASK << i);
1434 				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
1435 						 E1000_LEDCTL_MODE_LED_ON) << i;
1436 			}
1437 		}
1438 	}
1439 
1440 	wr32(E1000_LEDCTL, ledctl_blink);
1441 
1442 	return 0;
1443 }
1444 
1445 /**
1446  *  igb_led_off - Turn LED off
1447  *  @hw: pointer to the HW structure
1448  *
1449  *  Turn LED off.
1450  **/
1451 s32 igb_led_off(struct e1000_hw *hw)
1452 {
1453 	switch (hw->phy.media_type) {
1454 	case e1000_media_type_copper:
1455 		wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
1456 		break;
1457 	default:
1458 		break;
1459 	}
1460 
1461 	return 0;
1462 }
1463 
1464 /**
1465  *  igb_disable_pcie_master - Disables PCI-express master access
1466  *  @hw: pointer to the HW structure
1467  *
1468  *  Returns 0 (0) if successful, else returns -10
1469  *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1470  *  the master requests to be disabled.
1471  *
1472  *  Disables PCI-Express master access and verifies there are no pending
1473  *  requests.
1474  **/
1475 s32 igb_disable_pcie_master(struct e1000_hw *hw)
1476 {
1477 	u32 ctrl;
1478 	s32 timeout = MASTER_DISABLE_TIMEOUT;
1479 	s32 ret_val = 0;
1480 
1481 	if (hw->bus.type != e1000_bus_type_pci_express)
1482 		goto out;
1483 
1484 	ctrl = rd32(E1000_CTRL);
1485 	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1486 	wr32(E1000_CTRL, ctrl);
1487 
1488 	while (timeout) {
1489 		if (!(rd32(E1000_STATUS) &
1490 		      E1000_STATUS_GIO_MASTER_ENABLE))
1491 			break;
1492 		udelay(100);
1493 		timeout--;
1494 	}
1495 
1496 	if (!timeout) {
1497 		hw_dbg("Master requests are pending.\n");
1498 		ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
1499 		goto out;
1500 	}
1501 
1502 out:
1503 	return ret_val;
1504 }
1505 
1506 /**
1507  *  igb_validate_mdi_setting - Verify MDI/MDIx settings
1508  *  @hw: pointer to the HW structure
1509  *
1510  *  Verify that when not using auto-negotitation that MDI/MDIx is correctly
1511  *  set, which is forced to MDI mode only.
1512  **/
1513 s32 igb_validate_mdi_setting(struct e1000_hw *hw)
1514 {
1515 	s32 ret_val = 0;
1516 
1517 	/* All MDI settings are supported on 82580 and newer. */
1518 	if (hw->mac.type >= e1000_82580)
1519 		goto out;
1520 
1521 	if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
1522 		hw_dbg("Invalid MDI setting detected\n");
1523 		hw->phy.mdix = 1;
1524 		ret_val = -E1000_ERR_CONFIG;
1525 		goto out;
1526 	}
1527 
1528 out:
1529 	return ret_val;
1530 }
1531 
1532 /**
1533  *  igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
1534  *  @hw: pointer to the HW structure
1535  *  @reg: 32bit register offset such as E1000_SCTL
1536  *  @offset: register offset to write to
1537  *  @data: data to write at register offset
1538  *
1539  *  Writes an address/data control type register.  There are several of these
1540  *  and they all have the format address << 8 | data and bit 31 is polled for
1541  *  completion.
1542  **/
1543 s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
1544 			      u32 offset, u8 data)
1545 {
1546 	u32 i, regvalue = 0;
1547 	s32 ret_val = 0;
1548 
1549 	/* Set up the address and data */
1550 	regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
1551 	wr32(reg, regvalue);
1552 
1553 	/* Poll the ready bit to see if the MDI read completed */
1554 	for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
1555 		udelay(5);
1556 		regvalue = rd32(reg);
1557 		if (regvalue & E1000_GEN_CTL_READY)
1558 			break;
1559 	}
1560 	if (!(regvalue & E1000_GEN_CTL_READY)) {
1561 		hw_dbg("Reg %08x did not indicate ready\n", reg);
1562 		ret_val = -E1000_ERR_PHY;
1563 		goto out;
1564 	}
1565 
1566 out:
1567 	return ret_val;
1568 }
1569 
1570 /**
1571  *  igb_enable_mng_pass_thru - Enable processing of ARP's
1572  *  @hw: pointer to the HW structure
1573  *
1574  *  Verifies the hardware needs to leave interface enabled so that frames can
1575  *  be directed to and from the management interface.
1576  **/
1577 bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
1578 {
1579 	u32 manc;
1580 	u32 fwsm, factps;
1581 	bool ret_val = false;
1582 
1583 	if (!hw->mac.asf_firmware_present)
1584 		goto out;
1585 
1586 	manc = rd32(E1000_MANC);
1587 
1588 	if (!(manc & E1000_MANC_RCV_TCO_EN))
1589 		goto out;
1590 
1591 	if (hw->mac.arc_subsystem_valid) {
1592 		fwsm = rd32(E1000_FWSM);
1593 		factps = rd32(E1000_FACTPS);
1594 
1595 		if (!(factps & E1000_FACTPS_MNGCG) &&
1596 		    ((fwsm & E1000_FWSM_MODE_MASK) ==
1597 		     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
1598 			ret_val = true;
1599 			goto out;
1600 		}
1601 	} else {
1602 		if ((manc & E1000_MANC_SMBUS_EN) &&
1603 		    !(manc & E1000_MANC_ASF_EN)) {
1604 			ret_val = true;
1605 			goto out;
1606 		}
1607 	}
1608 
1609 out:
1610 	return ret_val;
1611 }
1612