1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2007 - 2018 Intel Corporation. */ 3 4 #include <linux/if_ether.h> 5 #include <linux/delay.h> 6 #include <linux/pci.h> 7 #include <linux/netdevice.h> 8 #include <linux/etherdevice.h> 9 10 #include "e1000_mac.h" 11 12 #include "igb.h" 13 14 static s32 igb_set_default_fc(struct e1000_hw *hw); 15 static void igb_set_fc_watermarks(struct e1000_hw *hw); 16 17 /** 18 * igb_get_bus_info_pcie - Get PCIe bus information 19 * @hw: pointer to the HW structure 20 * 21 * Determines and stores the system bus information for a particular 22 * network interface. The following bus information is determined and stored: 23 * bus speed, bus width, type (PCIe), and PCIe function. 24 **/ 25 s32 igb_get_bus_info_pcie(struct e1000_hw *hw) 26 { 27 struct e1000_bus_info *bus = &hw->bus; 28 s32 ret_val; 29 u32 reg; 30 u16 pcie_link_status; 31 32 bus->type = e1000_bus_type_pci_express; 33 34 ret_val = igb_read_pcie_cap_reg(hw, 35 PCI_EXP_LNKSTA, 36 &pcie_link_status); 37 if (ret_val) { 38 bus->width = e1000_bus_width_unknown; 39 bus->speed = e1000_bus_speed_unknown; 40 } else { 41 switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) { 42 case PCI_EXP_LNKSTA_CLS_2_5GB: 43 bus->speed = e1000_bus_speed_2500; 44 break; 45 case PCI_EXP_LNKSTA_CLS_5_0GB: 46 bus->speed = e1000_bus_speed_5000; 47 break; 48 default: 49 bus->speed = e1000_bus_speed_unknown; 50 break; 51 } 52 53 bus->width = (enum e1000_bus_width)((pcie_link_status & 54 PCI_EXP_LNKSTA_NLW) >> 55 PCI_EXP_LNKSTA_NLW_SHIFT); 56 } 57 58 reg = rd32(E1000_STATUS); 59 bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT; 60 61 return 0; 62 } 63 64 /** 65 * igb_clear_vfta - Clear VLAN filter table 66 * @hw: pointer to the HW structure 67 * 68 * Clears the register array which contains the VLAN filter table by 69 * setting all the values to 0. 70 **/ 71 void igb_clear_vfta(struct e1000_hw *hw) 72 { 73 u32 offset; 74 75 for (offset = E1000_VLAN_FILTER_TBL_SIZE; offset--;) 76 hw->mac.ops.write_vfta(hw, offset, 0); 77 } 78 79 /** 80 * igb_write_vfta - Write value to VLAN filter table 81 * @hw: pointer to the HW structure 82 * @offset: register offset in VLAN filter table 83 * @value: register value written to VLAN filter table 84 * 85 * Writes value at the given offset in the register array which stores 86 * the VLAN filter table. 87 **/ 88 void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) 89 { 90 struct igb_adapter *adapter = hw->back; 91 92 array_wr32(E1000_VFTA, offset, value); 93 wrfl(); 94 95 adapter->shadow_vfta[offset] = value; 96 } 97 98 /** 99 * igb_init_rx_addrs - Initialize receive address's 100 * @hw: pointer to the HW structure 101 * @rar_count: receive address registers 102 * 103 * Setups the receive address registers by setting the base receive address 104 * register to the devices MAC address and clearing all the other receive 105 * address registers to 0. 106 **/ 107 void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count) 108 { 109 u32 i; 110 u8 mac_addr[ETH_ALEN] = {0}; 111 112 /* Setup the receive address */ 113 hw_dbg("Programming MAC Address into RAR[0]\n"); 114 115 hw->mac.ops.rar_set(hw, hw->mac.addr, 0); 116 117 /* Zero out the other (rar_entry_count - 1) receive addresses */ 118 hw_dbg("Clearing RAR[1-%u]\n", rar_count-1); 119 for (i = 1; i < rar_count; i++) 120 hw->mac.ops.rar_set(hw, mac_addr, i); 121 } 122 123 /** 124 * igb_find_vlvf_slot - find the VLAN id or the first empty slot 125 * @hw: pointer to hardware structure 126 * @vlan: VLAN id to write to VLAN filter 127 * @vlvf_bypass: skip VLVF if no match is found 128 * 129 * return the VLVF index where this VLAN id should be placed 130 * 131 **/ 132 static s32 igb_find_vlvf_slot(struct e1000_hw *hw, u32 vlan, bool vlvf_bypass) 133 { 134 s32 regindex, first_empty_slot; 135 u32 bits; 136 137 /* short cut the special case */ 138 if (vlan == 0) 139 return 0; 140 141 /* if vlvf_bypass is set we don't want to use an empty slot, we 142 * will simply bypass the VLVF if there are no entries present in the 143 * VLVF that contain our VLAN 144 */ 145 first_empty_slot = vlvf_bypass ? -E1000_ERR_NO_SPACE : 0; 146 147 /* Search for the VLAN id in the VLVF entries. Save off the first empty 148 * slot found along the way. 149 * 150 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1 151 */ 152 for (regindex = E1000_VLVF_ARRAY_SIZE; --regindex > 0;) { 153 bits = rd32(E1000_VLVF(regindex)) & E1000_VLVF_VLANID_MASK; 154 if (bits == vlan) 155 return regindex; 156 if (!first_empty_slot && !bits) 157 first_empty_slot = regindex; 158 } 159 160 return first_empty_slot ? : -E1000_ERR_NO_SPACE; 161 } 162 163 /** 164 * igb_vfta_set - enable or disable vlan in VLAN filter table 165 * @hw: pointer to the HW structure 166 * @vlan: VLAN id to add or remove 167 * @vind: VMDq output index that maps queue to VLAN id 168 * @vlan_on: if true add filter, if false remove 169 * @vlvf_bypass: skip VLVF if no match is found 170 * 171 * Sets or clears a bit in the VLAN filter table array based on VLAN id 172 * and if we are adding or removing the filter 173 **/ 174 s32 igb_vfta_set(struct e1000_hw *hw, u32 vlan, u32 vind, 175 bool vlan_on, bool vlvf_bypass) 176 { 177 struct igb_adapter *adapter = hw->back; 178 u32 regidx, vfta_delta, vfta, bits; 179 s32 vlvf_index; 180 181 if ((vlan > 4095) || (vind > 7)) 182 return -E1000_ERR_PARAM; 183 184 /* this is a 2 part operation - first the VFTA, then the 185 * VLVF and VLVFB if VT Mode is set 186 * We don't write the VFTA until we know the VLVF part succeeded. 187 */ 188 189 /* Part 1 190 * The VFTA is a bitstring made up of 128 32-bit registers 191 * that enable the particular VLAN id, much like the MTA: 192 * bits[11-5]: which register 193 * bits[4-0]: which bit in the register 194 */ 195 regidx = vlan / 32; 196 vfta_delta = BIT(vlan % 32); 197 vfta = adapter->shadow_vfta[regidx]; 198 199 /* vfta_delta represents the difference between the current value 200 * of vfta and the value we want in the register. Since the diff 201 * is an XOR mask we can just update vfta using an XOR. 202 */ 203 vfta_delta &= vlan_on ? ~vfta : vfta; 204 vfta ^= vfta_delta; 205 206 /* Part 2 207 * If VT Mode is set 208 * Either vlan_on 209 * make sure the VLAN is in VLVF 210 * set the vind bit in the matching VLVFB 211 * Or !vlan_on 212 * clear the pool bit and possibly the vind 213 */ 214 if (!adapter->vfs_allocated_count) 215 goto vfta_update; 216 217 vlvf_index = igb_find_vlvf_slot(hw, vlan, vlvf_bypass); 218 if (vlvf_index < 0) { 219 if (vlvf_bypass) 220 goto vfta_update; 221 return vlvf_index; 222 } 223 224 bits = rd32(E1000_VLVF(vlvf_index)); 225 226 /* set the pool bit */ 227 bits |= BIT(E1000_VLVF_POOLSEL_SHIFT + vind); 228 if (vlan_on) 229 goto vlvf_update; 230 231 /* clear the pool bit */ 232 bits ^= BIT(E1000_VLVF_POOLSEL_SHIFT + vind); 233 234 if (!(bits & E1000_VLVF_POOLSEL_MASK)) { 235 /* Clear VFTA first, then disable VLVF. Otherwise 236 * we run the risk of stray packets leaking into 237 * the PF via the default pool 238 */ 239 if (vfta_delta) 240 hw->mac.ops.write_vfta(hw, regidx, vfta); 241 242 /* disable VLVF and clear remaining bit from pool */ 243 wr32(E1000_VLVF(vlvf_index), 0); 244 245 return 0; 246 } 247 248 /* If there are still bits set in the VLVFB registers 249 * for the VLAN ID indicated we need to see if the 250 * caller is requesting that we clear the VFTA entry bit. 251 * If the caller has requested that we clear the VFTA 252 * entry bit but there are still pools/VFs using this VLAN 253 * ID entry then ignore the request. We're not worried 254 * about the case where we're turning the VFTA VLAN ID 255 * entry bit on, only when requested to turn it off as 256 * there may be multiple pools and/or VFs using the 257 * VLAN ID entry. In that case we cannot clear the 258 * VFTA bit until all pools/VFs using that VLAN ID have also 259 * been cleared. This will be indicated by "bits" being 260 * zero. 261 */ 262 vfta_delta = 0; 263 264 vlvf_update: 265 /* record pool change and enable VLAN ID if not already enabled */ 266 wr32(E1000_VLVF(vlvf_index), bits | vlan | E1000_VLVF_VLANID_ENABLE); 267 268 vfta_update: 269 /* bit was set/cleared before we started */ 270 if (vfta_delta) 271 hw->mac.ops.write_vfta(hw, regidx, vfta); 272 273 return 0; 274 } 275 276 /** 277 * igb_check_alt_mac_addr - Check for alternate MAC addr 278 * @hw: pointer to the HW structure 279 * 280 * Checks the nvm for an alternate MAC address. An alternate MAC address 281 * can be setup by pre-boot software and must be treated like a permanent 282 * address and must override the actual permanent MAC address. If an 283 * alternate MAC address is found it is saved in the hw struct and 284 * programmed into RAR0 and the function returns success, otherwise the 285 * function returns an error. 286 **/ 287 s32 igb_check_alt_mac_addr(struct e1000_hw *hw) 288 { 289 u32 i; 290 s32 ret_val = 0; 291 u16 offset, nvm_alt_mac_addr_offset, nvm_data; 292 u8 alt_mac_addr[ETH_ALEN]; 293 294 /* Alternate MAC address is handled by the option ROM for 82580 295 * and newer. SW support not required. 296 */ 297 if (hw->mac.type >= e1000_82580) 298 goto out; 299 300 ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1, 301 &nvm_alt_mac_addr_offset); 302 if (ret_val) { 303 hw_dbg("NVM Read Error\n"); 304 goto out; 305 } 306 307 if ((nvm_alt_mac_addr_offset == 0xFFFF) || 308 (nvm_alt_mac_addr_offset == 0x0000)) 309 /* There is no Alternate MAC Address */ 310 goto out; 311 312 if (hw->bus.func == E1000_FUNC_1) 313 nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1; 314 if (hw->bus.func == E1000_FUNC_2) 315 nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2; 316 317 if (hw->bus.func == E1000_FUNC_3) 318 nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3; 319 for (i = 0; i < ETH_ALEN; i += 2) { 320 offset = nvm_alt_mac_addr_offset + (i >> 1); 321 ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data); 322 if (ret_val) { 323 hw_dbg("NVM Read Error\n"); 324 goto out; 325 } 326 327 alt_mac_addr[i] = (u8)(nvm_data & 0xFF); 328 alt_mac_addr[i + 1] = (u8)(nvm_data >> 8); 329 } 330 331 /* if multicast bit is set, the alternate address will not be used */ 332 if (is_multicast_ether_addr(alt_mac_addr)) { 333 hw_dbg("Ignoring Alternate Mac Address with MC bit set\n"); 334 goto out; 335 } 336 337 /* We have a valid alternate MAC address, and we want to treat it the 338 * same as the normal permanent MAC address stored by the HW into the 339 * RAR. Do this by mapping this address into RAR0. 340 */ 341 hw->mac.ops.rar_set(hw, alt_mac_addr, 0); 342 343 out: 344 return ret_val; 345 } 346 347 /** 348 * igb_rar_set - Set receive address register 349 * @hw: pointer to the HW structure 350 * @addr: pointer to the receive address 351 * @index: receive address array register 352 * 353 * Sets the receive address array register at index to the address passed 354 * in by addr. 355 **/ 356 void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) 357 { 358 u32 rar_low, rar_high; 359 360 /* HW expects these in little endian so we reverse the byte order 361 * from network order (big endian) to little endian 362 */ 363 rar_low = ((u32) addr[0] | 364 ((u32) addr[1] << 8) | 365 ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); 366 367 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); 368 369 /* If MAC address zero, no need to set the AV bit */ 370 if (rar_low || rar_high) 371 rar_high |= E1000_RAH_AV; 372 373 /* Some bridges will combine consecutive 32-bit writes into 374 * a single burst write, which will malfunction on some parts. 375 * The flushes avoid this. 376 */ 377 wr32(E1000_RAL(index), rar_low); 378 wrfl(); 379 wr32(E1000_RAH(index), rar_high); 380 wrfl(); 381 } 382 383 /** 384 * igb_mta_set - Set multicast filter table address 385 * @hw: pointer to the HW structure 386 * @hash_value: determines the MTA register and bit to set 387 * 388 * The multicast table address is a register array of 32-bit registers. 389 * The hash_value is used to determine what register the bit is in, the 390 * current value is read, the new bit is OR'd in and the new value is 391 * written back into the register. 392 **/ 393 void igb_mta_set(struct e1000_hw *hw, u32 hash_value) 394 { 395 u32 hash_bit, hash_reg, mta; 396 397 /* The MTA is a register array of 32-bit registers. It is 398 * treated like an array of (32*mta_reg_count) bits. We want to 399 * set bit BitArray[hash_value]. So we figure out what register 400 * the bit is in, read it, OR in the new bit, then write 401 * back the new value. The (hw->mac.mta_reg_count - 1) serves as a 402 * mask to bits 31:5 of the hash value which gives us the 403 * register we're modifying. The hash bit within that register 404 * is determined by the lower 5 bits of the hash value. 405 */ 406 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); 407 hash_bit = hash_value & 0x1F; 408 409 mta = array_rd32(E1000_MTA, hash_reg); 410 411 mta |= BIT(hash_bit); 412 413 array_wr32(E1000_MTA, hash_reg, mta); 414 wrfl(); 415 } 416 417 /** 418 * igb_hash_mc_addr - Generate a multicast hash value 419 * @hw: pointer to the HW structure 420 * @mc_addr: pointer to a multicast address 421 * 422 * Generates a multicast address hash value which is used to determine 423 * the multicast filter table array address and new table value. See 424 * igb_mta_set() 425 **/ 426 static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) 427 { 428 u32 hash_value, hash_mask; 429 u8 bit_shift = 0; 430 431 /* Register count multiplied by bits per register */ 432 hash_mask = (hw->mac.mta_reg_count * 32) - 1; 433 434 /* For a mc_filter_type of 0, bit_shift is the number of left-shifts 435 * where 0xFF would still fall within the hash mask. 436 */ 437 while (hash_mask >> bit_shift != 0xFF) 438 bit_shift++; 439 440 /* The portion of the address that is used for the hash table 441 * is determined by the mc_filter_type setting. 442 * The algorithm is such that there is a total of 8 bits of shifting. 443 * The bit_shift for a mc_filter_type of 0 represents the number of 444 * left-shifts where the MSB of mc_addr[5] would still fall within 445 * the hash_mask. Case 0 does this exactly. Since there are a total 446 * of 8 bits of shifting, then mc_addr[4] will shift right the 447 * remaining number of bits. Thus 8 - bit_shift. The rest of the 448 * cases are a variation of this algorithm...essentially raising the 449 * number of bits to shift mc_addr[5] left, while still keeping the 450 * 8-bit shifting total. 451 * 452 * For example, given the following Destination MAC Address and an 453 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), 454 * we can see that the bit_shift for case 0 is 4. These are the hash 455 * values resulting from each mc_filter_type... 456 * [0] [1] [2] [3] [4] [5] 457 * 01 AA 00 12 34 56 458 * LSB MSB 459 * 460 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 461 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 462 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 463 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 464 */ 465 switch (hw->mac.mc_filter_type) { 466 default: 467 case 0: 468 break; 469 case 1: 470 bit_shift += 1; 471 break; 472 case 2: 473 bit_shift += 2; 474 break; 475 case 3: 476 bit_shift += 4; 477 break; 478 } 479 480 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | 481 (((u16) mc_addr[5]) << bit_shift))); 482 483 return hash_value; 484 } 485 486 /** 487 * igb_update_mc_addr_list - Update Multicast addresses 488 * @hw: pointer to the HW structure 489 * @mc_addr_list: array of multicast addresses to program 490 * @mc_addr_count: number of multicast addresses to program 491 * 492 * Updates entire Multicast Table Array. 493 * The caller must have a packed mc_addr_list of multicast addresses. 494 **/ 495 void igb_update_mc_addr_list(struct e1000_hw *hw, 496 u8 *mc_addr_list, u32 mc_addr_count) 497 { 498 u32 hash_value, hash_bit, hash_reg; 499 int i; 500 501 /* clear mta_shadow */ 502 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow)); 503 504 /* update mta_shadow from mc_addr_list */ 505 for (i = 0; (u32) i < mc_addr_count; i++) { 506 hash_value = igb_hash_mc_addr(hw, mc_addr_list); 507 508 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); 509 hash_bit = hash_value & 0x1F; 510 511 hw->mac.mta_shadow[hash_reg] |= BIT(hash_bit); 512 mc_addr_list += (ETH_ALEN); 513 } 514 515 /* replace the entire MTA table */ 516 for (i = hw->mac.mta_reg_count - 1; i >= 0; i--) 517 array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]); 518 wrfl(); 519 } 520 521 /** 522 * igb_clear_hw_cntrs_base - Clear base hardware counters 523 * @hw: pointer to the HW structure 524 * 525 * Clears the base hardware counters by reading the counter registers. 526 **/ 527 void igb_clear_hw_cntrs_base(struct e1000_hw *hw) 528 { 529 rd32(E1000_CRCERRS); 530 rd32(E1000_SYMERRS); 531 rd32(E1000_MPC); 532 rd32(E1000_SCC); 533 rd32(E1000_ECOL); 534 rd32(E1000_MCC); 535 rd32(E1000_LATECOL); 536 rd32(E1000_COLC); 537 rd32(E1000_DC); 538 rd32(E1000_SEC); 539 rd32(E1000_RLEC); 540 rd32(E1000_XONRXC); 541 rd32(E1000_XONTXC); 542 rd32(E1000_XOFFRXC); 543 rd32(E1000_XOFFTXC); 544 rd32(E1000_FCRUC); 545 rd32(E1000_GPRC); 546 rd32(E1000_BPRC); 547 rd32(E1000_MPRC); 548 rd32(E1000_GPTC); 549 rd32(E1000_GORCL); 550 rd32(E1000_GORCH); 551 rd32(E1000_GOTCL); 552 rd32(E1000_GOTCH); 553 rd32(E1000_RNBC); 554 rd32(E1000_RUC); 555 rd32(E1000_RFC); 556 rd32(E1000_ROC); 557 rd32(E1000_RJC); 558 rd32(E1000_TORL); 559 rd32(E1000_TORH); 560 rd32(E1000_TOTL); 561 rd32(E1000_TOTH); 562 rd32(E1000_TPR); 563 rd32(E1000_TPT); 564 rd32(E1000_MPTC); 565 rd32(E1000_BPTC); 566 } 567 568 /** 569 * igb_check_for_copper_link - Check for link (Copper) 570 * @hw: pointer to the HW structure 571 * 572 * Checks to see of the link status of the hardware has changed. If a 573 * change in link status has been detected, then we read the PHY registers 574 * to get the current speed/duplex if link exists. 575 **/ 576 s32 igb_check_for_copper_link(struct e1000_hw *hw) 577 { 578 struct e1000_mac_info *mac = &hw->mac; 579 s32 ret_val; 580 bool link; 581 582 /* We only want to go out to the PHY registers to see if Auto-Neg 583 * has completed and/or if our link status has changed. The 584 * get_link_status flag is set upon receiving a Link Status 585 * Change or Rx Sequence Error interrupt. 586 */ 587 if (!mac->get_link_status) { 588 ret_val = 0; 589 goto out; 590 } 591 592 /* First we want to see if the MII Status Register reports 593 * link. If so, then we want to get the current speed/duplex 594 * of the PHY. 595 */ 596 ret_val = igb_phy_has_link(hw, 1, 0, &link); 597 if (ret_val) 598 goto out; 599 600 if (!link) 601 goto out; /* No link detected */ 602 603 mac->get_link_status = false; 604 605 /* Check if there was DownShift, must be checked 606 * immediately after link-up 607 */ 608 igb_check_downshift(hw); 609 610 /* If we are forcing speed/duplex, then we simply return since 611 * we have already determined whether we have link or not. 612 */ 613 if (!mac->autoneg) { 614 ret_val = -E1000_ERR_CONFIG; 615 goto out; 616 } 617 618 /* Auto-Neg is enabled. Auto Speed Detection takes care 619 * of MAC speed/duplex configuration. So we only need to 620 * configure Collision Distance in the MAC. 621 */ 622 igb_config_collision_dist(hw); 623 624 /* Configure Flow Control now that Auto-Neg has completed. 625 * First, we need to restore the desired flow control 626 * settings because we may have had to re-autoneg with a 627 * different link partner. 628 */ 629 ret_val = igb_config_fc_after_link_up(hw); 630 if (ret_val) 631 hw_dbg("Error configuring flow control\n"); 632 633 out: 634 return ret_val; 635 } 636 637 /** 638 * igb_setup_link - Setup flow control and link settings 639 * @hw: pointer to the HW structure 640 * 641 * Determines which flow control settings to use, then configures flow 642 * control. Calls the appropriate media-specific link configuration 643 * function. Assuming the adapter has a valid link partner, a valid link 644 * should be established. Assumes the hardware has previously been reset 645 * and the transmitter and receiver are not enabled. 646 **/ 647 s32 igb_setup_link(struct e1000_hw *hw) 648 { 649 s32 ret_val = 0; 650 651 /* In the case of the phy reset being blocked, we already have a link. 652 * We do not need to set it up again. 653 */ 654 if (igb_check_reset_block(hw)) 655 goto out; 656 657 /* If requested flow control is set to default, set flow control 658 * based on the EEPROM flow control settings. 659 */ 660 if (hw->fc.requested_mode == e1000_fc_default) { 661 ret_val = igb_set_default_fc(hw); 662 if (ret_val) 663 goto out; 664 } 665 666 /* We want to save off the original Flow Control configuration just 667 * in case we get disconnected and then reconnected into a different 668 * hub or switch with different Flow Control capabilities. 669 */ 670 hw->fc.current_mode = hw->fc.requested_mode; 671 672 hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode); 673 674 /* Call the necessary media_type subroutine to configure the link. */ 675 ret_val = hw->mac.ops.setup_physical_interface(hw); 676 if (ret_val) 677 goto out; 678 679 /* Initialize the flow control address, type, and PAUSE timer 680 * registers to their default values. This is done even if flow 681 * control is disabled, because it does not hurt anything to 682 * initialize these registers. 683 */ 684 hw_dbg("Initializing the Flow Control address, type and timer regs\n"); 685 wr32(E1000_FCT, FLOW_CONTROL_TYPE); 686 wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH); 687 wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW); 688 689 wr32(E1000_FCTTV, hw->fc.pause_time); 690 691 igb_set_fc_watermarks(hw); 692 693 out: 694 695 return ret_val; 696 } 697 698 /** 699 * igb_config_collision_dist - Configure collision distance 700 * @hw: pointer to the HW structure 701 * 702 * Configures the collision distance to the default value and is used 703 * during link setup. Currently no func pointer exists and all 704 * implementations are handled in the generic version of this function. 705 **/ 706 void igb_config_collision_dist(struct e1000_hw *hw) 707 { 708 u32 tctl; 709 710 tctl = rd32(E1000_TCTL); 711 712 tctl &= ~E1000_TCTL_COLD; 713 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; 714 715 wr32(E1000_TCTL, tctl); 716 wrfl(); 717 } 718 719 /** 720 * igb_set_fc_watermarks - Set flow control high/low watermarks 721 * @hw: pointer to the HW structure 722 * 723 * Sets the flow control high/low threshold (watermark) registers. If 724 * flow control XON frame transmission is enabled, then set XON frame 725 * tansmission as well. 726 **/ 727 static void igb_set_fc_watermarks(struct e1000_hw *hw) 728 { 729 u32 fcrtl = 0, fcrth = 0; 730 731 /* Set the flow control receive threshold registers. Normally, 732 * these registers will be set to a default threshold that may be 733 * adjusted later by the driver's runtime code. However, if the 734 * ability to transmit pause frames is not enabled, then these 735 * registers will be set to 0. 736 */ 737 if (hw->fc.current_mode & e1000_fc_tx_pause) { 738 /* We need to set up the Receive Threshold high and low water 739 * marks as well as (optionally) enabling the transmission of 740 * XON frames. 741 */ 742 fcrtl = hw->fc.low_water; 743 if (hw->fc.send_xon) 744 fcrtl |= E1000_FCRTL_XONE; 745 746 fcrth = hw->fc.high_water; 747 } 748 wr32(E1000_FCRTL, fcrtl); 749 wr32(E1000_FCRTH, fcrth); 750 } 751 752 /** 753 * igb_set_default_fc - Set flow control default values 754 * @hw: pointer to the HW structure 755 * 756 * Read the EEPROM for the default values for flow control and store the 757 * values. 758 **/ 759 static s32 igb_set_default_fc(struct e1000_hw *hw) 760 { 761 s32 ret_val = 0; 762 u16 lan_offset; 763 u16 nvm_data; 764 765 /* Read and store word 0x0F of the EEPROM. This word contains bits 766 * that determine the hardware's default PAUSE (flow control) mode, 767 * a bit that determines whether the HW defaults to enabling or 768 * disabling auto-negotiation, and the direction of the 769 * SW defined pins. If there is no SW over-ride of the flow 770 * control setting, then the variable hw->fc will 771 * be initialized based on a value in the EEPROM. 772 */ 773 if (hw->mac.type == e1000_i350) 774 lan_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func); 775 else 776 lan_offset = 0; 777 778 ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG + lan_offset, 779 1, &nvm_data); 780 if (ret_val) { 781 hw_dbg("NVM Read Error\n"); 782 goto out; 783 } 784 785 if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0) 786 hw->fc.requested_mode = e1000_fc_none; 787 else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR) 788 hw->fc.requested_mode = e1000_fc_tx_pause; 789 else 790 hw->fc.requested_mode = e1000_fc_full; 791 792 out: 793 return ret_val; 794 } 795 796 /** 797 * igb_force_mac_fc - Force the MAC's flow control settings 798 * @hw: pointer to the HW structure 799 * 800 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the 801 * device control register to reflect the adapter settings. TFCE and RFCE 802 * need to be explicitly set by software when a copper PHY is used because 803 * autonegotiation is managed by the PHY rather than the MAC. Software must 804 * also configure these bits when link is forced on a fiber connection. 805 **/ 806 s32 igb_force_mac_fc(struct e1000_hw *hw) 807 { 808 u32 ctrl; 809 s32 ret_val = 0; 810 811 ctrl = rd32(E1000_CTRL); 812 813 /* Because we didn't get link via the internal auto-negotiation 814 * mechanism (we either forced link or we got link via PHY 815 * auto-neg), we have to manually enable/disable transmit an 816 * receive flow control. 817 * 818 * The "Case" statement below enables/disable flow control 819 * according to the "hw->fc.current_mode" parameter. 820 * 821 * The possible values of the "fc" parameter are: 822 * 0: Flow control is completely disabled 823 * 1: Rx flow control is enabled (we can receive pause 824 * frames but not send pause frames). 825 * 2: Tx flow control is enabled (we can send pause frames 826 * frames but we do not receive pause frames). 827 * 3: Both Rx and TX flow control (symmetric) is enabled. 828 * other: No other values should be possible at this point. 829 */ 830 hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode); 831 832 switch (hw->fc.current_mode) { 833 case e1000_fc_none: 834 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); 835 break; 836 case e1000_fc_rx_pause: 837 ctrl &= (~E1000_CTRL_TFCE); 838 ctrl |= E1000_CTRL_RFCE; 839 break; 840 case e1000_fc_tx_pause: 841 ctrl &= (~E1000_CTRL_RFCE); 842 ctrl |= E1000_CTRL_TFCE; 843 break; 844 case e1000_fc_full: 845 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); 846 break; 847 default: 848 hw_dbg("Flow control param set incorrectly\n"); 849 ret_val = -E1000_ERR_CONFIG; 850 goto out; 851 } 852 853 wr32(E1000_CTRL, ctrl); 854 855 out: 856 return ret_val; 857 } 858 859 /** 860 * igb_config_fc_after_link_up - Configures flow control after link 861 * @hw: pointer to the HW structure 862 * 863 * Checks the status of auto-negotiation after link up to ensure that the 864 * speed and duplex were not forced. If the link needed to be forced, then 865 * flow control needs to be forced also. If auto-negotiation is enabled 866 * and did not fail, then we configure flow control based on our link 867 * partner. 868 **/ 869 s32 igb_config_fc_after_link_up(struct e1000_hw *hw) 870 { 871 struct e1000_mac_info *mac = &hw->mac; 872 s32 ret_val = 0; 873 u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg; 874 u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; 875 u16 speed, duplex; 876 877 /* Check for the case where we have fiber media and auto-neg failed 878 * so we had to force link. In this case, we need to force the 879 * configuration of the MAC to match the "fc" parameter. 880 */ 881 if (mac->autoneg_failed) { 882 if (hw->phy.media_type == e1000_media_type_internal_serdes) 883 ret_val = igb_force_mac_fc(hw); 884 } else { 885 if (hw->phy.media_type == e1000_media_type_copper) 886 ret_val = igb_force_mac_fc(hw); 887 } 888 889 if (ret_val) { 890 hw_dbg("Error forcing flow control settings\n"); 891 goto out; 892 } 893 894 /* Check for the case where we have copper media and auto-neg is 895 * enabled. In this case, we need to check and see if Auto-Neg 896 * has completed, and if so, how the PHY and link partner has 897 * flow control configured. 898 */ 899 if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) { 900 /* Read the MII Status Register and check to see if AutoNeg 901 * has completed. We read this twice because this reg has 902 * some "sticky" (latched) bits. 903 */ 904 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, 905 &mii_status_reg); 906 if (ret_val) 907 goto out; 908 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, 909 &mii_status_reg); 910 if (ret_val) 911 goto out; 912 913 if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { 914 hw_dbg("Copper PHY and Auto Neg has not completed.\n"); 915 goto out; 916 } 917 918 /* The AutoNeg process has completed, so we now need to 919 * read both the Auto Negotiation Advertisement 920 * Register (Address 4) and the Auto_Negotiation Base 921 * Page Ability Register (Address 5) to determine how 922 * flow control was negotiated. 923 */ 924 ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV, 925 &mii_nway_adv_reg); 926 if (ret_val) 927 goto out; 928 ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY, 929 &mii_nway_lp_ability_reg); 930 if (ret_val) 931 goto out; 932 933 /* Two bits in the Auto Negotiation Advertisement Register 934 * (Address 4) and two bits in the Auto Negotiation Base 935 * Page Ability Register (Address 5) determine flow control 936 * for both the PHY and the link partner. The following 937 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, 938 * 1999, describes these PAUSE resolution bits and how flow 939 * control is determined based upon these settings. 940 * NOTE: DC = Don't Care 941 * 942 * LOCAL DEVICE | LINK PARTNER 943 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution 944 *-------|---------|-------|---------|-------------------- 945 * 0 | 0 | DC | DC | e1000_fc_none 946 * 0 | 1 | 0 | DC | e1000_fc_none 947 * 0 | 1 | 1 | 0 | e1000_fc_none 948 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause 949 * 1 | 0 | 0 | DC | e1000_fc_none 950 * 1 | DC | 1 | DC | e1000_fc_full 951 * 1 | 1 | 0 | 0 | e1000_fc_none 952 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause 953 * 954 * Are both PAUSE bits set to 1? If so, this implies 955 * Symmetric Flow Control is enabled at both ends. The 956 * ASM_DIR bits are irrelevant per the spec. 957 * 958 * For Symmetric Flow Control: 959 * 960 * LOCAL DEVICE | LINK PARTNER 961 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 962 *-------|---------|-------|---------|-------------------- 963 * 1 | DC | 1 | DC | E1000_fc_full 964 * 965 */ 966 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && 967 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { 968 /* Now we need to check if the user selected RX ONLY 969 * of pause frames. In this case, we had to advertise 970 * FULL flow control because we could not advertise RX 971 * ONLY. Hence, we must now check to see if we need to 972 * turn OFF the TRANSMISSION of PAUSE frames. 973 */ 974 if (hw->fc.requested_mode == e1000_fc_full) { 975 hw->fc.current_mode = e1000_fc_full; 976 hw_dbg("Flow Control = FULL.\n"); 977 } else { 978 hw->fc.current_mode = e1000_fc_rx_pause; 979 hw_dbg("Flow Control = RX PAUSE frames only.\n"); 980 } 981 } 982 /* For receiving PAUSE frames ONLY. 983 * 984 * LOCAL DEVICE | LINK PARTNER 985 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 986 *-------|---------|-------|---------|-------------------- 987 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause 988 */ 989 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && 990 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && 991 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && 992 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { 993 hw->fc.current_mode = e1000_fc_tx_pause; 994 hw_dbg("Flow Control = TX PAUSE frames only.\n"); 995 } 996 /* For transmitting PAUSE frames ONLY. 997 * 998 * LOCAL DEVICE | LINK PARTNER 999 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 1000 *-------|---------|-------|---------|-------------------- 1001 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause 1002 */ 1003 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && 1004 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && 1005 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && 1006 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { 1007 hw->fc.current_mode = e1000_fc_rx_pause; 1008 hw_dbg("Flow Control = RX PAUSE frames only.\n"); 1009 } 1010 /* Per the IEEE spec, at this point flow control should be 1011 * disabled. However, we want to consider that we could 1012 * be connected to a legacy switch that doesn't advertise 1013 * desired flow control, but can be forced on the link 1014 * partner. So if we advertised no flow control, that is 1015 * what we will resolve to. If we advertised some kind of 1016 * receive capability (Rx Pause Only or Full Flow Control) 1017 * and the link partner advertised none, we will configure 1018 * ourselves to enable Rx Flow Control only. We can do 1019 * this safely for two reasons: If the link partner really 1020 * didn't want flow control enabled, and we enable Rx, no 1021 * harm done since we won't be receiving any PAUSE frames 1022 * anyway. If the intent on the link partner was to have 1023 * flow control enabled, then by us enabling RX only, we 1024 * can at least receive pause frames and process them. 1025 * This is a good idea because in most cases, since we are 1026 * predominantly a server NIC, more times than not we will 1027 * be asked to delay transmission of packets than asking 1028 * our link partner to pause transmission of frames. 1029 */ 1030 else if ((hw->fc.requested_mode == e1000_fc_none) || 1031 (hw->fc.requested_mode == e1000_fc_tx_pause) || 1032 (hw->fc.strict_ieee)) { 1033 hw->fc.current_mode = e1000_fc_none; 1034 hw_dbg("Flow Control = NONE.\n"); 1035 } else { 1036 hw->fc.current_mode = e1000_fc_rx_pause; 1037 hw_dbg("Flow Control = RX PAUSE frames only.\n"); 1038 } 1039 1040 /* Now we need to do one last check... If we auto- 1041 * negotiated to HALF DUPLEX, flow control should not be 1042 * enabled per IEEE 802.3 spec. 1043 */ 1044 ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex); 1045 if (ret_val) { 1046 hw_dbg("Error getting link speed and duplex\n"); 1047 goto out; 1048 } 1049 1050 if (duplex == HALF_DUPLEX) 1051 hw->fc.current_mode = e1000_fc_none; 1052 1053 /* Now we call a subroutine to actually force the MAC 1054 * controller to use the correct flow control settings. 1055 */ 1056 ret_val = igb_force_mac_fc(hw); 1057 if (ret_val) { 1058 hw_dbg("Error forcing flow control settings\n"); 1059 goto out; 1060 } 1061 } 1062 /* Check for the case where we have SerDes media and auto-neg is 1063 * enabled. In this case, we need to check and see if Auto-Neg 1064 * has completed, and if so, how the PHY and link partner has 1065 * flow control configured. 1066 */ 1067 if ((hw->phy.media_type == e1000_media_type_internal_serdes) 1068 && mac->autoneg) { 1069 /* Read the PCS_LSTS and check to see if AutoNeg 1070 * has completed. 1071 */ 1072 pcs_status_reg = rd32(E1000_PCS_LSTAT); 1073 1074 if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) { 1075 hw_dbg("PCS Auto Neg has not completed.\n"); 1076 return ret_val; 1077 } 1078 1079 /* The AutoNeg process has completed, so we now need to 1080 * read both the Auto Negotiation Advertisement 1081 * Register (PCS_ANADV) and the Auto_Negotiation Base 1082 * Page Ability Register (PCS_LPAB) to determine how 1083 * flow control was negotiated. 1084 */ 1085 pcs_adv_reg = rd32(E1000_PCS_ANADV); 1086 pcs_lp_ability_reg = rd32(E1000_PCS_LPAB); 1087 1088 /* Two bits in the Auto Negotiation Advertisement Register 1089 * (PCS_ANADV) and two bits in the Auto Negotiation Base 1090 * Page Ability Register (PCS_LPAB) determine flow control 1091 * for both the PHY and the link partner. The following 1092 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, 1093 * 1999, describes these PAUSE resolution bits and how flow 1094 * control is determined based upon these settings. 1095 * NOTE: DC = Don't Care 1096 * 1097 * LOCAL DEVICE | LINK PARTNER 1098 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution 1099 *-------|---------|-------|---------|-------------------- 1100 * 0 | 0 | DC | DC | e1000_fc_none 1101 * 0 | 1 | 0 | DC | e1000_fc_none 1102 * 0 | 1 | 1 | 0 | e1000_fc_none 1103 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause 1104 * 1 | 0 | 0 | DC | e1000_fc_none 1105 * 1 | DC | 1 | DC | e1000_fc_full 1106 * 1 | 1 | 0 | 0 | e1000_fc_none 1107 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause 1108 * 1109 * Are both PAUSE bits set to 1? If so, this implies 1110 * Symmetric Flow Control is enabled at both ends. The 1111 * ASM_DIR bits are irrelevant per the spec. 1112 * 1113 * For Symmetric Flow Control: 1114 * 1115 * LOCAL DEVICE | LINK PARTNER 1116 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 1117 *-------|---------|-------|---------|-------------------- 1118 * 1 | DC | 1 | DC | e1000_fc_full 1119 * 1120 */ 1121 if ((pcs_adv_reg & E1000_TXCW_PAUSE) && 1122 (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) { 1123 /* Now we need to check if the user selected Rx ONLY 1124 * of pause frames. In this case, we had to advertise 1125 * FULL flow control because we could not advertise Rx 1126 * ONLY. Hence, we must now check to see if we need to 1127 * turn OFF the TRANSMISSION of PAUSE frames. 1128 */ 1129 if (hw->fc.requested_mode == e1000_fc_full) { 1130 hw->fc.current_mode = e1000_fc_full; 1131 hw_dbg("Flow Control = FULL.\n"); 1132 } else { 1133 hw->fc.current_mode = e1000_fc_rx_pause; 1134 hw_dbg("Flow Control = Rx PAUSE frames only.\n"); 1135 } 1136 } 1137 /* For receiving PAUSE frames ONLY. 1138 * 1139 * LOCAL DEVICE | LINK PARTNER 1140 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 1141 *-------|---------|-------|---------|-------------------- 1142 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause 1143 */ 1144 else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) && 1145 (pcs_adv_reg & E1000_TXCW_ASM_DIR) && 1146 (pcs_lp_ability_reg & E1000_TXCW_PAUSE) && 1147 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) { 1148 hw->fc.current_mode = e1000_fc_tx_pause; 1149 hw_dbg("Flow Control = Tx PAUSE frames only.\n"); 1150 } 1151 /* For transmitting PAUSE frames ONLY. 1152 * 1153 * LOCAL DEVICE | LINK PARTNER 1154 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 1155 *-------|---------|-------|---------|-------------------- 1156 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause 1157 */ 1158 else if ((pcs_adv_reg & E1000_TXCW_PAUSE) && 1159 (pcs_adv_reg & E1000_TXCW_ASM_DIR) && 1160 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) && 1161 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) { 1162 hw->fc.current_mode = e1000_fc_rx_pause; 1163 hw_dbg("Flow Control = Rx PAUSE frames only.\n"); 1164 } else { 1165 /* Per the IEEE spec, at this point flow control 1166 * should be disabled. 1167 */ 1168 hw->fc.current_mode = e1000_fc_none; 1169 hw_dbg("Flow Control = NONE.\n"); 1170 } 1171 1172 /* Now we call a subroutine to actually force the MAC 1173 * controller to use the correct flow control settings. 1174 */ 1175 pcs_ctrl_reg = rd32(E1000_PCS_LCTL); 1176 pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL; 1177 wr32(E1000_PCS_LCTL, pcs_ctrl_reg); 1178 1179 ret_val = igb_force_mac_fc(hw); 1180 if (ret_val) { 1181 hw_dbg("Error forcing flow control settings\n"); 1182 return ret_val; 1183 } 1184 } 1185 1186 out: 1187 return ret_val; 1188 } 1189 1190 /** 1191 * igb_get_speed_and_duplex_copper - Retrieve current speed/duplex 1192 * @hw: pointer to the HW structure 1193 * @speed: stores the current speed 1194 * @duplex: stores the current duplex 1195 * 1196 * Read the status register for the current speed/duplex and store the current 1197 * speed and duplex for copper connections. 1198 **/ 1199 s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, 1200 u16 *duplex) 1201 { 1202 u32 status; 1203 1204 status = rd32(E1000_STATUS); 1205 if (status & E1000_STATUS_SPEED_1000) { 1206 *speed = SPEED_1000; 1207 hw_dbg("1000 Mbs, "); 1208 } else if (status & E1000_STATUS_SPEED_100) { 1209 *speed = SPEED_100; 1210 hw_dbg("100 Mbs, "); 1211 } else { 1212 *speed = SPEED_10; 1213 hw_dbg("10 Mbs, "); 1214 } 1215 1216 if (status & E1000_STATUS_FD) { 1217 *duplex = FULL_DUPLEX; 1218 hw_dbg("Full Duplex\n"); 1219 } else { 1220 *duplex = HALF_DUPLEX; 1221 hw_dbg("Half Duplex\n"); 1222 } 1223 1224 return 0; 1225 } 1226 1227 /** 1228 * igb_get_hw_semaphore - Acquire hardware semaphore 1229 * @hw: pointer to the HW structure 1230 * 1231 * Acquire the HW semaphore to access the PHY or NVM 1232 **/ 1233 s32 igb_get_hw_semaphore(struct e1000_hw *hw) 1234 { 1235 u32 swsm; 1236 s32 ret_val = 0; 1237 s32 timeout = hw->nvm.word_size + 1; 1238 s32 i = 0; 1239 1240 /* Get the SW semaphore */ 1241 while (i < timeout) { 1242 swsm = rd32(E1000_SWSM); 1243 if (!(swsm & E1000_SWSM_SMBI)) 1244 break; 1245 1246 udelay(50); 1247 i++; 1248 } 1249 1250 if (i == timeout) { 1251 hw_dbg("Driver can't access device - SMBI bit is set.\n"); 1252 ret_val = -E1000_ERR_NVM; 1253 goto out; 1254 } 1255 1256 /* Get the FW semaphore. */ 1257 for (i = 0; i < timeout; i++) { 1258 swsm = rd32(E1000_SWSM); 1259 wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI); 1260 1261 /* Semaphore acquired if bit latched */ 1262 if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI) 1263 break; 1264 1265 udelay(50); 1266 } 1267 1268 if (i == timeout) { 1269 /* Release semaphores */ 1270 igb_put_hw_semaphore(hw); 1271 hw_dbg("Driver can't access the NVM\n"); 1272 ret_val = -E1000_ERR_NVM; 1273 goto out; 1274 } 1275 1276 out: 1277 return ret_val; 1278 } 1279 1280 /** 1281 * igb_put_hw_semaphore - Release hardware semaphore 1282 * @hw: pointer to the HW structure 1283 * 1284 * Release hardware semaphore used to access the PHY or NVM 1285 **/ 1286 void igb_put_hw_semaphore(struct e1000_hw *hw) 1287 { 1288 u32 swsm; 1289 1290 swsm = rd32(E1000_SWSM); 1291 1292 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); 1293 1294 wr32(E1000_SWSM, swsm); 1295 } 1296 1297 /** 1298 * igb_get_auto_rd_done - Check for auto read completion 1299 * @hw: pointer to the HW structure 1300 * 1301 * Check EEPROM for Auto Read done bit. 1302 **/ 1303 s32 igb_get_auto_rd_done(struct e1000_hw *hw) 1304 { 1305 s32 i = 0; 1306 s32 ret_val = 0; 1307 1308 1309 while (i < AUTO_READ_DONE_TIMEOUT) { 1310 if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD) 1311 break; 1312 usleep_range(1000, 2000); 1313 i++; 1314 } 1315 1316 if (i == AUTO_READ_DONE_TIMEOUT) { 1317 hw_dbg("Auto read by HW from NVM has not completed.\n"); 1318 ret_val = -E1000_ERR_RESET; 1319 goto out; 1320 } 1321 1322 out: 1323 return ret_val; 1324 } 1325 1326 /** 1327 * igb_valid_led_default - Verify a valid default LED config 1328 * @hw: pointer to the HW structure 1329 * @data: pointer to the NVM (EEPROM) 1330 * 1331 * Read the EEPROM for the current default LED configuration. If the 1332 * LED configuration is not valid, set to a valid LED configuration. 1333 **/ 1334 static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data) 1335 { 1336 s32 ret_val; 1337 1338 ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); 1339 if (ret_val) { 1340 hw_dbg("NVM Read Error\n"); 1341 goto out; 1342 } 1343 1344 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) { 1345 switch (hw->phy.media_type) { 1346 case e1000_media_type_internal_serdes: 1347 *data = ID_LED_DEFAULT_82575_SERDES; 1348 break; 1349 case e1000_media_type_copper: 1350 default: 1351 *data = ID_LED_DEFAULT; 1352 break; 1353 } 1354 } 1355 out: 1356 return ret_val; 1357 } 1358 1359 /** 1360 * igb_id_led_init - 1361 * @hw: pointer to the HW structure 1362 * 1363 **/ 1364 s32 igb_id_led_init(struct e1000_hw *hw) 1365 { 1366 struct e1000_mac_info *mac = &hw->mac; 1367 s32 ret_val; 1368 const u32 ledctl_mask = 0x000000FF; 1369 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; 1370 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; 1371 u16 data, i, temp; 1372 const u16 led_mask = 0x0F; 1373 1374 /* i210 and i211 devices have different LED mechanism */ 1375 if ((hw->mac.type == e1000_i210) || 1376 (hw->mac.type == e1000_i211)) 1377 ret_val = igb_valid_led_default_i210(hw, &data); 1378 else 1379 ret_val = igb_valid_led_default(hw, &data); 1380 1381 if (ret_val) 1382 goto out; 1383 1384 mac->ledctl_default = rd32(E1000_LEDCTL); 1385 mac->ledctl_mode1 = mac->ledctl_default; 1386 mac->ledctl_mode2 = mac->ledctl_default; 1387 1388 for (i = 0; i < 4; i++) { 1389 temp = (data >> (i << 2)) & led_mask; 1390 switch (temp) { 1391 case ID_LED_ON1_DEF2: 1392 case ID_LED_ON1_ON2: 1393 case ID_LED_ON1_OFF2: 1394 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); 1395 mac->ledctl_mode1 |= ledctl_on << (i << 3); 1396 break; 1397 case ID_LED_OFF1_DEF2: 1398 case ID_LED_OFF1_ON2: 1399 case ID_LED_OFF1_OFF2: 1400 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); 1401 mac->ledctl_mode1 |= ledctl_off << (i << 3); 1402 break; 1403 default: 1404 /* Do nothing */ 1405 break; 1406 } 1407 switch (temp) { 1408 case ID_LED_DEF1_ON2: 1409 case ID_LED_ON1_ON2: 1410 case ID_LED_OFF1_ON2: 1411 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); 1412 mac->ledctl_mode2 |= ledctl_on << (i << 3); 1413 break; 1414 case ID_LED_DEF1_OFF2: 1415 case ID_LED_ON1_OFF2: 1416 case ID_LED_OFF1_OFF2: 1417 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); 1418 mac->ledctl_mode2 |= ledctl_off << (i << 3); 1419 break; 1420 default: 1421 /* Do nothing */ 1422 break; 1423 } 1424 } 1425 1426 out: 1427 return ret_val; 1428 } 1429 1430 /** 1431 * igb_cleanup_led - Set LED config to default operation 1432 * @hw: pointer to the HW structure 1433 * 1434 * Remove the current LED configuration and set the LED configuration 1435 * to the default value, saved from the EEPROM. 1436 **/ 1437 s32 igb_cleanup_led(struct e1000_hw *hw) 1438 { 1439 wr32(E1000_LEDCTL, hw->mac.ledctl_default); 1440 return 0; 1441 } 1442 1443 /** 1444 * igb_blink_led - Blink LED 1445 * @hw: pointer to the HW structure 1446 * 1447 * Blink the led's which are set to be on. 1448 **/ 1449 s32 igb_blink_led(struct e1000_hw *hw) 1450 { 1451 u32 ledctl_blink = 0; 1452 u32 i; 1453 1454 if (hw->phy.media_type == e1000_media_type_fiber) { 1455 /* always blink LED0 for PCI-E fiber */ 1456 ledctl_blink = E1000_LEDCTL_LED0_BLINK | 1457 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); 1458 } else { 1459 /* Set the blink bit for each LED that's "on" (0x0E) 1460 * (or "off" if inverted) in ledctl_mode2. The blink 1461 * logic in hardware only works when mode is set to "on" 1462 * so it must be changed accordingly when the mode is 1463 * "off" and inverted. 1464 */ 1465 ledctl_blink = hw->mac.ledctl_mode2; 1466 for (i = 0; i < 32; i += 8) { 1467 u32 mode = (hw->mac.ledctl_mode2 >> i) & 1468 E1000_LEDCTL_LED0_MODE_MASK; 1469 u32 led_default = hw->mac.ledctl_default >> i; 1470 1471 if ((!(led_default & E1000_LEDCTL_LED0_IVRT) && 1472 (mode == E1000_LEDCTL_MODE_LED_ON)) || 1473 ((led_default & E1000_LEDCTL_LED0_IVRT) && 1474 (mode == E1000_LEDCTL_MODE_LED_OFF))) { 1475 ledctl_blink &= 1476 ~(E1000_LEDCTL_LED0_MODE_MASK << i); 1477 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK | 1478 E1000_LEDCTL_MODE_LED_ON) << i; 1479 } 1480 } 1481 } 1482 1483 wr32(E1000_LEDCTL, ledctl_blink); 1484 1485 return 0; 1486 } 1487 1488 /** 1489 * igb_led_off - Turn LED off 1490 * @hw: pointer to the HW structure 1491 * 1492 * Turn LED off. 1493 **/ 1494 s32 igb_led_off(struct e1000_hw *hw) 1495 { 1496 switch (hw->phy.media_type) { 1497 case e1000_media_type_copper: 1498 wr32(E1000_LEDCTL, hw->mac.ledctl_mode1); 1499 break; 1500 default: 1501 break; 1502 } 1503 1504 return 0; 1505 } 1506 1507 /** 1508 * igb_disable_pcie_master - Disables PCI-express master access 1509 * @hw: pointer to the HW structure 1510 * 1511 * Returns 0 (0) if successful, else returns -10 1512 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused 1513 * the master requests to be disabled. 1514 * 1515 * Disables PCI-Express master access and verifies there are no pending 1516 * requests. 1517 **/ 1518 s32 igb_disable_pcie_master(struct e1000_hw *hw) 1519 { 1520 u32 ctrl; 1521 s32 timeout = MASTER_DISABLE_TIMEOUT; 1522 s32 ret_val = 0; 1523 1524 if (hw->bus.type != e1000_bus_type_pci_express) 1525 goto out; 1526 1527 ctrl = rd32(E1000_CTRL); 1528 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; 1529 wr32(E1000_CTRL, ctrl); 1530 1531 while (timeout) { 1532 if (!(rd32(E1000_STATUS) & 1533 E1000_STATUS_GIO_MASTER_ENABLE)) 1534 break; 1535 udelay(100); 1536 timeout--; 1537 } 1538 1539 if (!timeout) { 1540 hw_dbg("Master requests are pending.\n"); 1541 ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING; 1542 goto out; 1543 } 1544 1545 out: 1546 return ret_val; 1547 } 1548 1549 /** 1550 * igb_validate_mdi_setting - Verify MDI/MDIx settings 1551 * @hw: pointer to the HW structure 1552 * 1553 * Verify that when not using auto-negotitation that MDI/MDIx is correctly 1554 * set, which is forced to MDI mode only. 1555 **/ 1556 s32 igb_validate_mdi_setting(struct e1000_hw *hw) 1557 { 1558 s32 ret_val = 0; 1559 1560 /* All MDI settings are supported on 82580 and newer. */ 1561 if (hw->mac.type >= e1000_82580) 1562 goto out; 1563 1564 if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) { 1565 hw_dbg("Invalid MDI setting detected\n"); 1566 hw->phy.mdix = 1; 1567 ret_val = -E1000_ERR_CONFIG; 1568 goto out; 1569 } 1570 1571 out: 1572 return ret_val; 1573 } 1574 1575 /** 1576 * igb_write_8bit_ctrl_reg - Write a 8bit CTRL register 1577 * @hw: pointer to the HW structure 1578 * @reg: 32bit register offset such as E1000_SCTL 1579 * @offset: register offset to write to 1580 * @data: data to write at register offset 1581 * 1582 * Writes an address/data control type register. There are several of these 1583 * and they all have the format address << 8 | data and bit 31 is polled for 1584 * completion. 1585 **/ 1586 s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, 1587 u32 offset, u8 data) 1588 { 1589 u32 i, regvalue = 0; 1590 s32 ret_val = 0; 1591 1592 /* Set up the address and data */ 1593 regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT); 1594 wr32(reg, regvalue); 1595 1596 /* Poll the ready bit to see if the MDI read completed */ 1597 for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) { 1598 udelay(5); 1599 regvalue = rd32(reg); 1600 if (regvalue & E1000_GEN_CTL_READY) 1601 break; 1602 } 1603 if (!(regvalue & E1000_GEN_CTL_READY)) { 1604 hw_dbg("Reg %08x did not indicate ready\n", reg); 1605 ret_val = -E1000_ERR_PHY; 1606 goto out; 1607 } 1608 1609 out: 1610 return ret_val; 1611 } 1612 1613 /** 1614 * igb_enable_mng_pass_thru - Enable processing of ARP's 1615 * @hw: pointer to the HW structure 1616 * 1617 * Verifies the hardware needs to leave interface enabled so that frames can 1618 * be directed to and from the management interface. 1619 **/ 1620 bool igb_enable_mng_pass_thru(struct e1000_hw *hw) 1621 { 1622 u32 manc; 1623 u32 fwsm, factps; 1624 bool ret_val = false; 1625 1626 if (!hw->mac.asf_firmware_present) 1627 goto out; 1628 1629 manc = rd32(E1000_MANC); 1630 1631 if (!(manc & E1000_MANC_RCV_TCO_EN)) 1632 goto out; 1633 1634 if (hw->mac.arc_subsystem_valid) { 1635 fwsm = rd32(E1000_FWSM); 1636 factps = rd32(E1000_FACTPS); 1637 1638 if (!(factps & E1000_FACTPS_MNGCG) && 1639 ((fwsm & E1000_FWSM_MODE_MASK) == 1640 (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) { 1641 ret_val = true; 1642 goto out; 1643 } 1644 } else { 1645 if ((manc & E1000_MANC_SMBUS_EN) && 1646 !(manc & E1000_MANC_ASF_EN)) { 1647 ret_val = true; 1648 goto out; 1649 } 1650 } 1651 1652 out: 1653 return ret_val; 1654 } 1655