xref: /openbmc/linux/drivers/net/ethernet/intel/igb/e1000_i210.c (revision eb3fcf007fffe5830d815e713591f3e858f2a365)
1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23 
24 /* e1000_i210
25  * e1000_i211
26  */
27 
28 #include <linux/types.h>
29 #include <linux/if_ether.h>
30 
31 #include "e1000_hw.h"
32 #include "e1000_i210.h"
33 
34 static s32 igb_update_flash_i210(struct e1000_hw *hw);
35 
36 /**
37  * igb_get_hw_semaphore_i210 - Acquire hardware semaphore
38  *  @hw: pointer to the HW structure
39  *
40  *  Acquire the HW semaphore to access the PHY or NVM
41  */
42 static s32 igb_get_hw_semaphore_i210(struct e1000_hw *hw)
43 {
44 	u32 swsm;
45 	s32 timeout = hw->nvm.word_size + 1;
46 	s32 i = 0;
47 
48 	/* Get the SW semaphore */
49 	while (i < timeout) {
50 		swsm = rd32(E1000_SWSM);
51 		if (!(swsm & E1000_SWSM_SMBI))
52 			break;
53 
54 		udelay(50);
55 		i++;
56 	}
57 
58 	if (i == timeout) {
59 		/* In rare circumstances, the SW semaphore may already be held
60 		 * unintentionally. Clear the semaphore once before giving up.
61 		 */
62 		if (hw->dev_spec._82575.clear_semaphore_once) {
63 			hw->dev_spec._82575.clear_semaphore_once = false;
64 			igb_put_hw_semaphore(hw);
65 			for (i = 0; i < timeout; i++) {
66 				swsm = rd32(E1000_SWSM);
67 				if (!(swsm & E1000_SWSM_SMBI))
68 					break;
69 
70 				udelay(50);
71 			}
72 		}
73 
74 		/* If we do not have the semaphore here, we have to give up. */
75 		if (i == timeout) {
76 			hw_dbg("Driver can't access device - SMBI bit is set.\n");
77 			return -E1000_ERR_NVM;
78 		}
79 	}
80 
81 	/* Get the FW semaphore. */
82 	for (i = 0; i < timeout; i++) {
83 		swsm = rd32(E1000_SWSM);
84 		wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
85 
86 		/* Semaphore acquired if bit latched */
87 		if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
88 			break;
89 
90 		udelay(50);
91 	}
92 
93 	if (i == timeout) {
94 		/* Release semaphores */
95 		igb_put_hw_semaphore(hw);
96 		hw_dbg("Driver can't access the NVM\n");
97 		return -E1000_ERR_NVM;
98 	}
99 
100 	return 0;
101 }
102 
103 /**
104  *  igb_acquire_nvm_i210 - Request for access to EEPROM
105  *  @hw: pointer to the HW structure
106  *
107  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
108  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
109  *  Return successful if access grant bit set, else clear the request for
110  *  EEPROM access and return -E1000_ERR_NVM (-1).
111  **/
112 static s32 igb_acquire_nvm_i210(struct e1000_hw *hw)
113 {
114 	return igb_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
115 }
116 
117 /**
118  *  igb_release_nvm_i210 - Release exclusive access to EEPROM
119  *  @hw: pointer to the HW structure
120  *
121  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
122  *  then release the semaphores acquired.
123  **/
124 static void igb_release_nvm_i210(struct e1000_hw *hw)
125 {
126 	igb_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
127 }
128 
129 /**
130  *  igb_acquire_swfw_sync_i210 - Acquire SW/FW semaphore
131  *  @hw: pointer to the HW structure
132  *  @mask: specifies which semaphore to acquire
133  *
134  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
135  *  will also specify which port we're acquiring the lock for.
136  **/
137 s32 igb_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
138 {
139 	u32 swfw_sync;
140 	u32 swmask = mask;
141 	u32 fwmask = mask << 16;
142 	s32 ret_val = 0;
143 	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
144 
145 	while (i < timeout) {
146 		if (igb_get_hw_semaphore_i210(hw)) {
147 			ret_val = -E1000_ERR_SWFW_SYNC;
148 			goto out;
149 		}
150 
151 		swfw_sync = rd32(E1000_SW_FW_SYNC);
152 		if (!(swfw_sync & (fwmask | swmask)))
153 			break;
154 
155 		/* Firmware currently using resource (fwmask) */
156 		igb_put_hw_semaphore(hw);
157 		mdelay(5);
158 		i++;
159 	}
160 
161 	if (i == timeout) {
162 		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
163 		ret_val = -E1000_ERR_SWFW_SYNC;
164 		goto out;
165 	}
166 
167 	swfw_sync |= swmask;
168 	wr32(E1000_SW_FW_SYNC, swfw_sync);
169 
170 	igb_put_hw_semaphore(hw);
171 out:
172 	return ret_val;
173 }
174 
175 /**
176  *  igb_release_swfw_sync_i210 - Release SW/FW semaphore
177  *  @hw: pointer to the HW structure
178  *  @mask: specifies which semaphore to acquire
179  *
180  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
181  *  will also specify which port we're releasing the lock for.
182  **/
183 void igb_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
184 {
185 	u32 swfw_sync;
186 
187 	while (igb_get_hw_semaphore_i210(hw))
188 		; /* Empty */
189 
190 	swfw_sync = rd32(E1000_SW_FW_SYNC);
191 	swfw_sync &= ~mask;
192 	wr32(E1000_SW_FW_SYNC, swfw_sync);
193 
194 	igb_put_hw_semaphore(hw);
195 }
196 
197 /**
198  *  igb_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register
199  *  @hw: pointer to the HW structure
200  *  @offset: offset of word in the Shadow Ram to read
201  *  @words: number of words to read
202  *  @data: word read from the Shadow Ram
203  *
204  *  Reads a 16 bit word from the Shadow Ram using the EERD register.
205  *  Uses necessary synchronization semaphores.
206  **/
207 static s32 igb_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words,
208 				  u16 *data)
209 {
210 	s32 status = 0;
211 	u16 i, count;
212 
213 	/* We cannot hold synchronization semaphores for too long,
214 	 * because of forceful takeover procedure. However it is more efficient
215 	 * to read in bursts than synchronizing access for each word.
216 	 */
217 	for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
218 		count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
219 			E1000_EERD_EEWR_MAX_COUNT : (words - i);
220 		if (!(hw->nvm.ops.acquire(hw))) {
221 			status = igb_read_nvm_eerd(hw, offset, count,
222 						     data + i);
223 			hw->nvm.ops.release(hw);
224 		} else {
225 			status = E1000_ERR_SWFW_SYNC;
226 		}
227 
228 		if (status)
229 			break;
230 	}
231 
232 	return status;
233 }
234 
235 /**
236  *  igb_write_nvm_srwr - Write to Shadow Ram using EEWR
237  *  @hw: pointer to the HW structure
238  *  @offset: offset within the Shadow Ram to be written to
239  *  @words: number of words to write
240  *  @data: 16 bit word(s) to be written to the Shadow Ram
241  *
242  *  Writes data to Shadow Ram at offset using EEWR register.
243  *
244  *  If igb_update_nvm_checksum is not called after this function , the
245  *  Shadow Ram will most likely contain an invalid checksum.
246  **/
247 static s32 igb_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
248 				u16 *data)
249 {
250 	struct e1000_nvm_info *nvm = &hw->nvm;
251 	u32 i, k, eewr = 0;
252 	u32 attempts = 100000;
253 	s32 ret_val = 0;
254 
255 	/* A check for invalid values:  offset too large, too many words,
256 	 * too many words for the offset, and not enough words.
257 	 */
258 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
259 	    (words == 0)) {
260 		hw_dbg("nvm parameter(s) out of bounds\n");
261 		ret_val = -E1000_ERR_NVM;
262 		goto out;
263 	}
264 
265 	for (i = 0; i < words; i++) {
266 		eewr = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
267 			(data[i] << E1000_NVM_RW_REG_DATA) |
268 			E1000_NVM_RW_REG_START;
269 
270 		wr32(E1000_SRWR, eewr);
271 
272 		for (k = 0; k < attempts; k++) {
273 			if (E1000_NVM_RW_REG_DONE &
274 			    rd32(E1000_SRWR)) {
275 				ret_val = 0;
276 				break;
277 			}
278 			udelay(5);
279 	}
280 
281 		if (ret_val) {
282 			hw_dbg("Shadow RAM write EEWR timed out\n");
283 			break;
284 		}
285 	}
286 
287 out:
288 	return ret_val;
289 }
290 
291 /**
292  *  igb_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR
293  *  @hw: pointer to the HW structure
294  *  @offset: offset within the Shadow RAM to be written to
295  *  @words: number of words to write
296  *  @data: 16 bit word(s) to be written to the Shadow RAM
297  *
298  *  Writes data to Shadow RAM at offset using EEWR register.
299  *
300  *  If e1000_update_nvm_checksum is not called after this function , the
301  *  data will not be committed to FLASH and also Shadow RAM will most likely
302  *  contain an invalid checksum.
303  *
304  *  If error code is returned, data and Shadow RAM may be inconsistent - buffer
305  *  partially written.
306  **/
307 static s32 igb_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words,
308 				   u16 *data)
309 {
310 	s32 status = 0;
311 	u16 i, count;
312 
313 	/* We cannot hold synchronization semaphores for too long,
314 	 * because of forceful takeover procedure. However it is more efficient
315 	 * to write in bursts than synchronizing access for each word.
316 	 */
317 	for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
318 		count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
319 			E1000_EERD_EEWR_MAX_COUNT : (words - i);
320 		if (!(hw->nvm.ops.acquire(hw))) {
321 			status = igb_write_nvm_srwr(hw, offset, count,
322 						      data + i);
323 			hw->nvm.ops.release(hw);
324 		} else {
325 			status = E1000_ERR_SWFW_SYNC;
326 		}
327 
328 		if (status)
329 			break;
330 	}
331 
332 	return status;
333 }
334 
335 /**
336  *  igb_read_invm_word_i210 - Reads OTP
337  *  @hw: pointer to the HW structure
338  *  @address: the word address (aka eeprom offset) to read
339  *  @data: pointer to the data read
340  *
341  *  Reads 16-bit words from the OTP. Return error when the word is not
342  *  stored in OTP.
343  **/
344 static s32 igb_read_invm_word_i210(struct e1000_hw *hw, u8 address, u16 *data)
345 {
346 	s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
347 	u32 invm_dword;
348 	u16 i;
349 	u8 record_type, word_address;
350 
351 	for (i = 0; i < E1000_INVM_SIZE; i++) {
352 		invm_dword = rd32(E1000_INVM_DATA_REG(i));
353 		/* Get record type */
354 		record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword);
355 		if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE)
356 			break;
357 		if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE)
358 			i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS;
359 		if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE)
360 			i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS;
361 		if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) {
362 			word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword);
363 			if (word_address == address) {
364 				*data = INVM_DWORD_TO_WORD_DATA(invm_dword);
365 				hw_dbg("Read INVM Word 0x%02x = %x\n",
366 					  address, *data);
367 				status = 0;
368 				break;
369 			}
370 		}
371 	}
372 	if (status)
373 		hw_dbg("Requested word 0x%02x not found in OTP\n", address);
374 	return status;
375 }
376 
377 /**
378  * igb_read_invm_i210 - Read invm wrapper function for I210/I211
379  *  @hw: pointer to the HW structure
380  *  @words: number of words to read
381  *  @data: pointer to the data read
382  *
383  *  Wrapper function to return data formerly found in the NVM.
384  **/
385 static s32 igb_read_invm_i210(struct e1000_hw *hw, u16 offset,
386 				u16 words __always_unused, u16 *data)
387 {
388 	s32 ret_val = 0;
389 
390 	/* Only the MAC addr is required to be present in the iNVM */
391 	switch (offset) {
392 	case NVM_MAC_ADDR:
393 		ret_val = igb_read_invm_word_i210(hw, (u8)offset, &data[0]);
394 		ret_val |= igb_read_invm_word_i210(hw, (u8)offset+1,
395 						     &data[1]);
396 		ret_val |= igb_read_invm_word_i210(hw, (u8)offset+2,
397 						     &data[2]);
398 		if (ret_val)
399 			hw_dbg("MAC Addr not found in iNVM\n");
400 		break;
401 	case NVM_INIT_CTRL_2:
402 		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
403 		if (ret_val) {
404 			*data = NVM_INIT_CTRL_2_DEFAULT_I211;
405 			ret_val = 0;
406 		}
407 		break;
408 	case NVM_INIT_CTRL_4:
409 		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
410 		if (ret_val) {
411 			*data = NVM_INIT_CTRL_4_DEFAULT_I211;
412 			ret_val = 0;
413 		}
414 		break;
415 	case NVM_LED_1_CFG:
416 		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
417 		if (ret_val) {
418 			*data = NVM_LED_1_CFG_DEFAULT_I211;
419 			ret_val = 0;
420 		}
421 		break;
422 	case NVM_LED_0_2_CFG:
423 		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
424 		if (ret_val) {
425 			*data = NVM_LED_0_2_CFG_DEFAULT_I211;
426 			ret_val = 0;
427 		}
428 		break;
429 	case NVM_ID_LED_SETTINGS:
430 		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
431 		if (ret_val) {
432 			*data = ID_LED_RESERVED_FFFF;
433 			ret_val = 0;
434 		}
435 		break;
436 	case NVM_SUB_DEV_ID:
437 		*data = hw->subsystem_device_id;
438 		break;
439 	case NVM_SUB_VEN_ID:
440 		*data = hw->subsystem_vendor_id;
441 		break;
442 	case NVM_DEV_ID:
443 		*data = hw->device_id;
444 		break;
445 	case NVM_VEN_ID:
446 		*data = hw->vendor_id;
447 		break;
448 	default:
449 		hw_dbg("NVM word 0x%02x is not mapped.\n", offset);
450 		*data = NVM_RESERVED_WORD;
451 		break;
452 	}
453 	return ret_val;
454 }
455 
456 /**
457  *  igb_read_invm_version - Reads iNVM version and image type
458  *  @hw: pointer to the HW structure
459  *  @invm_ver: version structure for the version read
460  *
461  *  Reads iNVM version and image type.
462  **/
463 s32 igb_read_invm_version(struct e1000_hw *hw,
464 			  struct e1000_fw_version *invm_ver) {
465 	u32 *record = NULL;
466 	u32 *next_record = NULL;
467 	u32 i = 0;
468 	u32 invm_dword = 0;
469 	u32 invm_blocks = E1000_INVM_SIZE - (E1000_INVM_ULT_BYTES_SIZE /
470 					     E1000_INVM_RECORD_SIZE_IN_BYTES);
471 	u32 buffer[E1000_INVM_SIZE];
472 	s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
473 	u16 version = 0;
474 
475 	/* Read iNVM memory */
476 	for (i = 0; i < E1000_INVM_SIZE; i++) {
477 		invm_dword = rd32(E1000_INVM_DATA_REG(i));
478 		buffer[i] = invm_dword;
479 	}
480 
481 	/* Read version number */
482 	for (i = 1; i < invm_blocks; i++) {
483 		record = &buffer[invm_blocks - i];
484 		next_record = &buffer[invm_blocks - i + 1];
485 
486 		/* Check if we have first version location used */
487 		if ((i == 1) && ((*record & E1000_INVM_VER_FIELD_ONE) == 0)) {
488 			version = 0;
489 			status = 0;
490 			break;
491 		}
492 		/* Check if we have second version location used */
493 		else if ((i == 1) &&
494 			 ((*record & E1000_INVM_VER_FIELD_TWO) == 0)) {
495 			version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
496 			status = 0;
497 			break;
498 		}
499 		/* Check if we have odd version location
500 		 * used and it is the last one used
501 		 */
502 		else if ((((*record & E1000_INVM_VER_FIELD_ONE) == 0) &&
503 			 ((*record & 0x3) == 0)) || (((*record & 0x3) != 0) &&
504 			 (i != 1))) {
505 			version = (*next_record & E1000_INVM_VER_FIELD_TWO)
506 				  >> 13;
507 			status = 0;
508 			break;
509 		}
510 		/* Check if we have even version location
511 		 * used and it is the last one used
512 		 */
513 		else if (((*record & E1000_INVM_VER_FIELD_TWO) == 0) &&
514 			 ((*record & 0x3) == 0)) {
515 			version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
516 			status = 0;
517 			break;
518 		}
519 	}
520 
521 	if (!status) {
522 		invm_ver->invm_major = (version & E1000_INVM_MAJOR_MASK)
523 					>> E1000_INVM_MAJOR_SHIFT;
524 		invm_ver->invm_minor = version & E1000_INVM_MINOR_MASK;
525 	}
526 	/* Read Image Type */
527 	for (i = 1; i < invm_blocks; i++) {
528 		record = &buffer[invm_blocks - i];
529 		next_record = &buffer[invm_blocks - i + 1];
530 
531 		/* Check if we have image type in first location used */
532 		if ((i == 1) && ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) {
533 			invm_ver->invm_img_type = 0;
534 			status = 0;
535 			break;
536 		}
537 		/* Check if we have image type in first location used */
538 		else if ((((*record & 0x3) == 0) &&
539 			 ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) ||
540 			 ((((*record & 0x3) != 0) && (i != 1)))) {
541 			invm_ver->invm_img_type =
542 				(*next_record & E1000_INVM_IMGTYPE_FIELD) >> 23;
543 			status = 0;
544 			break;
545 		}
546 	}
547 	return status;
548 }
549 
550 /**
551  *  igb_validate_nvm_checksum_i210 - Validate EEPROM checksum
552  *  @hw: pointer to the HW structure
553  *
554  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
555  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
556  **/
557 static s32 igb_validate_nvm_checksum_i210(struct e1000_hw *hw)
558 {
559 	s32 status = 0;
560 	s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *);
561 
562 	if (!(hw->nvm.ops.acquire(hw))) {
563 
564 		/* Replace the read function with semaphore grabbing with
565 		 * the one that skips this for a while.
566 		 * We have semaphore taken already here.
567 		 */
568 		read_op_ptr = hw->nvm.ops.read;
569 		hw->nvm.ops.read = igb_read_nvm_eerd;
570 
571 		status = igb_validate_nvm_checksum(hw);
572 
573 		/* Revert original read operation. */
574 		hw->nvm.ops.read = read_op_ptr;
575 
576 		hw->nvm.ops.release(hw);
577 	} else {
578 		status = E1000_ERR_SWFW_SYNC;
579 	}
580 
581 	return status;
582 }
583 
584 /**
585  *  igb_update_nvm_checksum_i210 - Update EEPROM checksum
586  *  @hw: pointer to the HW structure
587  *
588  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
589  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
590  *  value to the EEPROM. Next commit EEPROM data onto the Flash.
591  **/
592 static s32 igb_update_nvm_checksum_i210(struct e1000_hw *hw)
593 {
594 	s32 ret_val = 0;
595 	u16 checksum = 0;
596 	u16 i, nvm_data;
597 
598 	/* Read the first word from the EEPROM. If this times out or fails, do
599 	 * not continue or we could be in for a very long wait while every
600 	 * EEPROM read fails
601 	 */
602 	ret_val = igb_read_nvm_eerd(hw, 0, 1, &nvm_data);
603 	if (ret_val) {
604 		hw_dbg("EEPROM read failed\n");
605 		goto out;
606 	}
607 
608 	if (!(hw->nvm.ops.acquire(hw))) {
609 		/* Do not use hw->nvm.ops.write, hw->nvm.ops.read
610 		 * because we do not want to take the synchronization
611 		 * semaphores twice here.
612 		 */
613 
614 		for (i = 0; i < NVM_CHECKSUM_REG; i++) {
615 			ret_val = igb_read_nvm_eerd(hw, i, 1, &nvm_data);
616 			if (ret_val) {
617 				hw->nvm.ops.release(hw);
618 				hw_dbg("NVM Read Error while updating checksum.\n");
619 				goto out;
620 			}
621 			checksum += nvm_data;
622 		}
623 		checksum = (u16) NVM_SUM - checksum;
624 		ret_val = igb_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
625 						&checksum);
626 		if (ret_val) {
627 			hw->nvm.ops.release(hw);
628 			hw_dbg("NVM Write Error while updating checksum.\n");
629 			goto out;
630 		}
631 
632 		hw->nvm.ops.release(hw);
633 
634 		ret_val = igb_update_flash_i210(hw);
635 	} else {
636 		ret_val = -E1000_ERR_SWFW_SYNC;
637 	}
638 out:
639 	return ret_val;
640 }
641 
642 /**
643  *  igb_pool_flash_update_done_i210 - Pool FLUDONE status.
644  *  @hw: pointer to the HW structure
645  *
646  **/
647 static s32 igb_pool_flash_update_done_i210(struct e1000_hw *hw)
648 {
649 	s32 ret_val = -E1000_ERR_NVM;
650 	u32 i, reg;
651 
652 	for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
653 		reg = rd32(E1000_EECD);
654 		if (reg & E1000_EECD_FLUDONE_I210) {
655 			ret_val = 0;
656 			break;
657 		}
658 		udelay(5);
659 	}
660 
661 	return ret_val;
662 }
663 
664 /**
665  *  igb_get_flash_presence_i210 - Check if flash device is detected.
666  *  @hw: pointer to the HW structure
667  *
668  **/
669 bool igb_get_flash_presence_i210(struct e1000_hw *hw)
670 {
671 	u32 eec = 0;
672 	bool ret_val = false;
673 
674 	eec = rd32(E1000_EECD);
675 	if (eec & E1000_EECD_FLASH_DETECTED_I210)
676 		ret_val = true;
677 
678 	return ret_val;
679 }
680 
681 /**
682  *  igb_update_flash_i210 - Commit EEPROM to the flash
683  *  @hw: pointer to the HW structure
684  *
685  **/
686 static s32 igb_update_flash_i210(struct e1000_hw *hw)
687 {
688 	s32 ret_val = 0;
689 	u32 flup;
690 
691 	ret_val = igb_pool_flash_update_done_i210(hw);
692 	if (ret_val == -E1000_ERR_NVM) {
693 		hw_dbg("Flash update time out\n");
694 		goto out;
695 	}
696 
697 	flup = rd32(E1000_EECD) | E1000_EECD_FLUPD_I210;
698 	wr32(E1000_EECD, flup);
699 
700 	ret_val = igb_pool_flash_update_done_i210(hw);
701 	if (ret_val)
702 		hw_dbg("Flash update complete\n");
703 	else
704 		hw_dbg("Flash update time out\n");
705 
706 out:
707 	return ret_val;
708 }
709 
710 /**
711  *  igb_valid_led_default_i210 - Verify a valid default LED config
712  *  @hw: pointer to the HW structure
713  *  @data: pointer to the NVM (EEPROM)
714  *
715  *  Read the EEPROM for the current default LED configuration.  If the
716  *  LED configuration is not valid, set to a valid LED configuration.
717  **/
718 s32 igb_valid_led_default_i210(struct e1000_hw *hw, u16 *data)
719 {
720 	s32 ret_val;
721 
722 	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
723 	if (ret_val) {
724 		hw_dbg("NVM Read Error\n");
725 		goto out;
726 	}
727 
728 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
729 		switch (hw->phy.media_type) {
730 		case e1000_media_type_internal_serdes:
731 			*data = ID_LED_DEFAULT_I210_SERDES;
732 			break;
733 		case e1000_media_type_copper:
734 		default:
735 			*data = ID_LED_DEFAULT_I210;
736 			break;
737 		}
738 	}
739 out:
740 	return ret_val;
741 }
742 
743 /**
744  *  __igb_access_xmdio_reg - Read/write XMDIO register
745  *  @hw: pointer to the HW structure
746  *  @address: XMDIO address to program
747  *  @dev_addr: device address to program
748  *  @data: pointer to value to read/write from/to the XMDIO address
749  *  @read: boolean flag to indicate read or write
750  **/
751 static s32 __igb_access_xmdio_reg(struct e1000_hw *hw, u16 address,
752 				  u8 dev_addr, u16 *data, bool read)
753 {
754 	s32 ret_val = 0;
755 
756 	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, dev_addr);
757 	if (ret_val)
758 		return ret_val;
759 
760 	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, address);
761 	if (ret_val)
762 		return ret_val;
763 
764 	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, E1000_MMDAC_FUNC_DATA |
765 							 dev_addr);
766 	if (ret_val)
767 		return ret_val;
768 
769 	if (read)
770 		ret_val = hw->phy.ops.read_reg(hw, E1000_MMDAAD, data);
771 	else
772 		ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, *data);
773 	if (ret_val)
774 		return ret_val;
775 
776 	/* Recalibrate the device back to 0 */
777 	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, 0);
778 	if (ret_val)
779 		return ret_val;
780 
781 	return ret_val;
782 }
783 
784 /**
785  *  igb_read_xmdio_reg - Read XMDIO register
786  *  @hw: pointer to the HW structure
787  *  @addr: XMDIO address to program
788  *  @dev_addr: device address to program
789  *  @data: value to be read from the EMI address
790  **/
791 s32 igb_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 *data)
792 {
793 	return __igb_access_xmdio_reg(hw, addr, dev_addr, data, true);
794 }
795 
796 /**
797  *  igb_write_xmdio_reg - Write XMDIO register
798  *  @hw: pointer to the HW structure
799  *  @addr: XMDIO address to program
800  *  @dev_addr: device address to program
801  *  @data: value to be written to the XMDIO address
802  **/
803 s32 igb_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 data)
804 {
805 	return __igb_access_xmdio_reg(hw, addr, dev_addr, &data, false);
806 }
807 
808 /**
809  *  igb_init_nvm_params_i210 - Init NVM func ptrs.
810  *  @hw: pointer to the HW structure
811  **/
812 s32 igb_init_nvm_params_i210(struct e1000_hw *hw)
813 {
814 	s32 ret_val = 0;
815 	struct e1000_nvm_info *nvm = &hw->nvm;
816 
817 	nvm->ops.acquire = igb_acquire_nvm_i210;
818 	nvm->ops.release = igb_release_nvm_i210;
819 	nvm->ops.valid_led_default = igb_valid_led_default_i210;
820 
821 	/* NVM Function Pointers */
822 	if (igb_get_flash_presence_i210(hw)) {
823 		hw->nvm.type = e1000_nvm_flash_hw;
824 		nvm->ops.read    = igb_read_nvm_srrd_i210;
825 		nvm->ops.write   = igb_write_nvm_srwr_i210;
826 		nvm->ops.validate = igb_validate_nvm_checksum_i210;
827 		nvm->ops.update   = igb_update_nvm_checksum_i210;
828 	} else {
829 		hw->nvm.type = e1000_nvm_invm;
830 		nvm->ops.read     = igb_read_invm_i210;
831 		nvm->ops.write    = NULL;
832 		nvm->ops.validate = NULL;
833 		nvm->ops.update   = NULL;
834 	}
835 	return ret_val;
836 }
837 
838 /**
839  * igb_pll_workaround_i210
840  * @hw: pointer to the HW structure
841  *
842  * Works around an errata in the PLL circuit where it occasionally
843  * provides the wrong clock frequency after power up.
844  **/
845 s32 igb_pll_workaround_i210(struct e1000_hw *hw)
846 {
847 	s32 ret_val;
848 	u32 wuc, mdicnfg, ctrl, ctrl_ext, reg_val;
849 	u16 nvm_word, phy_word, pci_word, tmp_nvm;
850 	int i;
851 
852 	/* Get and set needed register values */
853 	wuc = rd32(E1000_WUC);
854 	mdicnfg = rd32(E1000_MDICNFG);
855 	reg_val = mdicnfg & ~E1000_MDICNFG_EXT_MDIO;
856 	wr32(E1000_MDICNFG, reg_val);
857 
858 	/* Get data from NVM, or set default */
859 	ret_val = igb_read_invm_word_i210(hw, E1000_INVM_AUTOLOAD,
860 					  &nvm_word);
861 	if (ret_val)
862 		nvm_word = E1000_INVM_DEFAULT_AL;
863 	tmp_nvm = nvm_word | E1000_INVM_PLL_WO_VAL;
864 	for (i = 0; i < E1000_MAX_PLL_TRIES; i++) {
865 		/* check current state directly from internal PHY */
866 		igb_read_phy_reg_gs40g(hw, (E1000_PHY_PLL_FREQ_PAGE |
867 					 E1000_PHY_PLL_FREQ_REG), &phy_word);
868 		if ((phy_word & E1000_PHY_PLL_UNCONF)
869 		    != E1000_PHY_PLL_UNCONF) {
870 			ret_val = 0;
871 			break;
872 		} else {
873 			ret_val = -E1000_ERR_PHY;
874 		}
875 		/* directly reset the internal PHY */
876 		ctrl = rd32(E1000_CTRL);
877 		wr32(E1000_CTRL, ctrl|E1000_CTRL_PHY_RST);
878 
879 		ctrl_ext = rd32(E1000_CTRL_EXT);
880 		ctrl_ext |= (E1000_CTRL_EXT_PHYPDEN | E1000_CTRL_EXT_SDLPE);
881 		wr32(E1000_CTRL_EXT, ctrl_ext);
882 
883 		wr32(E1000_WUC, 0);
884 		reg_val = (E1000_INVM_AUTOLOAD << 4) | (tmp_nvm << 16);
885 		wr32(E1000_EEARBC_I210, reg_val);
886 
887 		igb_read_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
888 		pci_word |= E1000_PCI_PMCSR_D3;
889 		igb_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
890 		usleep_range(1000, 2000);
891 		pci_word &= ~E1000_PCI_PMCSR_D3;
892 		igb_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
893 		reg_val = (E1000_INVM_AUTOLOAD << 4) | (nvm_word << 16);
894 		wr32(E1000_EEARBC_I210, reg_val);
895 
896 		/* restore WUC register */
897 		wr32(E1000_WUC, wuc);
898 	}
899 	/* restore MDICNFG setting */
900 	wr32(E1000_MDICNFG, mdicnfg);
901 	return ret_val;
902 }
903