1 // SPDX-License-Identifier: GPL-2.0
2 /* Intel(R) Gigabit Ethernet Linux driver
3  * Copyright(c) 2007-2014 Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, see <http://www.gnu.org/licenses/>.
16  *
17  * The full GNU General Public License is included in this distribution in
18  * the file called "COPYING".
19  *
20  * Contact Information:
21  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
22  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
23  */
24 
25 /* e1000_i210
26  * e1000_i211
27  */
28 
29 #include <linux/types.h>
30 #include <linux/if_ether.h>
31 
32 #include "e1000_hw.h"
33 #include "e1000_i210.h"
34 
35 static s32 igb_update_flash_i210(struct e1000_hw *hw);
36 
37 /**
38  * igb_get_hw_semaphore_i210 - Acquire hardware semaphore
39  *  @hw: pointer to the HW structure
40  *
41  *  Acquire the HW semaphore to access the PHY or NVM
42  */
43 static s32 igb_get_hw_semaphore_i210(struct e1000_hw *hw)
44 {
45 	u32 swsm;
46 	s32 timeout = hw->nvm.word_size + 1;
47 	s32 i = 0;
48 
49 	/* Get the SW semaphore */
50 	while (i < timeout) {
51 		swsm = rd32(E1000_SWSM);
52 		if (!(swsm & E1000_SWSM_SMBI))
53 			break;
54 
55 		udelay(50);
56 		i++;
57 	}
58 
59 	if (i == timeout) {
60 		/* In rare circumstances, the SW semaphore may already be held
61 		 * unintentionally. Clear the semaphore once before giving up.
62 		 */
63 		if (hw->dev_spec._82575.clear_semaphore_once) {
64 			hw->dev_spec._82575.clear_semaphore_once = false;
65 			igb_put_hw_semaphore(hw);
66 			for (i = 0; i < timeout; i++) {
67 				swsm = rd32(E1000_SWSM);
68 				if (!(swsm & E1000_SWSM_SMBI))
69 					break;
70 
71 				udelay(50);
72 			}
73 		}
74 
75 		/* If we do not have the semaphore here, we have to give up. */
76 		if (i == timeout) {
77 			hw_dbg("Driver can't access device - SMBI bit is set.\n");
78 			return -E1000_ERR_NVM;
79 		}
80 	}
81 
82 	/* Get the FW semaphore. */
83 	for (i = 0; i < timeout; i++) {
84 		swsm = rd32(E1000_SWSM);
85 		wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
86 
87 		/* Semaphore acquired if bit latched */
88 		if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
89 			break;
90 
91 		udelay(50);
92 	}
93 
94 	if (i == timeout) {
95 		/* Release semaphores */
96 		igb_put_hw_semaphore(hw);
97 		hw_dbg("Driver can't access the NVM\n");
98 		return -E1000_ERR_NVM;
99 	}
100 
101 	return 0;
102 }
103 
104 /**
105  *  igb_acquire_nvm_i210 - Request for access to EEPROM
106  *  @hw: pointer to the HW structure
107  *
108  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
109  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
110  *  Return successful if access grant bit set, else clear the request for
111  *  EEPROM access and return -E1000_ERR_NVM (-1).
112  **/
113 static s32 igb_acquire_nvm_i210(struct e1000_hw *hw)
114 {
115 	return igb_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
116 }
117 
118 /**
119  *  igb_release_nvm_i210 - Release exclusive access to EEPROM
120  *  @hw: pointer to the HW structure
121  *
122  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
123  *  then release the semaphores acquired.
124  **/
125 static void igb_release_nvm_i210(struct e1000_hw *hw)
126 {
127 	igb_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
128 }
129 
130 /**
131  *  igb_acquire_swfw_sync_i210 - Acquire SW/FW semaphore
132  *  @hw: pointer to the HW structure
133  *  @mask: specifies which semaphore to acquire
134  *
135  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
136  *  will also specify which port we're acquiring the lock for.
137  **/
138 s32 igb_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
139 {
140 	u32 swfw_sync;
141 	u32 swmask = mask;
142 	u32 fwmask = mask << 16;
143 	s32 ret_val = 0;
144 	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
145 
146 	while (i < timeout) {
147 		if (igb_get_hw_semaphore_i210(hw)) {
148 			ret_val = -E1000_ERR_SWFW_SYNC;
149 			goto out;
150 		}
151 
152 		swfw_sync = rd32(E1000_SW_FW_SYNC);
153 		if (!(swfw_sync & (fwmask | swmask)))
154 			break;
155 
156 		/* Firmware currently using resource (fwmask) */
157 		igb_put_hw_semaphore(hw);
158 		mdelay(5);
159 		i++;
160 	}
161 
162 	if (i == timeout) {
163 		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
164 		ret_val = -E1000_ERR_SWFW_SYNC;
165 		goto out;
166 	}
167 
168 	swfw_sync |= swmask;
169 	wr32(E1000_SW_FW_SYNC, swfw_sync);
170 
171 	igb_put_hw_semaphore(hw);
172 out:
173 	return ret_val;
174 }
175 
176 /**
177  *  igb_release_swfw_sync_i210 - Release SW/FW semaphore
178  *  @hw: pointer to the HW structure
179  *  @mask: specifies which semaphore to acquire
180  *
181  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
182  *  will also specify which port we're releasing the lock for.
183  **/
184 void igb_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
185 {
186 	u32 swfw_sync;
187 
188 	while (igb_get_hw_semaphore_i210(hw))
189 		; /* Empty */
190 
191 	swfw_sync = rd32(E1000_SW_FW_SYNC);
192 	swfw_sync &= ~mask;
193 	wr32(E1000_SW_FW_SYNC, swfw_sync);
194 
195 	igb_put_hw_semaphore(hw);
196 }
197 
198 /**
199  *  igb_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register
200  *  @hw: pointer to the HW structure
201  *  @offset: offset of word in the Shadow Ram to read
202  *  @words: number of words to read
203  *  @data: word read from the Shadow Ram
204  *
205  *  Reads a 16 bit word from the Shadow Ram using the EERD register.
206  *  Uses necessary synchronization semaphores.
207  **/
208 static s32 igb_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words,
209 				  u16 *data)
210 {
211 	s32 status = 0;
212 	u16 i, count;
213 
214 	/* We cannot hold synchronization semaphores for too long,
215 	 * because of forceful takeover procedure. However it is more efficient
216 	 * to read in bursts than synchronizing access for each word.
217 	 */
218 	for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
219 		count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
220 			E1000_EERD_EEWR_MAX_COUNT : (words - i);
221 		if (!(hw->nvm.ops.acquire(hw))) {
222 			status = igb_read_nvm_eerd(hw, offset, count,
223 						     data + i);
224 			hw->nvm.ops.release(hw);
225 		} else {
226 			status = E1000_ERR_SWFW_SYNC;
227 		}
228 
229 		if (status)
230 			break;
231 	}
232 
233 	return status;
234 }
235 
236 /**
237  *  igb_write_nvm_srwr - Write to Shadow Ram using EEWR
238  *  @hw: pointer to the HW structure
239  *  @offset: offset within the Shadow Ram to be written to
240  *  @words: number of words to write
241  *  @data: 16 bit word(s) to be written to the Shadow Ram
242  *
243  *  Writes data to Shadow Ram at offset using EEWR register.
244  *
245  *  If igb_update_nvm_checksum is not called after this function , the
246  *  Shadow Ram will most likely contain an invalid checksum.
247  **/
248 static s32 igb_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
249 				u16 *data)
250 {
251 	struct e1000_nvm_info *nvm = &hw->nvm;
252 	u32 i, k, eewr = 0;
253 	u32 attempts = 100000;
254 	s32 ret_val = 0;
255 
256 	/* A check for invalid values:  offset too large, too many words,
257 	 * too many words for the offset, and not enough words.
258 	 */
259 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
260 	    (words == 0)) {
261 		hw_dbg("nvm parameter(s) out of bounds\n");
262 		ret_val = -E1000_ERR_NVM;
263 		goto out;
264 	}
265 
266 	for (i = 0; i < words; i++) {
267 		eewr = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
268 			(data[i] << E1000_NVM_RW_REG_DATA) |
269 			E1000_NVM_RW_REG_START;
270 
271 		wr32(E1000_SRWR, eewr);
272 
273 		for (k = 0; k < attempts; k++) {
274 			if (E1000_NVM_RW_REG_DONE &
275 			    rd32(E1000_SRWR)) {
276 				ret_val = 0;
277 				break;
278 			}
279 			udelay(5);
280 	}
281 
282 		if (ret_val) {
283 			hw_dbg("Shadow RAM write EEWR timed out\n");
284 			break;
285 		}
286 	}
287 
288 out:
289 	return ret_val;
290 }
291 
292 /**
293  *  igb_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR
294  *  @hw: pointer to the HW structure
295  *  @offset: offset within the Shadow RAM to be written to
296  *  @words: number of words to write
297  *  @data: 16 bit word(s) to be written to the Shadow RAM
298  *
299  *  Writes data to Shadow RAM at offset using EEWR register.
300  *
301  *  If e1000_update_nvm_checksum is not called after this function , the
302  *  data will not be committed to FLASH and also Shadow RAM will most likely
303  *  contain an invalid checksum.
304  *
305  *  If error code is returned, data and Shadow RAM may be inconsistent - buffer
306  *  partially written.
307  **/
308 static s32 igb_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words,
309 				   u16 *data)
310 {
311 	s32 status = 0;
312 	u16 i, count;
313 
314 	/* We cannot hold synchronization semaphores for too long,
315 	 * because of forceful takeover procedure. However it is more efficient
316 	 * to write in bursts than synchronizing access for each word.
317 	 */
318 	for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
319 		count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
320 			E1000_EERD_EEWR_MAX_COUNT : (words - i);
321 		if (!(hw->nvm.ops.acquire(hw))) {
322 			status = igb_write_nvm_srwr(hw, offset, count,
323 						      data + i);
324 			hw->nvm.ops.release(hw);
325 		} else {
326 			status = E1000_ERR_SWFW_SYNC;
327 		}
328 
329 		if (status)
330 			break;
331 	}
332 
333 	return status;
334 }
335 
336 /**
337  *  igb_read_invm_word_i210 - Reads OTP
338  *  @hw: pointer to the HW structure
339  *  @address: the word address (aka eeprom offset) to read
340  *  @data: pointer to the data read
341  *
342  *  Reads 16-bit words from the OTP. Return error when the word is not
343  *  stored in OTP.
344  **/
345 static s32 igb_read_invm_word_i210(struct e1000_hw *hw, u8 address, u16 *data)
346 {
347 	s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
348 	u32 invm_dword;
349 	u16 i;
350 	u8 record_type, word_address;
351 
352 	for (i = 0; i < E1000_INVM_SIZE; i++) {
353 		invm_dword = rd32(E1000_INVM_DATA_REG(i));
354 		/* Get record type */
355 		record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword);
356 		if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE)
357 			break;
358 		if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE)
359 			i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS;
360 		if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE)
361 			i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS;
362 		if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) {
363 			word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword);
364 			if (word_address == address) {
365 				*data = INVM_DWORD_TO_WORD_DATA(invm_dword);
366 				hw_dbg("Read INVM Word 0x%02x = %x\n",
367 					  address, *data);
368 				status = 0;
369 				break;
370 			}
371 		}
372 	}
373 	if (status)
374 		hw_dbg("Requested word 0x%02x not found in OTP\n", address);
375 	return status;
376 }
377 
378 /**
379  * igb_read_invm_i210 - Read invm wrapper function for I210/I211
380  *  @hw: pointer to the HW structure
381  *  @words: number of words to read
382  *  @data: pointer to the data read
383  *
384  *  Wrapper function to return data formerly found in the NVM.
385  **/
386 static s32 igb_read_invm_i210(struct e1000_hw *hw, u16 offset,
387 				u16 words __always_unused, u16 *data)
388 {
389 	s32 ret_val = 0;
390 
391 	/* Only the MAC addr is required to be present in the iNVM */
392 	switch (offset) {
393 	case NVM_MAC_ADDR:
394 		ret_val = igb_read_invm_word_i210(hw, (u8)offset, &data[0]);
395 		ret_val |= igb_read_invm_word_i210(hw, (u8)offset+1,
396 						     &data[1]);
397 		ret_val |= igb_read_invm_word_i210(hw, (u8)offset+2,
398 						     &data[2]);
399 		if (ret_val)
400 			hw_dbg("MAC Addr not found in iNVM\n");
401 		break;
402 	case NVM_INIT_CTRL_2:
403 		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
404 		if (ret_val) {
405 			*data = NVM_INIT_CTRL_2_DEFAULT_I211;
406 			ret_val = 0;
407 		}
408 		break;
409 	case NVM_INIT_CTRL_4:
410 		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
411 		if (ret_val) {
412 			*data = NVM_INIT_CTRL_4_DEFAULT_I211;
413 			ret_val = 0;
414 		}
415 		break;
416 	case NVM_LED_1_CFG:
417 		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
418 		if (ret_val) {
419 			*data = NVM_LED_1_CFG_DEFAULT_I211;
420 			ret_val = 0;
421 		}
422 		break;
423 	case NVM_LED_0_2_CFG:
424 		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
425 		if (ret_val) {
426 			*data = NVM_LED_0_2_CFG_DEFAULT_I211;
427 			ret_val = 0;
428 		}
429 		break;
430 	case NVM_ID_LED_SETTINGS:
431 		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
432 		if (ret_val) {
433 			*data = ID_LED_RESERVED_FFFF;
434 			ret_val = 0;
435 		}
436 		break;
437 	case NVM_SUB_DEV_ID:
438 		*data = hw->subsystem_device_id;
439 		break;
440 	case NVM_SUB_VEN_ID:
441 		*data = hw->subsystem_vendor_id;
442 		break;
443 	case NVM_DEV_ID:
444 		*data = hw->device_id;
445 		break;
446 	case NVM_VEN_ID:
447 		*data = hw->vendor_id;
448 		break;
449 	default:
450 		hw_dbg("NVM word 0x%02x is not mapped.\n", offset);
451 		*data = NVM_RESERVED_WORD;
452 		break;
453 	}
454 	return ret_val;
455 }
456 
457 /**
458  *  igb_read_invm_version - Reads iNVM version and image type
459  *  @hw: pointer to the HW structure
460  *  @invm_ver: version structure for the version read
461  *
462  *  Reads iNVM version and image type.
463  **/
464 s32 igb_read_invm_version(struct e1000_hw *hw,
465 			  struct e1000_fw_version *invm_ver) {
466 	u32 *record = NULL;
467 	u32 *next_record = NULL;
468 	u32 i = 0;
469 	u32 invm_dword = 0;
470 	u32 invm_blocks = E1000_INVM_SIZE - (E1000_INVM_ULT_BYTES_SIZE /
471 					     E1000_INVM_RECORD_SIZE_IN_BYTES);
472 	u32 buffer[E1000_INVM_SIZE];
473 	s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
474 	u16 version = 0;
475 
476 	/* Read iNVM memory */
477 	for (i = 0; i < E1000_INVM_SIZE; i++) {
478 		invm_dword = rd32(E1000_INVM_DATA_REG(i));
479 		buffer[i] = invm_dword;
480 	}
481 
482 	/* Read version number */
483 	for (i = 1; i < invm_blocks; i++) {
484 		record = &buffer[invm_blocks - i];
485 		next_record = &buffer[invm_blocks - i + 1];
486 
487 		/* Check if we have first version location used */
488 		if ((i == 1) && ((*record & E1000_INVM_VER_FIELD_ONE) == 0)) {
489 			version = 0;
490 			status = 0;
491 			break;
492 		}
493 		/* Check if we have second version location used */
494 		else if ((i == 1) &&
495 			 ((*record & E1000_INVM_VER_FIELD_TWO) == 0)) {
496 			version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
497 			status = 0;
498 			break;
499 		}
500 		/* Check if we have odd version location
501 		 * used and it is the last one used
502 		 */
503 		else if ((((*record & E1000_INVM_VER_FIELD_ONE) == 0) &&
504 			 ((*record & 0x3) == 0)) || (((*record & 0x3) != 0) &&
505 			 (i != 1))) {
506 			version = (*next_record & E1000_INVM_VER_FIELD_TWO)
507 				  >> 13;
508 			status = 0;
509 			break;
510 		}
511 		/* Check if we have even version location
512 		 * used and it is the last one used
513 		 */
514 		else if (((*record & E1000_INVM_VER_FIELD_TWO) == 0) &&
515 			 ((*record & 0x3) == 0)) {
516 			version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
517 			status = 0;
518 			break;
519 		}
520 	}
521 
522 	if (!status) {
523 		invm_ver->invm_major = (version & E1000_INVM_MAJOR_MASK)
524 					>> E1000_INVM_MAJOR_SHIFT;
525 		invm_ver->invm_minor = version & E1000_INVM_MINOR_MASK;
526 	}
527 	/* Read Image Type */
528 	for (i = 1; i < invm_blocks; i++) {
529 		record = &buffer[invm_blocks - i];
530 		next_record = &buffer[invm_blocks - i + 1];
531 
532 		/* Check if we have image type in first location used */
533 		if ((i == 1) && ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) {
534 			invm_ver->invm_img_type = 0;
535 			status = 0;
536 			break;
537 		}
538 		/* Check if we have image type in first location used */
539 		else if ((((*record & 0x3) == 0) &&
540 			 ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) ||
541 			 ((((*record & 0x3) != 0) && (i != 1)))) {
542 			invm_ver->invm_img_type =
543 				(*next_record & E1000_INVM_IMGTYPE_FIELD) >> 23;
544 			status = 0;
545 			break;
546 		}
547 	}
548 	return status;
549 }
550 
551 /**
552  *  igb_validate_nvm_checksum_i210 - Validate EEPROM checksum
553  *  @hw: pointer to the HW structure
554  *
555  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
556  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
557  **/
558 static s32 igb_validate_nvm_checksum_i210(struct e1000_hw *hw)
559 {
560 	s32 status = 0;
561 	s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *);
562 
563 	if (!(hw->nvm.ops.acquire(hw))) {
564 
565 		/* Replace the read function with semaphore grabbing with
566 		 * the one that skips this for a while.
567 		 * We have semaphore taken already here.
568 		 */
569 		read_op_ptr = hw->nvm.ops.read;
570 		hw->nvm.ops.read = igb_read_nvm_eerd;
571 
572 		status = igb_validate_nvm_checksum(hw);
573 
574 		/* Revert original read operation. */
575 		hw->nvm.ops.read = read_op_ptr;
576 
577 		hw->nvm.ops.release(hw);
578 	} else {
579 		status = E1000_ERR_SWFW_SYNC;
580 	}
581 
582 	return status;
583 }
584 
585 /**
586  *  igb_update_nvm_checksum_i210 - Update EEPROM checksum
587  *  @hw: pointer to the HW structure
588  *
589  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
590  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
591  *  value to the EEPROM. Next commit EEPROM data onto the Flash.
592  **/
593 static s32 igb_update_nvm_checksum_i210(struct e1000_hw *hw)
594 {
595 	s32 ret_val = 0;
596 	u16 checksum = 0;
597 	u16 i, nvm_data;
598 
599 	/* Read the first word from the EEPROM. If this times out or fails, do
600 	 * not continue or we could be in for a very long wait while every
601 	 * EEPROM read fails
602 	 */
603 	ret_val = igb_read_nvm_eerd(hw, 0, 1, &nvm_data);
604 	if (ret_val) {
605 		hw_dbg("EEPROM read failed\n");
606 		goto out;
607 	}
608 
609 	if (!(hw->nvm.ops.acquire(hw))) {
610 		/* Do not use hw->nvm.ops.write, hw->nvm.ops.read
611 		 * because we do not want to take the synchronization
612 		 * semaphores twice here.
613 		 */
614 
615 		for (i = 0; i < NVM_CHECKSUM_REG; i++) {
616 			ret_val = igb_read_nvm_eerd(hw, i, 1, &nvm_data);
617 			if (ret_val) {
618 				hw->nvm.ops.release(hw);
619 				hw_dbg("NVM Read Error while updating checksum.\n");
620 				goto out;
621 			}
622 			checksum += nvm_data;
623 		}
624 		checksum = (u16) NVM_SUM - checksum;
625 		ret_val = igb_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
626 						&checksum);
627 		if (ret_val) {
628 			hw->nvm.ops.release(hw);
629 			hw_dbg("NVM Write Error while updating checksum.\n");
630 			goto out;
631 		}
632 
633 		hw->nvm.ops.release(hw);
634 
635 		ret_val = igb_update_flash_i210(hw);
636 	} else {
637 		ret_val = -E1000_ERR_SWFW_SYNC;
638 	}
639 out:
640 	return ret_val;
641 }
642 
643 /**
644  *  igb_pool_flash_update_done_i210 - Pool FLUDONE status.
645  *  @hw: pointer to the HW structure
646  *
647  **/
648 static s32 igb_pool_flash_update_done_i210(struct e1000_hw *hw)
649 {
650 	s32 ret_val = -E1000_ERR_NVM;
651 	u32 i, reg;
652 
653 	for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
654 		reg = rd32(E1000_EECD);
655 		if (reg & E1000_EECD_FLUDONE_I210) {
656 			ret_val = 0;
657 			break;
658 		}
659 		udelay(5);
660 	}
661 
662 	return ret_val;
663 }
664 
665 /**
666  *  igb_get_flash_presence_i210 - Check if flash device is detected.
667  *  @hw: pointer to the HW structure
668  *
669  **/
670 bool igb_get_flash_presence_i210(struct e1000_hw *hw)
671 {
672 	u32 eec = 0;
673 	bool ret_val = false;
674 
675 	eec = rd32(E1000_EECD);
676 	if (eec & E1000_EECD_FLASH_DETECTED_I210)
677 		ret_val = true;
678 
679 	return ret_val;
680 }
681 
682 /**
683  *  igb_update_flash_i210 - Commit EEPROM to the flash
684  *  @hw: pointer to the HW structure
685  *
686  **/
687 static s32 igb_update_flash_i210(struct e1000_hw *hw)
688 {
689 	s32 ret_val = 0;
690 	u32 flup;
691 
692 	ret_val = igb_pool_flash_update_done_i210(hw);
693 	if (ret_val == -E1000_ERR_NVM) {
694 		hw_dbg("Flash update time out\n");
695 		goto out;
696 	}
697 
698 	flup = rd32(E1000_EECD) | E1000_EECD_FLUPD_I210;
699 	wr32(E1000_EECD, flup);
700 
701 	ret_val = igb_pool_flash_update_done_i210(hw);
702 	if (ret_val)
703 		hw_dbg("Flash update time out\n");
704 	else
705 		hw_dbg("Flash update complete\n");
706 
707 out:
708 	return ret_val;
709 }
710 
711 /**
712  *  igb_valid_led_default_i210 - Verify a valid default LED config
713  *  @hw: pointer to the HW structure
714  *  @data: pointer to the NVM (EEPROM)
715  *
716  *  Read the EEPROM for the current default LED configuration.  If the
717  *  LED configuration is not valid, set to a valid LED configuration.
718  **/
719 s32 igb_valid_led_default_i210(struct e1000_hw *hw, u16 *data)
720 {
721 	s32 ret_val;
722 
723 	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
724 	if (ret_val) {
725 		hw_dbg("NVM Read Error\n");
726 		goto out;
727 	}
728 
729 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
730 		switch (hw->phy.media_type) {
731 		case e1000_media_type_internal_serdes:
732 			*data = ID_LED_DEFAULT_I210_SERDES;
733 			break;
734 		case e1000_media_type_copper:
735 		default:
736 			*data = ID_LED_DEFAULT_I210;
737 			break;
738 		}
739 	}
740 out:
741 	return ret_val;
742 }
743 
744 /**
745  *  __igb_access_xmdio_reg - Read/write XMDIO register
746  *  @hw: pointer to the HW structure
747  *  @address: XMDIO address to program
748  *  @dev_addr: device address to program
749  *  @data: pointer to value to read/write from/to the XMDIO address
750  *  @read: boolean flag to indicate read or write
751  **/
752 static s32 __igb_access_xmdio_reg(struct e1000_hw *hw, u16 address,
753 				  u8 dev_addr, u16 *data, bool read)
754 {
755 	s32 ret_val = 0;
756 
757 	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, dev_addr);
758 	if (ret_val)
759 		return ret_val;
760 
761 	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, address);
762 	if (ret_val)
763 		return ret_val;
764 
765 	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, E1000_MMDAC_FUNC_DATA |
766 							 dev_addr);
767 	if (ret_val)
768 		return ret_val;
769 
770 	if (read)
771 		ret_val = hw->phy.ops.read_reg(hw, E1000_MMDAAD, data);
772 	else
773 		ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, *data);
774 	if (ret_val)
775 		return ret_val;
776 
777 	/* Recalibrate the device back to 0 */
778 	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, 0);
779 	if (ret_val)
780 		return ret_val;
781 
782 	return ret_val;
783 }
784 
785 /**
786  *  igb_read_xmdio_reg - Read XMDIO register
787  *  @hw: pointer to the HW structure
788  *  @addr: XMDIO address to program
789  *  @dev_addr: device address to program
790  *  @data: value to be read from the EMI address
791  **/
792 s32 igb_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 *data)
793 {
794 	return __igb_access_xmdio_reg(hw, addr, dev_addr, data, true);
795 }
796 
797 /**
798  *  igb_write_xmdio_reg - Write XMDIO register
799  *  @hw: pointer to the HW structure
800  *  @addr: XMDIO address to program
801  *  @dev_addr: device address to program
802  *  @data: value to be written to the XMDIO address
803  **/
804 s32 igb_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 data)
805 {
806 	return __igb_access_xmdio_reg(hw, addr, dev_addr, &data, false);
807 }
808 
809 /**
810  *  igb_init_nvm_params_i210 - Init NVM func ptrs.
811  *  @hw: pointer to the HW structure
812  **/
813 s32 igb_init_nvm_params_i210(struct e1000_hw *hw)
814 {
815 	s32 ret_val = 0;
816 	struct e1000_nvm_info *nvm = &hw->nvm;
817 
818 	nvm->ops.acquire = igb_acquire_nvm_i210;
819 	nvm->ops.release = igb_release_nvm_i210;
820 	nvm->ops.valid_led_default = igb_valid_led_default_i210;
821 
822 	/* NVM Function Pointers */
823 	if (igb_get_flash_presence_i210(hw)) {
824 		hw->nvm.type = e1000_nvm_flash_hw;
825 		nvm->ops.read    = igb_read_nvm_srrd_i210;
826 		nvm->ops.write   = igb_write_nvm_srwr_i210;
827 		nvm->ops.validate = igb_validate_nvm_checksum_i210;
828 		nvm->ops.update   = igb_update_nvm_checksum_i210;
829 	} else {
830 		hw->nvm.type = e1000_nvm_invm;
831 		nvm->ops.read     = igb_read_invm_i210;
832 		nvm->ops.write    = NULL;
833 		nvm->ops.validate = NULL;
834 		nvm->ops.update   = NULL;
835 	}
836 	return ret_val;
837 }
838 
839 /**
840  * igb_pll_workaround_i210
841  * @hw: pointer to the HW structure
842  *
843  * Works around an errata in the PLL circuit where it occasionally
844  * provides the wrong clock frequency after power up.
845  **/
846 s32 igb_pll_workaround_i210(struct e1000_hw *hw)
847 {
848 	s32 ret_val;
849 	u32 wuc, mdicnfg, ctrl, ctrl_ext, reg_val;
850 	u16 nvm_word, phy_word, pci_word, tmp_nvm;
851 	int i;
852 
853 	/* Get and set needed register values */
854 	wuc = rd32(E1000_WUC);
855 	mdicnfg = rd32(E1000_MDICNFG);
856 	reg_val = mdicnfg & ~E1000_MDICNFG_EXT_MDIO;
857 	wr32(E1000_MDICNFG, reg_val);
858 
859 	/* Get data from NVM, or set default */
860 	ret_val = igb_read_invm_word_i210(hw, E1000_INVM_AUTOLOAD,
861 					  &nvm_word);
862 	if (ret_val)
863 		nvm_word = E1000_INVM_DEFAULT_AL;
864 	tmp_nvm = nvm_word | E1000_INVM_PLL_WO_VAL;
865 	igb_write_phy_reg_82580(hw, I347AT4_PAGE_SELECT, E1000_PHY_PLL_FREQ_PAGE);
866 	for (i = 0; i < E1000_MAX_PLL_TRIES; i++) {
867 		/* check current state directly from internal PHY */
868 		igb_read_phy_reg_82580(hw, E1000_PHY_PLL_FREQ_REG, &phy_word);
869 		if ((phy_word & E1000_PHY_PLL_UNCONF)
870 		    != E1000_PHY_PLL_UNCONF) {
871 			ret_val = 0;
872 			break;
873 		} else {
874 			ret_val = -E1000_ERR_PHY;
875 		}
876 		/* directly reset the internal PHY */
877 		ctrl = rd32(E1000_CTRL);
878 		wr32(E1000_CTRL, ctrl|E1000_CTRL_PHY_RST);
879 
880 		ctrl_ext = rd32(E1000_CTRL_EXT);
881 		ctrl_ext |= (E1000_CTRL_EXT_PHYPDEN | E1000_CTRL_EXT_SDLPE);
882 		wr32(E1000_CTRL_EXT, ctrl_ext);
883 
884 		wr32(E1000_WUC, 0);
885 		reg_val = (E1000_INVM_AUTOLOAD << 4) | (tmp_nvm << 16);
886 		wr32(E1000_EEARBC_I210, reg_val);
887 
888 		igb_read_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
889 		pci_word |= E1000_PCI_PMCSR_D3;
890 		igb_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
891 		usleep_range(1000, 2000);
892 		pci_word &= ~E1000_PCI_PMCSR_D3;
893 		igb_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
894 		reg_val = (E1000_INVM_AUTOLOAD << 4) | (nvm_word << 16);
895 		wr32(E1000_EEARBC_I210, reg_val);
896 
897 		/* restore WUC register */
898 		wr32(E1000_WUC, wuc);
899 	}
900 	igb_write_phy_reg_82580(hw, I347AT4_PAGE_SELECT, 0);
901 	/* restore MDICNFG setting */
902 	wr32(E1000_MDICNFG, mdicnfg);
903 	return ret_val;
904 }
905 
906 /**
907  *  igb_get_cfg_done_i210 - Read config done bit
908  *  @hw: pointer to the HW structure
909  *
910  *  Read the management control register for the config done bit for
911  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
912  *  to read the config done bit, so an error is *ONLY* logged and returns
913  *  0.  If we were to return with error, EEPROM-less silicon
914  *  would not be able to be reset or change link.
915  **/
916 s32 igb_get_cfg_done_i210(struct e1000_hw *hw)
917 {
918 	s32 timeout = PHY_CFG_TIMEOUT;
919 	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
920 
921 	while (timeout) {
922 		if (rd32(E1000_EEMNGCTL_I210) & mask)
923 			break;
924 		usleep_range(1000, 2000);
925 		timeout--;
926 	}
927 	if (!timeout)
928 		hw_dbg("MNG configuration cycle has not completed.\n");
929 
930 	return 0;
931 }
932