1 /*******************************************************************************
2 
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2013 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 ******************************************************************************/
27 
28 /* e1000_i210
29  * e1000_i211
30  */
31 
32 #include <linux/types.h>
33 #include <linux/if_ether.h>
34 
35 #include "e1000_hw.h"
36 #include "e1000_i210.h"
37 
38 /**
39  * igb_get_hw_semaphore_i210 - Acquire hardware semaphore
40  *  @hw: pointer to the HW structure
41  *
42  *  Acquire the HW semaphore to access the PHY or NVM
43  */
44 static s32 igb_get_hw_semaphore_i210(struct e1000_hw *hw)
45 {
46 	u32 swsm;
47 	s32 timeout = hw->nvm.word_size + 1;
48 	s32 i = 0;
49 
50 	/* Get the SW semaphore */
51 	while (i < timeout) {
52 		swsm = rd32(E1000_SWSM);
53 		if (!(swsm & E1000_SWSM_SMBI))
54 			break;
55 
56 		udelay(50);
57 		i++;
58 	}
59 
60 	if (i == timeout) {
61 		/* In rare circumstances, the SW semaphore may already be held
62 		 * unintentionally. Clear the semaphore once before giving up.
63 		 */
64 		if (hw->dev_spec._82575.clear_semaphore_once) {
65 			hw->dev_spec._82575.clear_semaphore_once = false;
66 			igb_put_hw_semaphore(hw);
67 			for (i = 0; i < timeout; i++) {
68 				swsm = rd32(E1000_SWSM);
69 				if (!(swsm & E1000_SWSM_SMBI))
70 					break;
71 
72 				udelay(50);
73 			}
74 		}
75 
76 		/* If we do not have the semaphore here, we have to give up. */
77 		if (i == timeout) {
78 			hw_dbg("Driver can't access device - SMBI bit is set.\n");
79 			return -E1000_ERR_NVM;
80 		}
81 	}
82 
83 	/* Get the FW semaphore. */
84 	for (i = 0; i < timeout; i++) {
85 		swsm = rd32(E1000_SWSM);
86 		wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
87 
88 		/* Semaphore acquired if bit latched */
89 		if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
90 			break;
91 
92 		udelay(50);
93 	}
94 
95 	if (i == timeout) {
96 		/* Release semaphores */
97 		igb_put_hw_semaphore(hw);
98 		hw_dbg("Driver can't access the NVM\n");
99 		return -E1000_ERR_NVM;
100 	}
101 
102 	return E1000_SUCCESS;
103 }
104 
105 /**
106  *  igb_acquire_nvm_i210 - Request for access to EEPROM
107  *  @hw: pointer to the HW structure
108  *
109  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
110  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
111  *  Return successful if access grant bit set, else clear the request for
112  *  EEPROM access and return -E1000_ERR_NVM (-1).
113  **/
114 s32 igb_acquire_nvm_i210(struct e1000_hw *hw)
115 {
116 	return igb_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
117 }
118 
119 /**
120  *  igb_release_nvm_i210 - Release exclusive access to EEPROM
121  *  @hw: pointer to the HW structure
122  *
123  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
124  *  then release the semaphores acquired.
125  **/
126 void igb_release_nvm_i210(struct e1000_hw *hw)
127 {
128 	igb_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
129 }
130 
131 /**
132  *  igb_acquire_swfw_sync_i210 - Acquire SW/FW semaphore
133  *  @hw: pointer to the HW structure
134  *  @mask: specifies which semaphore to acquire
135  *
136  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
137  *  will also specify which port we're acquiring the lock for.
138  **/
139 s32 igb_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
140 {
141 	u32 swfw_sync;
142 	u32 swmask = mask;
143 	u32 fwmask = mask << 16;
144 	s32 ret_val = E1000_SUCCESS;
145 	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
146 
147 	while (i < timeout) {
148 		if (igb_get_hw_semaphore_i210(hw)) {
149 			ret_val = -E1000_ERR_SWFW_SYNC;
150 			goto out;
151 		}
152 
153 		swfw_sync = rd32(E1000_SW_FW_SYNC);
154 		if (!(swfw_sync & (fwmask | swmask)))
155 			break;
156 
157 		/* Firmware currently using resource (fwmask) */
158 		igb_put_hw_semaphore(hw);
159 		mdelay(5);
160 		i++;
161 	}
162 
163 	if (i == timeout) {
164 		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
165 		ret_val = -E1000_ERR_SWFW_SYNC;
166 		goto out;
167 	}
168 
169 	swfw_sync |= swmask;
170 	wr32(E1000_SW_FW_SYNC, swfw_sync);
171 
172 	igb_put_hw_semaphore(hw);
173 out:
174 	return ret_val;
175 }
176 
177 /**
178  *  igb_release_swfw_sync_i210 - Release SW/FW semaphore
179  *  @hw: pointer to the HW structure
180  *  @mask: specifies which semaphore to acquire
181  *
182  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
183  *  will also specify which port we're releasing the lock for.
184  **/
185 void igb_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
186 {
187 	u32 swfw_sync;
188 
189 	while (igb_get_hw_semaphore_i210(hw) != E1000_SUCCESS)
190 		; /* Empty */
191 
192 	swfw_sync = rd32(E1000_SW_FW_SYNC);
193 	swfw_sync &= ~mask;
194 	wr32(E1000_SW_FW_SYNC, swfw_sync);
195 
196 	igb_put_hw_semaphore(hw);
197 }
198 
199 /**
200  *  igb_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register
201  *  @hw: pointer to the HW structure
202  *  @offset: offset of word in the Shadow Ram to read
203  *  @words: number of words to read
204  *  @data: word read from the Shadow Ram
205  *
206  *  Reads a 16 bit word from the Shadow Ram using the EERD register.
207  *  Uses necessary synchronization semaphores.
208  **/
209 s32 igb_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words,
210 			     u16 *data)
211 {
212 	s32 status = E1000_SUCCESS;
213 	u16 i, count;
214 
215 	/* We cannot hold synchronization semaphores for too long,
216 	 * because of forceful takeover procedure. However it is more efficient
217 	 * to read in bursts than synchronizing access for each word.
218 	 */
219 	for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
220 		count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
221 			E1000_EERD_EEWR_MAX_COUNT : (words - i);
222 		if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
223 			status = igb_read_nvm_eerd(hw, offset, count,
224 						     data + i);
225 			hw->nvm.ops.release(hw);
226 		} else {
227 			status = E1000_ERR_SWFW_SYNC;
228 		}
229 
230 		if (status != E1000_SUCCESS)
231 			break;
232 	}
233 
234 	return status;
235 }
236 
237 /**
238  *  igb_write_nvm_srwr - Write to Shadow Ram using EEWR
239  *  @hw: pointer to the HW structure
240  *  @offset: offset within the Shadow Ram to be written to
241  *  @words: number of words to write
242  *  @data: 16 bit word(s) to be written to the Shadow Ram
243  *
244  *  Writes data to Shadow Ram at offset using EEWR register.
245  *
246  *  If igb_update_nvm_checksum is not called after this function , the
247  *  Shadow Ram will most likely contain an invalid checksum.
248  **/
249 static s32 igb_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
250 				u16 *data)
251 {
252 	struct e1000_nvm_info *nvm = &hw->nvm;
253 	u32 i, k, eewr = 0;
254 	u32 attempts = 100000;
255 	s32 ret_val = E1000_SUCCESS;
256 
257 	/* A check for invalid values:  offset too large, too many words,
258 	 * too many words for the offset, and not enough words.
259 	 */
260 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
261 	    (words == 0)) {
262 		hw_dbg("nvm parameter(s) out of bounds\n");
263 		ret_val = -E1000_ERR_NVM;
264 		goto out;
265 	}
266 
267 	for (i = 0; i < words; i++) {
268 		eewr = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
269 			(data[i] << E1000_NVM_RW_REG_DATA) |
270 			E1000_NVM_RW_REG_START;
271 
272 		wr32(E1000_SRWR, eewr);
273 
274 		for (k = 0; k < attempts; k++) {
275 			if (E1000_NVM_RW_REG_DONE &
276 			    rd32(E1000_SRWR)) {
277 				ret_val = E1000_SUCCESS;
278 				break;
279 			}
280 			udelay(5);
281 	}
282 
283 		if (ret_val != E1000_SUCCESS) {
284 			hw_dbg("Shadow RAM write EEWR timed out\n");
285 			break;
286 		}
287 	}
288 
289 out:
290 	return ret_val;
291 }
292 
293 /**
294  *  igb_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR
295  *  @hw: pointer to the HW structure
296  *  @offset: offset within the Shadow RAM to be written to
297  *  @words: number of words to write
298  *  @data: 16 bit word(s) to be written to the Shadow RAM
299  *
300  *  Writes data to Shadow RAM at offset using EEWR register.
301  *
302  *  If e1000_update_nvm_checksum is not called after this function , the
303  *  data will not be committed to FLASH and also Shadow RAM will most likely
304  *  contain an invalid checksum.
305  *
306  *  If error code is returned, data and Shadow RAM may be inconsistent - buffer
307  *  partially written.
308  **/
309 s32 igb_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words,
310 			      u16 *data)
311 {
312 	s32 status = E1000_SUCCESS;
313 	u16 i, count;
314 
315 	/* We cannot hold synchronization semaphores for too long,
316 	 * because of forceful takeover procedure. However it is more efficient
317 	 * to write in bursts than synchronizing access for each word.
318 	 */
319 	for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
320 		count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
321 			E1000_EERD_EEWR_MAX_COUNT : (words - i);
322 		if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
323 			status = igb_write_nvm_srwr(hw, offset, count,
324 						      data + i);
325 			hw->nvm.ops.release(hw);
326 		} else {
327 			status = E1000_ERR_SWFW_SYNC;
328 		}
329 
330 		if (status != E1000_SUCCESS)
331 			break;
332 	}
333 
334 	return status;
335 }
336 
337 /**
338  *  igb_read_invm_word_i210 - Reads OTP
339  *  @hw: pointer to the HW structure
340  *  @address: the word address (aka eeprom offset) to read
341  *  @data: pointer to the data read
342  *
343  *  Reads 16-bit words from the OTP. Return error when the word is not
344  *  stored in OTP.
345  **/
346 static s32 igb_read_invm_word_i210(struct e1000_hw *hw, u8 address, u16 *data)
347 {
348 	s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
349 	u32 invm_dword;
350 	u16 i;
351 	u8 record_type, word_address;
352 
353 	for (i = 0; i < E1000_INVM_SIZE; i++) {
354 		invm_dword = rd32(E1000_INVM_DATA_REG(i));
355 		/* Get record type */
356 		record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword);
357 		if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE)
358 			break;
359 		if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE)
360 			i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS;
361 		if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE)
362 			i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS;
363 		if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) {
364 			word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword);
365 			if (word_address == address) {
366 				*data = INVM_DWORD_TO_WORD_DATA(invm_dword);
367 				hw_dbg("Read INVM Word 0x%02x = %x",
368 					  address, *data);
369 				status = E1000_SUCCESS;
370 				break;
371 			}
372 		}
373 	}
374 	if (status != E1000_SUCCESS)
375 		hw_dbg("Requested word 0x%02x not found in OTP\n", address);
376 	return status;
377 }
378 
379 /**
380  * igb_read_invm_i210 - Read invm wrapper function for I210/I211
381  *  @hw: pointer to the HW structure
382  *  @words: number of words to read
383  *  @data: pointer to the data read
384  *
385  *  Wrapper function to return data formerly found in the NVM.
386  **/
387 static s32 igb_read_invm_i210(struct e1000_hw *hw, u16 offset,
388 				u16 words __always_unused, u16 *data)
389 {
390 	s32 ret_val = E1000_SUCCESS;
391 
392 	/* Only the MAC addr is required to be present in the iNVM */
393 	switch (offset) {
394 	case NVM_MAC_ADDR:
395 		ret_val = igb_read_invm_word_i210(hw, (u8)offset, &data[0]);
396 		ret_val |= igb_read_invm_word_i210(hw, (u8)offset+1,
397 						     &data[1]);
398 		ret_val |= igb_read_invm_word_i210(hw, (u8)offset+2,
399 						     &data[2]);
400 		if (ret_val != E1000_SUCCESS)
401 			hw_dbg("MAC Addr not found in iNVM\n");
402 		break;
403 	case NVM_INIT_CTRL_2:
404 		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
405 		if (ret_val != E1000_SUCCESS) {
406 			*data = NVM_INIT_CTRL_2_DEFAULT_I211;
407 			ret_val = E1000_SUCCESS;
408 		}
409 		break;
410 	case NVM_INIT_CTRL_4:
411 		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
412 		if (ret_val != E1000_SUCCESS) {
413 			*data = NVM_INIT_CTRL_4_DEFAULT_I211;
414 			ret_val = E1000_SUCCESS;
415 		}
416 		break;
417 	case NVM_LED_1_CFG:
418 		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
419 		if (ret_val != E1000_SUCCESS) {
420 			*data = NVM_LED_1_CFG_DEFAULT_I211;
421 			ret_val = E1000_SUCCESS;
422 		}
423 		break;
424 	case NVM_LED_0_2_CFG:
425 		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
426 		if (ret_val != E1000_SUCCESS) {
427 			*data = NVM_LED_0_2_CFG_DEFAULT_I211;
428 			ret_val = E1000_SUCCESS;
429 		}
430 		break;
431 	case NVM_ID_LED_SETTINGS:
432 		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
433 		if (ret_val != E1000_SUCCESS) {
434 			*data = ID_LED_RESERVED_FFFF;
435 			ret_val = E1000_SUCCESS;
436 		}
437 	case NVM_SUB_DEV_ID:
438 		*data = hw->subsystem_device_id;
439 		break;
440 	case NVM_SUB_VEN_ID:
441 		*data = hw->subsystem_vendor_id;
442 		break;
443 	case NVM_DEV_ID:
444 		*data = hw->device_id;
445 		break;
446 	case NVM_VEN_ID:
447 		*data = hw->vendor_id;
448 		break;
449 	default:
450 		hw_dbg("NVM word 0x%02x is not mapped.\n", offset);
451 		*data = NVM_RESERVED_WORD;
452 		break;
453 	}
454 	return ret_val;
455 }
456 
457 /**
458  *  igb_read_invm_version - Reads iNVM version and image type
459  *  @hw: pointer to the HW structure
460  *  @invm_ver: version structure for the version read
461  *
462  *  Reads iNVM version and image type.
463  **/
464 s32 igb_read_invm_version(struct e1000_hw *hw,
465 			  struct e1000_fw_version *invm_ver) {
466 	u32 *record = NULL;
467 	u32 *next_record = NULL;
468 	u32 i = 0;
469 	u32 invm_dword = 0;
470 	u32 invm_blocks = E1000_INVM_SIZE - (E1000_INVM_ULT_BYTES_SIZE /
471 					     E1000_INVM_RECORD_SIZE_IN_BYTES);
472 	u32 buffer[E1000_INVM_SIZE];
473 	s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
474 	u16 version = 0;
475 
476 	/* Read iNVM memory */
477 	for (i = 0; i < E1000_INVM_SIZE; i++) {
478 		invm_dword = rd32(E1000_INVM_DATA_REG(i));
479 		buffer[i] = invm_dword;
480 	}
481 
482 	/* Read version number */
483 	for (i = 1; i < invm_blocks; i++) {
484 		record = &buffer[invm_blocks - i];
485 		next_record = &buffer[invm_blocks - i + 1];
486 
487 		/* Check if we have first version location used */
488 		if ((i == 1) && ((*record & E1000_INVM_VER_FIELD_ONE) == 0)) {
489 			version = 0;
490 			status = E1000_SUCCESS;
491 			break;
492 		}
493 		/* Check if we have second version location used */
494 		else if ((i == 1) &&
495 			 ((*record & E1000_INVM_VER_FIELD_TWO) == 0)) {
496 			version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
497 			status = E1000_SUCCESS;
498 			break;
499 		}
500 		/* Check if we have odd version location
501 		 * used and it is the last one used
502 		 */
503 		else if ((((*record & E1000_INVM_VER_FIELD_ONE) == 0) &&
504 			 ((*record & 0x3) == 0)) || (((*record & 0x3) != 0) &&
505 			 (i != 1))) {
506 			version = (*next_record & E1000_INVM_VER_FIELD_TWO)
507 				  >> 13;
508 			status = E1000_SUCCESS;
509 			break;
510 		}
511 		/* Check if we have even version location
512 		 * used and it is the last one used
513 		 */
514 		else if (((*record & E1000_INVM_VER_FIELD_TWO) == 0) &&
515 			 ((*record & 0x3) == 0)) {
516 			version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
517 			status = E1000_SUCCESS;
518 			break;
519 		}
520 	}
521 
522 	if (status == E1000_SUCCESS) {
523 		invm_ver->invm_major = (version & E1000_INVM_MAJOR_MASK)
524 					>> E1000_INVM_MAJOR_SHIFT;
525 		invm_ver->invm_minor = version & E1000_INVM_MINOR_MASK;
526 	}
527 	/* Read Image Type */
528 	for (i = 1; i < invm_blocks; i++) {
529 		record = &buffer[invm_blocks - i];
530 		next_record = &buffer[invm_blocks - i + 1];
531 
532 		/* Check if we have image type in first location used */
533 		if ((i == 1) && ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) {
534 			invm_ver->invm_img_type = 0;
535 			status = E1000_SUCCESS;
536 			break;
537 		}
538 		/* Check if we have image type in first location used */
539 		else if ((((*record & 0x3) == 0) &&
540 			 ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) ||
541 			 ((((*record & 0x3) != 0) && (i != 1)))) {
542 			invm_ver->invm_img_type =
543 				(*next_record & E1000_INVM_IMGTYPE_FIELD) >> 23;
544 			status = E1000_SUCCESS;
545 			break;
546 		}
547 	}
548 	return status;
549 }
550 
551 /**
552  *  igb_validate_nvm_checksum_i210 - Validate EEPROM checksum
553  *  @hw: pointer to the HW structure
554  *
555  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
556  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
557  **/
558 s32 igb_validate_nvm_checksum_i210(struct e1000_hw *hw)
559 {
560 	s32 status = E1000_SUCCESS;
561 	s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *);
562 
563 	if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
564 
565 		/* Replace the read function with semaphore grabbing with
566 		 * the one that skips this for a while.
567 		 * We have semaphore taken already here.
568 		 */
569 		read_op_ptr = hw->nvm.ops.read;
570 		hw->nvm.ops.read = igb_read_nvm_eerd;
571 
572 		status = igb_validate_nvm_checksum(hw);
573 
574 		/* Revert original read operation. */
575 		hw->nvm.ops.read = read_op_ptr;
576 
577 		hw->nvm.ops.release(hw);
578 	} else {
579 		status = E1000_ERR_SWFW_SYNC;
580 	}
581 
582 	return status;
583 }
584 
585 /**
586  *  igb_update_nvm_checksum_i210 - Update EEPROM checksum
587  *  @hw: pointer to the HW structure
588  *
589  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
590  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
591  *  value to the EEPROM. Next commit EEPROM data onto the Flash.
592  **/
593 s32 igb_update_nvm_checksum_i210(struct e1000_hw *hw)
594 {
595 	s32 ret_val = E1000_SUCCESS;
596 	u16 checksum = 0;
597 	u16 i, nvm_data;
598 
599 	/* Read the first word from the EEPROM. If this times out or fails, do
600 	 * not continue or we could be in for a very long wait while every
601 	 * EEPROM read fails
602 	 */
603 	ret_val = igb_read_nvm_eerd(hw, 0, 1, &nvm_data);
604 	if (ret_val != E1000_SUCCESS) {
605 		hw_dbg("EEPROM read failed\n");
606 		goto out;
607 	}
608 
609 	if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) {
610 		/* Do not use hw->nvm.ops.write, hw->nvm.ops.read
611 		 * because we do not want to take the synchronization
612 		 * semaphores twice here.
613 		 */
614 
615 		for (i = 0; i < NVM_CHECKSUM_REG; i++) {
616 			ret_val = igb_read_nvm_eerd(hw, i, 1, &nvm_data);
617 			if (ret_val) {
618 				hw->nvm.ops.release(hw);
619 				hw_dbg("NVM Read Error while updating checksum.\n");
620 				goto out;
621 			}
622 			checksum += nvm_data;
623 		}
624 		checksum = (u16) NVM_SUM - checksum;
625 		ret_val = igb_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
626 						&checksum);
627 		if (ret_val != E1000_SUCCESS) {
628 			hw->nvm.ops.release(hw);
629 			hw_dbg("NVM Write Error while updating checksum.\n");
630 			goto out;
631 		}
632 
633 		hw->nvm.ops.release(hw);
634 
635 		ret_val = igb_update_flash_i210(hw);
636 	} else {
637 		ret_val = -E1000_ERR_SWFW_SYNC;
638 	}
639 out:
640 	return ret_val;
641 }
642 
643 /**
644  *  igb_pool_flash_update_done_i210 - Pool FLUDONE status.
645  *  @hw: pointer to the HW structure
646  *
647  **/
648 static s32 igb_pool_flash_update_done_i210(struct e1000_hw *hw)
649 {
650 	s32 ret_val = -E1000_ERR_NVM;
651 	u32 i, reg;
652 
653 	for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
654 		reg = rd32(E1000_EECD);
655 		if (reg & E1000_EECD_FLUDONE_I210) {
656 			ret_val = E1000_SUCCESS;
657 			break;
658 		}
659 		udelay(5);
660 	}
661 
662 	return ret_val;
663 }
664 
665 /**
666  *  igb_get_flash_presence_i210 - Check if flash device is detected.
667  *  @hw: pointer to the HW structure
668  *
669  **/
670 bool igb_get_flash_presence_i210(struct e1000_hw *hw)
671 {
672 	u32 eec = 0;
673 	bool ret_val = false;
674 
675 	eec = rd32(E1000_EECD);
676 	if (eec & E1000_EECD_FLASH_DETECTED_I210)
677 		ret_val = true;
678 
679 	return ret_val;
680 }
681 
682 /**
683  *  igb_update_flash_i210 - Commit EEPROM to the flash
684  *  @hw: pointer to the HW structure
685  *
686  **/
687 s32 igb_update_flash_i210(struct e1000_hw *hw)
688 {
689 	s32 ret_val = E1000_SUCCESS;
690 	u32 flup;
691 
692 	ret_val = igb_pool_flash_update_done_i210(hw);
693 	if (ret_val == -E1000_ERR_NVM) {
694 		hw_dbg("Flash update time out\n");
695 		goto out;
696 	}
697 
698 	flup = rd32(E1000_EECD) | E1000_EECD_FLUPD_I210;
699 	wr32(E1000_EECD, flup);
700 
701 	ret_val = igb_pool_flash_update_done_i210(hw);
702 	if (ret_val == E1000_SUCCESS)
703 		hw_dbg("Flash update complete\n");
704 	else
705 		hw_dbg("Flash update time out\n");
706 
707 out:
708 	return ret_val;
709 }
710 
711 /**
712  *  igb_valid_led_default_i210 - Verify a valid default LED config
713  *  @hw: pointer to the HW structure
714  *  @data: pointer to the NVM (EEPROM)
715  *
716  *  Read the EEPROM for the current default LED configuration.  If the
717  *  LED configuration is not valid, set to a valid LED configuration.
718  **/
719 s32 igb_valid_led_default_i210(struct e1000_hw *hw, u16 *data)
720 {
721 	s32 ret_val;
722 
723 	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
724 	if (ret_val) {
725 		hw_dbg("NVM Read Error\n");
726 		goto out;
727 	}
728 
729 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
730 		switch (hw->phy.media_type) {
731 		case e1000_media_type_internal_serdes:
732 			*data = ID_LED_DEFAULT_I210_SERDES;
733 			break;
734 		case e1000_media_type_copper:
735 		default:
736 			*data = ID_LED_DEFAULT_I210;
737 			break;
738 		}
739 	}
740 out:
741 	return ret_val;
742 }
743 
744 /**
745  *  __igb_access_xmdio_reg - Read/write XMDIO register
746  *  @hw: pointer to the HW structure
747  *  @address: XMDIO address to program
748  *  @dev_addr: device address to program
749  *  @data: pointer to value to read/write from/to the XMDIO address
750  *  @read: boolean flag to indicate read or write
751  **/
752 static s32 __igb_access_xmdio_reg(struct e1000_hw *hw, u16 address,
753 				  u8 dev_addr, u16 *data, bool read)
754 {
755 	s32 ret_val = E1000_SUCCESS;
756 
757 	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, dev_addr);
758 	if (ret_val)
759 		return ret_val;
760 
761 	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, address);
762 	if (ret_val)
763 		return ret_val;
764 
765 	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, E1000_MMDAC_FUNC_DATA |
766 							 dev_addr);
767 	if (ret_val)
768 		return ret_val;
769 
770 	if (read)
771 		ret_val = hw->phy.ops.read_reg(hw, E1000_MMDAAD, data);
772 	else
773 		ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, *data);
774 	if (ret_val)
775 		return ret_val;
776 
777 	/* Recalibrate the device back to 0 */
778 	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, 0);
779 	if (ret_val)
780 		return ret_val;
781 
782 	return ret_val;
783 }
784 
785 /**
786  *  igb_read_xmdio_reg - Read XMDIO register
787  *  @hw: pointer to the HW structure
788  *  @addr: XMDIO address to program
789  *  @dev_addr: device address to program
790  *  @data: value to be read from the EMI address
791  **/
792 s32 igb_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 *data)
793 {
794 	return __igb_access_xmdio_reg(hw, addr, dev_addr, data, true);
795 }
796 
797 /**
798  *  igb_write_xmdio_reg - Write XMDIO register
799  *  @hw: pointer to the HW structure
800  *  @addr: XMDIO address to program
801  *  @dev_addr: device address to program
802  *  @data: value to be written to the XMDIO address
803  **/
804 s32 igb_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 data)
805 {
806 	return __igb_access_xmdio_reg(hw, addr, dev_addr, &data, false);
807 }
808 
809 /**
810  *  igb_init_nvm_params_i210 - Init NVM func ptrs.
811  *  @hw: pointer to the HW structure
812  **/
813 s32 igb_init_nvm_params_i210(struct e1000_hw *hw)
814 {
815 	s32 ret_val = 0;
816 	struct e1000_nvm_info *nvm = &hw->nvm;
817 
818 	nvm->ops.acquire = igb_acquire_nvm_i210;
819 	nvm->ops.release = igb_release_nvm_i210;
820 	nvm->ops.valid_led_default = igb_valid_led_default_i210;
821 
822 	/* NVM Function Pointers */
823 	if (igb_get_flash_presence_i210(hw)) {
824 		hw->nvm.type = e1000_nvm_flash_hw;
825 		nvm->ops.read    = igb_read_nvm_srrd_i210;
826 		nvm->ops.write   = igb_write_nvm_srwr_i210;
827 		nvm->ops.validate = igb_validate_nvm_checksum_i210;
828 		nvm->ops.update   = igb_update_nvm_checksum_i210;
829 	} else {
830 		hw->nvm.type = e1000_nvm_invm;
831 		nvm->ops.read     = igb_read_invm_i210;
832 		nvm->ops.write    = NULL;
833 		nvm->ops.validate = NULL;
834 		nvm->ops.update   = NULL;
835 	}
836 	return ret_val;
837 }
838