xref: /openbmc/linux/drivers/net/ethernet/intel/igb/e1000_i210.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3 
4 /* e1000_i210
5  * e1000_i211
6  */
7 
8 #include <linux/types.h>
9 #include <linux/if_ether.h>
10 
11 #include "e1000_hw.h"
12 #include "e1000_i210.h"
13 
14 static s32 igb_update_flash_i210(struct e1000_hw *hw);
15 
16 /**
17  * igb_get_hw_semaphore_i210 - Acquire hardware semaphore
18  *  @hw: pointer to the HW structure
19  *
20  *  Acquire the HW semaphore to access the PHY or NVM
21  */
22 static s32 igb_get_hw_semaphore_i210(struct e1000_hw *hw)
23 {
24 	u32 swsm;
25 	s32 timeout = hw->nvm.word_size + 1;
26 	s32 i = 0;
27 
28 	/* Get the SW semaphore */
29 	while (i < timeout) {
30 		swsm = rd32(E1000_SWSM);
31 		if (!(swsm & E1000_SWSM_SMBI))
32 			break;
33 
34 		udelay(50);
35 		i++;
36 	}
37 
38 	if (i == timeout) {
39 		/* In rare circumstances, the SW semaphore may already be held
40 		 * unintentionally. Clear the semaphore once before giving up.
41 		 */
42 		if (hw->dev_spec._82575.clear_semaphore_once) {
43 			hw->dev_spec._82575.clear_semaphore_once = false;
44 			igb_put_hw_semaphore(hw);
45 			for (i = 0; i < timeout; i++) {
46 				swsm = rd32(E1000_SWSM);
47 				if (!(swsm & E1000_SWSM_SMBI))
48 					break;
49 
50 				udelay(50);
51 			}
52 		}
53 
54 		/* If we do not have the semaphore here, we have to give up. */
55 		if (i == timeout) {
56 			hw_dbg("Driver can't access device - SMBI bit is set.\n");
57 			return -E1000_ERR_NVM;
58 		}
59 	}
60 
61 	/* Get the FW semaphore. */
62 	for (i = 0; i < timeout; i++) {
63 		swsm = rd32(E1000_SWSM);
64 		wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
65 
66 		/* Semaphore acquired if bit latched */
67 		if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
68 			break;
69 
70 		udelay(50);
71 	}
72 
73 	if (i == timeout) {
74 		/* Release semaphores */
75 		igb_put_hw_semaphore(hw);
76 		hw_dbg("Driver can't access the NVM\n");
77 		return -E1000_ERR_NVM;
78 	}
79 
80 	return 0;
81 }
82 
83 /**
84  *  igb_acquire_nvm_i210 - Request for access to EEPROM
85  *  @hw: pointer to the HW structure
86  *
87  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
88  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
89  *  Return successful if access grant bit set, else clear the request for
90  *  EEPROM access and return -E1000_ERR_NVM (-1).
91  **/
92 static s32 igb_acquire_nvm_i210(struct e1000_hw *hw)
93 {
94 	return igb_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
95 }
96 
97 /**
98  *  igb_release_nvm_i210 - Release exclusive access to EEPROM
99  *  @hw: pointer to the HW structure
100  *
101  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
102  *  then release the semaphores acquired.
103  **/
104 static void igb_release_nvm_i210(struct e1000_hw *hw)
105 {
106 	igb_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
107 }
108 
109 /**
110  *  igb_acquire_swfw_sync_i210 - Acquire SW/FW semaphore
111  *  @hw: pointer to the HW structure
112  *  @mask: specifies which semaphore to acquire
113  *
114  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
115  *  will also specify which port we're acquiring the lock for.
116  **/
117 s32 igb_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
118 {
119 	u32 swfw_sync;
120 	u32 swmask = mask;
121 	u32 fwmask = mask << 16;
122 	s32 ret_val = 0;
123 	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
124 
125 	while (i < timeout) {
126 		if (igb_get_hw_semaphore_i210(hw)) {
127 			ret_val = -E1000_ERR_SWFW_SYNC;
128 			goto out;
129 		}
130 
131 		swfw_sync = rd32(E1000_SW_FW_SYNC);
132 		if (!(swfw_sync & (fwmask | swmask)))
133 			break;
134 
135 		/* Firmware currently using resource (fwmask) */
136 		igb_put_hw_semaphore(hw);
137 		mdelay(5);
138 		i++;
139 	}
140 
141 	if (i == timeout) {
142 		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
143 		ret_val = -E1000_ERR_SWFW_SYNC;
144 		goto out;
145 	}
146 
147 	swfw_sync |= swmask;
148 	wr32(E1000_SW_FW_SYNC, swfw_sync);
149 
150 	igb_put_hw_semaphore(hw);
151 out:
152 	return ret_val;
153 }
154 
155 /**
156  *  igb_release_swfw_sync_i210 - Release SW/FW semaphore
157  *  @hw: pointer to the HW structure
158  *  @mask: specifies which semaphore to acquire
159  *
160  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
161  *  will also specify which port we're releasing the lock for.
162  **/
163 void igb_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
164 {
165 	u32 swfw_sync;
166 
167 	while (igb_get_hw_semaphore_i210(hw))
168 		; /* Empty */
169 
170 	swfw_sync = rd32(E1000_SW_FW_SYNC);
171 	swfw_sync &= ~mask;
172 	wr32(E1000_SW_FW_SYNC, swfw_sync);
173 
174 	igb_put_hw_semaphore(hw);
175 }
176 
177 /**
178  *  igb_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register
179  *  @hw: pointer to the HW structure
180  *  @offset: offset of word in the Shadow Ram to read
181  *  @words: number of words to read
182  *  @data: word read from the Shadow Ram
183  *
184  *  Reads a 16 bit word from the Shadow Ram using the EERD register.
185  *  Uses necessary synchronization semaphores.
186  **/
187 static s32 igb_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words,
188 				  u16 *data)
189 {
190 	s32 status = 0;
191 	u16 i, count;
192 
193 	/* We cannot hold synchronization semaphores for too long,
194 	 * because of forceful takeover procedure. However it is more efficient
195 	 * to read in bursts than synchronizing access for each word.
196 	 */
197 	for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
198 		count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
199 			E1000_EERD_EEWR_MAX_COUNT : (words - i);
200 		if (!(hw->nvm.ops.acquire(hw))) {
201 			status = igb_read_nvm_eerd(hw, offset, count,
202 						     data + i);
203 			hw->nvm.ops.release(hw);
204 		} else {
205 			status = E1000_ERR_SWFW_SYNC;
206 		}
207 
208 		if (status)
209 			break;
210 	}
211 
212 	return status;
213 }
214 
215 /**
216  *  igb_write_nvm_srwr - Write to Shadow Ram using EEWR
217  *  @hw: pointer to the HW structure
218  *  @offset: offset within the Shadow Ram to be written to
219  *  @words: number of words to write
220  *  @data: 16 bit word(s) to be written to the Shadow Ram
221  *
222  *  Writes data to Shadow Ram at offset using EEWR register.
223  *
224  *  If igb_update_nvm_checksum is not called after this function , the
225  *  Shadow Ram will most likely contain an invalid checksum.
226  **/
227 static s32 igb_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
228 				u16 *data)
229 {
230 	struct e1000_nvm_info *nvm = &hw->nvm;
231 	u32 i, k, eewr = 0;
232 	u32 attempts = 100000;
233 	s32 ret_val = 0;
234 
235 	/* A check for invalid values:  offset too large, too many words,
236 	 * too many words for the offset, and not enough words.
237 	 */
238 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
239 	    (words == 0)) {
240 		hw_dbg("nvm parameter(s) out of bounds\n");
241 		ret_val = -E1000_ERR_NVM;
242 		goto out;
243 	}
244 
245 	for (i = 0; i < words; i++) {
246 		eewr = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
247 			(data[i] << E1000_NVM_RW_REG_DATA) |
248 			E1000_NVM_RW_REG_START;
249 
250 		wr32(E1000_SRWR, eewr);
251 
252 		for (k = 0; k < attempts; k++) {
253 			if (E1000_NVM_RW_REG_DONE &
254 			    rd32(E1000_SRWR)) {
255 				ret_val = 0;
256 				break;
257 			}
258 			udelay(5);
259 	}
260 
261 		if (ret_val) {
262 			hw_dbg("Shadow RAM write EEWR timed out\n");
263 			break;
264 		}
265 	}
266 
267 out:
268 	return ret_val;
269 }
270 
271 /**
272  *  igb_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR
273  *  @hw: pointer to the HW structure
274  *  @offset: offset within the Shadow RAM to be written to
275  *  @words: number of words to write
276  *  @data: 16 bit word(s) to be written to the Shadow RAM
277  *
278  *  Writes data to Shadow RAM at offset using EEWR register.
279  *
280  *  If e1000_update_nvm_checksum is not called after this function , the
281  *  data will not be committed to FLASH and also Shadow RAM will most likely
282  *  contain an invalid checksum.
283  *
284  *  If error code is returned, data and Shadow RAM may be inconsistent - buffer
285  *  partially written.
286  **/
287 static s32 igb_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words,
288 				   u16 *data)
289 {
290 	s32 status = 0;
291 	u16 i, count;
292 
293 	/* We cannot hold synchronization semaphores for too long,
294 	 * because of forceful takeover procedure. However it is more efficient
295 	 * to write in bursts than synchronizing access for each word.
296 	 */
297 	for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
298 		count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
299 			E1000_EERD_EEWR_MAX_COUNT : (words - i);
300 		if (!(hw->nvm.ops.acquire(hw))) {
301 			status = igb_write_nvm_srwr(hw, offset, count,
302 						      data + i);
303 			hw->nvm.ops.release(hw);
304 		} else {
305 			status = E1000_ERR_SWFW_SYNC;
306 		}
307 
308 		if (status)
309 			break;
310 	}
311 
312 	return status;
313 }
314 
315 /**
316  *  igb_read_invm_word_i210 - Reads OTP
317  *  @hw: pointer to the HW structure
318  *  @address: the word address (aka eeprom offset) to read
319  *  @data: pointer to the data read
320  *
321  *  Reads 16-bit words from the OTP. Return error when the word is not
322  *  stored in OTP.
323  **/
324 static s32 igb_read_invm_word_i210(struct e1000_hw *hw, u8 address, u16 *data)
325 {
326 	s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
327 	u32 invm_dword;
328 	u16 i;
329 	u8 record_type, word_address;
330 
331 	for (i = 0; i < E1000_INVM_SIZE; i++) {
332 		invm_dword = rd32(E1000_INVM_DATA_REG(i));
333 		/* Get record type */
334 		record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword);
335 		if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE)
336 			break;
337 		if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE)
338 			i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS;
339 		if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE)
340 			i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS;
341 		if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) {
342 			word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword);
343 			if (word_address == address) {
344 				*data = INVM_DWORD_TO_WORD_DATA(invm_dword);
345 				hw_dbg("Read INVM Word 0x%02x = %x\n",
346 					  address, *data);
347 				status = 0;
348 				break;
349 			}
350 		}
351 	}
352 	if (status)
353 		hw_dbg("Requested word 0x%02x not found in OTP\n", address);
354 	return status;
355 }
356 
357 /**
358  * igb_read_invm_i210 - Read invm wrapper function for I210/I211
359  *  @hw: pointer to the HW structure
360  *  @words: number of words to read
361  *  @data: pointer to the data read
362  *
363  *  Wrapper function to return data formerly found in the NVM.
364  **/
365 static s32 igb_read_invm_i210(struct e1000_hw *hw, u16 offset,
366 				u16 words __always_unused, u16 *data)
367 {
368 	s32 ret_val = 0;
369 
370 	/* Only the MAC addr is required to be present in the iNVM */
371 	switch (offset) {
372 	case NVM_MAC_ADDR:
373 		ret_val = igb_read_invm_word_i210(hw, (u8)offset, &data[0]);
374 		ret_val |= igb_read_invm_word_i210(hw, (u8)offset+1,
375 						     &data[1]);
376 		ret_val |= igb_read_invm_word_i210(hw, (u8)offset+2,
377 						     &data[2]);
378 		if (ret_val)
379 			hw_dbg("MAC Addr not found in iNVM\n");
380 		break;
381 	case NVM_INIT_CTRL_2:
382 		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
383 		if (ret_val) {
384 			*data = NVM_INIT_CTRL_2_DEFAULT_I211;
385 			ret_val = 0;
386 		}
387 		break;
388 	case NVM_INIT_CTRL_4:
389 		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
390 		if (ret_val) {
391 			*data = NVM_INIT_CTRL_4_DEFAULT_I211;
392 			ret_val = 0;
393 		}
394 		break;
395 	case NVM_LED_1_CFG:
396 		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
397 		if (ret_val) {
398 			*data = NVM_LED_1_CFG_DEFAULT_I211;
399 			ret_val = 0;
400 		}
401 		break;
402 	case NVM_LED_0_2_CFG:
403 		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
404 		if (ret_val) {
405 			*data = NVM_LED_0_2_CFG_DEFAULT_I211;
406 			ret_val = 0;
407 		}
408 		break;
409 	case NVM_ID_LED_SETTINGS:
410 		ret_val = igb_read_invm_word_i210(hw, (u8)offset, data);
411 		if (ret_val) {
412 			*data = ID_LED_RESERVED_FFFF;
413 			ret_val = 0;
414 		}
415 		break;
416 	case NVM_SUB_DEV_ID:
417 		*data = hw->subsystem_device_id;
418 		break;
419 	case NVM_SUB_VEN_ID:
420 		*data = hw->subsystem_vendor_id;
421 		break;
422 	case NVM_DEV_ID:
423 		*data = hw->device_id;
424 		break;
425 	case NVM_VEN_ID:
426 		*data = hw->vendor_id;
427 		break;
428 	default:
429 		hw_dbg("NVM word 0x%02x is not mapped.\n", offset);
430 		*data = NVM_RESERVED_WORD;
431 		break;
432 	}
433 	return ret_val;
434 }
435 
436 /**
437  *  igb_read_invm_version - Reads iNVM version and image type
438  *  @hw: pointer to the HW structure
439  *  @invm_ver: version structure for the version read
440  *
441  *  Reads iNVM version and image type.
442  **/
443 s32 igb_read_invm_version(struct e1000_hw *hw,
444 			  struct e1000_fw_version *invm_ver) {
445 	u32 *record = NULL;
446 	u32 *next_record = NULL;
447 	u32 i = 0;
448 	u32 invm_dword = 0;
449 	u32 invm_blocks = E1000_INVM_SIZE - (E1000_INVM_ULT_BYTES_SIZE /
450 					     E1000_INVM_RECORD_SIZE_IN_BYTES);
451 	u32 buffer[E1000_INVM_SIZE];
452 	s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
453 	u16 version = 0;
454 
455 	/* Read iNVM memory */
456 	for (i = 0; i < E1000_INVM_SIZE; i++) {
457 		invm_dword = rd32(E1000_INVM_DATA_REG(i));
458 		buffer[i] = invm_dword;
459 	}
460 
461 	/* Read version number */
462 	for (i = 1; i < invm_blocks; i++) {
463 		record = &buffer[invm_blocks - i];
464 		next_record = &buffer[invm_blocks - i + 1];
465 
466 		/* Check if we have first version location used */
467 		if ((i == 1) && ((*record & E1000_INVM_VER_FIELD_ONE) == 0)) {
468 			version = 0;
469 			status = 0;
470 			break;
471 		}
472 		/* Check if we have second version location used */
473 		else if ((i == 1) &&
474 			 ((*record & E1000_INVM_VER_FIELD_TWO) == 0)) {
475 			version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
476 			status = 0;
477 			break;
478 		}
479 		/* Check if we have odd version location
480 		 * used and it is the last one used
481 		 */
482 		else if ((((*record & E1000_INVM_VER_FIELD_ONE) == 0) &&
483 			 ((*record & 0x3) == 0)) || (((*record & 0x3) != 0) &&
484 			 (i != 1))) {
485 			version = (*next_record & E1000_INVM_VER_FIELD_TWO)
486 				  >> 13;
487 			status = 0;
488 			break;
489 		}
490 		/* Check if we have even version location
491 		 * used and it is the last one used
492 		 */
493 		else if (((*record & E1000_INVM_VER_FIELD_TWO) == 0) &&
494 			 ((*record & 0x3) == 0)) {
495 			version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3;
496 			status = 0;
497 			break;
498 		}
499 	}
500 
501 	if (!status) {
502 		invm_ver->invm_major = (version & E1000_INVM_MAJOR_MASK)
503 					>> E1000_INVM_MAJOR_SHIFT;
504 		invm_ver->invm_minor = version & E1000_INVM_MINOR_MASK;
505 	}
506 	/* Read Image Type */
507 	for (i = 1; i < invm_blocks; i++) {
508 		record = &buffer[invm_blocks - i];
509 		next_record = &buffer[invm_blocks - i + 1];
510 
511 		/* Check if we have image type in first location used */
512 		if ((i == 1) && ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) {
513 			invm_ver->invm_img_type = 0;
514 			status = 0;
515 			break;
516 		}
517 		/* Check if we have image type in first location used */
518 		else if ((((*record & 0x3) == 0) &&
519 			 ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) ||
520 			 ((((*record & 0x3) != 0) && (i != 1)))) {
521 			invm_ver->invm_img_type =
522 				(*next_record & E1000_INVM_IMGTYPE_FIELD) >> 23;
523 			status = 0;
524 			break;
525 		}
526 	}
527 	return status;
528 }
529 
530 /**
531  *  igb_validate_nvm_checksum_i210 - Validate EEPROM checksum
532  *  @hw: pointer to the HW structure
533  *
534  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
535  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
536  **/
537 static s32 igb_validate_nvm_checksum_i210(struct e1000_hw *hw)
538 {
539 	s32 status = 0;
540 	s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *);
541 
542 	if (!(hw->nvm.ops.acquire(hw))) {
543 
544 		/* Replace the read function with semaphore grabbing with
545 		 * the one that skips this for a while.
546 		 * We have semaphore taken already here.
547 		 */
548 		read_op_ptr = hw->nvm.ops.read;
549 		hw->nvm.ops.read = igb_read_nvm_eerd;
550 
551 		status = igb_validate_nvm_checksum(hw);
552 
553 		/* Revert original read operation. */
554 		hw->nvm.ops.read = read_op_ptr;
555 
556 		hw->nvm.ops.release(hw);
557 	} else {
558 		status = E1000_ERR_SWFW_SYNC;
559 	}
560 
561 	return status;
562 }
563 
564 /**
565  *  igb_update_nvm_checksum_i210 - Update EEPROM checksum
566  *  @hw: pointer to the HW structure
567  *
568  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
569  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
570  *  value to the EEPROM. Next commit EEPROM data onto the Flash.
571  **/
572 static s32 igb_update_nvm_checksum_i210(struct e1000_hw *hw)
573 {
574 	s32 ret_val = 0;
575 	u16 checksum = 0;
576 	u16 i, nvm_data;
577 
578 	/* Read the first word from the EEPROM. If this times out or fails, do
579 	 * not continue or we could be in for a very long wait while every
580 	 * EEPROM read fails
581 	 */
582 	ret_val = igb_read_nvm_eerd(hw, 0, 1, &nvm_data);
583 	if (ret_val) {
584 		hw_dbg("EEPROM read failed\n");
585 		goto out;
586 	}
587 
588 	if (!(hw->nvm.ops.acquire(hw))) {
589 		/* Do not use hw->nvm.ops.write, hw->nvm.ops.read
590 		 * because we do not want to take the synchronization
591 		 * semaphores twice here.
592 		 */
593 
594 		for (i = 0; i < NVM_CHECKSUM_REG; i++) {
595 			ret_val = igb_read_nvm_eerd(hw, i, 1, &nvm_data);
596 			if (ret_val) {
597 				hw->nvm.ops.release(hw);
598 				hw_dbg("NVM Read Error while updating checksum.\n");
599 				goto out;
600 			}
601 			checksum += nvm_data;
602 		}
603 		checksum = (u16) NVM_SUM - checksum;
604 		ret_val = igb_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
605 						&checksum);
606 		if (ret_val) {
607 			hw->nvm.ops.release(hw);
608 			hw_dbg("NVM Write Error while updating checksum.\n");
609 			goto out;
610 		}
611 
612 		hw->nvm.ops.release(hw);
613 
614 		ret_val = igb_update_flash_i210(hw);
615 	} else {
616 		ret_val = -E1000_ERR_SWFW_SYNC;
617 	}
618 out:
619 	return ret_val;
620 }
621 
622 /**
623  *  igb_pool_flash_update_done_i210 - Pool FLUDONE status.
624  *  @hw: pointer to the HW structure
625  *
626  **/
627 static s32 igb_pool_flash_update_done_i210(struct e1000_hw *hw)
628 {
629 	s32 ret_val = -E1000_ERR_NVM;
630 	u32 i, reg;
631 
632 	for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
633 		reg = rd32(E1000_EECD);
634 		if (reg & E1000_EECD_FLUDONE_I210) {
635 			ret_val = 0;
636 			break;
637 		}
638 		udelay(5);
639 	}
640 
641 	return ret_val;
642 }
643 
644 /**
645  *  igb_get_flash_presence_i210 - Check if flash device is detected.
646  *  @hw: pointer to the HW structure
647  *
648  **/
649 bool igb_get_flash_presence_i210(struct e1000_hw *hw)
650 {
651 	u32 eec = 0;
652 	bool ret_val = false;
653 
654 	eec = rd32(E1000_EECD);
655 	if (eec & E1000_EECD_FLASH_DETECTED_I210)
656 		ret_val = true;
657 
658 	return ret_val;
659 }
660 
661 /**
662  *  igb_update_flash_i210 - Commit EEPROM to the flash
663  *  @hw: pointer to the HW structure
664  *
665  **/
666 static s32 igb_update_flash_i210(struct e1000_hw *hw)
667 {
668 	s32 ret_val = 0;
669 	u32 flup;
670 
671 	ret_val = igb_pool_flash_update_done_i210(hw);
672 	if (ret_val == -E1000_ERR_NVM) {
673 		hw_dbg("Flash update time out\n");
674 		goto out;
675 	}
676 
677 	flup = rd32(E1000_EECD) | E1000_EECD_FLUPD_I210;
678 	wr32(E1000_EECD, flup);
679 
680 	ret_val = igb_pool_flash_update_done_i210(hw);
681 	if (ret_val)
682 		hw_dbg("Flash update time out\n");
683 	else
684 		hw_dbg("Flash update complete\n");
685 
686 out:
687 	return ret_val;
688 }
689 
690 /**
691  *  igb_valid_led_default_i210 - Verify a valid default LED config
692  *  @hw: pointer to the HW structure
693  *  @data: pointer to the NVM (EEPROM)
694  *
695  *  Read the EEPROM for the current default LED configuration.  If the
696  *  LED configuration is not valid, set to a valid LED configuration.
697  **/
698 s32 igb_valid_led_default_i210(struct e1000_hw *hw, u16 *data)
699 {
700 	s32 ret_val;
701 
702 	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
703 	if (ret_val) {
704 		hw_dbg("NVM Read Error\n");
705 		goto out;
706 	}
707 
708 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
709 		switch (hw->phy.media_type) {
710 		case e1000_media_type_internal_serdes:
711 			*data = ID_LED_DEFAULT_I210_SERDES;
712 			break;
713 		case e1000_media_type_copper:
714 		default:
715 			*data = ID_LED_DEFAULT_I210;
716 			break;
717 		}
718 	}
719 out:
720 	return ret_val;
721 }
722 
723 /**
724  *  __igb_access_xmdio_reg - Read/write XMDIO register
725  *  @hw: pointer to the HW structure
726  *  @address: XMDIO address to program
727  *  @dev_addr: device address to program
728  *  @data: pointer to value to read/write from/to the XMDIO address
729  *  @read: boolean flag to indicate read or write
730  **/
731 static s32 __igb_access_xmdio_reg(struct e1000_hw *hw, u16 address,
732 				  u8 dev_addr, u16 *data, bool read)
733 {
734 	s32 ret_val = 0;
735 
736 	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, dev_addr);
737 	if (ret_val)
738 		return ret_val;
739 
740 	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, address);
741 	if (ret_val)
742 		return ret_val;
743 
744 	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, E1000_MMDAC_FUNC_DATA |
745 							 dev_addr);
746 	if (ret_val)
747 		return ret_val;
748 
749 	if (read)
750 		ret_val = hw->phy.ops.read_reg(hw, E1000_MMDAAD, data);
751 	else
752 		ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, *data);
753 	if (ret_val)
754 		return ret_val;
755 
756 	/* Recalibrate the device back to 0 */
757 	ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, 0);
758 	if (ret_val)
759 		return ret_val;
760 
761 	return ret_val;
762 }
763 
764 /**
765  *  igb_read_xmdio_reg - Read XMDIO register
766  *  @hw: pointer to the HW structure
767  *  @addr: XMDIO address to program
768  *  @dev_addr: device address to program
769  *  @data: value to be read from the EMI address
770  **/
771 s32 igb_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 *data)
772 {
773 	return __igb_access_xmdio_reg(hw, addr, dev_addr, data, true);
774 }
775 
776 /**
777  *  igb_write_xmdio_reg - Write XMDIO register
778  *  @hw: pointer to the HW structure
779  *  @addr: XMDIO address to program
780  *  @dev_addr: device address to program
781  *  @data: value to be written to the XMDIO address
782  **/
783 s32 igb_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 data)
784 {
785 	return __igb_access_xmdio_reg(hw, addr, dev_addr, &data, false);
786 }
787 
788 /**
789  *  igb_init_nvm_params_i210 - Init NVM func ptrs.
790  *  @hw: pointer to the HW structure
791  **/
792 s32 igb_init_nvm_params_i210(struct e1000_hw *hw)
793 {
794 	s32 ret_val = 0;
795 	struct e1000_nvm_info *nvm = &hw->nvm;
796 
797 	nvm->ops.acquire = igb_acquire_nvm_i210;
798 	nvm->ops.release = igb_release_nvm_i210;
799 	nvm->ops.valid_led_default = igb_valid_led_default_i210;
800 
801 	/* NVM Function Pointers */
802 	if (igb_get_flash_presence_i210(hw)) {
803 		hw->nvm.type = e1000_nvm_flash_hw;
804 		nvm->ops.read    = igb_read_nvm_srrd_i210;
805 		nvm->ops.write   = igb_write_nvm_srwr_i210;
806 		nvm->ops.validate = igb_validate_nvm_checksum_i210;
807 		nvm->ops.update   = igb_update_nvm_checksum_i210;
808 	} else {
809 		hw->nvm.type = e1000_nvm_invm;
810 		nvm->ops.read     = igb_read_invm_i210;
811 		nvm->ops.write    = NULL;
812 		nvm->ops.validate = NULL;
813 		nvm->ops.update   = NULL;
814 	}
815 	return ret_val;
816 }
817 
818 /**
819  * igb_pll_workaround_i210
820  * @hw: pointer to the HW structure
821  *
822  * Works around an errata in the PLL circuit where it occasionally
823  * provides the wrong clock frequency after power up.
824  **/
825 s32 igb_pll_workaround_i210(struct e1000_hw *hw)
826 {
827 	s32 ret_val;
828 	u32 wuc, mdicnfg, ctrl, ctrl_ext, reg_val;
829 	u16 nvm_word, phy_word, pci_word, tmp_nvm;
830 	int i;
831 
832 	/* Get and set needed register values */
833 	wuc = rd32(E1000_WUC);
834 	mdicnfg = rd32(E1000_MDICNFG);
835 	reg_val = mdicnfg & ~E1000_MDICNFG_EXT_MDIO;
836 	wr32(E1000_MDICNFG, reg_val);
837 
838 	/* Get data from NVM, or set default */
839 	ret_val = igb_read_invm_word_i210(hw, E1000_INVM_AUTOLOAD,
840 					  &nvm_word);
841 	if (ret_val)
842 		nvm_word = E1000_INVM_DEFAULT_AL;
843 	tmp_nvm = nvm_word | E1000_INVM_PLL_WO_VAL;
844 	igb_write_phy_reg_82580(hw, I347AT4_PAGE_SELECT, E1000_PHY_PLL_FREQ_PAGE);
845 	phy_word = E1000_PHY_PLL_UNCONF;
846 	for (i = 0; i < E1000_MAX_PLL_TRIES; i++) {
847 		/* check current state directly from internal PHY */
848 		igb_read_phy_reg_82580(hw, E1000_PHY_PLL_FREQ_REG, &phy_word);
849 		if ((phy_word & E1000_PHY_PLL_UNCONF)
850 		    != E1000_PHY_PLL_UNCONF) {
851 			ret_val = 0;
852 			break;
853 		} else {
854 			ret_val = -E1000_ERR_PHY;
855 		}
856 		/* directly reset the internal PHY */
857 		ctrl = rd32(E1000_CTRL);
858 		wr32(E1000_CTRL, ctrl|E1000_CTRL_PHY_RST);
859 
860 		ctrl_ext = rd32(E1000_CTRL_EXT);
861 		ctrl_ext |= (E1000_CTRL_EXT_PHYPDEN | E1000_CTRL_EXT_SDLPE);
862 		wr32(E1000_CTRL_EXT, ctrl_ext);
863 
864 		wr32(E1000_WUC, 0);
865 		reg_val = (E1000_INVM_AUTOLOAD << 4) | (tmp_nvm << 16);
866 		wr32(E1000_EEARBC_I210, reg_val);
867 
868 		igb_read_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
869 		pci_word |= E1000_PCI_PMCSR_D3;
870 		igb_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
871 		usleep_range(1000, 2000);
872 		pci_word &= ~E1000_PCI_PMCSR_D3;
873 		igb_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word);
874 		reg_val = (E1000_INVM_AUTOLOAD << 4) | (nvm_word << 16);
875 		wr32(E1000_EEARBC_I210, reg_val);
876 
877 		/* restore WUC register */
878 		wr32(E1000_WUC, wuc);
879 	}
880 	igb_write_phy_reg_82580(hw, I347AT4_PAGE_SELECT, 0);
881 	/* restore MDICNFG setting */
882 	wr32(E1000_MDICNFG, mdicnfg);
883 	return ret_val;
884 }
885 
886 /**
887  *  igb_get_cfg_done_i210 - Read config done bit
888  *  @hw: pointer to the HW structure
889  *
890  *  Read the management control register for the config done bit for
891  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
892  *  to read the config done bit, so an error is *ONLY* logged and returns
893  *  0.  If we were to return with error, EEPROM-less silicon
894  *  would not be able to be reset or change link.
895  **/
896 s32 igb_get_cfg_done_i210(struct e1000_hw *hw)
897 {
898 	s32 timeout = PHY_CFG_TIMEOUT;
899 	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
900 
901 	while (timeout) {
902 		if (rd32(E1000_EEMNGCTL_I210) & mask)
903 			break;
904 		usleep_range(1000, 2000);
905 		timeout--;
906 	}
907 	if (!timeout)
908 		hw_dbg("MNG configuration cycle has not completed.\n");
909 
910 	return 0;
911 }
912