xref: /openbmc/linux/drivers/net/ethernet/intel/igb/e1000_82575.c (revision f677b30b487ca3763c3de3f1b4d8c976c2961cd1)
1 /*******************************************************************************
2 
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2013 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 /* e1000_82575
29  * e1000_82576
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/types.h>
35 #include <linux/if_ether.h>
36 #include <linux/i2c.h>
37 
38 #include "e1000_mac.h"
39 #include "e1000_82575.h"
40 #include "e1000_i210.h"
41 
42 static s32  igb_get_invariants_82575(struct e1000_hw *);
43 static s32  igb_acquire_phy_82575(struct e1000_hw *);
44 static void igb_release_phy_82575(struct e1000_hw *);
45 static s32  igb_acquire_nvm_82575(struct e1000_hw *);
46 static void igb_release_nvm_82575(struct e1000_hw *);
47 static s32  igb_check_for_link_82575(struct e1000_hw *);
48 static s32  igb_get_cfg_done_82575(struct e1000_hw *);
49 static s32  igb_init_hw_82575(struct e1000_hw *);
50 static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
51 static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
52 static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
53 static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
54 static s32  igb_reset_hw_82575(struct e1000_hw *);
55 static s32  igb_reset_hw_82580(struct e1000_hw *);
56 static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
57 static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
58 static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
59 static s32  igb_setup_copper_link_82575(struct e1000_hw *);
60 static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
61 static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
62 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
63 static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
64 static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
65 						 u16 *);
66 static s32  igb_get_phy_id_82575(struct e1000_hw *);
67 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
68 static bool igb_sgmii_active_82575(struct e1000_hw *);
69 static s32  igb_reset_init_script_82575(struct e1000_hw *);
70 static s32  igb_read_mac_addr_82575(struct e1000_hw *);
71 static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
72 static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
73 static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
74 static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
75 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
76 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
77 static const u16 e1000_82580_rxpbs_table[] =
78 	{ 36, 72, 144, 1, 2, 4, 8, 16,
79 	  35, 70, 140 };
80 #define E1000_82580_RXPBS_TABLE_SIZE \
81 	(sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
82 
83 /**
84  *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
85  *  @hw: pointer to the HW structure
86  *
87  *  Called to determine if the I2C pins are being used for I2C or as an
88  *  external MDIO interface since the two options are mutually exclusive.
89  **/
90 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
91 {
92 	u32 reg = 0;
93 	bool ext_mdio = false;
94 
95 	switch (hw->mac.type) {
96 	case e1000_82575:
97 	case e1000_82576:
98 		reg = rd32(E1000_MDIC);
99 		ext_mdio = !!(reg & E1000_MDIC_DEST);
100 		break;
101 	case e1000_82580:
102 	case e1000_i350:
103 	case e1000_i354:
104 	case e1000_i210:
105 	case e1000_i211:
106 		reg = rd32(E1000_MDICNFG);
107 		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
108 		break;
109 	default:
110 		break;
111 	}
112 	return ext_mdio;
113 }
114 
115 /**
116  *  igb_init_phy_params_82575 - Init PHY func ptrs.
117  *  @hw: pointer to the HW structure
118  **/
119 static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
120 {
121 	struct e1000_phy_info *phy = &hw->phy;
122 	s32 ret_val = 0;
123 	u32 ctrl_ext;
124 
125 	if (hw->phy.media_type != e1000_media_type_copper) {
126 		phy->type = e1000_phy_none;
127 		goto out;
128 	}
129 
130 	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
131 	phy->reset_delay_us	= 100;
132 
133 	ctrl_ext = rd32(E1000_CTRL_EXT);
134 
135 	if (igb_sgmii_active_82575(hw)) {
136 		phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
137 		ctrl_ext |= E1000_CTRL_I2C_ENA;
138 	} else {
139 		phy->ops.reset = igb_phy_hw_reset;
140 		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
141 	}
142 
143 	wr32(E1000_CTRL_EXT, ctrl_ext);
144 	igb_reset_mdicnfg_82580(hw);
145 
146 	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
147 		phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
148 		phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
149 	} else {
150 		switch (hw->mac.type) {
151 		case e1000_82580:
152 		case e1000_i350:
153 		case e1000_i354:
154 			phy->ops.read_reg = igb_read_phy_reg_82580;
155 			phy->ops.write_reg = igb_write_phy_reg_82580;
156 			break;
157 		case e1000_i210:
158 		case e1000_i211:
159 			phy->ops.read_reg = igb_read_phy_reg_gs40g;
160 			phy->ops.write_reg = igb_write_phy_reg_gs40g;
161 			break;
162 		default:
163 			phy->ops.read_reg = igb_read_phy_reg_igp;
164 			phy->ops.write_reg = igb_write_phy_reg_igp;
165 		}
166 	}
167 
168 	/* set lan id */
169 	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
170 			E1000_STATUS_FUNC_SHIFT;
171 
172 	/* Set phy->phy_addr and phy->id. */
173 	ret_val = igb_get_phy_id_82575(hw);
174 	if (ret_val)
175 		return ret_val;
176 
177 	/* Verify phy id and set remaining function pointers */
178 	switch (phy->id) {
179 	case M88E1543_E_PHY_ID:
180 	case I347AT4_E_PHY_ID:
181 	case M88E1112_E_PHY_ID:
182 	case M88E1111_I_PHY_ID:
183 		phy->type		= e1000_phy_m88;
184 		phy->ops.check_polarity	= igb_check_polarity_m88;
185 		phy->ops.get_phy_info	= igb_get_phy_info_m88;
186 		if (phy->id != M88E1111_I_PHY_ID)
187 			phy->ops.get_cable_length =
188 					 igb_get_cable_length_m88_gen2;
189 		else
190 			phy->ops.get_cable_length = igb_get_cable_length_m88;
191 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
192 		break;
193 	case IGP03E1000_E_PHY_ID:
194 		phy->type = e1000_phy_igp_3;
195 		phy->ops.get_phy_info = igb_get_phy_info_igp;
196 		phy->ops.get_cable_length = igb_get_cable_length_igp_2;
197 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
198 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
199 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
200 		break;
201 	case I82580_I_PHY_ID:
202 	case I350_I_PHY_ID:
203 		phy->type = e1000_phy_82580;
204 		phy->ops.force_speed_duplex =
205 					 igb_phy_force_speed_duplex_82580;
206 		phy->ops.get_cable_length = igb_get_cable_length_82580;
207 		phy->ops.get_phy_info = igb_get_phy_info_82580;
208 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
209 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
210 		break;
211 	case I210_I_PHY_ID:
212 		phy->type		= e1000_phy_i210;
213 		phy->ops.check_polarity	= igb_check_polarity_m88;
214 		phy->ops.get_phy_info	= igb_get_phy_info_m88;
215 		phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
216 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
217 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
218 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
219 		break;
220 	default:
221 		ret_val = -E1000_ERR_PHY;
222 		goto out;
223 	}
224 
225 out:
226 	return ret_val;
227 }
228 
229 /**
230  *  igb_init_nvm_params_82575 - Init NVM func ptrs.
231  *  @hw: pointer to the HW structure
232  **/
233 static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
234 {
235 	struct e1000_nvm_info *nvm = &hw->nvm;
236 	u32 eecd = rd32(E1000_EECD);
237 	u16 size;
238 
239 	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
240 		     E1000_EECD_SIZE_EX_SHIFT);
241 
242 	/* Added to a constant, "size" becomes the left-shift value
243 	 * for setting word_size.
244 	 */
245 	size += NVM_WORD_SIZE_BASE_SHIFT;
246 
247 	/* Just in case size is out of range, cap it to the largest
248 	 * EEPROM size supported
249 	 */
250 	if (size > 15)
251 		size = 15;
252 
253 	nvm->word_size = 1 << size;
254 	nvm->opcode_bits = 8;
255 	nvm->delay_usec = 1;
256 
257 	switch (nvm->override) {
258 	case e1000_nvm_override_spi_large:
259 		nvm->page_size = 32;
260 		nvm->address_bits = 16;
261 		break;
262 	case e1000_nvm_override_spi_small:
263 		nvm->page_size = 8;
264 		nvm->address_bits = 8;
265 		break;
266 	default:
267 		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
268 		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
269 				    16 : 8;
270 		break;
271 	}
272 	if (nvm->word_size == (1 << 15))
273 		nvm->page_size = 128;
274 
275 	nvm->type = e1000_nvm_eeprom_spi;
276 
277 	/* NVM Function Pointers */
278 	nvm->ops.acquire = igb_acquire_nvm_82575;
279 	nvm->ops.release = igb_release_nvm_82575;
280 	nvm->ops.write = igb_write_nvm_spi;
281 	nvm->ops.validate = igb_validate_nvm_checksum;
282 	nvm->ops.update = igb_update_nvm_checksum;
283 	if (nvm->word_size < (1 << 15))
284 		nvm->ops.read = igb_read_nvm_eerd;
285 	else
286 		nvm->ops.read = igb_read_nvm_spi;
287 
288 	/* override generic family function pointers for specific descendants */
289 	switch (hw->mac.type) {
290 	case e1000_82580:
291 		nvm->ops.validate = igb_validate_nvm_checksum_82580;
292 		nvm->ops.update = igb_update_nvm_checksum_82580;
293 		break;
294 	case e1000_i354:
295 	case e1000_i350:
296 		nvm->ops.validate = igb_validate_nvm_checksum_i350;
297 		nvm->ops.update = igb_update_nvm_checksum_i350;
298 		break;
299 	default:
300 		break;
301 	}
302 
303 	return 0;
304 }
305 
306 /**
307  *  igb_init_mac_params_82575 - Init MAC func ptrs.
308  *  @hw: pointer to the HW structure
309  **/
310 static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
311 {
312 	struct e1000_mac_info *mac = &hw->mac;
313 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
314 
315 	/* Set mta register count */
316 	mac->mta_reg_count = 128;
317 	/* Set rar entry count */
318 	switch (mac->type) {
319 	case e1000_82576:
320 		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
321 		break;
322 	case e1000_82580:
323 		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
324 		break;
325 	case e1000_i350:
326 	case e1000_i354:
327 		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
328 		break;
329 	default:
330 		mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
331 		break;
332 	}
333 	/* reset */
334 	if (mac->type >= e1000_82580)
335 		mac->ops.reset_hw = igb_reset_hw_82580;
336 	else
337 		mac->ops.reset_hw = igb_reset_hw_82575;
338 
339 	if (mac->type >= e1000_i210) {
340 		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
341 		mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
342 
343 	} else {
344 		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
345 		mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
346 	}
347 
348 	/* Set if part includes ASF firmware */
349 	mac->asf_firmware_present = true;
350 	/* Set if manageability features are enabled. */
351 	mac->arc_subsystem_valid =
352 		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
353 			? true : false;
354 	/* enable EEE on i350 parts and later parts */
355 	if (mac->type >= e1000_i350)
356 		dev_spec->eee_disable = false;
357 	else
358 		dev_spec->eee_disable = true;
359 	/* Allow a single clear of the SW semaphore on I210 and newer */
360 	if (mac->type >= e1000_i210)
361 		dev_spec->clear_semaphore_once = true;
362 	/* physical interface link setup */
363 	mac->ops.setup_physical_interface =
364 		(hw->phy.media_type == e1000_media_type_copper)
365 			? igb_setup_copper_link_82575
366 			: igb_setup_serdes_link_82575;
367 
368 	return 0;
369 }
370 
371 /**
372  *  igb_set_sfp_media_type_82575 - derives SFP module media type.
373  *  @hw: pointer to the HW structure
374  *
375  *  The media type is chosen based on SFP module.
376  *  compatibility flags retrieved from SFP ID EEPROM.
377  **/
378 static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
379 {
380 	s32 ret_val = E1000_ERR_CONFIG;
381 	u32 ctrl_ext = 0;
382 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
383 	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
384 	u8 tranceiver_type = 0;
385 	s32 timeout = 3;
386 
387 	/* Turn I2C interface ON and power on sfp cage */
388 	ctrl_ext = rd32(E1000_CTRL_EXT);
389 	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
390 	wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
391 
392 	wrfl();
393 
394 	/* Read SFP module data */
395 	while (timeout) {
396 		ret_val = igb_read_sfp_data_byte(hw,
397 			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
398 			&tranceiver_type);
399 		if (ret_val == 0)
400 			break;
401 		msleep(100);
402 		timeout--;
403 	}
404 	if (ret_val != 0)
405 		goto out;
406 
407 	ret_val = igb_read_sfp_data_byte(hw,
408 			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
409 			(u8 *)eth_flags);
410 	if (ret_val != 0)
411 		goto out;
412 
413 	/* Check if there is some SFP module plugged and powered */
414 	if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
415 	    (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
416 		dev_spec->module_plugged = true;
417 		if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
418 			hw->phy.media_type = e1000_media_type_internal_serdes;
419 		} else if (eth_flags->e100_base_fx) {
420 			dev_spec->sgmii_active = true;
421 			hw->phy.media_type = e1000_media_type_internal_serdes;
422 		} else if (eth_flags->e1000_base_t) {
423 			dev_spec->sgmii_active = true;
424 			hw->phy.media_type = e1000_media_type_copper;
425 		} else {
426 			hw->phy.media_type = e1000_media_type_unknown;
427 			hw_dbg("PHY module has not been recognized\n");
428 			goto out;
429 		}
430 	} else {
431 		hw->phy.media_type = e1000_media_type_unknown;
432 	}
433 	ret_val = 0;
434 out:
435 	/* Restore I2C interface setting */
436 	wr32(E1000_CTRL_EXT, ctrl_ext);
437 	return ret_val;
438 }
439 
440 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
441 {
442 	struct e1000_mac_info *mac = &hw->mac;
443 	struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
444 	s32 ret_val;
445 	u32 ctrl_ext = 0;
446 	u32 link_mode = 0;
447 
448 	switch (hw->device_id) {
449 	case E1000_DEV_ID_82575EB_COPPER:
450 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
451 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
452 		mac->type = e1000_82575;
453 		break;
454 	case E1000_DEV_ID_82576:
455 	case E1000_DEV_ID_82576_NS:
456 	case E1000_DEV_ID_82576_NS_SERDES:
457 	case E1000_DEV_ID_82576_FIBER:
458 	case E1000_DEV_ID_82576_SERDES:
459 	case E1000_DEV_ID_82576_QUAD_COPPER:
460 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
461 	case E1000_DEV_ID_82576_SERDES_QUAD:
462 		mac->type = e1000_82576;
463 		break;
464 	case E1000_DEV_ID_82580_COPPER:
465 	case E1000_DEV_ID_82580_FIBER:
466 	case E1000_DEV_ID_82580_QUAD_FIBER:
467 	case E1000_DEV_ID_82580_SERDES:
468 	case E1000_DEV_ID_82580_SGMII:
469 	case E1000_DEV_ID_82580_COPPER_DUAL:
470 	case E1000_DEV_ID_DH89XXCC_SGMII:
471 	case E1000_DEV_ID_DH89XXCC_SERDES:
472 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
473 	case E1000_DEV_ID_DH89XXCC_SFP:
474 		mac->type = e1000_82580;
475 		break;
476 	case E1000_DEV_ID_I350_COPPER:
477 	case E1000_DEV_ID_I350_FIBER:
478 	case E1000_DEV_ID_I350_SERDES:
479 	case E1000_DEV_ID_I350_SGMII:
480 		mac->type = e1000_i350;
481 		break;
482 	case E1000_DEV_ID_I210_COPPER:
483 	case E1000_DEV_ID_I210_FIBER:
484 	case E1000_DEV_ID_I210_SERDES:
485 	case E1000_DEV_ID_I210_SGMII:
486 	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
487 	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
488 		mac->type = e1000_i210;
489 		break;
490 	case E1000_DEV_ID_I211_COPPER:
491 		mac->type = e1000_i211;
492 		break;
493 	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
494 	case E1000_DEV_ID_I354_SGMII:
495 	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
496 		mac->type = e1000_i354;
497 		break;
498 	default:
499 		return -E1000_ERR_MAC_INIT;
500 		break;
501 	}
502 
503 	/* Set media type */
504 	/* The 82575 uses bits 22:23 for link mode. The mode can be changed
505 	 * based on the EEPROM. We cannot rely upon device ID. There
506 	 * is no distinguishable difference between fiber and internal
507 	 * SerDes mode on the 82575. There can be an external PHY attached
508 	 * on the SGMII interface. For this, we'll set sgmii_active to true.
509 	 */
510 	hw->phy.media_type = e1000_media_type_copper;
511 	dev_spec->sgmii_active = false;
512 	dev_spec->module_plugged = false;
513 
514 	ctrl_ext = rd32(E1000_CTRL_EXT);
515 
516 	link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
517 	switch (link_mode) {
518 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
519 		hw->phy.media_type = e1000_media_type_internal_serdes;
520 		break;
521 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
522 		/* Get phy control interface type set (MDIO vs. I2C)*/
523 		if (igb_sgmii_uses_mdio_82575(hw)) {
524 			hw->phy.media_type = e1000_media_type_copper;
525 			dev_spec->sgmii_active = true;
526 			break;
527 		}
528 		/* fall through for I2C based SGMII */
529 	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
530 		/* read media type from SFP EEPROM */
531 		ret_val = igb_set_sfp_media_type_82575(hw);
532 		if ((ret_val != 0) ||
533 		    (hw->phy.media_type == e1000_media_type_unknown)) {
534 			/* If media type was not identified then return media
535 			 * type defined by the CTRL_EXT settings.
536 			 */
537 			hw->phy.media_type = e1000_media_type_internal_serdes;
538 
539 			if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
540 				hw->phy.media_type = e1000_media_type_copper;
541 				dev_spec->sgmii_active = true;
542 			}
543 
544 			break;
545 		}
546 
547 		/* do not change link mode for 100BaseFX */
548 		if (dev_spec->eth_flags.e100_base_fx)
549 			break;
550 
551 		/* change current link mode setting */
552 		ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
553 
554 		if (hw->phy.media_type == e1000_media_type_copper)
555 			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
556 		else
557 			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
558 
559 		wr32(E1000_CTRL_EXT, ctrl_ext);
560 
561 		break;
562 	default:
563 		break;
564 	}
565 
566 	/* mac initialization and operations */
567 	ret_val = igb_init_mac_params_82575(hw);
568 	if (ret_val)
569 		goto out;
570 
571 	/* NVM initialization */
572 	ret_val = igb_init_nvm_params_82575(hw);
573 	switch (hw->mac.type) {
574 	case e1000_i210:
575 	case e1000_i211:
576 		ret_val = igb_init_nvm_params_i210(hw);
577 		break;
578 	default:
579 		break;
580 	}
581 
582 	if (ret_val)
583 		goto out;
584 
585 	/* if part supports SR-IOV then initialize mailbox parameters */
586 	switch (mac->type) {
587 	case e1000_82576:
588 	case e1000_i350:
589 		igb_init_mbx_params_pf(hw);
590 		break;
591 	default:
592 		break;
593 	}
594 
595 	/* setup PHY parameters */
596 	ret_val = igb_init_phy_params_82575(hw);
597 
598 out:
599 	return ret_val;
600 }
601 
602 /**
603  *  igb_acquire_phy_82575 - Acquire rights to access PHY
604  *  @hw: pointer to the HW structure
605  *
606  *  Acquire access rights to the correct PHY.  This is a
607  *  function pointer entry point called by the api module.
608  **/
609 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
610 {
611 	u16 mask = E1000_SWFW_PHY0_SM;
612 
613 	if (hw->bus.func == E1000_FUNC_1)
614 		mask = E1000_SWFW_PHY1_SM;
615 	else if (hw->bus.func == E1000_FUNC_2)
616 		mask = E1000_SWFW_PHY2_SM;
617 	else if (hw->bus.func == E1000_FUNC_3)
618 		mask = E1000_SWFW_PHY3_SM;
619 
620 	return hw->mac.ops.acquire_swfw_sync(hw, mask);
621 }
622 
623 /**
624  *  igb_release_phy_82575 - Release rights to access PHY
625  *  @hw: pointer to the HW structure
626  *
627  *  A wrapper to release access rights to the correct PHY.  This is a
628  *  function pointer entry point called by the api module.
629  **/
630 static void igb_release_phy_82575(struct e1000_hw *hw)
631 {
632 	u16 mask = E1000_SWFW_PHY0_SM;
633 
634 	if (hw->bus.func == E1000_FUNC_1)
635 		mask = E1000_SWFW_PHY1_SM;
636 	else if (hw->bus.func == E1000_FUNC_2)
637 		mask = E1000_SWFW_PHY2_SM;
638 	else if (hw->bus.func == E1000_FUNC_3)
639 		mask = E1000_SWFW_PHY3_SM;
640 
641 	hw->mac.ops.release_swfw_sync(hw, mask);
642 }
643 
644 /**
645  *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
646  *  @hw: pointer to the HW structure
647  *  @offset: register offset to be read
648  *  @data: pointer to the read data
649  *
650  *  Reads the PHY register at offset using the serial gigabit media independent
651  *  interface and stores the retrieved information in data.
652  **/
653 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
654 					  u16 *data)
655 {
656 	s32 ret_val = -E1000_ERR_PARAM;
657 
658 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
659 		hw_dbg("PHY Address %u is out of range\n", offset);
660 		goto out;
661 	}
662 
663 	ret_val = hw->phy.ops.acquire(hw);
664 	if (ret_val)
665 		goto out;
666 
667 	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
668 
669 	hw->phy.ops.release(hw);
670 
671 out:
672 	return ret_val;
673 }
674 
675 /**
676  *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
677  *  @hw: pointer to the HW structure
678  *  @offset: register offset to write to
679  *  @data: data to write at register offset
680  *
681  *  Writes the data to PHY register at the offset using the serial gigabit
682  *  media independent interface.
683  **/
684 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
685 					   u16 data)
686 {
687 	s32 ret_val = -E1000_ERR_PARAM;
688 
689 
690 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
691 		hw_dbg("PHY Address %d is out of range\n", offset);
692 		goto out;
693 	}
694 
695 	ret_val = hw->phy.ops.acquire(hw);
696 	if (ret_val)
697 		goto out;
698 
699 	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
700 
701 	hw->phy.ops.release(hw);
702 
703 out:
704 	return ret_val;
705 }
706 
707 /**
708  *  igb_get_phy_id_82575 - Retrieve PHY addr and id
709  *  @hw: pointer to the HW structure
710  *
711  *  Retrieves the PHY address and ID for both PHY's which do and do not use
712  *  sgmi interface.
713  **/
714 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
715 {
716 	struct e1000_phy_info *phy = &hw->phy;
717 	s32  ret_val = 0;
718 	u16 phy_id;
719 	u32 ctrl_ext;
720 	u32 mdic;
721 
722 	/* Extra read required for some PHY's on i354 */
723 	if (hw->mac.type == e1000_i354)
724 		igb_get_phy_id(hw);
725 
726 	/* For SGMII PHYs, we try the list of possible addresses until
727 	 * we find one that works.  For non-SGMII PHYs
728 	 * (e.g. integrated copper PHYs), an address of 1 should
729 	 * work.  The result of this function should mean phy->phy_addr
730 	 * and phy->id are set correctly.
731 	 */
732 	if (!(igb_sgmii_active_82575(hw))) {
733 		phy->addr = 1;
734 		ret_val = igb_get_phy_id(hw);
735 		goto out;
736 	}
737 
738 	if (igb_sgmii_uses_mdio_82575(hw)) {
739 		switch (hw->mac.type) {
740 		case e1000_82575:
741 		case e1000_82576:
742 			mdic = rd32(E1000_MDIC);
743 			mdic &= E1000_MDIC_PHY_MASK;
744 			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
745 			break;
746 		case e1000_82580:
747 		case e1000_i350:
748 		case e1000_i354:
749 		case e1000_i210:
750 		case e1000_i211:
751 			mdic = rd32(E1000_MDICNFG);
752 			mdic &= E1000_MDICNFG_PHY_MASK;
753 			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
754 			break;
755 		default:
756 			ret_val = -E1000_ERR_PHY;
757 			goto out;
758 			break;
759 		}
760 		ret_val = igb_get_phy_id(hw);
761 		goto out;
762 	}
763 
764 	/* Power on sgmii phy if it is disabled */
765 	ctrl_ext = rd32(E1000_CTRL_EXT);
766 	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
767 	wrfl();
768 	msleep(300);
769 
770 	/* The address field in the I2CCMD register is 3 bits and 0 is invalid.
771 	 * Therefore, we need to test 1-7
772 	 */
773 	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
774 		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
775 		if (ret_val == 0) {
776 			hw_dbg("Vendor ID 0x%08X read at address %u\n",
777 			       phy_id, phy->addr);
778 			/* At the time of this writing, The M88 part is
779 			 * the only supported SGMII PHY product.
780 			 */
781 			if (phy_id == M88_VENDOR)
782 				break;
783 		} else {
784 			hw_dbg("PHY address %u was unreadable\n", phy->addr);
785 		}
786 	}
787 
788 	/* A valid PHY type couldn't be found. */
789 	if (phy->addr == 8) {
790 		phy->addr = 0;
791 		ret_val = -E1000_ERR_PHY;
792 		goto out;
793 	} else {
794 		ret_val = igb_get_phy_id(hw);
795 	}
796 
797 	/* restore previous sfp cage power state */
798 	wr32(E1000_CTRL_EXT, ctrl_ext);
799 
800 out:
801 	return ret_val;
802 }
803 
804 /**
805  *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
806  *  @hw: pointer to the HW structure
807  *
808  *  Resets the PHY using the serial gigabit media independent interface.
809  **/
810 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
811 {
812 	s32 ret_val;
813 
814 	/* This isn't a true "hard" reset, but is the only reset
815 	 * available to us at this time.
816 	 */
817 
818 	hw_dbg("Soft resetting SGMII attached PHY...\n");
819 
820 	/* SFP documentation requires the following to configure the SPF module
821 	 * to work on SGMII.  No further documentation is given.
822 	 */
823 	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
824 	if (ret_val)
825 		goto out;
826 
827 	ret_val = igb_phy_sw_reset(hw);
828 
829 out:
830 	return ret_val;
831 }
832 
833 /**
834  *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
835  *  @hw: pointer to the HW structure
836  *  @active: true to enable LPLU, false to disable
837  *
838  *  Sets the LPLU D0 state according to the active flag.  When
839  *  activating LPLU this function also disables smart speed
840  *  and vice versa.  LPLU will not be activated unless the
841  *  device autonegotiation advertisement meets standards of
842  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
843  *  This is a function pointer entry point only called by
844  *  PHY setup routines.
845  **/
846 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
847 {
848 	struct e1000_phy_info *phy = &hw->phy;
849 	s32 ret_val;
850 	u16 data;
851 
852 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
853 	if (ret_val)
854 		goto out;
855 
856 	if (active) {
857 		data |= IGP02E1000_PM_D0_LPLU;
858 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
859 						 data);
860 		if (ret_val)
861 			goto out;
862 
863 		/* When LPLU is enabled, we should disable SmartSpeed */
864 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
865 						&data);
866 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
867 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
868 						 data);
869 		if (ret_val)
870 			goto out;
871 	} else {
872 		data &= ~IGP02E1000_PM_D0_LPLU;
873 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
874 						 data);
875 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
876 		 * during Dx states where the power conservation is most
877 		 * important.  During driver activity we should enable
878 		 * SmartSpeed, so performance is maintained.
879 		 */
880 		if (phy->smart_speed == e1000_smart_speed_on) {
881 			ret_val = phy->ops.read_reg(hw,
882 					IGP01E1000_PHY_PORT_CONFIG, &data);
883 			if (ret_val)
884 				goto out;
885 
886 			data |= IGP01E1000_PSCFR_SMART_SPEED;
887 			ret_val = phy->ops.write_reg(hw,
888 					IGP01E1000_PHY_PORT_CONFIG, data);
889 			if (ret_val)
890 				goto out;
891 		} else if (phy->smart_speed == e1000_smart_speed_off) {
892 			ret_val = phy->ops.read_reg(hw,
893 					IGP01E1000_PHY_PORT_CONFIG, &data);
894 			if (ret_val)
895 				goto out;
896 
897 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
898 			ret_val = phy->ops.write_reg(hw,
899 					IGP01E1000_PHY_PORT_CONFIG, data);
900 			if (ret_val)
901 				goto out;
902 		}
903 	}
904 
905 out:
906 	return ret_val;
907 }
908 
909 /**
910  *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
911  *  @hw: pointer to the HW structure
912  *  @active: true to enable LPLU, false to disable
913  *
914  *  Sets the LPLU D0 state according to the active flag.  When
915  *  activating LPLU this function also disables smart speed
916  *  and vice versa.  LPLU will not be activated unless the
917  *  device autonegotiation advertisement meets standards of
918  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
919  *  This is a function pointer entry point only called by
920  *  PHY setup routines.
921  **/
922 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
923 {
924 	struct e1000_phy_info *phy = &hw->phy;
925 	s32 ret_val = 0;
926 	u16 data;
927 
928 	data = rd32(E1000_82580_PHY_POWER_MGMT);
929 
930 	if (active) {
931 		data |= E1000_82580_PM_D0_LPLU;
932 
933 		/* When LPLU is enabled, we should disable SmartSpeed */
934 		data &= ~E1000_82580_PM_SPD;
935 	} else {
936 		data &= ~E1000_82580_PM_D0_LPLU;
937 
938 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
939 		 * during Dx states where the power conservation is most
940 		 * important.  During driver activity we should enable
941 		 * SmartSpeed, so performance is maintained.
942 		 */
943 		if (phy->smart_speed == e1000_smart_speed_on)
944 			data |= E1000_82580_PM_SPD;
945 		else if (phy->smart_speed == e1000_smart_speed_off)
946 			data &= ~E1000_82580_PM_SPD; }
947 
948 	wr32(E1000_82580_PHY_POWER_MGMT, data);
949 	return ret_val;
950 }
951 
952 /**
953  *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
954  *  @hw: pointer to the HW structure
955  *  @active: boolean used to enable/disable lplu
956  *
957  *  Success returns 0, Failure returns 1
958  *
959  *  The low power link up (lplu) state is set to the power management level D3
960  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
961  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
962  *  is used during Dx states where the power conservation is most important.
963  *  During driver activity, SmartSpeed should be enabled so performance is
964  *  maintained.
965  **/
966 static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
967 {
968 	struct e1000_phy_info *phy = &hw->phy;
969 	s32 ret_val = 0;
970 	u16 data;
971 
972 	data = rd32(E1000_82580_PHY_POWER_MGMT);
973 
974 	if (!active) {
975 		data &= ~E1000_82580_PM_D3_LPLU;
976 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
977 		 * during Dx states where the power conservation is most
978 		 * important.  During driver activity we should enable
979 		 * SmartSpeed, so performance is maintained.
980 		 */
981 		if (phy->smart_speed == e1000_smart_speed_on)
982 			data |= E1000_82580_PM_SPD;
983 		else if (phy->smart_speed == e1000_smart_speed_off)
984 			data &= ~E1000_82580_PM_SPD;
985 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
986 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
987 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
988 		data |= E1000_82580_PM_D3_LPLU;
989 		/* When LPLU is enabled, we should disable SmartSpeed */
990 		data &= ~E1000_82580_PM_SPD;
991 	}
992 
993 	wr32(E1000_82580_PHY_POWER_MGMT, data);
994 	return ret_val;
995 }
996 
997 /**
998  *  igb_acquire_nvm_82575 - Request for access to EEPROM
999  *  @hw: pointer to the HW structure
1000  *
1001  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
1002  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
1003  *  Return successful if access grant bit set, else clear the request for
1004  *  EEPROM access and return -E1000_ERR_NVM (-1).
1005  **/
1006 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1007 {
1008 	s32 ret_val;
1009 
1010 	ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1011 	if (ret_val)
1012 		goto out;
1013 
1014 	ret_val = igb_acquire_nvm(hw);
1015 
1016 	if (ret_val)
1017 		hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1018 
1019 out:
1020 	return ret_val;
1021 }
1022 
1023 /**
1024  *  igb_release_nvm_82575 - Release exclusive access to EEPROM
1025  *  @hw: pointer to the HW structure
1026  *
1027  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
1028  *  then release the semaphores acquired.
1029  **/
1030 static void igb_release_nvm_82575(struct e1000_hw *hw)
1031 {
1032 	igb_release_nvm(hw);
1033 	hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1034 }
1035 
1036 /**
1037  *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1038  *  @hw: pointer to the HW structure
1039  *  @mask: specifies which semaphore to acquire
1040  *
1041  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
1042  *  will also specify which port we're acquiring the lock for.
1043  **/
1044 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1045 {
1046 	u32 swfw_sync;
1047 	u32 swmask = mask;
1048 	u32 fwmask = mask << 16;
1049 	s32 ret_val = 0;
1050 	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
1051 
1052 	while (i < timeout) {
1053 		if (igb_get_hw_semaphore(hw)) {
1054 			ret_val = -E1000_ERR_SWFW_SYNC;
1055 			goto out;
1056 		}
1057 
1058 		swfw_sync = rd32(E1000_SW_FW_SYNC);
1059 		if (!(swfw_sync & (fwmask | swmask)))
1060 			break;
1061 
1062 		/* Firmware currently using resource (fwmask)
1063 		 * or other software thread using resource (swmask)
1064 		 */
1065 		igb_put_hw_semaphore(hw);
1066 		mdelay(5);
1067 		i++;
1068 	}
1069 
1070 	if (i == timeout) {
1071 		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1072 		ret_val = -E1000_ERR_SWFW_SYNC;
1073 		goto out;
1074 	}
1075 
1076 	swfw_sync |= swmask;
1077 	wr32(E1000_SW_FW_SYNC, swfw_sync);
1078 
1079 	igb_put_hw_semaphore(hw);
1080 
1081 out:
1082 	return ret_val;
1083 }
1084 
1085 /**
1086  *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
1087  *  @hw: pointer to the HW structure
1088  *  @mask: specifies which semaphore to acquire
1089  *
1090  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1091  *  will also specify which port we're releasing the lock for.
1092  **/
1093 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1094 {
1095 	u32 swfw_sync;
1096 
1097 	while (igb_get_hw_semaphore(hw) != 0);
1098 	/* Empty */
1099 
1100 	swfw_sync = rd32(E1000_SW_FW_SYNC);
1101 	swfw_sync &= ~mask;
1102 	wr32(E1000_SW_FW_SYNC, swfw_sync);
1103 
1104 	igb_put_hw_semaphore(hw);
1105 }
1106 
1107 /**
1108  *  igb_get_cfg_done_82575 - Read config done bit
1109  *  @hw: pointer to the HW structure
1110  *
1111  *  Read the management control register for the config done bit for
1112  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1113  *  to read the config done bit, so an error is *ONLY* logged and returns
1114  *  0.  If we were to return with error, EEPROM-less silicon
1115  *  would not be able to be reset or change link.
1116  **/
1117 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1118 {
1119 	s32 timeout = PHY_CFG_TIMEOUT;
1120 	s32 ret_val = 0;
1121 	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1122 
1123 	if (hw->bus.func == 1)
1124 		mask = E1000_NVM_CFG_DONE_PORT_1;
1125 	else if (hw->bus.func == E1000_FUNC_2)
1126 		mask = E1000_NVM_CFG_DONE_PORT_2;
1127 	else if (hw->bus.func == E1000_FUNC_3)
1128 		mask = E1000_NVM_CFG_DONE_PORT_3;
1129 
1130 	while (timeout) {
1131 		if (rd32(E1000_EEMNGCTL) & mask)
1132 			break;
1133 		msleep(1);
1134 		timeout--;
1135 	}
1136 	if (!timeout)
1137 		hw_dbg("MNG configuration cycle has not completed.\n");
1138 
1139 	/* If EEPROM is not marked present, init the PHY manually */
1140 	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1141 	    (hw->phy.type == e1000_phy_igp_3))
1142 		igb_phy_init_script_igp3(hw);
1143 
1144 	return ret_val;
1145 }
1146 
1147 /**
1148  *  igb_get_link_up_info_82575 - Get link speed/duplex info
1149  *  @hw: pointer to the HW structure
1150  *  @speed: stores the current speed
1151  *  @duplex: stores the current duplex
1152  *
1153  *  This is a wrapper function, if using the serial gigabit media independent
1154  *  interface, use PCS to retrieve the link speed and duplex information.
1155  *  Otherwise, use the generic function to get the link speed and duplex info.
1156  **/
1157 static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1158 					u16 *duplex)
1159 {
1160 	s32 ret_val;
1161 
1162 	if (hw->phy.media_type != e1000_media_type_copper)
1163 		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
1164 							       duplex);
1165 	else
1166 		ret_val = igb_get_speed_and_duplex_copper(hw, speed,
1167 								    duplex);
1168 
1169 	return ret_val;
1170 }
1171 
1172 /**
1173  *  igb_check_for_link_82575 - Check for link
1174  *  @hw: pointer to the HW structure
1175  *
1176  *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1177  *  use the generic interface for determining link.
1178  **/
1179 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1180 {
1181 	s32 ret_val;
1182 	u16 speed, duplex;
1183 
1184 	if (hw->phy.media_type != e1000_media_type_copper) {
1185 		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1186 		                                             &duplex);
1187 		/* Use this flag to determine if link needs to be checked or
1188 		 * not.  If  we have link clear the flag so that we do not
1189 		 * continue to check for link.
1190 		 */
1191 		hw->mac.get_link_status = !hw->mac.serdes_has_link;
1192 
1193 		/* Configure Flow Control now that Auto-Neg has completed.
1194 		 * First, we need to restore the desired flow control
1195 		 * settings because we may have had to re-autoneg with a
1196 		 * different link partner.
1197 		 */
1198 		ret_val = igb_config_fc_after_link_up(hw);
1199 		if (ret_val)
1200 			hw_dbg("Error configuring flow control\n");
1201 	} else {
1202 		ret_val = igb_check_for_copper_link(hw);
1203 	}
1204 
1205 	return ret_val;
1206 }
1207 
1208 /**
1209  *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1210  *  @hw: pointer to the HW structure
1211  **/
1212 void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1213 {
1214 	u32 reg;
1215 
1216 
1217 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1218 	    !igb_sgmii_active_82575(hw))
1219 		return;
1220 
1221 	/* Enable PCS to turn on link */
1222 	reg = rd32(E1000_PCS_CFG0);
1223 	reg |= E1000_PCS_CFG_PCS_EN;
1224 	wr32(E1000_PCS_CFG0, reg);
1225 
1226 	/* Power up the laser */
1227 	reg = rd32(E1000_CTRL_EXT);
1228 	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1229 	wr32(E1000_CTRL_EXT, reg);
1230 
1231 	/* flush the write to verify completion */
1232 	wrfl();
1233 	msleep(1);
1234 }
1235 
1236 /**
1237  *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1238  *  @hw: pointer to the HW structure
1239  *  @speed: stores the current speed
1240  *  @duplex: stores the current duplex
1241  *
1242  *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1243  *  duplex, then store the values in the pointers provided.
1244  **/
1245 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1246 						u16 *duplex)
1247 {
1248 	struct e1000_mac_info *mac = &hw->mac;
1249 	u32 pcs, status;
1250 
1251 	/* Set up defaults for the return values of this function */
1252 	mac->serdes_has_link = false;
1253 	*speed = 0;
1254 	*duplex = 0;
1255 
1256 	/* Read the PCS Status register for link state. For non-copper mode,
1257 	 * the status register is not accurate. The PCS status register is
1258 	 * used instead.
1259 	 */
1260 	pcs = rd32(E1000_PCS_LSTAT);
1261 
1262 	/* The link up bit determines when link is up on autoneg. The sync ok
1263 	 * gets set once both sides sync up and agree upon link. Stable link
1264 	 * can be determined by checking for both link up and link sync ok
1265 	 */
1266 	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1267 		mac->serdes_has_link = true;
1268 
1269 		/* Detect and store PCS speed */
1270 		if (pcs & E1000_PCS_LSTS_SPEED_1000)
1271 			*speed = SPEED_1000;
1272 		else if (pcs & E1000_PCS_LSTS_SPEED_100)
1273 			*speed = SPEED_100;
1274 		else
1275 			*speed = SPEED_10;
1276 
1277 		/* Detect and store PCS duplex */
1278 		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1279 			*duplex = FULL_DUPLEX;
1280 		else
1281 			*duplex = HALF_DUPLEX;
1282 
1283 	/* Check if it is an I354 2.5Gb backplane connection. */
1284 		if (mac->type == e1000_i354) {
1285 			status = rd32(E1000_STATUS);
1286 			if ((status & E1000_STATUS_2P5_SKU) &&
1287 			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
1288 				*speed = SPEED_2500;
1289 				*duplex = FULL_DUPLEX;
1290 				hw_dbg("2500 Mbs, ");
1291 				hw_dbg("Full Duplex\n");
1292 			}
1293 		}
1294 
1295 	}
1296 
1297 	return 0;
1298 }
1299 
1300 /**
1301  *  igb_shutdown_serdes_link_82575 - Remove link during power down
1302  *  @hw: pointer to the HW structure
1303  *
1304  *  In the case of fiber serdes, shut down optics and PCS on driver unload
1305  *  when management pass thru is not enabled.
1306  **/
1307 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1308 {
1309 	u32 reg;
1310 
1311 	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1312 	    igb_sgmii_active_82575(hw))
1313 		return;
1314 
1315 	if (!igb_enable_mng_pass_thru(hw)) {
1316 		/* Disable PCS to turn off link */
1317 		reg = rd32(E1000_PCS_CFG0);
1318 		reg &= ~E1000_PCS_CFG_PCS_EN;
1319 		wr32(E1000_PCS_CFG0, reg);
1320 
1321 		/* shutdown the laser */
1322 		reg = rd32(E1000_CTRL_EXT);
1323 		reg |= E1000_CTRL_EXT_SDP3_DATA;
1324 		wr32(E1000_CTRL_EXT, reg);
1325 
1326 		/* flush the write to verify completion */
1327 		wrfl();
1328 		msleep(1);
1329 	}
1330 }
1331 
1332 /**
1333  *  igb_reset_hw_82575 - Reset hardware
1334  *  @hw: pointer to the HW structure
1335  *
1336  *  This resets the hardware into a known state.  This is a
1337  *  function pointer entry point called by the api module.
1338  **/
1339 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1340 {
1341 	u32 ctrl;
1342 	s32 ret_val;
1343 
1344 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
1345 	 * on the last TLP read/write transaction when MAC is reset.
1346 	 */
1347 	ret_val = igb_disable_pcie_master(hw);
1348 	if (ret_val)
1349 		hw_dbg("PCI-E Master disable polling has failed.\n");
1350 
1351 	/* set the completion timeout for interface */
1352 	ret_val = igb_set_pcie_completion_timeout(hw);
1353 	if (ret_val) {
1354 		hw_dbg("PCI-E Set completion timeout has failed.\n");
1355 	}
1356 
1357 	hw_dbg("Masking off all interrupts\n");
1358 	wr32(E1000_IMC, 0xffffffff);
1359 
1360 	wr32(E1000_RCTL, 0);
1361 	wr32(E1000_TCTL, E1000_TCTL_PSP);
1362 	wrfl();
1363 
1364 	msleep(10);
1365 
1366 	ctrl = rd32(E1000_CTRL);
1367 
1368 	hw_dbg("Issuing a global reset to MAC\n");
1369 	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1370 
1371 	ret_val = igb_get_auto_rd_done(hw);
1372 	if (ret_val) {
1373 		/* When auto config read does not complete, do not
1374 		 * return with an error. This can happen in situations
1375 		 * where there is no eeprom and prevents getting link.
1376 		 */
1377 		hw_dbg("Auto Read Done did not complete\n");
1378 	}
1379 
1380 	/* If EEPROM is not present, run manual init scripts */
1381 	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1382 		igb_reset_init_script_82575(hw);
1383 
1384 	/* Clear any pending interrupt events. */
1385 	wr32(E1000_IMC, 0xffffffff);
1386 	rd32(E1000_ICR);
1387 
1388 	/* Install any alternate MAC address into RAR0 */
1389 	ret_val = igb_check_alt_mac_addr(hw);
1390 
1391 	return ret_val;
1392 }
1393 
1394 /**
1395  *  igb_init_hw_82575 - Initialize hardware
1396  *  @hw: pointer to the HW structure
1397  *
1398  *  This inits the hardware readying it for operation.
1399  **/
1400 static s32 igb_init_hw_82575(struct e1000_hw *hw)
1401 {
1402 	struct e1000_mac_info *mac = &hw->mac;
1403 	s32 ret_val;
1404 	u16 i, rar_count = mac->rar_entry_count;
1405 
1406 	/* Initialize identification LED */
1407 	ret_val = igb_id_led_init(hw);
1408 	if (ret_val) {
1409 		hw_dbg("Error initializing identification LED\n");
1410 		/* This is not fatal and we should not stop init due to this */
1411 	}
1412 
1413 	/* Disabling VLAN filtering */
1414 	hw_dbg("Initializing the IEEE VLAN\n");
1415 	if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
1416 		igb_clear_vfta_i350(hw);
1417 	else
1418 		igb_clear_vfta(hw);
1419 
1420 	/* Setup the receive address */
1421 	igb_init_rx_addrs(hw, rar_count);
1422 
1423 	/* Zero out the Multicast HASH table */
1424 	hw_dbg("Zeroing the MTA\n");
1425 	for (i = 0; i < mac->mta_reg_count; i++)
1426 		array_wr32(E1000_MTA, i, 0);
1427 
1428 	/* Zero out the Unicast HASH table */
1429 	hw_dbg("Zeroing the UTA\n");
1430 	for (i = 0; i < mac->uta_reg_count; i++)
1431 		array_wr32(E1000_UTA, i, 0);
1432 
1433 	/* Setup link and flow control */
1434 	ret_val = igb_setup_link(hw);
1435 
1436 	/* Clear all of the statistics registers (clear on read).  It is
1437 	 * important that we do this after we have tried to establish link
1438 	 * because the symbol error count will increment wildly if there
1439 	 * is no link.
1440 	 */
1441 	igb_clear_hw_cntrs_82575(hw);
1442 	return ret_val;
1443 }
1444 
1445 /**
1446  *  igb_setup_copper_link_82575 - Configure copper link settings
1447  *  @hw: pointer to the HW structure
1448  *
1449  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1450  *  for link, once link is established calls to configure collision distance
1451  *  and flow control are called.
1452  **/
1453 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1454 {
1455 	u32 ctrl;
1456 	s32  ret_val;
1457 	u32 phpm_reg;
1458 
1459 	ctrl = rd32(E1000_CTRL);
1460 	ctrl |= E1000_CTRL_SLU;
1461 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1462 	wr32(E1000_CTRL, ctrl);
1463 
1464 	/* Clear Go Link Disconnect bit on supported devices */
1465 	switch (hw->mac.type) {
1466 	case e1000_82580:
1467 	case e1000_i350:
1468 	case e1000_i210:
1469 	case e1000_i211:
1470 		phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1471 		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1472 		wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1473 		break;
1474 	default:
1475 		break;
1476 	}
1477 
1478 	ret_val = igb_setup_serdes_link_82575(hw);
1479 	if (ret_val)
1480 		goto out;
1481 
1482 	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1483 		/* allow time for SFP cage time to power up phy */
1484 		msleep(300);
1485 
1486 		ret_val = hw->phy.ops.reset(hw);
1487 		if (ret_val) {
1488 			hw_dbg("Error resetting the PHY.\n");
1489 			goto out;
1490 		}
1491 	}
1492 	switch (hw->phy.type) {
1493 	case e1000_phy_i210:
1494 	case e1000_phy_m88:
1495 		switch (hw->phy.id) {
1496 		case I347AT4_E_PHY_ID:
1497 		case M88E1112_E_PHY_ID:
1498 		case M88E1543_E_PHY_ID:
1499 		case I210_I_PHY_ID:
1500 			ret_val = igb_copper_link_setup_m88_gen2(hw);
1501 			break;
1502 		default:
1503 			ret_val = igb_copper_link_setup_m88(hw);
1504 			break;
1505 		}
1506 		break;
1507 	case e1000_phy_igp_3:
1508 		ret_val = igb_copper_link_setup_igp(hw);
1509 		break;
1510 	case e1000_phy_82580:
1511 		ret_val = igb_copper_link_setup_82580(hw);
1512 		break;
1513 	default:
1514 		ret_val = -E1000_ERR_PHY;
1515 		break;
1516 	}
1517 
1518 	if (ret_val)
1519 		goto out;
1520 
1521 	ret_val = igb_setup_copper_link(hw);
1522 out:
1523 	return ret_val;
1524 }
1525 
1526 /**
1527  *  igb_setup_serdes_link_82575 - Setup link for serdes
1528  *  @hw: pointer to the HW structure
1529  *
1530  *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1531  *  used on copper connections where the serialized gigabit media independent
1532  *  interface (sgmii), or serdes fiber is being used.  Configures the link
1533  *  for auto-negotiation or forces speed/duplex.
1534  **/
1535 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1536 {
1537 	u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1538 	bool pcs_autoneg;
1539 	s32 ret_val = E1000_SUCCESS;
1540 	u16 data;
1541 
1542 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1543 	    !igb_sgmii_active_82575(hw))
1544 		return ret_val;
1545 
1546 
1547 	/* On the 82575, SerDes loopback mode persists until it is
1548 	 * explicitly turned off or a power cycle is performed.  A read to
1549 	 * the register does not indicate its status.  Therefore, we ensure
1550 	 * loopback mode is disabled during initialization.
1551 	 */
1552 	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1553 
1554 	/* power on the sfp cage if present and turn on I2C */
1555 	ctrl_ext = rd32(E1000_CTRL_EXT);
1556 	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1557 	ctrl_ext |= E1000_CTRL_I2C_ENA;
1558 	wr32(E1000_CTRL_EXT, ctrl_ext);
1559 
1560 	ctrl_reg = rd32(E1000_CTRL);
1561 	ctrl_reg |= E1000_CTRL_SLU;
1562 
1563 	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1564 		/* set both sw defined pins */
1565 		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1566 
1567 		/* Set switch control to serdes energy detect */
1568 		reg = rd32(E1000_CONNSW);
1569 		reg |= E1000_CONNSW_ENRGSRC;
1570 		wr32(E1000_CONNSW, reg);
1571 	}
1572 
1573 	reg = rd32(E1000_PCS_LCTL);
1574 
1575 	/* default pcs_autoneg to the same setting as mac autoneg */
1576 	pcs_autoneg = hw->mac.autoneg;
1577 
1578 	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1579 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1580 		/* sgmii mode lets the phy handle forcing speed/duplex */
1581 		pcs_autoneg = true;
1582 		/* autoneg time out should be disabled for SGMII mode */
1583 		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1584 		break;
1585 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1586 		/* disable PCS autoneg and support parallel detect only */
1587 		pcs_autoneg = false;
1588 	default:
1589 		if (hw->mac.type == e1000_82575 ||
1590 		    hw->mac.type == e1000_82576) {
1591 			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1592 			if (ret_val) {
1593 				printk(KERN_DEBUG "NVM Read Error\n\n");
1594 				return ret_val;
1595 			}
1596 
1597 			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1598 				pcs_autoneg = false;
1599 		}
1600 
1601 		/* non-SGMII modes only supports a speed of 1000/Full for the
1602 		 * link so it is best to just force the MAC and let the pcs
1603 		 * link either autoneg or be forced to 1000/Full
1604 		 */
1605 		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1606 		            E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1607 
1608 		/* set speed of 1000/Full if speed/duplex is forced */
1609 		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1610 		break;
1611 	}
1612 
1613 	wr32(E1000_CTRL, ctrl_reg);
1614 
1615 	/* New SerDes mode allows for forcing speed or autonegotiating speed
1616 	 * at 1gb. Autoneg should be default set by most drivers. This is the
1617 	 * mode that will be compatible with older link partners and switches.
1618 	 * However, both are supported by the hardware and some drivers/tools.
1619 	 */
1620 	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1621 		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1622 
1623 	if (pcs_autoneg) {
1624 		/* Set PCS register for autoneg */
1625 		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1626 		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1627 
1628 		/* Disable force flow control for autoneg */
1629 		reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1630 
1631 		/* Configure flow control advertisement for autoneg */
1632 		anadv_reg = rd32(E1000_PCS_ANADV);
1633 		anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1634 		switch (hw->fc.requested_mode) {
1635 		case e1000_fc_full:
1636 		case e1000_fc_rx_pause:
1637 			anadv_reg |= E1000_TXCW_ASM_DIR;
1638 			anadv_reg |= E1000_TXCW_PAUSE;
1639 			break;
1640 		case e1000_fc_tx_pause:
1641 			anadv_reg |= E1000_TXCW_ASM_DIR;
1642 			break;
1643 		default:
1644 			break;
1645 		}
1646 		wr32(E1000_PCS_ANADV, anadv_reg);
1647 
1648 		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1649 	} else {
1650 		/* Set PCS register for forced link */
1651 		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1652 
1653 		/* Force flow control for forced link */
1654 		reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1655 
1656 		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1657 	}
1658 
1659 	wr32(E1000_PCS_LCTL, reg);
1660 
1661 	if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1662 		igb_force_mac_fc(hw);
1663 
1664 	return ret_val;
1665 }
1666 
1667 /**
1668  *  igb_sgmii_active_82575 - Return sgmii state
1669  *  @hw: pointer to the HW structure
1670  *
1671  *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1672  *  which can be enabled for use in the embedded applications.  Simply
1673  *  return the current state of the sgmii interface.
1674  **/
1675 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1676 {
1677 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1678 	return dev_spec->sgmii_active;
1679 }
1680 
1681 /**
1682  *  igb_reset_init_script_82575 - Inits HW defaults after reset
1683  *  @hw: pointer to the HW structure
1684  *
1685  *  Inits recommended HW defaults after a reset when there is no EEPROM
1686  *  detected. This is only for the 82575.
1687  **/
1688 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1689 {
1690 	if (hw->mac.type == e1000_82575) {
1691 		hw_dbg("Running reset init script for 82575\n");
1692 		/* SerDes configuration via SERDESCTRL */
1693 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1694 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1695 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1696 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1697 
1698 		/* CCM configuration via CCMCTL register */
1699 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1700 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1701 
1702 		/* PCIe lanes configuration */
1703 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1704 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1705 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1706 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1707 
1708 		/* PCIe PLL Configuration */
1709 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1710 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1711 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1712 	}
1713 
1714 	return 0;
1715 }
1716 
1717 /**
1718  *  igb_read_mac_addr_82575 - Read device MAC address
1719  *  @hw: pointer to the HW structure
1720  **/
1721 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1722 {
1723 	s32 ret_val = 0;
1724 
1725 	/* If there's an alternate MAC address place it in RAR0
1726 	 * so that it will override the Si installed default perm
1727 	 * address.
1728 	 */
1729 	ret_val = igb_check_alt_mac_addr(hw);
1730 	if (ret_val)
1731 		goto out;
1732 
1733 	ret_val = igb_read_mac_addr(hw);
1734 
1735 out:
1736 	return ret_val;
1737 }
1738 
1739 /**
1740  * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1741  * @hw: pointer to the HW structure
1742  *
1743  * In the case of a PHY power down to save power, or to turn off link during a
1744  * driver unload, or wake on lan is not enabled, remove the link.
1745  **/
1746 void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1747 {
1748 	/* If the management interface is not enabled, then power down */
1749 	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1750 		igb_power_down_phy_copper(hw);
1751 }
1752 
1753 /**
1754  *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1755  *  @hw: pointer to the HW structure
1756  *
1757  *  Clears the hardware counters by reading the counter registers.
1758  **/
1759 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1760 {
1761 	igb_clear_hw_cntrs_base(hw);
1762 
1763 	rd32(E1000_PRC64);
1764 	rd32(E1000_PRC127);
1765 	rd32(E1000_PRC255);
1766 	rd32(E1000_PRC511);
1767 	rd32(E1000_PRC1023);
1768 	rd32(E1000_PRC1522);
1769 	rd32(E1000_PTC64);
1770 	rd32(E1000_PTC127);
1771 	rd32(E1000_PTC255);
1772 	rd32(E1000_PTC511);
1773 	rd32(E1000_PTC1023);
1774 	rd32(E1000_PTC1522);
1775 
1776 	rd32(E1000_ALGNERRC);
1777 	rd32(E1000_RXERRC);
1778 	rd32(E1000_TNCRS);
1779 	rd32(E1000_CEXTERR);
1780 	rd32(E1000_TSCTC);
1781 	rd32(E1000_TSCTFC);
1782 
1783 	rd32(E1000_MGTPRC);
1784 	rd32(E1000_MGTPDC);
1785 	rd32(E1000_MGTPTC);
1786 
1787 	rd32(E1000_IAC);
1788 	rd32(E1000_ICRXOC);
1789 
1790 	rd32(E1000_ICRXPTC);
1791 	rd32(E1000_ICRXATC);
1792 	rd32(E1000_ICTXPTC);
1793 	rd32(E1000_ICTXATC);
1794 	rd32(E1000_ICTXQEC);
1795 	rd32(E1000_ICTXQMTC);
1796 	rd32(E1000_ICRXDMTC);
1797 
1798 	rd32(E1000_CBTMPC);
1799 	rd32(E1000_HTDPMC);
1800 	rd32(E1000_CBRMPC);
1801 	rd32(E1000_RPTHC);
1802 	rd32(E1000_HGPTC);
1803 	rd32(E1000_HTCBDPC);
1804 	rd32(E1000_HGORCL);
1805 	rd32(E1000_HGORCH);
1806 	rd32(E1000_HGOTCL);
1807 	rd32(E1000_HGOTCH);
1808 	rd32(E1000_LENERRS);
1809 
1810 	/* This register should not be read in copper configurations */
1811 	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1812 	    igb_sgmii_active_82575(hw))
1813 		rd32(E1000_SCVPC);
1814 }
1815 
1816 /**
1817  *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1818  *  @hw: pointer to the HW structure
1819  *
1820  *  After rx enable if managability is enabled then there is likely some
1821  *  bad data at the start of the fifo and possibly in the DMA fifo.  This
1822  *  function clears the fifos and flushes any packets that came in as rx was
1823  *  being enabled.
1824  **/
1825 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1826 {
1827 	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1828 	int i, ms_wait;
1829 
1830 	if (hw->mac.type != e1000_82575 ||
1831 	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1832 		return;
1833 
1834 	/* Disable all RX queues */
1835 	for (i = 0; i < 4; i++) {
1836 		rxdctl[i] = rd32(E1000_RXDCTL(i));
1837 		wr32(E1000_RXDCTL(i),
1838 		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1839 	}
1840 	/* Poll all queues to verify they have shut down */
1841 	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1842 		msleep(1);
1843 		rx_enabled = 0;
1844 		for (i = 0; i < 4; i++)
1845 			rx_enabled |= rd32(E1000_RXDCTL(i));
1846 		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1847 			break;
1848 	}
1849 
1850 	if (ms_wait == 10)
1851 		hw_dbg("Queue disable timed out after 10ms\n");
1852 
1853 	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1854 	 * incoming packets are rejected.  Set enable and wait 2ms so that
1855 	 * any packet that was coming in as RCTL.EN was set is flushed
1856 	 */
1857 	rfctl = rd32(E1000_RFCTL);
1858 	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1859 
1860 	rlpml = rd32(E1000_RLPML);
1861 	wr32(E1000_RLPML, 0);
1862 
1863 	rctl = rd32(E1000_RCTL);
1864 	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1865 	temp_rctl |= E1000_RCTL_LPE;
1866 
1867 	wr32(E1000_RCTL, temp_rctl);
1868 	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1869 	wrfl();
1870 	msleep(2);
1871 
1872 	/* Enable RX queues that were previously enabled and restore our
1873 	 * previous state
1874 	 */
1875 	for (i = 0; i < 4; i++)
1876 		wr32(E1000_RXDCTL(i), rxdctl[i]);
1877 	wr32(E1000_RCTL, rctl);
1878 	wrfl();
1879 
1880 	wr32(E1000_RLPML, rlpml);
1881 	wr32(E1000_RFCTL, rfctl);
1882 
1883 	/* Flush receive errors generated by workaround */
1884 	rd32(E1000_ROC);
1885 	rd32(E1000_RNBC);
1886 	rd32(E1000_MPC);
1887 }
1888 
1889 /**
1890  *  igb_set_pcie_completion_timeout - set pci-e completion timeout
1891  *  @hw: pointer to the HW structure
1892  *
1893  *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1894  *  however the hardware default for these parts is 500us to 1ms which is less
1895  *  than the 10ms recommended by the pci-e spec.  To address this we need to
1896  *  increase the value to either 10ms to 200ms for capability version 1 config,
1897  *  or 16ms to 55ms for version 2.
1898  **/
1899 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1900 {
1901 	u32 gcr = rd32(E1000_GCR);
1902 	s32 ret_val = 0;
1903 	u16 pcie_devctl2;
1904 
1905 	/* only take action if timeout value is defaulted to 0 */
1906 	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1907 		goto out;
1908 
1909 	/* if capabilities version is type 1 we can write the
1910 	 * timeout of 10ms to 200ms through the GCR register
1911 	 */
1912 	if (!(gcr & E1000_GCR_CAP_VER2)) {
1913 		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1914 		goto out;
1915 	}
1916 
1917 	/* for version 2 capabilities we need to write the config space
1918 	 * directly in order to set the completion timeout value for
1919 	 * 16ms to 55ms
1920 	 */
1921 	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1922 	                                &pcie_devctl2);
1923 	if (ret_val)
1924 		goto out;
1925 
1926 	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
1927 
1928 	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1929 	                                 &pcie_devctl2);
1930 out:
1931 	/* disable completion timeout resend */
1932 	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
1933 
1934 	wr32(E1000_GCR, gcr);
1935 	return ret_val;
1936 }
1937 
1938 /**
1939  *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
1940  *  @hw: pointer to the hardware struct
1941  *  @enable: state to enter, either enabled or disabled
1942  *  @pf: Physical Function pool - do not set anti-spoofing for the PF
1943  *
1944  *  enables/disables L2 switch anti-spoofing functionality.
1945  **/
1946 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
1947 {
1948 	u32 reg_val, reg_offset;
1949 
1950 	switch (hw->mac.type) {
1951 	case e1000_82576:
1952 		reg_offset = E1000_DTXSWC;
1953 		break;
1954 	case e1000_i350:
1955 	case e1000_i354:
1956 		reg_offset = E1000_TXSWC;
1957 		break;
1958 	default:
1959 		return;
1960 	}
1961 
1962 	reg_val = rd32(reg_offset);
1963 	if (enable) {
1964 		reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
1965 			     E1000_DTXSWC_VLAN_SPOOF_MASK);
1966 		/* The PF can spoof - it has to in order to
1967 		 * support emulation mode NICs
1968 		 */
1969 		reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
1970 	} else {
1971 		reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
1972 			     E1000_DTXSWC_VLAN_SPOOF_MASK);
1973 	}
1974 	wr32(reg_offset, reg_val);
1975 }
1976 
1977 /**
1978  *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1979  *  @hw: pointer to the hardware struct
1980  *  @enable: state to enter, either enabled or disabled
1981  *
1982  *  enables/disables L2 switch loopback functionality.
1983  **/
1984 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1985 {
1986 	u32 dtxswc;
1987 
1988 	switch (hw->mac.type) {
1989 	case e1000_82576:
1990 		dtxswc = rd32(E1000_DTXSWC);
1991 		if (enable)
1992 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1993 		else
1994 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1995 		wr32(E1000_DTXSWC, dtxswc);
1996 		break;
1997 	case e1000_i354:
1998 	case e1000_i350:
1999 		dtxswc = rd32(E1000_TXSWC);
2000 		if (enable)
2001 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2002 		else
2003 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2004 		wr32(E1000_TXSWC, dtxswc);
2005 		break;
2006 	default:
2007 		/* Currently no other hardware supports loopback */
2008 		break;
2009 	}
2010 
2011 }
2012 
2013 /**
2014  *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
2015  *  @hw: pointer to the hardware struct
2016  *  @enable: state to enter, either enabled or disabled
2017  *
2018  *  enables/disables replication of packets across multiple pools.
2019  **/
2020 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2021 {
2022 	u32 vt_ctl = rd32(E1000_VT_CTL);
2023 
2024 	if (enable)
2025 		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2026 	else
2027 		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2028 
2029 	wr32(E1000_VT_CTL, vt_ctl);
2030 }
2031 
2032 /**
2033  *  igb_read_phy_reg_82580 - Read 82580 MDI control register
2034  *  @hw: pointer to the HW structure
2035  *  @offset: register offset to be read
2036  *  @data: pointer to the read data
2037  *
2038  *  Reads the MDI control register in the PHY at offset and stores the
2039  *  information read to data.
2040  **/
2041 static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2042 {
2043 	s32 ret_val;
2044 
2045 	ret_val = hw->phy.ops.acquire(hw);
2046 	if (ret_val)
2047 		goto out;
2048 
2049 	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2050 
2051 	hw->phy.ops.release(hw);
2052 
2053 out:
2054 	return ret_val;
2055 }
2056 
2057 /**
2058  *  igb_write_phy_reg_82580 - Write 82580 MDI control register
2059  *  @hw: pointer to the HW structure
2060  *  @offset: register offset to write to
2061  *  @data: data to write to register at offset
2062  *
2063  *  Writes data to MDI control register in the PHY at offset.
2064  **/
2065 static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2066 {
2067 	s32 ret_val;
2068 
2069 
2070 	ret_val = hw->phy.ops.acquire(hw);
2071 	if (ret_val)
2072 		goto out;
2073 
2074 	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2075 
2076 	hw->phy.ops.release(hw);
2077 
2078 out:
2079 	return ret_val;
2080 }
2081 
2082 /**
2083  *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2084  *  @hw: pointer to the HW structure
2085  *
2086  *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2087  *  the values found in the EEPROM.  This addresses an issue in which these
2088  *  bits are not restored from EEPROM after reset.
2089  **/
2090 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2091 {
2092 	s32 ret_val = 0;
2093 	u32 mdicnfg;
2094 	u16 nvm_data = 0;
2095 
2096 	if (hw->mac.type != e1000_82580)
2097 		goto out;
2098 	if (!igb_sgmii_active_82575(hw))
2099 		goto out;
2100 
2101 	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2102 				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2103 				   &nvm_data);
2104 	if (ret_val) {
2105 		hw_dbg("NVM Read Error\n");
2106 		goto out;
2107 	}
2108 
2109 	mdicnfg = rd32(E1000_MDICNFG);
2110 	if (nvm_data & NVM_WORD24_EXT_MDIO)
2111 		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2112 	if (nvm_data & NVM_WORD24_COM_MDIO)
2113 		mdicnfg |= E1000_MDICNFG_COM_MDIO;
2114 	wr32(E1000_MDICNFG, mdicnfg);
2115 out:
2116 	return ret_val;
2117 }
2118 
2119 /**
2120  *  igb_reset_hw_82580 - Reset hardware
2121  *  @hw: pointer to the HW structure
2122  *
2123  *  This resets function or entire device (all ports, etc.)
2124  *  to a known state.
2125  **/
2126 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2127 {
2128 	s32 ret_val = 0;
2129 	/* BH SW mailbox bit in SW_FW_SYNC */
2130 	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2131 	u32 ctrl;
2132 	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2133 
2134 	hw->dev_spec._82575.global_device_reset = false;
2135 
2136 	/* due to hw errata, global device reset doesn't always
2137 	 * work on 82580
2138 	 */
2139 	if (hw->mac.type == e1000_82580)
2140 		global_device_reset = false;
2141 
2142 	/* Get current control state. */
2143 	ctrl = rd32(E1000_CTRL);
2144 
2145 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
2146 	 * on the last TLP read/write transaction when MAC is reset.
2147 	 */
2148 	ret_val = igb_disable_pcie_master(hw);
2149 	if (ret_val)
2150 		hw_dbg("PCI-E Master disable polling has failed.\n");
2151 
2152 	hw_dbg("Masking off all interrupts\n");
2153 	wr32(E1000_IMC, 0xffffffff);
2154 	wr32(E1000_RCTL, 0);
2155 	wr32(E1000_TCTL, E1000_TCTL_PSP);
2156 	wrfl();
2157 
2158 	msleep(10);
2159 
2160 	/* Determine whether or not a global dev reset is requested */
2161 	if (global_device_reset &&
2162 		hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2163 			global_device_reset = false;
2164 
2165 	if (global_device_reset &&
2166 		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2167 		ctrl |= E1000_CTRL_DEV_RST;
2168 	else
2169 		ctrl |= E1000_CTRL_RST;
2170 
2171 	wr32(E1000_CTRL, ctrl);
2172 	wrfl();
2173 
2174 	/* Add delay to insure DEV_RST has time to complete */
2175 	if (global_device_reset)
2176 		msleep(5);
2177 
2178 	ret_val = igb_get_auto_rd_done(hw);
2179 	if (ret_val) {
2180 		/* When auto config read does not complete, do not
2181 		 * return with an error. This can happen in situations
2182 		 * where there is no eeprom and prevents getting link.
2183 		 */
2184 		hw_dbg("Auto Read Done did not complete\n");
2185 	}
2186 
2187 	/* clear global device reset status bit */
2188 	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2189 
2190 	/* Clear any pending interrupt events. */
2191 	wr32(E1000_IMC, 0xffffffff);
2192 	rd32(E1000_ICR);
2193 
2194 	ret_val = igb_reset_mdicnfg_82580(hw);
2195 	if (ret_val)
2196 		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2197 
2198 	/* Install any alternate MAC address into RAR0 */
2199 	ret_val = igb_check_alt_mac_addr(hw);
2200 
2201 	/* Release semaphore */
2202 	if (global_device_reset)
2203 		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2204 
2205 	return ret_val;
2206 }
2207 
2208 /**
2209  *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2210  *  @data: data received by reading RXPBS register
2211  *
2212  *  The 82580 uses a table based approach for packet buffer allocation sizes.
2213  *  This function converts the retrieved value into the correct table value
2214  *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2215  *  0x0 36  72 144   1   2   4   8  16
2216  *  0x8 35  70 140 rsv rsv rsv rsv rsv
2217  */
2218 u16 igb_rxpbs_adjust_82580(u32 data)
2219 {
2220 	u16 ret_val = 0;
2221 
2222 	if (data < E1000_82580_RXPBS_TABLE_SIZE)
2223 		ret_val = e1000_82580_rxpbs_table[data];
2224 
2225 	return ret_val;
2226 }
2227 
2228 /**
2229  *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2230  *  checksum
2231  *  @hw: pointer to the HW structure
2232  *  @offset: offset in words of the checksum protected region
2233  *
2234  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2235  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2236  **/
2237 static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2238 						 u16 offset)
2239 {
2240 	s32 ret_val = 0;
2241 	u16 checksum = 0;
2242 	u16 i, nvm_data;
2243 
2244 	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2245 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2246 		if (ret_val) {
2247 			hw_dbg("NVM Read Error\n");
2248 			goto out;
2249 		}
2250 		checksum += nvm_data;
2251 	}
2252 
2253 	if (checksum != (u16) NVM_SUM) {
2254 		hw_dbg("NVM Checksum Invalid\n");
2255 		ret_val = -E1000_ERR_NVM;
2256 		goto out;
2257 	}
2258 
2259 out:
2260 	return ret_val;
2261 }
2262 
2263 /**
2264  *  igb_update_nvm_checksum_with_offset - Update EEPROM
2265  *  checksum
2266  *  @hw: pointer to the HW structure
2267  *  @offset: offset in words of the checksum protected region
2268  *
2269  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2270  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2271  *  value to the EEPROM.
2272  **/
2273 static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2274 {
2275 	s32 ret_val;
2276 	u16 checksum = 0;
2277 	u16 i, nvm_data;
2278 
2279 	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2280 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2281 		if (ret_val) {
2282 			hw_dbg("NVM Read Error while updating checksum.\n");
2283 			goto out;
2284 		}
2285 		checksum += nvm_data;
2286 	}
2287 	checksum = (u16) NVM_SUM - checksum;
2288 	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2289 				&checksum);
2290 	if (ret_val)
2291 		hw_dbg("NVM Write Error while updating checksum.\n");
2292 
2293 out:
2294 	return ret_val;
2295 }
2296 
2297 /**
2298  *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2299  *  @hw: pointer to the HW structure
2300  *
2301  *  Calculates the EEPROM section checksum by reading/adding each word of
2302  *  the EEPROM and then verifies that the sum of the EEPROM is
2303  *  equal to 0xBABA.
2304  **/
2305 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2306 {
2307 	s32 ret_val = 0;
2308 	u16 eeprom_regions_count = 1;
2309 	u16 j, nvm_data;
2310 	u16 nvm_offset;
2311 
2312 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2313 	if (ret_val) {
2314 		hw_dbg("NVM Read Error\n");
2315 		goto out;
2316 	}
2317 
2318 	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2319 		/* if checksums compatibility bit is set validate checksums
2320 		 * for all 4 ports.
2321 		 */
2322 		eeprom_regions_count = 4;
2323 	}
2324 
2325 	for (j = 0; j < eeprom_regions_count; j++) {
2326 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2327 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2328 								nvm_offset);
2329 		if (ret_val != 0)
2330 			goto out;
2331 	}
2332 
2333 out:
2334 	return ret_val;
2335 }
2336 
2337 /**
2338  *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2339  *  @hw: pointer to the HW structure
2340  *
2341  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2342  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2343  *  checksum and writes the value to the EEPROM.
2344  **/
2345 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2346 {
2347 	s32 ret_val;
2348 	u16 j, nvm_data;
2349 	u16 nvm_offset;
2350 
2351 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2352 	if (ret_val) {
2353 		hw_dbg("NVM Read Error while updating checksum"
2354 			" compatibility bit.\n");
2355 		goto out;
2356 	}
2357 
2358 	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2359 		/* set compatibility bit to validate checksums appropriately */
2360 		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2361 		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2362 					&nvm_data);
2363 		if (ret_val) {
2364 			hw_dbg("NVM Write Error while updating checksum"
2365 				" compatibility bit.\n");
2366 			goto out;
2367 		}
2368 	}
2369 
2370 	for (j = 0; j < 4; j++) {
2371 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2372 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2373 		if (ret_val)
2374 			goto out;
2375 	}
2376 
2377 out:
2378 	return ret_val;
2379 }
2380 
2381 /**
2382  *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2383  *  @hw: pointer to the HW structure
2384  *
2385  *  Calculates the EEPROM section checksum by reading/adding each word of
2386  *  the EEPROM and then verifies that the sum of the EEPROM is
2387  *  equal to 0xBABA.
2388  **/
2389 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2390 {
2391 	s32 ret_val = 0;
2392 	u16 j;
2393 	u16 nvm_offset;
2394 
2395 	for (j = 0; j < 4; j++) {
2396 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2397 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2398 								nvm_offset);
2399 		if (ret_val != 0)
2400 			goto out;
2401 	}
2402 
2403 out:
2404 	return ret_val;
2405 }
2406 
2407 /**
2408  *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2409  *  @hw: pointer to the HW structure
2410  *
2411  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2412  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2413  *  checksum and writes the value to the EEPROM.
2414  **/
2415 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2416 {
2417 	s32 ret_val = 0;
2418 	u16 j;
2419 	u16 nvm_offset;
2420 
2421 	for (j = 0; j < 4; j++) {
2422 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2423 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2424 		if (ret_val != 0)
2425 			goto out;
2426 	}
2427 
2428 out:
2429 	return ret_val;
2430 }
2431 
2432 /**
2433  *  __igb_access_emi_reg - Read/write EMI register
2434  *  @hw: pointer to the HW structure
2435  *  @addr: EMI address to program
2436  *  @data: pointer to value to read/write from/to the EMI address
2437  *  @read: boolean flag to indicate read or write
2438  **/
2439 static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2440 				  u16 *data, bool read)
2441 {
2442 	s32 ret_val = E1000_SUCCESS;
2443 
2444 	ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2445 	if (ret_val)
2446 		return ret_val;
2447 
2448 	if (read)
2449 		ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2450 	else
2451 		ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2452 
2453 	return ret_val;
2454 }
2455 
2456 /**
2457  *  igb_read_emi_reg - Read Extended Management Interface register
2458  *  @hw: pointer to the HW structure
2459  *  @addr: EMI address to program
2460  *  @data: value to be read from the EMI address
2461  **/
2462 s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2463 {
2464 	return __igb_access_emi_reg(hw, addr, data, true);
2465 }
2466 
2467 /**
2468  *  igb_set_eee_i350 - Enable/disable EEE support
2469  *  @hw: pointer to the HW structure
2470  *
2471  *  Enable/disable EEE based on setting in dev_spec structure.
2472  *
2473  **/
2474 s32 igb_set_eee_i350(struct e1000_hw *hw)
2475 {
2476 	s32 ret_val = 0;
2477 	u32 ipcnfg, eeer;
2478 
2479 	if ((hw->mac.type < e1000_i350) ||
2480 	    (hw->phy.media_type != e1000_media_type_copper))
2481 		goto out;
2482 	ipcnfg = rd32(E1000_IPCNFG);
2483 	eeer = rd32(E1000_EEER);
2484 
2485 	/* enable or disable per user setting */
2486 	if (!(hw->dev_spec._82575.eee_disable)) {
2487 		u32 eee_su = rd32(E1000_EEE_SU);
2488 
2489 		ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
2490 		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2491 			E1000_EEER_LPI_FC);
2492 
2493 		/* This bit should not be set in normal operation. */
2494 		if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2495 			hw_dbg("LPI Clock Stop Bit should not be set!\n");
2496 
2497 	} else {
2498 		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2499 			E1000_IPCNFG_EEE_100M_AN);
2500 		eeer &= ~(E1000_EEER_TX_LPI_EN |
2501 			E1000_EEER_RX_LPI_EN |
2502 			E1000_EEER_LPI_FC);
2503 	}
2504 	wr32(E1000_IPCNFG, ipcnfg);
2505 	wr32(E1000_EEER, eeer);
2506 	rd32(E1000_IPCNFG);
2507 	rd32(E1000_EEER);
2508 out:
2509 
2510 	return ret_val;
2511 }
2512 
2513 /**
2514  *  igb_set_eee_i354 - Enable/disable EEE support
2515  *  @hw: pointer to the HW structure
2516  *
2517  *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2518  *
2519  **/
2520 s32 igb_set_eee_i354(struct e1000_hw *hw)
2521 {
2522 	struct e1000_phy_info *phy = &hw->phy;
2523 	s32 ret_val = 0;
2524 	u16 phy_data;
2525 
2526 	if ((hw->phy.media_type != e1000_media_type_copper) ||
2527 	    (phy->id != M88E1543_E_PHY_ID))
2528 		goto out;
2529 
2530 	if (!hw->dev_spec._82575.eee_disable) {
2531 		/* Switch to PHY page 18. */
2532 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2533 		if (ret_val)
2534 			goto out;
2535 
2536 		ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2537 					    &phy_data);
2538 		if (ret_val)
2539 			goto out;
2540 
2541 		phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2542 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2543 					     phy_data);
2544 		if (ret_val)
2545 			goto out;
2546 
2547 		/* Return the PHY to page 0. */
2548 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2549 		if (ret_val)
2550 			goto out;
2551 
2552 		/* Turn on EEE advertisement. */
2553 		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2554 					     E1000_EEE_ADV_DEV_I354,
2555 					     &phy_data);
2556 		if (ret_val)
2557 			goto out;
2558 
2559 		phy_data |= E1000_EEE_ADV_100_SUPPORTED |
2560 			    E1000_EEE_ADV_1000_SUPPORTED;
2561 		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2562 						E1000_EEE_ADV_DEV_I354,
2563 						phy_data);
2564 	} else {
2565 		/* Turn off EEE advertisement. */
2566 		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2567 					     E1000_EEE_ADV_DEV_I354,
2568 					     &phy_data);
2569 		if (ret_val)
2570 			goto out;
2571 
2572 		phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2573 			      E1000_EEE_ADV_1000_SUPPORTED);
2574 		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2575 					      E1000_EEE_ADV_DEV_I354,
2576 					      phy_data);
2577 	}
2578 
2579 out:
2580 	return ret_val;
2581 }
2582 
2583 /**
2584  *  igb_get_eee_status_i354 - Get EEE status
2585  *  @hw: pointer to the HW structure
2586  *  @status: EEE status
2587  *
2588  *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2589  *  been received.
2590  **/
2591 s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2592 {
2593 	struct e1000_phy_info *phy = &hw->phy;
2594 	s32 ret_val = 0;
2595 	u16 phy_data;
2596 
2597 	/* Check if EEE is supported on this device. */
2598 	if ((hw->phy.media_type != e1000_media_type_copper) ||
2599 	    (phy->id != M88E1543_E_PHY_ID))
2600 		goto out;
2601 
2602 	ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2603 				     E1000_PCS_STATUS_DEV_I354,
2604 				     &phy_data);
2605 	if (ret_val)
2606 		goto out;
2607 
2608 	*status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2609 			      E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2610 
2611 out:
2612 	return ret_val;
2613 }
2614 
2615 static const u8 e1000_emc_temp_data[4] = {
2616 	E1000_EMC_INTERNAL_DATA,
2617 	E1000_EMC_DIODE1_DATA,
2618 	E1000_EMC_DIODE2_DATA,
2619 	E1000_EMC_DIODE3_DATA
2620 };
2621 static const u8 e1000_emc_therm_limit[4] = {
2622 	E1000_EMC_INTERNAL_THERM_LIMIT,
2623 	E1000_EMC_DIODE1_THERM_LIMIT,
2624 	E1000_EMC_DIODE2_THERM_LIMIT,
2625 	E1000_EMC_DIODE3_THERM_LIMIT
2626 };
2627 
2628 /**
2629  *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2630  *  @hw: pointer to hardware structure
2631  *
2632  *  Updates the temperatures in mac.thermal_sensor_data
2633  **/
2634 s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2635 {
2636 	s32 status = E1000_SUCCESS;
2637 	u16 ets_offset;
2638 	u16 ets_cfg;
2639 	u16 ets_sensor;
2640 	u8  num_sensors;
2641 	u8  sensor_index;
2642 	u8  sensor_location;
2643 	u8  i;
2644 	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2645 
2646 	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2647 		return E1000_NOT_IMPLEMENTED;
2648 
2649 	data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2650 
2651 	/* Return the internal sensor only if ETS is unsupported */
2652 	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2653 	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2654 		return status;
2655 
2656 	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2657 	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2658 	    != NVM_ETS_TYPE_EMC)
2659 		return E1000_NOT_IMPLEMENTED;
2660 
2661 	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2662 	if (num_sensors > E1000_MAX_SENSORS)
2663 		num_sensors = E1000_MAX_SENSORS;
2664 
2665 	for (i = 1; i < num_sensors; i++) {
2666 		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2667 		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2668 				NVM_ETS_DATA_INDEX_SHIFT);
2669 		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2670 				   NVM_ETS_DATA_LOC_SHIFT);
2671 
2672 		if (sensor_location != 0)
2673 			hw->phy.ops.read_i2c_byte(hw,
2674 					e1000_emc_temp_data[sensor_index],
2675 					E1000_I2C_THERMAL_SENSOR_ADDR,
2676 					&data->sensor[i].temp);
2677 	}
2678 	return status;
2679 }
2680 
2681 /**
2682  *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2683  *  @hw: pointer to hardware structure
2684  *
2685  *  Sets the thermal sensor thresholds according to the NVM map
2686  *  and save off the threshold and location values into mac.thermal_sensor_data
2687  **/
2688 s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2689 {
2690 	s32 status = E1000_SUCCESS;
2691 	u16 ets_offset;
2692 	u16 ets_cfg;
2693 	u16 ets_sensor;
2694 	u8  low_thresh_delta;
2695 	u8  num_sensors;
2696 	u8  sensor_index;
2697 	u8  sensor_location;
2698 	u8  therm_limit;
2699 	u8  i;
2700 	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2701 
2702 	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2703 		return E1000_NOT_IMPLEMENTED;
2704 
2705 	memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2706 
2707 	data->sensor[0].location = 0x1;
2708 	data->sensor[0].caution_thresh =
2709 		(rd32(E1000_THHIGHTC) & 0xFF);
2710 	data->sensor[0].max_op_thresh =
2711 		(rd32(E1000_THLOWTC) & 0xFF);
2712 
2713 	/* Return the internal sensor only if ETS is unsupported */
2714 	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2715 	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2716 		return status;
2717 
2718 	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2719 	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2720 	    != NVM_ETS_TYPE_EMC)
2721 		return E1000_NOT_IMPLEMENTED;
2722 
2723 	low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2724 			    NVM_ETS_LTHRES_DELTA_SHIFT);
2725 	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2726 
2727 	for (i = 1; i <= num_sensors; i++) {
2728 		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2729 		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2730 				NVM_ETS_DATA_INDEX_SHIFT);
2731 		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2732 				   NVM_ETS_DATA_LOC_SHIFT);
2733 		therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2734 
2735 		hw->phy.ops.write_i2c_byte(hw,
2736 			e1000_emc_therm_limit[sensor_index],
2737 			E1000_I2C_THERMAL_SENSOR_ADDR,
2738 			therm_limit);
2739 
2740 		if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2741 			data->sensor[i].location = sensor_location;
2742 			data->sensor[i].caution_thresh = therm_limit;
2743 			data->sensor[i].max_op_thresh = therm_limit -
2744 							low_thresh_delta;
2745 		}
2746 	}
2747 	return status;
2748 }
2749 
2750 static struct e1000_mac_operations e1000_mac_ops_82575 = {
2751 	.init_hw              = igb_init_hw_82575,
2752 	.check_for_link       = igb_check_for_link_82575,
2753 	.rar_set              = igb_rar_set,
2754 	.read_mac_addr        = igb_read_mac_addr_82575,
2755 	.get_speed_and_duplex = igb_get_link_up_info_82575,
2756 #ifdef CONFIG_IGB_HWMON
2757 	.get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2758 	.init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2759 #endif
2760 };
2761 
2762 static struct e1000_phy_operations e1000_phy_ops_82575 = {
2763 	.acquire              = igb_acquire_phy_82575,
2764 	.get_cfg_done         = igb_get_cfg_done_82575,
2765 	.release              = igb_release_phy_82575,
2766 	.write_i2c_byte       = igb_write_i2c_byte,
2767 	.read_i2c_byte        = igb_read_i2c_byte,
2768 };
2769 
2770 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2771 	.acquire              = igb_acquire_nvm_82575,
2772 	.read                 = igb_read_nvm_eerd,
2773 	.release              = igb_release_nvm_82575,
2774 	.write                = igb_write_nvm_spi,
2775 };
2776 
2777 const struct e1000_info e1000_82575_info = {
2778 	.get_invariants = igb_get_invariants_82575,
2779 	.mac_ops = &e1000_mac_ops_82575,
2780 	.phy_ops = &e1000_phy_ops_82575,
2781 	.nvm_ops = &e1000_nvm_ops_82575,
2782 };
2783 
2784