1 /*******************************************************************************
2 
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2013 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 /* e1000_82575
29  * e1000_82576
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/types.h>
35 #include <linux/if_ether.h>
36 #include <linux/i2c.h>
37 
38 #include "e1000_mac.h"
39 #include "e1000_82575.h"
40 #include "e1000_i210.h"
41 
42 static s32  igb_get_invariants_82575(struct e1000_hw *);
43 static s32  igb_acquire_phy_82575(struct e1000_hw *);
44 static void igb_release_phy_82575(struct e1000_hw *);
45 static s32  igb_acquire_nvm_82575(struct e1000_hw *);
46 static void igb_release_nvm_82575(struct e1000_hw *);
47 static s32  igb_check_for_link_82575(struct e1000_hw *);
48 static s32  igb_get_cfg_done_82575(struct e1000_hw *);
49 static s32  igb_init_hw_82575(struct e1000_hw *);
50 static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
51 static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
52 static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
53 static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
54 static s32  igb_reset_hw_82575(struct e1000_hw *);
55 static s32  igb_reset_hw_82580(struct e1000_hw *);
56 static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
57 static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
58 static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
59 static s32  igb_setup_copper_link_82575(struct e1000_hw *);
60 static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
61 static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
62 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
63 static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
64 static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
65 						 u16 *);
66 static s32  igb_get_phy_id_82575(struct e1000_hw *);
67 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
68 static bool igb_sgmii_active_82575(struct e1000_hw *);
69 static s32  igb_reset_init_script_82575(struct e1000_hw *);
70 static s32  igb_read_mac_addr_82575(struct e1000_hw *);
71 static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
72 static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
73 static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
74 static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
75 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
76 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
77 static const u16 e1000_82580_rxpbs_table[] =
78 	{ 36, 72, 144, 1, 2, 4, 8, 16,
79 	  35, 70, 140 };
80 #define E1000_82580_RXPBS_TABLE_SIZE \
81 	(sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
82 
83 /**
84  *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
85  *  @hw: pointer to the HW structure
86  *
87  *  Called to determine if the I2C pins are being used for I2C or as an
88  *  external MDIO interface since the two options are mutually exclusive.
89  **/
90 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
91 {
92 	u32 reg = 0;
93 	bool ext_mdio = false;
94 
95 	switch (hw->mac.type) {
96 	case e1000_82575:
97 	case e1000_82576:
98 		reg = rd32(E1000_MDIC);
99 		ext_mdio = !!(reg & E1000_MDIC_DEST);
100 		break;
101 	case e1000_82580:
102 	case e1000_i350:
103 	case e1000_i354:
104 	case e1000_i210:
105 	case e1000_i211:
106 		reg = rd32(E1000_MDICNFG);
107 		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
108 		break;
109 	default:
110 		break;
111 	}
112 	return ext_mdio;
113 }
114 
115 /**
116  *  igb_init_phy_params_82575 - Init PHY func ptrs.
117  *  @hw: pointer to the HW structure
118  **/
119 static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
120 {
121 	struct e1000_phy_info *phy = &hw->phy;
122 	s32 ret_val = 0;
123 	u32 ctrl_ext;
124 
125 	if (hw->phy.media_type != e1000_media_type_copper) {
126 		phy->type = e1000_phy_none;
127 		goto out;
128 	}
129 
130 	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
131 	phy->reset_delay_us	= 100;
132 
133 	ctrl_ext = rd32(E1000_CTRL_EXT);
134 
135 	if (igb_sgmii_active_82575(hw)) {
136 		phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
137 		ctrl_ext |= E1000_CTRL_I2C_ENA;
138 	} else {
139 		phy->ops.reset = igb_phy_hw_reset;
140 		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
141 	}
142 
143 	wr32(E1000_CTRL_EXT, ctrl_ext);
144 	igb_reset_mdicnfg_82580(hw);
145 
146 	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
147 		phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
148 		phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
149 	} else {
150 		switch (hw->mac.type) {
151 		case e1000_82580:
152 		case e1000_i350:
153 		case e1000_i354:
154 			phy->ops.read_reg = igb_read_phy_reg_82580;
155 			phy->ops.write_reg = igb_write_phy_reg_82580;
156 			break;
157 		case e1000_i210:
158 		case e1000_i211:
159 			phy->ops.read_reg = igb_read_phy_reg_gs40g;
160 			phy->ops.write_reg = igb_write_phy_reg_gs40g;
161 			break;
162 		default:
163 			phy->ops.read_reg = igb_read_phy_reg_igp;
164 			phy->ops.write_reg = igb_write_phy_reg_igp;
165 		}
166 	}
167 
168 	/* set lan id */
169 	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
170 			E1000_STATUS_FUNC_SHIFT;
171 
172 	/* Set phy->phy_addr and phy->id. */
173 	ret_val = igb_get_phy_id_82575(hw);
174 	if (ret_val)
175 		return ret_val;
176 
177 	/* Verify phy id and set remaining function pointers */
178 	switch (phy->id) {
179 	case M88E1545_E_PHY_ID:
180 	case I347AT4_E_PHY_ID:
181 	case M88E1112_E_PHY_ID:
182 	case M88E1111_I_PHY_ID:
183 		phy->type		= e1000_phy_m88;
184 		phy->ops.check_polarity	= igb_check_polarity_m88;
185 		phy->ops.get_phy_info	= igb_get_phy_info_m88;
186 		if (phy->id != M88E1111_I_PHY_ID)
187 			phy->ops.get_cable_length =
188 					 igb_get_cable_length_m88_gen2;
189 		else
190 			phy->ops.get_cable_length = igb_get_cable_length_m88;
191 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
192 		break;
193 	case IGP03E1000_E_PHY_ID:
194 		phy->type = e1000_phy_igp_3;
195 		phy->ops.get_phy_info = igb_get_phy_info_igp;
196 		phy->ops.get_cable_length = igb_get_cable_length_igp_2;
197 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
198 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
199 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
200 		break;
201 	case I82580_I_PHY_ID:
202 	case I350_I_PHY_ID:
203 		phy->type = e1000_phy_82580;
204 		phy->ops.force_speed_duplex =
205 					 igb_phy_force_speed_duplex_82580;
206 		phy->ops.get_cable_length = igb_get_cable_length_82580;
207 		phy->ops.get_phy_info = igb_get_phy_info_82580;
208 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
209 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
210 		break;
211 	case I210_I_PHY_ID:
212 		phy->type		= e1000_phy_i210;
213 		phy->ops.check_polarity	= igb_check_polarity_m88;
214 		phy->ops.get_phy_info	= igb_get_phy_info_m88;
215 		phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
216 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
217 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
218 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
219 		break;
220 	default:
221 		ret_val = -E1000_ERR_PHY;
222 		goto out;
223 	}
224 
225 out:
226 	return ret_val;
227 }
228 
229 /**
230  *  igb_init_nvm_params_82575 - Init NVM func ptrs.
231  *  @hw: pointer to the HW structure
232  **/
233 static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
234 {
235 	struct e1000_nvm_info *nvm = &hw->nvm;
236 	u32 eecd = rd32(E1000_EECD);
237 	u16 size;
238 
239 	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
240 		     E1000_EECD_SIZE_EX_SHIFT);
241 	/* Added to a constant, "size" becomes the left-shift value
242 	 * for setting word_size.
243 	 */
244 	size += NVM_WORD_SIZE_BASE_SHIFT;
245 
246 	/* Just in case size is out of range, cap it to the largest
247 	 * EEPROM size supported
248 	 */
249 	if (size > 15)
250 		size = 15;
251 
252 	nvm->word_size = 1 << size;
253 	if (hw->mac.type < e1000_i210) {
254 		nvm->opcode_bits = 8;
255 		nvm->delay_usec = 1;
256 
257 		switch (nvm->override) {
258 		case e1000_nvm_override_spi_large:
259 			nvm->page_size = 32;
260 			nvm->address_bits = 16;
261 			break;
262 		case e1000_nvm_override_spi_small:
263 			nvm->page_size = 8;
264 			nvm->address_bits = 8;
265 			break;
266 		default:
267 			nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
268 			nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
269 					    16 : 8;
270 			break;
271 		}
272 		if (nvm->word_size == (1 << 15))
273 			nvm->page_size = 128;
274 
275 		nvm->type = e1000_nvm_eeprom_spi;
276 	} else {
277 		nvm->type = e1000_nvm_flash_hw;
278 	}
279 
280 	/* NVM Function Pointers */
281 	switch (hw->mac.type) {
282 	case e1000_82580:
283 		nvm->ops.validate = igb_validate_nvm_checksum_82580;
284 		nvm->ops.update = igb_update_nvm_checksum_82580;
285 		nvm->ops.acquire = igb_acquire_nvm_82575;
286 		nvm->ops.release = igb_release_nvm_82575;
287 		if (nvm->word_size < (1 << 15))
288 			nvm->ops.read = igb_read_nvm_eerd;
289 		else
290 			nvm->ops.read = igb_read_nvm_spi;
291 		nvm->ops.write = igb_write_nvm_spi;
292 		break;
293 	case e1000_i354:
294 	case e1000_i350:
295 		nvm->ops.validate = igb_validate_nvm_checksum_i350;
296 		nvm->ops.update = igb_update_nvm_checksum_i350;
297 		nvm->ops.acquire = igb_acquire_nvm_82575;
298 		nvm->ops.release = igb_release_nvm_82575;
299 		if (nvm->word_size < (1 << 15))
300 			nvm->ops.read = igb_read_nvm_eerd;
301 		else
302 			nvm->ops.read = igb_read_nvm_spi;
303 		nvm->ops.write = igb_write_nvm_spi;
304 		break;
305 	case e1000_i210:
306 		nvm->ops.validate = igb_validate_nvm_checksum_i210;
307 		nvm->ops.update   = igb_update_nvm_checksum_i210;
308 		nvm->ops.acquire = igb_acquire_nvm_i210;
309 		nvm->ops.release = igb_release_nvm_i210;
310 		nvm->ops.read    = igb_read_nvm_srrd_i210;
311 		nvm->ops.write   = igb_write_nvm_srwr_i210;
312 		nvm->ops.valid_led_default = igb_valid_led_default_i210;
313 		break;
314 	case e1000_i211:
315 		nvm->ops.acquire  = igb_acquire_nvm_i210;
316 		nvm->ops.release  = igb_release_nvm_i210;
317 		nvm->ops.read     = igb_read_nvm_i211;
318 		nvm->ops.valid_led_default = igb_valid_led_default_i210;
319 		nvm->ops.validate = NULL;
320 		nvm->ops.update   = NULL;
321 		nvm->ops.write    = NULL;
322 		break;
323 	default:
324 		nvm->ops.validate = igb_validate_nvm_checksum;
325 		nvm->ops.update = igb_update_nvm_checksum;
326 		nvm->ops.acquire = igb_acquire_nvm_82575;
327 		nvm->ops.release = igb_release_nvm_82575;
328 		if (nvm->word_size < (1 << 15))
329 			nvm->ops.read = igb_read_nvm_eerd;
330 		else
331 			nvm->ops.read = igb_read_nvm_spi;
332 		nvm->ops.write = igb_write_nvm_spi;
333 		break;
334 	}
335 
336 	return 0;
337 }
338 
339 /**
340  *  igb_init_mac_params_82575 - Init MAC func ptrs.
341  *  @hw: pointer to the HW structure
342  **/
343 static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
344 {
345 	struct e1000_mac_info *mac = &hw->mac;
346 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
347 
348 	/* Set mta register count */
349 	mac->mta_reg_count = 128;
350 	/* Set rar entry count */
351 	switch (mac->type) {
352 	case e1000_82576:
353 		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
354 		break;
355 	case e1000_82580:
356 		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
357 		break;
358 	case e1000_i350:
359 	case e1000_i354:
360 		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
361 		break;
362 	default:
363 		mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
364 		break;
365 	}
366 	/* reset */
367 	if (mac->type >= e1000_82580)
368 		mac->ops.reset_hw = igb_reset_hw_82580;
369 	else
370 		mac->ops.reset_hw = igb_reset_hw_82575;
371 
372 	if (mac->type >= e1000_i210) {
373 		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
374 		mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
375 
376 	} else {
377 		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
378 		mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
379 	}
380 
381 	/* Set if part includes ASF firmware */
382 	mac->asf_firmware_present = true;
383 	/* Set if manageability features are enabled. */
384 	mac->arc_subsystem_valid =
385 		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
386 			? true : false;
387 	/* enable EEE on i350 parts and later parts */
388 	if (mac->type >= e1000_i350)
389 		dev_spec->eee_disable = false;
390 	else
391 		dev_spec->eee_disable = true;
392 	/* Allow a single clear of the SW semaphore on I210 and newer */
393 	if (mac->type >= e1000_i210)
394 		dev_spec->clear_semaphore_once = true;
395 	/* physical interface link setup */
396 	mac->ops.setup_physical_interface =
397 		(hw->phy.media_type == e1000_media_type_copper)
398 			? igb_setup_copper_link_82575
399 			: igb_setup_serdes_link_82575;
400 
401 	return 0;
402 }
403 
404 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
405 {
406 	struct e1000_mac_info *mac = &hw->mac;
407 	struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
408 	s32 ret_val;
409 	u32 ctrl_ext = 0;
410 
411 	switch (hw->device_id) {
412 	case E1000_DEV_ID_82575EB_COPPER:
413 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
414 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
415 		mac->type = e1000_82575;
416 		break;
417 	case E1000_DEV_ID_82576:
418 	case E1000_DEV_ID_82576_NS:
419 	case E1000_DEV_ID_82576_NS_SERDES:
420 	case E1000_DEV_ID_82576_FIBER:
421 	case E1000_DEV_ID_82576_SERDES:
422 	case E1000_DEV_ID_82576_QUAD_COPPER:
423 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
424 	case E1000_DEV_ID_82576_SERDES_QUAD:
425 		mac->type = e1000_82576;
426 		break;
427 	case E1000_DEV_ID_82580_COPPER:
428 	case E1000_DEV_ID_82580_FIBER:
429 	case E1000_DEV_ID_82580_QUAD_FIBER:
430 	case E1000_DEV_ID_82580_SERDES:
431 	case E1000_DEV_ID_82580_SGMII:
432 	case E1000_DEV_ID_82580_COPPER_DUAL:
433 	case E1000_DEV_ID_DH89XXCC_SGMII:
434 	case E1000_DEV_ID_DH89XXCC_SERDES:
435 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
436 	case E1000_DEV_ID_DH89XXCC_SFP:
437 		mac->type = e1000_82580;
438 		break;
439 	case E1000_DEV_ID_I350_COPPER:
440 	case E1000_DEV_ID_I350_FIBER:
441 	case E1000_DEV_ID_I350_SERDES:
442 	case E1000_DEV_ID_I350_SGMII:
443 		mac->type = e1000_i350;
444 		break;
445 	case E1000_DEV_ID_I210_COPPER:
446 	case E1000_DEV_ID_I210_FIBER:
447 	case E1000_DEV_ID_I210_SERDES:
448 	case E1000_DEV_ID_I210_SGMII:
449 		mac->type = e1000_i210;
450 		break;
451 	case E1000_DEV_ID_I211_COPPER:
452 		mac->type = e1000_i211;
453 		break;
454 	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
455 	case E1000_DEV_ID_I354_SGMII:
456 	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
457 		mac->type = e1000_i354;
458 		break;
459 	default:
460 		return -E1000_ERR_MAC_INIT;
461 		break;
462 	}
463 
464 	/* Set media type */
465 	/* The 82575 uses bits 22:23 for link mode. The mode can be changed
466 	 * based on the EEPROM. We cannot rely upon device ID. There
467 	 * is no distinguishable difference between fiber and internal
468 	 * SerDes mode on the 82575. There can be an external PHY attached
469 	 * on the SGMII interface. For this, we'll set sgmii_active to true.
470 	 */
471 	hw->phy.media_type = e1000_media_type_copper;
472 	dev_spec->sgmii_active = false;
473 
474 	ctrl_ext = rd32(E1000_CTRL_EXT);
475 	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
476 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
477 		dev_spec->sgmii_active = true;
478 		break;
479 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
480 	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
481 		hw->phy.media_type = e1000_media_type_internal_serdes;
482 		break;
483 	default:
484 		break;
485 	}
486 
487 	/* mac initialization and operations */
488 	ret_val = igb_init_mac_params_82575(hw);
489 	if (ret_val)
490 		goto out;
491 
492 	/* NVM initialization */
493 	ret_val = igb_init_nvm_params_82575(hw);
494 	if (ret_val)
495 		goto out;
496 
497 	/* if part supports SR-IOV then initialize mailbox parameters */
498 	switch (mac->type) {
499 	case e1000_82576:
500 	case e1000_i350:
501 		igb_init_mbx_params_pf(hw);
502 		break;
503 	default:
504 		break;
505 	}
506 
507 	/* setup PHY parameters */
508 	ret_val = igb_init_phy_params_82575(hw);
509 
510 out:
511 	return ret_val;
512 }
513 
514 /**
515  *  igb_acquire_phy_82575 - Acquire rights to access PHY
516  *  @hw: pointer to the HW structure
517  *
518  *  Acquire access rights to the correct PHY.  This is a
519  *  function pointer entry point called by the api module.
520  **/
521 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
522 {
523 	u16 mask = E1000_SWFW_PHY0_SM;
524 
525 	if (hw->bus.func == E1000_FUNC_1)
526 		mask = E1000_SWFW_PHY1_SM;
527 	else if (hw->bus.func == E1000_FUNC_2)
528 		mask = E1000_SWFW_PHY2_SM;
529 	else if (hw->bus.func == E1000_FUNC_3)
530 		mask = E1000_SWFW_PHY3_SM;
531 
532 	return hw->mac.ops.acquire_swfw_sync(hw, mask);
533 }
534 
535 /**
536  *  igb_release_phy_82575 - Release rights to access PHY
537  *  @hw: pointer to the HW structure
538  *
539  *  A wrapper to release access rights to the correct PHY.  This is a
540  *  function pointer entry point called by the api module.
541  **/
542 static void igb_release_phy_82575(struct e1000_hw *hw)
543 {
544 	u16 mask = E1000_SWFW_PHY0_SM;
545 
546 	if (hw->bus.func == E1000_FUNC_1)
547 		mask = E1000_SWFW_PHY1_SM;
548 	else if (hw->bus.func == E1000_FUNC_2)
549 		mask = E1000_SWFW_PHY2_SM;
550 	else if (hw->bus.func == E1000_FUNC_3)
551 		mask = E1000_SWFW_PHY3_SM;
552 
553 	hw->mac.ops.release_swfw_sync(hw, mask);
554 }
555 
556 /**
557  *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
558  *  @hw: pointer to the HW structure
559  *  @offset: register offset to be read
560  *  @data: pointer to the read data
561  *
562  *  Reads the PHY register at offset using the serial gigabit media independent
563  *  interface and stores the retrieved information in data.
564  **/
565 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
566 					  u16 *data)
567 {
568 	s32 ret_val = -E1000_ERR_PARAM;
569 
570 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
571 		hw_dbg("PHY Address %u is out of range\n", offset);
572 		goto out;
573 	}
574 
575 	ret_val = hw->phy.ops.acquire(hw);
576 	if (ret_val)
577 		goto out;
578 
579 	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
580 
581 	hw->phy.ops.release(hw);
582 
583 out:
584 	return ret_val;
585 }
586 
587 /**
588  *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
589  *  @hw: pointer to the HW structure
590  *  @offset: register offset to write to
591  *  @data: data to write at register offset
592  *
593  *  Writes the data to PHY register at the offset using the serial gigabit
594  *  media independent interface.
595  **/
596 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
597 					   u16 data)
598 {
599 	s32 ret_val = -E1000_ERR_PARAM;
600 
601 
602 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
603 		hw_dbg("PHY Address %d is out of range\n", offset);
604 		goto out;
605 	}
606 
607 	ret_val = hw->phy.ops.acquire(hw);
608 	if (ret_val)
609 		goto out;
610 
611 	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
612 
613 	hw->phy.ops.release(hw);
614 
615 out:
616 	return ret_val;
617 }
618 
619 /**
620  *  igb_get_phy_id_82575 - Retrieve PHY addr and id
621  *  @hw: pointer to the HW structure
622  *
623  *  Retrieves the PHY address and ID for both PHY's which do and do not use
624  *  sgmi interface.
625  **/
626 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
627 {
628 	struct e1000_phy_info *phy = &hw->phy;
629 	s32  ret_val = 0;
630 	u16 phy_id;
631 	u32 ctrl_ext;
632 	u32 mdic;
633 
634 	/* For SGMII PHYs, we try the list of possible addresses until
635 	 * we find one that works.  For non-SGMII PHYs
636 	 * (e.g. integrated copper PHYs), an address of 1 should
637 	 * work.  The result of this function should mean phy->phy_addr
638 	 * and phy->id are set correctly.
639 	 */
640 	if (!(igb_sgmii_active_82575(hw))) {
641 		phy->addr = 1;
642 		ret_val = igb_get_phy_id(hw);
643 		goto out;
644 	}
645 
646 	if (igb_sgmii_uses_mdio_82575(hw)) {
647 		switch (hw->mac.type) {
648 		case e1000_82575:
649 		case e1000_82576:
650 			mdic = rd32(E1000_MDIC);
651 			mdic &= E1000_MDIC_PHY_MASK;
652 			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
653 			break;
654 		case e1000_82580:
655 		case e1000_i350:
656 		case e1000_i354:
657 		case e1000_i210:
658 		case e1000_i211:
659 			mdic = rd32(E1000_MDICNFG);
660 			mdic &= E1000_MDICNFG_PHY_MASK;
661 			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
662 			break;
663 		default:
664 			ret_val = -E1000_ERR_PHY;
665 			goto out;
666 			break;
667 		}
668 		ret_val = igb_get_phy_id(hw);
669 		goto out;
670 	}
671 
672 	/* Power on sgmii phy if it is disabled */
673 	ctrl_ext = rd32(E1000_CTRL_EXT);
674 	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
675 	wrfl();
676 	msleep(300);
677 
678 	/* The address field in the I2CCMD register is 3 bits and 0 is invalid.
679 	 * Therefore, we need to test 1-7
680 	 */
681 	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
682 		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
683 		if (ret_val == 0) {
684 			hw_dbg("Vendor ID 0x%08X read at address %u\n",
685 			       phy_id, phy->addr);
686 			/* At the time of this writing, The M88 part is
687 			 * the only supported SGMII PHY product.
688 			 */
689 			if (phy_id == M88_VENDOR)
690 				break;
691 		} else {
692 			hw_dbg("PHY address %u was unreadable\n", phy->addr);
693 		}
694 	}
695 
696 	/* A valid PHY type couldn't be found. */
697 	if (phy->addr == 8) {
698 		phy->addr = 0;
699 		ret_val = -E1000_ERR_PHY;
700 		goto out;
701 	} else {
702 		ret_val = igb_get_phy_id(hw);
703 	}
704 
705 	/* restore previous sfp cage power state */
706 	wr32(E1000_CTRL_EXT, ctrl_ext);
707 
708 out:
709 	return ret_val;
710 }
711 
712 /**
713  *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
714  *  @hw: pointer to the HW structure
715  *
716  *  Resets the PHY using the serial gigabit media independent interface.
717  **/
718 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
719 {
720 	s32 ret_val;
721 
722 	/* This isn't a true "hard" reset, but is the only reset
723 	 * available to us at this time.
724 	 */
725 
726 	hw_dbg("Soft resetting SGMII attached PHY...\n");
727 
728 	/* SFP documentation requires the following to configure the SPF module
729 	 * to work on SGMII.  No further documentation is given.
730 	 */
731 	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
732 	if (ret_val)
733 		goto out;
734 
735 	ret_val = igb_phy_sw_reset(hw);
736 
737 out:
738 	return ret_val;
739 }
740 
741 /**
742  *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
743  *  @hw: pointer to the HW structure
744  *  @active: true to enable LPLU, false to disable
745  *
746  *  Sets the LPLU D0 state according to the active flag.  When
747  *  activating LPLU this function also disables smart speed
748  *  and vice versa.  LPLU will not be activated unless the
749  *  device autonegotiation advertisement meets standards of
750  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
751  *  This is a function pointer entry point only called by
752  *  PHY setup routines.
753  **/
754 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
755 {
756 	struct e1000_phy_info *phy = &hw->phy;
757 	s32 ret_val;
758 	u16 data;
759 
760 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
761 	if (ret_val)
762 		goto out;
763 
764 	if (active) {
765 		data |= IGP02E1000_PM_D0_LPLU;
766 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
767 						 data);
768 		if (ret_val)
769 			goto out;
770 
771 		/* When LPLU is enabled, we should disable SmartSpeed */
772 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
773 						&data);
774 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
775 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
776 						 data);
777 		if (ret_val)
778 			goto out;
779 	} else {
780 		data &= ~IGP02E1000_PM_D0_LPLU;
781 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
782 						 data);
783 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
784 		 * during Dx states where the power conservation is most
785 		 * important.  During driver activity we should enable
786 		 * SmartSpeed, so performance is maintained.
787 		 */
788 		if (phy->smart_speed == e1000_smart_speed_on) {
789 			ret_val = phy->ops.read_reg(hw,
790 					IGP01E1000_PHY_PORT_CONFIG, &data);
791 			if (ret_val)
792 				goto out;
793 
794 			data |= IGP01E1000_PSCFR_SMART_SPEED;
795 			ret_val = phy->ops.write_reg(hw,
796 					IGP01E1000_PHY_PORT_CONFIG, data);
797 			if (ret_val)
798 				goto out;
799 		} else if (phy->smart_speed == e1000_smart_speed_off) {
800 			ret_val = phy->ops.read_reg(hw,
801 					IGP01E1000_PHY_PORT_CONFIG, &data);
802 			if (ret_val)
803 				goto out;
804 
805 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
806 			ret_val = phy->ops.write_reg(hw,
807 					IGP01E1000_PHY_PORT_CONFIG, data);
808 			if (ret_val)
809 				goto out;
810 		}
811 	}
812 
813 out:
814 	return ret_val;
815 }
816 
817 /**
818  *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
819  *  @hw: pointer to the HW structure
820  *  @active: true to enable LPLU, false to disable
821  *
822  *  Sets the LPLU D0 state according to the active flag.  When
823  *  activating LPLU this function also disables smart speed
824  *  and vice versa.  LPLU will not be activated unless the
825  *  device autonegotiation advertisement meets standards of
826  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
827  *  This is a function pointer entry point only called by
828  *  PHY setup routines.
829  **/
830 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
831 {
832 	struct e1000_phy_info *phy = &hw->phy;
833 	s32 ret_val = 0;
834 	u16 data;
835 
836 	data = rd32(E1000_82580_PHY_POWER_MGMT);
837 
838 	if (active) {
839 		data |= E1000_82580_PM_D0_LPLU;
840 
841 		/* When LPLU is enabled, we should disable SmartSpeed */
842 		data &= ~E1000_82580_PM_SPD;
843 	} else {
844 		data &= ~E1000_82580_PM_D0_LPLU;
845 
846 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
847 		 * during Dx states where the power conservation is most
848 		 * important.  During driver activity we should enable
849 		 * SmartSpeed, so performance is maintained.
850 		 */
851 		if (phy->smart_speed == e1000_smart_speed_on)
852 			data |= E1000_82580_PM_SPD;
853 		else if (phy->smart_speed == e1000_smart_speed_off)
854 			data &= ~E1000_82580_PM_SPD; }
855 
856 	wr32(E1000_82580_PHY_POWER_MGMT, data);
857 	return ret_val;
858 }
859 
860 /**
861  *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
862  *  @hw: pointer to the HW structure
863  *  @active: boolean used to enable/disable lplu
864  *
865  *  Success returns 0, Failure returns 1
866  *
867  *  The low power link up (lplu) state is set to the power management level D3
868  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
869  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
870  *  is used during Dx states where the power conservation is most important.
871  *  During driver activity, SmartSpeed should be enabled so performance is
872  *  maintained.
873  **/
874 static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
875 {
876 	struct e1000_phy_info *phy = &hw->phy;
877 	s32 ret_val = 0;
878 	u16 data;
879 
880 	data = rd32(E1000_82580_PHY_POWER_MGMT);
881 
882 	if (!active) {
883 		data &= ~E1000_82580_PM_D3_LPLU;
884 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
885 		 * during Dx states where the power conservation is most
886 		 * important.  During driver activity we should enable
887 		 * SmartSpeed, so performance is maintained.
888 		 */
889 		if (phy->smart_speed == e1000_smart_speed_on)
890 			data |= E1000_82580_PM_SPD;
891 		else if (phy->smart_speed == e1000_smart_speed_off)
892 			data &= ~E1000_82580_PM_SPD;
893 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
894 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
895 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
896 		data |= E1000_82580_PM_D3_LPLU;
897 		/* When LPLU is enabled, we should disable SmartSpeed */
898 		data &= ~E1000_82580_PM_SPD;
899 	}
900 
901 	wr32(E1000_82580_PHY_POWER_MGMT, data);
902 	return ret_val;
903 }
904 
905 /**
906  *  igb_acquire_nvm_82575 - Request for access to EEPROM
907  *  @hw: pointer to the HW structure
908  *
909  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
910  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
911  *  Return successful if access grant bit set, else clear the request for
912  *  EEPROM access and return -E1000_ERR_NVM (-1).
913  **/
914 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
915 {
916 	s32 ret_val;
917 
918 	ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
919 	if (ret_val)
920 		goto out;
921 
922 	ret_val = igb_acquire_nvm(hw);
923 
924 	if (ret_val)
925 		hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
926 
927 out:
928 	return ret_val;
929 }
930 
931 /**
932  *  igb_release_nvm_82575 - Release exclusive access to EEPROM
933  *  @hw: pointer to the HW structure
934  *
935  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
936  *  then release the semaphores acquired.
937  **/
938 static void igb_release_nvm_82575(struct e1000_hw *hw)
939 {
940 	igb_release_nvm(hw);
941 	hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
942 }
943 
944 /**
945  *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
946  *  @hw: pointer to the HW structure
947  *  @mask: specifies which semaphore to acquire
948  *
949  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
950  *  will also specify which port we're acquiring the lock for.
951  **/
952 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
953 {
954 	u32 swfw_sync;
955 	u32 swmask = mask;
956 	u32 fwmask = mask << 16;
957 	s32 ret_val = 0;
958 	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
959 
960 	while (i < timeout) {
961 		if (igb_get_hw_semaphore(hw)) {
962 			ret_val = -E1000_ERR_SWFW_SYNC;
963 			goto out;
964 		}
965 
966 		swfw_sync = rd32(E1000_SW_FW_SYNC);
967 		if (!(swfw_sync & (fwmask | swmask)))
968 			break;
969 
970 		/* Firmware currently using resource (fwmask)
971 		 * or other software thread using resource (swmask)
972 		 */
973 		igb_put_hw_semaphore(hw);
974 		mdelay(5);
975 		i++;
976 	}
977 
978 	if (i == timeout) {
979 		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
980 		ret_val = -E1000_ERR_SWFW_SYNC;
981 		goto out;
982 	}
983 
984 	swfw_sync |= swmask;
985 	wr32(E1000_SW_FW_SYNC, swfw_sync);
986 
987 	igb_put_hw_semaphore(hw);
988 
989 out:
990 	return ret_val;
991 }
992 
993 /**
994  *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
995  *  @hw: pointer to the HW structure
996  *  @mask: specifies which semaphore to acquire
997  *
998  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
999  *  will also specify which port we're releasing the lock for.
1000  **/
1001 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1002 {
1003 	u32 swfw_sync;
1004 
1005 	while (igb_get_hw_semaphore(hw) != 0);
1006 	/* Empty */
1007 
1008 	swfw_sync = rd32(E1000_SW_FW_SYNC);
1009 	swfw_sync &= ~mask;
1010 	wr32(E1000_SW_FW_SYNC, swfw_sync);
1011 
1012 	igb_put_hw_semaphore(hw);
1013 }
1014 
1015 /**
1016  *  igb_get_cfg_done_82575 - Read config done bit
1017  *  @hw: pointer to the HW structure
1018  *
1019  *  Read the management control register for the config done bit for
1020  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1021  *  to read the config done bit, so an error is *ONLY* logged and returns
1022  *  0.  If we were to return with error, EEPROM-less silicon
1023  *  would not be able to be reset or change link.
1024  **/
1025 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1026 {
1027 	s32 timeout = PHY_CFG_TIMEOUT;
1028 	s32 ret_val = 0;
1029 	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1030 
1031 	if (hw->bus.func == 1)
1032 		mask = E1000_NVM_CFG_DONE_PORT_1;
1033 	else if (hw->bus.func == E1000_FUNC_2)
1034 		mask = E1000_NVM_CFG_DONE_PORT_2;
1035 	else if (hw->bus.func == E1000_FUNC_3)
1036 		mask = E1000_NVM_CFG_DONE_PORT_3;
1037 
1038 	while (timeout) {
1039 		if (rd32(E1000_EEMNGCTL) & mask)
1040 			break;
1041 		msleep(1);
1042 		timeout--;
1043 	}
1044 	if (!timeout)
1045 		hw_dbg("MNG configuration cycle has not completed.\n");
1046 
1047 	/* If EEPROM is not marked present, init the PHY manually */
1048 	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1049 	    (hw->phy.type == e1000_phy_igp_3))
1050 		igb_phy_init_script_igp3(hw);
1051 
1052 	return ret_val;
1053 }
1054 
1055 /**
1056  *  igb_check_for_link_82575 - Check for link
1057  *  @hw: pointer to the HW structure
1058  *
1059  *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1060  *  use the generic interface for determining link.
1061  **/
1062 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1063 {
1064 	s32 ret_val;
1065 	u16 speed, duplex;
1066 
1067 	if (hw->phy.media_type != e1000_media_type_copper) {
1068 		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1069 		                                             &duplex);
1070 		/* Use this flag to determine if link needs to be checked or
1071 		 * not.  If  we have link clear the flag so that we do not
1072 		 * continue to check for link.
1073 		 */
1074 		hw->mac.get_link_status = !hw->mac.serdes_has_link;
1075 
1076 		/* Configure Flow Control now that Auto-Neg has completed.
1077 		 * First, we need to restore the desired flow control
1078 		 * settings because we may have had to re-autoneg with a
1079 		 * different link partner.
1080 		 */
1081 		ret_val = igb_config_fc_after_link_up(hw);
1082 		if (ret_val)
1083 			hw_dbg("Error configuring flow control\n");
1084 	} else {
1085 		ret_val = igb_check_for_copper_link(hw);
1086 	}
1087 
1088 	return ret_val;
1089 }
1090 
1091 /**
1092  *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1093  *  @hw: pointer to the HW structure
1094  **/
1095 void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1096 {
1097 	u32 reg;
1098 
1099 
1100 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1101 	    !igb_sgmii_active_82575(hw))
1102 		return;
1103 
1104 	/* Enable PCS to turn on link */
1105 	reg = rd32(E1000_PCS_CFG0);
1106 	reg |= E1000_PCS_CFG_PCS_EN;
1107 	wr32(E1000_PCS_CFG0, reg);
1108 
1109 	/* Power up the laser */
1110 	reg = rd32(E1000_CTRL_EXT);
1111 	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1112 	wr32(E1000_CTRL_EXT, reg);
1113 
1114 	/* flush the write to verify completion */
1115 	wrfl();
1116 	msleep(1);
1117 }
1118 
1119 /**
1120  *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1121  *  @hw: pointer to the HW structure
1122  *  @speed: stores the current speed
1123  *  @duplex: stores the current duplex
1124  *
1125  *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1126  *  duplex, then store the values in the pointers provided.
1127  **/
1128 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1129 						u16 *duplex)
1130 {
1131 	struct e1000_mac_info *mac = &hw->mac;
1132 	u32 pcs;
1133 
1134 	/* Set up defaults for the return values of this function */
1135 	mac->serdes_has_link = false;
1136 	*speed = 0;
1137 	*duplex = 0;
1138 
1139 	/* Read the PCS Status register for link state. For non-copper mode,
1140 	 * the status register is not accurate. The PCS status register is
1141 	 * used instead.
1142 	 */
1143 	pcs = rd32(E1000_PCS_LSTAT);
1144 
1145 	/* The link up bit determines when link is up on autoneg. The sync ok
1146 	 * gets set once both sides sync up and agree upon link. Stable link
1147 	 * can be determined by checking for both link up and link sync ok
1148 	 */
1149 	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1150 		mac->serdes_has_link = true;
1151 
1152 		/* Detect and store PCS speed */
1153 		if (pcs & E1000_PCS_LSTS_SPEED_1000) {
1154 			*speed = SPEED_1000;
1155 		} else if (pcs & E1000_PCS_LSTS_SPEED_100) {
1156 			*speed = SPEED_100;
1157 		} else {
1158 			*speed = SPEED_10;
1159 		}
1160 
1161 		/* Detect and store PCS duplex */
1162 		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
1163 			*duplex = FULL_DUPLEX;
1164 		} else {
1165 			*duplex = HALF_DUPLEX;
1166 		}
1167 	}
1168 
1169 	return 0;
1170 }
1171 
1172 /**
1173  *  igb_shutdown_serdes_link_82575 - Remove link during power down
1174  *  @hw: pointer to the HW structure
1175  *
1176  *  In the case of fiber serdes, shut down optics and PCS on driver unload
1177  *  when management pass thru is not enabled.
1178  **/
1179 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1180 {
1181 	u32 reg;
1182 
1183 	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1184 	    igb_sgmii_active_82575(hw))
1185 		return;
1186 
1187 	if (!igb_enable_mng_pass_thru(hw)) {
1188 		/* Disable PCS to turn off link */
1189 		reg = rd32(E1000_PCS_CFG0);
1190 		reg &= ~E1000_PCS_CFG_PCS_EN;
1191 		wr32(E1000_PCS_CFG0, reg);
1192 
1193 		/* shutdown the laser */
1194 		reg = rd32(E1000_CTRL_EXT);
1195 		reg |= E1000_CTRL_EXT_SDP3_DATA;
1196 		wr32(E1000_CTRL_EXT, reg);
1197 
1198 		/* flush the write to verify completion */
1199 		wrfl();
1200 		msleep(1);
1201 	}
1202 }
1203 
1204 /**
1205  *  igb_reset_hw_82575 - Reset hardware
1206  *  @hw: pointer to the HW structure
1207  *
1208  *  This resets the hardware into a known state.  This is a
1209  *  function pointer entry point called by the api module.
1210  **/
1211 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1212 {
1213 	u32 ctrl, icr;
1214 	s32 ret_val;
1215 
1216 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
1217 	 * on the last TLP read/write transaction when MAC is reset.
1218 	 */
1219 	ret_val = igb_disable_pcie_master(hw);
1220 	if (ret_val)
1221 		hw_dbg("PCI-E Master disable polling has failed.\n");
1222 
1223 	/* set the completion timeout for interface */
1224 	ret_val = igb_set_pcie_completion_timeout(hw);
1225 	if (ret_val) {
1226 		hw_dbg("PCI-E Set completion timeout has failed.\n");
1227 	}
1228 
1229 	hw_dbg("Masking off all interrupts\n");
1230 	wr32(E1000_IMC, 0xffffffff);
1231 
1232 	wr32(E1000_RCTL, 0);
1233 	wr32(E1000_TCTL, E1000_TCTL_PSP);
1234 	wrfl();
1235 
1236 	msleep(10);
1237 
1238 	ctrl = rd32(E1000_CTRL);
1239 
1240 	hw_dbg("Issuing a global reset to MAC\n");
1241 	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1242 
1243 	ret_val = igb_get_auto_rd_done(hw);
1244 	if (ret_val) {
1245 		/* When auto config read does not complete, do not
1246 		 * return with an error. This can happen in situations
1247 		 * where there is no eeprom and prevents getting link.
1248 		 */
1249 		hw_dbg("Auto Read Done did not complete\n");
1250 	}
1251 
1252 	/* If EEPROM is not present, run manual init scripts */
1253 	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1254 		igb_reset_init_script_82575(hw);
1255 
1256 	/* Clear any pending interrupt events. */
1257 	wr32(E1000_IMC, 0xffffffff);
1258 	icr = rd32(E1000_ICR);
1259 
1260 	/* Install any alternate MAC address into RAR0 */
1261 	ret_val = igb_check_alt_mac_addr(hw);
1262 
1263 	return ret_val;
1264 }
1265 
1266 /**
1267  *  igb_init_hw_82575 - Initialize hardware
1268  *  @hw: pointer to the HW structure
1269  *
1270  *  This inits the hardware readying it for operation.
1271  **/
1272 static s32 igb_init_hw_82575(struct e1000_hw *hw)
1273 {
1274 	struct e1000_mac_info *mac = &hw->mac;
1275 	s32 ret_val;
1276 	u16 i, rar_count = mac->rar_entry_count;
1277 
1278 	/* Initialize identification LED */
1279 	ret_val = igb_id_led_init(hw);
1280 	if (ret_val) {
1281 		hw_dbg("Error initializing identification LED\n");
1282 		/* This is not fatal and we should not stop init due to this */
1283 	}
1284 
1285 	/* Disabling VLAN filtering */
1286 	hw_dbg("Initializing the IEEE VLAN\n");
1287 	if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
1288 		igb_clear_vfta_i350(hw);
1289 	else
1290 		igb_clear_vfta(hw);
1291 
1292 	/* Setup the receive address */
1293 	igb_init_rx_addrs(hw, rar_count);
1294 
1295 	/* Zero out the Multicast HASH table */
1296 	hw_dbg("Zeroing the MTA\n");
1297 	for (i = 0; i < mac->mta_reg_count; i++)
1298 		array_wr32(E1000_MTA, i, 0);
1299 
1300 	/* Zero out the Unicast HASH table */
1301 	hw_dbg("Zeroing the UTA\n");
1302 	for (i = 0; i < mac->uta_reg_count; i++)
1303 		array_wr32(E1000_UTA, i, 0);
1304 
1305 	/* Setup link and flow control */
1306 	ret_val = igb_setup_link(hw);
1307 
1308 	/* Clear all of the statistics registers (clear on read).  It is
1309 	 * important that we do this after we have tried to establish link
1310 	 * because the symbol error count will increment wildly if there
1311 	 * is no link.
1312 	 */
1313 	igb_clear_hw_cntrs_82575(hw);
1314 	return ret_val;
1315 }
1316 
1317 /**
1318  *  igb_setup_copper_link_82575 - Configure copper link settings
1319  *  @hw: pointer to the HW structure
1320  *
1321  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1322  *  for link, once link is established calls to configure collision distance
1323  *  and flow control are called.
1324  **/
1325 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1326 {
1327 	u32 ctrl;
1328 	s32  ret_val;
1329 	u32 phpm_reg;
1330 
1331 	ctrl = rd32(E1000_CTRL);
1332 	ctrl |= E1000_CTRL_SLU;
1333 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1334 	wr32(E1000_CTRL, ctrl);
1335 
1336 	/* Clear Go Link Disconnect bit */
1337 	if (hw->mac.type >= e1000_82580) {
1338 		phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1339 		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1340 		wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1341 	}
1342 
1343 	ret_val = igb_setup_serdes_link_82575(hw);
1344 	if (ret_val)
1345 		goto out;
1346 
1347 	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1348 		/* allow time for SFP cage time to power up phy */
1349 		msleep(300);
1350 
1351 		ret_val = hw->phy.ops.reset(hw);
1352 		if (ret_val) {
1353 			hw_dbg("Error resetting the PHY.\n");
1354 			goto out;
1355 		}
1356 	}
1357 	switch (hw->phy.type) {
1358 	case e1000_phy_i210:
1359 	case e1000_phy_m88:
1360 		switch (hw->phy.id) {
1361 		case I347AT4_E_PHY_ID:
1362 		case M88E1112_E_PHY_ID:
1363 		case M88E1545_E_PHY_ID:
1364 		case I210_I_PHY_ID:
1365 			ret_val = igb_copper_link_setup_m88_gen2(hw);
1366 			break;
1367 		default:
1368 			ret_val = igb_copper_link_setup_m88(hw);
1369 			break;
1370 		}
1371 		break;
1372 	case e1000_phy_igp_3:
1373 		ret_val = igb_copper_link_setup_igp(hw);
1374 		break;
1375 	case e1000_phy_82580:
1376 		ret_val = igb_copper_link_setup_82580(hw);
1377 		break;
1378 	default:
1379 		ret_val = -E1000_ERR_PHY;
1380 		break;
1381 	}
1382 
1383 	if (ret_val)
1384 		goto out;
1385 
1386 	ret_val = igb_setup_copper_link(hw);
1387 out:
1388 	return ret_val;
1389 }
1390 
1391 /**
1392  *  igb_setup_serdes_link_82575 - Setup link for serdes
1393  *  @hw: pointer to the HW structure
1394  *
1395  *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1396  *  used on copper connections where the serialized gigabit media independent
1397  *  interface (sgmii), or serdes fiber is being used.  Configures the link
1398  *  for auto-negotiation or forces speed/duplex.
1399  **/
1400 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1401 {
1402 	u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1403 	bool pcs_autoneg;
1404 	s32 ret_val = E1000_SUCCESS;
1405 	u16 data;
1406 
1407 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1408 	    !igb_sgmii_active_82575(hw))
1409 		return ret_val;
1410 
1411 
1412 	/* On the 82575, SerDes loopback mode persists until it is
1413 	 * explicitly turned off or a power cycle is performed.  A read to
1414 	 * the register does not indicate its status.  Therefore, we ensure
1415 	 * loopback mode is disabled during initialization.
1416 	 */
1417 	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1418 
1419 	/* power on the sfp cage if present and turn on I2C */
1420 	ctrl_ext = rd32(E1000_CTRL_EXT);
1421 	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1422 	ctrl_ext |= E1000_CTRL_I2C_ENA;
1423 	wr32(E1000_CTRL_EXT, ctrl_ext);
1424 
1425 	ctrl_reg = rd32(E1000_CTRL);
1426 	ctrl_reg |= E1000_CTRL_SLU;
1427 
1428 	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1429 		/* set both sw defined pins */
1430 		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1431 
1432 		/* Set switch control to serdes energy detect */
1433 		reg = rd32(E1000_CONNSW);
1434 		reg |= E1000_CONNSW_ENRGSRC;
1435 		wr32(E1000_CONNSW, reg);
1436 	}
1437 
1438 	reg = rd32(E1000_PCS_LCTL);
1439 
1440 	/* default pcs_autoneg to the same setting as mac autoneg */
1441 	pcs_autoneg = hw->mac.autoneg;
1442 
1443 	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1444 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1445 		/* sgmii mode lets the phy handle forcing speed/duplex */
1446 		pcs_autoneg = true;
1447 		/* autoneg time out should be disabled for SGMII mode */
1448 		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1449 		break;
1450 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1451 		/* disable PCS autoneg and support parallel detect only */
1452 		pcs_autoneg = false;
1453 	default:
1454 		if (hw->mac.type == e1000_82575 ||
1455 		    hw->mac.type == e1000_82576) {
1456 			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1457 			if (ret_val) {
1458 				printk(KERN_DEBUG "NVM Read Error\n\n");
1459 				return ret_val;
1460 			}
1461 
1462 			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1463 				pcs_autoneg = false;
1464 		}
1465 
1466 		/* non-SGMII modes only supports a speed of 1000/Full for the
1467 		 * link so it is best to just force the MAC and let the pcs
1468 		 * link either autoneg or be forced to 1000/Full
1469 		 */
1470 		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1471 		            E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1472 
1473 		/* set speed of 1000/Full if speed/duplex is forced */
1474 		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1475 		break;
1476 	}
1477 
1478 	wr32(E1000_CTRL, ctrl_reg);
1479 
1480 	/* New SerDes mode allows for forcing speed or autonegotiating speed
1481 	 * at 1gb. Autoneg should be default set by most drivers. This is the
1482 	 * mode that will be compatible with older link partners and switches.
1483 	 * However, both are supported by the hardware and some drivers/tools.
1484 	 */
1485 	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1486 		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1487 
1488 	if (pcs_autoneg) {
1489 		/* Set PCS register for autoneg */
1490 		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1491 		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1492 
1493 		/* Disable force flow control for autoneg */
1494 		reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1495 
1496 		/* Configure flow control advertisement for autoneg */
1497 		anadv_reg = rd32(E1000_PCS_ANADV);
1498 		anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1499 		switch (hw->fc.requested_mode) {
1500 		case e1000_fc_full:
1501 		case e1000_fc_rx_pause:
1502 			anadv_reg |= E1000_TXCW_ASM_DIR;
1503 			anadv_reg |= E1000_TXCW_PAUSE;
1504 			break;
1505 		case e1000_fc_tx_pause:
1506 			anadv_reg |= E1000_TXCW_ASM_DIR;
1507 			break;
1508 		default:
1509 			break;
1510 		}
1511 		wr32(E1000_PCS_ANADV, anadv_reg);
1512 
1513 		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1514 	} else {
1515 		/* Set PCS register for forced link */
1516 		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1517 
1518 		/* Force flow control for forced link */
1519 		reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1520 
1521 		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1522 	}
1523 
1524 	wr32(E1000_PCS_LCTL, reg);
1525 
1526 	if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1527 		igb_force_mac_fc(hw);
1528 
1529 	return ret_val;
1530 }
1531 
1532 /**
1533  *  igb_sgmii_active_82575 - Return sgmii state
1534  *  @hw: pointer to the HW structure
1535  *
1536  *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1537  *  which can be enabled for use in the embedded applications.  Simply
1538  *  return the current state of the sgmii interface.
1539  **/
1540 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1541 {
1542 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1543 	return dev_spec->sgmii_active;
1544 }
1545 
1546 /**
1547  *  igb_reset_init_script_82575 - Inits HW defaults after reset
1548  *  @hw: pointer to the HW structure
1549  *
1550  *  Inits recommended HW defaults after a reset when there is no EEPROM
1551  *  detected. This is only for the 82575.
1552  **/
1553 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1554 {
1555 	if (hw->mac.type == e1000_82575) {
1556 		hw_dbg("Running reset init script for 82575\n");
1557 		/* SerDes configuration via SERDESCTRL */
1558 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1559 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1560 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1561 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1562 
1563 		/* CCM configuration via CCMCTL register */
1564 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1565 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1566 
1567 		/* PCIe lanes configuration */
1568 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1569 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1570 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1571 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1572 
1573 		/* PCIe PLL Configuration */
1574 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1575 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1576 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1577 	}
1578 
1579 	return 0;
1580 }
1581 
1582 /**
1583  *  igb_read_mac_addr_82575 - Read device MAC address
1584  *  @hw: pointer to the HW structure
1585  **/
1586 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1587 {
1588 	s32 ret_val = 0;
1589 
1590 	/* If there's an alternate MAC address place it in RAR0
1591 	 * so that it will override the Si installed default perm
1592 	 * address.
1593 	 */
1594 	ret_val = igb_check_alt_mac_addr(hw);
1595 	if (ret_val)
1596 		goto out;
1597 
1598 	ret_val = igb_read_mac_addr(hw);
1599 
1600 out:
1601 	return ret_val;
1602 }
1603 
1604 /**
1605  * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1606  * @hw: pointer to the HW structure
1607  *
1608  * In the case of a PHY power down to save power, or to turn off link during a
1609  * driver unload, or wake on lan is not enabled, remove the link.
1610  **/
1611 void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1612 {
1613 	/* If the management interface is not enabled, then power down */
1614 	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1615 		igb_power_down_phy_copper(hw);
1616 }
1617 
1618 /**
1619  *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1620  *  @hw: pointer to the HW structure
1621  *
1622  *  Clears the hardware counters by reading the counter registers.
1623  **/
1624 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1625 {
1626 	igb_clear_hw_cntrs_base(hw);
1627 
1628 	rd32(E1000_PRC64);
1629 	rd32(E1000_PRC127);
1630 	rd32(E1000_PRC255);
1631 	rd32(E1000_PRC511);
1632 	rd32(E1000_PRC1023);
1633 	rd32(E1000_PRC1522);
1634 	rd32(E1000_PTC64);
1635 	rd32(E1000_PTC127);
1636 	rd32(E1000_PTC255);
1637 	rd32(E1000_PTC511);
1638 	rd32(E1000_PTC1023);
1639 	rd32(E1000_PTC1522);
1640 
1641 	rd32(E1000_ALGNERRC);
1642 	rd32(E1000_RXERRC);
1643 	rd32(E1000_TNCRS);
1644 	rd32(E1000_CEXTERR);
1645 	rd32(E1000_TSCTC);
1646 	rd32(E1000_TSCTFC);
1647 
1648 	rd32(E1000_MGTPRC);
1649 	rd32(E1000_MGTPDC);
1650 	rd32(E1000_MGTPTC);
1651 
1652 	rd32(E1000_IAC);
1653 	rd32(E1000_ICRXOC);
1654 
1655 	rd32(E1000_ICRXPTC);
1656 	rd32(E1000_ICRXATC);
1657 	rd32(E1000_ICTXPTC);
1658 	rd32(E1000_ICTXATC);
1659 	rd32(E1000_ICTXQEC);
1660 	rd32(E1000_ICTXQMTC);
1661 	rd32(E1000_ICRXDMTC);
1662 
1663 	rd32(E1000_CBTMPC);
1664 	rd32(E1000_HTDPMC);
1665 	rd32(E1000_CBRMPC);
1666 	rd32(E1000_RPTHC);
1667 	rd32(E1000_HGPTC);
1668 	rd32(E1000_HTCBDPC);
1669 	rd32(E1000_HGORCL);
1670 	rd32(E1000_HGORCH);
1671 	rd32(E1000_HGOTCL);
1672 	rd32(E1000_HGOTCH);
1673 	rd32(E1000_LENERRS);
1674 
1675 	/* This register should not be read in copper configurations */
1676 	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1677 	    igb_sgmii_active_82575(hw))
1678 		rd32(E1000_SCVPC);
1679 }
1680 
1681 /**
1682  *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1683  *  @hw: pointer to the HW structure
1684  *
1685  *  After rx enable if managability is enabled then there is likely some
1686  *  bad data at the start of the fifo and possibly in the DMA fifo.  This
1687  *  function clears the fifos and flushes any packets that came in as rx was
1688  *  being enabled.
1689  **/
1690 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1691 {
1692 	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1693 	int i, ms_wait;
1694 
1695 	if (hw->mac.type != e1000_82575 ||
1696 	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1697 		return;
1698 
1699 	/* Disable all RX queues */
1700 	for (i = 0; i < 4; i++) {
1701 		rxdctl[i] = rd32(E1000_RXDCTL(i));
1702 		wr32(E1000_RXDCTL(i),
1703 		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1704 	}
1705 	/* Poll all queues to verify they have shut down */
1706 	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1707 		msleep(1);
1708 		rx_enabled = 0;
1709 		for (i = 0; i < 4; i++)
1710 			rx_enabled |= rd32(E1000_RXDCTL(i));
1711 		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1712 			break;
1713 	}
1714 
1715 	if (ms_wait == 10)
1716 		hw_dbg("Queue disable timed out after 10ms\n");
1717 
1718 	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1719 	 * incoming packets are rejected.  Set enable and wait 2ms so that
1720 	 * any packet that was coming in as RCTL.EN was set is flushed
1721 	 */
1722 	rfctl = rd32(E1000_RFCTL);
1723 	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1724 
1725 	rlpml = rd32(E1000_RLPML);
1726 	wr32(E1000_RLPML, 0);
1727 
1728 	rctl = rd32(E1000_RCTL);
1729 	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1730 	temp_rctl |= E1000_RCTL_LPE;
1731 
1732 	wr32(E1000_RCTL, temp_rctl);
1733 	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1734 	wrfl();
1735 	msleep(2);
1736 
1737 	/* Enable RX queues that were previously enabled and restore our
1738 	 * previous state
1739 	 */
1740 	for (i = 0; i < 4; i++)
1741 		wr32(E1000_RXDCTL(i), rxdctl[i]);
1742 	wr32(E1000_RCTL, rctl);
1743 	wrfl();
1744 
1745 	wr32(E1000_RLPML, rlpml);
1746 	wr32(E1000_RFCTL, rfctl);
1747 
1748 	/* Flush receive errors generated by workaround */
1749 	rd32(E1000_ROC);
1750 	rd32(E1000_RNBC);
1751 	rd32(E1000_MPC);
1752 }
1753 
1754 /**
1755  *  igb_set_pcie_completion_timeout - set pci-e completion timeout
1756  *  @hw: pointer to the HW structure
1757  *
1758  *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1759  *  however the hardware default for these parts is 500us to 1ms which is less
1760  *  than the 10ms recommended by the pci-e spec.  To address this we need to
1761  *  increase the value to either 10ms to 200ms for capability version 1 config,
1762  *  or 16ms to 55ms for version 2.
1763  **/
1764 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1765 {
1766 	u32 gcr = rd32(E1000_GCR);
1767 	s32 ret_val = 0;
1768 	u16 pcie_devctl2;
1769 
1770 	/* only take action if timeout value is defaulted to 0 */
1771 	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1772 		goto out;
1773 
1774 	/* if capabilities version is type 1 we can write the
1775 	 * timeout of 10ms to 200ms through the GCR register
1776 	 */
1777 	if (!(gcr & E1000_GCR_CAP_VER2)) {
1778 		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1779 		goto out;
1780 	}
1781 
1782 	/* for version 2 capabilities we need to write the config space
1783 	 * directly in order to set the completion timeout value for
1784 	 * 16ms to 55ms
1785 	 */
1786 	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1787 	                                &pcie_devctl2);
1788 	if (ret_val)
1789 		goto out;
1790 
1791 	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
1792 
1793 	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1794 	                                 &pcie_devctl2);
1795 out:
1796 	/* disable completion timeout resend */
1797 	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
1798 
1799 	wr32(E1000_GCR, gcr);
1800 	return ret_val;
1801 }
1802 
1803 /**
1804  *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
1805  *  @hw: pointer to the hardware struct
1806  *  @enable: state to enter, either enabled or disabled
1807  *  @pf: Physical Function pool - do not set anti-spoofing for the PF
1808  *
1809  *  enables/disables L2 switch anti-spoofing functionality.
1810  **/
1811 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
1812 {
1813 	u32 reg_val, reg_offset;
1814 
1815 	switch (hw->mac.type) {
1816 	case e1000_82576:
1817 		reg_offset = E1000_DTXSWC;
1818 		break;
1819 	case e1000_i350:
1820 	case e1000_i354:
1821 		reg_offset = E1000_TXSWC;
1822 		break;
1823 	default:
1824 		return;
1825 	}
1826 
1827 	reg_val = rd32(reg_offset);
1828 	if (enable) {
1829 		reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
1830 			     E1000_DTXSWC_VLAN_SPOOF_MASK);
1831 		/* The PF can spoof - it has to in order to
1832 		 * support emulation mode NICs
1833 		 */
1834 		reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
1835 	} else {
1836 		reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
1837 			     E1000_DTXSWC_VLAN_SPOOF_MASK);
1838 	}
1839 	wr32(reg_offset, reg_val);
1840 }
1841 
1842 /**
1843  *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1844  *  @hw: pointer to the hardware struct
1845  *  @enable: state to enter, either enabled or disabled
1846  *
1847  *  enables/disables L2 switch loopback functionality.
1848  **/
1849 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1850 {
1851 	u32 dtxswc;
1852 
1853 	switch (hw->mac.type) {
1854 	case e1000_82576:
1855 		dtxswc = rd32(E1000_DTXSWC);
1856 		if (enable)
1857 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1858 		else
1859 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1860 		wr32(E1000_DTXSWC, dtxswc);
1861 		break;
1862 	case e1000_i354:
1863 	case e1000_i350:
1864 		dtxswc = rd32(E1000_TXSWC);
1865 		if (enable)
1866 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1867 		else
1868 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1869 		wr32(E1000_TXSWC, dtxswc);
1870 		break;
1871 	default:
1872 		/* Currently no other hardware supports loopback */
1873 		break;
1874 	}
1875 
1876 }
1877 
1878 /**
1879  *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
1880  *  @hw: pointer to the hardware struct
1881  *  @enable: state to enter, either enabled or disabled
1882  *
1883  *  enables/disables replication of packets across multiple pools.
1884  **/
1885 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1886 {
1887 	u32 vt_ctl = rd32(E1000_VT_CTL);
1888 
1889 	if (enable)
1890 		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
1891 	else
1892 		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
1893 
1894 	wr32(E1000_VT_CTL, vt_ctl);
1895 }
1896 
1897 /**
1898  *  igb_read_phy_reg_82580 - Read 82580 MDI control register
1899  *  @hw: pointer to the HW structure
1900  *  @offset: register offset to be read
1901  *  @data: pointer to the read data
1902  *
1903  *  Reads the MDI control register in the PHY at offset and stores the
1904  *  information read to data.
1905  **/
1906 static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
1907 {
1908 	s32 ret_val;
1909 
1910 	ret_val = hw->phy.ops.acquire(hw);
1911 	if (ret_val)
1912 		goto out;
1913 
1914 	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
1915 
1916 	hw->phy.ops.release(hw);
1917 
1918 out:
1919 	return ret_val;
1920 }
1921 
1922 /**
1923  *  igb_write_phy_reg_82580 - Write 82580 MDI control register
1924  *  @hw: pointer to the HW structure
1925  *  @offset: register offset to write to
1926  *  @data: data to write to register at offset
1927  *
1928  *  Writes data to MDI control register in the PHY at offset.
1929  **/
1930 static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
1931 {
1932 	s32 ret_val;
1933 
1934 
1935 	ret_val = hw->phy.ops.acquire(hw);
1936 	if (ret_val)
1937 		goto out;
1938 
1939 	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
1940 
1941 	hw->phy.ops.release(hw);
1942 
1943 out:
1944 	return ret_val;
1945 }
1946 
1947 /**
1948  *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
1949  *  @hw: pointer to the HW structure
1950  *
1951  *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
1952  *  the values found in the EEPROM.  This addresses an issue in which these
1953  *  bits are not restored from EEPROM after reset.
1954  **/
1955 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
1956 {
1957 	s32 ret_val = 0;
1958 	u32 mdicnfg;
1959 	u16 nvm_data = 0;
1960 
1961 	if (hw->mac.type != e1000_82580)
1962 		goto out;
1963 	if (!igb_sgmii_active_82575(hw))
1964 		goto out;
1965 
1966 	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1967 				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1968 				   &nvm_data);
1969 	if (ret_val) {
1970 		hw_dbg("NVM Read Error\n");
1971 		goto out;
1972 	}
1973 
1974 	mdicnfg = rd32(E1000_MDICNFG);
1975 	if (nvm_data & NVM_WORD24_EXT_MDIO)
1976 		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
1977 	if (nvm_data & NVM_WORD24_COM_MDIO)
1978 		mdicnfg |= E1000_MDICNFG_COM_MDIO;
1979 	wr32(E1000_MDICNFG, mdicnfg);
1980 out:
1981 	return ret_val;
1982 }
1983 
1984 /**
1985  *  igb_reset_hw_82580 - Reset hardware
1986  *  @hw: pointer to the HW structure
1987  *
1988  *  This resets function or entire device (all ports, etc.)
1989  *  to a known state.
1990  **/
1991 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
1992 {
1993 	s32 ret_val = 0;
1994 	/* BH SW mailbox bit in SW_FW_SYNC */
1995 	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
1996 	u32 ctrl, icr;
1997 	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
1998 
1999 
2000 	hw->dev_spec._82575.global_device_reset = false;
2001 
2002 	/* due to hw errata, global device reset doesn't always
2003 	 * work on 82580
2004 	 */
2005 	if (hw->mac.type == e1000_82580)
2006 		global_device_reset = false;
2007 
2008 	/* Get current control state. */
2009 	ctrl = rd32(E1000_CTRL);
2010 
2011 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
2012 	 * on the last TLP read/write transaction when MAC is reset.
2013 	 */
2014 	ret_val = igb_disable_pcie_master(hw);
2015 	if (ret_val)
2016 		hw_dbg("PCI-E Master disable polling has failed.\n");
2017 
2018 	hw_dbg("Masking off all interrupts\n");
2019 	wr32(E1000_IMC, 0xffffffff);
2020 	wr32(E1000_RCTL, 0);
2021 	wr32(E1000_TCTL, E1000_TCTL_PSP);
2022 	wrfl();
2023 
2024 	msleep(10);
2025 
2026 	/* Determine whether or not a global dev reset is requested */
2027 	if (global_device_reset &&
2028 		hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2029 			global_device_reset = false;
2030 
2031 	if (global_device_reset &&
2032 		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2033 		ctrl |= E1000_CTRL_DEV_RST;
2034 	else
2035 		ctrl |= E1000_CTRL_RST;
2036 
2037 	wr32(E1000_CTRL, ctrl);
2038 	wrfl();
2039 
2040 	/* Add delay to insure DEV_RST has time to complete */
2041 	if (global_device_reset)
2042 		msleep(5);
2043 
2044 	ret_val = igb_get_auto_rd_done(hw);
2045 	if (ret_val) {
2046 		/* When auto config read does not complete, do not
2047 		 * return with an error. This can happen in situations
2048 		 * where there is no eeprom and prevents getting link.
2049 		 */
2050 		hw_dbg("Auto Read Done did not complete\n");
2051 	}
2052 
2053 	/* clear global device reset status bit */
2054 	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2055 
2056 	/* Clear any pending interrupt events. */
2057 	wr32(E1000_IMC, 0xffffffff);
2058 	icr = rd32(E1000_ICR);
2059 
2060 	ret_val = igb_reset_mdicnfg_82580(hw);
2061 	if (ret_val)
2062 		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2063 
2064 	/* Install any alternate MAC address into RAR0 */
2065 	ret_val = igb_check_alt_mac_addr(hw);
2066 
2067 	/* Release semaphore */
2068 	if (global_device_reset)
2069 		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2070 
2071 	return ret_val;
2072 }
2073 
2074 /**
2075  *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2076  *  @data: data received by reading RXPBS register
2077  *
2078  *  The 82580 uses a table based approach for packet buffer allocation sizes.
2079  *  This function converts the retrieved value into the correct table value
2080  *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2081  *  0x0 36  72 144   1   2   4   8  16
2082  *  0x8 35  70 140 rsv rsv rsv rsv rsv
2083  */
2084 u16 igb_rxpbs_adjust_82580(u32 data)
2085 {
2086 	u16 ret_val = 0;
2087 
2088 	if (data < E1000_82580_RXPBS_TABLE_SIZE)
2089 		ret_val = e1000_82580_rxpbs_table[data];
2090 
2091 	return ret_val;
2092 }
2093 
2094 /**
2095  *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2096  *  checksum
2097  *  @hw: pointer to the HW structure
2098  *  @offset: offset in words of the checksum protected region
2099  *
2100  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2101  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2102  **/
2103 static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2104 						 u16 offset)
2105 {
2106 	s32 ret_val = 0;
2107 	u16 checksum = 0;
2108 	u16 i, nvm_data;
2109 
2110 	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2111 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2112 		if (ret_val) {
2113 			hw_dbg("NVM Read Error\n");
2114 			goto out;
2115 		}
2116 		checksum += nvm_data;
2117 	}
2118 
2119 	if (checksum != (u16) NVM_SUM) {
2120 		hw_dbg("NVM Checksum Invalid\n");
2121 		ret_val = -E1000_ERR_NVM;
2122 		goto out;
2123 	}
2124 
2125 out:
2126 	return ret_val;
2127 }
2128 
2129 /**
2130  *  igb_update_nvm_checksum_with_offset - Update EEPROM
2131  *  checksum
2132  *  @hw: pointer to the HW structure
2133  *  @offset: offset in words of the checksum protected region
2134  *
2135  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2136  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2137  *  value to the EEPROM.
2138  **/
2139 static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2140 {
2141 	s32 ret_val;
2142 	u16 checksum = 0;
2143 	u16 i, nvm_data;
2144 
2145 	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2146 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2147 		if (ret_val) {
2148 			hw_dbg("NVM Read Error while updating checksum.\n");
2149 			goto out;
2150 		}
2151 		checksum += nvm_data;
2152 	}
2153 	checksum = (u16) NVM_SUM - checksum;
2154 	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2155 				&checksum);
2156 	if (ret_val)
2157 		hw_dbg("NVM Write Error while updating checksum.\n");
2158 
2159 out:
2160 	return ret_val;
2161 }
2162 
2163 /**
2164  *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2165  *  @hw: pointer to the HW structure
2166  *
2167  *  Calculates the EEPROM section checksum by reading/adding each word of
2168  *  the EEPROM and then verifies that the sum of the EEPROM is
2169  *  equal to 0xBABA.
2170  **/
2171 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2172 {
2173 	s32 ret_val = 0;
2174 	u16 eeprom_regions_count = 1;
2175 	u16 j, nvm_data;
2176 	u16 nvm_offset;
2177 
2178 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2179 	if (ret_val) {
2180 		hw_dbg("NVM Read Error\n");
2181 		goto out;
2182 	}
2183 
2184 	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2185 		/* if checksums compatibility bit is set validate checksums
2186 		 * for all 4 ports.
2187 		 */
2188 		eeprom_regions_count = 4;
2189 	}
2190 
2191 	for (j = 0; j < eeprom_regions_count; j++) {
2192 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2193 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2194 								nvm_offset);
2195 		if (ret_val != 0)
2196 			goto out;
2197 	}
2198 
2199 out:
2200 	return ret_val;
2201 }
2202 
2203 /**
2204  *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2205  *  @hw: pointer to the HW structure
2206  *
2207  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2208  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2209  *  checksum and writes the value to the EEPROM.
2210  **/
2211 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2212 {
2213 	s32 ret_val;
2214 	u16 j, nvm_data;
2215 	u16 nvm_offset;
2216 
2217 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2218 	if (ret_val) {
2219 		hw_dbg("NVM Read Error while updating checksum"
2220 			" compatibility bit.\n");
2221 		goto out;
2222 	}
2223 
2224 	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2225 		/* set compatibility bit to validate checksums appropriately */
2226 		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2227 		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2228 					&nvm_data);
2229 		if (ret_val) {
2230 			hw_dbg("NVM Write Error while updating checksum"
2231 				" compatibility bit.\n");
2232 			goto out;
2233 		}
2234 	}
2235 
2236 	for (j = 0; j < 4; j++) {
2237 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2238 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2239 		if (ret_val)
2240 			goto out;
2241 	}
2242 
2243 out:
2244 	return ret_val;
2245 }
2246 
2247 /**
2248  *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2249  *  @hw: pointer to the HW structure
2250  *
2251  *  Calculates the EEPROM section checksum by reading/adding each word of
2252  *  the EEPROM and then verifies that the sum of the EEPROM is
2253  *  equal to 0xBABA.
2254  **/
2255 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2256 {
2257 	s32 ret_val = 0;
2258 	u16 j;
2259 	u16 nvm_offset;
2260 
2261 	for (j = 0; j < 4; j++) {
2262 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2263 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2264 								nvm_offset);
2265 		if (ret_val != 0)
2266 			goto out;
2267 	}
2268 
2269 out:
2270 	return ret_val;
2271 }
2272 
2273 /**
2274  *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2275  *  @hw: pointer to the HW structure
2276  *
2277  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2278  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2279  *  checksum and writes the value to the EEPROM.
2280  **/
2281 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2282 {
2283 	s32 ret_val = 0;
2284 	u16 j;
2285 	u16 nvm_offset;
2286 
2287 	for (j = 0; j < 4; j++) {
2288 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2289 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2290 		if (ret_val != 0)
2291 			goto out;
2292 	}
2293 
2294 out:
2295 	return ret_val;
2296 }
2297 
2298 /**
2299  *  __igb_access_emi_reg - Read/write EMI register
2300  *  @hw: pointer to the HW structure
2301  *  @addr: EMI address to program
2302  *  @data: pointer to value to read/write from/to the EMI address
2303  *  @read: boolean flag to indicate read or write
2304  **/
2305 static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2306 				  u16 *data, bool read)
2307 {
2308 	s32 ret_val = E1000_SUCCESS;
2309 
2310 	ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2311 	if (ret_val)
2312 		return ret_val;
2313 
2314 	if (read)
2315 		ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2316 	else
2317 		ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2318 
2319 	return ret_val;
2320 }
2321 
2322 /**
2323  *  igb_read_emi_reg - Read Extended Management Interface register
2324  *  @hw: pointer to the HW structure
2325  *  @addr: EMI address to program
2326  *  @data: value to be read from the EMI address
2327  **/
2328 s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2329 {
2330 	return __igb_access_emi_reg(hw, addr, data, true);
2331 }
2332 
2333 /**
2334  *  igb_set_eee_i350 - Enable/disable EEE support
2335  *  @hw: pointer to the HW structure
2336  *
2337  *  Enable/disable EEE based on setting in dev_spec structure.
2338  *
2339  **/
2340 s32 igb_set_eee_i350(struct e1000_hw *hw)
2341 {
2342 	s32 ret_val = 0;
2343 	u32 ipcnfg, eeer;
2344 
2345 	if ((hw->mac.type < e1000_i350) ||
2346 	    (hw->phy.media_type != e1000_media_type_copper))
2347 		goto out;
2348 	ipcnfg = rd32(E1000_IPCNFG);
2349 	eeer = rd32(E1000_EEER);
2350 
2351 	/* enable or disable per user setting */
2352 	if (!(hw->dev_spec._82575.eee_disable)) {
2353 		u32 eee_su = rd32(E1000_EEE_SU);
2354 
2355 		ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
2356 		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2357 			E1000_EEER_LPI_FC);
2358 
2359 		/* This bit should not be set in normal operation. */
2360 		if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2361 			hw_dbg("LPI Clock Stop Bit should not be set!\n");
2362 
2363 	} else {
2364 		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2365 			E1000_IPCNFG_EEE_100M_AN);
2366 		eeer &= ~(E1000_EEER_TX_LPI_EN |
2367 			E1000_EEER_RX_LPI_EN |
2368 			E1000_EEER_LPI_FC);
2369 	}
2370 	wr32(E1000_IPCNFG, ipcnfg);
2371 	wr32(E1000_EEER, eeer);
2372 	rd32(E1000_IPCNFG);
2373 	rd32(E1000_EEER);
2374 out:
2375 
2376 	return ret_val;
2377 }
2378 
2379 /**
2380  *  igb_set_eee_i354 - Enable/disable EEE support
2381  *  @hw: pointer to the HW structure
2382  *
2383  *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2384  *
2385  **/
2386 s32 igb_set_eee_i354(struct e1000_hw *hw)
2387 {
2388 	struct e1000_phy_info *phy = &hw->phy;
2389 	s32 ret_val = 0;
2390 	u16 phy_data;
2391 
2392 	if ((hw->phy.media_type != e1000_media_type_copper) ||
2393 	    (phy->id != M88E1545_E_PHY_ID))
2394 		goto out;
2395 
2396 	if (!hw->dev_spec._82575.eee_disable) {
2397 		/* Switch to PHY page 18. */
2398 		ret_val = phy->ops.write_reg(hw, E1000_M88E1545_PAGE_ADDR, 18);
2399 		if (ret_val)
2400 			goto out;
2401 
2402 		ret_val = phy->ops.read_reg(hw, E1000_M88E1545_EEE_CTRL_1,
2403 					    &phy_data);
2404 		if (ret_val)
2405 			goto out;
2406 
2407 		phy_data |= E1000_M88E1545_EEE_CTRL_1_MS;
2408 		ret_val = phy->ops.write_reg(hw, E1000_M88E1545_EEE_CTRL_1,
2409 					     phy_data);
2410 		if (ret_val)
2411 			goto out;
2412 
2413 		/* Return the PHY to page 0. */
2414 		ret_val = phy->ops.write_reg(hw, E1000_M88E1545_PAGE_ADDR, 0);
2415 		if (ret_val)
2416 			goto out;
2417 
2418 		/* Turn on EEE advertisement. */
2419 		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2420 					     E1000_EEE_ADV_DEV_I354,
2421 					     &phy_data);
2422 		if (ret_val)
2423 			goto out;
2424 
2425 		phy_data |= E1000_EEE_ADV_100_SUPPORTED |
2426 			    E1000_EEE_ADV_1000_SUPPORTED;
2427 		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2428 						E1000_EEE_ADV_DEV_I354,
2429 						phy_data);
2430 	} else {
2431 		/* Turn off EEE advertisement. */
2432 		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2433 					     E1000_EEE_ADV_DEV_I354,
2434 					     &phy_data);
2435 		if (ret_val)
2436 			goto out;
2437 
2438 		phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2439 			      E1000_EEE_ADV_1000_SUPPORTED);
2440 		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2441 					      E1000_EEE_ADV_DEV_I354,
2442 					      phy_data);
2443 	}
2444 
2445 out:
2446 	return ret_val;
2447 }
2448 
2449 /**
2450  *  igb_get_eee_status_i354 - Get EEE status
2451  *  @hw: pointer to the HW structure
2452  *  @status: EEE status
2453  *
2454  *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2455  *  been received.
2456  **/
2457 s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2458 {
2459 	struct e1000_phy_info *phy = &hw->phy;
2460 	s32 ret_val = 0;
2461 	u16 phy_data;
2462 
2463 	/* Check if EEE is supported on this device. */
2464 	if ((hw->phy.media_type != e1000_media_type_copper) ||
2465 	    (phy->id != M88E1545_E_PHY_ID))
2466 		goto out;
2467 
2468 	ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2469 				     E1000_PCS_STATUS_DEV_I354,
2470 				     &phy_data);
2471 	if (ret_val)
2472 		goto out;
2473 
2474 	*status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2475 			      E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2476 
2477 out:
2478 	return ret_val;
2479 }
2480 
2481 static const u8 e1000_emc_temp_data[4] = {
2482 	E1000_EMC_INTERNAL_DATA,
2483 	E1000_EMC_DIODE1_DATA,
2484 	E1000_EMC_DIODE2_DATA,
2485 	E1000_EMC_DIODE3_DATA
2486 };
2487 static const u8 e1000_emc_therm_limit[4] = {
2488 	E1000_EMC_INTERNAL_THERM_LIMIT,
2489 	E1000_EMC_DIODE1_THERM_LIMIT,
2490 	E1000_EMC_DIODE2_THERM_LIMIT,
2491 	E1000_EMC_DIODE3_THERM_LIMIT
2492 };
2493 
2494 /**
2495  *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2496  *  @hw: pointer to hardware structure
2497  *
2498  *  Updates the temperatures in mac.thermal_sensor_data
2499  **/
2500 s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2501 {
2502 	s32 status = E1000_SUCCESS;
2503 	u16 ets_offset;
2504 	u16 ets_cfg;
2505 	u16 ets_sensor;
2506 	u8  num_sensors;
2507 	u8  sensor_index;
2508 	u8  sensor_location;
2509 	u8  i;
2510 	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2511 
2512 	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2513 		return E1000_NOT_IMPLEMENTED;
2514 
2515 	data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2516 
2517 	/* Return the internal sensor only if ETS is unsupported */
2518 	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2519 	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2520 		return status;
2521 
2522 	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2523 	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2524 	    != NVM_ETS_TYPE_EMC)
2525 		return E1000_NOT_IMPLEMENTED;
2526 
2527 	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2528 	if (num_sensors > E1000_MAX_SENSORS)
2529 		num_sensors = E1000_MAX_SENSORS;
2530 
2531 	for (i = 1; i < num_sensors; i++) {
2532 		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2533 		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2534 				NVM_ETS_DATA_INDEX_SHIFT);
2535 		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2536 				   NVM_ETS_DATA_LOC_SHIFT);
2537 
2538 		if (sensor_location != 0)
2539 			hw->phy.ops.read_i2c_byte(hw,
2540 					e1000_emc_temp_data[sensor_index],
2541 					E1000_I2C_THERMAL_SENSOR_ADDR,
2542 					&data->sensor[i].temp);
2543 	}
2544 	return status;
2545 }
2546 
2547 /**
2548  *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2549  *  @hw: pointer to hardware structure
2550  *
2551  *  Sets the thermal sensor thresholds according to the NVM map
2552  *  and save off the threshold and location values into mac.thermal_sensor_data
2553  **/
2554 s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2555 {
2556 	s32 status = E1000_SUCCESS;
2557 	u16 ets_offset;
2558 	u16 ets_cfg;
2559 	u16 ets_sensor;
2560 	u8  low_thresh_delta;
2561 	u8  num_sensors;
2562 	u8  sensor_index;
2563 	u8  sensor_location;
2564 	u8  therm_limit;
2565 	u8  i;
2566 	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2567 
2568 	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2569 		return E1000_NOT_IMPLEMENTED;
2570 
2571 	memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2572 
2573 	data->sensor[0].location = 0x1;
2574 	data->sensor[0].caution_thresh =
2575 		(rd32(E1000_THHIGHTC) & 0xFF);
2576 	data->sensor[0].max_op_thresh =
2577 		(rd32(E1000_THLOWTC) & 0xFF);
2578 
2579 	/* Return the internal sensor only if ETS is unsupported */
2580 	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2581 	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2582 		return status;
2583 
2584 	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2585 	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2586 	    != NVM_ETS_TYPE_EMC)
2587 		return E1000_NOT_IMPLEMENTED;
2588 
2589 	low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2590 			    NVM_ETS_LTHRES_DELTA_SHIFT);
2591 	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2592 
2593 	for (i = 1; i <= num_sensors; i++) {
2594 		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2595 		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2596 				NVM_ETS_DATA_INDEX_SHIFT);
2597 		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2598 				   NVM_ETS_DATA_LOC_SHIFT);
2599 		therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2600 
2601 		hw->phy.ops.write_i2c_byte(hw,
2602 			e1000_emc_therm_limit[sensor_index],
2603 			E1000_I2C_THERMAL_SENSOR_ADDR,
2604 			therm_limit);
2605 
2606 		if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2607 			data->sensor[i].location = sensor_location;
2608 			data->sensor[i].caution_thresh = therm_limit;
2609 			data->sensor[i].max_op_thresh = therm_limit -
2610 							low_thresh_delta;
2611 		}
2612 	}
2613 	return status;
2614 }
2615 
2616 static struct e1000_mac_operations e1000_mac_ops_82575 = {
2617 	.init_hw              = igb_init_hw_82575,
2618 	.check_for_link       = igb_check_for_link_82575,
2619 	.rar_set              = igb_rar_set,
2620 	.read_mac_addr        = igb_read_mac_addr_82575,
2621 	.get_speed_and_duplex = igb_get_speed_and_duplex_copper,
2622 #ifdef CONFIG_IGB_HWMON
2623 	.get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2624 	.init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2625 #endif
2626 };
2627 
2628 static struct e1000_phy_operations e1000_phy_ops_82575 = {
2629 	.acquire              = igb_acquire_phy_82575,
2630 	.get_cfg_done         = igb_get_cfg_done_82575,
2631 	.release              = igb_release_phy_82575,
2632 	.write_i2c_byte       = igb_write_i2c_byte,
2633 	.read_i2c_byte        = igb_read_i2c_byte,
2634 };
2635 
2636 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2637 	.acquire              = igb_acquire_nvm_82575,
2638 	.read                 = igb_read_nvm_eerd,
2639 	.release              = igb_release_nvm_82575,
2640 	.write                = igb_write_nvm_spi,
2641 };
2642 
2643 const struct e1000_info e1000_82575_info = {
2644 	.get_invariants = igb_get_invariants_82575,
2645 	.mac_ops = &e1000_mac_ops_82575,
2646 	.phy_ops = &e1000_phy_ops_82575,
2647 	.nvm_ops = &e1000_nvm_ops_82575,
2648 };
2649 
2650