1 /*******************************************************************************
2 
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2011 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 /* e1000_82575
29  * e1000_82576
30  */
31 
32 #include <linux/types.h>
33 #include <linux/if_ether.h>
34 
35 #include "e1000_mac.h"
36 #include "e1000_82575.h"
37 
38 static s32  igb_get_invariants_82575(struct e1000_hw *);
39 static s32  igb_acquire_phy_82575(struct e1000_hw *);
40 static void igb_release_phy_82575(struct e1000_hw *);
41 static s32  igb_acquire_nvm_82575(struct e1000_hw *);
42 static void igb_release_nvm_82575(struct e1000_hw *);
43 static s32  igb_check_for_link_82575(struct e1000_hw *);
44 static s32  igb_get_cfg_done_82575(struct e1000_hw *);
45 static s32  igb_init_hw_82575(struct e1000_hw *);
46 static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
47 static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
48 static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
49 static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
50 static s32  igb_reset_hw_82575(struct e1000_hw *);
51 static s32  igb_reset_hw_82580(struct e1000_hw *);
52 static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
53 static s32  igb_setup_copper_link_82575(struct e1000_hw *);
54 static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
55 static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
56 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
57 static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
58 static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
59 						 u16 *);
60 static s32  igb_get_phy_id_82575(struct e1000_hw *);
61 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
62 static bool igb_sgmii_active_82575(struct e1000_hw *);
63 static s32  igb_reset_init_script_82575(struct e1000_hw *);
64 static s32  igb_read_mac_addr_82575(struct e1000_hw *);
65 static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
66 static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
67 static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
68 static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
69 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
70 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
71 static const u16 e1000_82580_rxpbs_table[] =
72 	{ 36, 72, 144, 1, 2, 4, 8, 16,
73 	  35, 70, 140 };
74 #define E1000_82580_RXPBS_TABLE_SIZE \
75 	(sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
76 
77 /**
78  *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
79  *  @hw: pointer to the HW structure
80  *
81  *  Called to determine if the I2C pins are being used for I2C or as an
82  *  external MDIO interface since the two options are mutually exclusive.
83  **/
84 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
85 {
86 	u32 reg = 0;
87 	bool ext_mdio = false;
88 
89 	switch (hw->mac.type) {
90 	case e1000_82575:
91 	case e1000_82576:
92 		reg = rd32(E1000_MDIC);
93 		ext_mdio = !!(reg & E1000_MDIC_DEST);
94 		break;
95 	case e1000_82580:
96 	case e1000_i350:
97 		reg = rd32(E1000_MDICNFG);
98 		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
99 		break;
100 	default:
101 		break;
102 	}
103 	return ext_mdio;
104 }
105 
106 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
107 {
108 	struct e1000_phy_info *phy = &hw->phy;
109 	struct e1000_nvm_info *nvm = &hw->nvm;
110 	struct e1000_mac_info *mac = &hw->mac;
111 	struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
112 	u32 eecd;
113 	s32 ret_val;
114 	u16 size;
115 	u32 ctrl_ext = 0;
116 
117 	switch (hw->device_id) {
118 	case E1000_DEV_ID_82575EB_COPPER:
119 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
120 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
121 		mac->type = e1000_82575;
122 		break;
123 	case E1000_DEV_ID_82576:
124 	case E1000_DEV_ID_82576_NS:
125 	case E1000_DEV_ID_82576_NS_SERDES:
126 	case E1000_DEV_ID_82576_FIBER:
127 	case E1000_DEV_ID_82576_SERDES:
128 	case E1000_DEV_ID_82576_QUAD_COPPER:
129 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
130 	case E1000_DEV_ID_82576_SERDES_QUAD:
131 		mac->type = e1000_82576;
132 		break;
133 	case E1000_DEV_ID_82580_COPPER:
134 	case E1000_DEV_ID_82580_FIBER:
135 	case E1000_DEV_ID_82580_QUAD_FIBER:
136 	case E1000_DEV_ID_82580_SERDES:
137 	case E1000_DEV_ID_82580_SGMII:
138 	case E1000_DEV_ID_82580_COPPER_DUAL:
139 	case E1000_DEV_ID_DH89XXCC_SGMII:
140 	case E1000_DEV_ID_DH89XXCC_SERDES:
141 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
142 	case E1000_DEV_ID_DH89XXCC_SFP:
143 		mac->type = e1000_82580;
144 		break;
145 	case E1000_DEV_ID_I350_COPPER:
146 	case E1000_DEV_ID_I350_FIBER:
147 	case E1000_DEV_ID_I350_SERDES:
148 	case E1000_DEV_ID_I350_SGMII:
149 		mac->type = e1000_i350;
150 		break;
151 	default:
152 		return -E1000_ERR_MAC_INIT;
153 		break;
154 	}
155 
156 	/* Set media type */
157 	/*
158 	 * The 82575 uses bits 22:23 for link mode. The mode can be changed
159 	 * based on the EEPROM. We cannot rely upon device ID. There
160 	 * is no distinguishable difference between fiber and internal
161 	 * SerDes mode on the 82575. There can be an external PHY attached
162 	 * on the SGMII interface. For this, we'll set sgmii_active to true.
163 	 */
164 	phy->media_type = e1000_media_type_copper;
165 	dev_spec->sgmii_active = false;
166 
167 	ctrl_ext = rd32(E1000_CTRL_EXT);
168 	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
169 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
170 		dev_spec->sgmii_active = true;
171 		break;
172 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
173 	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
174 		hw->phy.media_type = e1000_media_type_internal_serdes;
175 		break;
176 	default:
177 		break;
178 	}
179 
180 	/* Set mta register count */
181 	mac->mta_reg_count = 128;
182 	/* Set rar entry count */
183 	mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
184 	if (mac->type == e1000_82576)
185 		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
186 	if (mac->type == e1000_82580)
187 		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
188 	if (mac->type == e1000_i350)
189 		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
190 	/* reset */
191 	if (mac->type >= e1000_82580)
192 		mac->ops.reset_hw = igb_reset_hw_82580;
193 	else
194 		mac->ops.reset_hw = igb_reset_hw_82575;
195 	/* Set if part includes ASF firmware */
196 	mac->asf_firmware_present = true;
197 	/* Set if manageability features are enabled. */
198 	mac->arc_subsystem_valid =
199 		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
200 			? true : false;
201 	/* enable EEE on i350 parts */
202 	if (mac->type == e1000_i350)
203 		dev_spec->eee_disable = false;
204 	else
205 		dev_spec->eee_disable = true;
206 	/* physical interface link setup */
207 	mac->ops.setup_physical_interface =
208 		(hw->phy.media_type == e1000_media_type_copper)
209 			? igb_setup_copper_link_82575
210 			: igb_setup_serdes_link_82575;
211 
212 	/* NVM initialization */
213 	eecd = rd32(E1000_EECD);
214 
215 	nvm->opcode_bits        = 8;
216 	nvm->delay_usec         = 1;
217 	switch (nvm->override) {
218 	case e1000_nvm_override_spi_large:
219 		nvm->page_size    = 32;
220 		nvm->address_bits = 16;
221 		break;
222 	case e1000_nvm_override_spi_small:
223 		nvm->page_size    = 8;
224 		nvm->address_bits = 8;
225 		break;
226 	default:
227 		nvm->page_size    = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
228 		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
229 		break;
230 	}
231 
232 	nvm->type = e1000_nvm_eeprom_spi;
233 
234 	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
235 		     E1000_EECD_SIZE_EX_SHIFT);
236 
237 	/*
238 	 * Added to a constant, "size" becomes the left-shift value
239 	 * for setting word_size.
240 	 */
241 	size += NVM_WORD_SIZE_BASE_SHIFT;
242 
243 	/*
244 	 * Check for invalid size
245 	 */
246 	if ((hw->mac.type == e1000_82576) && (size > 15)) {
247 		printk("igb: The NVM size is not valid, "
248 			"defaulting to 32K.\n");
249 		size = 15;
250 	}
251 	nvm->word_size = 1 << size;
252 	if (nvm->word_size == (1 << 15))
253 		nvm->page_size = 128;
254 
255 	/* NVM Function Pointers */
256 	nvm->ops.acquire = igb_acquire_nvm_82575;
257 	if (nvm->word_size < (1 << 15))
258 		nvm->ops.read = igb_read_nvm_eerd;
259 	else
260 		nvm->ops.read = igb_read_nvm_spi;
261 
262 	nvm->ops.release = igb_release_nvm_82575;
263 	switch (hw->mac.type) {
264 	case e1000_82580:
265 		nvm->ops.validate = igb_validate_nvm_checksum_82580;
266 		nvm->ops.update = igb_update_nvm_checksum_82580;
267 		break;
268 	case e1000_i350:
269 		nvm->ops.validate = igb_validate_nvm_checksum_i350;
270 		nvm->ops.update = igb_update_nvm_checksum_i350;
271 		break;
272 	default:
273 		nvm->ops.validate = igb_validate_nvm_checksum;
274 		nvm->ops.update = igb_update_nvm_checksum;
275 	}
276 	nvm->ops.write = igb_write_nvm_spi;
277 
278 	/* if part supports SR-IOV then initialize mailbox parameters */
279 	switch (mac->type) {
280 	case e1000_82576:
281 	case e1000_i350:
282 		igb_init_mbx_params_pf(hw);
283 		break;
284 	default:
285 		break;
286 	}
287 
288 	/* setup PHY parameters */
289 	if (phy->media_type != e1000_media_type_copper) {
290 		phy->type = e1000_phy_none;
291 		return 0;
292 	}
293 
294 	phy->autoneg_mask        = AUTONEG_ADVERTISE_SPEED_DEFAULT;
295 	phy->reset_delay_us      = 100;
296 
297 	ctrl_ext = rd32(E1000_CTRL_EXT);
298 
299 	/* PHY function pointers */
300 	if (igb_sgmii_active_82575(hw)) {
301 		phy->ops.reset      = igb_phy_hw_reset_sgmii_82575;
302 		ctrl_ext |= E1000_CTRL_I2C_ENA;
303 	} else {
304 		phy->ops.reset      = igb_phy_hw_reset;
305 		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
306 	}
307 
308 	wr32(E1000_CTRL_EXT, ctrl_ext);
309 	igb_reset_mdicnfg_82580(hw);
310 
311 	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
312 		phy->ops.read_reg   = igb_read_phy_reg_sgmii_82575;
313 		phy->ops.write_reg  = igb_write_phy_reg_sgmii_82575;
314 	} else if (hw->mac.type >= e1000_82580) {
315 		phy->ops.read_reg   = igb_read_phy_reg_82580;
316 		phy->ops.write_reg  = igb_write_phy_reg_82580;
317 	} else {
318 		phy->ops.read_reg   = igb_read_phy_reg_igp;
319 		phy->ops.write_reg  = igb_write_phy_reg_igp;
320 	}
321 
322 	/* set lan id */
323 	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
324 	               E1000_STATUS_FUNC_SHIFT;
325 
326 	/* Set phy->phy_addr and phy->id. */
327 	ret_val = igb_get_phy_id_82575(hw);
328 	if (ret_val)
329 		return ret_val;
330 
331 	/* Verify phy id and set remaining function pointers */
332 	switch (phy->id) {
333 	case I347AT4_E_PHY_ID:
334 	case M88E1112_E_PHY_ID:
335 	case M88E1111_I_PHY_ID:
336 		phy->type                   = e1000_phy_m88;
337 		phy->ops.get_phy_info       = igb_get_phy_info_m88;
338 
339 		if (phy->id == I347AT4_E_PHY_ID ||
340 		    phy->id == M88E1112_E_PHY_ID)
341 			phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
342 		else
343 			phy->ops.get_cable_length = igb_get_cable_length_m88;
344 
345 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
346 		break;
347 	case IGP03E1000_E_PHY_ID:
348 		phy->type                   = e1000_phy_igp_3;
349 		phy->ops.get_phy_info       = igb_get_phy_info_igp;
350 		phy->ops.get_cable_length   = igb_get_cable_length_igp_2;
351 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
352 		phy->ops.set_d0_lplu_state  = igb_set_d0_lplu_state_82575;
353 		phy->ops.set_d3_lplu_state  = igb_set_d3_lplu_state;
354 		break;
355 	case I82580_I_PHY_ID:
356 	case I350_I_PHY_ID:
357 		phy->type                   = e1000_phy_82580;
358 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_82580;
359 		phy->ops.get_cable_length   = igb_get_cable_length_82580;
360 		phy->ops.get_phy_info       = igb_get_phy_info_82580;
361 		break;
362 	default:
363 		return -E1000_ERR_PHY;
364 	}
365 
366 	return 0;
367 }
368 
369 /**
370  *  igb_acquire_phy_82575 - Acquire rights to access PHY
371  *  @hw: pointer to the HW structure
372  *
373  *  Acquire access rights to the correct PHY.  This is a
374  *  function pointer entry point called by the api module.
375  **/
376 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
377 {
378 	u16 mask = E1000_SWFW_PHY0_SM;
379 
380 	if (hw->bus.func == E1000_FUNC_1)
381 		mask = E1000_SWFW_PHY1_SM;
382 	else if (hw->bus.func == E1000_FUNC_2)
383 		mask = E1000_SWFW_PHY2_SM;
384 	else if (hw->bus.func == E1000_FUNC_3)
385 		mask = E1000_SWFW_PHY3_SM;
386 
387 	return igb_acquire_swfw_sync_82575(hw, mask);
388 }
389 
390 /**
391  *  igb_release_phy_82575 - Release rights to access PHY
392  *  @hw: pointer to the HW structure
393  *
394  *  A wrapper to release access rights to the correct PHY.  This is a
395  *  function pointer entry point called by the api module.
396  **/
397 static void igb_release_phy_82575(struct e1000_hw *hw)
398 {
399 	u16 mask = E1000_SWFW_PHY0_SM;
400 
401 	if (hw->bus.func == E1000_FUNC_1)
402 		mask = E1000_SWFW_PHY1_SM;
403 	else if (hw->bus.func == E1000_FUNC_2)
404 		mask = E1000_SWFW_PHY2_SM;
405 	else if (hw->bus.func == E1000_FUNC_3)
406 		mask = E1000_SWFW_PHY3_SM;
407 
408 	igb_release_swfw_sync_82575(hw, mask);
409 }
410 
411 /**
412  *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
413  *  @hw: pointer to the HW structure
414  *  @offset: register offset to be read
415  *  @data: pointer to the read data
416  *
417  *  Reads the PHY register at offset using the serial gigabit media independent
418  *  interface and stores the retrieved information in data.
419  **/
420 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
421 					  u16 *data)
422 {
423 	s32 ret_val = -E1000_ERR_PARAM;
424 
425 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
426 		hw_dbg("PHY Address %u is out of range\n", offset);
427 		goto out;
428 	}
429 
430 	ret_val = hw->phy.ops.acquire(hw);
431 	if (ret_val)
432 		goto out;
433 
434 	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
435 
436 	hw->phy.ops.release(hw);
437 
438 out:
439 	return ret_val;
440 }
441 
442 /**
443  *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
444  *  @hw: pointer to the HW structure
445  *  @offset: register offset to write to
446  *  @data: data to write at register offset
447  *
448  *  Writes the data to PHY register at the offset using the serial gigabit
449  *  media independent interface.
450  **/
451 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
452 					   u16 data)
453 {
454 	s32 ret_val = -E1000_ERR_PARAM;
455 
456 
457 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
458 		hw_dbg("PHY Address %d is out of range\n", offset);
459 		goto out;
460 	}
461 
462 	ret_val = hw->phy.ops.acquire(hw);
463 	if (ret_val)
464 		goto out;
465 
466 	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
467 
468 	hw->phy.ops.release(hw);
469 
470 out:
471 	return ret_val;
472 }
473 
474 /**
475  *  igb_get_phy_id_82575 - Retrieve PHY addr and id
476  *  @hw: pointer to the HW structure
477  *
478  *  Retrieves the PHY address and ID for both PHY's which do and do not use
479  *  sgmi interface.
480  **/
481 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
482 {
483 	struct e1000_phy_info *phy = &hw->phy;
484 	s32  ret_val = 0;
485 	u16 phy_id;
486 	u32 ctrl_ext;
487 	u32 mdic;
488 
489 	/*
490 	 * For SGMII PHYs, we try the list of possible addresses until
491 	 * we find one that works.  For non-SGMII PHYs
492 	 * (e.g. integrated copper PHYs), an address of 1 should
493 	 * work.  The result of this function should mean phy->phy_addr
494 	 * and phy->id are set correctly.
495 	 */
496 	if (!(igb_sgmii_active_82575(hw))) {
497 		phy->addr = 1;
498 		ret_val = igb_get_phy_id(hw);
499 		goto out;
500 	}
501 
502 	if (igb_sgmii_uses_mdio_82575(hw)) {
503 		switch (hw->mac.type) {
504 		case e1000_82575:
505 		case e1000_82576:
506 			mdic = rd32(E1000_MDIC);
507 			mdic &= E1000_MDIC_PHY_MASK;
508 			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
509 			break;
510 		case e1000_82580:
511 		case e1000_i350:
512 			mdic = rd32(E1000_MDICNFG);
513 			mdic &= E1000_MDICNFG_PHY_MASK;
514 			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
515 			break;
516 		default:
517 			ret_val = -E1000_ERR_PHY;
518 			goto out;
519 			break;
520 		}
521 		ret_val = igb_get_phy_id(hw);
522 		goto out;
523 	}
524 
525 	/* Power on sgmii phy if it is disabled */
526 	ctrl_ext = rd32(E1000_CTRL_EXT);
527 	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
528 	wrfl();
529 	msleep(300);
530 
531 	/*
532 	 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
533 	 * Therefore, we need to test 1-7
534 	 */
535 	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
536 		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
537 		if (ret_val == 0) {
538 			hw_dbg("Vendor ID 0x%08X read at address %u\n",
539 			       phy_id, phy->addr);
540 			/*
541 			 * At the time of this writing, The M88 part is
542 			 * the only supported SGMII PHY product.
543 			 */
544 			if (phy_id == M88_VENDOR)
545 				break;
546 		} else {
547 			hw_dbg("PHY address %u was unreadable\n", phy->addr);
548 		}
549 	}
550 
551 	/* A valid PHY type couldn't be found. */
552 	if (phy->addr == 8) {
553 		phy->addr = 0;
554 		ret_val = -E1000_ERR_PHY;
555 		goto out;
556 	} else {
557 		ret_val = igb_get_phy_id(hw);
558 	}
559 
560 	/* restore previous sfp cage power state */
561 	wr32(E1000_CTRL_EXT, ctrl_ext);
562 
563 out:
564 	return ret_val;
565 }
566 
567 /**
568  *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
569  *  @hw: pointer to the HW structure
570  *
571  *  Resets the PHY using the serial gigabit media independent interface.
572  **/
573 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
574 {
575 	s32 ret_val;
576 
577 	/*
578 	 * This isn't a true "hard" reset, but is the only reset
579 	 * available to us at this time.
580 	 */
581 
582 	hw_dbg("Soft resetting SGMII attached PHY...\n");
583 
584 	/*
585 	 * SFP documentation requires the following to configure the SPF module
586 	 * to work on SGMII.  No further documentation is given.
587 	 */
588 	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
589 	if (ret_val)
590 		goto out;
591 
592 	ret_val = igb_phy_sw_reset(hw);
593 
594 out:
595 	return ret_val;
596 }
597 
598 /**
599  *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
600  *  @hw: pointer to the HW structure
601  *  @active: true to enable LPLU, false to disable
602  *
603  *  Sets the LPLU D0 state according to the active flag.  When
604  *  activating LPLU this function also disables smart speed
605  *  and vice versa.  LPLU will not be activated unless the
606  *  device autonegotiation advertisement meets standards of
607  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
608  *  This is a function pointer entry point only called by
609  *  PHY setup routines.
610  **/
611 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
612 {
613 	struct e1000_phy_info *phy = &hw->phy;
614 	s32 ret_val;
615 	u16 data;
616 
617 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
618 	if (ret_val)
619 		goto out;
620 
621 	if (active) {
622 		data |= IGP02E1000_PM_D0_LPLU;
623 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
624 						 data);
625 		if (ret_val)
626 			goto out;
627 
628 		/* When LPLU is enabled, we should disable SmartSpeed */
629 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
630 						&data);
631 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
632 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
633 						 data);
634 		if (ret_val)
635 			goto out;
636 	} else {
637 		data &= ~IGP02E1000_PM_D0_LPLU;
638 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
639 						 data);
640 		/*
641 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
642 		 * during Dx states where the power conservation is most
643 		 * important.  During driver activity we should enable
644 		 * SmartSpeed, so performance is maintained.
645 		 */
646 		if (phy->smart_speed == e1000_smart_speed_on) {
647 			ret_val = phy->ops.read_reg(hw,
648 					IGP01E1000_PHY_PORT_CONFIG, &data);
649 			if (ret_val)
650 				goto out;
651 
652 			data |= IGP01E1000_PSCFR_SMART_SPEED;
653 			ret_val = phy->ops.write_reg(hw,
654 					IGP01E1000_PHY_PORT_CONFIG, data);
655 			if (ret_val)
656 				goto out;
657 		} else if (phy->smart_speed == e1000_smart_speed_off) {
658 			ret_val = phy->ops.read_reg(hw,
659 					IGP01E1000_PHY_PORT_CONFIG, &data);
660 			if (ret_val)
661 				goto out;
662 
663 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
664 			ret_val = phy->ops.write_reg(hw,
665 					IGP01E1000_PHY_PORT_CONFIG, data);
666 			if (ret_val)
667 				goto out;
668 		}
669 	}
670 
671 out:
672 	return ret_val;
673 }
674 
675 /**
676  *  igb_acquire_nvm_82575 - Request for access to EEPROM
677  *  @hw: pointer to the HW structure
678  *
679  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
680  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
681  *  Return successful if access grant bit set, else clear the request for
682  *  EEPROM access and return -E1000_ERR_NVM (-1).
683  **/
684 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
685 {
686 	s32 ret_val;
687 
688 	ret_val = igb_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
689 	if (ret_val)
690 		goto out;
691 
692 	ret_val = igb_acquire_nvm(hw);
693 
694 	if (ret_val)
695 		igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
696 
697 out:
698 	return ret_val;
699 }
700 
701 /**
702  *  igb_release_nvm_82575 - Release exclusive access to EEPROM
703  *  @hw: pointer to the HW structure
704  *
705  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
706  *  then release the semaphores acquired.
707  **/
708 static void igb_release_nvm_82575(struct e1000_hw *hw)
709 {
710 	igb_release_nvm(hw);
711 	igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
712 }
713 
714 /**
715  *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
716  *  @hw: pointer to the HW structure
717  *  @mask: specifies which semaphore to acquire
718  *
719  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
720  *  will also specify which port we're acquiring the lock for.
721  **/
722 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
723 {
724 	u32 swfw_sync;
725 	u32 swmask = mask;
726 	u32 fwmask = mask << 16;
727 	s32 ret_val = 0;
728 	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
729 
730 	while (i < timeout) {
731 		if (igb_get_hw_semaphore(hw)) {
732 			ret_val = -E1000_ERR_SWFW_SYNC;
733 			goto out;
734 		}
735 
736 		swfw_sync = rd32(E1000_SW_FW_SYNC);
737 		if (!(swfw_sync & (fwmask | swmask)))
738 			break;
739 
740 		/*
741 		 * Firmware currently using resource (fwmask)
742 		 * or other software thread using resource (swmask)
743 		 */
744 		igb_put_hw_semaphore(hw);
745 		mdelay(5);
746 		i++;
747 	}
748 
749 	if (i == timeout) {
750 		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
751 		ret_val = -E1000_ERR_SWFW_SYNC;
752 		goto out;
753 	}
754 
755 	swfw_sync |= swmask;
756 	wr32(E1000_SW_FW_SYNC, swfw_sync);
757 
758 	igb_put_hw_semaphore(hw);
759 
760 out:
761 	return ret_val;
762 }
763 
764 /**
765  *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
766  *  @hw: pointer to the HW structure
767  *  @mask: specifies which semaphore to acquire
768  *
769  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
770  *  will also specify which port we're releasing the lock for.
771  **/
772 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
773 {
774 	u32 swfw_sync;
775 
776 	while (igb_get_hw_semaphore(hw) != 0);
777 	/* Empty */
778 
779 	swfw_sync = rd32(E1000_SW_FW_SYNC);
780 	swfw_sync &= ~mask;
781 	wr32(E1000_SW_FW_SYNC, swfw_sync);
782 
783 	igb_put_hw_semaphore(hw);
784 }
785 
786 /**
787  *  igb_get_cfg_done_82575 - Read config done bit
788  *  @hw: pointer to the HW structure
789  *
790  *  Read the management control register for the config done bit for
791  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
792  *  to read the config done bit, so an error is *ONLY* logged and returns
793  *  0.  If we were to return with error, EEPROM-less silicon
794  *  would not be able to be reset or change link.
795  **/
796 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
797 {
798 	s32 timeout = PHY_CFG_TIMEOUT;
799 	s32 ret_val = 0;
800 	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
801 
802 	if (hw->bus.func == 1)
803 		mask = E1000_NVM_CFG_DONE_PORT_1;
804 	else if (hw->bus.func == E1000_FUNC_2)
805 		mask = E1000_NVM_CFG_DONE_PORT_2;
806 	else if (hw->bus.func == E1000_FUNC_3)
807 		mask = E1000_NVM_CFG_DONE_PORT_3;
808 
809 	while (timeout) {
810 		if (rd32(E1000_EEMNGCTL) & mask)
811 			break;
812 		msleep(1);
813 		timeout--;
814 	}
815 	if (!timeout)
816 		hw_dbg("MNG configuration cycle has not completed.\n");
817 
818 	/* If EEPROM is not marked present, init the PHY manually */
819 	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
820 	    (hw->phy.type == e1000_phy_igp_3))
821 		igb_phy_init_script_igp3(hw);
822 
823 	return ret_val;
824 }
825 
826 /**
827  *  igb_check_for_link_82575 - Check for link
828  *  @hw: pointer to the HW structure
829  *
830  *  If sgmii is enabled, then use the pcs register to determine link, otherwise
831  *  use the generic interface for determining link.
832  **/
833 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
834 {
835 	s32 ret_val;
836 	u16 speed, duplex;
837 
838 	if (hw->phy.media_type != e1000_media_type_copper) {
839 		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
840 		                                             &duplex);
841 		/*
842 		 * Use this flag to determine if link needs to be checked or
843 		 * not.  If  we have link clear the flag so that we do not
844 		 * continue to check for link.
845 		 */
846 		hw->mac.get_link_status = !hw->mac.serdes_has_link;
847 	} else {
848 		ret_val = igb_check_for_copper_link(hw);
849 	}
850 
851 	return ret_val;
852 }
853 
854 /**
855  *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
856  *  @hw: pointer to the HW structure
857  **/
858 void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
859 {
860 	u32 reg;
861 
862 
863 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
864 	    !igb_sgmii_active_82575(hw))
865 		return;
866 
867 	/* Enable PCS to turn on link */
868 	reg = rd32(E1000_PCS_CFG0);
869 	reg |= E1000_PCS_CFG_PCS_EN;
870 	wr32(E1000_PCS_CFG0, reg);
871 
872 	/* Power up the laser */
873 	reg = rd32(E1000_CTRL_EXT);
874 	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
875 	wr32(E1000_CTRL_EXT, reg);
876 
877 	/* flush the write to verify completion */
878 	wrfl();
879 	msleep(1);
880 }
881 
882 /**
883  *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
884  *  @hw: pointer to the HW structure
885  *  @speed: stores the current speed
886  *  @duplex: stores the current duplex
887  *
888  *  Using the physical coding sub-layer (PCS), retrieve the current speed and
889  *  duplex, then store the values in the pointers provided.
890  **/
891 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
892 						u16 *duplex)
893 {
894 	struct e1000_mac_info *mac = &hw->mac;
895 	u32 pcs;
896 
897 	/* Set up defaults for the return values of this function */
898 	mac->serdes_has_link = false;
899 	*speed = 0;
900 	*duplex = 0;
901 
902 	/*
903 	 * Read the PCS Status register for link state. For non-copper mode,
904 	 * the status register is not accurate. The PCS status register is
905 	 * used instead.
906 	 */
907 	pcs = rd32(E1000_PCS_LSTAT);
908 
909 	/*
910 	 * The link up bit determines when link is up on autoneg. The sync ok
911 	 * gets set once both sides sync up and agree upon link. Stable link
912 	 * can be determined by checking for both link up and link sync ok
913 	 */
914 	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
915 		mac->serdes_has_link = true;
916 
917 		/* Detect and store PCS speed */
918 		if (pcs & E1000_PCS_LSTS_SPEED_1000) {
919 			*speed = SPEED_1000;
920 		} else if (pcs & E1000_PCS_LSTS_SPEED_100) {
921 			*speed = SPEED_100;
922 		} else {
923 			*speed = SPEED_10;
924 		}
925 
926 		/* Detect and store PCS duplex */
927 		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
928 			*duplex = FULL_DUPLEX;
929 		} else {
930 			*duplex = HALF_DUPLEX;
931 		}
932 	}
933 
934 	return 0;
935 }
936 
937 /**
938  *  igb_shutdown_serdes_link_82575 - Remove link during power down
939  *  @hw: pointer to the HW structure
940  *
941  *  In the case of fiber serdes, shut down optics and PCS on driver unload
942  *  when management pass thru is not enabled.
943  **/
944 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
945 {
946 	u32 reg;
947 
948 	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
949 	    igb_sgmii_active_82575(hw))
950 		return;
951 
952 	if (!igb_enable_mng_pass_thru(hw)) {
953 		/* Disable PCS to turn off link */
954 		reg = rd32(E1000_PCS_CFG0);
955 		reg &= ~E1000_PCS_CFG_PCS_EN;
956 		wr32(E1000_PCS_CFG0, reg);
957 
958 		/* shutdown the laser */
959 		reg = rd32(E1000_CTRL_EXT);
960 		reg |= E1000_CTRL_EXT_SDP3_DATA;
961 		wr32(E1000_CTRL_EXT, reg);
962 
963 		/* flush the write to verify completion */
964 		wrfl();
965 		msleep(1);
966 	}
967 }
968 
969 /**
970  *  igb_reset_hw_82575 - Reset hardware
971  *  @hw: pointer to the HW structure
972  *
973  *  This resets the hardware into a known state.  This is a
974  *  function pointer entry point called by the api module.
975  **/
976 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
977 {
978 	u32 ctrl, icr;
979 	s32 ret_val;
980 
981 	/*
982 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
983 	 * on the last TLP read/write transaction when MAC is reset.
984 	 */
985 	ret_val = igb_disable_pcie_master(hw);
986 	if (ret_val)
987 		hw_dbg("PCI-E Master disable polling has failed.\n");
988 
989 	/* set the completion timeout for interface */
990 	ret_val = igb_set_pcie_completion_timeout(hw);
991 	if (ret_val) {
992 		hw_dbg("PCI-E Set completion timeout has failed.\n");
993 	}
994 
995 	hw_dbg("Masking off all interrupts\n");
996 	wr32(E1000_IMC, 0xffffffff);
997 
998 	wr32(E1000_RCTL, 0);
999 	wr32(E1000_TCTL, E1000_TCTL_PSP);
1000 	wrfl();
1001 
1002 	msleep(10);
1003 
1004 	ctrl = rd32(E1000_CTRL);
1005 
1006 	hw_dbg("Issuing a global reset to MAC\n");
1007 	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1008 
1009 	ret_val = igb_get_auto_rd_done(hw);
1010 	if (ret_val) {
1011 		/*
1012 		 * When auto config read does not complete, do not
1013 		 * return with an error. This can happen in situations
1014 		 * where there is no eeprom and prevents getting link.
1015 		 */
1016 		hw_dbg("Auto Read Done did not complete\n");
1017 	}
1018 
1019 	/* If EEPROM is not present, run manual init scripts */
1020 	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1021 		igb_reset_init_script_82575(hw);
1022 
1023 	/* Clear any pending interrupt events. */
1024 	wr32(E1000_IMC, 0xffffffff);
1025 	icr = rd32(E1000_ICR);
1026 
1027 	/* Install any alternate MAC address into RAR0 */
1028 	ret_val = igb_check_alt_mac_addr(hw);
1029 
1030 	return ret_val;
1031 }
1032 
1033 /**
1034  *  igb_init_hw_82575 - Initialize hardware
1035  *  @hw: pointer to the HW structure
1036  *
1037  *  This inits the hardware readying it for operation.
1038  **/
1039 static s32 igb_init_hw_82575(struct e1000_hw *hw)
1040 {
1041 	struct e1000_mac_info *mac = &hw->mac;
1042 	s32 ret_val;
1043 	u16 i, rar_count = mac->rar_entry_count;
1044 
1045 	/* Initialize identification LED */
1046 	ret_val = igb_id_led_init(hw);
1047 	if (ret_val) {
1048 		hw_dbg("Error initializing identification LED\n");
1049 		/* This is not fatal and we should not stop init due to this */
1050 	}
1051 
1052 	/* Disabling VLAN filtering */
1053 	hw_dbg("Initializing the IEEE VLAN\n");
1054 	if (hw->mac.type == e1000_i350)
1055 		igb_clear_vfta_i350(hw);
1056 	else
1057 		igb_clear_vfta(hw);
1058 
1059 	/* Setup the receive address */
1060 	igb_init_rx_addrs(hw, rar_count);
1061 
1062 	/* Zero out the Multicast HASH table */
1063 	hw_dbg("Zeroing the MTA\n");
1064 	for (i = 0; i < mac->mta_reg_count; i++)
1065 		array_wr32(E1000_MTA, i, 0);
1066 
1067 	/* Zero out the Unicast HASH table */
1068 	hw_dbg("Zeroing the UTA\n");
1069 	for (i = 0; i < mac->uta_reg_count; i++)
1070 		array_wr32(E1000_UTA, i, 0);
1071 
1072 	/* Setup link and flow control */
1073 	ret_val = igb_setup_link(hw);
1074 
1075 	/*
1076 	 * Clear all of the statistics registers (clear on read).  It is
1077 	 * important that we do this after we have tried to establish link
1078 	 * because the symbol error count will increment wildly if there
1079 	 * is no link.
1080 	 */
1081 	igb_clear_hw_cntrs_82575(hw);
1082 
1083 	return ret_val;
1084 }
1085 
1086 /**
1087  *  igb_setup_copper_link_82575 - Configure copper link settings
1088  *  @hw: pointer to the HW structure
1089  *
1090  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1091  *  for link, once link is established calls to configure collision distance
1092  *  and flow control are called.
1093  **/
1094 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1095 {
1096 	u32 ctrl;
1097 	s32  ret_val;
1098 
1099 	ctrl = rd32(E1000_CTRL);
1100 	ctrl |= E1000_CTRL_SLU;
1101 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1102 	wr32(E1000_CTRL, ctrl);
1103 
1104 	ret_val = igb_setup_serdes_link_82575(hw);
1105 	if (ret_val)
1106 		goto out;
1107 
1108 	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1109 		/* allow time for SFP cage time to power up phy */
1110 		msleep(300);
1111 
1112 		ret_val = hw->phy.ops.reset(hw);
1113 		if (ret_val) {
1114 			hw_dbg("Error resetting the PHY.\n");
1115 			goto out;
1116 		}
1117 	}
1118 	switch (hw->phy.type) {
1119 	case e1000_phy_m88:
1120 		if (hw->phy.id == I347AT4_E_PHY_ID ||
1121 		    hw->phy.id == M88E1112_E_PHY_ID)
1122 			ret_val = igb_copper_link_setup_m88_gen2(hw);
1123 		else
1124 			ret_val = igb_copper_link_setup_m88(hw);
1125 		break;
1126 	case e1000_phy_igp_3:
1127 		ret_val = igb_copper_link_setup_igp(hw);
1128 		break;
1129 	case e1000_phy_82580:
1130 		ret_val = igb_copper_link_setup_82580(hw);
1131 		break;
1132 	default:
1133 		ret_val = -E1000_ERR_PHY;
1134 		break;
1135 	}
1136 
1137 	if (ret_val)
1138 		goto out;
1139 
1140 	ret_val = igb_setup_copper_link(hw);
1141 out:
1142 	return ret_val;
1143 }
1144 
1145 /**
1146  *  igb_setup_serdes_link_82575 - Setup link for serdes
1147  *  @hw: pointer to the HW structure
1148  *
1149  *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1150  *  used on copper connections where the serialized gigabit media independent
1151  *  interface (sgmii), or serdes fiber is being used.  Configures the link
1152  *  for auto-negotiation or forces speed/duplex.
1153  **/
1154 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1155 {
1156 	u32 ctrl_ext, ctrl_reg, reg;
1157 	bool pcs_autoneg;
1158 	s32 ret_val = E1000_SUCCESS;
1159 	u16 data;
1160 
1161 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1162 	    !igb_sgmii_active_82575(hw))
1163 		return ret_val;
1164 
1165 
1166 	/*
1167 	 * On the 82575, SerDes loopback mode persists until it is
1168 	 * explicitly turned off or a power cycle is performed.  A read to
1169 	 * the register does not indicate its status.  Therefore, we ensure
1170 	 * loopback mode is disabled during initialization.
1171 	 */
1172 	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1173 
1174 	/* power on the sfp cage if present */
1175 	ctrl_ext = rd32(E1000_CTRL_EXT);
1176 	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1177 	wr32(E1000_CTRL_EXT, ctrl_ext);
1178 
1179 	ctrl_reg = rd32(E1000_CTRL);
1180 	ctrl_reg |= E1000_CTRL_SLU;
1181 
1182 	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1183 		/* set both sw defined pins */
1184 		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1185 
1186 		/* Set switch control to serdes energy detect */
1187 		reg = rd32(E1000_CONNSW);
1188 		reg |= E1000_CONNSW_ENRGSRC;
1189 		wr32(E1000_CONNSW, reg);
1190 	}
1191 
1192 	reg = rd32(E1000_PCS_LCTL);
1193 
1194 	/* default pcs_autoneg to the same setting as mac autoneg */
1195 	pcs_autoneg = hw->mac.autoneg;
1196 
1197 	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1198 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1199 		/* sgmii mode lets the phy handle forcing speed/duplex */
1200 		pcs_autoneg = true;
1201 		/* autoneg time out should be disabled for SGMII mode */
1202 		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1203 		break;
1204 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1205 		/* disable PCS autoneg and support parallel detect only */
1206 		pcs_autoneg = false;
1207 	default:
1208 		if (hw->mac.type == e1000_82575 ||
1209 		    hw->mac.type == e1000_82576) {
1210 			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1211 			if (ret_val) {
1212 				printk(KERN_DEBUG "NVM Read Error\n\n");
1213 				return ret_val;
1214 			}
1215 
1216 			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1217 				pcs_autoneg = false;
1218 		}
1219 
1220 		/*
1221 		 * non-SGMII modes only supports a speed of 1000/Full for the
1222 		 * link so it is best to just force the MAC and let the pcs
1223 		 * link either autoneg or be forced to 1000/Full
1224 		 */
1225 		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1226 		            E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1227 
1228 		/* set speed of 1000/Full if speed/duplex is forced */
1229 		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1230 		break;
1231 	}
1232 
1233 	wr32(E1000_CTRL, ctrl_reg);
1234 
1235 	/*
1236 	 * New SerDes mode allows for forcing speed or autonegotiating speed
1237 	 * at 1gb. Autoneg should be default set by most drivers. This is the
1238 	 * mode that will be compatible with older link partners and switches.
1239 	 * However, both are supported by the hardware and some drivers/tools.
1240 	 */
1241 	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1242 		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1243 
1244 	/*
1245 	 * We force flow control to prevent the CTRL register values from being
1246 	 * overwritten by the autonegotiated flow control values
1247 	 */
1248 	reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1249 
1250 	if (pcs_autoneg) {
1251 		/* Set PCS register for autoneg */
1252 		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1253 		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1254 		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1255 	} else {
1256 		/* Set PCS register for forced link */
1257 		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1258 
1259 		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1260 	}
1261 
1262 	wr32(E1000_PCS_LCTL, reg);
1263 
1264 	if (!igb_sgmii_active_82575(hw))
1265 		igb_force_mac_fc(hw);
1266 
1267 	return ret_val;
1268 }
1269 
1270 /**
1271  *  igb_sgmii_active_82575 - Return sgmii state
1272  *  @hw: pointer to the HW structure
1273  *
1274  *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1275  *  which can be enabled for use in the embedded applications.  Simply
1276  *  return the current state of the sgmii interface.
1277  **/
1278 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1279 {
1280 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1281 	return dev_spec->sgmii_active;
1282 }
1283 
1284 /**
1285  *  igb_reset_init_script_82575 - Inits HW defaults after reset
1286  *  @hw: pointer to the HW structure
1287  *
1288  *  Inits recommended HW defaults after a reset when there is no EEPROM
1289  *  detected. This is only for the 82575.
1290  **/
1291 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1292 {
1293 	if (hw->mac.type == e1000_82575) {
1294 		hw_dbg("Running reset init script for 82575\n");
1295 		/* SerDes configuration via SERDESCTRL */
1296 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1297 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1298 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1299 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1300 
1301 		/* CCM configuration via CCMCTL register */
1302 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1303 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1304 
1305 		/* PCIe lanes configuration */
1306 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1307 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1308 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1309 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1310 
1311 		/* PCIe PLL Configuration */
1312 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1313 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1314 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1315 	}
1316 
1317 	return 0;
1318 }
1319 
1320 /**
1321  *  igb_read_mac_addr_82575 - Read device MAC address
1322  *  @hw: pointer to the HW structure
1323  **/
1324 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1325 {
1326 	s32 ret_val = 0;
1327 
1328 	/*
1329 	 * If there's an alternate MAC address place it in RAR0
1330 	 * so that it will override the Si installed default perm
1331 	 * address.
1332 	 */
1333 	ret_val = igb_check_alt_mac_addr(hw);
1334 	if (ret_val)
1335 		goto out;
1336 
1337 	ret_val = igb_read_mac_addr(hw);
1338 
1339 out:
1340 	return ret_val;
1341 }
1342 
1343 /**
1344  * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1345  * @hw: pointer to the HW structure
1346  *
1347  * In the case of a PHY power down to save power, or to turn off link during a
1348  * driver unload, or wake on lan is not enabled, remove the link.
1349  **/
1350 void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1351 {
1352 	/* If the management interface is not enabled, then power down */
1353 	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1354 		igb_power_down_phy_copper(hw);
1355 }
1356 
1357 /**
1358  *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1359  *  @hw: pointer to the HW structure
1360  *
1361  *  Clears the hardware counters by reading the counter registers.
1362  **/
1363 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1364 {
1365 	igb_clear_hw_cntrs_base(hw);
1366 
1367 	rd32(E1000_PRC64);
1368 	rd32(E1000_PRC127);
1369 	rd32(E1000_PRC255);
1370 	rd32(E1000_PRC511);
1371 	rd32(E1000_PRC1023);
1372 	rd32(E1000_PRC1522);
1373 	rd32(E1000_PTC64);
1374 	rd32(E1000_PTC127);
1375 	rd32(E1000_PTC255);
1376 	rd32(E1000_PTC511);
1377 	rd32(E1000_PTC1023);
1378 	rd32(E1000_PTC1522);
1379 
1380 	rd32(E1000_ALGNERRC);
1381 	rd32(E1000_RXERRC);
1382 	rd32(E1000_TNCRS);
1383 	rd32(E1000_CEXTERR);
1384 	rd32(E1000_TSCTC);
1385 	rd32(E1000_TSCTFC);
1386 
1387 	rd32(E1000_MGTPRC);
1388 	rd32(E1000_MGTPDC);
1389 	rd32(E1000_MGTPTC);
1390 
1391 	rd32(E1000_IAC);
1392 	rd32(E1000_ICRXOC);
1393 
1394 	rd32(E1000_ICRXPTC);
1395 	rd32(E1000_ICRXATC);
1396 	rd32(E1000_ICTXPTC);
1397 	rd32(E1000_ICTXATC);
1398 	rd32(E1000_ICTXQEC);
1399 	rd32(E1000_ICTXQMTC);
1400 	rd32(E1000_ICRXDMTC);
1401 
1402 	rd32(E1000_CBTMPC);
1403 	rd32(E1000_HTDPMC);
1404 	rd32(E1000_CBRMPC);
1405 	rd32(E1000_RPTHC);
1406 	rd32(E1000_HGPTC);
1407 	rd32(E1000_HTCBDPC);
1408 	rd32(E1000_HGORCL);
1409 	rd32(E1000_HGORCH);
1410 	rd32(E1000_HGOTCL);
1411 	rd32(E1000_HGOTCH);
1412 	rd32(E1000_LENERRS);
1413 
1414 	/* This register should not be read in copper configurations */
1415 	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1416 	    igb_sgmii_active_82575(hw))
1417 		rd32(E1000_SCVPC);
1418 }
1419 
1420 /**
1421  *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1422  *  @hw: pointer to the HW structure
1423  *
1424  *  After rx enable if managability is enabled then there is likely some
1425  *  bad data at the start of the fifo and possibly in the DMA fifo.  This
1426  *  function clears the fifos and flushes any packets that came in as rx was
1427  *  being enabled.
1428  **/
1429 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1430 {
1431 	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1432 	int i, ms_wait;
1433 
1434 	if (hw->mac.type != e1000_82575 ||
1435 	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1436 		return;
1437 
1438 	/* Disable all RX queues */
1439 	for (i = 0; i < 4; i++) {
1440 		rxdctl[i] = rd32(E1000_RXDCTL(i));
1441 		wr32(E1000_RXDCTL(i),
1442 		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1443 	}
1444 	/* Poll all queues to verify they have shut down */
1445 	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1446 		msleep(1);
1447 		rx_enabled = 0;
1448 		for (i = 0; i < 4; i++)
1449 			rx_enabled |= rd32(E1000_RXDCTL(i));
1450 		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1451 			break;
1452 	}
1453 
1454 	if (ms_wait == 10)
1455 		hw_dbg("Queue disable timed out after 10ms\n");
1456 
1457 	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1458 	 * incoming packets are rejected.  Set enable and wait 2ms so that
1459 	 * any packet that was coming in as RCTL.EN was set is flushed
1460 	 */
1461 	rfctl = rd32(E1000_RFCTL);
1462 	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1463 
1464 	rlpml = rd32(E1000_RLPML);
1465 	wr32(E1000_RLPML, 0);
1466 
1467 	rctl = rd32(E1000_RCTL);
1468 	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1469 	temp_rctl |= E1000_RCTL_LPE;
1470 
1471 	wr32(E1000_RCTL, temp_rctl);
1472 	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1473 	wrfl();
1474 	msleep(2);
1475 
1476 	/* Enable RX queues that were previously enabled and restore our
1477 	 * previous state
1478 	 */
1479 	for (i = 0; i < 4; i++)
1480 		wr32(E1000_RXDCTL(i), rxdctl[i]);
1481 	wr32(E1000_RCTL, rctl);
1482 	wrfl();
1483 
1484 	wr32(E1000_RLPML, rlpml);
1485 	wr32(E1000_RFCTL, rfctl);
1486 
1487 	/* Flush receive errors generated by workaround */
1488 	rd32(E1000_ROC);
1489 	rd32(E1000_RNBC);
1490 	rd32(E1000_MPC);
1491 }
1492 
1493 /**
1494  *  igb_set_pcie_completion_timeout - set pci-e completion timeout
1495  *  @hw: pointer to the HW structure
1496  *
1497  *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1498  *  however the hardware default for these parts is 500us to 1ms which is less
1499  *  than the 10ms recommended by the pci-e spec.  To address this we need to
1500  *  increase the value to either 10ms to 200ms for capability version 1 config,
1501  *  or 16ms to 55ms for version 2.
1502  **/
1503 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1504 {
1505 	u32 gcr = rd32(E1000_GCR);
1506 	s32 ret_val = 0;
1507 	u16 pcie_devctl2;
1508 
1509 	/* only take action if timeout value is defaulted to 0 */
1510 	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1511 		goto out;
1512 
1513 	/*
1514 	 * if capababilities version is type 1 we can write the
1515 	 * timeout of 10ms to 200ms through the GCR register
1516 	 */
1517 	if (!(gcr & E1000_GCR_CAP_VER2)) {
1518 		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1519 		goto out;
1520 	}
1521 
1522 	/*
1523 	 * for version 2 capabilities we need to write the config space
1524 	 * directly in order to set the completion timeout value for
1525 	 * 16ms to 55ms
1526 	 */
1527 	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1528 	                                &pcie_devctl2);
1529 	if (ret_val)
1530 		goto out;
1531 
1532 	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
1533 
1534 	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1535 	                                 &pcie_devctl2);
1536 out:
1537 	/* disable completion timeout resend */
1538 	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
1539 
1540 	wr32(E1000_GCR, gcr);
1541 	return ret_val;
1542 }
1543 
1544 /**
1545  *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
1546  *  @hw: pointer to the hardware struct
1547  *  @enable: state to enter, either enabled or disabled
1548  *  @pf: Physical Function pool - do not set anti-spoofing for the PF
1549  *
1550  *  enables/disables L2 switch anti-spoofing functionality.
1551  **/
1552 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
1553 {
1554 	u32 dtxswc;
1555 
1556 	switch (hw->mac.type) {
1557 	case e1000_82576:
1558 	case e1000_i350:
1559 		dtxswc = rd32(E1000_DTXSWC);
1560 		if (enable) {
1561 			dtxswc |= (E1000_DTXSWC_MAC_SPOOF_MASK |
1562 				   E1000_DTXSWC_VLAN_SPOOF_MASK);
1563 			/* The PF can spoof - it has to in order to
1564 			 * support emulation mode NICs */
1565 			dtxswc ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
1566 		} else {
1567 			dtxswc &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
1568 				    E1000_DTXSWC_VLAN_SPOOF_MASK);
1569 		}
1570 		wr32(E1000_DTXSWC, dtxswc);
1571 		break;
1572 	default:
1573 		break;
1574 	}
1575 }
1576 
1577 /**
1578  *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1579  *  @hw: pointer to the hardware struct
1580  *  @enable: state to enter, either enabled or disabled
1581  *
1582  *  enables/disables L2 switch loopback functionality.
1583  **/
1584 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1585 {
1586 	u32 dtxswc;
1587 
1588 	switch (hw->mac.type) {
1589 	case e1000_82576:
1590 		dtxswc = rd32(E1000_DTXSWC);
1591 		if (enable)
1592 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1593 		else
1594 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1595 		wr32(E1000_DTXSWC, dtxswc);
1596 		break;
1597 	case e1000_i350:
1598 		dtxswc = rd32(E1000_TXSWC);
1599 		if (enable)
1600 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1601 		else
1602 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1603 		wr32(E1000_TXSWC, dtxswc);
1604 		break;
1605 	default:
1606 		/* Currently no other hardware supports loopback */
1607 		break;
1608 	}
1609 
1610 
1611 }
1612 
1613 /**
1614  *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
1615  *  @hw: pointer to the hardware struct
1616  *  @enable: state to enter, either enabled or disabled
1617  *
1618  *  enables/disables replication of packets across multiple pools.
1619  **/
1620 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1621 {
1622 	u32 vt_ctl = rd32(E1000_VT_CTL);
1623 
1624 	if (enable)
1625 		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
1626 	else
1627 		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
1628 
1629 	wr32(E1000_VT_CTL, vt_ctl);
1630 }
1631 
1632 /**
1633  *  igb_read_phy_reg_82580 - Read 82580 MDI control register
1634  *  @hw: pointer to the HW structure
1635  *  @offset: register offset to be read
1636  *  @data: pointer to the read data
1637  *
1638  *  Reads the MDI control register in the PHY at offset and stores the
1639  *  information read to data.
1640  **/
1641 static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
1642 {
1643 	s32 ret_val;
1644 
1645 
1646 	ret_val = hw->phy.ops.acquire(hw);
1647 	if (ret_val)
1648 		goto out;
1649 
1650 	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
1651 
1652 	hw->phy.ops.release(hw);
1653 
1654 out:
1655 	return ret_val;
1656 }
1657 
1658 /**
1659  *  igb_write_phy_reg_82580 - Write 82580 MDI control register
1660  *  @hw: pointer to the HW structure
1661  *  @offset: register offset to write to
1662  *  @data: data to write to register at offset
1663  *
1664  *  Writes data to MDI control register in the PHY at offset.
1665  **/
1666 static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
1667 {
1668 	s32 ret_val;
1669 
1670 
1671 	ret_val = hw->phy.ops.acquire(hw);
1672 	if (ret_val)
1673 		goto out;
1674 
1675 	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
1676 
1677 	hw->phy.ops.release(hw);
1678 
1679 out:
1680 	return ret_val;
1681 }
1682 
1683 /**
1684  *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
1685  *  @hw: pointer to the HW structure
1686  *
1687  *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
1688  *  the values found in the EEPROM.  This addresses an issue in which these
1689  *  bits are not restored from EEPROM after reset.
1690  **/
1691 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
1692 {
1693 	s32 ret_val = 0;
1694 	u32 mdicnfg;
1695 	u16 nvm_data = 0;
1696 
1697 	if (hw->mac.type != e1000_82580)
1698 		goto out;
1699 	if (!igb_sgmii_active_82575(hw))
1700 		goto out;
1701 
1702 	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1703 				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1704 				   &nvm_data);
1705 	if (ret_val) {
1706 		hw_dbg("NVM Read Error\n");
1707 		goto out;
1708 	}
1709 
1710 	mdicnfg = rd32(E1000_MDICNFG);
1711 	if (nvm_data & NVM_WORD24_EXT_MDIO)
1712 		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
1713 	if (nvm_data & NVM_WORD24_COM_MDIO)
1714 		mdicnfg |= E1000_MDICNFG_COM_MDIO;
1715 	wr32(E1000_MDICNFG, mdicnfg);
1716 out:
1717 	return ret_val;
1718 }
1719 
1720 /**
1721  *  igb_reset_hw_82580 - Reset hardware
1722  *  @hw: pointer to the HW structure
1723  *
1724  *  This resets function or entire device (all ports, etc.)
1725  *  to a known state.
1726  **/
1727 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
1728 {
1729 	s32 ret_val = 0;
1730 	/* BH SW mailbox bit in SW_FW_SYNC */
1731 	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
1732 	u32 ctrl, icr;
1733 	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
1734 
1735 
1736 	hw->dev_spec._82575.global_device_reset = false;
1737 
1738 	/* Get current control state. */
1739 	ctrl = rd32(E1000_CTRL);
1740 
1741 	/*
1742 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
1743 	 * on the last TLP read/write transaction when MAC is reset.
1744 	 */
1745 	ret_val = igb_disable_pcie_master(hw);
1746 	if (ret_val)
1747 		hw_dbg("PCI-E Master disable polling has failed.\n");
1748 
1749 	hw_dbg("Masking off all interrupts\n");
1750 	wr32(E1000_IMC, 0xffffffff);
1751 	wr32(E1000_RCTL, 0);
1752 	wr32(E1000_TCTL, E1000_TCTL_PSP);
1753 	wrfl();
1754 
1755 	msleep(10);
1756 
1757 	/* Determine whether or not a global dev reset is requested */
1758 	if (global_device_reset &&
1759 		igb_acquire_swfw_sync_82575(hw, swmbsw_mask))
1760 			global_device_reset = false;
1761 
1762 	if (global_device_reset &&
1763 		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
1764 		ctrl |= E1000_CTRL_DEV_RST;
1765 	else
1766 		ctrl |= E1000_CTRL_RST;
1767 
1768 	wr32(E1000_CTRL, ctrl);
1769 	wrfl();
1770 
1771 	/* Add delay to insure DEV_RST has time to complete */
1772 	if (global_device_reset)
1773 		msleep(5);
1774 
1775 	ret_val = igb_get_auto_rd_done(hw);
1776 	if (ret_val) {
1777 		/*
1778 		 * When auto config read does not complete, do not
1779 		 * return with an error. This can happen in situations
1780 		 * where there is no eeprom and prevents getting link.
1781 		 */
1782 		hw_dbg("Auto Read Done did not complete\n");
1783 	}
1784 
1785 	/* If EEPROM is not present, run manual init scripts */
1786 	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1787 		igb_reset_init_script_82575(hw);
1788 
1789 	/* clear global device reset status bit */
1790 	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
1791 
1792 	/* Clear any pending interrupt events. */
1793 	wr32(E1000_IMC, 0xffffffff);
1794 	icr = rd32(E1000_ICR);
1795 
1796 	ret_val = igb_reset_mdicnfg_82580(hw);
1797 	if (ret_val)
1798 		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
1799 
1800 	/* Install any alternate MAC address into RAR0 */
1801 	ret_val = igb_check_alt_mac_addr(hw);
1802 
1803 	/* Release semaphore */
1804 	if (global_device_reset)
1805 		igb_release_swfw_sync_82575(hw, swmbsw_mask);
1806 
1807 	return ret_val;
1808 }
1809 
1810 /**
1811  *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
1812  *  @data: data received by reading RXPBS register
1813  *
1814  *  The 82580 uses a table based approach for packet buffer allocation sizes.
1815  *  This function converts the retrieved value into the correct table value
1816  *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
1817  *  0x0 36  72 144   1   2   4   8  16
1818  *  0x8 35  70 140 rsv rsv rsv rsv rsv
1819  */
1820 u16 igb_rxpbs_adjust_82580(u32 data)
1821 {
1822 	u16 ret_val = 0;
1823 
1824 	if (data < E1000_82580_RXPBS_TABLE_SIZE)
1825 		ret_val = e1000_82580_rxpbs_table[data];
1826 
1827 	return ret_val;
1828 }
1829 
1830 /**
1831  *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
1832  *  checksum
1833  *  @hw: pointer to the HW structure
1834  *  @offset: offset in words of the checksum protected region
1835  *
1836  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
1837  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
1838  **/
1839 static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
1840 						 u16 offset)
1841 {
1842 	s32 ret_val = 0;
1843 	u16 checksum = 0;
1844 	u16 i, nvm_data;
1845 
1846 	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
1847 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
1848 		if (ret_val) {
1849 			hw_dbg("NVM Read Error\n");
1850 			goto out;
1851 		}
1852 		checksum += nvm_data;
1853 	}
1854 
1855 	if (checksum != (u16) NVM_SUM) {
1856 		hw_dbg("NVM Checksum Invalid\n");
1857 		ret_val = -E1000_ERR_NVM;
1858 		goto out;
1859 	}
1860 
1861 out:
1862 	return ret_val;
1863 }
1864 
1865 /**
1866  *  igb_update_nvm_checksum_with_offset - Update EEPROM
1867  *  checksum
1868  *  @hw: pointer to the HW structure
1869  *  @offset: offset in words of the checksum protected region
1870  *
1871  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
1872  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
1873  *  value to the EEPROM.
1874  **/
1875 static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
1876 {
1877 	s32 ret_val;
1878 	u16 checksum = 0;
1879 	u16 i, nvm_data;
1880 
1881 	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
1882 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
1883 		if (ret_val) {
1884 			hw_dbg("NVM Read Error while updating checksum.\n");
1885 			goto out;
1886 		}
1887 		checksum += nvm_data;
1888 	}
1889 	checksum = (u16) NVM_SUM - checksum;
1890 	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
1891 				&checksum);
1892 	if (ret_val)
1893 		hw_dbg("NVM Write Error while updating checksum.\n");
1894 
1895 out:
1896 	return ret_val;
1897 }
1898 
1899 /**
1900  *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
1901  *  @hw: pointer to the HW structure
1902  *
1903  *  Calculates the EEPROM section checksum by reading/adding each word of
1904  *  the EEPROM and then verifies that the sum of the EEPROM is
1905  *  equal to 0xBABA.
1906  **/
1907 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
1908 {
1909 	s32 ret_val = 0;
1910 	u16 eeprom_regions_count = 1;
1911 	u16 j, nvm_data;
1912 	u16 nvm_offset;
1913 
1914 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
1915 	if (ret_val) {
1916 		hw_dbg("NVM Read Error\n");
1917 		goto out;
1918 	}
1919 
1920 	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
1921 		/* if checksums compatibility bit is set validate checksums
1922 		 * for all 4 ports. */
1923 		eeprom_regions_count = 4;
1924 	}
1925 
1926 	for (j = 0; j < eeprom_regions_count; j++) {
1927 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
1928 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
1929 								nvm_offset);
1930 		if (ret_val != 0)
1931 			goto out;
1932 	}
1933 
1934 out:
1935 	return ret_val;
1936 }
1937 
1938 /**
1939  *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
1940  *  @hw: pointer to the HW structure
1941  *
1942  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
1943  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
1944  *  checksum and writes the value to the EEPROM.
1945  **/
1946 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
1947 {
1948 	s32 ret_val;
1949 	u16 j, nvm_data;
1950 	u16 nvm_offset;
1951 
1952 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
1953 	if (ret_val) {
1954 		hw_dbg("NVM Read Error while updating checksum"
1955 			" compatibility bit.\n");
1956 		goto out;
1957 	}
1958 
1959 	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
1960 		/* set compatibility bit to validate checksums appropriately */
1961 		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
1962 		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
1963 					&nvm_data);
1964 		if (ret_val) {
1965 			hw_dbg("NVM Write Error while updating checksum"
1966 				" compatibility bit.\n");
1967 			goto out;
1968 		}
1969 	}
1970 
1971 	for (j = 0; j < 4; j++) {
1972 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
1973 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
1974 		if (ret_val)
1975 			goto out;
1976 	}
1977 
1978 out:
1979 	return ret_val;
1980 }
1981 
1982 /**
1983  *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
1984  *  @hw: pointer to the HW structure
1985  *
1986  *  Calculates the EEPROM section checksum by reading/adding each word of
1987  *  the EEPROM and then verifies that the sum of the EEPROM is
1988  *  equal to 0xBABA.
1989  **/
1990 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
1991 {
1992 	s32 ret_val = 0;
1993 	u16 j;
1994 	u16 nvm_offset;
1995 
1996 	for (j = 0; j < 4; j++) {
1997 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
1998 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
1999 								nvm_offset);
2000 		if (ret_val != 0)
2001 			goto out;
2002 	}
2003 
2004 out:
2005 	return ret_val;
2006 }
2007 
2008 /**
2009  *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2010  *  @hw: pointer to the HW structure
2011  *
2012  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2013  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2014  *  checksum and writes the value to the EEPROM.
2015  **/
2016 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2017 {
2018 	s32 ret_val = 0;
2019 	u16 j;
2020 	u16 nvm_offset;
2021 
2022 	for (j = 0; j < 4; j++) {
2023 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2024 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2025 		if (ret_val != 0)
2026 			goto out;
2027 	}
2028 
2029 out:
2030 	return ret_val;
2031 }
2032 
2033 /**
2034  *  igb_set_eee_i350 - Enable/disable EEE support
2035  *  @hw: pointer to the HW structure
2036  *
2037  *  Enable/disable EEE based on setting in dev_spec structure.
2038  *
2039  **/
2040 s32 igb_set_eee_i350(struct e1000_hw *hw)
2041 {
2042 	s32 ret_val = 0;
2043 	u32 ipcnfg, eeer, ctrl_ext;
2044 
2045 	ctrl_ext = rd32(E1000_CTRL_EXT);
2046 	if ((hw->mac.type != e1000_i350) ||
2047 	    (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK))
2048 		goto out;
2049 	ipcnfg = rd32(E1000_IPCNFG);
2050 	eeer = rd32(E1000_EEER);
2051 
2052 	/* enable or disable per user setting */
2053 	if (!(hw->dev_spec._82575.eee_disable)) {
2054 		ipcnfg |= (E1000_IPCNFG_EEE_1G_AN |
2055 			E1000_IPCNFG_EEE_100M_AN);
2056 		eeer |= (E1000_EEER_TX_LPI_EN |
2057 			E1000_EEER_RX_LPI_EN |
2058 			E1000_EEER_LPI_FC);
2059 
2060 	} else {
2061 		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2062 			E1000_IPCNFG_EEE_100M_AN);
2063 		eeer &= ~(E1000_EEER_TX_LPI_EN |
2064 			E1000_EEER_RX_LPI_EN |
2065 			E1000_EEER_LPI_FC);
2066 	}
2067 	wr32(E1000_IPCNFG, ipcnfg);
2068 	wr32(E1000_EEER, eeer);
2069 out:
2070 
2071 	return ret_val;
2072 }
2073 
2074 static struct e1000_mac_operations e1000_mac_ops_82575 = {
2075 	.init_hw              = igb_init_hw_82575,
2076 	.check_for_link       = igb_check_for_link_82575,
2077 	.rar_set              = igb_rar_set,
2078 	.read_mac_addr        = igb_read_mac_addr_82575,
2079 	.get_speed_and_duplex = igb_get_speed_and_duplex_copper,
2080 };
2081 
2082 static struct e1000_phy_operations e1000_phy_ops_82575 = {
2083 	.acquire              = igb_acquire_phy_82575,
2084 	.get_cfg_done         = igb_get_cfg_done_82575,
2085 	.release              = igb_release_phy_82575,
2086 };
2087 
2088 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2089 	.acquire              = igb_acquire_nvm_82575,
2090 	.read                 = igb_read_nvm_eerd,
2091 	.release              = igb_release_nvm_82575,
2092 	.write                = igb_write_nvm_spi,
2093 };
2094 
2095 const struct e1000_info e1000_82575_info = {
2096 	.get_invariants = igb_get_invariants_82575,
2097 	.mac_ops = &e1000_mac_ops_82575,
2098 	.phy_ops = &e1000_phy_ops_82575,
2099 	.nvm_ops = &e1000_nvm_ops_82575,
2100 };
2101 
2102